
A STUDY OF RULE-BASED CATEGORIZATION WITH REDUNDANCY 
by 

Farzin Shamloo 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

 
 

Department of Psychological Sciences 

West Lafayette, Indiana 

May 2019 

  



2 
 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Sebastien Hélie, Chair 

Department of Psychological Sciences 

Dr. Richard Schweickert 

Department of Psychological Sciences 

Dr. Gregory S. Francis 

Department of Psychological Sciences 

Dr. F. Gregory Ashby 

Department of Psychological & Brain Sciences, 

University of California, Santa Barbara 

 

Approved by: 

Dr. David Rollock 

Head of the Graduate Program 

 

 

  



3 
 

Dedicated to my grandparents



4 
 

TABLE OF CONTENTS 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . .   6 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . .   7 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . 13 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 14 

  Why Studying Individual Differences Matters? . . . . . . . . . . . 15 

  Individual Differences in the Categorization Literature . . . . . . . . 16 

  Individual Differences in This Thesis . . . . . . . . . . . . . . 19 

  Relevance and Diagnosticity . . . . . . . . . . . . . . . . . 21 

  Learned Knowledge vs. Used Knowledge . . . . . . . . . . . . . 25 

  Methodological Tools . . . . . . . . . . . . . . . . . . . 26 

    Decision Bound Models. . . . . . . . . . . . . . . . . 27 

    Iterative Decision Bound Modeling . . . . . . . . . . . . . 31 

    RT Distance Hypothesis . . . . . . . . . . . . . . . . 31 

    Stochastic GRT . . . . . . . . . . . . . . . . . . . 32 

  Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 34 

THE EXPERIMENT. . . . . . . . . . . . . . . . . . . . . . 40 

  Method . . . . . . . . . . . . . . . . . . . . . . . . 40 

    Participants . . . . . . . . . . . . . . . . . . . . . 40 

    Material . . . . . . . . . . . . . . . . . . . . . . 40 

    Procedure . . . . . . . . . . . . . . . . . . . . . 41 

  Results . . . . . . . . . . . . . . . . . . . . . . . . 43 

    Learned Knowledge . . . . . . . . . . . . . . . . . . 43 

    Used Knowledge . . . . . . . . . . . . . . . . . . . 48 

ANALYSIS 1 . . . . . . . . . . . . . . . . . . . . . . . . 55 

  Methods . . . . . . . . . . . . . . . . . . . . . . . . 55 

    iDBM: Looking at Error Patterns. . . . . . . . . . . . . . 55 

    RT-Distance Hypothesis . . . . . . . . . . . . . . . . 58 

  Results . . . . . . . . . . . . . . . . . . . . . . . . 60 

    iDBM Results . . . . . . . . . . . . . . . . . . . . 60 



5 
 

    RT-Distance Hypothesis Results . . . . . . . . . . . . . . 66 

    Combining Evidence From iDBM and D2B . . . . . . . . . . 69 

ANALYSIS 2 . . . . . . . . . . . . . . . . . . . . . . . . 74 

  Methods . . . . . . . . . . . . . . . . . . . . . . . . 76 

    Model Selection Process . . . . . . . . . . . . . . . . 78 

  Results . . . . . . . . . . . . . . . . . . . . . . . . 80 

GENERAL DISCUSSION. . . . . . . . . . . . . . . . . . . . 86 

  Comparing the Analyses . . . . . . . . . . . . . . . . . . 86 

    Comparing the Results . . . . . . . . . . . . . . . . . 86 

    Comparing the Implementation . . . . . . . . . . . . . . 90 

      The input data and trial order . . . . . . . . . . . . . 90 

      The model space . . . . . . . . . . . . . . . . . 91 

  More IDs? . . . . . . . . . . . . . . . . . . . . . . . 93 

  Future Work . . . . . . . . . . . . . . . . . . . . . . 98 

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . .  100 

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . .  108 

  BW-BW vs. OR-OR . . . . . . . . . . . . . . . . . . . .  109 

  BW-BW vs. Both-BW . . . . . . . . . . . . . . . . . . .  114 

  OR-OR vs. Both-OR. . . . . . . . . . . . . . . . . . . .  118 

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . .  123 

  



6 
 

LIST OF TABLES 

Table 1: Possibilities for a Successful Participant in a Categorization Task That 

 Corresponds to the Training Phase of Figure 2. . . . . . . . . . . . 25 

Table 2: The way Each Participant is Labeled Based on the Bayes Factor of  

 Spearman Correlations Between RT and Distance to Decision Bounds on  

 Bar Width and Orientation . . . . . . . . . . . . . . . . . . 61 

Table 3: The Confusion Table for the Relation Between Identified Used  

 Knowledge (Based on iDBM) and Learned Knowledge for Participants  

 That Learned Only One of the Dimensions . . . . . . . . . . . . . 64 

Table 4: Identified Used Knowledge (Based on iDBM) for Participants That  

 Learned Both Dimensions . . . . . . . . . . . . . . . . . . 64 

Table 5: The Confusion Table for the Relation Between Identified Used  

 Knowledge (Based on D2B) and Learned Knowledge for Participants That  

 Learned Only One of the Dimensions. . . . . . . . . . . . . . . 69 

Table 6: Identified Used Knowledge (Based on D2B) for Participants That  

 Learned Both Dimensions . . . . . . . . . . . . . . . . . . 71 

Table 7: The Confusion Table for the Relation Between Used Knowledge (Based  

 on iDBM and D2B Measure) and Learned Knowledge . . . . . . . . . 73 

Table 8: The Confusion Table for the Relation Between Identified Strategy  

 (Based on Analysis 2) and Learned Knowledge for Participants that Learned  

 Only One of the Dimensions. . . . . . . . . . . . . . . . . . 84 

Table 9: Identified Strategy (Based on Analysis 2) for Participants that Learned  

 Both Dimensions . . . . . . . . . . . . . . . . . . . . . 85 

Table 10: Model Space of Each Analysis . . . . . . . . . . . . . . . 92 

 

  



7 
 

LIST OF FIGURES 

Figure 1: Likelihood contour of four categories where (a) dimension 1 is relevant, 

 (b) dimension 2 is irrelevant, and (c) both dimensions are relevant . . . . . 22 

Figure 2: Category structure with two relevant dimensions. Black arrows show  

 categorization tasks that participants have to do in the training phase. In test  

 phase, participants have to perform categorization of all possible pairs of  

 categories . . . . . . . . . . . . . . . . . . . . . . . . 24 

Figure 3: Three examples of decision bounds: (a) unidimensional rule-based, (b)  

 conjunctive rule-based, and (c) verbally indescribable decision bound . . . . 30 

Figure 4: Three instances of a drift diffusion process. Figure is from Ratcliff and  

 McKoon (2008) . . . . . . . . . . . . . . . . . . . . . . 33 

Figure 5: Relation between location of the stimulus on category space and its  

 relative difficulty in unidimensional strategies. Red arrows show that only  

 two of the possible comparisons (“A or B?” and “C or D?”) were asked of  

 participants. (a) Categorization based on only Dimension 1. (b)  

 Categorization based on only Dimension 2 . . . . . . . . . . . . . 36 

Figure 6: Relation between location of the stimulus on category space and its  

 relative difficulty in two-dimensional strategies. Red arrows show that only  

 two of the possible comparisons (“A or B?” and “C or D?”) were asked of  

 participants. (a) A “time efficient” strategy. (b) A “conservative” strategy. . . 38 

Figure 7: Red arrows indicate the comparisons participants were asked to do in  

 each phase of the experiment. (a) An example stimulus. (b) The stimuli used  

 in the training phase. (c) The stimuli used in the test phase. . . . . . . . 42 

Figure 8. An example of a trial sequence in the training phase. Test phase trials  

 were similar, only no feedback was  given to participants . . . . . . . . 44 

Figure 9. Four types of categorizations that participants did in test phase. (a) BW  

 trials: “A or C?” and “B or D?” trials, where knowledge on bar width  

 differences is necessary. (b) OR trials: “A or D?” and “B or C?” trials,  

 where knowledge on orientation differences is necessary . . . . . . . . 46 



8 
 

Figure 10: Test performance of participants. The x-axis is the mean accuracy on  

 trials where knowledge on bar width was necessary to categorize the  

 stimulus and the y-axis is the mean accuracy on trials where knowledge on  

 orientation was necessary to categorize the stimulus. Each circle is a  

 participant and color of each participant shows whether they learned both  

 dimensions, only bar width, only orientation or none. . . . . . . . . . 47 

Figure 11: Performance of participants during the first five blocks (training  

 phase): (a) average accuracy and (b) average response time. Error bars  

 represent one standard error . . . . . . . . . . . . . . . . . . 50 

Figure 12: Mean accuracy and mean RT, grouped based on the dimension(s)  

 learned. Each dot represents a participant. (a) Average accuracy. (b)  

 Average response time . . . . . . . . . . . . . . . . . . . 52 

Figure 13: A visualization of how iDBM works. The bounds are fitted to trials  

 1-100 of participant 109. (a) The bound fitted on bar width. (b) The bound  

 fitted on orientation. . . . . . . . . . . . . . . . . . . . . 56 

Figure 14: An example of how distance to bound measure was calculated. Left  

 panel shows all trials and in the right panel, the median RT of stimuli in the  

 same distance from the BW bound is shown . . . . . . . . . . . . 59 

Figure 15: The identified strategies of Learned_BW and Learned_OR  

 participants. Each circle represents a participant. Color of a circle shows the  

 used knowledge (based on iDBM) and its location shows the learned  

 knowledge (x-axis is test accuracy on BW trials and y-axis is test accuracy  

 on OR trials) . . . . . . . . . . . . . . . . . . . . . . . 62 

Figure 16: Each circle represents a participant. Color of a circle shows the used  

 knowledge (based on iDBM) and its location shows the learned knowledge  

 (x-axis is test accuracy on BW trials and y-axis is test accuracy on OR  

 trials) . . . . . . . . . . . . . . . . . . . . . . . . . 65 

Figure 17: The histogram of correlation between RT and distance to the ideal BW  

 and OR bounds: (a) Learned_BW participants, (b) Learned_OR participants, 

 (c) Learned_Both participants . . . . . . . . . . . . . . . . . 67 

  



9 
 

Figure 18: The identified strategies of Learned_BW and Learned_OR  

 participants based on D2B. Each circle represents a participant. Color of a  

 circle shows the used knowledge and its location shows the learned  

 knowledge (x-axis is test accuracy on BW trials and y-axis is test accuracy  

 on OR trials) . . . . . . . . . . . . . . . . . . . . . . . 68 

Figure 19: Each circle represents a participant. Color of a circle shows the used  

 knowledge (based on D2B) and its location shows the learned knowledge  

 (x-axis is test accuracy on BW trials and y-axis is test accuracy on OR  

 trials) . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Figure 20: Each circle represents a participant. Color of a circle shows the used  

 knowledge (based on iDBM and D2B) and its location shows the learned  

 knowledge (x-axis is test accuracy on BW trials and y-axis is test accuracy  

 on OR trials) . . . . . . . . . . . . . . . . . . . . . . . 72 

Figure 21: Analysis 2 distinguishes between different two-dimensional strategies.  

 In an “A or B?” trial, the circled stimuli can be perceived as easy or difficult  

 depending on participant’s strategy . . . . . . . . . . . . . . . 75 

Figure 22: The covariate maps expected to fit best to participants with a  

 unidimensional strategy. (a) Unidimensional strategy on bar width. (b)  

 Unidimensional strategy on orientation . . . . . . . . . . . . . . 77 

Figure 23: The covariate maps expected to fit best to participants that used both  

 dimensions. (a) Time efficient strategy. (b) Conservative strategy . . . . . 79 

Figure 24: The identified strategies of Learned_BW and Learned_OR  

 participants based on Analysis 2. Each circle represents a participant. Color  

 of a circle shows the strategy (based on Analysis 2) and its location shows  

 the learned knowledge (x-axis is test accuracy on BW trials and y-axis is  

 test accuracy on OR trials) . . . . . . . . . . . . . . . . . . 81 

Figure 25: The identified strategies participants based on Analysis 2. Each circle  

 represents a participant. Color of a circle shows the strategy (based on  

 Analysis 2) and its location shows the learned knowledge (x-axis is test  

 accuracy on BW trials and y-axis is test accuracy on OR trials) . . . . . . 83 

  



10 
 

Figure 26: Participants that were misidentified by Analysis 1. (a) Labels based  

 on Analysis 1. (b) Labels based on Analysis 2 . . . . . . . . . . . . 88 

Figure 27: Participants that were misidentified by Analysis 2. (a) Labels based  

 on Analysis 1. (b) Labels based on Analysis 2 . . . . . . . . . . . . 89 

Figure 28: a) Top panel: Parallel, OR processing. Bottom panel: Parallel, AND  

 processing. b) Top panel: Serial, OR processing. Bottom panel: Serial, AND  

 processing. c) Coactive model (special case of parallel architecture). Figure  

 is taken from Houpt, Blaha, McIntire, Havig, & Townsend (2014) . . . . . 94 

Figure 29: Visualization of two-dimensional model implemented in Analysis 2 . . 96 

Figure 30: Alternative architectures to model two-dimensional strategies in  

 Analysis 2. a) An alternative model for time efficient strategy. b) An  

 alternative model for conservative strategy . . . . . . . . . . . . . 97 

Appendix 

Figure 31: Comparing participants that learned and used bar width (green  

 circles) and participants that learned and used orientation (blue circles) . . .  110 

Figure 32: Comparing BW-BW and OR-OR participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy. 

 d) Posterior samples of each group, when dependent variable is mean RT . . .  111 

Figure 33: Posterior samples of DDMs for BW-BW and OR-OR participants. a)  

 Posterior samples of boundary separation. b) Posterior samples of drift rate.  

 c) Posterior samples of non-decision time . . . . . . . . . . . . .  113 

Figure 34: Comparing participants that learned and used bar width (green circles)  

 and participants that learned both dimensions but used only bar width (red  

 circles). . . . . . . . . . . . . . . . . . . . . . . . .  115 

Figure 35: Comparing BW-BW and Both-BW participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy. 

 d) Posterior samples of each group, when dependent variable is mean RT . . .  116 



11 
 

Figure 36: Posterior samples of DDMs for BW-BW and Both-BW participants.  

 a) Posterior samples of boundary separation. b) Posterior samples of drift  

 rate. c) posterior samples of non-decision time. . . . . . . . . . . .  117 

Figure 37: Comparing participants that learned and used orientation (blue circles)  

 and participants that learned both dimensions but used only orientation (red  

 circles). . . . . . . . . . . . . . . . . . . . . . . . .  119 

Figure 38: Comparing OR-OR and Both-OR participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy. 

  d) Posterior samples of each group, when dependent variable is mean RT. . .  120 

Figure 39: Posterior samples of DDMs for OR-OR and Both-OR participants. a)  

 Posterior samples of boundary separation. b) Posterior samples of drift rate. 

 c) Posterior samples of non-decision time . . . . . . . . . . . . .  122 

Figure 40: Comparing participants that learned and used bar width (green circles)  

 and participants that learned and used orientation (blue circles) . . . . . .  123 

Figure 41: Comparing BW-BW and OR-OR participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy.  

 d) Posterior samples of each group, when dependent variable is mean RT . . .  124 

Figure 42: Posterior samples of DDMs for BW-BW and OR-OR participants. a)  

 Posterior samples of boundary separation. b) Posterior samples of drift rate.  

 c) Posterior samples of non-decision time . . . . . . . . . . . . .  125 

Figure 43: Comparing participants that learned and used bar width (green circles)  

 and participants that learned both dimensions but used only bar width (red  

 circles). . . . . . . . . . . . . . . . . . . . . . . . .  126 

  



12 
 

Figure 44: Comparing BW-BW and Both-BW participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy.  

 d) Posterior samples of each group, when dependent variable is mean RT . . .  127 

Figure 45: Posterior samples of DDMs for BW-BW and Both-BW participants.  

 a) Posterior samples of boundary separation. b) Posterior samples of drift  

 rate. c) Posterior samples of non-decision time. . . . . . . . . . . .  128 

Figure 46: Comparing participants that learned and used orientation (blue circles)  

 and participants that learned both dimensions but used only orientation (red  

 circles). . . . . . . . . . . . . . . . . . . . . . . . .  129 

Figure 47: Comparing OR-OR and Both-OR participants. a) Mean accuracy of  

 participants in each block (each circle represents a participant). b) Mean RT  

 of participants in each block (each circle represents a participant). c)  

 Posterior samples of each group, when dependent variable is mean accuracy.  

 d) Posterior samples of each group, when dependent variable is mean RT. . .  130 

Figure 48: Posterior samples of DDMs for OR-OR and Both-OR participants. a)  

 Posterior samples of boundary separation. b) Posterior samples of drift rate.  

 c) Posterior samples of non-decision time . . . . . . . . . . . . .  131 

 

  



13 
 

ABSTRACT 
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In tasks with more than one path to succeed, it is possible that participants’ strategies 

vary and therefore, participants should not be analyzed as a homogeneous group. This 

thesis investigates individual differences in a two-dimensional categorization task with 

redundancy (i.e., a task where any of the two dimensions by itself suffices for perfect 

performance). Individual differences in learned knowledge and used knowledge are 

considered and studied. Participants first performed a categorization task with 

redundancy (training phase), and afterward were asked to do categorizations in which the 

previously redundant knowledge becomes decisive (testing phase). Using the data from 

the testing phase, dimension(s) learned by each participant were determined and the 

response patterns of each participant in the training phase was used to determine which 

dimension(s) were used. The used knowledge was assessed using two separate analyses, 

both of which look at accuracy and response time patterns, but in different ways.  

Analysis 1 uses iterative decision bound modeling and RT-distance hypothesis and 

Analysis 2 uses the stochastic version of general recognition theory. In Analysis 1, more 

errors and slower response times close to a decision bound perpendicular to a dimension 

indicate that a participant is using that dimension. Analysis 2 goes a step further and in 

addition to determining which dimension(s) are used, specifies in what way they were 

used (i.e., identifying the strategy of each participant). Possible strategies are described 

heuristically (unidimensional, time efficient and conservative) and then each heuristic is 

translated into a drift diffusion model by the unique way that strategy is assumed to affect 

trial-by-trial difficulty of the task. Finally, a model selection criterion is used to pick the 

strategy that is used by each participant.   
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INTRODUCTION 

We are constantly categorizing things that we encounter in everyday life. For 

example, we categorize people we see in the street (stranger, friend), food we eat 

(healthy, unhealthy), etc. Categorization can be described as the process of assessing 

features of an encountered stimulus and labeling the stimulus based on previous 

observations (Kruschke, 2005; Murphy & Medin, 1985; Wisniewski & Medin, 1991). A 

feature can be defined as the perceived (or measured) value of a specific dimension in the 

dimensional space of the encountered stimulus and the dimensional space can be defined 

as an organizing principle that structures perception in a consistent way (Burns & Shepp, 

1988). The encountered stimuli are comprised of numerous dimensions but in many 

cases, there is redundancy of information and therefore, learning the differences between 

a subset of dimensions suffice to successfully categorize objects. An example is 

categorizing an apple as a Gala or Fuji when grocery shopping. Even though the color by 

itself is enough to categorize them, there are individuals who can tell subtler differences 

in shape and texture between the two apples. The efficient strategy from a computational 

point of view might be to selectively pay attention only to the color of the apple and not 

‘waste’ attentional resources on other dimensions that are not going to increase the 

performance accuracy. On the other hand, acquiring knowledge on other dimensions 

might become useful in future tasks. For example, in distinguishing between a Gala and a 

Jonagold apple, those individuals who acquired knowledge on shape of the Gala apple in 

the previous task will have the upper hand in this new task. Therefore, both strategies 

have their advantages and disadvantages: The first strategy is more efficient for the 
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current task, whereas the second strategy is better prepared for new situations where 

knowledge of previously redundant information becomes decisive.  

While some previous categorization studies have focused on the effect of task 

instructions and learning process on knowledge acquisition (e.g., Ell, Smith, Peralta, & 

Hélie, 2017; Hélie, Shamloo & Ell, 2017; Levering & Kurtz, 2015), in this thesis the 

focus is on the individual differences (IDs).  

Why Studying Individual Differences Matters? 

In an interview given in 1974 (Skinner, 2014), Jacques Lacan said, “Let’s get rid 

of this average Joe, who does not exist. He is a statistical fiction. There are individuals, 

and that is all.” Even though Lacan was talking about psychoanalysis and the uniqueness 

of the anxieties of each individual, this issue is relevant to cognitive psychology as well. 

In fact, Levinson (2012) makes a very similar point about cognitive psychology: “The 

cognitive science revolution was based on a fundamental idealization, the myth of “the 

human mind””. Levinson (2012) argues that the injunction to find universal cognitive 

characteristics has resulted in underestimating the importance of IDs, which can prevent 

researchers from understanding the underlying mechanisms of cognitive abilities. For 

example, Kidd, Donnelly & Christiansen (2017) showed that focusing on IDs highlights 

how experience can affect language acquisition and language architectures, which can be 

used to assess psycholinguistic theories. There are various ways to improve the 

understanding of cognitive processes by studying IDs, some examples in the 

categorization literature are discussed in the next section.  
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Individual Differences in the Categorization Literature 

There are numerous studies that have attempted to find the relation between 

domain general cognitive constructs such as working memory capacity (WMC) and 

categorization performance (e.g., DeCaro, Thomas, & Beilock, 2008; Erickson, 2008; 

Tharp & Pickering 2009). Due to the contradictory results of such studies, Lewandowski 

(2011) studied the relation between WMC and categorization in six categorization tasks 

(type I - type VI) developed by Shepard et al. (1961). The stimuli used in the study by 

Lewandowski (2011) were shapes (square or circle) that varied in color (unfilled or red) 

and size (small or large). Participants were asked to learn to associate each stimulus to 

one of two categories using trial-and-error learning. The six different conditions (i.e., six 

different ways of labeling the stimuli) corresponded to some of the most important 

categorization tasks (rule-based, information integration and unstructured; Ashby & 

O’Brien, 2005). The results in Lewandowski (2011) showed a strong relation between 

WMC and categorization accuracy in all of these tasks. Moreover, the study looked at 

how the IDs were manifested in a computational model of categorization (ALCOVE; 

Kruschke, 1992) and concluded that the IDs in all the different categorization tasks were 

linked to a single parameter of the model representing learning speed. Variations in this 

parameter were shown to be captured by a single latent variable, which was associated 

with WMC. As a result, Lewandowsky concluded that working memory mediates various 

types of category learning. 

In a subsequent study by Craig & Lewandowski (2012), the relation between 

WMC and categorization was studied from a different perspective. Craig & 

Lewandowski (2012) studied IDs in tasks where different strategies could be used for 
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successful categorization, and whether WMC could predict the strategy selected by the 

participants. The study included two experiments: the 5-4 task (Medin & Schaffer, 1978; 

Smith & Minda, 2000) and the correlated cues task (Medin et al., 1982). In both of the 

experiments, the stimuli were four-dimensional with binary features and therefore, there 

were 16 unique stimuli. Each experiment was divided into training and transfer phases. 

During the training phase, participants were shown a subset of stimuli and received 

feedback. In the transfer phase, participants were shown the remaining stimuli (those that 

were not shown in the training phase) and were asked to categorize them without 

receiving feedback. In the 5-4 task, relative success in the training phase was possible 

using any of these strategies: a unidimensional rule on dimension 1, a unidimensional 

rule on dimension3, or an exemplar-based strategy (i.e., categorizing based on the overall 

similarity of the stimulus to the previously encountered stimuli in training phase). The 

data from the transfer phase made it possible to identify the strategy of each participant in 

training. Similarly, in the correlated cues task, relative success was possible by using 

three different rule-based strategies, two of them were unidimensional rules and the other 

was a correlated cue rule (two categories could be perfectly separated by observing the 

correlation between the third and fourth dimensions). The results show that even though 

WMC predicted the categorization performance (similar to the result from Lewandowski, 

2011), it could not predict the strategy selected by the participants. However, one 

limitation of this experiment is that the unidimensional rules in both experiments were 

suboptimal compared to the exemplar and correlated cue strategies. This could explain 

some of the obtained results. 
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McDaniel et al. (2014) compared IDs in the context of a function learning 

paradigm (DeLosh, Busemeyer, & McDaniel, 1997). Unlike Craig and Lewandowski 

(2012), performance in the training phase of this study did not depend on the choice of 

strategy. During the training phase (interpolation trials), participants learned the 

association between two variables (stimulus and response) with a V shaped relation. In 

the test phase (extrapolation trials), participants were asked to respond to stimuli with 

values outside of the range of the training trials. Participants who abstracted rules 

extrapolated based on either a V shaped or a sinusoidal function (VVV shaped). In 

contrast, exemplar based learners extrapolation was close to the responses associated with 

the extreme values of the training phase (¯¯V¯¯ shaped). The results showed that WMC 

associates with a tendency to use a rule-based approach. Whether or not WMC predicts a 

tendency toward using rule-based strategies can be helpful in assessing the assumption of 

computational models of categorization. For example, COVIS (Ashby, Alfonso-Reese, & 

Waldron, 1998) is a multiple system model of categorization learning that postulates that 

there are at least two systems for category learning: A hypothesis-testing system that can 

learn rule-based tasks and a procedural-learning system that can learn categories that are 

not easily verbalizable. Since COVIS assumes that WMC plays an important role in 

hypothesis-testing but not in procedural learning, the conclusions from Craig & 

Lewandowski (2012) seem to be different from COVIS’ predictions but the conclusions 

from McDaniel et al. (2014) are in line with predictions from COVIS. 

Minda, Desroches and Church (2008) studied another aspect of COVIS by 

looking at IDs in category learning between children and adults. COVIS assumes that the 

hypothesis-testing system includes prefrontal cortex while the procedural learning system 
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relies on subcortical structures (Hélie, Roeder, & Ashby, 2010; Waldschmidt & Ashby, 

2011). Since prefrontal cortex’s development occurs later than other brain regions (Bunge 

& Zelazo, 2006), COVIS predicts that adults should have a better performance in rule-

based categorization compared to children. More specifically, children should perform 

like adults in tasks that rely on procedural learning, but might have difficulty in rule-

based tasks, especially in cases where the rules are complex.  Minda et al. (2008) tested 

this prediction using the category structures introduced by Shepard et al. (1961). They 

showed that in accordance with the assumptions of COVIS, young children performed 

similarly to adults in tasks that relied on procedural learning and in task with 

unidimensional rules, but did worse than adults did when the categories were separated 

by a disjunctive rule. 

Individual Differences in This Thesis 

Similar to Craig and Lewandowski (2012), the goal of this thesis is to study 

individual differences of strategies. However, the experiment of this thesis is not 

designed to distinguish between rule-based and exemplar-based strategies and it is not an 

attempt to relate an external factor (such as WMC) to the strategies used by the 

participants. What it aims at is to link the response patterns of participants to their 

strategy using computational modeling. IDs are studied in a categorization task with two-

dimensional stimuli, where both dimensions are diagnostic and knowledge on any one of 

them suffices for perfect accuracy. Since there is redundancy of information and using 

any of the two dimensions by itself results in perfect accuracy, there are three general 

possibilities for the strategy of each participant: Using Dimension 1, using Dimension 2 

and using both dimensions. Similar to Craig and Lewandowski (2012), the experiment in 
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this study has a test phase. Performance of a participant in the test phase shows whether 

s/he learned Dimension 1, Dimension 2, or both dimensions. Knowing which 

dimension(s) were learned by each participant allows to partially validate the methods 

used to identify the strategy of participants when there was redundancy in the task (more 

details are discussed in the methods section where the experiment is explained).  

Determining which dimensions were used by each participant is done in two 

different ways (Analysis 1 and Analysis 2). The independent variables in both analyses 

are accuracy and response time patterns of participants, which are used in different ways. 

Below, there is a short description of each of them, but more details will be provided in 

the subsequent sections. 

Analysis 1: The static version of general recognition theory (Ashby & Townsend, 

1986) and RT-distance hypothesis (Ashby & Maddox, 1991; Ashby & Maddox, 1994) 

are used to look at accuracy and RT patterns respectively. Accuracy patterns are taken 

into account by looking at the location of errors (i.e., where in the category space is the 

participant making errors) and RT patterns are taken into account (broadly speaking) by 

looking at the locations in the category space where the response times are slower. 

Analysis 2: The dynamic version of the general recognition theory (Ashby, 2000) 

is used to identify the dimension(s) used by each participant. Dynamic GRT is a drift 

diffusion model (DDM) applied to categorization tasks of the type that are traditionally 

analyzed by static GRT and RT-distance hypothesis. Accuracy and RT are taken into 

account with a single structure that imposes certain RT distributions on correct and 

incorrect responses.   
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In the remainder of the introduction, relevance and diagnosticity of a dimension 

are defined, distinction between learned and used knowledge is discussed, and some of 

the theoretical tools used to study the two set goals of the thesis are overviewed: General 

recognition theory (GRT), RT-distance hypothesis, and dynamic GRT.  

Relevance and Diagnosticity 

In a specific categorization structure, a dimension can be either relevant or 

irrelevant. Figure 1a shows an example of a categorization structure with four categories, 

where only dimension 1 is relevant and Figure 1b and 1c are two examples of 

categorization structures where both dimensions are relevant. In other words, in a 

category space a dimension is relevant when knowledge about its value for a stimulus 

adds to the information about the label of that stimulus. To put it more formally, in a 

multidimensional space with features [𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑝𝑝], and  

K categories, the 𝑖𝑖𝑡𝑡ℎ feature is irrelevant if and only if: 
 
 

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 | 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑥𝑥𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 ∈ 𝐾𝐾 
 
 

It is possible to distinguish between relevance of a dimension in a category space 

and its diagnosticity in a specific categorization task. Often in categorization tasks it is 

not required to choose a label for an observed stimulus among all the possible labels. For 

example, consider the categorization structure shown in Figure 1b. It is clear that both 

dimensions are relevant. However, consider a trial where the participant is asked to 

distinguish between “A” and “B”. In this specific trial, knowledge on dimension1 is not 

needed to perform the task on hand and therefore, it is not diagnostic. To put it more  
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Figure 1. Likelihood contour of four categories where (a) dimension 1 is relevant, (b) 

dimension 2 is irrelevant, and (c) both dimensions are relevant. 
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formally, in a multidimensional space with features [𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑝𝑝], and K categories, the 

𝑖𝑖𝑡𝑡ℎ feature is non-diagnostic in a categorization task where an ideal participant is asked to  

choose a label from 𝐻𝐻 ⊂ 𝐾𝐾 set if and only if: 
 
 

𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ | 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑥𝑥𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ ∈ 𝐻𝐻 
 
 

One way to study knowledge acquisition on diagnostic and non-diagnostic 

dimensions is to separate the experiment into two different phases: A training phase 

where participants learn the categories by receiving feedback and a test phase where they 

do not receive any feedback. This structure (known as generalization criterion method; 

Busemeyer & Wang, 2000) opens up the possibility to study knowledge acquisition under 

different conditions. In this thesis, the experiment is a rule-based categorization task with 

redundancy in the training phase and a test phase that determines which dimensions each 

participant learned.  

Figures 2 shows the category space corresponding to this task. The experiment is 

a two choice classification task: In each trial, a stimulus and a question appear on the 

screen and the question asks the participant to assign the stimulus to one of the two 

categories (e.g., “A or B?”). In Figure 2, the arrows indicate the categories that are 

compared against each other. As shown by the arrows in Figure 2, participants perform 

only two comparisons during the training phase (“A or B?” and “C or D?”) and for both 

comparisons knowledge of any of the two dimensions suffices for perfect accuracy. In the 

test phase, all possible pairs are compared with each other and there are trials that only 

Dimension1 is diagnostic (e.g., “A or C?” trials) and there are trials that only Dimension2 

is diagnostic (e.g., “A or D?” trials). Therefore, it is possible to find out whether a  
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Figure 2. Category structure with two relevant dimensions. Black arrows show 

categorization tasks that participants have to do in the training phase. In test phase, 

participants have to perform categorization of all possible pairs of categories.  
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participant learned only one dimension or both dimensions. In real life categorization 

scenarios where objects are comprised of multiple dimensions, there is usually more than 

one diagnostic dimension, and therefore, understanding categorization mechanisms under 

such conditions is the focus of this thesis.  

Learned Knowledge vs. Used Knowledge 

 A main goal of this thesis is to divide participants instead of analyzing their data 

as if they are part of a homogenous group. This division is going to be based on two 

indicators: the learned knowledge and the used knowledge. In the experiment shown in 

Figure 2, it is possible to learn and use only one dimension, use only one dimension but 

learn both, and learn and use both. Potential possibilities are shown in Table 1. 

Possibilities 1 and 2 are unidimensional strategies, possibilities 3 and 4 are also 

unidimensional, but the dimension that is not being used is being latently learned, and  

possibility 5 is a two-dimensional strategy.   
 
 
Table 1 

Possibilities for a Successful Participant in a Categorization Task  

That Corresponds to the Training Phase of Figure 2 

_______________________________________________________ 

 Learned Knowledge User Knowledge 
_______________________________________________________ 

Possibility 1 Only Dimension 1 Only Dimension 1 

Possibility 2 Only Dimension 2 Only Dimension 2 

Possibility 3 Both dimensions Only Dimension 1 

Possibility 4 Both dimensions Only Dimension 2 

Possibility 5 Both dimensions Both dimensions 
_______________________________________________________ 
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The training/test structure mentioned in the previous section makes it possible to 

identify the dimension(s) that are learned, simply by looking at mean accuracy in the test 

phase (note that in the test phase, participants categorize all the possible pairs, not just “A 

or B?” and “C or D?”). More specifically, a high mean accuracy on “A or C?” and “B or 

D?” trials indicate that the participant learned Dimension 1, and a high mean accuracy on 

“A or D?” and “B or C?” trials indicate that the participant learned Dimension 2. The 

main interest however, is to find out what they use when there is redundancy (i.e., the 

training phase). Since all of the possibilities listed in Table 1 result in high accuracy in 

the training phase, looking at the mean accuracy does not suffice and more sophisticated 

tools are needed to identify which dimension(s) were used in the training phase (A brief 

description of the tools used in this thesis is provided in the next section).  

Both Analysis 1 and Analysis 2 aim at identifying which dimensions were used 

by each participant in the training phase of an experiment with a structure similar to what 

is shown in Figure 2. Analysis 2 goes a step further and for participants that use both 

dimensions distinguishes between different two-dimensional strategies.  

Methodological Tools 

Some of the classic methods of the categorization literature are used to study the 

goals of this thesis. Decision bound models and RT-distance hypothesis look separately 

at accuracy patterns and response time respectively. These two methods are used in 

Analysis 1 and the stochastic version of the general recognition theory is used in Analysis 

2.    
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Decision Bound Models 

General recognition theory (Ashby & Townsend, 1986) is an extension of signal 

detection theory in multidimensional spaces that has been used in numerous contexts in 

the past 30 years (e.g., Ashby & Gott, 1988; Ashby & Perrin, 1988; Maddox, Ashby & 

Waldron, 2002).  When GRT is used to model participants’ response patterns in a 

categorization task, it is often called a decision bound model (Ashby & Soto, 2015). 

Decision bound models (DBM) assume that participants divide perceptual space using 

bounds and use these bounds to perform the categorization task.  

For example in a categorization task with two categories (A and B), DBM models 

the percept of a 𝑝𝑝 dimensional stimulus as 𝑋𝑋 =  �𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑝𝑝�
𝑇𝑇
 and postulates that a 

participant partitions the 𝑝𝑝 dimensional space into two regions corresponding to the A 

and B categories. The set of all points that separate the two regions is called the decision 

bound and the probability of responding A or B is equal on the decision bound. The 

probability changes in favor of one of the two categories as the stimulus moves further 

away from the decision bound. Whether the probability changes in favor of A or B 

depends on the direction of the move. In order to formulate this characteristic, a  

discriminant function 𝑦𝑦 = ℎ(𝑋𝑋) (Ashby, 2000) is defined where:  
 
 

𝑦𝑦 = ℎ(𝑋𝑋) > 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴 

𝑦𝑦 = ℎ(𝑋𝑋) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝑦𝑦 = ℎ(𝑋𝑋) < 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐵𝐵 
 
 
Two sources of variability affect 𝑦𝑦: The variability in perception and the criterial 

noise. The percept (𝑋𝑋) is often assumed to have a multivariate normal distribution with 
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mean µ and covariance structure of ∑  and criterial noise (ɛ) is modeled as a zero mean 

normal with variance σ2. Assuming that the participant is using a linear bound (Ashby,  

2000): 
 
 

𝑦𝑦 = ℎ(𝑋𝑋) = 𝑏𝑏𝑏𝑏 + 𝐶𝐶 +  ɛ 

Where 𝑏𝑏 is a 1 × 𝑝𝑝 vector and 𝐶𝐶 is a constant 
 
 

Therefore: 
 
 

𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴) = 𝑃𝑃(𝑦𝑦 > 0) = 𝑃𝑃 (ℎ(𝑋𝑋) > 0) = 

𝑃𝑃(𝑏𝑏𝑏𝑏 + 𝐶𝐶 +  ɛ > 0) =  𝑃𝑃(𝑏𝑏𝑏𝑏 +  ɛ >  −𝐶𝐶) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (ɛ) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:  

𝑏𝑏𝑏𝑏 + ɛ ~ 𝑁𝑁(𝑏𝑏µ , 𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2) 

𝑃𝑃(𝑏𝑏𝑏𝑏 +  ɛ >  −𝐶𝐶) = 𝑃𝑃 �
𝑏𝑏𝑏𝑏 +  ɛ − 𝑏𝑏µ
�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2

>  
−𝐶𝐶 − 𝑏𝑏µ

�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2
�

= 𝑃𝑃 �𝑍𝑍 >
−𝐶𝐶 − 𝑏𝑏µ

�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2
� 

Where 𝑍𝑍 is a standard normal random variable. 
 
 

Therefore: 
 
 

𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴) = 1 −  𝑃𝑃 �𝑍𝑍 <
−𝐶𝐶 − 𝑏𝑏µ

�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2
� =  1 −  𝛷𝛷 �

−𝐶𝐶 − 𝑏𝑏µ
�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2 

� 

= 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴) = 𝛷𝛷 �
𝐶𝐶 + 𝑏𝑏µ

�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2 
�   

 
 
And: 
 

𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵) = 1 − 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴) =  𝛷𝛷 �
−𝐶𝐶 − 𝑏𝑏µ

�𝑏𝑏∑𝑏𝑏′ +  𝜎𝜎2 
� 

Where 𝛷𝛷 is the CDF of a standard normal distribution. 
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Decision bounds can be classified into two types, those that can be described 

verbally and those that cannot be described verbally. Any decision bound that is 

comprised of a set of bounds perpendicular to the two dimensions can be described by a 

verbal rule. Learning that results in a verbally describable decision bound is called 

“explicit reasoning learning”. Figure 3a and Figure 3b show two examples of such 

decision bounds.  In contrast, Figure 3c shows an example of a decision bound that 

cannot be described verbally in a meaningful way (assuming dimension1 and dimension2 

are non-commensurable). For example, if the two dimensions are length and orientation 

of a line, then an attempt to translate the bound would be something like “If length 

attribute of the line is bigger than its orientation attribute, it belongs to A, otherwise it 

belongs to B”. This is meaningless because it is impossible to compare a length attribute 

to an orientation attribute. Therefore, the two dimensions have to be integrated before 

making a decision. This is true for any decision bound where at least part of it is not 

perpendicular to any of the two dimensions. Learning that results in a verbally 

indescribable decision bound is called “procedural learning” (Maddox & Ashby, 2004).   

Note that the procedural learning strategy subsumes the explicit reasoning 

strategies (i.e., a bound perpendicular to one of the axes is a special case of a bound that 

can have any orientation). Hence, using any of the two learning mechanisms can 

potentially lead to perfect accuracy in a rule-based task and looking only at participants’ 

assigned labels, it may be impossible to know which learning mechanism was used to 

categorize the stimuli. However, it is assumed that participants start by testing explicit 

reasoning strategies (Ashby et al., 1998), and if an explicit reasoning strategy (similar to 

the task shown in Figure 2) can result in perfect accuracy, it is reasonable to assume that  
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Figure 3. Three examples of decision bounds: (a) unidimensional rule-based, (b) 

conjunctive rule-based, and (c) verbally indescribable decision bound. 
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nearly all participants use explicit reasoning strategies, either a unidimensional rule or a 

conjunctive rule. Iterative decision bound modeling (iDBM; Hélie, Turner, Crossley, Ell, 

& Ashby, 2017) is used to identify the bound that is used by participants in each trial to 

classify the stimulus and identify any possible changes in the bound that is being used by 

a participant. 

Iterative Decision Bound Modeling 

iDBM is a tool developed by Hélie et al. (2017b) to identify participants’ strategy 

in a categorization experiment based on the way they label stimuli. The original version 

of iDBM considers three possible models: guessing models, explicit reasoning models 

and procedural learning models. Guessing models assume that participants randomly 

assign stimuli to categories, explicit reasoning models assume that the decision bound(s) 

being used are perpendicular to one of the dimensions and procedural learning models 

assume that participants use a bound that is not perpendicular to any of the dimensions, 

but it limits them to be linear. In each iteration, iDBM identifies the best fit for each of 

the mentioned models (guessing, explicit reasoning and linear procedural) using 

maximum likelihood (Ashby, 1992) and then compares them using Bayesian Information 

Criterion (BIC; Schwarz, 1978) and outputs the strategy used by each participant in each 

trial of the experiment (details can be found in Hélie et al., 2017b). 

RT Distance Hypothesis 

Decision bound models only take the accuracy patterns into account and response 

times are excluded from these models. In order to incorporate RT into decision bound 

models, Ashby and Maddox (1991, 1994) introduced the RT-distance hypothesis which is 

based on the previous empirical findings (Bornstein & Monroe, 1980; Cartwright, 1941) 
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that mean RT decreases as the distance between stimulus and the decision bound 

increases. RT-distance hypothesis states that the function relating RT and distance to 

bound is monotonically decreasing but it does not specify the exact relation between 

them. There are specific versions of RT-distance hypothesis that assume a special form 

for the decreasing function relating distance to bound and RT (Murdock 1985; Shepard, 

1981), but the specific shape of the monotonically decreasing function is not the focus of 

this thesis. 

Stochastic GRT 

Drift diffusion models (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008) have 

been used to model two alternative forced choice tasks in many different research areas 

(e.g., Aging: Ratcliff, Thapar, Gomez, & McKoon, 2003; Aphasia: Ratcliff, Perea, 

Colangelo, & Buchanan, 2004). Ashby (2000) used DDM to study accuracy and response 

times in categorization tasks and introduced a dynamic version of the decision bound 

models called stochastic GRT. A DDM has a noisy evidence accumulator and two 

decision boundaries. Percept and accumulated evidence are stochastic processes that are 

usually modeled as a discrete random walk process. Figure 4 shows an accumulator with 

visualization of the process for three trials of a two choice task.  

In order to prevent confusion between the decision bounds in a perceptual space 

and the decision bounds in a DDM, following Ashby (2000) we call the later ‘absorbing 

barriers’. Some of the most important parameters of a DDM that are shown in Figure 4  

are: 
  



33 

 

 

 

 

 

 

 

 

 
 
 

Figure 4. Three instances of a drift diffusion process. Figure is from Ratcliff and 

McKoon (2008). 
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1. Drift rate (𝑣𝑣): Reflects the quality of evidence (i.e., difficulty of a 

trial). The positive values mean that the drift is toward choice A and 

negative values mean that the drift is toward choice B. The drift rate is 

zero on the decision bound used by the participant. 

2. Starting point (z): Determines whether there is any bias towards one of 

the choices.  

3. Boundary separation (a): Reflects speed accuracy trade off: bigger 

values model higher accuracy and slower RT and vice versa. 

4. Non-decision time (t0): Assuming that RT is sum of stimulus 

encoding, decision making and response execution, t0 models sum of  

 stimulus encoding and response execution components of RT. 
 
 

The advantage of stochastic GRT over its static version is that it makes 

predictions for accuracy and response time in one single structure. Another advantage of 

stochastic GRT is that it may be more biologically plausible because evidence 

accumulation in DDM is reminiscent of firing pattern of neurons (Smith & Ratcliff, 

2004). A more detailed comparison between the two analyses is provided in the 

discussion section. 

Hypothesis 

In a two-dimensional categorization task where both dimensions are diagnostic, 

there are participants who learn and use both dimensions, participants that learn both 

dimensions but only use one of them, and participants that learn and use only one of the 

dimensions. We hypothesize that whether a dimension was used or not by a participant 

manifests itself in the error and RT patterns. Analysis 1 and Analysis 2 are two ways to 
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identify the dimension(s) used by each participant and there are hypotheses and 

assumptions inscribed in each analysis about different ways by which using a dimension 

should affect the error and RT patterns.  

More errors and slow response times close to a bound perpendicular to a 

dimension indicate that a participant is using that dimension to categorize stimuli (Ashby 

& Soto, 2015, Ashby & Maddox, 1994). In Analysis 1, existence of any of these two 

characteristics (more errors and slower RTs around a decision bound perpendicular to a 

dimension), is considered as evidence for that dimension being used.  iDBM and RT-

distance hypothesis are used to directly assess whether there is evidence for any of the 

two mentioned characteristics.  

Analysis 2 uses drift diffusion models to identify which dimension(s) each 

participant used. A desirable characteristic of DDMs is that the main parameters of the 

model are selectively affected by different kinds of manipulations (Voss, Rothermund & 

Voss, 2004). More specifically, drift rate, starting point, boundary separation, and non-

decision time are selectively affected by difficulty of trial, payoff structure, speed-

accuracy instruction, and ease of executing the motor response (respectively). The 

assumption of Analysis 2 is that the difficulty of trial (reflected in the drift rate of DDM) 

depends on the location of stimulus in the two-dimensional category space, and the 

relation between location of the stimulus on category space and drift rate depends on the 

strategy of participant. To make it more clear, possible strategies with their corresponding 

drift rates are shown in Figure 5 and Figure 6. Figure 5 shows the unidimensional 

strategies: Figure 5a shows the expected dependency of the stimulus difficulty on its 

location in the category space for participants that use only Dimension1. Figure 5a  
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Figure 5. Relation between location of the stimulus on category space and its relative 

difficulty in unidimensional strategies. Red arrows show that only two of the possible 

comparisons (“A or B?” and “C or D?”) were asked of participants. (a) Categorization 

based on only Dimension 1. (b) Categorization based on only Dimension 2. 
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reflects two different groups of participants: (1) Participants that use Dimension1, and 

Dimension 2 does not even enter their attentional frame (i.e., Possibility 1 in Table 1), 

and (2) participants that use only Dimension1 but are latently learning the differences in 

Dimension 2 (i.e., Possibility 3 in Table 1). Figure 5b shows the other unidimensional 

strategy that corresponds to participants that use only Dimension 2. Similar to Figure 5a, 

Figure 5b reflects two group of participants, namely participants that used Dimension2 

and did not learn Dimnesion1 (i.e., Possibility 2 in Table 1), and participants that used 

only Dimension2 but latently learned Dimension1 (i.e., Possibility 4 in Table 1).  

Figure 6 shows two of the possible ways that location of a stimulus can affect trial 

difficulty when a participant uses both dimensions. Figure 6a shows a ‘Time efficient’ 

strategy. ‘Time efficient’ means that a stimulus is perceived to be relatively easy as long 

as the attribute of any one of its dimensions are far from the corresponding attributes of 

the members of the other category. Figure 6b shows a ‘Conservative’ strategy. 

‘Conservative’ means that a stimulus is perceived to be relatively easy only if both 

dimension attributes are far from the corresponding attributes of the other category’s 

members.  

Theoretically, there are more two-dimensional strategies than just the two cases 

shown in Figure 6, but Figure 6a and 6b depict two extremes, and therefore the ‘in 

between’ strategies are likely to be captured by one of the two: Relatively time efficient 

strategies by Figure 6a and relatively conservative strategies by Figure 6b. In addition to 

the four strategies depicted in Figures 5 and 6, a fifth strategy that assumes perceived 

difficulty of a stimulus is independent of its location in category space is considered. This 

strategy reflects response pattern of a participant for whom all stimuli are perceived  
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Figure 6. Relation between location of the stimulus on category space and its relative 

difficulty in two-dimensional strategies. Red arrows show that only two of the possible 

comparisons (“A or B?” and “C or D?”) were asked of participants. (a) A “time efficient” 

strategy. (b) A “conservative” strategy. 
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equally easy, irrespective of their location in category space (Hélie, Waldschmidt, & 

Ashby, 2010). In Analysis 2, five DDMs corresponding to the five mentioned strategies 

are fitted to each participant’s data and the strategy corresponding to the best fitting 

model is considered to be the strategy of the participant. 

To summarize, we hypothesize that in a categorization task with redundancy, 

there are individual differences and participants choose (happen) to learn and/or use 

different dimensions. The differences in strategy of participants must be reflected in the 

accuracy and RT patterns, and the main goal of this thesis is to identify and quantify the 

differences using two separate analyses.   
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THE EXPERIMENT 

The experiment studied categorization learning in a two-dimensional space where 

perfect accuracy can be reached by using any one of the two dimensions. Whether a 

participant acquired knowledge on one of the dimensions or both dimensions is assessed 

using a test phase. The stated goals of the thesis are studied using accuracy and RT 

patterns of participants. 

Method 

Participants 

One hundred seventy Purdue University undergraduate students participated in 

the study and received credit to fulfill a course requirement.  

Material 

The stimuli were sine-wave gratings of constant contrast and size that differed in 

frequency (ranging from 1.65 to 2.21 cycles per degree) and orientation (ranging from 

0.82 to 1.44 radians). Stimulus presentation and response recording was done using the 

Psychophysics Toolbox in MATLAB (Brainard, 1997). There were four categories 

(arbitrary labeled “A”, “B”, “C” and “D”) and in each trial participants were shown a 

stimulus and asked to choose between two of the categories. Stimuli were generated 

using bivariate normal distributions with the following parameters: µ𝐴𝐴 =

(1.736,1.322), µ𝐵𝐵 = (2.096,0.945), µ𝐶𝐶 = (2.096,1.322), µ𝐷𝐷 = (1.736,0.945),∑𝐴𝐴 =

∑𝐵𝐵 = ∑𝐶𝐶 = ∑𝐷𝐷 = �0.0022 0
0 0.0024�.  Ninety-six stimuli were generated (twenty-four 

from each category) which were shuffled in the beginning of each of the training blocks. 

One hundred forty-four stimuli (thirty-six of each category) were generated for the test 
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phase. Figure 7a shows a sample stimulus and Figure 7b and 7c show the generated 

stimuli in the training and test phase, respectively. Participants only performed two types 

of categorization trials in the training phase. In each trial the question shown on the 

screen was either “A or B?” or “C or D?”, and note that in both of “A or B?” and “C or 

D?” knowledge on any one of the two dimensions is enough to distinguish between the 

two categories. In the test phase, participants performed all possible two choice 

categorizations (“A or B?”, “A or C?”, “A or D?”, “B or C?”, “B or D?”, “C or D?”). Red 

arrows in Figure 7b and Figure 7c show the categories that were compared together in 

each phase of the experiment. Participants responded using a standard keyboard and in all 

of the trials, ‘d’, ‘k’, ‘x’ and ‘m’ keys were used to choose categories ‘A’, ‘B’, ‘C’ and 

‘D’ respectively.  

Procedure 

Participants were told that they would be participating in a two choice 

categorization task where stimuli are sine-wave gratings that differed in bar width and 

orientation. They were told that there are four categories, and in each trial, a question on 

top of the screen asks them to choose between two of the four categories. The experiment 

was divided into six blocks and participants categorized ninety-six stimuli in each of the 

first five blocks and 144 stimuli in the sixth block. Participants were told that during the 

first five blocks, they will receive feedback but no feedback will be given in the last 

block. Each training trial started with a fixation cross that was presented at the center of 

the screen for 1500 ms. Then the fixation cross was replaced by the stimulus and 

categorization question. As soon as the participant responded, the stimulus and question 

were replaced by feedback (green “Correct” for correct responses and red “Incorrect” for  
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Figure 7. Red arrows indicate the comparisons participants were asked to do in each 

phase of the experiment. (a) An example stimulus. (b) The stimuli used in the training 

phase. (c) The stimuli used in the test phase. 
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incorrect responses) which stayed on the screen for 750 ms. In trials where the participant 

did not respond within five seconds, a blank screen with a “Too Slow!” text in the center 

replaced the stimulus and question. The timed-out trials were counted as error. Test trials 

followed the same sequence except that no feedback was given to participants. Figure 8 

shows the display sequence for a trial in the training phase.  

Results 

 The results are divided into two sections: ‘Learned knowledge’ and ‘Used 

knowledge’ that correspond to the analysis of test and training phase respectively. As 

stated in the introduction, the main goal of this thesis is to understand the strategy of 

participants when there is redundancy of information, which corresponds to the training 

phase of the experiment. However, analyzing the test phase and determining the 

dimension(s) that each participant learned matters because it partially validates the 

methods that are used to identify the strategy of participants: Assume a participant 

acquired knowledge only on one of the dimensions. Logically, her strategy must be a 

unidimensional strategy. Therefore, if the method that is used to identify the strategy of 

participants identify a two-dimensional strategy, the method is faulty. Assessing the 

learned knowledge is straightforward (using the test block) and after determining the 

learned knowledge of each participant, the used knowledge (during training) will be 

studied using two separate approaches (Analysis 1 and Analysis 2).  

Learned Knowledge 

During the training phase, the category structure allowed participants to reach 

perfect accuracy using only one of the dimensions. Therefore, participants could acquire 

knowledge on bar width, orientation, or both. The last block of the experiment (the test  
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Figure 8. An example of a trial sequence in the training phase. Test phase trials were 

similar, only no feedback was given to participants. 
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phase), was added in order to find out the dimension(s) learned by each of the 

participants. Figure 9 shows two types of categorization tasks participants performed in 

the test phase. Figure 9a shows trials in which knowledge on bar width was decisive 

(from now, called BW trials) and Figure 9b shows trials in which knowledge on 

orientation was decisive (from now, called OR trials).  

Participants received no feedback in the test phase and therefore, it is safe to 

assume that success on BW trials meant that knowledge on bar width was acquired 

during training and, similarly, success on OR trials meant that knowledge on orientation 

was acquired during the training. Participants were divided into four groups based on 

their learned knowledge. The four groups correspond to participants that acquired 

knowledge on both dimensions (‘Learned_Both’), participants that acquired knowledge 

only on bar width (‘Learned_BW’), participants that acquired knowledge only on 

orientation (‘Learned_OR’) and participants that learned none (‘Non-Learner’). There 

were forty-eight BW trials and forty-eight OR trials in the test phase, and using two 

separate one tailed binomial tests (p = 0.5, N = 48) on each of BW and OR trials, 

participants’ learned knowledge label were assigned. A minimum of thirty-one correct 

responses (out of fourty-eight total, corresponding to p-value < 0.05) was considered 

evidence that a participant’s accuracy was better than chance. Figure 10 summarizes the 

test performance and assigned learned knowledge. Each circle represents a participant 

(the number inside the circle is the participant number) and the x-axis and y-axis are 

participant’s accuracy in BW and OR trials respectively. Note that as previously stated, 

no feedback was given in the test phase, and therefore, the knowledge learned by each 

participant was acquired during the training phase. Figure 10 confirms that there are IDs  
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(a) 

 

 
(b) 

 
 
Figure 9. Four types of categorizations that participants did in test phase. (a) BW trials: 

“A or C?” and “B or D?” trials, where knowledge on bar width differences is necessary. 

(b) OR trials: “A or D?” and “B or C?” trials, where knowledge on orientation differences 

is necessary.  
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Figure 10. Test performance of participants. The x-axis is the mean accuracy on trials 

where knowledge on bar width was necessary to categorize the stimulus and the y-axis is 

the mean accuracy on trials where knowledge on orientation was necessary to categorize 

the stimulus. Each circle is a participant and color of each participant shows whether they 

learned both dimensions, only bar width, only orientation or none. 
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in the learned knowledge when there is redundancy. Some participants acquire 

knowledge on both dimensions (northeast of the plot) while some participants only 

acquire knowledge on one of the dimensions (located either on the northwest of the plot 

or on the southeast). The ‘Non-Learner’ participants were not included in the remaining 

analyses.  

Now that the dimension(s) learned by each participant is established, it is helpful 

to restate the goal of the thesis more specifically. In a categorization task with 

redundancy of information, knowing that a participant ‘learned’ only bar width means 

that she also ‘used’ only bar width. Are there tools good enough to detect patterns in 

accuracy and RT showing that the only used dimension was bar width? What about 

participants that learned both dimensions? Did they use both dimensions, or did they use 

only one dimension while latently learning the other? If both dimensions were used, in 

what specific way?  These questions are pursued using two separate analyses (Analysis 1 

and Analysis 2), both of which look at the training data of each participant and determine 

the used knowledge.  

Used Knowledge 

In a two-dimensional categorization task with redundancy of information, 

participants differ in terms of which dimension(s) they learn and use. A test phase was 

added to the experiment, which made it possible to know which dimension(s) each 

participant learned and the rest of the thesis is an attempt to identify the dimension(s) 

used by each participant by looking at the data from the training phase (the first five 

blocks). As it was shown in Table 1, there is not a one-to-one mapping between learned 

knowledge and used knowledge of participants (due to the possibility of latent learning). 
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This means that even though we know which dimension(s) are learned by each 

participant, the ‘true’ used knowledge is not known and therefore: 1) Identifying which 

dimension(s) each participant used is not going to be as easy as extracting some features 

and assessing the predictive power of those features by fitting a supervised classifier. 2) It 

is impossible to validate the methods used to identify participants’ strategies because 

there is no ‘true’ used knowledge. The first point means that in order to identify 

participants’ strategies there needs to be a theoretical framework that asserts a relation 

between participants’ strategies and response patterns; Analyses 1 and 2 provide two such 

frameworks. The second point (the impossibility of validating the methods) is very 

problematic. However, note that there is a one to one mapping between learned and used 

knowledge of participants that belong to Learned_BW and Learned_OR. Therefore, it is 

possible to partially validate the theories and their implementations by making sure that 

Learned_BW participants are identified as using only bar width and Learned_OR 

participants are identified as using only orientation. 

Analysis 1 and Analysis 2 look at the data in its totality without summarizing the 

response patterns into measures such as mean accuracy and mean RT but it is worth 

looking at the mean accuracy and mean RT of participants before starting Analyses 1 and 

2. Figure 11 shows the average performance of participants in the first five blocks 

(training phase). Training accuracy started at around 85% and by the end of training 

reached around 91% (Figure 11a) and response time started at around 1340 ms and 

reached around 1100 ms by the end of training (Figure 11b). 

A central emphasis of this thesis is to distinguish between what people learn, and 

what they use, and the assumption that used knowledge manifests itself in the response  
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Figure 11. Performance of participants during the first five blocks (training phase): (a) 

average accuracy and (b) average response time. Error bars represent one standard error. 
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patterns, whereas learned knowledge might not. Therefore, since some of the 

Learned_Both participants do not use both dimensions, any measure that uses the features 

extracted from data to predict the learned knowledge will fail. Nevertheless, it is worth 

visualizing the differences between participants based on their learned knowledge. Figure 

12 shows mean accuracy and mean RT for Learned_BW, Learned_OR and Learned_Both 

participants. The difference between the three groups are hard to detect, which suggests 

that mean accuracy and mean RT would not be enough to predict the learned knowledge 

of participants. In order to show this formally, a multinomial regression was fit to data. 

The dependent variable was the learned knowledge (with three levels: Learned_Both, 

Learned_BW and Learned_OR) and the independent variables were mean accuracy and 

mean RT of blocks 1 to 5 (10 variables). Using MLR package of R (Bischl et al., 2016), 

the cross validation accuracy of the model (3-fold cross validation with stratified 

sampling, repeated 500 times and averaged to get a robust estimate) was computed to be 

49.31%.  Note that there are seventy-two Learned_Both, fifty-one Learned_BW and 

thirty-six Learned_OR participants and by simply assigning all to Learned_Both, the 

accuracy is 45.28% and therefore, 49.31% accuracy using ten variables is extremely low.  

This result is not surprising: the Learned_Both participants are not a uniform 

group, some might be using only bar width, some might be using only orientation, and 

some use both dimensions and among participants that use both dimensions, there might 

be differences in the specific ways the two dimensions are used. Therefore, even if mean 

accuracy and mean RT were enough to identify used knowledge, they would fail in 

identifying the learned knowledge. However, as Table 1 shows, there is a one to one 

mapping between learned and used knowledge of Learned_BW and Learned_OR  
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Figure 12. Mean accuracy and mean RT, grouped based on the dimension(s) learned. 

Each dot represents a participant. (a) Average accuracy. (b) Average response time. 
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participants. The problematic Learned_Both participants were excluded and a logistic 

regression was used to assess the predictive power of mean accuracy and mean RT of 

blocks 1 to 5 (10 variables) with dependent variable being the learned knowledge (with 

two levels: Learned_BW and Learned_OR. Using MLR package of R, the cross 

validation accuracy of the model (3-fold cross validation with stratified sampling, 

repeated 500 times and averaged to get a robust estimate) was computed, to be 68.98%. 

There are fifty-one Learned_BW and thirty-six Learned_OR participants and by simply 

assigning all to Learned_BW, the accuracy is 58.62% and therefore adding mean 

accuracy and mean RT improved the predictive power slightly. Looking at the p-values 

of the fitted logistic model shows that two features reach statistical significance: accuracy 

of block 1 (p-value =0.00504) and RT of block 3 (p-value=0.00815). Note that it is also 

possible to look at the effect of learned knowledge on accuracy and RT, but the focus of 

this study is to predict used knowledge of each individual. The group differences are 

studied later in the thesis (Appendix) after dividing participants based on their strategy in 

Analysis 2.  

The point of the first analysis (multinomial regression) was to show that it is not 

possible to use a supervised classifier to predict the learned knowledge, which may be 

because of the potential IDs in the strategies of Learned_Both participants. The second 

analysis (logistic regression) showed that using mean accuracy and mean RT is not good 

enough: even when Learned_Both participants were excluded, the model was not able to 

distinguish between Learned_BW and Learned_OR participants.   

Analysis 1 and Analysis 2 take an entirely different approach: Both analyses look 

at the accuracy and RT of all the trials instead of the mere block averages and 
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additionally, the learned knowledge of participants (determined by the test phase 

performance) does not play any role in building the models that determine participants’ 

strategies. In other words, Analysis 1 and Analysis 2 rely on theories that tell what 

response pattern of a participant should look like depending on which dimension(s) s/he 

is using. Validity of theories that are used in Analyses 1 and 2 and their implementation 

will be tested by looking at Learned_BW and Learned_OR participants, which must be 

identified as using only bar width and using only orientation respectively. 
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ANALYSIS 1 

Methods 

There are two types of evidence indicating a dimension is being used: More errors 

and slower RT close to a decision bound. Analysis 1 looks at each of them separately and 

uses iDBM and RT-distance hypothesis to detect if either of the two pieces of evidence 

exist.  

iDBM: Looking at Error Patterns 

The COVIS model of categorization (Ashby et al., 1998) postulates that 

participants usually start by testing unidimensional explicit rules. In the training phase of 

the experiment, a unidimensional rule on any of the two relevant dimensions is sufficient 

for perfect accuracy. Therefore, if a participant starts by testing any of the two bounds, 

there is no need (in the sense that any of the two by itself suffices for perfect accuracy) to 

use a different bound. However, it is possible that a participant notices differences in the 

other dimension after a while and starts responding based on the other dimension. In this 

experiment, a rule-based strategy suffices and based on the assumptions of COVIS, the 

participants will not use a non-verbal strategy. Therefore, the procedural strategies (i.e., 

diagonal bounds) were excluded from the list of models that iDBM fits and considers. “A 

or B?” and “C or D?” trials are considered two different tasks and iDBM was fit 

separately on these two tasks. Figure 13 is an illustration of what iDBM does on its first 

iteration. The best fitting bound on each dimension is fitted to trials 1-100 of one of the 

participants and the maximum likelihood values are compared. In the instance shown in 

Figure 13, the participant seems to be using the orientation dimension, since the errors are 

close to the bound on orientation, which is reflected in the likelihood values: -14.65 for  
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                                                                   (b) 

 
 

Figure 13. A visualization of how iDBM works. The bounds are fitted to trials 1-100 of 

participant 109. (a) The bound fitted on bar width. (b) The bound fitted on orientation.  
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the bound on orientation and -20.76 for the bound fitted on the bar width dimension 

(More details at Hélie et al., 2017). 

There are three general possibilities for each participant: 
 
 
1. Participant starts by guessing and at some point switches to a 

unidimensional rule on one of the dimensions and then never switches 

again. 

2. Participant starts by guessing and switches to different unidimensional 

rules for “A or B?” and “C or D?” tasks, therefore, both dimensions 

have entered the attentional frame. 

3. Participant starts by guessing and switches to a unidimensional rule on 

one of the dimensions for both “A or B?” and “C or D?” tasks and 

later on switches to a unidimensional rule on the other dimension for  

 one or both of  “A or B?” and “C or D?” set of trials. 
 
 
One of the dimensions was never used by the participants in the first described 

case (based on the iDBM at least), but it is possible for them to have passively obtained 

information on a dimension without using it (therefore its effect did not appear in their 

response patterns). It is possible to look at the test performance of these participants and 

verify whether they were successful in both OR and BW trials. On the other hand, 

participants in cases 2 and 3 used both dimensions to perform categorization at some 

point of the training phase. Therefore, these participants are expected to be at least 

partially successful in both BW and OR trials of the test phase. 
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RT-Distance Hypothesis 

If a participant uses a rule on a dimension to perform the categorization task at 

training, then based on the RT-distance hypothesis there should be a negative relation 

between response time and distance to the bound used by the participant. In order to 

assess whether this negative relation exists, for each dimension the following procedure 

was applied to the last three blocks of the training phase (where accuracy seems to be 

stable) of each participant. The distance between each stimulus and the ideal bound was 

calculated. Then the distances were normalized and rounded to two digits and the median 

response time of all stimuli located on the same distance from the bound were selected. 

Finally, the Spearman correlation between response time and distance to bounds was 

calculated. Spearman’s rank correlation is used since RT-distance hypothesis posits the 

relation between distance to bound and RT to be monotonically decreasing and assumes 

nothing about the shape of the relation. Figure 14 shows the distance to bound graph of a 

participant that shows longer response time close to BW bound and belongs to 

Learned_BW group. Each dot is a stimulus that is specified by its distance to an optimal 

bound in the BW dimension (x-axis) and the RT associated with it (y-axis). Left panel 

shows response time for all stimuli, and right panel shows the median response time of 

those in the same distance from the bound. The correlation is computed based on the data 

corresponding to the right panel. In order to be brief, from now on the correlation 

between RT and distance to a bound is referred to as distance to bound effect (D2B) of 

that bound (e.g., D2B of BW bound). 

Bayesian Spearman correlations are calculated and participants are divided into five 

groups based on the value of Bayes factor (BF): 
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Figure 14. An example of how distance to bound measure was calculated. Left panel 

shows all trials and in the right panel, the median RT of stimuli in the same distance from 

the BW bound is shown. 
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1. No D2B: There is good evidence that these participants do not show 

D2B effect for any of the bounds. 

2. Uncertain: There is not enough evidence to claim anything about 

existence or nonexistence of a D2B for any of the bounds. 

3. Used bar width: There is evidence for the existence of D2B of bar 

width, but no evidence for D2B of orientation. 

4. Used orientation: There is evidence for the existence of D2B of 

orientation, but no evidence for D2B of bar width. 

5. Used both: There is evidence for the existence of both D2B of bar  

 width and D2B of orientation. 
 
 

Table 2 summarizes the labeling procedure. 

Results 

 Results of iDBM and RT-distance hypothesis are first presented separately and 

combined in the end to conclude Analysis 1. The validity of each analysis is tested by 

looking at participants that learned only one of the bounds, which must be best fit by the 

models that correspond to the unidimensional strategies. 

iDBM Results  

Figure 15 shows the result of iDBM for Learned_BW participants and 

Learned_OR participants. Each circle represents a participant, the location of the circle 

codes the learned knowledge and color of each circle is the identified used knowledge. 

Based on the procedure described for iDBM in the methods section, there are three 

possible outputs for used knowledge, labeled as Used Bar width, Used Orientation and 
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Table 2 

The way Each Participant is Labeled Based on the Bayes Factor of Spearman 

Correlations Between RT and Distance to Decision Bounds on Bar Width and  

Orientation 

________________________________________________________________________ 

   Assigned Used  
BF for the D2B of Bar Width BF for the D2B of Orientation Knowledge 
________________________________________________________________________ 

 BF < 0.3 BF < 0.3  No D2B 

 0.3 < BF < 3 0.3 < BF < 3 Uncertain 

 BF > 3 BF < 0.3  Used Bar width 

 BF > 3 0.3 < BF < 3  Used Bar width 

 BF < 0.3 BF > 3 Used Orientation 

 0.3 < BF < 3 BF > 3 Used Orientation 

 BF > 3 BF > 3  Used Both 
________________________________________________________________________ 
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Figure 15. The identified strategies of Learned_BW and Learned_OR participants. Each 

circle represents a participant. Color of a circle shows the used knowledge (based on 

iDBM) and its location shows the learned knowledge (x-axis is test accuracy on BW 

trials and y-axis is test accuracy on OR trials). 
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Used Both. Learned_BW and Learned_OR participants should be assigned to Used Bar 

width and Used Orientation respectively. As Figure 15 shows, the majority of 

Learned_BW participants (bottom right corner of the figure) are green (i.e., assigned to 

Used Bar width) and the majority of Learned_OR participants (top left corner of the  

figure) are blue (i.e., assigned to Used Orientation).   

Table 3 summarizes the correspondence between labels assigned by iDBM and 

the learned knowledge for participants that learned only one dimension. Out of eighty-

seven participants that learned only one dimension, iDBM correctly identifies the strategy  

of fifty-seven of them (i.e., 65% accuracy compared to 33% random assignment). Note 

that the errors are mostly due to mistakenly identifying a unidimensional strategy as a 

two-dimensional strategy. In other words, if a participant uses a dimension, iDBM 

successfully detects the patterns caused by using that dimension, but there are cases that 

iDBM detects signs of a dimension being used even though in fact that dimension was  

not learned. 

Now that the validity of iDBM labels is demonstrated, the strategy of participants 

that learned both dimensions is shown in Figure 16. Theoretically, Learned_Both 

participants can belong to any of the considered strategies, it is possible that they used 

only one of the dimensions while latently learning the other, or it is also possible that 

they used both dimensions. 

Table 4 shows the identified strategies of the Learned_Both participants. An 

interesting pattern to note is that among participants that learned both dimensions many 

used only one and latently learned the other dimension. This pattern can be seen by the  

large number of blue and green dots in the northeast corner of Figure 16. 
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Table 3 

The Confusion Table for the Relation Between Identified Used Knowledge (Based  

on iDBM) and Learned Knowledge for Participants That Learned Only One of  

the Dimensions 

________________________________________________________________ 

  Learned Knowledge  

Used Knowledge Based on iDBM Learned_BW Learned_OR 
________________________________________________________________ 

 Used Bar width 29  2 

 Used Orientation  5 28 

 Used Both 17  6 
________________________________________________________________ 
 
 
 
Table 4 

Identified Used Knowledge (Based on iDBM) for Participants  

That Learned Both Dimensions 

____________________________________________________ 

  Learned Knowledge 

Used Knowledge Based on iDBM  Learned_Both 
____________________________________________________ 

 Used Bar width 17 

 Used Orientation 25 

 Used Both 30 
____________________________________________________ 
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Figure 16. Each circle represents a participant. Color of a circle shows the used 

knowledge (based on iDBM) and its location shows the learned knowledge (x-axis is test 

accuracy on BW trials and y-axis is test accuracy on OR trials). 
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RT-Distance Hypothesis Results  

The correlations between response time and distance to each of the bounds was 

calculated as explained in the methods section. Figure 17 shows the histogram of 

correlation for Learned_BW, Learned_OR and Learned_Both participants separately. As 

expected, the histogram of participants in Learned_BW and Learned_OR groups are 

approximately centered on zero for the bound in the dimension that they have not 

acquired knowledge on and for the bound which they are using, the correlation between 

RT and distance to bound is negative for most of the participants. In the Learned_Both 

group, most of the correlations are negative for both bounds.   

Following the procedure described in the methods section, participants were 

divided into the five groups mentioned in Table 2.  Labels assigned to participants that 

learned only one of the dimensions is shown in Figure 18. Similar to previous sections 

each circle represents a participant. Location and color of circles code the learned 

knowledge and used knowledge respectively. As the figure shows, the data were not 

clean enough to assert existence or non-existence of D2B for most of the participants 

(i.e., most Bayes factors are between 0.3 and 3). This suggests that the current 

implementation of RT-distance hypothesis needs improvement. Some possible solutions 

are considered in the discussion section. 

Table 5 summarizes the correspondence between labels based on D2B and 

learned knowledge for Learned_BW and Learned_OR participants. Note that even 

though the D2B measure failed to identify the used knowledge for most participants, 

among the very few participants that it did, it was successful. Four Learned_BW  
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                            (a)                                                                    (b) 

 

 
                                                                 (c) 
 
 
Figure 17. The histogram of correlation between RT and distance to the ideal BW and 

OR bounds: (a) Learned_BW participants, (b) Learned_OR participants, (c) 

Learned_Both participants.  
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Figure 18. The identified strategies of Learned_BW and Learned_OR participants based 

on D2B. Each circle represents a participant. Color of a circle shows the used knowledge 

and its location shows the learned knowledge (x-axis is test accuracy on BW trials and y-

axis is test accuracy on OR trials). 
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Table 5 

The Confusion Table for the Relation Between Identified Used Knowledge (Based  

on D2B) and Learned Knowledge for Participants That Learned Only One of the  

Dimensions 

________________________________________________________________ 

  Learned Knowledge  

Used Knowledge Based on D2B Learned_BW Learned_OR 
________________________________________________________________ 

 Used Bar width  4  0 

 Used Orientation  0  6 

 Used Both  0  0 

 Uncertain 47 30 

   No D2B  0  0 
________________________________________________________________ 
 
 

Even though D2B is not able to identify almost any of the participants, just to be 

complete, the labels assigned to Learned_Both participants are shown in Figure 19. 

Again, D2B fails to identify most Learned_Both participants.  

Table 6 shows the identified used knowledge of the Learned_Both participants 

based on D2B measure. 

Combining Evidence From iDBM and D2B 

The goal of this study is to identify the strategy of participants in a categorization 

task with redundancy. Accuracy and RT patterns were analyzed separately to identify the 

dimension(s) that were used by each participant. More errors close to a decision bound 

was considered evidence for a bound being used, quantified using iDBM. Slower RTs  
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Figure 19. Each circle represents a participant. Color of a circle shows the used 

knowledge (based on D2B) and its location shows the learned knowledge (x-axis is test 

accuracy on BW trials and y-axis is test accuracy on OR trials). 
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Table 6 

Identified Used Knowledge (Based on D2B) for Participants That  

Learned Both Dimensions 

____________________________________________________ 

  Learned Knowledge 

Used Knowledge Based on D2B  Learned_Both 
____________________________________________________ 

 Used Bar width  6 

 Used Orientation  6 

 Used Both  0 

 Uncertain 60 

   No D2B  0 
____________________________________________________ 
 
 
close to a bound was also considered evidence of a bound being used, which was 

quantified by computing rank correlations between RT and distance to each of the 

bounds. In this section, we combine the two in the following way: If any of the two 

mentioned characteristics exist for a bound, we conclude that the dimension was used. 

Since iDBM was more sensitive than D2B effect in detecting evidence, the used 

knowledge based on both iDBM and D2B effect is almost the same as the used 

knowledge based on only iDBM. Combined evidence map (shown in Figure 20) is very 

similar to Figure 16, where strategies were labeled based on only iDBM’s output. 

Therefore, the assessment of the combined evidence is similar to what was discussed in 

the iDBM section.  

Table 7 summarizes the correspondence between used knowledge (based on 

iDBM and D2B) and learned knowledge.       
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Figure 20. Each circle represents a participant. Color of a circle shows the used 

knowledge (based on iDBM and D2B) and its location shows the learned knowledge (x-

axis is test accuracy on BW trials and y-axis is test accuracy on OR trials). 
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Table 7 

The Confusion Table for the Relation Between Used Knowledge (Based on iDBM and 

D2B Measure) and Learned Knowledge 

_______________________________________________________________________ 

   Learned Knowledge  

 Used Knowledge 

on iDBM and D2B Learned_Both Learned_BW Learned_OR 
_______________________________________________________________________ 

 Used Both 31 20  6 

 Used BW 17 28  2 

 Used OR 24  3 28 
_______________________________________________________________________ 
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ANALYSIS 2 

The test phase of the experiment confirmed that in a two-dimensional 

categorization task with redundancy there are IDs in terms of which dimension(s) are 

learned: Some participants learned only bar width (Learned_BW participants), some 

learned only orientation (Learned_OR participants) and some learned both 

(Learned_Both participants). Analysis 1 showed that among participants that learned both 

dimensions, some used both, and some used only one of the dimensions (and learned the 

other dimension latently). Analysis 2 repeats Analysis 1 using different tools and goes a 

step further by dividing participants that used both dimensions into two different groups 

based on the specific way that each of them used the two dimensions. Consider an “A or 

B?” trial where one of the stimuli circled in Figure 21 is shown on the screen. The circled 

stimuli are far from a decision bound on the bar width dimension but are close to a 

decision bound on orientation, and therefore, the trial should be relatively easy for 

participants that are using only bar width and relatively difficult for participants using 

only orientation. However, it is possible to imagine that IDs exist among participants that 

use both dimensions, and these IDs might be reflected in the perceived difficulty of the 

circled trials.  

 Different two-dimensional strategies are distinguished by different difficulty maps 

in the category space (as discussed in the Hypothesis section). In the Methods section, 

models corresponding to the considered strategies are described and the strategy selection 

process is explained. Similar to Analysis 1, the credibility of the methods used in 

Analysis 2 is evaluated by checking whether Learned_BW and Learned_OR participants 

are identified as using unidimensional strategies and after making sure that the model  
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Figure 21. Analysis 2 distinguishes between different two-dimensional strategies. In an 

“A or B?” trial, the circled stimuli can be perceived as easy or difficult depending on 

participant’s strategy. 
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selection process is relatively successful, differences between two-dimensional strategies 

are explored. 

Methods 

 DDM was introduced over forty years ago (Ratcliff, 1978) but there is still 

ongoing research on parameter estimation methods (for a review: Ratcliff & Childers, 

2015). In our analysis we used HDDM (Wiecki, Sofer, & Frank, 2013), a Python-based 

package that uses hierarchical Bayesian modeling. HDDM allows adding covariates to 

DDM parameters, which makes it possible to assess the effect of trial-by-trial variability 

on the parameters. The trial-by-trial variability that we consider is going to be a function 

of the location of a stimulus on the category space. We hypothesize that perceived 

difficulty of a stimulus depends on the strategy of a participant. Since trial difficulty is 

captured by the drift rate (𝑣𝑣), the trial-by-trial variability measure (determined by the  

location of the stimulus) will be regressed on the drift rate: 
 
 

𝑣𝑣 =  𝑣𝑣0 + 𝛽𝛽 × 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
 
 
 The first step is to determine 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (i.e., the covariate), 

which is going to be different for each strategy. Figure 22 shows two covariate maps 

corresponding to the unidimensional strategies. Figure 22a corresponds to a 

unidimensional strategy on bar width and Figure 22b corresponds to a unidimensional 

strategy on orientation. In Figure 22a, the covariate is smallest close to an ideal bound on 

bar width dimension, and it increases further away from the bound. Similarly, in Figure 

22b, the smallest covariate values are those close to an ideal bound on orientation 

dimension and it increases further away from the bound. The exact values are  
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                                                                   (a) 
 

 
                                                                   (b) 
 
 
Figure 22. The covariate maps expected to fit best to participants with a unidimensional 

strategy. (a) Unidimensional strategy on bar width. (b) Unidimensional strategy on 

orientation. 
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standardized distances to an optimal bound on each of the dimensions. The models 

corresponding to Figure 22a and Figure 22b will be referred to as BW model and OR 

model.  

 Figure 23 shows the covariate maps of two-dimensional strategies. Figure 23a 

shows the ‘Time efficient’ strategy and Figure 23b shows the ‘Conservative’ strategy 

(more explanation was provided in the hypothesis section). The covariates of the two- 

dimensional strategies are calculated in the following way: 
 
 

𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓𝐵𝐵𝐵𝐵(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) , 𝑓𝑓𝑂𝑂𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� 

𝑎𝑎𝑎𝑎𝑎𝑎  

𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐵𝐵𝐵𝐵(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ,𝑓𝑓𝑂𝑂𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)) 
 
 
Where 𝑓𝑓𝐵𝐵𝐵𝐵(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and 𝑓𝑓𝑂𝑂𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) correspond to 

covariates of the unidimensional strategies on bar width and orientation respectively. 

In addition to the four covariate maps, a DDM with no covariate (i.e., β = 0) was 

also fitted, which is expected to fit best to participants for whom the relative difficulty of 

a trial does not depend on its location in the category space. The five DDMs were fitted 

to the last three blocks of training of each participant separately and using a model 

selection criterion (described below), the best fitting model(s) were identified. 

Model Selection Process 

Two measures were used to assess the best fitting model(s), the DIC score and 

percentage of posterior samples of β that are bigger than zero. DIC is a measure similar to 

AIC, which is used when the model fitting is done with Bayesian methods and posterior  
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                                                                   (a) 

 
                                                                   (b) 
 
 
Figure 23. The covariate maps expected to fit best to participants that used both 

dimensions. (a) Time efficient strategy. (b) Conservative strategy. 
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samples of parameters are available (Spiegelhalter et al., 2002). Similar to AIC, a DIC 

score is a goodness of fit measure that penalizes the number of parameters but unlike 

AIC, it is not possible to translate the scores to relative probabilities (i.e., the probability 

that a model provides the best description for the data among the considered models). 

However, it seems that the rule of thumb used in AIC works for DIC scores as well 

(Spiegelhalter et al., 2002), which is to consider all models that are within 1 point of the 

best model (i.e., the model with lowest DIC) to be relatively good. For example, if the 

BW model has the lowest DIC, and 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 - 𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵 < 1, then both models are 

selected. In addition to DIC scores, the posterior samples of β parameter for each model 

was tested and a model is considered only if 99% of its β samples are greater than zero.  

To summarize, a model is picked if (a) it has the smallest DIC score or its score is 

within 1 point of the minimum and (b) if its β parameter is positive with a probability of 

99% or higher. If none of the four models with covariates satisfy 𝑝𝑝(β > 0) > 0.99 and 

the model with no covariate does not have a small enough DIC (i.e., 𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −

 𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 > 1), then Analysis 2 does not assign a strategy to that participant.  

Results 

Similar to Analysis 1, before looking at all participants, validity of the analysis is 

tested by looking at participants that learned only one of the bounds, which must be best 

fit by the models that correspond to the unidimensional strategies, or to the model with no 

covariate. Figure 24 shows the result of the model selection. As before, each circle 

represents a participant, the location of the circle codes the learned knowledge and the 

color of each circle is the identified strategy. Most Learned_BW participants (bottom 

right corner of the figure) are either green (i.e., best fit by the model with distance to an  
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Figure 24. The identified strategies of Learned_BW and Learned_OR participants based 

on Analysis 2. Each circle represents a participant. Color of a circle shows the strategy 

(based on Analysis 2) and its location shows the learned knowledge (x-axis is test 

accuracy on BW trials and y-axis is test accuracy on OR trials). 
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ideal bound on bar width as covariate) or gold (i.e., best fit by the model with no 

covariate). Similarly, most Learned_OR participants (top left corner of the figure) are 

either blue (i.e., best fit by the model with distance to an ideal bound on orientation as 

covariate) or gold (i.e., best fit by the model with no covariate).   

Table 8 summarizes the correspondence between labels based on DDM models 

and the learned knowledge for participants that learned only one dimension. Excluding 

participants that were not fit to any of the models (the ‘None’ strategy), there are only 

five participants (out of 72) that are best fit to the model that corresponds to a wrong 

strategy, which shows that the strategy identification process works well. There was one 

participant for whom there were three well-fitting strategies (BW, Time efficient and 

Conservative). This participant was colored gray (same as the ‘None’ participants) in 

Figure 22, because if the model selection process says three out of five models are 

describing the data well, then in some sense it is not different than saying none of them 

fits the data well. 

Now that the validity of model selection process is demonstrated, the strategy of 

participants that learned both dimensions is shown in Figure 25. Theoretically, 

Learned_Both participants can belong to any of the considered strategies, it is possible 

that they used only one of the dimensions while latently learning the other, or it is also 

possible that they used both dimensions. In order to make the figure easier to read, in 

cases where two models are selected and one of them is Time efficient, the color is red, 

same as cases where there is only one best fitting model and it is Time efficient. 

Similarly, in cases where two models are selected and one of them is Conservative, the 

color is pink, same as cases where there is only one best fitting model and it is  



83 

 

 

 

 
 
 

Figure 25. The identified strategies participants based on Analysis 2. Each circle 

represents a participant. Color of a circle shows the strategy (based on Analysis 2) and its 

location shows the learned knowledge (x-axis is test accuracy on BW trials and y-axis is 

test accuracy on OR trials). 
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Table 8 

The Confusion Table for the Relation Between Identified Strategy (Based on  

Analysis 2) and Learned Knowledge for Participants That Learned Only  

One of the Dimensions 

____________________________________________________________ 

  Learned Knowledge  

 Strategy Learned_BW Learned_OR 
____________________________________________________________ 

Unidimensional, BW 23  0 

Unidimensional, OR  0 20 

No Covariate 15  9 

Two-Dimensional Strategies  3  2 

None 10  5 
____________________________________________________________ 
 
 
Conservative. Participants best fit by the No covariate model were hypothesized to be the 

‘elite’ participants that perceive stimuli close to any of the two boundaries no harder than 

other stimuli. However, Figure 25 shows that based on the learned knowledge of each 

participant (coded by the location of each participant in the figure), it seems that not all of 

the No covariate participants (i.e., gold circles) belong to the ‘elite’ group. It is true that 

there are four or five gold circles in the top right corner of the figure, but there are also 

gold circles in the regions that learned knowledge level is not particularly high on neither 

of the dimensions (e.g., participants 131, 48, 96 and 128). A possible explanation is that 

the less engaged participants that may have noisy data do not benefit from the extra 

parameter (β) and therefore are best fit by the No covariate model simply because this 
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model has fewer parameters compared to the other four models. Therefore, the No 

covariate can be thought of as a generic model that fits best to two type of participants: 

The elite participants that perceive all stimuli equally easy irrespective of the location of 

a stimulus and participants whose strategy is not well-described by the other models 

(BW, OR, Time efficient and Conservative). 

 Table 9 shows the identified strategies of the Learned_Both participants. In cases 

where there were two best fitting models and one of them was Time efficient, the 

participant was counted as Time efficient and similarly, in cases where there were two 

best fitting models and one of them was Conservative, the participant was counted as  

Conservative. 
 
 
Table 9 

Identified Strategy (Based on Analysis 2) for  

Participants That Learned Both Dimensions 

_________________________________________ 

  Learned Knowledge 

 Strategy  Learned_Both 
_________________________________________ 

Unidimensional, BW 11 

Unidimensional, OR 13 

No covariate 18 

Time efficient 11 

Conservative  7 

None 12 
_________________________________________  
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GENERAL DISCUSSION 

 The thesis focused on individual differences in a rule-based categorization task 

with redundancy. A central emphasis was to show that participants might achieve success 

in different ways and therefore, they have to be divided properly before doing any group 

analysis. The reason is that different types of participants may have different response 

patterns, which is ignored if all participants are pooled together. Participants were divided 

based on their learned knowledge and their used knowledge. The learned knowledge of 

each participant was determined by adding a test phase to the experiment. Identifying the 

learned knowledge was relatively straightforward and the main challenge was to identify 

the used knowledge, which was done in two different ways (Analysis 1 and Analysis 2). 

In this section, different aspects of the two analyses are compared and there is a 

discussion on individual differences that are ignored by both analyses. 

Comparing the Analyses 

 The two analyses are compared from two different perspectives. First, a simple 

comparison is made based on how well each of them identified used knowledge/strategy 

of participants. Then the details of the method implementations are compared and the 

way the details of implementation has affected the results are discussed. 

Comparing the Results 

Analyses 1 and 2 were concerned with identifying the used knowledge of 

participants. The test phase of the experiment established the learned knowledge of each 

participant, but it is not possible to assess the validity of identified used knowledge based 

on the learned knowledge, because the participants that learned both dimensions could 

use any of the two dimensions. However, participants that learned only one dimension 
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must have used only that dimension, and for this reason, Learned_BW and Learned_OR 

participants were used to partially validate the results of Analysis 1 and 2. There were 

eighty-seven unidimensional (Learned_BW and Learned_OR) participants, and fifty-

three of them were identified correctly by both analyses. There was also one participant 

that was misidentified by both analyses. In order to compare differences in the errors 

made by each analysis, the focus is on participants that were misidentified by only one of 

the analyses. Participants that were identified by Analysis 2 as ‘None’ or ‘No covariate’ 

are not considered misidentification. The reason is that ‘No covariate’ can be viewed as a 

generic model that theoretically can represent any strategy and ‘None’ simply shows that 

there is no good fit. 

Figure 26 shows participants that are misidentified by Analysis 1 but not by 

Analysis 2. Figure 26a shows the labels assigned by Analysis 1 and Figure 26b shows the 

same participants and the labels assigned by Analysis 2. There are twenty-nine 

participants that are misidentified by Analysis 1 and Analysis 2 assigns nineteen out of 

the twenty-nine to the more obscure models (‘None’ and ‘No Covariate’) and the 

remaining ten to the correct models (BW and OR). This shows that Analysis 2 avoids 

misidentification of some participants because it can assign them to no model at all (i.e., 

‘None’ label) or to a generic model (‘No covariate’).  

 Figure 27 shows the participants that are misidentified by Analysis 2 but not by 

Analysis 1 and as the figure shows, there are only four such participants. Figure 27a 

shows the labels assigned by Analysis 1 and Figure 27b shows the same participants and 

the labels assigned by Analysis 2.  
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                                                               (a) 

 

 
                                                                 (b) 
 
 
Figure 26. Participants that were misidentified by Analysis 1. (a) Labels based on 

Analysis 1. (b) Labels based on Analysis 2. 

  



89 

 

  
                                                                (a) 

 

 
                                                                 (b) 
 
 
Figure 27. Participants that were misidentified by Analysis 2. (a) Labels based on 

Analysis 1. (b) Labels based on Analysis 2. 
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Comparing the misidentified participants showed that Analysis 2 made fewer 

mistakes and it is partly because of the possibility of assigning participants that do not fit 

any of the unidimensional and two-dimensional strategies to a generic model (No 

covariate) or to no model at all (None). In subsequent sections, there is a discussion on 

why having models similar to ‘No covariate’ and ‘None’ is beneficial to any model 

selection scheme. 

Comparing the Implementation 

This section compares the differences in the implementation between the two 

analyses and discusses the advantages and disadvantages of each. Analysis 1 used two 

tools (iDBM and D2B) that were implemented separately and therefore will be discussed 

separately.  

 The input data and trial order. There are five training blocks (each block is 

ninety-six trials) and iDBM uses all of them and considers the order of trials, while D2B 

measure and Analysis 2 use the last three blocks and ignore the order of trials. The reason 

for this difference is that the goal of iDBM is to detect switches in participant’s response 

pattern, from guessing to using a rule and possible subsequent switches. Therefore, 

iDBM needs to start from the beginning and has to consider the order of trials. On the 

other hand, D2B measure and Analysis 2 aspire to detect a quality about a participant’s 

response pattern as a whole, without considering the changes in strategy throughout the 

experiment. For this reason, D2B measure and Analysis 2 used the last three blocks in 

order to exclude the messy data from the early stages of the experiment when the 

participant does not have a stable strategy yet. The advantage of the approach used by 

iDBM is that it does not make the additional assumption that all participants settle on a 
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strategy, and the advantage of the approach used in D2B measure and Analysis 2 is its 

computational simplicity (no need to fit models iteratively).  The D2B measure assigned 

most participants to the ‘Uncertain’ category, which might have been due to ignoring the 

order of trials. It has been shown that as the task becomes lest effortful, the D2B effect 

diminishes (Hélie, Waldschmidt, & Ashby, 2010) and therefore, ignoring the trial order is 

possibly a reason for the low detection power of the current implementation of RT-

distance hypothesis. Imagine a participant that shows D2B effect in blocks three and four 

but as the task becomes easier for her, the negative correlation between RT and distance 

to bound diminishes and by block five there is no D2B effect. The lack of D2B effect at 

block five reduces the magnitude of overall D2B and therefore, the probability of 

detecting it is reduced. Note that even though all the mentioned problems exist for 

Analysis 2, it did well, and arguably, Analysis 2 was more successful than Analysis 1 

(based on the previous section). One reason is that while D2B effect used a simple rank 

correlation coefficient, Analysis 2 uses a more sophisticated method with lots of 

parameters, and while D2B effect used only RT, Analysis 2 used both accuracy and RT. 

However, note that even in Analysis 2 there are many participants that the model 

selection process was not able to assign to any strategy, which might change if an 

iterative version of Analysis 2 were to be implemented.  

 The model space. Each analysis considered a set of models (model space) and 

assigned each participant to one of the models. Table 10 shows the model space of each 

analysis. As Table 10 shows, there are two differences between Analysis 1 and 2. The 

first difference is that in Analysis 2, there are two models that correspond to a two-

dimensional strategy (Time efficient and Conservative), while in Analysis 1 there is only 
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one such model (Used both). In other words, Analysis 2 is a little more specific compared 

to Analysis 1 and distinguishes between different two-dimensional strategies. The second 

difference is that Analysis 2 has two models that are labeled as ‘Other’ in Table 10, 

which include ‘No covariate’ and ‘None’. The ‘Other’ category covers a) participants 

who are using a strategy that cannot be formulated by BW, OR, Time efficient or 

Conservative and b) participants that for various reasons (e.g., not being attentive enough  

to the experiment) have noisy data. 
 
 
Table 10 

Model Space of Each Analysis 

______________________________________________________________ 

 Analysis 1 Analysis 2 
______________________________________________________________ 

 Used Bar Width BW 
Unidimensional Strategies 
 Used Orientation OR 

  Time Efficient 
Two-Dimensional Strategies  Used Both 
   Conservative 

   No Covariate 
Other   
  None 
______________________________________________________________ 
 
 
 The possibility of assigning participants to a generic model (i.e., ‘No covariate’) 

or no model at all (i.e., ‘None’) reduces misidentifications. Comparing the results of the 

two analyses confirmed this claim by showing that Analysis 1 makes more mistakes than 

Analysis 2 and the majority of participants misidentified by Analysis 1 are identified as 

either ‘No covariate’ or ‘None’  by Analysis 2. In general, for any model selection 
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scheme having models similar to ‘No covariate’ and ‘None’ can be beneficial. Such 

models cover possibilities that are not conceptually considered and when most cases are 

assigned to none of the defined models, it may be an indication of shortcomings in the 

implementation or may simply suggest that the data is too noisy. 

More IDs? 

The study assumed two type of IDs in a categorization task with redundancy: 

learned knowledge and used knowledge. The test phase of the experiment showed that 

there are IDs in the learned knowledge and Analysis 1 and 2 attempted to identify the IDs 

in used knowledge. There seems to be no conceptual ambiguity about dividing 

participants into three groups based on the learned knowledge (Learned_BW, 

Learned_OR and Learned_Both). However, used knowledge is not a specific enough 

term and does not determine how the two dimensions are combined. Systems Factorial 

Technology (SFT) is a framework that is formulated to study how information from 

different sources are combined (Townsend & Nozawa, 1995). Analysis 1 and 2 are 

reassessed using SFT in order to evaluate whether participants were properly divided or 

not. SFT uses four characteristics to describe a two-dimensional process: architecture 

(serial or parallel), stopping rule (AND or OR), stochastic dependence (dependence or 

independence) and workload capacity (limited, unlimited or super capacity). Discussing 

the details of each characteristic and their mathematical formulation is not the intention 

of this section and the goal is to use SFT to examine what is lacking in Analysis 1 and 2. 

Figure 28 shows the schematic of five different SFTs. The two dimensions can be 

processed parallel (Figure 28a and 28c) or serial (Figure 28b) and a response can be made 

as soon as a target is detected (OR processing; top panel of Figure 28a and 28b) or after  
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Figure 28. a) Top panel: Parallel, OR processing. Bottom panel: Parallel, AND 

processing. b) Top panel: Serial, OR processing. Bottom panel: Serial, AND processing. 

c) Coactive model (special case of parallel architecture). Figure is taken from Houpt, 

Blaha, McIntire, Havig, & Townsend (2014). 
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processing all available information (AND processing; bottom panel of Figure 28a and 

28b).  

It is not possible to situate Analysis 1 within the SFT framework, because 

Analysis 1 determines whether both dimensions were used or not and does not imply 

anything about the way two dimensions are used. On the other hand, Analysis 2 

implicitly assumes a coactive architecture (i.e., Figure 28c) in its two-dimensional models 

by fitting only one evidence accumulator. Figure 29 shows the architecture assumed by 

Analysis 2. Time efficient and Conservative strategies differed in the way two 

dimensions were combined.   

A coactive architecture is not the only possible way to implement Time efficient 

and Conservative strategies. Two alternative architectures are shown in Figure 30. Figure 

30a shows a parallel OR processing model and Figure 30b shows a parallel AND 

processing model, which can be viewed as alternative implementations of Time efficient 

and Conservative strategies respectively.  Another possibility (not visualized) is serial OR 

and serial AND models. 

The importance of having well-defined strategies and properly dividing 

participants into them is that a valid group analysis depends on it. This section showed a 

possible improvement using a framework (SFT) that is specifically designed to model 

two-dimensional processes. Even though the current implementation of Analysis 2 lacks 

a specification of the architecture and implicitly assumes a coactive architecture while 

ignoring other possibilities, it is still possible to perform some group analysis. Three 

group analyses are done in Appendix comparing difficulty of two dimensions, and testing 

the effect of latently learning a dimension.  
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Figure 29. Visualization of two-dimensional model implemented in Analysis 2.  
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Figure 30. Alternative architectures to model two-dimensional strategies in Analysis 2. a) 

An alternative model for Time efficient strategy. b) An alternative model for conservative 

strategy.  
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Future Work 

A possible direction is to improve implementation of current methods. iDBM will 

benefit from having generic models such as those defined for D2B and Analysis 2, in 

order to avoid misidentifications. On the other hand, D2B and Analysis 2 will benefit 

from the iterative characteristic of iDBM. Ignoring the initial phase of category learning 

and ignoring the order of trials results in missing changes in participants’ decision-

making behavior and it was probably the reason for D2B’s failure and the abundance of 

participants that could not be described by any of Analysis 2’s models. The next step 

beyond improving current methods would be to consider different architectures for two-

dimensional strategies using SFT framework. The benefit would be having strategies that 

are defined more accurately and the possibility to use the insights of the SFT framework.  

A non-methodological topic that can be investigated is the effect of time: Given 

enough time, will all participants learn both dimensions? If yes, will all eventually use the 

same strategy? Or will there be differences in the final strategy that participants settle on?  

This thesis was concerned with formulating IDs and analyzing how participants 

are different, but did not investigate why these differences exist. One possible reason 

could be that participants that learned only one dimension are better at inhibiting task 

irrelevant information in general and therefore, after starting to test one of the dimensions 

and finding out that it works, filtered the other dimension completely and never noticed 

the differences between categories in the other dimension. It is also possible that IDs are 

not linked to any general cognitive characteristic of participants. Finally, it is worth 

mentioning that this study was limited to two-alternative forced choice task and studying 
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IDs in a categorization task with redundancy can be done in different settings such as 

Yes/No tasks or forced choice tasks with more than two alternatives. 
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APPENDIX A 

The appendix aims at exploring group differences, which was avoided due to IDs 

that existed in two domains: Learned knowledge and used knowledge. The discussion 

section pointed to some shortcomings in the conceptualization of the used knowledge 

(lack of an explicit formulation of architecture), but this shortcoming does not prohibit all 

group comparisons. The lack of explicit formulation of architecture affects two-

dimensional strategies, and even considering the shortcomings of implementation and 

conceptualization, it seems valid to compare unidimensional strategies. In this section 

three group analyses are done. The first comparison is between participants that learned 

and used only bar width and participants that learned and used only orientation. The goal 

of this analysis is to test whether the two dimensions were equally easy or whether there 

is an asymmetry in the difficulty levels. The second and third analyses compare 

participants that used only one dimension but learned both. The goal of these 

comparisons are to check the effect of latently learning a dimension without using it on 

performance. Participants are labeled in the following format: BW-BW are participants 

that learned and used bar width, OR-OR are participants that learned and used 

orientation, Both-BW are participants that learned both dimensions but used only bar 

width and Both-OR are participants that learned both dimensions but used only 

orientation. The used knowledge labels are based on Analysis 2. In each comparison, the 

accuracy and RTs are visualized and compared using a Bayesian linear mixed model. 

Finally, a DDM is fit to the four groups where separate drift rate (v), boundary separation 

(a) and non-decision time (t0) are estimated for each group and posterior samples of each 

parameter are compared. The goal of group analysis using DDMs is to decompose the 
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differences in accuracy and RT into interpretable parameters. This allows distinguishing 

between a slower RT due to task difficulty and a slower RT due to an increase in non-

decision component of RT. One thing to note is that the comparisons cannot be used to 

infer any causal relation because the groups are defined based on observation and 

participants are not randomly assigned to the different groups. Additionally, number of 

participants in Both-BW and Both-OR groups are relatively low and overall, this section 

is for the most part speculative.  

BW-BW vs. OR-OR 

 Figure 31 shows participants that are going to be compared. The green circles are 

BW-BW participants (i.e., learned bar width and used bar width) and blue circles are OR-

OR participants (i.e., learned orientation and used orientation). 

 Figure 32a and 32b show mean accuracy and mean RT of each group during the 

five blocks of training respectively. Two separate Bayesian linear mixed models with 

block (1, 2, …, 5) and group (BW-BW vs OR-OR) as fixed effects and participant as 

random effect were fitted, one with accuracy as dependent variable and one with RT as 

dependent variable. Model’s estimate for the effect of BW-BW on accuracy is 0.85 and 

the estimate for OR-OR is 0.86 (difference of only 1% in accuracy). Figure 32c shows 

the posterior samples of group factor’s coefficient in the model with accuracy as 

dependent variable. On the other hand, model’s estimate for the effect of BW-BW on RT 

is 1393.42 and the estimate for OR-OR is 1136.21 (difference of 257 ms in RT). 

Additionally, more than 99% of the posterior samples of the OR-OR coefficient are 

smaller than BW-BW coefficients. Figure 32d shows the posterior samples of group 

factor’s coefficient in the model with RT as dependent variable. Overall, Figure 32  
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Figure 31. Comparing participants that learned and used bar width (green circles) and 

participants that learned and used orientation (blue circles). 
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                                        (a)                                                               (b) 

 

  
                                        (c)                                                                 (d) 

 
 

Figure 32. Comparing BW-BW and OR-OR participants. a) Mean accuracy of participants in 

each block (each circle represents a participant). b) Mean RT of participants in each block (each 

circle represents a participant). c) Posterior samples of each group, when dependent variable is 

mean accuracy. d) Posterior samples of each group, when dependent variable is mean RT. 
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suggests that OR-OR participants are faster than BW-BW participants are, but not more 

accurate. 

The differences between the two groups are explored using a hierarchical DDM. 

The difference in RTs can be translated into differences in drift rate or non-decision time. 

There is no reason to assume that the differences should be reflected in the non-decision 

time parameter, and the most intuitive explanation is that orientation attribute is more 

salient than bar width and categorizing based on orientation is easier compared to 

categorizing based on bar width. Figure 33 shows the posterior samples of three 

parameters of the DDM. As shown by the figure, the only difference seems to be between 

the drift rates (over 99% of OR-OR posterior samples were bigger than the BW-BW 

posterior samples), which suggests that the differences in RT between BW-BW and OR-

OR was due to differences in difficulty of categorization based on bar width and 

orientation. Additionally, around 90% of boundary separation posterior samples from 

BW-BW are bigger than OR-OR. 

 There was no reason to expect that the differences in RT between the two groups 

may manifest itself in the non-decision component (i.e., stimulus encoding and response 

execution components of RT), therefore, the result of drift diffusion models seem to be 

understandable. Overall, there seems to be enough evidence to conclude that categorizing 

based on orientation was easier. However, since it is an observational study, the 

differences might be caused by ‘good’ participants choosing orientation dimension to 

categorize and ‘bad’ participants choosing bar width dimension. 
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                                                                     (c) 
 
 
Figure 33. Posterior samples of DDMs for BW-BW and OR-OR participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of 

non-decision time. 
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BW-BW vs. Both-BW 

 Figure 34 shows participants that are going to be compared. The green circles are 

BW-BW participants (i.e., learned bar width and used bar width) and red circles are 

Both-BW participants (i.e., learned both dimensions and used only bar width).  

 Figure 35a and 35b show mean accuracy and RT of each group during the five 

blocks of training respectively. Two separate Bayesian linear mixed models with block 

(1, 2, …, 5) and group (BW-BW vs Both-BW) as fixed effects and participant as random 

effect were fitted, one with accuracy as dependent variable and one with RT as dependent 

variable. Model’s estimate for the effect of BW-BW on accuracy is 0.84 and the estimate 

for Both-BW is 0.88 (difference of 4% in accuracy). Figure 35c shows the posterior 

samples of group factor’s coefficient in the model with accuracy as dependent variable. 

More than 96% of the posterior samples of the Both-BW coefficient are bigger than BW-

BW coefficients. On the other hand, model’s estimate for the effect of BW-BW on RT is 

1354.78 and the estimate for Both-BW is 1434.07 (difference of 79 ms in RT). Figure 

35d shows the posterior samples of group factor’s coefficient in the model with RT as 

dependent variable. Overall, Figure 35 suggests that Both_BW participants are more 

accurate compared to BW-BW, but not faster. 

The differences between the two groups are explored using a hierarchical DDM. 

Figure 36 shows the posterior samples of three parameters of the DDM. As shown by the 

figure, the main difference seems to be between the non-decision time components 

(Figure 36c; over 98% of Both-BW posterior samples were bigger than the BW-BW 

posterior samples). Additionally, around 89% of boundary separation posterior samples  
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Figure 34. Comparing participants that learned and used bar width (green circles) and 

participants that learned both dimensions but used only bar width (red circles). 
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                             (a)                                                                  (b) 

 

 
                             (c)                                                                   (d) 

 
 

Figure 35. Comparing BW-BW and Both-BW participants. a) Mean accuracy of 

participants in each block (each circle represents a participant). b) Mean RT of 

participants in each block (each circle represents a participant). c) Posterior samples of 

each group, when dependent variable is mean accuracy. d) Posterior samples of each 

group, when dependent variable is mean RT. 
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                            (a)                                                                    (b) 

 

 
                                                                    (c) 
 
 
Figure 36. Posterior samples of DDMs for BW-BW and Both-BW participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of non-

decision time. 
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from Both-BW are bigger than BW-BW (Figure 36a) and around 78% of drift rate 

posterior samples from Both-BW are bigger than BW-BW (Figure 36b). 

 A possible explanation for Both-BW participants having a higher non-decision 

time component can be given using the concept of workload capacity (a SFT 

terminology). SFT assumes three possibilities for the effect of adding sources of 

information: degradation of performance (limited capacity), no change in performance 

(unlimited capacity) and better performance (super capacity). The reason that Both-BW 

participants have higher non-decision time component compared to BW-BW participants 

might be caused by additional workload of latently learning the orientation dimension. 

OR-OR vs. Both-OR 

 Figure 37 shows participants that are going to be compared. The blue circles are 

OR-OR participants (i.e., learned orientation width and used orientation) and red circles 

are Both-OR participants (i.e., learned both dimensions and used only orientation).  

 Figure 38a and 38b show mean accuracy and RT of each group during the five 

blocks of training respectively. Two separate Bayesian linear mixed models with block 

(1, 2, …, 5) and group (OR-OR vs Both-OR) as fixed effects and participant as random 

effect were fitted, one with accuracy as dependent variable and one with RT as dependent 

variable. Model’s estimate for the effect of OR-OR on accuracy is 0.88 and the estimate 

for Both-OR is also 0.88 (no difference in accuracy). Figure 38c shows the posterior 

samples of group factor’s coefficient in the model with accuracy as dependent variable. 

On the other hand, model’s estimate for the effect of OR-OR on RT is 1152.07 and the 

estimate for Both-OR is 1337.64 (difference of 185 ms in RT). More than 99% of the  
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Figure 37. Comparing participants that learned and used orientation (blue circles) and 

participants that learned both dimensions but used only orientation (red circles). 
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                              (a)                                                                  (b) 

   
                              (c)                                                               (d) 

 
 

Figure 38. Comparing OR-OR and Both-OR participants. a) Mean accuracy of 

participants in each block (each circle represents a participant). b) Mean RT of 

participants in each block (each circle represents a participant). c) Posterior samples of 

each group, when dependent variable is mean accuracy. d) Posterior samples of each 

group, when dependent variable is mean RT. 
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posterior samples of the Both-OR coefficient are bigger than OR-OR coefficients. Figure 

36d shows the posterior samples of group factor’s coefficient in the model with RT as 

dependent variable. Overall, Figure 38 suggests that OR-OR participants are faster than 

Both-OR participants are, but not more accurate.  

The differences between the two groups are explored using a hierarchical DDM. 

Figure 39 shows the posterior samples of three parameters of the DDM. As shown by the 

figure, the main difference seems to be between the drift rates (Figure 39b; over 96% of 

OR-OR posterior samples were bigger than the Both-OR posterior samples). 

Additionally, around 90% of boundary separation posterior samples from Both-OR are 

bigger than OR-OR (Figure 39a) and around 85% of non-decision time posterior samples 

from Both-OR are bigger than OR-OR (Figure 39c). 

 It seems that since both OR-OR and Both-OR are using orientation to categorize 

stimuli, there should not be any difference in difficulty, so it is difficult to explain the 

differences in drift rates. The expected result would be differences in non-decision time 

component (due to additional load caused by latently learning the bar width dimension). 

The differences in boundary separation and non-decision time are also not small. Overall, 

it is important to emphasize again that since the groups are observed (and not assigned 

randomly to participants) these results are going to tell very little about the effect of 

latently learning a dimension. 
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                             (a)                                                                  (b) 

 

 
                                                                          (c) 
 
 
Figure 39. Posterior samples of DDMs for OR-OR and Both-OR participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 
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APPENDIX B 

 

 

 
 
 

Figure 40. Comparing participants that learned and used bar width (green circles) and 

participants that learned and used orientation (blue circles). 
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                             (a)                                                                  (b) 

 

  
                   (c)                                                                     (d) 

 
 

Figure 41. Comparing BW-BW and OR-OR participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                              (a)                                                                    (b) 

 

 
                                                                    (c) 
 
 
Figure 42. Posterior samples of DDMs for BW-BW and OR-OR participants. a) Posterior 

samples of boundary separation. b) Posterior samples of drift rate. c) Posterior samples of 

non-decision time. 
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Figure 43. Comparing participants that learned and used bar width (green circles) and 

participants that learned both dimensions but used only bar width (red circles). 
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                             (a)                                                                 (b) 

   
                             (c)                                                                 (d) 

 
 

Figure 44. Comparing BW-BW and Both-BW participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                               (a)                                                                     (b) 

 

 
                                                                   (c) 
 
 
Figure 45. Posterior samples of DDMs for BW-BW and Both-BW participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 
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Figure 46. Comparing participants that learned and used orientation (blue circles) and 

participants that learned both dimensions but used only orientation (red circles). 
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                             (a)                                                                   (b) 

 

   
                           (c)                                                                  (d) 

 
 

Figure 47. Comparing OR-OR and Both-OR participants. a) Mean accuracy of participants in each block 

(each circle represents a participant). b) Mean RT of participants in each block (each circle represents a 

participant). c) Posterior samples of each group, when dependent variable is mean accuracy. d) Posterior 

samples of each group, when dependent variable is mean RT. 
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                             (a)                                                                     (b) 

 

 
                                                                         (c) 
 
 
Figure 48. Posterior samples of DDMs for OR-OR and Both-OR participants. a) 

Posterior samples of boundary separation. b) Posterior samples of drift rate. c) Posterior 

samples of non-decision time. 


	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Body.pdf
	Why Studying Individual Differences Matters?
	Individual Differences in the Categorization Literature
	Individual Differences in This Thesis
	Relevance and Diagnosticity
	Learned Knowledge vs. Used Knowledge
	Methodological Tools
	Decision Bound Models
	Iterative Decision Bound Modeling

	RT Distance Hypothesis
	Stochastic GRT

	Hypothesis
	Method
	Participants
	Material
	Procedure

	Results
	Learned Knowledge
	Used Knowledge
	Methods
	iDBM: Looking at Error Patterns
	RT-Distance Hypothesis

	Results
	iDBM Results
	RT-Distance Hypothesis Results
	Combining Evidence From iDBM and D2B
	Model Selection Process

	Results
	Comparing the Analyses
	Comparing the Results
	Comparing the Implementation
	The input data and trial order. There are five training blocks (each block is ninety-six trials) and iDBM uses all of them and considers the order of trials, while D2B measure and Analysis 2 use the last three blocks and ignore the order of trials. T...
	The model space. Each analysis considered a set of models (model space) and assigned each participant to one of the models. Table 10 shows the model space of each analysis. As Table 10 shows, there are two differences between Analysis 1 and 2. The fi...
	to the experiment) have noisy data.


	More IDs?
	Future Work
	BW-BW vs. OR-OR
	BW-BW vs. Both-BW
	OR-OR vs. Both-OR


	Body.pdf
	Why Studying Individual Differences Matters?
	Individual Differences in the Categorization Literature
	Individual Differences in This Thesis
	Relevance and Diagnosticity
	Learned Knowledge vs. Used Knowledge
	Methodological Tools
	Decision Bound Models
	Iterative Decision Bound Modeling

	RT Distance Hypothesis
	Stochastic GRT

	Hypothesis
	Method
	Participants
	Material
	Procedure

	Results
	Learned Knowledge
	Used Knowledge
	Methods
	iDBM: Looking at Error Patterns
	RT-Distance Hypothesis

	Results
	iDBM Results
	RT-Distance Hypothesis Results
	Combining Evidence From iDBM and D2B
	Model Selection Process

	Results
	Comparing the Analyses
	Comparing the Results
	Comparing the Implementation
	The input data and trial order. There are five training blocks (each block is ninety-six trials) and iDBM uses all of them and considers the order of trials, while D2B measure and Analysis 2 use the last three blocks and ignore the order of trials. T...
	The model space. Each analysis considered a set of models (model space) and assigned each participant to one of the models. Table 10 shows the model space of each analysis. As Table 10 shows, there are two differences between Analysis 1 and 2. The fi...
	to the experiment) have noisy data.


	More IDs?
	Future Work
	BW-BW vs. OR-OR
	BW-BW vs. Both-BW
	OR-OR vs. Both-OR



