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ABSTRACT

Steiner, Avi Ph.D., Purdue University, May 2019. A-Hypergeometric Systems and
D-Module Functors. Major Professor: Uli Walther.

LetA be a d by n integer matrix. Gel’fand et al. proved that most A-hypergeometric

systems have an interpretation as a Fourier–Laplace transform of a direct image. The

set of parameters for which this happens was later identified by Schulze and Walther

as the set of not strongly resonant parameters of A. A similar statement relating

A-hypergeometric systems to exceptional direct images was proved by Reichelt. In

the first part of this thesis, we consider a hybrid approach involving neighborhoods U

of the torus of A and consider compositions of direct and exceptional direct images.

Our main results characterize for which parameters the associated A-hypergeometric

system is the inverse Fourier–Laplace transform of such a “mixed Gauss-Manin” sys-

tem.

If the semigroup ring of A is normal, we show that every A-hypergeometric system

is “mixed Gauss–Manin”.

In the second part of this thesis, we use our notion of mixed Gauss–Manin systems

to show that the projection and restriction of a normal A-hypergeometric system to

the coordinate subspace corresponding to a face are isomorphic up to cohomological

shift; moreover, they are essentially hypergeometric. We also show that, if A is in

addition homogeneous, the holonomic dual of an A-hypergeometric system is itself A-

hypergeometric. This extends a result of Uli Walther, proving a conjecture of Nobuki

Takayama in the normal homogeneous case.
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1. INTRODUCTION

Let A ∈ Zd×n be an integer matrix with columns a1, . . . , an such that ZA = Zd;

we abuse notation and also use A to denote the set of its columns. Assume that

NA is pointed, i.e. that NA ∩ −NA = 0. Associated to this data, Gel′fand, Graev,

Kapranov, and Zelevinskĭı defined in [2,3] a family of modules over the sheaf DCn of

algebraic linear partial differential operators on Cn today referred to either as GKZ-

or A-hypergeometric systems. These systems are defined as follows:

The Euler operators of A are the operators Ei := ai1x1∂1 + · · · + ainxn∂n (i =

1, . . . , d), and the toric ideal of A is the C[∂1, . . . , ∂n]-ideal

IA := 〈∂u+ − ∂u− |Au = 0,u ∈ Zn〉 .

The A-hypergeometric system corresponding to the parameter β ∈ Cd is then defined

to be

MA(β) := DCn/ (DCnIA +DCn{E1 − β1, . . . , Ed − βd}) . (1.0.1)

(In Chapter 2, this is denoted by MA(β) and is thought of as a module rather than

a sheaf). If the condition that ZA = Zd is relaxed, MA(β) may still be defined as

above by first choosing a Z-basis of ZA; the resulting DCn-module is independent of

this choice.

Solutions to A-hypergeometric systems have found applications in a wide variety

of areas of both mathematics and physics including in the study of Aomoto–Gel′fand

functions, toric residues, Picard–Fuchs equations for the variation of Hodge structure

of Calabi–Yau toric hypersurfaces, and generating functions for intersection numbers

on moduli spaces of curves (see [4–6]). In fact, most functions one comes across “in

the wild” are solutions to such a system.
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1.1 Torus Embeddings and Direct Images

The torus embedding

ϕ : TA ↪→ Ĉn := SpecC[∂1, . . . , ∂n]

t 7→ (ta1 , . . . , tan)
(1.1.1)

induces a closed immersion of XA into Ĉn. On the torus, the data A and β give a

D-module

OβTA := OTAt−β.

A natural question is then whether and how this DTA-module is related to (the inverse

Fourier–Laplace transform (see §2.2.3) of) the A-hypergeometric system MA(β). A

foundational result in this direction was given by Gelf’and, et al. in [7, Theorem 4.6]:

For non-resonant β, the Fourier–Laplace transform of the D-module direct image

ϕ+OβTA is isomorphic to MA(β). This result was strengthened in [8, Corollary 3.7]

to: the Fourier–Laplace transform of ϕ+OβTA is isomorphic toMA(β) if and only if β

is not in the set

sRes(A) :=
n⋃
j=1

qdegH1
〈taj 〉(SA) (1.1.2)

of strongly resonant parameters. Here, qdeg denotes the set of quasidegrees of a Zd-

graded module and is defined in Definition 2.4.1. The Zd-grading on SA is defined in

§2.2.1.

It was then shown in [9, Proposition 1.14] that for certain other β, the inverse

Fourier–Laplace transform of MA(β) may be related to the D-module exceptional

direct image ϕ†OβTA . Namely, ϕ†OβTA ∼= FL−1(MA(β)) if A is homogeneous (i.e. the

vector (1, . . . , 1) is in the row span of A), β ∈ Qd, and β is not in the set⋃
F face of A

[
(Zd ∩ R≥0A) + CF

]
. (1.1.3)

However, in a certain sense, neither the theorem of Gelf’and, et al. nor the theorem

of Reichelt hold for “most” β. A natural question is therefore whether there is a

similar description which works for these remaining β. We discuss this question in
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Chapter 2 using the author’s notion of mixed Gauss–Manin systems and parameters,

giving a complete answer in the normal case.

Remark 1.1.1 Both sRes(A) and the set (1.1.3) are contained in the set

Res(A) :=
⋃

F face of A

(Zd + CF )

of resonant parameters defined in [7, Section 2.9] (the containment for sRes(A) fol-

lows from the definitions of qdeg and local cohomology; the containment for the set

(1.1.3) is immediate). The complement Cd \ Res(A) of Res(A) is open dense in the

analytic topology. Therefore, if β ∈ Cd is generic, then FL−1(MA(β)) is isomorphic

to both ϕ+OβTA and to ϕ†OβTA.

1.2 Applying D-module functors to A-hypergeometric systems

1.2.1 Projection and restriction

Explicit formulas for restriction (i.e. pullback via the D-module inverse image) to

a coordinate subspace were computed in [10, Th. 4.4] and [11, Th. 4.2] for certain

classes of GKZ systems. These formulas were generalized in [12, Th. 2.2] under cer-

tain hypotheses about the genericity of the parameter β and the size of the coordinate

subspace. We focus on a different situation, and explicitly compute, when the semi-

group ring C[NA] is normal, the restriction ofMA(β) to the coordinate subspace CF

corresponding to a face F � A (see (3.2.6) for the notation CF ). We also compute

the projection (i.e. the pushforward via the D-module direct image) ofMA(β) to CF .

Both computations appear in Theorem 3.5.4. Note that, unless F = A, the subspace

CF does not satisfy the size requirements of [12, Th. 2.2], hence there is no nontrivial

overlap between this paper and [12]. We also show that at most one of them can be

nonzero (Corollary 3.5.9).
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1.2.2 Duality

N. Takayama conjectured that the holonomic dual of an A-hypergeometric system

is itself a GKZ system (after applying the coordinate transformation x 7→ −x if A is

non-homogeneous, i.e. if the columns of A do not all lie in a hyperplane). U. Walther,

in [13], provided a class of counterexamples to this conjecture. However, each of these

counterexamples is rank-jumping (i.e. the holonomic rank is higher than expected),

and in the same paper, Walther shows that for generic parameters, Takayama’s con-

jecture does indeed hold. In particular, when the semigroup ring C[NA] is normal,

he proves ( [13, Prop. 4.4]) that the set of all parameters β for which the holonomic

dual of MA(β) is not a GKZ system has codimension at least three. We show in

Chapter 3 using the notion of mixed and dual mixed Gauss–Manin systems that if A

is homogeneous, this set is in fact empty.
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2. A-HYPERGEOMETRIC MODULES AND

GAUSS–MANIN SYSTEMS1

2.1 Introduction

Let A ∈ Zd×n be an integer matrix with columns a1, . . . , an such that ZA = Zd.

Assume that NA is pointed, i.e. that NA ∩ −NA = 0. Define the following objects:

SA = C[NA], the semigroup ring of A

XA = SpecSA, the toric variety of A

TA = SpecC[Zd], the torus of A

DA = C[x1, . . . , xn, ∂1, . . . , ∂n], the nth Weyl algebra

Let β ∈ Cd. The Euler operators of A are the operators

Ei := ai1x1∂1 + · · ·+ ainxn∂n, i = 1, . . . , d. (2.1.1)

The A-hypergeometric system corresponding to β is then defined to be

MA(β) :=
DA

〈∂u+ − ∂u− | Au = 0,u ∈ Zn〉+ 〈E1 − β1, . . . , Ed − βd〉
,

where the brackets (here and throughout this paper) denote a left ideal.

In Theorem 2.8.17 and Theorem 2.8.19, we give simultaneous generalizations of

both [8, Corollary 3.3] and [9, Proposition 1.14]. These generalizations allow (the

inverse Fourier–Laplace transform of) more A-hypergeometric systems to be equipped

with a mixed Hodge module structure. In Chapter 3, we will use the normal case of

these generalizations (Theorem 2.9.3) to compute for normal A the projection and

restriction of MA(β) to coordinate subspaces of the form CF , where F is a face of A;

and, if A is in addition homogeneous, to show that the holonomic dual of MA(β) is

itself A-hypergeometric.

1A version of this chapter has been published in Journal of Algebra as [14].
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2.1.1 Main Idea

Given a Zariski open subset U ⊆ Ĉn containing TA, write

ιU : TA ↪→ U

for the embedding of TA into U and

$U : U ↪→ Ĉn

for the inclusion of U into Ĉn. The first main result in this paper, Theorem 2.8.17,

provides an equivalent condition (in terms of the various local cohomology complexes

RΓO(F )(SA) with supports in the orbit O(F ); see §2.2.1 and §2.2.4) for

KA
• (SA;EA − β) ∼= FL($U+ιU†OβTA)

for some such U , while the second main result, Theorem 2.8.19, does the same (this

time in terms of the various localizations SA[∂−F ]) for

KA
• (SA;EA − β) ∼= FL($U†ιU+OβTA).

The condition for the first main result has two parts: First is a requirement that β

not be rank-jumping. Second is a requirement about certain sets akin to Saito’s EF (β)

sets (see Definition 2.8.11 and Definition 2.8.15). Those parameters β for which both

these conditions hold are called dual mixed Gauss–Manin (see Definition 2.8.15).

On the other hand, the condition for the second main result can be expressed as

a requirement about Saito’s EF (β) sets themselves. Those parameters β for which

this condition holds are called mixed Gauss–Manin (see Definition 2.8.15).

The proof of Theorem 2.8.17 is accomplished as follows: First, we restate in terms

of local cohomology via Lemma 2.8.1. Then, using the relationship between fiber

support (Definition 2.3.1) and local cohomology in Proposition 2.3.7, we focus in on

the restriction to torus orbits. These restrictions are computed for general inverse-

Fourier–Laplace-transformed Euler–Koszul complexes in Theorem 2.7.2.
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We also use in the proof that ϕ†OβTA can be expressed in two ways as an Euler–

Koszul complex (see Theorem 2.2.2): As an Euler–Koszul complex of the dualizing

complex of SA (Corollary 2.5.5), and as an Euler–Koszul complex of SA itself (Propo-

sition 2.6.2).

The proof of Theorem 2.8.19 follows a similar route.

2.2 Notation and Conventions

Subsection 2.2.1 defines various symbols related to the affine semigroup NA. Sub-

section 2.2.2 recalls some common notions and facts about (multi-)graded rings and

modules. Local cohomology with supports in a locally closed subset is recalled in

subsection 2.2.4. Conventions and notation relating to varieties, D-modules, sheaves,

and derived categories are given in subsection 2.2.3 along with the definition of the

Fourier–Laplace transform. Finally, in subsection 2.2.5, we recall the notion of Euler–

Koszul complexes.

2.2.1 Toric and GKZ Conventions/Notation

Let RA be the polynomial ring C[∂1, . . . , ∂n], and set

Ĉn := SpecRA. (2.2.1)

This space is to be (loosely) interpreted as the “Fourier–Laplace-transformed version”

of Cn, hence the ̂ (cf. §2.2.3).

Let IA ⊆ RA be the toric ideal corresponding to the embedding ϕ from (1.1.1)—we

identify SA with the quotient RA/IA. The torus embedding also induces an action of

TA on Ĉn, which in turn induces an action (the contragredient action) of TA on RA

via

(t · f)(∂1, . . . , ∂n) = f(t−a1∂1, . . . , t
−an∂n).
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An element f ∈ RA is homogeneous of degree α ∈ Zd if t · f = t−αf for all points t ∈

(C∗)n; it is homogeneous if it is homogeneous for some α. In particular, deg(∂i) = ai,

and SA is a Zd-graded RA-module.

Set

εA := a1 + · · ·+ an. (2.2.2)

Write M̂A(β) for the inverse Fourier–Laplace transform (see §2.2.3) of the GKZ

system MA(β).

Faces

A submatrix F of A is called a face of A, written F � A, if F has d rows and

R≥0F is a face of R≥0A. Given F � A, we make the following definitions:

TF := SpecC[ZF ] (2.2.3)

is the torus of F . The monomial in C[ZF ] corresponding to α ∈ ZF is written tα.

Denote by

O(F ) := TA · 1F ⊆ Ĉn (2.2.4)

the orbit in Ĉn corresponding to F (where the ith coordinate of 1F is 1 if ai ∈ F and

0 otherwise). Note that the inclusion ZF ↪→ Zd induces an isomorphism O(F ) ∼= TF .

The rank of F is denoted by dF , and if G � A with G � F , we set

dG/F := dG − dF . (2.2.5)

Define the ideal

IAF := IA + 〈∂i | ai /∈ F 〉 (2.2.6)

of RA, and set

∂kF :=
∏
ai∈F

∂ki (k ∈ Z). (2.2.7)

Given u ∈ (CF )∗ := HomC(CF,C), define ϑu to be the invariant vector field on

TF defined by

ϑu(t
α) := 〈α, u〉 tα (α ∈ ZF ), (2.2.8)
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where 〈,〉 denotes the standard pairing of dual spaces. These vector fields span the

Lie algebra of TF ; therefore, DTF is generated as a C-algebra by OTF and the vector

fields { ϑu | u ∈ (CF )∗ } (both of these claims may be proven in a straightforward

manner, e.g. by choosing coordinates).

For λ ∈ CF , define the DTF -module

OλTF := OTF t−λ, (2.2.9)

where t−λ is a formal symbol subject to the DTF -action

ϑu(ft
−λ) := [ϑu(f)− 〈λ, u〉 f ]t−λ (u ∈ (CF )∗).

This module is isomorphic to OTF as an OTF -module and so is in particular an inte-

grable connection. Moreover, it is a simple DTF -module.

2.2.2 Graded Rings and Modules

For more details about (multi-)graded rings and modules than are given here, refer

to [15–17].

Twists

Let M be a graded module over a Zk-graded ring R. Given an α ∈ Zk, define

the graded module M(α) to be M as an ungraded R-module and to have degree γ

component

M(α)γ := Mα+γ.

*- Properties

A *-simple ring is a graded ring with no homogeneous (two-sided) ideals. A

graded module over a graded ring S is *-free if it is a direct sum of graded twists of

S. A graded module over a graded ring S is *-injective if it is an injective object in

the category of graded S-modules.
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(Weakly) NA-Closed Subsets

As in [18, p143], we make the following definitions: A subset E of Zd is NA-closed

if E + NA ⊆ E. If E is NA-closed, define C{E} to be the graded SA-submodule of

C[Zd] := C[t±1 , . . . , t
±
d ]

C{E} := C { tα | α ∈ E } (2.2.10)

given as the vector space spanned by { tα | α ∈ E }.

A subset E of Zd is weakly NA-closed if (E+NA)\E is NA-closed. If E is weakly

NA-closed, define

C{E} := C{E + NA}/C{(E + NA) \ E}. (2.2.11)

*-Injective Modules

By [17, Prop. 11.24], every indecomposable *-injective SA-module is a Zd-graded

twist of C{NF − NA} for some face F � A. Note that by [17, Lem. 11.12 together

with Prop. 11.24], C{NF − NA} is the injective envelope of SF in the category of

graded SA-modules.

Graded Hom

Given graded modules M and N over a Zk-graded ring R, define for each α ∈ Zk

the vector space

HomR(M,N)α :=
{
f ∈ HomR(M,N)

∣∣ f(Mγ) ⊆ Nγ+α for all γ ∈ Zk
}

(2.2.12)

of degree-α homomorphisms from M to N . Define HomR(M,N) to be the graded

R-module

HomR(M,N) :=
⊕
α∈Zk

HomR(M,N)α, (2.2.13)

where the direct sum is taken inside HomR(M,N).
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2.2.3 Other Conventions/Notation

Varieties

Varieties (smooth or otherwise) are not required to be irreducible. A subvariety of

a variety X is a locally closed subset. The inclusion morphism of a subvariety Z ⊆ X

is usually denoted by iZ , unless Z = {x} is a point, in which case we write ix instead

of i{x}.

Sheaves

The support of a sheaf M is

SuppM := { x ∈ X |Mx 6= 0 } . (2.2.14)

The support of a complex M• of sheaves is

SuppM• :=
⋃
i

SuppH i(M•).

Complexes and Derived Categories

If M• is a (cochain) complex with differential diM : M i →M i+1 and k ∈ Z, define

the complex M•[k] to have ith component

M•[k]i := Mk+i

and differential

diM [k] := (−1)kdk+i
M .

The bounded derived category ofDX-modules is denoted by Db(DX). The full sub-

categories of Db(DX) generated by complexes withDX-coherent andOX-quasicoherent

cohomology are denoted by Db
c (DX) and Db

qc(DX), respectively. If Z ⊆ X is a closed

subvariety of X and ] ∈ {c, qc}, then Db,Z(DX) (respectively Db,Z
] (DX)) denotes the

full subcategory of Db(DX) (respectively Db
] (DX)) of complexes supported in Z.
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D-Modules

Given a morphism f : X → Y of smooth varieties, we write f+ for the D-module

direct image functor,

f+ = Lf ∗[dimX − dimY ] and f † = DXf+DY

for the (shifted) D-module inverse image functor and the D-module exceptional in-

verse image functor, respectively, and

f† = DY f+DX

for the D-module exceptional direct image functor.

Fourier–Laplace Transform and Ĉn

Recall from (2.2.1) that Ĉn := SpecRA with RA := C[∂1, . . . , ∂n]. We identify DĈn

with DCn via the C-algebra isomorphism

∂i 7→ ∂i and ∂∂i 7→ −xi. (2.2.15)

The Fourier–Laplace transform FL(N) of a DĈn-module N is N viewed as a

DCn-module via the isomorphism (2.2.15). This functor is an exact equivalence of

categories. Its inverse functor is called the inverse Fourier–Laplace transform.

For a description of FL in terms of D-module direct and inverse image functors,

see [19].

2.2.4 Local Cohomology

We recall the notion of local cohomology with supports in a locally closed set. As

we will only need this notion for (complexes of) modules on an affine variety, we will

only discuss local cohomology in this case. The reader is referred to [20] for more

detail.
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Let Z be a locally closed subset of an affine variety X = SpecR, and let M be an

R-module. Choose an open subset U ⊆ X which contains Z as a closed subset. Then

ΓZ(M) := ker(ΓU(M)→ ΓU\Z(M)),

independent of U . This defines a left-exact functor ΓZ taking R-modules to R-

modules. If Z ′ is another locally closed subset of X, then RΓZ′ RΓZ ∼= RΓZ′∩Z .

In particular, if Z = Y ∩ U with Y closed in X and U open in X, then

RΓU RΓY ∼= RΓZ ∼= RΓY RΓU . (2.2.16)

Now, assume that X is smooth. Then ΓZ takes DX-modules to DX-modules.

The right derived functor of ΓZ : Modqc(DX)→ Modqc(DX) agrees with the derived

functor of ΓZ : Mod(R)→ Mod(R) (here Modqc(DX) is the category of quasi-coherent

left DX-modules, and Mod(R) is the category of R-modules).

Example 2.2.1 Let M be an RA-module, F � A a face. The orbit O(F ) is the

intersection of the closed subset V (〈∂i | ai /∈ F 〉) ⊆ Ĉn and the principal open subset

U = Ĉn \ V (
∏

ai∈F ∂i). So, by (2.2.16),

RΓO(F )(M) ∼= RΓ〈∂i|ai /∈F 〉(RA[∂−F ]⊗RA M),

where ∂−F :=
∏

ai∈F ∂
−1
i . If M is in addition a graded RA-module, then RΓO(F )(M)

is a complex of graded RA-modules.

2.2.5 Euler–Koszul Complex

In this section, we recall the notion of Euler–Koszul complexes given in [21] and

prove an elementary lemma (Lemma 2.2.3) relating Euler–Koszul complexes and local

cohomology.

Define the vector

EA = [E1, . . . , Ed]
>
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whose components are the Euler operators Ei from (2.1.1). Given a Zd-graded DA-

module N and a vector β ∈ Cd, we define an action ◦ of Ei − βi on N by

(Ei − βi) ◦m := (Ei − βi + degi(m)) ·m (m 6= 0 homogeneous)

and extending by C-linearity. The maps (Ei − βi)◦ : N → N are DA-linear and

pairwise commuting.

Definition 2.2.2 ( [21, Definition 4.2]) The Euler–Koszul complex of a Zd-graded

RA-module M with respect to A and β is

KA
• (M ;EA − β) := K•

(
(EA − β)◦;DA ⊗RA M

)
;

i.e. it is the Koszul complex of left DA-modules defined by the sequence (EA − β)◦

of commuting endomorphisms on the left DA-module DA ⊗RA M . The complex is con-

centrated in homological degrees d to 0. The ith Euler–Koszul homology is HA
i (M ;EA−

β) := Hi(K
A
• (M ;EA − β)).

The inverse Fourier–Laplace transform of the complex KA
• (M ;EA − β) and the

modules HA
i (M ;EA − β) will be denoted by K̂A

• (M ;EA − β) and ĤA
i (M ;EA − β),

respectively.

A standard computation shows that for α ∈ Zd,

KA
• (M(α);EA − β) = KA

• (M ;E − A− β − α)(α). (2.2.17)

The Zd-grading on the Euler–Koszul complex will usually be ignored throughout this

article, so the twist by α on the right-hand side will usually be left out.

Lemma 2.2.3 Let M• be a bounded complex of graded RA-modules, and let β ∈ Cd.

Then for all faces F � A, there is a canonical isomorphism

RΓO(F ) K̂
A
• (M•;EA − β) ∼= K̂A

• (RΓO(F )(M
•);EA − β).

Proof Use Example 2.2.1 together with the fact that localization at a monomial of

RA commutes with K̂A
• (−;EA − β).
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2.3 Fiber Support and Local Cohomology

We now establish a relationship between fiber support, defined below, and local

cohomology. The main result of this section, Proposition 2.3.7, describes how for a

sufficiently nice bounded complex M• of D-modules (e.g. one with holonomic coho-

mology), the local cohomology of M• with supports in a subvariety Z vanishes if and

only if the fiber support of M• is disjoint from Z. We also introduce cofiber support,

which will be used later in the statement of Theorem 2.8.19.

Definition 2.3.1 Let M• ∈ Db(OX).

1. The fiber support of M•, denoted fSuppM•, is defined to be the set

fSuppM• :=
{
x ∈ X

∣∣∣ k(x)⊗L
OX,x M

•
x 6= 0

}
.

2. If M• ∈ Db
c(DX), the cofiber support of M•, denoted cofSuppM•, is defined to

be the set

cofSuppM• :=
{
x ∈ X

∣∣ i†xM• 6= 0
}

= fSuppDM•.

If M• ∈ Db(DX) has regular holonomic cohomology, then its fiber support is ex-

actly the support (recall the definition of support in (2.2.14)) of the analytic solution

complex RHomDXan ((M•)an, OXan), and its cofiber support is exactly the support of

the analytic de Rham complex ΩXan ⊗L
DXan (M•)an, where (−)an denotes analytifica-

tion.

The following two elementary lemmas are included for convenience:

Lemma 2.3.2 Let X be a smooth variety, Z a smooth subvariety, Z̄ its closure.

Then i+Z takes Db,Z̄
c (DX) to Db

c(DZ).

Proof Let M• ∈ Db
c(DX). Let U be an open subset of X containing Z in which

Z is closed. Then i+UM
• ∼= i−1

U M• is in Db
c(DX) by definition of coherence. Because

i+UM
• is supported on Z̄ ∩U = Z, Kashiwara’s Equivalence (or more specifically [22,

Corollary 1.6.2]) then tells us that the restriction of i+UM
• to Z is in Db

c(DZ). This

restriction is just i+ZM
•.
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Lemma 2.3.3 Let Y, Z be smooth subvarieties of a smooth variety X, and let iY , iZ

be their inclusions into X. If Y ∩ Z = ∅, then i+Y iZ+ = 0 and i†Y iZ† = 0 on Db
c(DZ).

Proof Let U = X \ Y , and let j : U → X be inclusion. Write i′Z for the inclusion

Z → U . Then i+Y iZ+
∼= i+Y j+i

′
Z+ = 0, where the isomorphism is because iZ = j ◦ i′Z ,

and the equality is by [22, Proposition 1.7.1(ii)]. This proves the first statement. The

second statement follows by duality.

Proposition 2.3.4 Let X be a smooth variety, and let M• ∈ Db
c(DX). Then fSuppM•

is a dense subset of SuppM•.

Proof We first show that fSuppM• ⊆ SuppM•. Let x ∈ X. If x /∈ SuppM•, then

M•
x

qi
= 0, and therefore k(x) ⊗LOX,x M

•
x vanishes. Hence, x /∈ fSuppM•, proving the

claim.

Next, let Y = SuppM• (note that this is closed by [23, Proposition 2.3]). We

show that the fiber support of M• contains an open dense subset of Y ; the result

follows. This is accomplished in two steps: First, we show that there exists a smooth

open dense subset V ⊆ Y such that i+VM
• is non-zero with OV -projective cohomology.

Second, we show that for locally projective quasi-coherent OX-modules, the support

agrees with the fiber support.

Choose a smooth dense open subset V of Y . By Lemma 2.3.2, i+VM
• ∈ Db

c(DV ),

and therefore by [22, Proposition 3.3.2], there exists a dense open subset V ′ of V such

that all cohomology modules of i+V ′M
• are OV ′-projective. Replace V with V ′.

Suppose that i+VM
• vanishes. Since V is smooth, RΓV (M•) ∼= iV+i

+
VM

•, which

by assumption is zero. So, M• ∼= RΓX\V (M•). But M• is supported in Y , so

RΓX\V (M•) ∼= RΓY ∩(X\V )(M
•) ∼= RΓY \V (M•).

Hence, M• ∼= RΓY \V (M•) and therefore, using that Y \V is closed in X, is supported

in Y \V . This contradicts the fact that V is dense in the non-empty set Y = SuppM•.

Thus, i+VM
• 6= 0, proving the first claim.
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To prove the second claim, let P be a locally projective quasi-coherentOX-module.

By [24, Tag 058Z], each stalk of P is free, hence faithfully flat. Thus, k(x)⊗LOX,x Px ∼=

k(x)⊗OX,x Px, and this vanishes if and only if Px vanishes.

Example 2.3.5 Although Proposition 2.3.4 tells us that the fiber support of a D-

module is always contained in its support, this containment is in general strict:

Consider the DC-module M = OC[x−1], where x is the coordinate function on C.

The restriction of M to C∗ is a (non-0) integrable connection, so the support and

fiber support of M both contain C∗. By [23, Proposition 2.3], SuppM is closed and

therefore equal to C. On the other hand, x acts invertibly on the stalk M0, so the

(total) fiber k(0)⊗L
OC,0

M0 = 0. Hence, fSuppM = C∗.

Corollary 2.3.6 Let X be a smooth variety, and let M• ∈ Db
c(DX). Then fSuppM•

is empty if and only if M• ∼= 0.

Proposition 2.3.7 Let X be a smooth variety, Z ⊆ X be a subvariety, and M• ∈

Db
qc(DX). If RΓZ(M•) ∼= 0, then Z ∩ fSuppM• = ∅. The converse holds if both M•

and RΓZ(M•) are in Db
c(DX) (e.g. if M• ∈ Db

h(DX)).

Proof By Kashiwara’s Equivalence, i+x
∼= i+x ix+i

+
x (on Db

qc(DX)), which in turn is

isomorphic to i+x RΓ{x}. On the other hand, if x ∈ Z, then RΓ{x}RΓZ ∼= RΓ{x}.

Combining these, we get that i+x RΓZ(M•) ∼= i+xM
• for all x ∈ Z. Hence, if RΓZ(M•)

vanishes, the same applies to i+xM
• for every x ∈ Z. This proves the first statement.

To prove the second statement, letM• ∈ Db
c(DX), and assume that Z ∩ fSuppM• = ∅.

We show that fSupp RΓZ(M•) = ∅, so that RΓZ(M•) vanishes by Corollary 2.3.6 (note

that Corollary 2.3.6 applies by the coherence assumption on RΓZ(M•)).

By the first part of this proof, if x ∈ Z, then i+x RΓZ(M•) ∼= i+xM
•, which vanishes

by assumption. To see that i+x RΓZ(M•) also vanishes for x /∈ Z, let U ⊆ X be an

open neighborhood of Z in which Z is closed, j : U → X inclusion. Then

i+x RΓZ(M•) ∼= i+x RΓU RΓZ(M•) ∼= i+x j+j
+ RΓZ(M•) ∼= i+x j+ RΓZ(M•|U). (2.3.1)

http://stacks.math.columbia.edu/tag/058Z
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There are two cases: If x /∈ U , then the right-hand side of (2.3.1) vanishes by

Lemma 2.3.3. On the other hand, suppose x ∈ U\Z. Then i+x j+
∼= (i′x)

+j+j+
∼= (i′x)

+,

where i′x : {x} → U is inclusion. Combined with (2.3.1), this gives

i+x RΓZ(M•) ∼= (i′x)
+ RΓZ(M•|U).

But Z is closed in U , so Supp RΓZ(M•|U) ⊆ Z, which by assumption doesn’t contain

x. Hence, by Corollary 2.3.6, x /∈ fSupp RΓZ(M•).

2.4 Quasidegrees

In this section we prove some lemmas on quasidegrees (Definition 2.4.1). These

lemmas will be needed later to establish quasi-isomorphisms of certain Euler–Koszul

complexes, and in Proposition 2.8.6 to establish EA as the union of certain other

related quasidegree sets. Lemma 2.4.2 provides a sufficient condition on a graded

RA-module M for there to be a face F � A such that qdegM is a union of translates

of CF . Lemma 2.4.3 states that for a finitely-generated graded SA-module M , the

quasidegree set of M has the same dimension as the support of M .

We begin by generalizing the definition of quasidegrees from that given in [8,

Definition 5.3] (which is itself a generalization of [21, Proposition 5.3], where the

notion originated).

Definition 2.4.1 The true degree set of a Zd-graded RA-module M , denoted tdegM ,

is defined to be the set of α ∈ Zd such that Mα 6= 0.

The quasidegree set of a finitely-generated Zd-graded RA-module M , denoted qdegM ,

is defined to be the Zariski closure (in Cd) of tdegM . We extend the definition of

qdeg to arbitrary Zd-graded RA-modules by

qdegM :=
⋃
M ′

qdegM ′,
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where the union is over all finitely-generated graded submodules M ′ ⊆M . If M• is a

complex of such modules, we define

qdegM• :=
⋃
i

qdegH i(M•).

Before continuing, recall from (2.2.6) and (2.2.7) that IAF = IA + 〈∂i | ai /∈ F 〉 and

∂kF =
∏

ai∈F ∂
k
i . Recall also the definitions of *-simple and *-free given in §2.2.2.

Lemma 2.4.2 Let M be a Zd-graded RA-module, F � A a face. If M is both an

RA[∂−F ]-module and IAF -torsion, then every irreducible component of qdegM is a

translate of CF . Hence,

qdegM =
{
β ∈ Cd

∣∣Mβ+CF 6= 0
}
.

Proof Consider the exhaustive filtration Mk = 0 :M (IAF )k of M (this is exhaustive

because M is IAF -torsion). Since M is an RA[∂−F ]-module, each Mk is an RA[∂−F ]-

submodule. Moreover, each factor module Mk/Mk−1 is by construction killed by IAF .

Thus, Mk/Mk−1 is an SF [∂−F ]-module for all k. But SF [∂−F ] is a *-simple ring,

so each Mk/Mk−1 is a *-free SF [∂−F ]-module. Now, every finitely generated graded

submodule of a direct sum is contained in a finite sub-sum, and the quasidegree set

of a finite direct sum is the union of the quasidegree sets of its summands; so, the

same is true for an infinite direct sum. Thus, qdeg(Mk/Mk−1) is a union of translates

of qdeg(SF [∂−F ]) = CF , proving the first claim.

For the second claim, β ∈ qdegM if and only if it is contained in an irreducible

component of qdegM . But by the first claim, every irreducible component of qdegM

is a translate of CF . The only such translate containing β is β + CF , and in the

present situation this is an irreducible component of qdegM if and only if it intersects

tdegM , i.e. if and only if Mβ+CF 6= 0.

Lemma 2.4.3 Let M be a finitely generated Zd-graded SA-module. Then

dim SuppM = dim qdegM.
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Proof Choose a filtration 0 = M0 ⊆ · · · ⊆ Ms = M of M by graded submodules

such that each Mi/Mi−1 is of the form SF (−α) for some face F � A and some α ∈ Zd

(in the terminology of [21, Definition 4.5], {Mi} is a toric filtration). Then

SuppM =
s⋃
i=1

SuppMi/Mi−1.

So, dim SuppM is equal to the maximum of the dimensions dim Supp(Mi/Mi−1).

On the other hand, each of the sets qdeg(Mi/Mi−1) is a translate of the span of

one of the finitely many faces of NA. So, the dimension of qdegM is equal to the

maximum of the dimensions dim qdeg(Mi/Mi−1).

Thus, we are reduced to the case M = SF (−α) for some F � A, α ∈ Zd. Then

qdeg(SF (−α)) = CF + α and Supp(SF (−α)) = V (IAF ). Since both of these have

dimension dF , we arrive at the result.

Lemma 2.4.4 Let M be a finitely generated graded SA-module, F � G � A. Then

a subset Z ⊆ qdegM [∂−G] is an irreducible component of qdegM [∂−G] if and only if

it is an irreducible component of qdegM [∂−F ]. In particular,

qdegM [∂−G] ⊆ qdegM [∂−F ].

Proof Let H be any face of A. Choose a filtration

0 = M0 ⊆ · · · ⊆Mr = M

of M as in Lemma 2.4.3. Write Mi/Mi−1
∼= SFi(−αi). Then {Mi[∂

−F ]} is a filtration

of M [∂−H ], and its ith factor module is isomorphic to SFi [∂
−F ](−αi), which is non-

zero if and only if Fi � H. Therefore,

qdegM [∂−H ] =
r⋃
i=1

qdeg
(
(Mi/Mi−1)[∂−H ]

)
=

r⋃
i=1

qdeg
(
SFi [∂

−H ](−αi)
)

=
⋃
Fi�H

qdeg
(
SFi [∂

−H ](−αi)
)
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=
⋃
Fi�H

[
qdeg

(
SFi [∂

−H ]
)

+ αi
]

If Fi � H, then every finitely generated submodule of SFi [∂
−H ] is contained in

SFi∂
−kH for some k, and qdeg(SFi∂

−kH) = CFi + k deg ∂H = CFi. Therefore,

qdegSFi [∂
−H ] = CFi. Hence,

qdegM [∂−H ] =
⋃
Fi�H

(CFi + αi). (2.4.1)

Set ZH := { CFi + αi | Fi � H }. Each CFi + αi is irreducible, so by (2.4.1), the

irreducible components of qdegM [∂−H ] are exactly the maximal elements of ZH . We

show that ZH is an upper subset of Z := Z∅ (recall that a subset Y of an ordered set

(X,≤) is upper if for all y ∈ Y , we have {x ∈ X | y ≤ x } ⊆ Y ). It follows that ZG
is an upper subset of ZF , and therefore that an element of ZG is maximal in ZG if

and only if it is maximal in ZF , proving the lemma.

Let CFi +αi ∈ ZH , and suppose CFj +αj contains CFi +αi. Then Fj � Fi � H,

so CFj + αj ∈ ZH . Thus, ZH is an upper subset of Z, as claimed.

Remark 2.4.5 The proofs of Lemmas 2.4.3 and 2.4.4 work also for toric RA-modules

as defined in [21, Definition 4.5]. With minor adjustments, they can even be made to

work for weakly toric modules (see [8, Definition 5.1]).

2.5 The Holonomic Dual of Euler–Koszul Complexes

The following theorem, Theorem 2.5.2, will be used in Corollary 2.5.5 to give a

first description of ϕ†OβTA , and then in the next section to describe FL(ϕ†OβTA) as an

A-hypergeometric system.

Before stating the theorem, we need a definition. Also recall from (2.2.13) that

HomRA
(M,N) denotes the graded RA-module whose degree-α component is the vec-

tor space of RA-module homomorphisms from M to N of degree α.
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Definition 2.5.1 Given a bounded complex M• of finitely generated graded RA-

modules, define

DM• := RHomRA
(M•, ωRA)[n− d],

where the shift is cohomological and ωRA := RA(−
∑

i ai).

Theorem 2.5.2 below is proved in essentially the same way as is [21, Theorem 6.3]—

no problems occur translating from statements about modules and spectral sequences

to statements in the derived category. We therefore omit the proof of Theorem 2.5.2.

Note that the reason that Theorem 2.5.2 does not need the auto-equivalence N 7→

N− as does [21, Theorem 6.3] is that we work with the inverse-Fourier–Laplace-

transformed Euler–Koszul complex, whereas [21] works with the Euler–Koszul com-

plex itself.

Recall from (2.2.2) that εA := a1 + · · ·+ an.

Theorem 2.5.2 Let M• be a bounded complex of finitely-generated graded RA-modules,

β ∈ Cd. Then

DK̂A
• (M•;EA − β) ∼= K̂A

• (DM•;EA + β).

If the Zd-grading is taken into account, the right-hand side must be twisted by −εA.

Definition 2.5.3 Define

ω•SA :=
⊕
F�A

C{NF − NA}, (2.5.1)

where the summand C{NF −NA} sits in cohomological degree dA/F , and the cobound-

ary maps are the natural projections with signs chosen appropriately (for details,

see [17, Def. 12.7] or [18, §2]). This is a complex of *-injective modules (see §2.2.2).

By [18, Theorem 3.2], ω•SA is a dualizing complex in the ungraded category; the

arguments there show that ω•SA is also a dualizing complex in the Zd-graded category.

With minor changes to its proof, [25, Theorem V.3.1] implies that ω•SA is unique (in
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the Zd-graded derived category) up to cohomological shift. Its cohomological degrees

are chosen such that HomSA
(C, ω•SA) is quasi-isomorphic to the complex C[−d]; this

choice implies that

D(−) ∼= HomSA
(−, ω•SA) (2.5.2)

and

ω•SA
∼= D(SA) (2.5.3)

in the derived category of graded SA-modules.

Remark 2.5.4 Let F � A be a face. Since ω•SA is a complex of *-injective modules,

RΓO(F )(ω
•
SA

) ∼= ΓO(F )(ω
•
SA

). By Example 2.2.1, we have

ΓO(F )(ω
•
SA

) ∼= Γ〈∂i|ai /∈F 〉(RA[∂−F ]⊗RA ω•SA).

If a face F ′ � A does not contain F , then C{NF − NA} is ∂F -torsion and there-

fore vanishes upon tensoring with RA[∂−F ]⊗RA. Then because 〈∂i | ai /∈ F 〉SA is the

homogeneous prime ideal corresponding to F , the only module C{NF ′ − NA} with

F ′ � F which is not killed by Γ〈∂i|ai /∈F 〉 is C{NF − NA}. Hence,

RΓO(F )(ω
•
SA

) ∼= C{NF − NA}[−dA/F ]. (2.5.4)

Recall that sRes(A) was defined in (1.1.2).

Corollary 2.5.5 If −β ∈ Cd \ sRes(A), then ϕ†OβTA ∼= K̂A
• (ω•SA ;EA − β).

Proof The holonomic dual of OβTA is O−βTA , and by [8, Corollary 3.7], applying ϕ+ to

this gives K̂A
• (SA;EA + β). So, by Theorem 2.5.2,

ϕ†OβTA ∼= Dϕ+DOβTA ∼= K̂A
• (DSA;EA − β).

Now use (2.5.3).
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2.6 The Exceptional Direct Image of OβTA

Reichelt proves in [9, Proposition 1.14] that FL(ϕ†OβTA) is isomorphic to a GKZ

system for homogeneous A and β ∈ Qd. We now generalize this to arbitrary A, β.

This generalization, or rather Proposition 2.6.2, will be used later in the proof of

Theorem 2.8.17.

Lemma 2.6.1 For all i ∈ N, dim qdegH i(ω•SA) ≤ d− i.

Proof By definition, ωiSA is the direct sum of C{NF−NA} for faces F with dA/F = i.

Each C{NF −NA} has support equal to V (IAF ), which has dimension dF = d− i. So,

dim SuppωiSA = d − i. Hence, because H i(ω•SA) is a subquotient of ωiSA , its support

must have dimension at most d− i. Now apply Lemma 2.4.3.

Proposition 2.6.2 Let β ∈ Cd. Then for all k � 0,

ϕ†OβTA ∼= K̂A
• (SA;EA − β + kεA).

Proof First, notice that by [8, Corollaries 3.1 and 3.7], −β + kεA /∈ sRes(A) for all

k � 0. Also notice that OβTA ∼= O
β′

TA
for all β′ ≡ β (mod Zd). Hence, in light of

Corollary 2.5.5, we may replace β with β − kεA to assume that −β /∈ sRes(A).

Step 1: We show that β − kεA /∈ qdeg cone(H0(ω•SA)→ ω•SA) for all k � 0. Then,

applying [8, Theorem 5.4(3)] along with a basic spectral sequence argument, it follows

that K̂A
• (−;EA − β + kεA) applied to the morphism H0(ω•SA) → ω•SA is a quasi-

isomorphism for all k � 0.

By Lemma 2.6.1, the union
⋃
i>0 qdegH i(ω•SA) has codimension at least 1, and

because each cohomology module of ω•SA is finitely generated, this union has finitely

many irreducible components. Therefore, since εA is in the relative interior of NA,

we see that β − kεA /∈
⋃
i>0 qdegH i(ω•SA) for all k � 0. But the ith cohomology

of cone(H0(ω•SA) → ω•SA) is 0 if i ≤ 0 and is H i(ω•SA) if i > 0. Hence, β − kεA /∈

cone(H0(ω•SA)→ ω•SA) for all k � 0, as promised.
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Step 2: We construct a quasi-isomorphism

K̂A
• (SA;EA − β + kεA)

qi−→ K̂A
• (H0(ω•SA);EA − β + kεA)

for k � 0. Let 0 6= m ∈ H0(ω•SA) be homogeneous. Since H0(ω•SA) ⊆ C[Zd] and is

non-zero (it contains m), the zero ideal is one of its associated primes (in fact the only

one). Therefore, H0(ω•SA) must contain a twist of SA; in particular, it must contain

k0εA for some k0 ∈ N. Hence, m may be chosen to have degree k0εA.

Now, consider the quotient H0(ω•SA)/SAm. The quasidegree set of this quotient

has codimension at least 1, so as before, β−kεA /∈ qdeg(H0(ω•SA)/SAm) for all k � 0.

Hence, the morphism

K̂A
• (SA(−k0εA);EA − β + kεA)→ K̂A

• (H0(ω•SA);EA − β + kεA)

induced by right-multiplication by m is a quasi-isomorphism for k � 0. Applying

(2.2.17) gives the result.

The promised generalization is given by the following corollary:

Corollary 2.6.3 Let β ∈ Cd. Then for all k � 0,

FL(ϕ†OβTA) ∼= MA(β − kεA).

Proof By Proposition 2.6.2, it suffices to show that ϕ†OβTA has cohomology only in

degree 0. The holonomic dual of ϕ†OβTA is ϕ+O−βTA , which by [8, Proposition 2.1] has

cohomology only in degree 0. Then because D is exact, the same applies to ϕ†OβTA .

2.7 Restricting Euler–Koszul Complexes to Orbits

We now compute the restriction and exceptional restriction to an orbit (as defined

in (2.2.4)) of an (inverse Fourier–transformed) Euler–Koszul complex in terms of local

cohomology and localizations, respectively. Recall from §2.2.2 that a *-injective SA-

module is an injective object in the category of Zd-graded SA-modules, and every

indecomposable *-injective SA-module is a Zd-graded twist of C{NF −NA} for some

face F � A.



26

Proposition 2.7.1 Let J• be a bounded below complex of *-injective SA-modules,

β ∈ Cd, and F � A. Assume that each J i is a direct sum of twists of C{NF − NA}.

Then there exists a quasi-isomorphism of double complexes2

{K−p(Jq;EA − β)} qi
=

 ⊕
λ+ZF∈CF/ZF

K−p(SF [∂−F ];EA − λ)⊗C Jqβ−λ

 .

Proof Consider the subcomplexes of J• given by M• = SA[∂−F ]J•β+CF and M ′• =

〈∂i | ai /∈ F 〉M• (note that J• is a complex of SA[∂−F ]-modules, so M• is in fact a

subcomplex of J•). We claim for all q that β /∈ qdeg(M ′q) and β /∈ qdeg(Jq/M q). To

see this, notice that the intersections of β+CF with tdeg(M ′q) and with tdeg(Jq/M q)

are both empty by construction. But both M ′q and Jq/M q are IAF -torsion (because

Jq is). Hence, by Lemma 2.4.2, β is a quasidegree of neither, proving the claim.

From the claim, we get that for all q, the morphisms

K•(M
q;EA − β)→ K•(J

q;EA − β)

and

K•(M
q;EA − β)→ K•(M

q/M ′q;EA − β)

are both quasi-isomorphisms, and therefore we get a quasi-isomorphism of double

complexes

{K−p(Jq;EA − β)} qi
= {K−p(M q/M ′q;EA − β)}. (2.7.1)

Next, notice that M•/M ′• is a complex of graded modules over C[ZF ] (which we

identify with SF [∂−F ]). So, since C[ZF ] is a *-simple ring, each M q/M ′q is a direct

sum of Zd-graded twists of C[ZF ]. Therefore, by gradedness,

M•/M ′• =
⊕

α+ZF∈Zd/ZF

(M•/M ′•)α ⊗C C[ZF ](−α). (2.7.2)

2By a quasi-isomorphism of double complexes between M•• and M ′••, we mean a pair of morphisms

M••
f←−− N••

g−→M ′••

such that Tot(f) and Tot(g) are quasi-isomorphisms of complexes.
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Now, as complexes of vector spaces, (M•/M ′•)α is isomorphic to J•α if α ∈ β + CF

and is zero otherwise. So, combining this with eqs. (2.7.1) and (2.7.2), we get

{K−p(Jq;EA − β)} qi
=


⊕

α+ZF∈Zd/ZF
α∈β+CF

K−p(C[ZF ](−α)⊗C Jqα;EA − β)


=


⊕

α+ZF∈Zd/ZF
α∈β+CF

K−p(C[ZF ](−α);EA − β)⊗C Jqα

 . (2.7.3)

But K•(C[ZF ](−α);EA − β) = K•(C[ZF ];EA − β + α). So, re-indexing the sum, we

are done.

Let M• be a bounded complex of Zd-graded SA-modules, let β ∈ Cd, and let

F � A be a face. For λ ∈ CF , we give RΓO(F )(M
•)β−λ+ZF the structure of a complex

of DTF -modules as follows: Let m be a homogeneous element of H i
O(F )(SA)β−λ+ZF for

some i. Recalling the definition of ϑu from (2.2.8), we set

ϑu ·m := 〈deg(m)− β, u〉m (u ∈ (CF )∗). (2.7.4)

Observing that (2.7.4) makes no reference to λ, we get an isomorphism⊕
λ+ZF∈CF/ZF

RΓO(F )(M
•)β−λ+ZF ∼= RΓO(F )(M

•)β+CF . (2.7.5)

In the theorem below, we use the convention that
∧
Ck lives in cohomological

degrees −k through 0.

Theorem 2.7.2 Let M• be a bounded complex of Zd-graded SA-modules, β ∈ Cd.

Then for all faces F � A,

i+O(F )K̂•(M
•;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗C RΓO(F )(M
•)β−λ ⊗C

∧
CdA/F .

This isomorphism is functorial in M•.

An equivalent presentation, absorbing the OλTF into the local cohomology, is

i+O(F )K̂•(M
•;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

RΓO(F )(M
•)β−λ+ZF ⊗C

∧
CdA/F .
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This can be further compacted using (2.7.5) to give

i+O(F )K̂•(M
•;EA − β) ∼= RΓO(F )(M

•)β+CF ⊗C
∧
CdA/F . (2.7.6)

Proof Let J• be a (bounded below) *-injective SA-module resolution of M•. Then

RΓO(F )(M
•) ∼= ΓO(F )(J

•), which is a complex of *-injective SA-modules each of which

is either 0 or has IAF as its only associated prime; that is, each ΓO(F )(J
i) is a direct sum

of twists of C{NF − NA}. Thus, noting that i+O(F )
∼= i+O(F ) RΓO(F ), Proposition 2.7.1

and Lemma 2.2.3 give

i+O(F )K̂•(M
•;EA − β) ∼= i+O(F )K̂•(RΓO(F )(M

•);EA − β)

∼=
⊕

λ+ZF∈CF/ZF

i+O(F )K̂•(SF [∂−F ];EA − λ)⊗C RΓO(F )(M
•)β−λ.

(2.7.7)

But for λ ∈ CF ,

i+O(F )K̂•(SF [∂−F ];EA − λ) ∼= i+O(F )K̂
F
• (SF [∂−F ];EF − λ)⊗C

∧
CdA/F . (2.7.8)

Now by [8, Prop. 2.1], K̂F
• (SF [∂−F ];EF−λ) is isomorphic to the direct image ϕF+OλTF ,

where ϕF is the torus embedding of TF into V (∂i | ai /∈ F ). Then because i+O(F )ϕF+
∼=

id, we get that

i+O(F )K̂•(SF [∂−F ];EA − λ) ∼= OλTF .

Combining this with (2.7.7) and (2.7.8) gives the result.

Before stating Theorem 2.7.4, we recall the notion of (Zd-graded) Matlis duality:

Definition 2.7.3 Let Q be an affine semigroup. The Matlis dual of the graded C[Q]-

module M is the graded C[Q]-module M∨ := HomC(M,C).

Theorem 2.7.4 Let β ∈ Cd, and let M be a finitely generated graded SA-module.

Then for all faces F � A,

i†O(F )K̂
A
• (M ;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗CM [∂−F ]β−λ ⊗C
∧
CdA/F .
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This isomorphism is functorial in M .

As in Theorem 2.7.2, this isomorphism may also be written as

i†O(F )K̂
A
• (M ;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

M [∂−F ]β−λ+ZF ⊗C
∧
CdA/F

and as

i†O(F )K̂
A
• (M ;EA − β) ∼= M [∂−F ]β+CF ⊗C

∧
CdA/F .

Proof By Theorems 2.5.2 and 2.7.2,

i+O(F )DK̂
A
• (M ;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗C RΓO(F )(DM)−β−λ ⊗C
∧
CdA/F .

Dualizing, we get

i†O(F )K̂
A
• (M ;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

O−λTF ⊗C [RΓO(F )(DM)−β−λ]
∗ ⊗C

∧
CdA/F [−dA/F ]

∼=
⊕

λ+ZF∈CF/ZF

O−λTF ⊗C [RΓO(F )(DM)∨]β+λ ⊗C
∧
CdA/F [−dA/F ]

∼=
⊕

λ+ZF∈CF/ZF

OλTF ⊗C [RΓO(F )(DM)∨]β−λ ⊗C
∧
CdA/F [−dA/F ],

where (−)∗ is the vector space duality functor. In the notation of Example 2.2.1, we

have

RΓO(F )(DM) ∼= RΓ〈∂i|ai /∈F 〉
(
D(M)[∂−F ]

)
.

So, by (2.5.2) and because M is finitely generated, we get

RΓO(F )(DM) ∼= RΓ〈∂i|ai /∈F 〉(SA)⊗L
SA

RHomSA
(M,ω•SA)[∂−F ]

∼= RΓ〈∂i|ai /∈F 〉(SA)⊗L
SA

RHomSA

(
M,ω•SA [∂−F ]

)
∼= RHomSA[∂−F ]

(
M [∂−F ],RΓ〈∂i|ai /∈F 〉(SA)⊗L

SA
ω•SA [∂−F ]

)
∼= RHomSA[∂−F ]

(
M [∂−F ],RΓ〈∂i|ai /∈F 〉

(
ω•SA [∂−F ]

))
∼= RHomSA[∂−F ]

(
M [∂−F ],RΓO(F )(ω

•
SA

)
)

∼= HomSA[∂−F ]

(
M [∂−F ],ΓO(F )(ω

•
SA

)
)
.
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But ΓO(F )(ω
•
SA

) ∼= C{NF − NA}[−dA/F ] by (2.5.4), and C{NF − NA} ∼= SA[∂−F ]∨.

So, applying [17, Lem. 11.16], we see that

RΓO(F )(DM)∨ ∼= (M [∂−F ]∨[−dA/F ])∨ ∼= M [∂−F ][dA/F ].

Therefore,

i†O(F )K̂
A
• (M ;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗CM [∂−F ]β−λ ⊗C
∧
CdA/F ,

as hoped.

2.8 A-Hypergeometric Systems via Direct Images

In subsection 2.8.1, we introduce the notion of strongly (A,F )-exceptional quaside-

grees and prove some related lemmas. In subsection 2.8.2, we study an effect of con-

tiguity on Euler–Koszul complexes. We then state and prove the main theorems,

Theorems 2.8.17 and 2.8.19, in subsection 2.8.3.

Given an open subset U ⊆ Ĉn containing (the image of) TA, consider the inclusion

maps in the commutative diagram below:

(C∗)n

TA Ĉn

U

$

jU

ι

ιU $U

The morphisms ι and ιU are the torus embedding ϕ with codomain restricted to (C∗)n

and U , respectively. The remaining morphisms are the inclusions.

Lemma 2.8.1 With notation as above, there are, for every M• ∈ Db
c(DTA), natural

isomorphisms $U+ιU†M
• ∼= RΓU ϕ†M

• and $U†ιU+M
• ∼= $U†$

−1
U ϕ+M

•.

Proof The map jU is an affine open immersion, so jU+
∼= RjU∗ ∼= jU∗. Now, for any

open subset V ⊆ U and any sheaf F on (C∗)n, one has

Γ(V,$∗U$∗F ) = Γ(V,$∗F ) = Γ(V ∩ (C∗)n, F ) = Γ(V, jU∗F ),
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so jU∗ = $∗U$∗, which is isomorphic to $+
U$+ because $U is an open immersion and

$ is an affine open immersion. So, jU+
∼= $+

U$+. Therefore,

ιU† = DU ιU+DTA ∼= DUjU+ι+DTA ∼= DU$+
U$+ι+DTA ∼= $+

UDĈn$+ι+DTA .

Since DĈn$+ι+DTA ∼= ϕ† and $U+$
+
U
∼= RΓU , we get the first isomorphism. The

second isomorphism follows via duality.

2.8.1 Exceptional and Strongly Exceptional Quasidegrees

In this section we introduce the notion of strongly (A,F )-exceptional quasidegrees

for F � A. These are then related in Proposition 2.8.6 to the set

EA :=
⋃
i>0

qdegH i(ω•SA)

of A-exceptional quasidegrees. In Lemma 2.8.8, we prove that K̂A
• (SA;EA − β) has

relatively open fiber support if β /∈ EA.

Definition 2.8.2 Given a face F , we define the set of strongly (A,F )-exceptional

quasidegrees to be

E strong
A,F :=

⋃
i<dA/F

qdegH i
O(F )(SA).

When F = ∅, this is just the set of strongly A-exceptional quasidegrees defined in [26,

Definition 2.9]. More generally, if M is a graded RA-modules, we define the set of

strongly (A,F )-exceptional quasidegrees for M to be

E strong
A,F (M) :=

⋃
i<dA/F

qdegH i
O(F )(M).

Remark 2.8.3 From Example 2.2.1, we know that

H i
O(F )(SA) ∼= H i

〈∂i|ai /∈F 〉(SA[∂−F ]).

The ideal 〈∂i | ai /∈ F 〉SA[∂−F ] is the maximal homogeneous ideal of SA[∂−F ], so

E strong
A,F = ∅ if and only if the affine semigroup ring SA[∂−F ] is Cohen–Macaulay.
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Example 2.8.4 If d ≤ 2, then the localization SA[∂−F ] is Cohen–Macaulay for all

faces F 6= ∅. Therefore, E strong
A,F = ∅ for all faces F 6= ∅.

Example 2.8.5 Let

A =


1 0 1 0 0

0 1 0 1 0

0 0 1 1 2

 .
The semigroup NA is equal to N3\{ (0, 0, c) | c is odd }. Let F � A be a face. If F = A

or CF does not contain the z-axis, then the semigroup ring SA[∂−F ] is normal, hence

Cohen–Macaulay, and therefore E strong
A,F = ∅ by Remark 2.8.3. If CF equals the z-axis,

then H0
O(F )(SA) is zero, so E strong

A,F = qdegH1
O(F )(SA) = CF . If F = ∅, then H i

O(F )(SA)

is zero if i = 0 or 1, so E strong
A,F = qdegH2

O(F )(SA) = { (0, 0, c) | c ∈ Z<0 and c is odd }.

Proposition 2.8.6 EA =
⋃
F�A

E strong
A,F .

Proof It suffices to show that

qdegH>0(ω•SA) =
⋃
F�A

{
β ∈ Cd

∣∣∣ H>0(ω•SA[∂−F ])β+CF 6= 0
}
.

(⊆) Let Z = CF + β be an irreducible component of qdegH>0(ω•SA). Then by

Lemma 2.4.4, Z is also an irreducible component of qdegH>0(ω•SA)[∂−F ], and there-

fore H>0(ω•SA)[∂−F ]β+CF 6= 0. Now use that

H>0(ω•SA)[∂−F ] ∼= H>0(ω•SA[∂−F ]). (2.8.1)

(⊇) Suppose H>0(ω•SA[∂−F ])β+CF 6= 0. Then by (2.8.1) and Lemma 2.4.4, the irre-

ducible component of qdegH>0(ω•SA[∂−F ]) containing β is also an irreducible compo-

nent of qdegH>0(ω•SA).

The proof of Lemma 2.8.8 requires the Ishida complex of an affine semigroup ring,

which we now recall.
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Definition 2.8.7 Let Q be an affine semigroup, π := R≥0Q its cone. The Ishida

complex of C[Q] is the complex

0•C[Q] :=
⊕

σ a face of π

C[Q]σ, (2.8.2)

where C[Q]σ sits in cohomological degree dim(σ) − dim(π ∩ −π) and denotes the

localization of C[Q] with respect to the multiplicative system { tα | α ∈ σ ∩Q }. The

coboundary maps are the natural localization maps with signs chosen appropriately

(for details, see [17, Def. 13.21] or [18, §2]).

Lemma 2.8.8 If β /∈ EA, then fSupp K̂A
• (SA;EA − β) is open in XA.

Proof By Theorem 2.7.2, the orbit-cone correspondence, and Proposition 2.8.6, it

suffices to prove the following: For all faces F � G � A,

qdegH
dA/F
O(F ) (SA) ⊆ qdegH

dA/F
O(G) (SA).

To prove this, consider the short exact sequence of complexes

0→ 0•SA[∂−F ][dG/F ]→ 0•SA[∂−G] → C• → 0, (2.8.3)

where the first two complexes are the Ishida complexes of SA[∂−F ] and SA[∂−G], re-

spectively, the first map is the natural inclusion, and the third complex is the cokernel.

Since the Ishida complex of SF [∂−F ] represents RΓO(F )(SA[∂−F ]) = RΓO(F )(SA) (and

similarly for G), the long exact sequence in cohomology gives an exact sequence

H
dA/F
O(F ) (SA[∂−F ])→ H

dA/G
O(G) (SA[∂−G])→ HdA/G(C•)→ 0.

But the first two complexes in (2.8.3) are both equal to SA[∂−A] in cohomological

degree dA/G, so HdA/G(C•) = 0. Now use that if M is a graded quotient of a graded

module N , then qdegM ⊆ qdegN .

2.8.2 Contiguity

In this subsection we discuss how right multiplication by a monomial of RA (a

“contiguity” operator) affects the restrictions and exceptional restrictions, respec-

tively, of an Euler–Koszul complex to orbits.
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Lemma 2.8.9 Let F � A be a face, and let M be a finitely-generated Zd-graded

SA-submodule of C[Zd]. Let β ∈ Cd and α ∈ NA. Assume that β, β−α /∈ E strong
A,F (M).

Then the following are equivalent:

(a) The morphism i+O(F )K̂
A
• (M ;EA − β + α) → i+O(F )K̂

A
• (M ;EA − β) induced by

right-multiplication by ∂α is an isomorphism.

(b) For all λ ∈ CF ,

RΓO(F )(M)β−α−λ 6= 0 if and only if RΓO(F )(M)β−λ 6= 0.

Proof By Theorem 2.7.2 and because neither β nor β − α are strongly (A,F )-

exceptional for M , it suffices to show that the morphism fλ : H
dA/F
O(F ) (M(−α))β−λ →

H
dA/F
O(F ) (M)β−λ induced by multiplication by ∂α is an isomorphism for all λ ∈ CF if

and only if (b).

The “only if” direction is immediate. For the “if” direction, the long exact se-

quence of local cohomology gives an exact sequence

H
dA/F
O(F ) (M(−α))β−λ

fλ−→ H
dA/F
O(F ) (M)β−λ → H

dA/F
O(F ) (M/∂αM)β−λ → 0.

But dim(M/∂αM) < dA/F because M is finitely generated and ∂α is M -regular. So,

H
dA/F
O(F ) (M/∂αM)β−λ = 0, and therefore fλ is always surjective. Moreover, because

the Hilbert function of H
dA/F
O(F ) (M) takes values in {0, 1}, the hypothesis (b) implies

that both the domain and codomain of fλ have dimension 1. Therefore, fλ is an

isomorphism for all λ.

Lemma 2.8.10 Let F � A be a face, and let M be a finitely-generated Zd-graded

SA-submodule of C[Zd]. The following are equivalent for β ∈ Cd and α ∈ NA:

(a) The morphism i†O(F )K̂
A
• (M ;EA − β) → i†O(F )K̂

A
• (M ;EA − β − α) induced by

right-multiplication by ∂α is an isomorphism.

(b) For all λ ∈ CF ,

M [∂−F ]β−λ 6= 0 if and only if M [∂−F ]β+α−λ 6= 0.
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Proof By Theorem 2.7.4, it suffices to show that, as with Lemma 2.8.9, the mor-

phism fλ : M [∂−F ]β−λ → M(α)[∂−F ]β−λ induced by multiplication by ∂α is an iso-

morphism for all λ ∈ CF if and only if (b).

As before, the “only if” direction is immediate. For the “if” direction, ∂α is

M - (and therefore M [∂−F ]-) regular, so fλ is always injective. Now proceed as in

Lemma 2.8.9 using the fact that the Hilbert function of M [∂−F ] takes values in {0, 1}.

2.8.3 Main Theorems

Definition 2.8.11 Given a face F and a parameter β ∈ Cd, define the sets

E∗F (β) :=
{
λ ∈ CF/ZF

∣∣ RΓO(F )(SA)β−λ 6= 0
}

and

EF (β) :=
{
λ ∈ CF/ZF

∣∣ SA[∂−F ]β−λ 6= 0
}
.

Because SA[∂−F ] ∼= C{NA − NF}, the second set is the set EF (β) defined by Saito

in [27].

Remark 2.8.12 The definitions of EF (β) and E∗F (β) along with Theorems 2.7.2

and 2.7.4 show that for all β ∈ Cd,

fSupp K̂A
• (SA;EA − β) =

⊔
E∗F (β)6=∅

O(F )

and

cofSupp K̂A
• (SA;EA − β) =

⊔
EF (β)6=∅

O(F ).

Remark 2.8.13 Let β ∈ Cd and F � A. Suppose λ+ ZF ∈ EF (β), so that β − λ ∈

NA−NF . Then H i
O(F )(SA)β−λ is isomorphic to the reduced cohomology H̃ i(P ;C) of

a (nonempty) convex polytope P (cf. [17, Rmk. 13.25 and Cor. 13.26]). As convex

polytopes are contractible, this cohomology vanishes, and therefore λ + ZF /∈ E∗F (β).

In other words,

EF (β) ∩ E∗F (β) = ∅.
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Before continuing, we state a small lemma about E∗F (β) and EF (β). Parts (a)

and (b) follow from Lemma 2.8.9 and Lemma 2.8.10, respectively. Note that (b) is

also [27, Prop. 2.2 (5)].

Lemma 2.8.14 Let β ∈ Cd and α ∈ NA.

(a) If β, β − α /∈ E strong
A,F , then E∗F (β) ⊆ E∗F (β − α).

(b) EF (β) ⊆ EF (β + α).

Definition 2.8.15 1. A parameter β ∈ Cd is mixed Gauss–Manin along the face

F � A if either EF (β) = ∅ or there exists a β′ ∈ Cd \ sRes(A) with β − β′ ∈ Zd

such that EF (β) = EF (β′). A parameter β ∈ Cd is mixed Gauss–Manin if it is

mixed Gauss–Manin along every face.

2. A parameter β ∈ Cd is dual mixed Gauss–Manin along the face F � A if

β /∈ EA and if either E∗F (β) = ∅ or there exists a −β′ ∈ Cd \ sRes(A) with

β − β′ ∈ Zd such that E∗F (β) = −EF (−β′). A parameter β ∈ Cd is dual mixed

Gauss–Manin if it is dual mixed Gauss–Manin along every face.

Remark 2.8.16 The proof of Lemma 2.8.9 shows that, at least if E strong
A,F = ∅, the

condition of being dual mixed Gauss–Manin along F is partially stable in the following

sense: If β is dual mixed Gauss–Manin along F with E∗F (β) 6= ∅, then β−α is also dual

mixed Gauss–Manin along F for every α ∈ NA. Similarly, the proof of Lemma 2.8.10

shows that if β is mixed Gauss–Manin along F with EF (β) 6= ∅, then β + α is also

mixed Gauss–Manin along F for every α ∈ NA.

Before stating Theorems 2.8.17 and 2.8.19, we recall the following notation and

definitions:

• fSupp and cofSupp denote fiber support and cofiber support, respectively, and

were defined in (2.3.1).

• Ĉn := SpecC[∂1, . . . , ∂n].



37

• For an open subset U ⊆ Ĉn containing TA, the embeddings TA ↪→ U and

U ↪→ Ĉn are denoted by ιU and $U , respectively—these were discussed at the

start of §2.8.

Theorem 2.8.17 The following are equivalent for β ∈ Cd:

(a) β is dual mixed Gauss–Manin.

(b) KA
• (SA;EA − β)

qi
= FL($U+ιU†OβTA) for some open subset U ⊆ Ĉn containing

TA.

(c) KA
• (SA;EA − β)

qi
= FL($U+ιU†OβTA) for any open subset U ⊆ Ĉn satisfying

U ∩XA = fSupp K̂A
• (SA;EA − β).

Proof ((b) =⇒ (a)) Let F � A be a face. If O(F ) is not contained in (hence

is disjoint from) U , then by Lemma 2.3.3, the restriction to O(F ) of $U+ιU†OβTA
vanishes. Therefore, by the hypothesis, the same applies to the restriction to O(F ) of

K̂A
• (SA;EA−β). Hence, (2.7.6) from Theorem 2.7.2 implies that RΓO(F )(SA)β+CF = 0.

In particular, β /∈ E strong
A,F and E∗F (β) = ∅.

Next, suppose O(F ) ⊆ U . By Proposition 2.6.2, there exists a β′, which may

be chosen such that −β′ is not strongly resonant (cf. [8, the discussion preceding

Cor. 3.9]), with β − β′ ∈ NA and such that ϕ†OβTA is isomorphic to K̂A
• (SA;EA− β′).

We fix such a β′. By Theorem 2.7.2,

i+O(F )K̂
A
• (SA;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗C RΓO(F )(SA)β−λ ⊗C
∧
CdA/F , (2.8.4)

By Theorem 2.7.2 together with Lemma 2.8.1,

i+O(F )$U+ιU†OβTA ∼= i+O(F ) RΓU(ϕ†OβTA)

∼= i+O(F )ϕ†O
β
TA

∼= i+O(F )K̂
A
• (SA;EA − β′)

∼=
⊕

λ+ZF∈CF/ZF

OλTF ⊗C RΓO(F )(ω
•
SA

)β′−λ ⊗C
∧
CdA/F . (2.8.5)
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The left hand sides of (2.8.4) and (2.8.5) are quasi-isomorphic by hypothesis. Hence,

the same is true of the right hand sides of (2.8.4) and (2.8.5)—call this isomor-

phism ψ. Now, the modules OλTA are simple of different weights, and the differ-

entials of
∧
CdA/F are all 0. Therefore, ψ induces a quasi-isomorphism between

RΓO(F )(SA)β−λ and RΓO(F )(ω
•
SA

)β′−λ for all λ ∈ CF . But by (2.5.4), we know that

RΓO(F )(ω
•
SA

) ∼= C{NF − NA}[−dA/F ]. Hence, RΓO(F )(SA)β−λ can have cohomology

only in cohomological degree dA/F and is nonzero if and only if λ+ZF ∈ −EF (−β′).

Thus, β is not strongly (A,F )-resonant, and E∗F (β) = −EF (−β′). Now use Proposi-

tion 2.8.6 and Definition 2.8.15.

((a) =⇒ (c)) Let β′ be as above. Consider the morphism

η = ·∂β−β′ : K̂A
• (SA;EA − β′)→ K̂A

• (SA;EA − β).

Let U be an open subset of Ĉn with U∩XA = fSupp K̂A
• (SA;EA−β); such a U exists by

Lemma 2.8.8. Then RΓĈn\U K̂
A
• (SA;EA − β) vanishes by Proposition 2.3.7. So, from

the distinguished triangle relating RΓU and RΓĈn\U , we get that RΓU K̂
A
• (SA;EA −

β) is isomorphic to K̂A
• (SA;EA − β). Thus, it remains to show that RΓU(η) is an

isomorphism.

Now, RΓU(η) is an isomorphism if and only if its cone vanishes, and cones commute

with RΓU , so we need to show that RΓU(cone η) = 0. By Proposition 2.3.7, this is

true if and only if the fiber support of cone η is disjoint from U . So, we just need to

show that i+O(F ) cone η = 0 for all O(F ) ⊆ U . Pulling out the cone, we just need to

show that cone(i+O(F )η) = 0 for all O(F ) ⊆ U , i.e. that i+O(F )η is an isomorphism for

all O(F ) ⊆ U . This is true by Lemma 2.8.9.

((c) =⇒ (b)) Immediate.

Remark 2.8.18 Let β ∈ Cd with ϕ†OTA ∼= K̂A
• (SA;EA − β). Then the proof of

(a =⇒ b) in Theorem 2.8.17 shows that β /∈ EA, and E∗F (β) = −EF (−β) for all

F � A.

Theorem 2.8.19 The following are equivalent for β ∈ Cd:
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(a) β is mixed Gauss–Manin.

(b) KA
• (SA;EA − β)

qi
= FL($U†ιU+OβTA) for some open subset U ⊆ Ĉn containing

TA.

(c) KA
• (SA;EA − β)

qi
= FL($U†ιU+OβTA) for any open subset U ⊆ Ĉn satisfying

U ∩XA = cofSupp K̂A
• (SA;EA − β).

Proof ((b) =⇒ (a)) Let F � A be a face. If O(F ) is not contained in (hence disjoint

from) U , then i†O(F )$U†ι
+
UO

β
TA

= 0 by Lemma 2.3.3. So, EF (β) = ∅ by the hypothesis

and Theorem 2.7.4.

Next, suppose O(F ) is contained in U . Choose a β′ ∈ β+Zd which is not strongly

resonant. Then by Theorem 2.7.4,

i†O(F )K̂
A
• (SA;EA − β) ∼=

⊕
λ+ZF∈CF/ZF

OλTF ⊗C SA[∂−F ]β−λ ⊗C
∧
CdA/F , (2.8.6)

and by Theorem 2.7.4 together with [8, Cor. 3.7] and Lemma 2.8.1,

i†O(F )$U†ιU+OβTA ∼= i†O(F )$U†$
−1
U ϕ+OβTA

∼= i†O(F )ϕ+OβTA
∼= i†O(F )K̂

A
• (SA;EA − β′)

∼=
⊕

λ+ZF∈CF/ZF

OλTF ⊗C SA[∂−F ]β′−λ ⊗C
∧
CdA/F . (2.8.7)

The left hand sides of (2.8.6) and (2.8.7) are isomorphic by hypothesis. Hence, the

same is true of the right hand sides—call this isomorphism ψ. As in the proof of

Theorem 2.8.17, the modules OλTA are simple of different weights, and the differentials

of
∧
CdA/F are all 0. Therefore, ψ induces an isomorphism between SA[∂−F ]β−λ and

SA[∂−F ]β′−λ. Now use the definition of EF .

((a) =⇒ (c)) Let β′ be as above. Consider the morphism

η = ·∂β′−β : K̂A
• (SA;EA − β′)→ K̂A

• (SA;EA − β).

Let U be a Zariski open subset of Ĉn with U ∩XA = cofSupp K̂A
• (SA;EA − β); such

a U exists by [27, Prop. 2.2 (4)] and the orbit-cone correspondence. Now use the
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same argument as in the proof of Theorem 2.8.17 with DK̂A
• (SA;EA − β), Dη, and

Lemma 2.8.10 in place of K̂A
• (SA;EA − β), η, and Lemma 2.8.9, respectively.

((c) =⇒ (b)) Immediate.

The following example shows that in general, not every β is mixed or dual mixed

Gauss–Manin even if SA is Cohen–Macaulay.

Example 2.8.20 Let

A =

1 1 0

0 1 2

 .
The associated semigroup ring SA is Cohen–Macaulay but not normal. For simplicity,

we only discuss β ∈ Z2. There are 8 isomorphism classes—these are pictured in

Figure 2.1 and were computed using [27, Th. 2.1] together with direct calculation (note

that although [27] assumes homogeneity, [28, Th. 3.4.4] shows that this assumption

may be removed). Of these, only the first four (numbered from left to right then top

to bottom) are mixed Gauss–Manin, and only these first four are dual mixed Gauss–

Manin. The fiber supports of the 8 classes are, in order,

O(A), O(A) ∪O([a3]), O(A) ∪O([a1]), XA,

O(A) ∪O([a3]), O(A) ∪O([a3]), XA, XA.

The cofiber supports of the 8 classes are, in order,

XA, O(A) ∪O([a1]), O(A) ∪O([a3]), O(A)

O(A) ∪O([a1]) ∪O([a3]), O(A) ∪O([a1]) ∪O([a3])

O(A) ∪O([a3]), O(A) ∪O([a3]).

The fiber supports were computed using Macaulay2 ( [29]) by restricting the various

modules M̂A(β) to the various distinguished points 1F and asking whether or not the

result vanished. To compute the cofiber supports, we implemented [28, Algorithms

3.4.2 and 3.4.3] in Macaulay2.
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Figure 2.1. The eight integral isomorphism classes from Example 2.8.20.
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2.9 Normal Case

In this section, we prove (Theorem 2.9.3) that if SA is normal, then every pa-

rameter β is both mixed Gauss–Manin and dual mixed Gauss–Manin. Lemma 2.9.1

provides an explicit description of the fiber and cofiber supports of M̂A(β) and com-

putes the restrictions of M̂A(β) to the various orbits. In a future paper, we will apply

Theorem 2.9.3 to compute for such A the projection and restriction of MA(β) to co-

ordinate subspaces of the form CF , where F is a face of A; and, if A is in addition

homogeneous, to show that the holonomic dual of MA(β) is itself A-hypergeometric.

Recall that for a facet G � NA, there is a unique linear form hG : Zd → Z, called

the primitive integral support function of G, satisfying the following conditions:

1. hG(Zd) = Z.

2. hG(ai) ≥ 0 for all i.

3. hG(ai) = 0 for all ai ∈ G.

Lemma 2.9.1 Assume SA is normal. Let β ∈ Cd and F � A.

(a) i+O(F )M̂A(β) is either zero or isomorphic to OλTF ⊗C
∧
CdA/F [−dA/F ] for some

(equiv. any) λ ∈ CF with β − λ ∈ Zd.

(b) i†O(F )M̂A(β) is either zero or isomorphic to OλTF ⊗C
∧
CdA/F for some (equiv.

any) λ ∈ CF with β − λ ∈ Zd.

(c) O(F ) ⊆ fSupp M̂A(β) if and only if (β + CF ) ∩ Zd 6= ∅ and hG(β) ∈ Z<0 for

every facet G � F .

(d) O(F ) ⊆ cofSupp M̂A(β) if and only if (β + CF ) ∩ Zd 6= ∅ and hG(β) ∈ N for

every facet G � F .

Proof Before proving the statements, notice that because SA is normal, it is Cohen–

Macaulay by [30, Theorem 1]. Therefore, M̂A(β)
qi
= K̂A

• (SA;EA − β) by [21, Th. 6.6].
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(a) Since SA is Cohen–Macaulay, the complex RΓO(F )(SA) has cohomology only

in cohomological degree dA/F , so that

E∗F (β) =
{
λ+ ZF ∈ CF/ZF

∣∣∣ HdA/F
O(F ) (SA)β−λ 6= 0

}
. (2.9.1)

Suppose λ+ZF, λ′+ZF ∈ E∗F (β). Then λ and λ′ differ by an element CF ∩Zd. But

by normality, CF ∩Zd = ZF . Hence, λ+ZF = λ′ +ZF . Now apply Theorem 2.7.2,

and use (2.9.1) along with the fact that the Hilbert function of H
dA/F
O(F ) (SA) takes values

in {0, 1}.

(b) As in (a), normality implies that EF (β) has at most one element (this also

follows from [27, Prop. 2.3 (1)]). Now apply Theorem 2.7.4 along with the fact that

the Hilbert function of SA[∂−F ] takes values in {0, 1}.

(c) By Theorem 2.7.2, we need to show that RΓO(F )(SA)β+CF 6= 0 if and only

if hG(β) ∈ Z<0 for all facets G � F . As in (a), RΓO(F )(SA) is concentrated in

cohomological degree dA/F . Since SA is normal, H
dA/F
O(F ) (SA) = C{− relint(NA−NF )},

where relint denotes the relative interior of an affine semigroup (i.e. the set of points

in the affine semigroup which are not on any of its facets). In terms of the primitive

integral support functions, − relint(NA − NF ) consists of those points α ∈ Zd such

that hG(α) < 0 for all facets of A which contain F . Thus, RΓO(F )(SA)β+CF 6= 0 if and

only if there exists a λ ∈ CF with β−λ ∈ Zd such that hG(β−λ) ∈ Z<0 for all facets

G � F . But hG kills CF by definition, and β + Cd intersects Zd by assumption. So,

RΓO(F )(SA)β+CF 6= 0 if and only if hG(β) ∈ Z<0 for all facets G � F .

(d) The proof of [27, Th. 5.2] shows that EF (β) is non-empty if and only if (β +

CF ) ∩ Zd 6= ∅ and hG(β) ∈ N for every facet G � F . Now use Theorem 2.7.4.

The condition (β + CF ) ∩ Zd 6= ∅ in Lemma 2.9.1(c) and (d) is necessary, as the

following example shows:

Example 2.9.2 Choose a matrix A generating the affine semigroup pictured in Fig-

ure 2.2. As in the figure, denote by G1 and G2, respectively, the facets
[
2 3

]>
and[

2 −1
]>

of A. Then hG1 =
[
3 −2

]
and hG2 =

[
1 2

]
.
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(2, 3)

(2,−1)
G1

G2

Figure 2.2. The affine semigroup from Example 2.9.2.
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Consider the parameter β = (−1,−1/2). Then hG1(β) = −3 − 2(−1/2) = −2 ∈

Z<0 and hG2(β) = −1 + 2(−1/2) = −2 ∈ Z<0, so by Lemma 2.9.1(c), the fiber

support of M̂A(β) contains both O(G1) and O(G2). But β + C∅ = β /∈ Z2, so by

Lemma 2.9.1(c), the fiber support of M̂A(β) does not contain O(∅).

To see the necessity of the condition for Lemma 2.9.1(d), use a similar argument

with the same A for β = (1, 1/2).

Theorem 2.9.3 Assume SA is normal. Let β ∈ Cd, let U ⊆ Ĉn be an open subset

with U ∩ XA = fSupp M̂A(β), and let V ⊆ Ĉn be an open subset with V ∩ XA =

cofSupp M̂A(β). Then

FL($V †ιV+OβTA) ∼= MA(β) ∼= FL($U+ιU†OβTA).

Proof As in Lemma 2.9.1, M̂A(β)
qi
= K̂A

• (SA;EA− β). By [21, Th. 6.6], this implies

that EA = ∅.

To prove the first isomorphism, choose a β′ ∈ Cd \ sRes(A) with β′ − β ∈ NA

(this is always possible—see [8, the discussion preceding Cor. 3.9]). Let F � A be a

face. By Lemma 2.8.14(b), we have EF (β) ⊆ EF (β′), and by Lemma 2.9.1(b), both

EF (β) and EF (β′) consist of at most one element. Therefore, if EF (β) is non-empty,

then it equals EF (β′). Hence, β is mixed Gauss–Manin along F . Thus, β is mixed

Gauss–Manin.

We now prove the second isomorphism. As in the proof of ((b) =⇒ (a)) in Theo-

rem 2.8.17, choose a −β′ ∈ Cd \ sRes(A) with β−β′ ∈ NA such that ϕ†OβTA is isomor-

phic to M̂A(β′). Now proceed as for the first isomorphism, using Lemma 2.8.14(a),

E∗F , and Lemma 2.9.1(a) in place of Lemma 2.8.14(b), EF , and Lemma 2.9.1(b),

respectively.

Example 2.9.4 Let

A =

1 1 1

0 1 2

 .
The associated semigroup ring SA is a normal. For simplicity, we only discuss β ∈ Z2.
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U = (C∗)3

V = Ĉ3

U = Ĉ3 \ {∂3-axis}

V = Ĉ3 \ {∂1-axis}

U = Ĉ3 \ {∂1-axis}

V = Ĉ3 \ {∂3-axis}

U = Ĉ3

V = (C∗)3

Figure 2.3. The four isomorphism classes from Example 2.9.4. The lines
are the spans of the two facets of R≥0A.

There are four isomorphism classes of A-hypergeometric systems with β ∈ Z2; these

are pictured in Figure 2.3 along with a U and a V as in Theorem 2.9.3, and they were

computed using [27, Th. 5.2]. We now explain why these U and V work by computing

the fiber and cofiber supports, using Lemma 2.9.1, for each of the four isomorphism

classes.

The primitive integral support function corresponding to the facets [a1] and [a3]

are h1(t1, t2) = t2 and h2(t1, t2) = 2t1 − t2, respectively. If MA(β) is in the first

(counted from left to right in Figure 2.3) isomorphism class, then h1(β) and h2(β)

are both in N, so fSupp M̂A(β) = O(A) and cofSupp M̂A(β) = XA. If MA(β) is in the

second class, then h1(β) ∈ N and h2(β) ∈ Z<0, so fSupp M̂A(β) = O(A)∪O([a3]) and

cofSupp M̂A(β) = O(A)∪O([a1]). If MA(β) is in the third class, then h1(β) ∈ Z<0 and

h2(β) ∈ N, so fSupp M̂A(β) = O(A)∪O([a1]) and cofSupp M̂A(β) = O(A)∪O([a3]). If

MA(β) is in the fourth class, then h1(β) and h2(β) are both in Z<0, so fSupp M̂A(β) =

XA and cofSupp M̂A(β) = O(A).
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3. DUALIZING, PROJECTING, AND RESTRICTING

GKZ SYSTEMS1

3.1 Introduction

Our approach to studying the projection, restriction, and holonomic dual of A-

hypergeometric systems is to use the notion of mixed and dual mixed Gauss–Manin

systems (see §3.2.3) from Chapter 2.

We first study these in slightly more generality in §3.3. In §3.4, we generalize the

notion of quasi-equivariant D-module (introduced by T. Reichelt and U. Walther in

[26]) to what we are calling twistedly quasi-equivariant D-modules (Definition 3.4.2).

We then follow a similar process to that in [26] to relate the restriction and projection

of such modules (Lemma 3.4.4) and to show that mixed and dual mixed Gauss–

Manin systems are twistedly quasi-equivariant (Proposition 3.4.5). These results are

combined in §3.5 first to compute the restriction and projection to CF of dual mixed

Gauss–Manin and mixed Gauss–Manin systems, respectively (Theorem 3.5.4), and

then to do the same for normal A-hypergeometric systems (Theorem 3.5.8).

We then show in Theorem 3.6.3, again using the notion of mixed and dual mixed

Gauss–Manin systems, that if A is homogeneous and normal, the holonomic dual of

every A-hypergeometric system is itself A-hypergeometric.

3.2 Notation and conventions

In §3.2.1, we define various notations and conventions related to varieties, derived

categories, D-modules, and mixed Hodge modules. §3.2.4 recalls the notions of fiber

and cofiber support. §3.2.2 defines various notations related to the semigroup NA,

1A version of this chapter will be appearing in Journal of Pure and Applied Algebra as [1].
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and in §3.2.3 we recall and discuss the notions of mixed and dual mixed Gauss–Manin

parameters and systems.

3.2.1 General geometric conventions/notation

Varieties, smooth or otherwise, are not required to be irreducible, are defined over

C, and are always considered with the Zariski topology. The closure of a subset Z of

a topological space X is written Z. If X is a smooth variety, denote by DX its sheaf

of algebraic linear partial differential operators. A subset Z of a topological space X

is relatively open if it is an open subset of its closure.

Derived categories

The category of mixed Hodge modules on a variety X is denoted MHM(X). The

bounded derived category of MHM(X) is denoted Db MHM(X). If X is smooth, the

bounded derived category of DX-modules with coherent and holonomic cohomology

are denoted by Db
c (DX) and Db

h(DX), respectively. If Z is a closed subvariety, a

superscript Z in the notation for any of these categories denotes the full subcategory

of objects whose cohomology is supported in Z.

D-module functors

(cf. [22]) The holonomic duality functor ( [22, Def. 2.6.1]) is denoted D. Let

f : X → Y be a morphism of smooth varieties. We write f+ for the D-module direct

image, f† := Df+D for the D-module exceptional direct image, f+ := Lf ∗[dimX −

dimY ] for theD-module inverse image, and f † := Df+D for theD-module exceptional

direct image. If X1 and X2 are smooth varieties and M•
i ∈ Db(DXi) (i = 1, 2), the

exterior tensor product (see [22, p38]) of M•
1 and M•

2 is

M•
1 �M•

2 := DX1×X2 ⊗p−1
1 DX1

⊗Cp
−1
2 DX2

(p−1
1 M•

1 ⊗C p−1
2 M•

2).
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Note that [22] denotes the functors f+, f+, f†, and f † by
∫
f
, f †,

∫
f !

, and fF,

respectively. They define the first two on pages 33 and 40, respectively, while they

define the second two in Def. 3.2.13 on page 91.

Fourier–Laplace transform

(cf. [31, pp85-102]) The Fourier–Laplace transform is denoted by FL. By defini-

tion, FL(M•) is the pullback of M• ∈ Db(DCn) by the C-algebra automorphism of

DCn taking xi 7→ ∂/∂xi and ∂/∂xi to −xi. The inverse Fourier transform is denoted

by FL−1 and is defined similarly.

For a description of FL in terms of D-module direct and inverse image functors,

see [19].

Mixed Hodge modules

Let M• be a complex of mixed Hodge modules, and let F be a functor of D-

modules. If the mixed Hodge module structure onM• induces a mixed Hodge module

structure on F (M•), we will always take F (M•) to be this induced mixed Hodge

module unless otherwise specified.

3.2.2 Toric and GKZ conventions/notation

The semigroup ring of A is SA := C[NA] = C[∂1, . . . , ∂n]/IA. The toric variey of

A is XA := Var(IA), and the torus of A is TA := SpecC[ZA]. Given β ∈ Cd, define

the DTA-module

OβTA := DTA/DTA{ ti∂ti + βi | i = 1, . . . , d } = OTAt−β. (3.2.1)

Note that OβTA can be defined in a coordinate-free manner (see Equation (2.2.9)). Set

M̂A(β) := FL−1(MA(β)). (3.2.2)
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Definition 3.2.1 A submatrix F of A is called a face of A, written F � A, if F has

d rows and R≥0F is a face of R≥0A. A facet of A is a face of rank d− 1.

Given a face F � A, set

dA/F := d− rankF = d− dimR≥0F, (3.2.3)

and

nA/F := n−#(columns of F ) = n− dimCF . (3.2.4)

The torus embedding t 7→ (ta1 , . . . , tan) of TA into Cn defined by A induces an

action of TA on Cn which makes TA-equivariant the inclusion XA ⊆ Cn. If F � A is

a face, the TA-orbit of XA corresponding to F is

OA(F ) := TA · 1F , (3.2.5)

where the ith coordinate of 1F is 1 if ai ∈ F and 0 otherwise. Set

CF := { x ∈ Cn | xi = 0 for all ai /∈ F } . (3.2.6)

Definition 3.2.2 For a facet G � NA, there is a unique linear form hG = hG,A : Zd →

Z, called the primitive integral support function of G, satisfying the following condi-

tions:

1. hG(Zd) = Z.

2. hG(ai) ≥ 0 for all i.

3. hG(ai) = 0 for all ai ∈ G.

Euler–Koszul complex

We recall the definition of Euler–Koszul complex KA• (SA;EA − β) from [21]:

KA• (SA;EA − β) := K•
(
·(EA − β);DCn/DCnIA

)
;
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i.e. it is the Koszul complex of left DCn-modules defined by the (right) action of the

sequence EA − β = E1 − β1, . . . , Ed − βd on the left DCn-module DCn/DCnIA. The

more general Euler–Koszul complexes defined in [21] will not be needed. The inverse

Fourier–Laplace transform of KA• (SA;EA − β) is denoted by K̂A• (SA;EA − β). Recall

also that the zeroth homology sheaf of the Euler–Koszul complex KA• (SA;EA − β) is

exactly the A-hypergeometric systemMA(β). Moreover, if SA is Cohen–Macaulay (in

particular, by Hochster’s Theorem, if SA is normal), then KA• (SA;EA− β) is actually

a resolution of MA(β) [21, Th. 6.6].

3.2.3 Mixed and dual mixed Gauss–Manin systems

Given a TA-stable open neighborhood U ⊆ Cn of TA and a β ∈ Cd, set

MGM(U, β) := $†ι+OβTA and MGM∗(U, β) := $+ι†OβTA , (3.2.7)

where ι : TA ↪→ U is the torus embedding and $ : U ↪→ Cn is inclusion.

Definition 3.2.3 A complex M• ∈ Db
h(DCn) is mixed Gauss–Manin (resp. dual

mixed Gauss–Manin) if it is isomorphic to MGM(U, β) (resp. MGM∗(U, β) for some

U and β.

Definition 3.2.4 A parameter β ∈ Cd is mixed Gauss–Manin (resp. dual mixed

Gauss–Manin) if K̂A(SA;EA − β) is mixed Gauss–Manin (resp. dual mixed Gauss–

Manin).

Note that the definitions of mixed and dual mixed Gauss–Manin parameters in

Definition 2.8.15 is different than that in Definition 3.2.4. However, the two definitions

are equivalent by Theorems 2.8.17 and 2.8.19.
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3.2.4 Fiber and cofiber support

We recall from Definition 2.3.1 the notions of fiber and cofiber support—refer there

for main properties along with additional examples. The fiber support of a (bounded)

complex M• of OX-modules is

fSuppM• :=
{
x ∈ X

∣∣∣ k(x)⊗L
OX,xM

•
x 6= 0

}
, (3.2.8)

where k(x) denotes the residue field of the point x ∈ X. IfM• ∈ Db
c (DX), its cofiber

support is

cofSuppM• := fSuppDM•. (3.2.9)

Note that both the fiber support and cofiber support are independent of the complex

representing the object M• ∈ Db
c (DX).

Example 3.2.5 Let A =

1 1 1 1

0 1 2 3

 and β = (−1, 1)>. We describe the fiber and

cofiber support of M̂A(β) using Lemma 2.9.1. The facets of A are F1 = [a1] and

F2 = [a4], and their primitive integral support functions (see Definition 3.2.2) are

h1(x, y) = y and h2(x, y) = 3x − y, resp. Applying these to the vector β, we get

h1(β) = 1 ∈ N and h2(β) = −4 ∈ Z<0. Therefore, OA(F1) is in the cofiber support

but not the fiber support, OA(F2) is in the fiber support but not in the cofiber support,

OA(∅) is in neither, and OA(A) is in both. In summary,

fSuppM̂A(β) = OA(F2) ∪OA(A)

and

cofSuppM̂A(β) = OA(F1) ∪OA(A).

3.3 Alternating direct images

In this section we discuss a generalization of mixed and dual mixed Gauss–Manin

systems which we will refer to by the name “alternating direct images”.
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In §3.3.1, we characterize in terms of fiber and cofiber support when a D-module

or mixed Hodge module is isomorphic to a given alternating direct image.

In §3.3.2, we use the results of §3.3.1 to characterize, under a certain openness con-

dition, when a D-module or mixed Hodge module is isomorphic to some alternating

direct image.

In §3.3.3, we specialize Corollaries 3.3.6 and 3.3.7 to the GKZ case (Theorem 3.3.8).

As a consequence, we obtain Corollary 3.3.9, which states that for GKZ systems,

being dual mixed Gauss–Manin is the same as being mixed Gauss–Manin and not

rank-jumping.

3.3.1 Characterizing alternating direct images passing through a fixed U

Let

Z
ι−→ U

$−→ X

be inclusions of smooth (locally closed) subvarieties, where U is open in X, and set

ϕ := $ ◦ ι. We associate to this situation the alternating direct image functors $+ι†

and $†ι+.

Remark 3.3.1 Note that if N • is in Db,Z
c (DX) or Db(MHMZ(X)), then ϕ+N • is

canonically isomorphic to ϕ†N •. To see this, notice that because $ is an open embed-

ding, $† = $+; now shrink U so that ι is a closed immersion, then apply Kashiwara’s

equivalence.

Lemma 3.3.2 Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))). Then $+ι†M• is

the unique object in Db,Z
c (DX) (resp. in Db(MHMZ(X))) such that

1. the restriction to Z is isomorphic to M•;

2. the fiber support is contained in U ; and

3. the cofiber support intersected with U is contained in Z.
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Proof We first show that $+ι†M• satisfies the required properties. Because both

ι and $ are inclusions of (locally closed) subvarieties, $+ι†M• is supported on Z.

Applying ϕ+ to $+ι†M•, we get

ϕ+$+ι†M• = ι+ι†M• = ι†ι†M• =M•,

where the second equality follows for the same reason as in Theorem 3.3.1. So the

restriction to Z is M•. Let ix denote inclusion of a point x ∈ X. If x /∈ U , then

i+x$+ι†M• vanishes by Lemma 2.3.3, so the fiber support is contained in U . If

x ∈ U \ Z, then also by Lemma 2.3.3,

i†x$+ι†M• = i†xι†M• = 0.

So, the cofiber support intersected with U is contained in Z.

We now prove uniqueness. Suppose N • also satisfies the properties. Then the

equality of ϕ+N • and M• induces a morphism f : ι†M• → $+N •. By property 3,

i†xf = 0 for all x ∈ U \ Z, while by property 1, the restriction ι+f is an equality.

Hence, cone(f) has empty fiber support, and therefore it vanishes by Corollary 2.3.6.

Thus, f is an isomorphism. By duality, the same argument applied to the case Z = U

and M• = $+N • gives an isomorphism N • → $+ι†M•.

Lemma 3.3.3 Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))). Then $†ι+M• is

the unique object in Db,Z
c (DX) (resp. in Db(MHMZ(X))) such that

1. the restriction to Z equals M•;

2. the cofiber support is contained in U ; and

3. the fiber support intersected with U is contained in Z.

Proof This follows from Lemma 3.3.2 by duality.

Remark 3.3.4 LetM• ∈ Db(MHM(Z)). Lemmas 3.3.2 and 3.3.3 imply that if there

are open neighborhoods U and U ′ of Z such that $+ι†M• and $′†ι
′
+M• are isomorphic

as DX-modules, then they are also isomorphic as mixed Hodge modules.
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Finally, we relate the fiber (resp. cofiber) supports of $+ι†M• and ϕ†M• (resp.

of $†ι+M• and ϕ+M•). Part (1) of the following lemma generalizes Lemma 2.8.1.

Recall that a set is relatively open if it is an open subset of its closure.

Lemma 3.3.5 Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))).

1. There are natural isomorphisms

$+ι†M• ∼= $+$
+ϕ†M• and $†ι+M• ∼= $†$

†ϕ+M•.

2. If fSuppϕ†M• (resp. cofSuppϕ+M•) is relatively open, then so is fSupp$+ι†M•

(resp. cofSupp$†ι+M•).

Proof (1) We prove the first isomorphism. The second follows via duality.

It suffices to show that $+$
+ϕ†M• satisfies the three conditions of Lemma 3.3.2.

Conditions 1 and 2 are straightforward from the definitions. To prove condition 3,

observe that

$+$+$
+ϕ†M• ∼= $+ϕ†M• ∼= $+$+ι†M• ∼= ι†M•.

Now apply Lemma 2.3.3.

(2) Use part (1) along with Lemma 2.3.3.

3.3.2 The relatively open (co)fiber support case

If the fiber support of ϕ†M• is relatively open, then the same is true of $+ι†M• by

Lemma 3.3.5(2). We may therefore shrink U so that U ∩Z = fSupp$+ι†M• without

changing $+ι†M•. Similarly, if the cofiber support of ϕ+M• is relatively open, then

we may shrink U so that U∩Z = cofSupp$†ι+M• without changing $†ι+M•. As an

immediate consequence, we get the following corollaries of Lemmas 3.3.2 and 3.3.3:

Corollary 3.3.6 Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))), and assume that

the fiber support of ϕ†M• is relatively open. Let N • ∈ Db,Z
c (DX) (resp. in Db(MHMZ(X))).

Then there exists an open neighborhood U ⊆ X of Z such that (in the notation of

§3.3.1) $+ι†M• ∼= N • if and only if all of the following conditions hold:



56

1. ϕ+N • ∼=M•;

2. fSuppN • ∩ cofSuppN • ⊆ Z; and

3. fSuppN • is relatively open.

Corollary 3.3.7 Let M• ∈ Db
c (DZ) (resp. M• ∈ Db(MHM(Z))), and assume that

the cofiber support of ϕ+M• is relatively open. Let N • ∈ Db,Z
c (DX) (resp. in Db(MHMZ(X))).

Then there exists an open neighborhood U ⊆ X of Z such that (in the notation of

§3.3.1) $†ι+M• ∼= N • if and only if all of the following conditions hold:

1. ϕ+N • ∼=M•;

2. fSuppN • ∩ cofSuppN • ⊆ Z; and

3. cofSuppN • is relatively open.

3.3.3 A different characterization of mixed and dual mixed Gauss–Manin

parameters

Specializing Corollaries 3.3.6 and 3.3.7 to the GKZ case, we get Theorem 3.3.8

below. Before stating it, we recall the definition of the set of A-exceptional parameters.

This is the set EA of parameters β for which the holonomic rank of MA(β) is larger

than for a generic parameter. Note that EA also has a description in terms of local

cohomology (see [21]).

Theorem 3.3.8 Let β ∈ Cd.

1. β is dual mixed Gauss–Manin for A if and only if

β /∈ EA and fSuppM̂A(β) ∩ cofSuppM̂A(β) = TA.

2. β is mixed Gauss–Manin for A if and only if

fSupp K̂A• (SA;EA − β) ∩ cofSupp K̂A• (SA;EA − β) = TA.
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Proof (1) By Theorem 2.8.17, a dual mixed Gauss–Manin parameter is not A-

exceptional. By Lemma 2.8.8, if β /∈ EA, then the fiber support of M̂A(β) is rela-

tively open; in particular, as ϕ†OβTA is isomorphic to M̂A(β′) for some β′ /∈ EA (Re-

mark 2.8.16), the fiber support of ϕ†OβTA is relatively open. Now use Corollary 3.3.6.

(2) By [27, Prop. 2.2 (4)], the orbit-cone correspondence, and Theorem 2.7.4, the

cofiber support of K̂A• (SA;EA−β) is relatively open for all β. In particular, as ϕ+OβTA
is isomorphic to K̂A• (SA;EA − β′) for some β′ ( [8, Cor. 3.7]), the cofiber support of

ϕ+OβTA is relatively open. Now use Corollary 3.3.7.

Corollary 3.3.9 A parameter is dual mixed Gauss–Manin for A if and only if it is

mixed Gauss–Manin for A and not A-exceptional.

3.4 Twisted quasi-equivariance

Reichelt and Walther introduced in [26, Def. 3.2] the notion of a quasi-equivariant

DE module. For the purposes of this paper, we need to generalize this notion slightly

(Definition 3.4.2) to incorporate a “twist” by a rank one integrable connection on C∗

à la [32]. In Lemma 3.4.4, this generalization is used to relate certain projections and

restrictions of twistedly equivariant D-modules. Proposition 3.4.5 shows that, when

properly interpreted, every mixed and dual mixed Gauss–Manin module is twistedly

equivariant. Note that Lemma 3.4.4 and proposition 3.4.5 are generalizations of [26,

Lem. 3.3 and 3.4].

We begin by recalling the notion of a fibered C∗-action on a trivial vector bundle.

Let π : E → X be a trivial vector bundle on a smooth affine variety X, and denote

by

i : X ↪→ E

the zero section. Set

E∗ := E \ i(X).

Definition 3.4.1 ( [26, Def. 3.1]) A C∗ action µ : C∗ × E → E is fibered if
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1. µ preserves fibers;

2. µ extends under the inclusion C∗ ↪→ C to a morphism (also denoted µ) C×E →

E;

3. 0 ∈ C multiplies into the zero section, i.e. µ : {0} × E → i(X); and

4. C fixes the zero section.

Definition 3.4.2 Let µ : C∗×E → E be a fibered action on E, let µ′ be the restriction

of this action to E∗, and let λ ∈ C. A complex M• ∈ Db
h(DE) is λ-twistedly C∗-

quasi-equivariant if

µ′∗M•
|E∗
∼= OλC∗ �M•

|E∗ . (3.4.1)

A complexM• is twistedly C∗-quasi-equivariant if it is λ-twistedly C∗-quasi-equivariant

for some λ.

Remark 3.4.3 Note that because µ′ is smooth of relative dimension 1, (3.4.1) is

equivalent to

µ′+M•
|E∗
∼= OλC∗ [1]�M•

|E∗ (3.4.2)

and also to

µ′†M•
|E∗
∼= OλC∗ [−1]�M•

|E∗ . (3.4.3)

The following lemma is proved in exactly the same way as is [26, Lem. 3.3]. The

only change to the proof is that “OGm” must be replaced throughout with “OλC∗”.

No issues occur with doing so, and no issues occur with the passage to the derived

category as opposed to modules.

Lemma 3.4.4 If M• ∈ Db
h(DE) is λ-twistedly C∗-quasi-equivariant, then π+M• ∼=

i†M• and π†M• ∼= i+M•.

We now generalize [26, Lem. 3.4]. The basic idea of the proof is the same. However,

sufficiently many technical details need to be modified that we feel it necessary to

provide the proof in full.
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Proposition 3.4.5 Let F � A be a face, and view Cn as a vector bundle over CF

via the coordinate projection π : Cn → CF . Let β ∈ Cd. Then there exists a fibered

C∗-action on Cn such that for all TA-stable open neighborhoods U ⊆ Cn of TA, both

MGM(U, β) and MGM∗(U, β) are twistedly quasi-equivariant.

Proof Write E for Cn viewed as vector bundle over CF . Since NA is pointed and

F is a face, there exists a u ∈ Zd such that 〈ai,u〉 = 0 for ai ∈ F and 〈ai,u〉 > 0 for

ai /∈ F . We show that the monomial action µ : C∗ × E → E induced by v := A>u,

i.e. t · (x1, . . . , xn) = (tv1x1, . . . , t
vnxn), satisfies the requirements of the proposition.

Step 1: µ is a fibered action.

Proof of Step 1. Condition (1) of Theorem 3.4.1 holds because vi = 0 for all

ai ∈ F . Because in addition vi > 0 for all ai /∈ F , the action extends to C; so,

condition (2) holds. Conditions (3) and (4) follow immediately from the definition of

this extension. This finishes the proof of Step 1.

Step 2: µ̃∗OβTA ∼= O〈u,β〉C∗ � OβTA , where µ̃ denotes the monomial action on TA

induced by u.

Proof of Step 2. Let f : µ̃∗OβTA → O
〈u,β〉
C∗ �O

β
TA

be the OC∗×TA-module isomorphism

taking the generator 1 ⊗ t−β to the generator s−〈u,β〉 ⊗ t−β, where s denotes the

coordinate on C∗. The action of 1⊗ ti∂ti on both generators is multiplication by −βi,

while the action of s∂s on both generators is multiplication by −〈u, β〉. Therefore, f

is an isomorphism of DC∗×TA-modules. This finishes the proof of Step 2.

Step 3: Both MGM(U, β) and MGM∗(U, β) are 〈u, β〉-twistedly quasi-equivariant.

Proof of Step 3. Since the two statements are equivalent via duality, we only prove

the first. Consider the following commutative diagram:

C∗ × TA C∗ × (U ∩ E∗) C∗ × E∗

TA U ∩ E∗ E∗

id×ι′

µ̃

id×$′

µ′′ µ′

ι′ $′

(3.4.4)

Here, ι′ is the torus embedding, $′ is inclusion, µ′ is the restriction of µ to E∗, and

µ′′ is the restriction of µ to U ∩ E∗. By construction, the action µ factors through
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the action of TA. So, because U is TA-stable, it is also C∗-stable, and therefore both

squares in (3.4.4) are Cartesian. Then

µ′†MGM(U, β)|E∗ ∼= µ′†$′†ι
′
+O

β
TA

∼= (id×$′)†µ′′†ι′+O
β
TA

∼= (id×$′)†(id× ι′)+µ̃
†OβTA

∼= (id×$′)†(id× ι′)+(O〈u,β〉C∗ [−1]�OβTA)

∼= O〈u,β〉C∗ [−1]�$′†ι
′
+O

β
TA

∼= O〈u,β〉C∗ [−1]�MGM(U, β)|E∗ ,

where the second isomorphism is by base change, the third is by base change together

with the fact that µ′′ and µ̃ are smooth of the same relative dimension, and the fourth

is by Step 2 and the smoothness of µ̃. Now use Theorem 3.4.3. This finishes the proof

of Step 3 and thereby the proposition.

3.5 Projections and restrictions

In §3.5.1, we use the framework of a C∗-fibered vector bundle to show that the pro-

jection and restriction of alternating direct images are also alternating direct images.

We apply this in §3.5.2 to mixed and dual mixed Gauss–Manin systems.

In §3.5.3, we specialize these results to the case of normal SA, culminating in

Theorem 3.5.8, where we compute the restriction and projection of MA(β) to the

coordinate subspace corresponding to a face of A, and Corollary 3.5.9, which says

that at most one of the restriction and projection can be nonzero.
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3.5.1 Restricting and projecting twistedly quasi-equivariant alternating

direct images

Let X be a smooth affine variety, π : E → X a C∗-fibered vector bundle, and as

before, denote by i : X ↪→ E the zero section. Consider the following diagrams:

Z
ι−−−−→ U

$−−−−→ E and i−1(U) ∩ π(Z)
ι′−−−−→ i−1(U)

$′−−−−−→ X.

Here, Z is smooth and locally closed in E, U is an open subset of E containing Z,

and the morphisms are inclusion. (Note that the role of X has changed from what it

was in Section 3.3). Set ϕ := $ ◦ ι and ϕ′ := $′ ◦ ι′.

Proposition 3.5.1 Let M• ∈ Db
h(DZ). Assume that U ⊇ π−1(i−1(U)) and π(Z) is

locally closed.

1. If N • := $+ι†M• is twistedly C∗-quasi-equivariant, then

i+N • ∼= $′+ι
′
†(i ◦ ϕ′)+N •.

2. If N • := $†ι+M• is twistedly C∗-quasi-equivariant, then

π+N • ∼= $′†ι
′
+(i ◦ ϕ′)†N •.

Proof (1) By Lemma 3.3.2, the fiber support of i+N • is contained in i−1(U).

Suppose x ∈ i−1(U) ∩ cofSupp i+N •. Then by Lemma 3.4.4 and the base change

formula, (π|Ex)†i
†
Ex
N • 6= 0, where Ex := π−1(x) is the fiber of E over x, and

iEx : Ex ↪→ E is inclusion. So, i†ExN
• 6= 0, and therefore Ex ∩ cofSuppN • 6= ∅.

On the other hand, x ∈ i−1(U), so because U ⊇ π−1(i−1(U)), we have that Ex ⊆ U .

Hence, Ex ∩ cofSuppN • is a nonempty subset of Z by Lemma 3.3.2, and therefore

π(x) ∈ π(Z) ∩ i−1(U). Thus,

i+N • ∼= $′+ι
′
†ϕ
′+i+N • ∼= $′+ι

′
†(i ◦ ϕ′)+N •.

(2) This follows from (1) by duality together with Lemma 3.4.4.
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It may appear at first that the assumption that U ⊇ π−1(i−1(U)) in Proposi-

tion 3.5.1 is too restrictive to apply in the situation of Proposition 3.4.5. However,

as we will see in Lemma 3.5.3, U can always be enlarged to satisfy this assumption

without changing MGM(U, β) or MGM∗(U, β).

3.5.2 Restricting and projecting GKZ systems

Before stating Theorem 3.5.4, we recall the below facts about mixed and dual

mixed Gauss–Manin systems. Also recall from (3.2.5) that OA(F ) is the TA-orbit of

the toric variety XA which corresponds to F , and from (3.2.3) that dA/F = d−rankF .

Here and in the rest of this article, we follow that convention that
∧
Ck lives in

cohomological degrees −k through 0.

Fact 3.5.2 Let β ∈ Cd, and let U ⊆ Cn be a TA-stable open neighborhood of TA.

Write iOA(F ) for the inclusion OA(F ) ↪→ Cn.

1. If OA(F ) ⊆ cofSupp MGM(U, β), then

i†OA(F ) MGM(U, β) ∼=
⊕
λ+ZF

OλTF ⊗C
∧
CdA/F ,

where the direct sum is over those λ + ZF ∈ CF/ZF for which β − λ ∈ Zd.

This follows from Lemma 2.8.14, remark 2.8.16, and eq. (2.8.6).

2. If OA(F ) ⊆ fSupp MGM∗(U, β), then

i+OA(F ) MGM∗(U, β) ∼=
⊕
λ+ZF

OλTF ⊗C
∧
CdA/F [−dA/F ],

where the direct sum is over those λ + ZF ∈ CF/ZF for which β − λ ∈ Zd.

This follows from Fact 3.5.2(1) and Remark 2.8.18.

Let F � A be a face, and let πF : Cn → CF and iF : CF ↪→ Cn be coordinate

projection and inclusion, respectively.
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Lemma 3.5.3 Let β ∈ Cn and M• ∈ Db
c (DCn). Let U ⊆ Cn be a TA-stable open

neighborhood of TA, and let U ′ = U ∪ π−1
F (i−1

F (U)). Then

MGM∗(U, β) ∼= MGM∗(U ′, β) and MGM(U, β) ∼= MGM(U ′, β).

Proof It suffices to show that U ′ ∩ XA = U ∩ XA. The containment U ′ ∩ XA ⊇

U ∩ XA is immediate. For the other containment, let G be a face of A such that

OA(G) ⊆ U ′, and suppose OA(G) ⊆ π−1
F (i−1

F (U)). Then iF (πF (OA(G))) ⊆ U . But

iF (πF (OA(G))) = iF (OF (G ∩ F )) = OA(G ∩ F ), so OA(G ∩ F ) ⊆ U . Therefore,

because U is open, the orbit-cone correspondence implies that OA(G) ⊆ U . Thus,

U ′ ∩XA = U ∩XA.

Theorem 3.5.4 Let β ∈ Cn, and let U ⊆ Cn be a TA-stable open neighborhood of

TA.

1. If β /∈ CF + Zd or U + OA(F ), then

πF+ MGMA(U, β) = i+F MGM∗A(U, β) = 0.

2. If U ⊇ OA(F ), then

i+F MGM∗A(U, β) ∼=
⊕
λ+ZF

MGM∗F
(
i−1
F (U), λ

)
⊗C
∧
CdA/F [−dA/F ]

and

πF+ MGMA(U, β) ∼=
⊕
λ+ZF

MGMF

(
i−1
F (U), λ

)
⊗C
∧
CdA/F ,

where the direct sums are over those λ+ZF ∈ CF/ZF for which β−λ ∈ Zd. If

in addition, β ∈ CF + Zd, then neither i+F MGM∗A(U, β) nor πF+ MGMA(U, β)

vanish.

Proof We only prove the dual MGM case. The MGM case follows by duality to-

gether with Lemma 3.4.4. For ease of notation, set π = πF and i = iF .

(1) If β /∈ CF + Zd or U + OA(F ), then OA(F ) does not intersect the fiber sup-

port of MGM∗(U, β)—the former by Fact 3.5.2(2) and the latter by Lemma 3.3.2(2).
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Therefore, no orbit corresponding to a face of F intersects the fiber support of

MGM∗(U, β). Hence, fSupp i+ MGM∗(U, β) = XF ∩ i−1(fSupp MGM∗(U, β)) = ∅,

and therefore i+ MGM∗(U, β) = 0.

(2) Assume U ⊇ OA(F ). By Lemma 3.5.3, we may replace U with U∪π−1(i−1(U))

(note that this leaves i−1(U) unchanged) to assume that U ⊇ π−1(i−1(U)). In ad-

dition, π(TA) = TF , which is locally closed in CF . Therefore, Proposition 3.5.1(1)

applies to give

i+ MGM∗A(U, β) ∼= $′+ι
′
†(i ◦ ϕF )+ MGM∗A(U, β),

where ϕF : TF ↪→ CF is the torus embedding induced by F , ι′ : i−1(U)∩TF ↪→ i−1(U)

is the restriction of ϕF , and $′ is the inclusion i−1(U) ↪→ CF .

By assumption, i−1(U) ∩ TF = TF , and therefore i ◦ ϕ′ is just the inclusion TF =

OA(F ) ↪→ Cn. Now use Fact 3.5.2 together with the additivity of the D-module

functors. This proves that i+F MGM∗A(U, β) is isomorphic to the requisite direct sum.

That this does not vanish if β ∈ CF + Zd is because in such a case the direct sum is

over a nonempty set.

3.5.3 Normal case

Throughout this section, SA is assumed to be normal. Lemma 3.5.5 is a technical

lemma which we will use (both in this section and in §3.6) to move a parameter β

within the class of those parameters whose A-hypergeometric system is isomorphic

to that of β. Lemma 3.5.6 will be needed in the proof of Theorem 3.5.8. Recall from

Definition 3.2.2 the definition of the primitive integral support functions hG.

Lemma 3.5.5 Let β ∈ Cd. Then there exists a γ ∈ Zd such that for all facets G � A,

1. hG(γ) 6= 0 if hG(β) /∈ Z;

2. hG(γ) > 0 if hG(β) ∈ N; and

3. hG(γ) < 0 if hG(β) ∈ Z<0.
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Proof Consider the system of equations

{ hG(x) = hG(β) | G � A is a facet with hG(β) ∈ Z } .

This has a solution in Cd, namely β, and therefore has a solution in Rd. Let α be one

such solution. Then α describes a hyperplane

Hα = { f ∈ (Rd)∗ | f(α) = 0 } .

Denote by H≥0
α the set of f ∈ (Rd)∗ such that f(α) ≥ 0, and similarly for H>0

α , H≤0
α ,

and H<0
α .

Let us now consider the sets Pα = {hG | hG(α) ≥ 0 } and Nα = {hG | hG(α) < 0 }.

By construction, R≥0Pα ∩ R≥0Nα = {0}. Let Z be an affine hyperplane in (Rd)∗

transverse to the dual cone (R≥0A)∨, and assume that the intersection Z ∩ (R≥0A)∨

is nonempty. Then Z ∩ R≥0Pα and Z ∩ R≥0Nα are convex, compact, and disjoint.

Hence, there exists a hyperplane L in Z separating Z∩R≥0Pα and Z∩R≥0Nα. Choose

a γ ∈ Rd such that Hγ ∩ Z = L and H>0
γ ⊇ Z ∩ R≥0Pα. Then H<0

γ ⊇ Z ∩ R≥0Nα.

Then by convexity, H>0
γ ⊇ R≥0Pα and H<0

γ ⊇ R≥0Nα. In particular, H>0
γ ⊇ Pα and

H<0
γ ⊇ Nα. Because Qd is dense in Rd, we may modify γ so that it is in Qd. Clearing

denominators, we may take γ to be in Zd.

Note that because we are in the normal case, we may define

sRes(A) = Cd \
{
β ∈ Cd

∣∣ hG(β) ≥ 0 whenever hG(β) ∈ Z
}
. (3.5.1)

We will take this as the definition of sRes(A) since we are only dealing with nor-

mal A. However, (3.5.1) follows from the general definition given in [8] by applying

Theorem 2.9.3 and lemma 2.9.1 along with [8, Cor. 3.8]

Lemma 3.5.6 Let β ∈ CF + Zd, and let F � A be a face. Then there exists a

λ ∈ CF ∩ (β + Zd) such that for all facets F ′ of F ,

1. hF ′(λ) ∈ N implies that hG(β) ∈ N for all facets G of A with G ∩ F = F ′; and

2. hF ′(λ) ∈ Z<0 implies that hG(β) ∈ Z<0 for all facets G of A with G ∩ F = F ′.
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Proof Step 1: The lemma holds for β ∈ Zd.

Proof of Step 1. By induction on the rank of F , we may assume that F is a facet

of A. Let F1, . . . , F` be the facets of F . For each i, let Gi be the facet of A whose

intersection with F is Fi. For each I ⊆ {1, . . . , `}, consider the sets

XI := { x ∈ RF | hFi(x) ≥ 0 for all i ∈ I }

YI :=
{
x ∈ Rd

∣∣ hGi(x) ≥ 0 for all i ∈ I
}
.

When XI is nonempty, neither is YI , and XI and YI are chambers of the arrangments

{RF1, . . . ,RF`} and {RG1, . . . ,RG`}, respectively. But these two arrangements are

combinatorially equivalent by construction, so they have the same number of cham-

bers. Hence, XI is nonempty if and only if YI is nonempty. Since both arrangements

are central, XI ∩ ZF is nonempty if and only if YI ∩ Zd is nonempty. Therefore, if

β ∈ YI , then any λ ∈ XI ∩ZF has the required properties. This finishes the proof of

Step 1.

Step 2: The lemma holds for general β.

Proof of Step 2. Apply Lemma 3.5.5 to β to get a γ ∈ Zd. Apply Step 1 to γ

to get an α ∈ ZF . Let λ0 ∈ CF ∩ (β + Zd) \ sRes(A). By adding sufficiently many

copies of
∑

ai∈F ai to λ0, we may assume that

hF ′(λ0) ≥ |hF ′(α)| (3.5.2)

for all facets F ′ of F with hF ′(λ0) ∈ Z. Set λ = λ0 + α. Let F ′ be a facet of F , and

let G be a facet of A with G ∩ F = F ′.

Suppose hF ′(λ) ∈ N. Then because hF ′(α) ∈ Z, hF ′(λ0) must be an integer and

therefore a non-negative integer. Then by (3.5.2), hF ′(α) ≥ 0. Hence, hG(γ) ≥ 0,

which by construction of γ means that hG(β) ∈ N.

Next, suppose hF ′(λ) ∈ Z<0. As before, this implies that hF ′(λ0) is a non-negative

integer. But then hF ′(α) must be negative. Hence, hG(γ) ≤ 0, which by construction

of γ means that hG(β) ∈ Z<0. This finishes the proof of Step 2 and thereby the

lemma.



67

The following example shows that even if hG(β) ∈ Z for every facet G of A with

G ∩ F = F ′, it is still possible that hF ′(λ) /∈ Z.

Example 3.5.7 Let

A =

1 1 1

0 1 2

 and F =

1

2

 .
The only facet of F is ∅, and the only facet of A whose intersection with F is ∅ is

the facet G = [1, 0]>. The primitive integral support functions of these facets are

h∅,F (c, 2c) = c and hG,A(a, b) = b. Then hG,A(c, 2c) = 2c, so hG,A|CF = 2h∅,F .

Consider the parameter β = (1/2, 1). This parameter is already in CF . Since

h∅,F (β) = 1/2 is not in Z, the same is true of h∅,F (λ) for every λ ∈ CF ∩ (β + Z2).

However, hG,A(β) = 2 ∈ Z.

Recall that nA/F is the number of columns of A which are not in F ; equivalently,

nA/F = n− dimCF .

Theorem 3.5.8 Assume SA is normal, let F � A be a face, and let β ∈ Cd.

1. If β ∈ CF + Zd and hG(β) ∈ Z<0 for every facet G � F , then there exists a

λ ∈ CF ∩ (β + Zd) such that

πF+MA(β) ∼=MF (λ)⊗C
∧
CdA/F [nA/F − dA/F ];

otherwise, πF+MA(β) = 0.

2. If β ∈ CF + Zd and hG(β) ∈ Z<0 for every facet G � F , then there exists a

λ ∈ CF ∩ (β + Zd) such that

i+FMA(β) ∼=MF (λ)⊗C
∧
CdA/F [−nA/F ];

otherwise, i+FMA(β) = 0.

Proof We prove (1); statement (2) is proved similarly.

Recall that the Fourier–Laplace transform interchanges πF+ and i+F [nA/F ]. There-

fore, (1) is equivalent to the following statement (where we recall from (3.2.2) that

M̂A(β) := FL−1(MA(β))):
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(∗) If β ∈ CF + Zd and hG(β) ∈ Z<0 for every facet G � F , then there exists a

λ ∈ CF ∩ (β + Zd) such that

i+FM̂A(β) ∼= M̂F (λ)⊗C
∧
CdA/F [−dA/F ];

otherwise, i+FM̂A(β) = 0.

We prove this Fourier–Laplace transformed statement.

Choose an open subset U of Cn such that U ∩XA = fSuppM̂A(β). Theorem 2.9.3

establishes that

M̂A(β) ∼= MGM∗A(U, β). (3.5.3)

If β /∈ CF+Zd or hG(β) ∈ C\Z<0 for some facet G � F , then OA(F ) is not contained

in U by Lemma 2.9.1(c). Theorem 3.5.4(1) then applies to give that i+FM̂A(β) = 0.

Suppose β ∈ CF +Zd and hG(β) ∈ Z<0 for every facet G � F . By normality, the

direct sums in Theorem 3.5.4(2) collapse to a single summand, giving

i+FM̂A(β) ∼= MGM∗F
(
i−1
F (U), λ0

)
⊗C
∧
CdA/F [−dA/F ],

where λ0 ∈ CF ∩ (β + Zd) is arbitrary. Therefore, taking into account (3.5.3), it

remains to show that there exists a λ ∈ CF ∩ (β + Zd) such that

MGM∗F
(
i−1
F (U), λ0

) ∼= M̂F (λ).

Choose a λ ∈ CF ∩ (β +Zd) as in Lemma 3.5.6. By Theorem 2.9.3 together with

Lemma 2.9.1(c), we need to show for all facets F ′ of F ,

hF ′(λ) ∈ Z<0 if and only if i−1
F (U) ⊇ OF (F ′).

Let F ′ be a facet of F .

If hF ′(λ) ∈ Z<0, then hG(β) ∈ Z<0 for every facet G of A containing F ′ by

assumption on β and by Lemma 3.5.6, and β = λ + (β − λ) ∈ CF ′ + Zd; hence,

i−1
F (U) ⊇ OF (F ′) by Lemma 2.9.1(c).

If hF ′(λ) ∈ N, then hG(β) ∈ N for some facet G of A containing F ′, and therefore

i−1
F (U) + OF (F ′) by Lemma 2.9.1(c).
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Finally, if β ∈ CF ′ + Zd, then λ = β + (λ − β) ∈ (CF ′ + Zd) ∩ CF = CF ′ + ZF

(because F is saturated), and therefore hF ′(λ) ∈ Z. Hence, if hF ′(λ) /∈ Z, then

β /∈ CF ′ + Zd. Thus, i−1
F (U) + OF (F ′) by Lemma 2.9.1(c).

Note that Theorem 3.5.8 only claims the existence of λ. A possibly interesting

question for the future would be to turn the proofs of Lemmas 3.5.5 and 3.5.6 into

an algorithm for computing such a λ.

The following corollary follows immediately from Theorem 3.5.8:

Corollary 3.5.9 Assume SA is normal, let F � A be a face, and let β ∈ Cd. Then

at least one of i+FMA(β) and πF+MA(β) is zero.

3.6 Duality of normal GKZ systems

Throughout this section, SA is assumed to be normal. In Theorem 3.6.3, we as-

sume in addition that A is homogeneous (Recall that A is homogeneous if its columns

all lie in a hyperplane).

Lemma 3.6.1 shows that for all parameters β, there is a parameter β′ ∈ −β +

Zd such that M̂A(β′) has the cofiber support one would expect for the holonomic

dual of M̂A(β). Proposition 3.6.2 uses this to prove that this M̂A(β′) is indeed the

holonomic dual of M̂A(β). The Fourier–Laplace transform of this result, together

with a monodromicity argument, gives Theorem 3.6.3.

Lemma 3.6.1 Let β ∈ Cd. Then there exists a β′ ∈ −β + Zd such that

cofSuppM̂A(β′) = fSuppM̂A(β).

If β does not lie on the C-span of any facet, then β′ may be taken to be −β.

Proof By Lemma 2.9.1(c) and (d), it suffices to show that there exists a β′ ∈ −β+Zd

for all facets G � A,

hG(β′) ∈ N if and only if hG(β) ∈ Z<0.
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Choose γ ∈ Zd as in Lemma 3.5.5. Then M̂A(β) and M̂A(β + γ) have the same

fiber support (by Lemma 2.9.1(c)) and are therefore isomorphic by Theorem 2.9.3.

Moreover, β + γ does not lie on the C-span of any facet. Replacing β with β + γ, we

may assume that β itself does not lie on the C-span of any facet.

Let β′ = −β. Then hG(β) is never zero, so hG(β′) ∈ N if and only if hG(β) ∈ Z<0,

as hoped.

Proposition 3.6.2 Let β ∈ Cd. Then there exists a β′ ∈ −β + Zd such that

DM̂A(β) ∼= M̂A(β′). If β does not lie on the C-span of any facet, then β′ may

be taken to be −β.

Proof By Theorem 2.9.3, there exists an open U ⊆ Cn with U∩XA = fSuppM̂A(β)

such that M̂A(β) ∼= MGM∗(U, β). Applying the holonomic duality functor gives

DM̂A(β) ∼= MGM(U,−β). Now use Theorem 2.9.3 again along with Lemma 3.6.1.

Theorem 3.6.3 Assume that A is homogeneous. Let β ∈ Cd. Then there exists a

β′ ∈ −β + Zd such that DMA(β) ∼=MA(β′). If β does not lie on the C-span of any

facet, then β′ may be taken to be −β.

Proof By [9, Lem. 1.13], the homogeneity condition implies that everyA-hypergeometric

system is monodromic. By [31, Prop. 6.13] (or rather the restatement of it for D-

modules which appears in [9, Th. 1.4]), ifM is monodromic, then DFLM∼= FLDM.

Now use Proposition 3.6.2.
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