
EFFICIENT ALGORITHMS FOR LEARNING COMBINATORIAL

STRUCTURES FROM LIMITED DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Asish Ghoshal

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Jean Honorio, Chair

Department of Computer Science, Purdue University

Dr. Dan Goldwasser

Department of Computer Science, Purdue University

Dr. Elena Grigorescu

Department of Computer Science, Purdue University

Dr. Tommi Jaakkola

Department of Computer Science, Massachusetts Institute of Technology

Dr. Jennifer Neville

Department of Computer Science, Purdue University

Approved by:

Dr. Voicu Popescu

Graduate Committee Chair, Department of Computer Science,

Purdue University



iii

ACKNOWLEDGMENTS

First and foremost, I acknowledge the starring role played by my advisor Prof.

Jean Honorio in the materialization of the thesis. I have not looked back since starting

research with Jean in the middle of my third year at Purdue. His technical expertise,

knowledge of the literature, and unique perspective on problems have ensured my

productivity throughout my time with him. Beside research, he has been an excellent

mentor in giving his inputs on matters relating to career, health, and life in general.

I owe a great deal to him for my professional and academic development.

I am also thankful to my Ph.D. committee members, especially Prof. Jennifer

Neville, for their sharp insights and valuable feedback on the dissertation.

The computer science department at Purdue has been a second home of sorts

during my time here. I am thankful to the department leadership for providing

a stimulating academic and learning environment, their financial support through

various fellowships, and providing access to various computing and other resources

that have been indispensable in my research. I am also grateful to the CS support

staff who have been very diligent on various matters relating to travel and funding.

Surviving six Midwest winters would have been impossible had it not been for a

strong community of friends that I have been fortunate enough to have at Purdue.

Gaurav, Romila, Saurav, Pinaki, Miku, Prateek, and Aparajita have been like a loving

family over the years. The numerous potlucks and Chai get-togethers that we have

organized have been some of the most fun times at Purdue — something that I will

fondly reminisce over the coming years. Akash, Abhiram, Rohit, Vikram, Mayank,

GV, and many other friends in the CS department have ensured that I never had to

endure a dull moment both inside and outside of the department. They have been

instantly reachable for mindless and passionate discussions on everything under the

sun including but not limited to: AI, politics, cricket, and religion. I would also like to



iv

thank Adarsh, Kevin, and Chuyang and other members of our research group under

Prof. Honorio for their time and feedback on mock presentations before conferences.

Lastly, I would like to thank Akshay and Shivaram for giving me the opportunity to

organize weekly Yoga sessions as part of the Purdue Hindu YUVA group, and in the

process opening my mind to experiences and views that have significantly changed

my life.

I will forever be indebted to my parents and sister for their love, encouragement,

and support that has kept me going in the toughest of situations. I am especially

thankful to my parents who have worked doubly hard in ensuring that I (along with

my sister) received the best of education. Growing up at a time and place in India

where we had no access to affordable quality education, my parents made our educa-

tion the single most important purpose of their life. To say that I would be nowhere

without their support is a huge understatement.

Lastly, I would like to thank my wife Shraddha who has been my rock in both

the most turbulent and serene phases of my life at Purdue. Being a graduate student

meant I spent many hours over weekends and holidays working on research — I am

grateful to her for putting up with me during such times. I am thankful to her for

being there through thick and thin and when I have been at my most vulnerable self.

Her near constant chatter at home has made life tremendously fun and also increased

my tolerance for annoyance.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Directed Probabilistic Graphical Models . . . . . . . . . . . . . 2
1.1.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Structured Prediction . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline and Previously Published Work . . . . . . . . . . . . . . . . . . 6
1.4 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 LEARNING STRUCTURAL EQUATION MODELS . . . . . . . . . . . . . 8
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Learning SEMs with Unknown Error Variances . . . . . . . . . . . . . 14

2.3.1 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Statistical Guarantees for Estimation . . . . . . . . . . . . . . . 19

2.4 Learning SEMs with Known Error Variances . . . . . . . . . . . . . . . 23
2.4.1 Statistical Guarantees for Estimation . . . . . . . . . . . . . . . 24

2.5 Information-theoretic Lower Bounds . . . . . . . . . . . . . . . . . . . . 27
2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 LEARNING GRAPHICAL GAMES . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Method and Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . 42
3.4 Information-theoretic Lower Bounds . . . . . . . . . . . . . . . . . . . . 49
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



vi

Page

4 STRUCTURED PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Generalization Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Towards an Efficient Learning Algorithm . . . . . . . . . . . . . . . . . 63

4.3.1 Generalization Bound . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Examples of Proposal Distributions . . . . . . . . . . . . . . . . 67
4.3.3 Minimizing the CRF Loss . . . . . . . . . . . . . . . . . . . . . 69

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A DETAILED PROOFS FOR SEMS . . . . . . . . . . . . . . . . . . . . . . . 85

B DETAILED PROOFS FOR GAMES . . . . . . . . . . . . . . . . . . . . . . 94

C DETAILED PROOFS FOR STRUCTURED PREDICTION . . . . . . . . 106



vii

LIST OF TABLES

Table Page

2.1 Performance of our method vis-à-vis other state-of-the-art methods in the
identifiable regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Performance of our method vis-à-vis other state-of-the-art methods in the
non-identifiable regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Attributes of gene expression data sets . . . . . . . . . . . . . . . . . . . . 33

3.1 Nash equilibria learned from supreme court voting data . . . . . . . . . . . 53

3.2 Nash equilibria learned from congressional voting records . . . . . . . . . . 55

3.3 Nash equilibria learned from U.N. voting data . . . . . . . . . . . . . . . . 56

4.1 Test set hamming error (number of mismatched key points) of the three
methods on the image matching task. . . . . . . . . . . . . . . . . . . . . 74



viii

LIST OF FIGURES

Figure Page

2.1 Probability of correct structure recovery vs. number of samples . . . . . . 29

2.2 The mean negative log likelihood of each method, on the test set, computed
across 10 bootstrap runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The mean speed-up of our method vs. other state-of-the-art methods. . . 34

3.1 Probability of PSNE recovery vs. number of samples . . . . . . . . . . . . 50

3.2 Graphical game learned from supreme court voting data . . . . . . . . . . 52

3.3 Game graph learned from 114th U.S. congressional voting records . . . . . 54

3.4 Graphical game learned from UN voting data . . . . . . . . . . . . . . . . 56

4.1 Training and test set loss of our method vis-à-vis other methods . . . . . . 71

4.2 Performance of our method on the image matching task . . . . . . . . . . 74



ix

ABSTRACT

Ghoshal, Asish PhD, Purdue University, May 2019. Efficient Algorithms for Learning
Combinatorial Structures from Limited Data. Major Professor: Jean Honorio.

Recovering combinatorial structures from noisy observations is a recurrent prob-

lem in many application domains, including, but not limited to, natural language

processing, computer vision, genetics, health care, and automation. For instance, de-

pendency parsing in natural language processing entails recovering parse trees from

sentences which are inherently ambiguous. From a computational standpoint, such

problems are typically intractable and call for designing efficient approximation or

randomized algorithms with provable guarantees. From a statistical standpoint, al-

gorithms that recover the desired structure using an optimal number of samples are

of paramount importance.

We tackle several such problems in this thesis and obtain computationally and

statistically efficient procedures. We demonstrate optimality of our methods by prov-

ing fundamental lower bounds on the number of samples needed by any method for

recovering the desired structures. Specifically, the thesis makes the following contri-

butions:

(i) We develop polynomial-time algorithms for learning linear structural equation

models — which are a widely used class of models for performing causal inference

— that recover the correct directed acyclic graph structure under identifiability

conditions that are weaker than existing conditions. We also show that the

sample complexity of our method is information-theoretically optimal.

(ii) We develop polynomial-time algorithms for learning the underlying graphical

game from observations of the behavior of self-interested agents. The key com-

binatorial problem here is to recover the Nash equilibria set of the true game
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from behavioral data. We obtain fundamental lower bounds on the number of

samples required for learning games and show that our method is statistically

optimal.

(iii) Lastly, departing from the generative model framework, we consider the problem

of structured prediction where the goal is to learn predictors from data that

predict complex structured objects directly from a given input. We develop

efficient learning algorithms that learn structured predictors by approximating

the partition function and obtain generalization guarantees for our method.

We demonstrate that randomization can not only improve efficiency but also

generalization to unseen data.
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1 INTRODUCTION

1.1 Background and Motivation

Machine learning is beginning to play a central role in modern society, where ma-

chine learning techniques are not only driving progress in a multitude of domains, for

instance, health care, genetics, automation, and transportation, to name a few, but

are also playing the role of automated arbiters in systems affecting law and order,

national security, and social justice. From a computational standpoint, many of the

problems that are being tackled using machine learning techniques, are intractable

in the sense that they do not admit polynomial time algorithms that can solve all

instances of the problem. Furthermore, learning algorithms that power much of these

systems often have to simultaneously contend with both limited amount of data: for

instance in domains like health care, where data collection can be both expensive and

unethical or impractical, and high-dimensional regimes that involve jointly reasoning

about millions or billions of variables. Due to many of these systems being mission

critical, learning algorithms with strong computational and statistical guarantees are

desired. The focus of this thesis is on intractable learning problems that arise in two

important areas: causal inference and game theory. The problems that we consider,

while being intractable, have a common theme in that they are concerned with learn-

ing combinatorial structures from data. We consider both the computational and

statistical aspects of the problems and propose algorithms that are both polynomial

time and (nearly) statistically optimal. In what follows, we describe the problems

considered in this thesis at a high level and then summarize the main technical con-

tributions of the thesis.
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1.1.1 Directed Probabilistic Graphical Models

Directed graphical models, or Bayesian networks, provide a compact represen-

tation of joint distributions over many variables by representing the conditional

independence relationships encoded in the distribution as a directed acyclic graph

(DAG). Learning the DAG structure of Bayesian networks from observational data

is of tremendous practical importance, since under suitable assumptions on the data

generating process, they help recover cause-effect relationships from purely observa-

tional data. Estimating direct causal effects from data is the fundamental goal of

causal inference. For instance, in health sciences, practitioners are often interested in

estimating an outcome Y (severity of a disease) given a treatment X (drug). Simi-

larly, in genetics, a pertinent problem is to determine how much a transcription factor

X regulates the expression of a gene Y . These problems can be cast in the struc-

tural equation model (SEM) framework of Pearl [Pea09], which are a special case of

Bayesian networks wherein each variable is written as a function of the variables that

directly determine it — for instance, in the above examples we would write Y = f(X)

for some measurable function f . In the SEM framework, along with the set of al-

gebraic equations, we have a directed acyclic graph (DAG) G = (V,E), where the

vertex set represents the variables under consideration (V = {X, Y } for the preceding
examples), and for each function describing the relationship between the quantities

of interest, we have a directed arc from each variable on the right hand side of the

equation to the variable on the left (E = {Y ← X} for the preceding examples).

The learning problem then corresponds to recovering the DAG G and the functions f

given observations of the variables. The questions that the thesis tackles in this area

are:

(i) Identifiability: Are the causal effects, i.e., the DAG and the functions quan-

tifying the causal relationships, uniquely identifiable from observational or ex-

perimental data?
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(ii) Efficient algorithms: Given that structure learning of SEMs is NP-complete

[Chi96,Das99], are there broad sub-classes of SEMs that are poly-time learnable?

(iii) Sample complexity: What are the fundamental limits on the number of sam-

ples required by any procedure for estimating causal effects from data? Are

there statistically efficient procedures for estimating causal effects? where by

statistically efficient procedures we mean algorithms that attain the fundamental

limits on the number of samples required for causal inference.

1.1.2 Game Theory

While in the previous section we considered scenarios that are best viewed through

the lens of causal inference, many complex real-world data can be thought of as result-

ing from the behavior of a large number of self-interested agents trying to myopically

or locally maximize some utility. Over the past several decades, non-cooperative game

theory has emerged as a powerful mathematical framework for reasoning about such

strategic interactions between self-interested agents. Traditionally, research in game

theory has focused on computing the Nash equilibria (NE) (c.f. [BSK06] and [JLB11])

— which characterizes the stable outcome of the overall behavior of self-interested

agents — correlated equilibria (c.f. [KKLO03]), and other solution concepts given a

description of the game. Computing the price of anarchy (PoA) for graphical games,

which in a sense quantifies the inefficiency of equilibria, is also of tremendous inter-

est (c.f. [BZR11]). The aforementioned problems of computing the NE, correlated

equilibria and PoA can be thought of as inference problems in graphical games, and

require a description of the game, i.e., the payoffs of the players. In many real-world

settings, however, only the behavior of the agents are observed, in which case infer-

ring the latent payoffs of the players from observations of behavioral data becomes

imperative. The learning problem then corresponds to recovering the structure and

parameters of the player payoffs from observations of behavioral data such that, the
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Nash equilibria of the game in some sense approximates the Nash equilibria of the

true game. The key questions that the thesis pursues are:

(i) Identifiability: Given that the graph structure of a graphical game is not

identifiable from the Nash equilibria set of the game, i.e., multiple graphs can

result in the same Nash equilibria set under different payoff functions [HO15],

is it possible to recover a game whose Nash equilibria are consistent with the

game from which data was generated?

(ii) Efficient algorithms: Given that computing the Nash equilibria is intractable

[CD06, DGP09], is it possible to learn games from behavioral data, without

computing the Nash equilibria?

(iii) Sample complexity: What are the fundamental limits on the number of sam-

ples required by any procedure for learning games? Are there algorithms that

achieve these fundamental lower bounds?

1.1.3 Structured Prediction

The aforementioned cases are instances of an approach to learning called gener-

ative modeling wherein we assume that data is generated from a specific family of

models, viz. linear equation models or polymatrix games, and the goal is to develop

estimators that recover a model from data that is as close as possible to the “true”

model. Discriminative learning on the other hand provides an alternative approach

for learning combinatorial structures from data, where the problem is to directly

learn a discriminant function f : X→ Y that maps input x ∈ X to “structured out-

puts” y ∈ Y. Such problems are naturally dealt within the framework of structured

prediction where for a given input x a prediction is made by first computing scores

score(x, y′) ∈ R for all y′ ∈ Y and then returning the output y that maximizes the

score:

f(x) = argmax
y′∈Y

score(x, y′), (1.1)
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with ties broken arbitrarily. The above inference problem (1.1) is often intractable

and presents a number of computational and statistical challenges for learning optimal

decoders f from a finite sample of observations of input-output pairs S = {(xi, yi)}mi=1.

The main questions that we seek to answer in this thesis are:

(i) Efficient learning: Is it possible to efficiently learn decoders f : X→ Y from

a finite sample S = {(xi, yi)}mi=1 by solving the inference 1.1 problem approxi-

mately?

(ii) Generalization guarantees: Can decoders learned in such a way generalize

to unseen examples?

1.2 Contributions

The overarching contribution of this thesis is to show that for many intractable

problems in machine learning, there exists polynomial time algorithms that exactly

solve broad sub-classes of problem instances in polynomial time, or that circumvent

intractability by considering alternative objectives that are easier to solve while pro-

viding approximation guarantees on the original objectives. Specifically:

(i) We show that, SEMs are uniquely identifiable under conditions on the noise

variances and data generating process that are more general than those known

in the literature. We present truly polynomial time algorithms for solving such

instances, obtain information-theoretic lower bounds on the number of sam-

ples required for recovering the structure of SEMs (or more generally Bayesian

networks), and show that our algorithms are nearly statistically optimal.

(ii) We also develop polynomial time algorithms that learn games from behavioral

data without computing the NE of the game, while still guaranteeing that the

NE of the learned game is an epsilon-NE of the true game. We also obtain

information-theoretic lower bounds for the problem of learning games from data
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and show that the sample complexity of our algorithm is close to the information-

theoretic limits.

(iii) We show that it is possible to learn structured predictors in polynomial time by

solving the inference problem to a constant factor approximation. Furthermore,

we obtain Rademacher-based generalization bounds for our structured predictors

that guarantee generalization to unseen examples.

1.3 Outline and Previously Published Work

The rest of the report is organized as follows. Chapter 2 is concerned with learning

SEMs, and describes in detail our main results, proofs, and juxtaposes our work with

previous work. Chapter 3 delves into learning games, and describes our main results

for the same, along with detailed comparison with prior work. Finally, Chapter 4

details our theoretical and empirical results for structured prediction.

The bulk of the report is based on the following papers [GH18a,GH18c,GH18b],

which are joint work of mine with Jean Honorio. The first paper [GH18a] contains

our results for learning SEMs, which in turn build on our previous papers [GH17a]

and [GH17c]. The main results for learning games are described in the paper [GH18c],

which in turn builds on our previous work related to learning games from [GH16,

GH17b], while [GH18b] describes our main results for structure prediction.

1.4 General Notation

We will let [p] denote the set {1, . . . , p}. Since the first two chapters extensively

relies on linear algebra, we denote vectors and matrices by lowercase and uppercase

bold faced letters respectively to make the presentation clear. However, in the third

chapter we do not make use of any special notation for vectors and matrices. For

any two non-empty index sets sr, sc, the matrix Asr,sc denotes the submatrix of A

obtained by selecting the sr rows and sc columns of A. With a slight abuse of
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notation, we will allow the index sets sr and sc to be a single index, e.g., i, and we

will denote the index set of all rows (or columns) by ∗ and the set −i def
= [p] \ {i}.

For any p × p matrix A (equivalently p × 1 vector), we will denote its support set

by: S(A) = {(i, j) ∈ [p] × [p] |Ai,j 6= 0}. Vector `p norms are denoted by ‖·‖p.
For matrices, ‖·‖p denotes the induced (or operator) `p-norm and |·|p denotes the

elementwise `p norm, i.e., |A|p
def
= (
∑

i,j |Ai,j|
p)1/p. For two matrices A and B, A ◦B

denotes the Hadamard product of A and B, while diag(A) denotes the vector formed

by taking the diagonal of A. For a vector v, Diag(v) denotes the diagonal matrix

with v in the diagonal.
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2 LEARNING STRUCTURAL EQUATION MODELS

Structural equation models (SEMs) is a commonly employed mathematical machinery

for performing causal inference. Conditions under which SEMs can be uniquely iden-

tified from observational data have been recently characterized. Unfortunately, for

linear SEMs, identifiability conditions have been rather limited, and existing structure

learning algorithms are inefficient. In this chapter, we consider the problem of learn-

ing linear SEMs over p variables and bounded-degree d, from purely observational

data, with arbitrary noise distributions having bounded second moment — including

but not limited to the Gaussian distribution. We generalize existing identifiability

conditions for learning linear SEMs, and present computationally and statistically

efficient algorithms for learning the structure of linear SEMs when identifiable. We

make the following technical contributions:

We present a new identifiability condition for learning linear SEMs from observa-

tional data that generalizes the homoscedastic Gaussian noise (equal noise variance)

case considered by [PB14]. Our algorithm also works for the case when the noise

variances are known up to a constant factor — a sufficient condition under which

linear SEMs are identifiable as shown by [LB14]. This disproves an earlier conjecture

by [LB14] that "variance scaling or non-Gaussianity is necessary in order to guarantee

identifiability" of linear SEMs. Moreover, we show that our identifiability condition

is necessary for ensuring identifiability of linear SEMs, in the sense that, if the identi-

fiability condition is violated then there exist an exponential number of DAGs which

induce the same covariance and precision matrix, and specify distributions that have

the same conditional independence structures.

To the best of our knowledge, ours is the first method for learning SEMs with

element-wise `∞ guarantees for recovering the autoregression matrix — the matrix of

(directed) edge weights of the SEM. In contrast, score based approaches [VDGB13,
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LB14] have guarantees on the score of the learned DAG structure. An unfortunate

consequence of this is that, in order for these methods to recover the true DAG

structure by finding the highest scoring DAG structure on the sample data set, the

“score gap” between the true structure and the next best structure must scale as Ω (p)

(see Equation 27 in [LB14]), which is unreasonable since the best DAG structure and

the next best DAG structure might only differ on a constant number of edges, in

which case the scores might differ by o(p).

Our method is fully non-parametric, works for both Gaussian and non-Gaussian

noise, and, to the best of our knowledge, the most efficient algorithm available for

learning linear SEMs with provable guarantees. Given the inverse covariance (or pre-

cision) matrix, our method, which resembles a Cholesky factorization, can recover the

structure and parameters of the SEM exactly in O(p(d+ log p)) floating-point opera-

tions. In contrast [LB14]’s algorithm takes O
(
p22(w+1)(w+d)

)
time in the population

setting, where w is the tree-width and d is the maximum degree of the graph. In the

finite sample setting, our method involves estimating the precision matrix, which can

be done by solving p linear programs (LPs) and then performing p iterations to learn

the structure and parameters of the SEM by identifying and removing terminal (sink)

vertices. If the estimated precision matrix is sparse, then each iteration involves solv-

ing at most d linear programs in at most d dimensions, leading to an overall smoothed

complexity of Õ (p3 + pd4). When the estimated precision matrix is dense our method

has a smoothed complexity of Õ (p5). This is significantly better than [PB14]’s al-

gorithm for learning linear Gaussian SEMs as well as [LB14]’s algorithm for learning

SEMs with known noise variance. While the former is is exponential in p, the latter is

exponential in d and the tree-width of the SEM when the estimated precision matrix

is sparse and exponential in p for the dense case.

Our algorithm also works in the high-dimensional regime, when n � p and

d = o(p), and has a sample complexity of O(d
4

ε2
log( p√

δ
)) and O(d

4

ε2
(p

2

δ
)1/m) for sub-

Gaussian noise and noise with bounded 4m-th moment respectively, for recovering the

autoregression matrix of the SEM up to ε additive error with probability at least 1−δ.
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The sample complexity of our algorithm for sub-Gaussian noise is better than [LB14]’s

algorithm, which has a sample complexity of O (p2 log p), and is therefore unsuitable

for the high-dimensional regime. Moreover, unlike [LB14]’s algorithm, and other

methods that use conditional independence tests, for instance, the PC algorithm for

learning Gaussian SEMs [KP07], our algorithm does not require any faithfulness con-

ditions, and only requires a weaker causal minimality condition. The PC algorithm

and [LB14]’s algorithm can fail to recover the correct DAG for distributions that

are not faithful to the DAG structure. Our results have the following significant yet

hitherto unknown implication for learning Gaussian Bayesian networks. Given data

generated from a Gaussian Bayesian network that is causal minimal to the true DAG

structure, one can recover the DAG structure in polynomial time and sample com-

plexity from a finite number of samples, under more general identifiability conditions

than homoscedastic noise.

Lastly, we obtain several useful results about the theory of linear SEMs en route

to developing our main algorithm for learning linear SEMs.

2.1 Preliminaries

We begin this section by introducing our notations and definitions before formal-

izing the problem of learning linear SEMs from observational data.

Let G = ([p],E) be a directed acyclic graph (DAG) where [p] is the vertex set and

E ⊂ [p] × [p] is the set of directed edges. An edge (i, j) ∈ E implies the edge i ← j.

We denote by πG(i) and φG(i) the parent set and the set of children of the i-th node

respectively, in the graph G; and drop the subscript G when the clear from context.

The set of neighbors of the i-th node is denoted by NG(i) = πG(i)∪φG(i). A node j is

a descendant of i in G if there exists a (directed) path from i to j in G. We will denote

the set of descendants of i by DG(i). Similarly, we will denote the set of ancestors of i

— nodes j such that there is a path from j to i in G — by the set AG(i). The Markov

blanket of a node is defined as: MBG(i) = NG(i)∪{k ∈ πG(j) | j ∈ φG(i)}.



11

A vertex i ∈ [p] is a terminal vertex in G if φG(i) = ∅. For each i ∈ [p] we

have a random variable Xi ∈ R, X = (X1, . . . , Xp) ∈ Rp is the p-dimensional vector

of random variables, and x = (x1, . . . , xp) is a joint assignment to X. Every DAG

G = ([p],E) defines a set of topological orderings TG over [p] that are compatible with

the DAG G, i.e., TG = {τ ∈ Sp | τ(j) < τ(i) if (i, j) ∈ E}, where Sp is the set of all

possible permutations of [p].

The random vector X follows a linear structural equation model (SEM), if each

variable can be written as a linear combination of the variables in its parent set as

follows:

Xi =
∑

j∈πG(i)

Bi,jXj +Ni (∀i ∈ [p]), (2.1)

where G = ([p],E) is a DAG, N = (N1, . . . , Np) are the noise or exogenous variables.

We assume that the exogenous variables Ni⊥⊥Xj for all j /∈ DG(i) and i ∈ [p].

Without loss of generality, we assume that E [Xi] = E [Ni] = 0, ∀i ∈ [p]. As is

typically the case in the literature of SEMs, we further assume that the noise variables

Ni have bounded second moments and are independent. Thus Cov [N ] = E
[
NNT

]
=

Diag(σ2
1, . . . , σ

2
p). We can then write (2.1) in vector form as follows:

X = BX +N, (2.2)

where B = (Bi,j) is referred to as the autoregression matrix and S(B) = E. Therefore,

we will denote an SEM by the triple (G,B, {σ2
i }) 1.

Given an SEM (G,B, {σ2
i }), the joint distribution P(X) is completely determined

and factorizes according to the DAG structure G:

P(X;G) =

p∏

i=1

Pi(Xi|XπG(i);G), (2.3)

where Pi is the conditional distribution of the Xi. We then say that the distribu-

tion P is Markov with respect to the DAG G, i.e., Xi satisfies the Markov condition:
1An SEM is fully characterized by G, B and the distribution of the exogenous variables. However,
since we are concerned with learning SEMs using second moments only, our notation captures all
the required information.
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Xi⊥⊥Xj | Xπ(i), ∀i ∈ [p],∀j ∈ [p]\ (D(i)∪π(i)∪{i}). Thus an SEM is equivalent to a

Bayesian network. Specifically, if the noise variables are Gaussian, then P is a Gaus-

sian Bayesian network (GBN), where the joint distribution P and the conditional

distributions Pi are Gaussian. We obtain our theoretical results for the class of DAGs

with Markov blanket at most d: Gp,d def
= {G | G = ([p],E) is a DAG and |MBG(i)| ≤

d, ∀i ∈ [p]}.
Next, we define the notion of causal minimality, introduced by [ZS08], which is

important for ensuring identifiability of linear SEMs considered in this report.

Definition 2.1.1 (Causal Minimality) Given a DAG G, a distribution P(X), that

is Markov with respect to G, is causal minimal if P is not Markov with respect to a

proper subgraph of G.

Our assumption of S(B) = E, ensures that Lemma 4 of [PMJS14] holds for all SEMs

(G,B, {σ2
i }). This in turn implies that the joint distribution P(X) determined by the

SEM (G,B, {σ2
i }) is causal minimal with respect to G (see Proposition 2 in [PMJS14]).

Therefore, the SEMs considered in the report are causal minimal. Causal minimality

is much weaker than faithfulness which requires that the distribution P(X) contain

only those conditional independence assertions that are implied by the d-separation

criteria of the DAG [SGS00]. However, faithfulness cannot be tested from data in full

generality [ZS08] and algorithms that infer the DAG structure from a finite number

of samples must require strong faithfulness [ZS02], which is a restrictive assumption.

Problem: The problem of learning the structure of an SEM is as follows. Given an

n×p data matrix X = (x1, . . . ,xp), with xi ∈ Rn, drawn from an SEM (G∗,B∗, {σ2
i })

with G∗ ∈ Gp,d, we want to learn an SEM (Ĝ, B̂, {σ̂2
i }) from X such that G∗ = Ĝ.

2.2 Related Work

We start our discussion of existing literature by first presenting known identifia-

bility conditions for learning SEMs and Bayesian networks. [PMJS14] proved iden-

tifiability of distributions drawn from a restricted SEM with additive noise, where
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in the restricted SEM the functions are assumed to be non-linear and thrice con-

tinuously differentiable. Linear SEMs are identifiable if (a) the noise variables are

non-Gaussian [SHHK06], (b) the noise variances are known up to a constant fac-

tor [LB14], and (c) noise variables are Gaussian and have the same variance [PB14]

(homoscedastic noise). [PR17] introduced Quadratic Variance Function (QVF) DAG

models — a class of Bayesian networks in which the conditional variance of a variable

is a quadratic function of its conditional mean — and proved identifiability of the

models from observational data. However, QVF DAG models cannot be expressed

as SEMs in general, and the quadratic variance property holds for a handful of con-

ditional distributions which includes Binomial, Poisson, Exponential, Gamma, and a

few others.

The computational and statistical complexity landscape of learning linear SEMs is

peppered by inefficient algorithms. This is in part justified by various hardness results

known in the literature for learning DAGs from observational data [Chi96,Das99]. Al-

gorithms for learning DAGs can be divided into two categories: independence test

based methods and score based methods. Score based methods use a score function,

typically penalized log-likelihood, to find the best scoring DAG among the space

of all DAGs. Since the number of DAGs and degree-bounded DAGs is exponen-

tial in p [Rob77,GH17a] brute force methods, and existing score-based methods are

exponential time. A popular score function for learning Gaussian SEMs is the `0-

penalized Gaussian log-likelihood score proposed by [VDGB13]. [PB14] proposed us-

ing `0-penalized Gaussian log-likelihood score for learning homoscedastic noise linear

Gaussian SEMs along with a heuristic greedy search algorithm which is not guar-

anteed to find the correct (highest-scoring) solution. [LB14] showed that under a

faithfulness assumption, the sparsity pattern of the precision matrix corresponds to

the edge structure of the moral graph of the underlying DAG. They exploit this prop-

erty to devise an algorithm that searches for the highest-scoring DAG, using dynamic

programming, that has the same moral graph as that given by the sparsity pattern

of the precision matrix. Independence test based methods on the other hand require
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restrictive faithfulness conditions to guarantee structure recovery. [KP07] proposed

using the PC algorithm, which was originally proposed by [SGS00] and has a com-

putational complexity of O
(
pd
)
, for learning Gaussian SEMs and proved asymptotic

uniform consistency of the algorithm for recovering the Markov equivalence class, i.e.,

a CPDAG. However the PC algorithm is only efficient for learning very sparse Gaus-

sian SEMs. Among computationally efficient algorithms, the Direct-LiNGAM algo-

rithm [SIS+11], which strictly requires non-Gaussianity of the noise variables, needs

an infinite number of samples to guarantee structure recovery. This is because of the

use of independence testing between a variable and its residuals to detect exogenous

variables (variables with no parents). For the same reason, the correctness of RE-

SIT [PMJS14], which is a computationally efficient algorithm for learning non-linear

SEMs, is only guaranteed in the population setting. [GH17c] proposed a polynomial

time algorithm, similar to the one proposed in this paper, for learning Gaussian SEMs

(or Gaussian Bayesian networks) with a sample complexity of O (d4 log p). However,

their method, theoretical guarantees and proofs crucially rely on the Gaussianity of

the data distribution.

Other authors have proposed various approximation algorithms and heuristic

methods for learning Bayesian networks, which can be used to learn Gaussian SEMs

by using appropriate score functions. Popular heuristic methods are max-min hill

climbing (MMHC) algorithm by [TBA06], and the Greedy Equivalence Search (GES)

algorithm proposed by [Chi03]. [JSG+10] proposed an LP-relaxation based method

for learning Bayesian networks which is an approximation algorithm.

2.3 Learning SEMs with Unknown Error Variances

We start with presenting our main results for learning SEMs when the error vari-

ances are unknown. Our algorithm for learning SEMs works by constructing the SEM

in a bottom-up fashion. The algorithm has p iterations. In each iteration it identifies

and removes a terminal vertex, learning its parent set and edge weights along the
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way. We show that, under a certain identifiability condition which generalizes other

identifiability conditions known in the literature, e.g., homoscedastic errors, and with-

out assuming faithfulness of the distribution to the DAG, each of these steps can be

performed efficiently using only the precision matrix or an estimator of it.

2.3.1 Identifiability

The following assumption gives a sufficient condition under which the structure

and parameters of an SEM can be uniquely recovered from observational data using

Algorithm 1. The assumption is defined in terms of subgraphs of G obtained by

removing terminal vertices sequentially. For any τ ∈ TG, we will consider sequence of

graphs G[m, τ ] = (V[m, τ ],E[m, τ ]), indexed by (m, τ), where G[m, τ ] is the induced

subgraph of G over the first m vertices in the topological ordering τ , i.e., V[m, τ ]
def
=

{i ∈ [p] | τ(i) ≤ m} and E[m, τ ]
def
= {(i, j) ∈ E | i ∈ V[m, τ ] ∧ j ∈ V[m, τ ]}.

Assumption 2.3.1 (Identifiability condition) Given an SEM (G,B, {σ2
i }) with

G ∈ Gp,d, then ∀(i, j) ∈ V[m, τ ]×V[m, τ ],m ∈ [p], and ∀τ ∈ TG, such that φG[m,τ ](i) =

∅ ∧ φG[m,τ ](j) 6= ∅:

(σ2
i )
−1 < (σ2

j )
−1 +

∑

l∈φG[m,τ ](j)

(σ2
l )
−1B2

l,j, (2.4)

As we will show later, Assumption 2.3.1 essentially lays down a condition under

which terminal vertices, and subsequently the causal order, can be identified from the

precision matrix. From Assumption 2.3.1, we immediately get the following special

cases for identifiability of linear SEMs, where the first one is the homoscedastic case

known in the literature, while the second case is new.

Proposition 2.3.1 (Sufficient conditions for identifiability)

Let (G,B, {σ2
i }) be an SEM satisfying Assumption 2.3.1, with precision matrix Ω.

Then, either of the following two conditions are sufficient for uniquely identifying the

autoregression matrix B and the DAG G from Ω:
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(i) ∀i ∈ [p], σi = σ, for some σ > 0,

(ii) 1 < σi ≤ Bmin (∀i ∈ [p]), where Bmin
def
= min{|Bi,j| | (i, j) ∈ E}

For detailed proofs, see Appendix A. At this point one might ask if the above as-

sumption is necessary for identifiability of linear SEMs. We answer this question

in affirmative in the following lemma, which states that if Assumption 2.3.1 is vio-

lated, then there exists an exponential number of DAGs structures that induce the

same covariance and precision matrix, and determine joint distributions P(X) that

are causal minimal and Markov to the DAG structures. In the following lemma we

will equivalently denote an SEM by (G,B,D) where D is a diagonal matrix with

Di,i = σ2
i .

Lemma 2.3.2 There exists G̃p,d ⊂ Gp,d with
∣∣∣G̃p,d

∣∣∣ = 2Θ(p), autoregression matrices

B(β) parameterized by β, and diagonal matrices D(v1, v2) parameterized by v1, v2,

such that for each β ∈ (−∞,∞) and v1 ∈ (0,∞) and v2 > v1, the family of SEMs

{(G,B(β),D(v1, v2)) | G ∈ G̃p,d}, do not satisfy Assumption 2.3.1, induce the same

covariance and precision matrix, and distribution P(X) that has the same conditional

independence structure.

Given that the true SEM can come from the aforementioned family, no algorithm,

that uses only conditional independence tests and second moments, can consistently

recover the true DAG structure if Assumption 2.3.1 is not satisfied. Next, we present

a series of results building towards our main result for learning SEMs from precision

matrix. In the following proposition we characterize the precision matrix of linear

SEMs.
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Proposition 2.3.2 Let (G,B, {σ2
i }) be an SEM over X, then the precision matrix is

given as: Ω = (I−B)TD−1(I−B), where D = Diag(σ2
1, . . . , σ

2
p). The entries of the

precision matrix is given as:

Ωi,i = (σ2
i )
−1 +

∑

l∈φ(i)

(σ2
l )
−1B2

l,i, (2.5)

Ωi,j = −(σ2
i )
−1Bi,j − (σ2

j )
−1Bj,i +

∑

l∈φ(i)∩φ(j)

(σ2
l )
−1Bl,iBl,j.

The above characterization of the precision matrix motivates our indentifiability con-

dition given by Assumption 2.3.1, and also provides a recipe for identifying terminal

vertices from the precision matrix as is formalized by the following proposition.

Proposition 2.3.3 Let (G,B, {σ2
i }) be a SEM over X with precision matrix Ω, that

satisfies the identifiability condition given by Assumption 2.3.1. Then, i is a terminal

vertex in G if and only if i ∈ argmin(diag(Ω)). Further, if i is a terminal vertex then

σ2
i = 1/Ωi,i.

The next proposition, which follows directly from Proposition 2.3.3 and (2.5), states

that for a terminal vertex the parent set and edge weights can be conveniently “read

off” from the precision matrix. This is the key result which helps us avoid the faith-

fulness condition.

Proposition 2.3.4 Let (G,B, {σ2
i }) be an SEM over X with precision matrix Ω. If

i is a terminal vertex in G, then Bi,∗ = −Ωi,∗/Ωi,i and πG(i) = S(Ωi,∗) \ {i}.

The following lemma is a useful result about linear SEMs with arbitrary noise distri-

bution, that generalizes a result so far known only for the Gaussian distribution —

for a terminal vertex i, the precision matrix over X−i can be obtain by performing a

Schur complement update of the precision matrix over X. While, the result for the

Gaussian distribution holds for all variables, the analogous result for general SEMs

holds only for terminal vertices.

Lemma 2.3.3 Let (G,B, {σ2
i }) be an SEM over X with precision matrix Ω. Let i

be a terminal vertex in the G, then the precision matrix over X−i, Ω(−i), is given as:

Ω(−i) = Ω−i,−i − Ω−1
i,i Ω−i,iΩi,−i.
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Finally, the following lemma characterizes the entries of the precision matrix over X−i

and will be very useful in developing our finite-sample algorithm for learning SEMs.

Lemma 2.3.4 Let (G,B, {σ2
i }) be a SEM over X with precision matrix Ω. Let i be

a terminal vertex in the G and let Ω(−i) denote the precision matrix over X−i. Then,

(Ω(−i))j,k = Ωj,k, (∀(j, k) ∈ −i×−i | {j, k}* πG(i)),

S((Ω(−i))j,∗) ⊆ (S(Ωj,∗) \ {i})∪ πG(i) (∀j ∈ πG(i)).

With the required results in place, we are now ready to present our main algorithm,

detailed in Algorithm 1, for learning SEMs from the precision matrix. The role of

the diagonal matrix D will become clear in the next section where we focus on the

problem of learning SEMs with known error variances. For now we simply set D to

the identity matrix I. The following theorem proves the correctness of our algorithm

in the population setting.

Algorithm 1 SEM structure learning algorithm.
Input: Precision matrix Ω, diagonal matrix D.

Output: Ĝ, B̂.

1: B̂← 0.

2: for t ∈ [p] do

3: i← argmin(diag(Ω ◦D)).

4: Bi,∗ ← −Ωi,∗/Ωi,i, Bi,i ← 0.

5: Ω← Ω− 1
Ωi,i

Ω∗,iΩi,∗.

6: Ωi,i ←∞.

7: end for

8: Ĝ← ([p],S(B̂)).
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Algorithm 2 Updating a precision matrix, after removing a terminal vertex, using

CLIME.
1: function Update(Ω̂, i, λn)

2: π̂(i)← S(Ω̂i,∗) \ {i}.
3: for j ∈ π̂(i) do

4: Ŝj ←
(
S(Ω̂j,∗) \ {i}

)
∪ π̂(i).

5: Compute ω̄j by solving (2.7) for Σn
Ŝj ,Ŝj

.

6: Ω̂j,Ŝj
= Ω̂Ŝj ,j

← ω̄j

7: end for

8: Ω̂i,∗ ← 0 and Ω̂∗,i ← 0.

9: return Ω̂.

10: end function

Theorem 2.3.5 Let (G,B, {σ2
i }) be an SEM over X, with precision matrix Ω, sat-

isfying Assumption 2.3.1. Then, given (Ω, I) as input, Algorithm 1 returns a unique

(Ĝ, B̂) such that Ĝ = G and B̂ = B.

As a consequence of the above theorem we have the following corollary about identi-

fiability of linear SEMs.

Corollary 2.3.6 An SEM (G,B, {σ2
i }) satisfying Assumption 2.3.1 is identifiable,

and can be uniquely identified from the precision matrix Ω.

2.3.2 Statistical Guarantees for Estimation

Algorithm 1 can be used to learn a SEM given an estimate of the precision matrix,

computed from a finite number of samples, with a slight modification. In line 5

instead of using the Schur complement update, we use Algorithm 2 to update the

precision matrix after a terminal vertex has been identified (and removed). The

rationale behind this is that even if the estimated precision matrix is close to the true

precision matrix, the Schur updates could still result in errors accumulating in the
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precision matrix. In order to ensure that our algorithm is statistically efficient, we

need more control over those errors, which in turns calls for some sort of penalization

for estimating from a finite number of samples.

Inverse covariance matrix estimation. In the finite sample setting, our algo-

rithm involves estimating the inverse covariance matrix, and subsequently updating

the inverse covariance matrix after removing a terminal vertex. Due in part to its role

in undirected graphical model selection, the problem of inverse covariance matrix es-

timation has received significant attention and many algorithms have been developed

for the problem. In this paper we use the CLIME algorithm, proposed by [CLL11],

to estimate the inverse covariance matrix and propose a modification of the CLIME

algorithm for efficiently computing the inverse covariance matrix over the variables

remaining after eliminating a terminal vertex in Algorithm 2.

The CLIME estimator, Ω̂, of the inverse covariance matrix Ω is obtained as fol-

lows. First, we compute a potentially non-symmetric estimate Ω̄ = (ω̄i,j) by solving

the following:

Ω̄ = argmin
Ω∈Rp×p

|Ω|1 s.t. |ΣnΩ− I|∞ ≤ λn, (2.6)

where λn > 0 is the regularization parameter, Σn def
= (1/n)XTX is the empirical covari-

ance matrix, and |·|1 (respectively |·|∞) denotes elementwise `1 (respectively `∞) norm.

Finally, the symmetric estimator is obtained by selecting the smaller entry among ω̄i,j

and ω̄j,i, i.e., Ω̂ = (ω̂i,j), where ω̂i,j = ω̄i,j1 [|ω̄i,j| < |ω̄j,i|] + ω̄j,i1 [|ω̄j,i| ≤ |ω̄i,j|]. It is

easy to see that (2.6) can be decomposed into p linear programs as follows. Let

Ω̄ = (ω̄1, . . . , ω̄p), then

ω̄i = argmin
ω∈Rp

‖ω‖1 s.t. |Σnω − ei|∞ ≤ λn, (2.7)

where ei = (ei,j) such that ei,j = 1 for j = i and ei,j = 0 otherwise. The main

result about the CLIME estimator that we use from [CLL11] is given by the following

lemma, which is a minor reformulation of Theorem 6 in [CLL11]:
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Lemma 2.3.7 ( [CLL11]) Let (G,B, {σ2
i }) be an SEM over X, with covariance and

precision matrix Σ and Ω respectively. Let Ω̂ be the estimator of Ω obtained by

solving the optimization problem given by 2.7. Then if λn ≥ ‖Ω‖1 |Σ−Σn|∞, then∣∣∣Ω− Ω̂
∣∣∣
∞
≤ 4 ‖Ω‖1 λn. Further, if

min{|Ωi,j| | (i, j) ∈ [p]× [p] ∧ |Ωi,j| 6= 0} > 4 ‖Ω‖1 λn,

then S(Ω) ⊆ S(Ω̂).

Next we state out finite sample identifiability condition. This differs from the popu-

lation version in that we require a “gap” between the diagonal entries of the precision

matrix for terminal and non-terminal vertices. This gap, as we show later, must

scale as Ω
(
d
√

log p/n
)
and Ω

(
d(p)

1/m/√n
)
for sub-Gaussian noise and bounded moment

noise respectively. Condition (ii) of the below assumption also restricts how fast the

“minimum” non-diagonal entry of the precision matrix must decay. Note that our

conditions are weaker than those of [LB14] due to which we are able to achieve better

sample complexity than their algorithm.

Assumption 2.3.8 (Finite Sample Identifiability Condition) Let (G,B, {σ2
i })

be an SEM with inverse covariance matrix Ω. Let Ω(m,τ) denote the inverse covariance

matrix over XV[m,τ ], and

M
def
= max{

∥∥Ω(m,τ)

∥∥
1
| m ∈ [p], τ ∈ TG}. (2.8)

Then, we have that

(i) ∀(i, j) ∈ V[m, τ ] × V[m, τ ],m ∈ [p], and τ ∈ TG, such that φG[m,τ ](i) = ∅ ∧
φG[m,τ ](j) 6= ∅:

1

σ2
i

<
1

σ2
j

+
∑

l∈φG[m,τ ](j)

B2
l,j

σ2
l

− 8Mλn,

(ii) min{
∣∣(Ω(m,τ))i,j

∣∣ | (Ω(m,τ))i,j 6= 0, (i, j) ∈ V[m, τ ] × V[m, τ ],m ∈ [p], τ ∈ TG} >
4Mλn,
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(iii) for all i ∈ [p], σ2
i ∈ o(1/4Mλn).

The following lemma proves the correctness of Algorithm 2 which updates the preci-

sion matrix, after removing a terminal vertex.

Lemma 2.3.9 Let (G,B, {σ2
i }) be an SEM over X with precision matrix Ω. Let Ω̂

be an estimator of Ω such that
∣∣∣Ω− Ω̂

∣∣∣
∞
≤ 4Mλn, and S(Ω) ⊆ S(Ω̂), where M

is defined in (2.8). Let i be a terminal vertex in the G, Ω(−i) be the true precision

matrix over X−i, and let Ω̂′ be the matrix returned by the function Update. Then,∣∣∣Ω(−i) − Ω̂′−i,−i

∣∣∣
∞
≤ 4Mλn and S(Ω(−i)) ⊆ S(Ω̂′).

Theorem 2.3.10 Let (G∗,B∗, {σ2
i }) be the true SEM, with covariance and precision

matrix Σ∗ and Ω∗, respectively, from which a data set X of n samples is drawn.

If the regularization parameter satisfies λn ≥ M |Σn −Σ∗|, then under Assumption

2.3.8, the Algorithm 1, with D set to I, returns an estimator B̂ such that
∣∣∣B∗ − B̂

∣∣∣ ≤
c4M(1 + Bmax)σ2

maxλn, S(B∗) ⊆ S(B̂), and TĜ ⊆ TG∗, where c ≤ σ2
min/(1−4Mλnσ2

min) is

a constant.

Next, we use known concentration results for the empirical covariance matrix to obtain

finite sample results for noise distributions satisfying the following conditions.

Assumption 2.3.11 (Noise conditions) For all i ∈ [p], we have

(i) Sub-Gaussian noise: Ni/σi is sub-Gaussian with parameter ν.

(ii) Bounded-moment noise: (E [Ni/σi])4m ≤ Km, for a positive integer m and

positive constant Km.

Theorem 2.3.12 (Sample complexity) If λn ≥ η1(n, p, δ) and n ≥ η2(p, ε, δ),

then
∣∣∣B̂−B∗

∣∣∣ ≤ ε, with probability 1− δ, where

(i) for sub-Gaussian noise (Assumption 2.3.11(i)):

η1(n, p, δ) = MC1

√
(2/n) log (2p/

√
δ)

η2(p, ε, δ) = 2(C1C/ε)2 log (2p/
√
δ) ,
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(ii) for bounded moment noise (Assumption 2.3.11(ii)):

η1(n, p, δ) = MC2 (p2/(nmδ))
1/2m

η2(p, ε, δ) = (C2C/ε)2(p2/δ)
1/m

with

C = c4M2(1 +Bmax)σ2
max,

C1 =
√

128(1 + 4ν2)(max
i

Σ∗i,i),

C2 = 2(max
i

Σ∗i,i)(Cm(Cm(Km + 1) + 1))
1/2m,

and c is defined in Theorem 2.3.10. Further, thresholding B̂ at the level ε we get that

S(B̂) = S(B∗) and Ĝ = G∗.

2.4 Learning SEMs with Known Error Variances

Next, we focus our attention on the problem of learning SEMs when the error

variances are known upto a constant factor. We will consider SEMs (G,B, {ασ2
i })

where {σ2
i }pi=1 are known (to the learner) and α > 0 is some unknown constant. Iden-

tifiability of this class of SEMs was proved by [LB14] under a faithfulness assumption.

However, we will merely assume that (G,B, {ασ2
i }) is causal minimal, i.e., S(B) = E

— this ensures that the distribution P(X) defined by the SEM is causal minimal to

the DAG G = ([p],E). An immediate consequence of Proposition 2.3.2 is the following

observation about terminal vertices:

Proposition 2.4.1 Let (G,B, {ασ2
i }) be an SEM over X with precision matrix Ω,

{σ2
i }pi=1 known and α > 0 is some unknown constant. Then, i is a terminal vertex in

G if and only if i ∈ argmin diag(Ω ◦D), where D = Diag(σ2
1, . . . , σ

2
p).

Thus, when the error variances are known upto a constant factor, Algorithm 1 can

be used to learn SEMs, under the assumption of causal minimality, by setting D =

Diag(σ2
1, . . . , σ

2
p). Consequently, we have the following result about learning SEMs

with known error variances:
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Theorem 2.4.1 Let (G,B, {ασ2
i }) be an SEM over X, with precision matrix Ω

and {σ2
i }pi=1 known. Then, if (G,B, {ασ2

i }) is causal minimal and given Ω, D =

Diag(σ2
1, . . . , σ

2
p) as input, Algorithm 1 returns a unique (Ĝ, B̂) such that Ĝ = G and

B̂ = B.

Misspecified Error Variances. Our algorithm can also be used to learn SEMs

with misspecified error variances as considered by [LB14]. For instance, if the true

SEM is (G,B, {σ2
i }) while the input to Algorithm 1 is D = Diag((σ′1)2, . . . , (σ′p)

2),

then it is straightforward to verify that the following condition is sufficient to ensure

that Algorithm 1 still recovers the structure and parameters of the SEM correctly:

∑

l∈φG[m,τ ](j)

B2
l,j >

αmax

αmin

− 1,

(∀j ∈ V[m, τ ] ∧ φG[m,τ ](j) 6= ∅,m ∈ [p], τ ∈ T ),

where αmax
def
= max{(σ′i)

2/σ2
i | i ∈ [p]} (similarly αmin). Next, we obtain statistical

guarantees for our algorithm for learning SEMs with known error variances.

2.4.1 Statistical Guarantees for Estimation

In order to learn SEMs with known error variances from a finite number of samples,

we make the following assumptions:

Assumption 2.4.2 Given an SEM (G,B, {ασ2
i }) with precision matrix Ω and noise

variances {σ2
i }pi=1 known to the learner; let Ω(m,τ) denote the inverse covariance ma-

trix over XV[m,τ ]. Then,

(i) ∀i ∈ V[m, τ ],m ∈ [p], and τ ∈ TG, such that φG[m,τ ](i) 6= ∅:

∑

l∈φG[m,τ ](i)

(
σ2
i

σ2
l

)
B2
l,i > 8αMλn,

(ii) min{
∣∣(Ω(m,τ))i,j

∣∣ | (Ω(m,τ))i,j 6= 0, (i, j) ∈ V[m, τ ] × V[m, τ ],m ∈ [p], τ ∈ TG} >
4Mλn,
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(iii) for all i ∈ [p], σ2
i ∈ o(1/4αMλn).

Using CLIME to estimate and update the precision matrix, it is easy to verify that

Theorem 2.3.12 holds for SEMs with known error variances satisfying Assumption

2.4.2, with σ2
max and σ2

min replaced by ασ2
max and ασ2

min, respectively. Thus, given a

data set of n samples drawn from an SEM satisfying Assumption 2.4.2, with autore-

gression matrix B∗ and DAG structure G∗ = ([p],E∗), we have the following results

for sub-Gaussian and bounded-moment noise:

Remark 2.4.3 If λn ≥ η1(n, p, δ), and n ≥ η2(p, ε, δ), then, under Assumption 2.4.2,

Algorithm 1 with D = Diag({σ2
i }) returns an estimator B̂ such that

∣∣∣B̂−B∗
∣∣∣
∞
≤ ε,

with probability at least 1− δ, where for

(i) sub-Gaussian noise we have η1(n, p, δ) = O
(

(d/√n)
√

log(p/
√
δ)
)
and η2(p, ε, δ) =

O ((d4/ε2) log(p/
√
δ)), and

(ii) noise with bounded moments η1(n, p, δ) = O
(
(d/√n)(p/

√
δ)1/m

)
and η2(p, ε, δ) =

O
(
(d4/ε2)(p2/δ)1/m

)
.

Further, thresholding B̂ at the level ε, we have S(B̂) = E∗.

The above remark follows from the fact that M = O (d) which follows from Proposi-

tion A.0.2 in Appendix A.

In the population setting, i.e., given the true precision matrix, our algorithm can

be implemented by storing the diagonal of the precision matrix separately and sorting

it once which takesO (p log p) time. In each iteration, updating the precision matrix in

line 5 takes O (d) time since Ω∗,i and Ωi,∗ are d-sparse. Updating the diagonal takes

O (d log p) time, while searching for the minimum diagonal element takes O (log p)

time. Therefore, Algorithm 1 computes the B̂ matrix in O (p(d+ d log p)) time.

In the population setting, the computational complexity of [LB14]’s algorithm is

O
(
p22(w+1)(w+d)

)
, where w is the tree-width of the DAG structure of the true SEM

and d = max{|N(i)|}. Note that the population version of our algorithm can still
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be used in the finite sample setting if the precision matrix is estimated accurately

enough.

In the finite sample setting, the computational complexity of our algorithm is

dominated by the steps for estimating and updating the precision matrix — the lat-

ter depends on how well the sparsity pattern of the precision matrix is estimated.

First, we analyze the computational complexity of our algorithm assuming exact sup-

port recovery, then we analyze the worst-case performance of our algorithm without

assuming sparsity of the estimated precision matrix. Estimating the precision matrix

can be done by solving p linear programs in 2p-dimension and with 4p constraints.

The smoothed complexity of this step is O (p3 log(p/σ)) when using interior point LP

solvers [DST11], where σ2 is variance of the Gaussian perturbations 2. Next observe

that
∣∣∣Ω∗ − Ω̂

∣∣∣
∞
≤
∣∣∣B∗ − B̂

∣∣∣
∞
≤ ε. By thresholding Ω̂ at the level ε, each time the

precision matrix is updated, we can ensure exact support recovery in each iteration.

Thus, in the Update function π̂(i) = πG∗(i) and
∣∣∣Ŝj
∣∣∣ ≤ d ≤ p. Therefore, the

Update function takes O (d4 log(d/σ)) operations, leading to an overall complexity

of Õ (p3 + pd4). In the worst case, i.e., without any thresholding, Ω̂ can be dense.

Therefore, the Update function might re-estimate the full precision matrix over p− t
variables in iteration t, which takes O ((p− t)4 log((p−t)/σ)) operations, leading to an

overall complexity of Õ (p5). Thus, in the finite sample setting the complexity of

our algorithm is between Õ (p3 + pd4) and Õ (p5). Note that [LB14]’s analysis of

the computational complexity of their algorithm assumes perfect support recovery of

the precision matrix. In this regime, the computational complexity of their method

is O
(
p22(w+1)(w+d) + p3

)
, including the step to estimate the precision matrix using

graphical Lasso [FHT08], where w is the tree-width of the true DAG. However, with-

out thresholding the output of graphical Lasso can be dense leading to a worst-case

computational complexity that is exponential in p.
2The worst-case complexity of interior point methods for solving LPs is O

(
p3L

)
where L “ is a

parameter measuring the precision needed to perform the arithmetic operations exactly” and grows
as Ω (p) [ST03]. However, interior-point methods work much more efficiently in practice and have
an average complexity of O

(
p3 log p

)
(see [ST03] and the references therein).
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2.5 Information-theoretic Lower Bounds

In this section we obtain information-theoretic lower bounds on the number of

samples required to learn the DAG structure SEMs exactly. Let Θ(G) = (B, {σ2
i })

represent the set of parameters of an SEM satisfying Assumption 2.3.1, for a given

DAG G. To obtain information-theoretic lower bounds we view the inference process

as a communication channel where nature picks a true DAG G, and samples the

parameters Θ(G) = (B, {σ2
i }) for the SEM from some distribution P over parameters,

and then generates the data matrix X from the SEM (G,B, {σ2
i }). A decoder ζ then

maps the data matrix X to a DAG ζ(X). We define the following minimax estimation

error:

perr = inf
ζ

sup
G∈Gp,d

sup
P

∫

Θ(G)

Pr {ζ(X) 6= G | Θ}P(Θ(G)), (2.9)

where the second supremum in the equation above is over all distributions P over

parameters Θ. Note that this is a stronger notion of minimax error than is typically

considered in the literature for learning undirected graphical models, c.f. [SW12].

Theorem 2.5.1 If the number of samples n is less than c(d log p + d2/p), where c is

an absolute constant, then any decoder ζ fails to recover the correct structure with

probability of error perr ≥ 1/2.

The proof of the above theorem follows from Theorem 2 in our paper [GH17c], and

the fact that in our case the DAG structure is uniquely identifiable from the param-

eters Θ. In [GH17c] we obtained information-theoretic lower bounds on learning the

structure of Bayesian networks from observational data. We showed that Ω (k log p)

samples are required by any method for recovering the DAG structure of a Bayesian

network upto Markov equivalence, with high probability, where k is the maximum

number of parents of a node. Our techniques involved computing tight lower bounds

on the number of DAGs over p variables and at most k parents using combinatorial

arguments, developing a new Fano’s inequality for incorporating latent variables (un-

observed parameters of the network), and finally deriving new inequalities for upper

bounding the mutual information between two arbitrary Bayesian networks.
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Thus, from Theorem 2.5.1 we conclude that our method for learning linear SEMs

is optimal in the number of variables p.

2.6 Experiments

We validate our method using both synthetic experiments and on real-world data.

The following paragraph describes our results on synthetic data.

2.6.1 Simulation Experiments

First we validate our theoretical results through simulation experiments. We gen-

erate random SEMs by first sampling Erdős-Rényi random DAGs and then set all

the noise variances to σ2 = 0.8. Note this is a sufficient condition for ensuring iden-

tifiability (Proposition 2.3.1). We sample edge weights from the uniform distribution

over [−1,−0.5]∪[0.5, 1]. To generate sub-Gaussian noise, we set the noise variables

Ni = σiRi, where Ri’s are independent Rademacher random variables. We set the reg-

ularization parameter according to Theorem 2.3.12 and varied the number of samples

as Cd2 log p, with C being the control parameter. Figure 2.1 shows the probability

of correct structure recovery and the maximum absolute difference between the true

edge weights and the learned edge weights, across 30 randomly sampled SEMs. From

Figure 2.1 we observe that Theorem 2.3.12 indeed bears out in practice, and the

results show a phase transition behavior for structure recovery.

Comparison with State-of-the-art Methods on Synthetic Data. We also

compared the performance of our algorithm against three other state-of-the-art meth-

ods for learning SEMs, viz. MMHC [TBA06], GES [Chi03], and the PC algorithm

[SGS00] on randomly generated SEMs. We used the implementation of the MMHC

algorithm provided by the bnlearn R package, while the pcalg R package provided

the implementations of the GES and PC algorithm. We implemented our method,

along with the CLIME algorithm for inverse covariance estimation, in Python. We
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Figure 2.1.: (Left) Probability of correct structure recovery vs. number of samples,

where the latter is set to Cd2 log p with C being the control parameter and d being the

maximum Markov blanket size. (Right) The maximum absolute difference between

the true parameters and the learned parameters vs. number of samples.
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performed two sets of experiments: in the first set of experiments we enforced the

identifiability condition (Assumption 2.3.1) on the sampled SEMs, while in the second

set of experiments we did not enforce the identifiability condition and generated the

noise variances for each node using the uniform distribution over [0.5, 1]. To enforce

identifiability of generated SEMs we simply set all the noise variances to σ2
i = 0.8.

Note the equal noise variance is a sufficient condition for indentifiability (Proposition

2.3.1). Furthermore, The PC and MMHC algorithm require a parameter α, which is

the target nominal type-I error rate of the conditional independence tests. We set to

α to 0.05 for both the methods. Table 2.1 shows the mean accuracy, recall, execu-

tion time in seconds, for each method in the identifiable regime, computed across 30

randomly sampled SEMs, while Table 2.2 shows the results from the non-identifiable

case. In the identifiable regime, our algorithm recovers the structure perfectly as is

evident from the accuracy and recall scores while being comparable in speed to the

other methods. Among the other methods, the PC algorithm has a recall score that

is close to one indicating that it recovers the skeleton correctly most of the time.

However, its poor accuracy, hovering at a mere 50%, indicates that it fails to orient

most of the edges even though the true SEM is identifiable. MMHC and GES, which

are heuristic algorithms, perform very poorly.

In the non-identifiable regime, as expected, our method is no-longer able to recover

the graph perfectly. However, our method still achieves close-to-perfect structure

recovery as is evidenced by its accuracy and recall scores, which are close to one.

Also note that, while the PC algorithm has slightly better recall than our method,

its accuracy is very poor. Therefore, our method is to be preferred over the PC

algorithm. Other methods, on the other hand, achieve performance similar to that

of the indentifiable case.

Next, we describe the performance of our method on real-world gene expression

data sets.



31

Table 2.1.: Performance of our method vis-à-vis other state-of-the-art methods on

Erdős-Rényi random DAGs that satisfy the identifiability condition given in Assump-

tion 2.3.1.

Method Accuracy Recall Seconds

p = 50

Ours 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.01

MMHC 0.53 ± 0.03 0.55 ± 0.03 0.25 ± 0.01

GES 0.24 ± 0.02 0.32 ± 0.02 0.32 ± 0.01

PC 0.56 ± 0.01 1.00 ± 0.00 0.18 ± 0.00

p = 100

Ours 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.01

MMHC 0.53 ± 0.02 0.57 ± 0.02 0.95 ± 0.02

GES 0.20 ± 0.01 0.34 ± 0.02 0.53 ± 0.01

PC 0.52 ± 0.01 0.99 ± 0.01 0.41 ± 0.01

p = 150

Ours 1.00 ± 0.00 1.00 ± 0.00 3.16 ± 0.02

MMHC 0.46 ± 0.02 0.53 ± 0.02 2.17 ± 0.03

GES 0.18 ± 0.01 0.35 ± 0.02 0.75 ± 0.01

PC 0.51 ± 0.01 0.98 ± 0.00 0.88 ± 0.02

p = 200

Ours 1.00 ± 0.00 1.00 ± 0.00 9.22 ± 0.03

MMHC 0.49 ± 0.01 0.59 ± 0.01 3.83 ± 0.04

GES 0.16 ± 0.01 0.34 ± 0.01 1.07 ± 0.02

PC 0.49 ± 0.01 0.98 ± 0.00 1.36 ± 0.01
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Table 2.2.: Performance of our method vis-à-vis other state-of-the-art methods on

Erdős-Rényi random DAGs, when the true SEM does not satisfy the identifiability

condition given by Assumption 2.3.1.

Method Accuracy Recall Seconds

p = 50

Ours 0.97 ± 0.01 0.97 ± 0.01 0.12 ± 0.01

MMHC 0.53 ± 0.03 0.56 ± 0.03 0.25 ± 0.01

GES 0.27 ± 0.02 0.36 ± 0.03 0.31 ± 0.01

PC 0.55 ± 0.01 1.00 ± 0.00 0.19 ± 0.00

p = 100

Ours 0.95 ± 0.01 0.96 ± 0.01 0.93 ± 0.01

MMHC 0.54 ± 0.02 0.59 ± 0.02 0.96 ± 0.02

GES 0.20 ± 0.01 0.34 ± 0.02 0.54 ± 0.01

PC 0.54 ± 0.01 0.99 ± 0.01 0.41 ± 0.01

p = 150

Ours 0.96 ± 0.01 0.96 ± 0.01 3.24 ± 0.02

MMHC 0.49 ± 0.01 0.56 ± 0.02 2.12 ± 0.02

GES 0.18 ± 0.01 0.33 ± 0.01 0.74 ± 0.01

PC 0.53 ± 0.01 0.99 ± 0.00 0.81 ± 0.01

p = 200

Ours 0.96 ± 0.01 0.96 ± 0.00 9.44 ± 0.04

MMHC 0.46 ± 0.01 0.56 ± 0.01 3.74 ± 0.03

GES 0.14 ± 0.01 0.31 ± 0.01 1.04 ± 0.02

PC 0.50 ± 0.01 0.98 ± 0.00 1.38 ± 0.01
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2.6.2 Real-world Experiments

Table 2.3.: Number of samples and variables in the various gene expression data sets,

where the number of sampled variables denotes the 0.8n highest variance variables.

Dataset Disease # Samples (n) # Variables (p) # Sampled Variables (0.8n)

GSE13294 Colon cancer 155 54,675 124.0

GSE1476 Colon cancer 150 59,381 120.0

GSE17951 Prostate cancer 154 54,675 123.0

GSE18105 Colon cancer 111 54,675 88.0

GSE18638 Colon cancer 98 235,826 78.0

GSE1898 Liver cancer 182 21,794 145.0

GSE22219 Breast cancer 216 24,332 172.0

GSE13294 GSE1476 GSE17951 GSE18105 GSE18638 GSE1898 GSE22219
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Figure 2.2.: The mean negative log likelihood of each method, on the test set, com-

puted across 10 bootstrap runs.
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Figure 2.3.: The mean speed-up of our method vs. other state-of-the-art methods.
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Finally, we compared the performance of our algorithm with the three state-of-

the-art methods on 7 real-world gene expression data sets. The various attributes of

the data sets, which are publicly available at the Gene Expression Omnibus (http:

//www.ncbi.nlm.nih.gov/geo/), are shown in Table 2.3. In these data sets, the

ground truth DAG structure is not available. Therefore, the only way to evaluate the

performance of the various algorithms is by comparing the test log-likelihood score of

each method. While in the infinite sample limit the highest scoring DAG will coincide

with the true DAG, when the number of samples is small, the DAG structure of the

highest scoring DAG can be very different from the true DAG. In order to avoid a

high-dimensional regime we selected the b0.8nc highest variance genes for analysis,

as was done in [PB14]. We computed the average test negative-log-likelihood of each

method on the 7 data sets across 10 bootstrap runs. In each bootstrap run, we created

a training set by sampling n samples, with replacement, from the original data set

and held out the remaining samples (those that were not picked in the sampling) as

the test set. For our method, the regularization parameter was set to 0.01
√

log p/n,

while for PC and MMHC the parameter α was set to 0.05. GES takes no parameters.

Figure 2.2 shows the mean test negative-log-likelihood, along with standard errors,

of each method on the 7 gene expression data sets. Our method achieves the lowest

test negative-log-likelihood on all seven data sets. This is noteworthy since MMHC

and GES explicitly try to find the highest scoring structure while our method does

not try to maximize any score. Further, unlike PC, MMHC, and GES, which return

a PDAG, our method always returns a DAG.

Figure 2.3 shows the speed-up of our method with respect to the other three

methods. On the largest and third largest data set (GSE22219) our method is close

to 2 times faster than MMHC, 72 times faster than PC and around 10 times faster

than GES. On five out of seven data sets our method achieves speed up of around 10

as compared to GES.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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2.7 Summary

In this chapter, we considered the problem of learning linear structural equation

models (SEMs) from observational data. We presented a polynomial time algorithm

for learning linear SEMs under an identifiability condition that encompassed the ho-

moscedastic noise case. The latter case had been considered by [LB14], who had

presented a super-exponential time `0-penalized score-based method. Our polyno-

mial time algorithm stemmed from the key observation that under our identifiability

condition terminal vertices or sink nodes can be efficiently identified from the preci-

sion (inverse covariance) matrix. While we crucially leveraged this structure in our

problem, our algorithm represents a new approach for learning DAGs from data: that

is using the precision matrix to learn DAGs. The sparsity pattern of the precision

matrix already gives the moral graph (undirected graph) of the corresponding DAG,

which contains a super-set of the edges of the DAG, under faithfulness assumptions.

By coming up with strategies to recover the DAG from the moral graph, by essentially

pruning extra edges and orienting the remaining edges, we are able to leverage the

plethora of computationally and statistically efficient algorithms available for learning

undirected graphs from high-dimensional data. Another advantage of our approach

is that we directly learn the edge weight matrix from data, whereas if one were to

use the PC algorithm then recovering the edge weight matrix is a two step process

involving learning the structure first and then performing regressions to learn the

parameters (edge weights). An interesting avenue for future work is extending our

approach to learning general (non-linear) SEMs.
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3 LEARNING GRAPHICAL GAMES

In this chapter, we focus on the problem of learning polymatrix games — which are a

class of multi-player graphical games — from data. Specifically, we assume that the

behavior of a group of self-interested agents or players are described by a polymatrix

game. We assume that we observe joint actions of these players, which may not be

in equilibria, across multiple repetitions of the game. The goal is then to recover the

structure and parameters of the game from the observations of the joint actions alone.

In the next section, we formalize this problem introduce our notations, but first, we

state our main contributions.

We propose an `1,2 group-regularized logistic regression method to learn poly-

matrix games, which has been considered by [GJ16] and is a generalization of linear

influence games considered by [GH17b]. We make no assumptions on the latent payoff

functions and show that our polynomial time algorithm recovers an ε-Nash equilib-

rium of the true game 1, with high probability, if the number of samples (observations

of joint actions) is O (m4d4 log(pd)), where p is the number of players, d is the maxi-

mum degree of the game graph and m is the maximum number of pure-strategies of a

player. Under slightly more stringent separability conditions on the payoff functions

of the underlying game, we show that our method recovers the Nash equilibria set

exactly. We further generalize the observation model from [GH17b] in the sense that

we allow strategy profiles (or joint actions) in the non-Nash equilibria set to have

zero measure. This should be compared with the results of [GJ16] who show that

learning tree-structured polymatrix games is NP-hard under a max-margin setting.

We also obtain necessary conditions on learning polymatrix games and show that
1By the phrase “recovering the Nash equilibria” we mean that we learn a game with the same Nash
equilibria as the true game. We use this phrase elsewhere in the paper for brevity.
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Ω (d log(pm)) samples are required by any method for recovering the PSNE set of a

polymatrix

3.1 Preliminaries

First we introduce our notation and formally define the problem of learning poly-

matrix games from behavioral data.

Polymatrix games. A p-player polymatrix game is a graphical game where the set

of nodes of the graph denote players and the edges correspond to two-player games.

We will denote the graph by G = ([p], E), where [p]
def
= {1, . . . , p} is the vertex set

and E ⊆ [p] × [p] is set of directed edges. An edge (i, j) ∈ E denotes the directed

edge i ← j. Each player i has a set of pure-strategies or actions Ai, and the set of

pure-strategy profiles or joint actions of all the p players is denoted by A = ×i∈[p]Ai.
We will denote A−i def

= ×j∈−iAj. With each edge (i, j) ∈ E is associated a payoff

matrix ui,j : Ai × Aj → R, such that ui,j(xi, xj) gives the finite payoff of the i-th

player (with respect to the j-th player), when player i plays xi ∈ Ai and player j plays

xj ∈ Aj. We assume that (i, j) ∈ E, if and only if ui,j(·, ·) 6= 0. Given a strategy

profile x ∈ A, the total payoff, or simply the payoff, of the i-th player is given by the

following potential function:

ui(xi,x−i;G) = ui,i(xi) +
∑

j∈Ni

ui,j(xi, xj), (3.1)

where Ni(G)
def
= {j ∈ [p]|(i, j) ∈ E} is the set of neighbors of i in the graph G, and

ui,i : Ai → R gives the (finite) individual payoff of i for playing xi. We will denote

the number of neighbors of player i by di
def
= |Ni(G)|, and the maximum degree

of the graph G by d = max{d1, . . . , dp}. A polymatrix game G = (G,U) is then

completely defined by a graph G = ([p], E) and a collection of potential functions

U(G) = {ui : A−i → R}i∈[p], where each of the payoff functions ui(·;G) decomposes

according to (3.1). Finally, we will also assume that the number of strategies of
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each player, mi
def
= |Ai|, is non-zero and O (1) with respect to p and d, and that

m
def
= max{mi}.

Nash equilibria of polymatrix games. The set of pure-strategy Nash equilibria

(PSNE) of the game G = (G,U) is given by the set of strategy profiles where no

player has any incentive to unilaterally deviate from its strategy given the strategy

profiles of its neighbors, and is defined as follows:

NE(G) =

{
x ∈ A

∣∣∣ xi ∈ argmax
a∈Ai

ui(a,x−i)

}
. (3.2)

The set of ε-Nash equilibria of the game G are those strategy profiles where each

player can gain at most ε payoff by deviating from its strategy, and is defined as

follows:

ε-NE(G) =
{

x ∈ A | ui(xi,x−i) ≥ ui(a,x−i)− ε,∀a ∈ Ai and ∀i ∈ [p]
}
. (3.3)

Observation model. Without getting caught up in the dynamics of gameplay —

something that is difficult to observe or reason about in real-world scenarios — we

abstract the learning problem as follows. Assume that we are given “noisy” observa-

tions of strategy profiles, or joint actions, D = {x(l) ∈ A}l∈[n] drawn from a game

G = (G,U). The noise process models our uncertainty over the individual actions of

the players due to observation noise, for instance, when we observe the actions through

a noisy channel, or due to the unobserved dynamics of gameplay during which equi-

librium is reached. By “observations drawn from a game” we simply mean that there

exists a distribution P , from which the strategy profiles are drawn, satisfying the

following condition:

∀x,x′ such that x ∈ NE(G) and x′ ∈ A \ NE(G) : oP(x) > P(x′).

The above condition ensures that the signal level is more than the noise level. This

should be compared with the observation model of [GH17b], who assume that ∀x′ ∈
A \NE(G),P(x′) > 0. Our observation model thus encompasses specific observation
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models considered in prior literature [HO15,GH16]: the global and local noise model.

The global noise model is parameterized by a constant q ∈ (NE(G)/|A|, 1) such that the

probability of observing a strategy profile x ∈ A is given by a mixture of two uniform

distributions:

Pg(x;G) = q
1 [x ∈ NE(G)]

|NE(G)| + (1− q)1 [x /∈ NE(G)]

|A| − |NE(G)| . (3.4)

In the local noise model, we observe strategy profiles x from the PSNE set with each

entry (strategy) corrupted independently. Therefore, in the local noise model we have

the following distribution over strategy profiles:

Pl(x;G) =
1

|NE(G)|
∑

y∈NE(G)

p∏

i=1

(qi)
1[xi=yi]

(
1− qi
mi − 1

)1[xi 6=yi]

, (3.5)

with qi > 0.5 for all i ∈ [p].

In essence, we assume that we observe multiple “stable outcomes” of the game,

which may or may-not be in equilibria. Treating the outcomes of the game as “sam-

ples” observed across multiple “plays” of the same game is a recurring theme in the

literature for learning games (c.f. [HO15], [GH16], [GH17b], [GJ16]).

Problem: The learning problem then corresponds to recovering a game Ĝ =

(Ĝ, Û) from D such that NE(Ĝ) = NE(G) with high probability.

Given that computing a single Nash equilibria is PPAD-complete [DGP09], any

efficient learning algorithm must learn the game without explicitly computing or enu-

merating the Nash equilibria of the game. It has also been shown that even computing

an ε-Nash equlibria is hard under the exponential time hypothesis for PPAD [Rub16].

We also emphasize that we do not observe any information about the latent player

payoffs, and neither do we impose any restrictions on the payoffs for obtaining our ε-

Nash equilibria guarantees. Also, note that in our definition of the learning problem,

we do not impose any restriction on the “closeness” of the recovered graph Ĝ to the

true graph G. This is because multiple graphs G can give rise to the same PSNE set

under different payoff functions and thus be unidentifiable from observations of joint

actions alone (see section 4.4.1 of [HO15] for a counter example.)
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3.2 Related Work

Recovering the underlying game from behavioral data is an important tool in

exploratory research in political science and behavioral economics, and recent times

have seen a surge of interest in such problems (c.f. [IO14,HO15,GH16,GJ16,GH17b]).

For instance, in political science, [IO14] identified the most influential senators in the

U.S congress — a small coalition of senators whose collective behavior forced every

other senator to a unique choice of action — by learning a linear influence game from

congressional voting records. [GJ16] showed that a tree-structured polymatrix game 2

learned from U.S. Supreme Court data was able to recover the known ideologies of the

justices. However, many open problems remain in this area of active research. One

such problem is whether there exists efficient (polynomial time) methods for learning

polymatrix games [Jan68] from noisy observations of strategic interactions. This is

the focus of the current paper.

Various methods have been proposed for learning games from data. [HO15] pro-

posed a maximum-likelihood approach to learn “linear influence games” — a class of

parametric graphical games with linear payoffs. However, in addition to being ex-

ponential time, the maximum-likelihood approach of [HO15] also assumed a specific

observation model for the strategy profiles. [GH16] proposed a polynomial time algo-

rithm, based on `1-regularized logistic regression, for learning linear influence games.

They again assumed the specific observation model proposed by [HO15] in which the

strategy profiles (or joint actions) were drawn from a mixture of uniform distribu-

tions: one over the pure-strategy Nash equilibria (PSNE) set, and the other over the

complement of the PSNE set. [GH17b] obtained necessary and sufficient conditions

for learning linear influence games under arbitrary observation model. Finally, [GJ16]

use a discriminative, max-margin based approach, to learn tree structured polyma-

trix games. However, their method is exponential time and they show that learning

polymatrix games is NP-hard under this max-margin setting, even when the class of
2 [GJ16] call their game a potential game even though the formulation of their game is similar to
ours.
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graphs is restricted to trees. Furthermore, all the aforementioned works, with the

exception of [GJ16], consider binary strategies only. In this paper, we propose a

polynomial time algorithm for learning polymatrix games, which are non-parametric

graphical games where the pairwise payoffs between players are characterized by ma-

trices (or pairwise potential functions). In this setting, each player has a finite number

of pure-strategies.

Finally, we conclude this section by referring the reader to the work of [JRVS11]

who analyze `1,2-regularized logistic regression for learning undirected graphical mod-

els. However, our setting differs from that of learning discrete graphical models in

many ways. First, unlike discrete graphical models, where the underlying distribution

over the variables is described by a potential function that factorizes over the cliques

of the graph, we make no assumptions whatsoever on the generative distribution of

data. Further, we are interested in recovering the PSNE set of a game, since the graph

structure in generally unidentifiable from observational data, whereas [JRVS11] ob-

tain guarantees on the graph structure of the discrete graphical model. As a result,

our theoretical analysis and proofs differ significantly from those of [JRVS11].

3.3 Method and Theoretical Guarantees

In this section, we describe our method for learning polymatrix games from ob-

servational data. The individual and pairwise payoffs can be equivalently written, in

linear form, as follows:

ui,i(xi) = (θi,0)T f i,0(xi),

ui,j(xi, xj) = (θi,j)T f i,j(xi, xj),

where for j ∈ Ni, f i,j(xi, xj) = (1 [xi = a, xj = b])a∈Ai, b∈Aj and

θi,j = (θi,ja,b)a∈Ai, b∈Aj ,

θi,0 = (θi,0a )a∈Ai , and

f i,0(xi) = (1 [xi = a])a∈Ai .
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Note that f i,j ∈ {0, 1}(mimj), θi,j ∈ R(mimj) 6= 0, f i,0(xi) ∈ {0, 1}mi , and θi,0 ∈ Rmi .

Let

θi
def
= (θi,0,θi,1, . . . ,θi,i−1,θi,i+1, . . . ,θi,p),

f i(xi,x−i)
def
= (f i,0(xi), f

i,1(xi, x1), . . . , f i,i−1(xi, xi−1),

f i,i+1(xi, xi+1), . . . , f i,p(xi, xp)), (3.6)

with

θi,j = 0 for j > 0 ∧ j /∈ Ni,

θi ∈ R(mi+
∑
j∈−imimj), and

f i(xi,x−i) ∈ {0, 1}(mi+
∑
j∈−imimj).

Thus the payoff for the i-th player can be written, in linear form, as:

ui(xi,x−i) = (θi)T f i(xi,x−i). (3.7)

The learning problem then corresponds to learning the parameters θi for each player

i. The sparsity pattern of θi identifies the neighbors of i. The way this differs from

the binary strategies considered by [GH17b] is that the parameters θi have a group-

sparsity structure, i.e., for all j > 0 ∧ j /∈ Ni the entire group of parameters θi,j is

zero. In order to ensure that the payoffs are finite, we will assume that the parameters

for the i-th player belong to the set Θi def
= {y ∈ R(mi+

∑
j∈−imimj) | ‖y‖∞ <∞}.

Our approach for estimating the parameters θi is to perform one-versus-rest multi-

nomial logistic regression with `1,2 group-sparse regularization. In more detail, we

obtain estimators θ̂i by solving the following optimization problem for each i ∈ [p]:

θ̂i = argmin
θ∈Θi

Li(D;θ) + λ ‖θ‖1,2 , (3.8)

Li(D;θ) =
1

n

n∑

l=1

`i(x(l);θ), (3.9)

`i(x;θ) = − log

(
exp(θT f i(xi,x−i))∑
a∈Ai exp(θT f i(a,x−i))

)
, (3.10)
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where ‖θ‖1,2 =
∑

j∈[p] ‖θj‖2, with θj being the j-th group of θ. When referring to

a block of a matrix or vector we will use bold letters, e.g, θj denotes the j-th group

or block of θ, while θj denotes the j-th element of θ. In general, we define the `a,b

group structured norm as follows: ‖θ‖a,b =
∥∥(‖θ1‖b , . . . , ‖θp‖b)

∥∥
a
. Also, when using

group structured norms, we will use the group structure as shown in (3.6), i.e., we

will assume that there are p groups and, in the context of the i-th player, the sizes of

the groups are: {mi,mim1, . . . ,mimi−1,mimi+1, . . . ,mimp}. Finally, we will define

the support set of θi as the set of all indices corresponding to the active groups, i.e.,

Si = {(j, k)|j ∈ {0}∪Ni and k ∈ [mi] for j = 0, k ∈ [mimj] for j > 0}, where j can

be thought of as indexing the groups, while k can be thought of as the indexing the

elements within the j-th group. Thus, |Si| = mi +
∑

j∈Nimimj.

After estimating the parameters θ̂i for each i ∈ [p], the payoff functions are simply

estimated to be ûi(xi,x−i) = (θ̂i)T f i(xi,x−i). Finally, the graph Ĝ = ([p], Ê) is given

by the group-sparsity structure of ûis, i.e., ûi,j(·, ·) 6= 0 =⇒ (i, j) ∈ Ê.

First, we obtain sufficient conditions on the number of samples n to ensure suc-

cessful PSNE recovery. Since our theoretical results depend on certain properties of

the Hessian of the loss function defined above, we introduce the Hessian matrix in

this paragraph. Let Hi(x;θ) denote the Hessian of `i(x;θ). A little calculation shows

that the (j, k)-th block of the Hessian matrix for the i-th player is given as:

Hi
j,k(x;θ) =

∑

a∈Ai

σi(a,x−i;θ)f i,j(a, xj)(f
i,k(a, xk))

T−
{(∑

a∈Ai

σi(a,x−i;θ)f i,j(a, xj)
)
×

(∑

a∈Ai

σi(a,x−i;θ)f i,k(a, xk)
)T}

, (3.11)

σi(x,x−i;θ) =
exp(θT f i(x,x−i))∑
a∈Ai exp(θT f i(a,x−i))

, (3.12)

where we have overloaded the notation f i,j(xi, xj) to also include f i,0(xi), i.e., we

let f i,0(xi, x0)
def
= f i,0(xi). We will denote the i-th expected Hessian matrix at any

parameter θ ∈ Θi as Hi(θ) = E [x] Hi(x;θ), and the i-th Hessian matrix at the true
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parameter θi as Hi(θi). We will also drop the superscript i from the i-th Hessian

matrix, whenever clear from context. We will denote the finite sample version of

Hi(θi) by Hi(D,θi), i.e., Hi(D,θi) = 1
n

∑n
l=1 Hi(x(l),θi). Finally, we will denote the

Hessian matrix restricted to the true support set Si by: Hi(·;θiSi) ∈ R|Si|×|Si|. In order

to prove our main result, we will present a series of technical lemmas slowly building

towards our main result. Detailed proofs of the lemmas are given in Appendix B.

The following lemma states that the i-th population Hessian is positive definite.

Specifically, the i-th population Hessian evaluated at the true parameter θi, are posi-

tive definite with the minimum eigenvalue being Cmin. We prove the following lemma

by showing that the loss function given by (3.10), when restricted to an arbitrary

line, is strongly convex as long as the payoffs are finite.

Lemma 3.3.1 (Minimum eigenvalue of population Hessian) For θi ∈ Θi we

have that Cmin
def
= λmin(Hi(θi)) > 0.

Given that population Hessian matrices are positive-definite, we then show that the

finite sample Hessian matrices, evaluated at any parameter θSi , are positive definite

with high probability. We use tools from random matrix theory developed by [Tro12]

to prove the following lemma.

Lemma 3.3.2 (Minimum eigenvalue of finite sample Hessian) Let θ ∈ Θi be

any arbitrary vector and let λmin(Hi(θSi))
def
= λmin > 0. Then, if the number of

samples satisfies the following condition:

n ≥ 8(di + 1)

λmin

log

(
mi(1 + dim)

δ

)
,

then λmin(Hi(D;θSi)) ≥ λmin

2
with probability at least 1− δ for some δ ∈ (0, 1).

Now that we have shown that the loss function given by (3.10) is strongly convex

(Lemmas 3.3.1 and 3.3.2), we exploit strong convexity to control the difference be-

tween the true parameter and the estimator
∥∥∥θi − θ̂i

∥∥∥
1,2
. However, before proceeding

further, we need to bound the `∞,2 norm of the gradient, as done in the following

lemma. We prove the lemma by using McDiarmid’s inequality to show that in each
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group the finite sample gradient concentrates around the expected gradient, and then

use a union bound over all the groups to control the `∞,2 norm.

Lemma 3.3.3 (Gradient bound) Let ‖Ex [∇`i(x;θi)]‖∞,2 = ν, then we have that

∥∥∇Li(D;θi)
∥∥
∞,2 ≤ ν +

√
2

n
log
(2(di + 1)

δ

)
,

with probability at least 1− δ.

Note that the expected gradient at the parameter θi does not vanish, i.e., we have

that ‖Ex [∇`i(x;θi)]‖∞,2 = ν. This is because of the mismatch between the generating

distribution P and the softmax distribution used for learning the parameters, as in

(3.10). Indeed, if the data were drawn from a Markov random field, which induces

a softmax distribution on the conditional distribution of node given the rest of the

nodes, the parameter ν = 0. However this is not the case for us. An unfortunate

consequence of this is that, even with an infinite number of samples, our method

will not be able to recover the parameters θi exactly. Thus, without additional

assumptions on the payoffs, our method only recovers the ε-Nash equilibrium of the

game.

With the required technical results in place, we are now ready to bound the

quantity
∥∥∥θi − θ̂i

∥∥∥
1,2
. Our analysis has two steps. First, we bound the norm in the

true support set, i.e.,
∥∥∥θiSi − θ̂iSi

∥∥∥
1,2
. Then, we show that the norm of the difference

between the true parameter and the estimator, outside the support set, is a constant

factor (specifically 3) of the difference in the support set. For the first step with use

a proof technique originally developed by [RBLZ08] in a different context, while the

second step follows from matrix algebra and optimality of the estimator θ̂i for the

problem (3.8).

The following technical lemma, which will be used later on in our proof to bound∥∥∥θ̂iS − θiS
∥∥∥

1,2
, lower bounds the minimum eigenvalue of the i-th population Hessian

at an arbitrary parameter θ ∈ Θi, in terms of the minimum eigenvalue of the i-th

population Hessian at the true parameter θi.
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Lemma 3.3.4 (Minimum population eigenvalue at arbitrary parameter)

Let θ ∈ Θi be any vector. Then the minimum eigenvalue of i-th population Hessian

matrix evaluated at θSi is lower bounded as follows:

λmin(Hi(θSi)) ≥ λmin(Hi(θiSi))−
1

4
(di + 1)m2

∥∥θSi − θiSi
∥∥

1,2
.

Now, we are ready to bound the difference between the true parameter θi and its

estimator θ̂i, in the true support set Si.

Lemma 3.3.5 (Error of the i-th estimator on the support set)

If the regularization parameter and number of samples satisfy the following condition:

λ ≥ 2

(
ν +

√
2

n
log

(
2(di + 1)

δ

))
,

n >
2

N(m, di)
log

(
2(di + 1)

δ

)
,

where N(m, di) = {Cmin/(36m2(di+1)2)− ν}2, and Cmin
def
= λmin(Hi(θiSi)); then with prob-

ability at least 1− δ, for some δ ∈ (0, 1), we have:

∥∥∥θ̂iSi − θiSi
∥∥∥

1,2
≤ 6(di + 1)

Cmin

λ. (3.13)

Next, we bound the difference between the true parameter θi and its estimator θ̂i.

Lemma 3.3.6 (Error of the i-th parameter estimator) Under the same condi-

tions on the regularization parameter and number of samples as in Lemma 3.3.5 we

have, with probability at least 1− δ for some δ ∈ (0, 1),

∥∥∥θ̂i − θi
∥∥∥

1,2
≤ 24(di + 1)

Cmin

λ.

Now that we have control over
∥∥∥θi − θ̂i

∥∥∥
1,2

for all i ∈ [p], we are ready to prove our

main result concerning the sufficient number of samples needed by our method to

guarantee PSNE recovery with high probability.

Theorem 3.3.7 Let G = (G,U), with U = {ui : A−i → R}i∈[p], be the true potential

graphical game over p players and maximum degree d, from which the data set D is
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drawn. Let Ĝ = (Ĝ, Û), with Û = {ûi : A−i → R}i∈[p], be the game learned from the

data set D by solving the optimization problem (3.8) for each i ∈ [p]. Then if the

regularization parameter and the number of samples satisfy the condition:

λ ≥ 2

(
ν +

√
2

n
log

(
2p(d+ 1)

δ

))
,

n > max

{
2

N(m, d)
log

(
2p(d+ 1)

δ

)
,
8(d+ 1)

Cmin

log

(
m(1 + dm)

δ

)}
,

where N(m, d) = {Cmin/(36m2(d+1)2) − ν}2, then we have that the following hold with

probability at least 1− δ, for some δ ∈ (0, 1):

(i) NE(Ĝ) = ε-NE(G), with ε = 48(di+1)
Cmin

λ.

(ii) Additionally, if the true game G satisfies, ∀i ∈ [p],∀(xi,x−i), (x′i,x−i) ∈ A:

(xi,x−i) ∈ NE(G) and (x′i,x−i) /∈ NE(G) =⇒ ui(xi,x−i) > ui(x′i,x−i) + ε.

Then, NE(Ĝ) = NE(G).

Remark 3.3.8 The sufficient number of samples needed by our method to guarantee

PSNE recovery, with probability at least 1−δ, scales as O (m4d4 log(pd/δ)). This should

be compared with the results of [JRVS11] for learning undirected graphical models.

They show that O (m2d2 log(m2p)) are sufficient for learning m-ary discrete graphical

models. However, their sample complexity hides a constant K that is related to the

maximum eigenvalue of the scatter matrix, which we have upper bounded by m2d2 in

our case, leading to a slightly higher sample complexity.

Remark 3.3.9 Note that as n → ∞, the regularization parameter λ → 2ν, where

ν is the maximum norm of the expected gradient at the true parameter θi across all

i ∈ [p]. Thus, even with an infinite number of samples, our method recovers the

ε-Nash equlibria set of the true game with ε→ 96(di+1)ν
Cmin

as n→∞.
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3.4 Information-theoretic Lower Bounds

In this section, we obtain an information-theoretic lower bound on the number of

samples needed to learn sparse polymatrix games. Let Gp,d,m be set of polymatrix

games over p players, with degree at most d, and maximum number of strategies per

player being m. Our approach for doing so is to treat the inference procedure as a

communication channel, where nature picks a game G∗ from the set Gp,d,m and then

generates a data set D of n strategy profiles. A decoder ψ : An → Gp,d,m then maps

D to a game Ĝ ∈ Gp,d,m. We wish to obtain lower bounds on the number of samples

required by any decoder ψ to recover the true game consistently. In this setting, we

define the minimax estimation error as follows:

perr = min
ψ

sup
G∗∈Gp,d,m

Pr {NE(ψ(D)) 6= NE(G∗)} ,

where the probability is computed over the data distribution. For obtaining necessary

conditions on the sample complexity, we assume that the data distribution follows the

global noise model described in (3.4). The following theorem prescribes the number

of samples needed for learning sparse polymatrix games. Our proof of the theorem

constitutes constructing restricted ensembles of “hard-to-learn” polymatrix games,

from which nature picks a game uniformly at random and generates data. We then

use the Fano’s technique to lower bound the minimax error. The use of restricted

ensembles is customary for obtaining information-theoretic lower bounds, c.f. [SW12,

WWR10].

Theorem 3.4.1 If the number of samples n ≤ log(md−m)(pd)
2 log 2

− 1, then estimation fails

with perr ≥ 1/2.

Remark 3.4.2 From the above theorem we have that, the number of samples needed

by any conceivable method, to recover the PSNE set consistently, is Ω (d log(pm)),

assuming that d = o(p). Therefore, the method based on `1,2-regularized logistic re-

gression is information-theoretically optimal in the number of players, for learning

sparse polymatrix games.
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Figure 3.1.: Estimated probability of exact recovery of the PSNE set computed across

40 randomly sampled polymatrix games with the number of samples set to n =

10c(d + 1)2 log(2p(d+1)/δ), where c is the control parameter shown in the x-axis, and

δ = 0.01.

3.5 Experiments

3.5.1 Synthetic Experiments

We performed a series of experiments on synthetic data to validate our theoretical

results. For these experiments, we first generated a random polymatrix game G by

first generating random graphs over p players with degree exactly d, and number of

pure strategies m = 3 per player. For each edge (i, j) in the graph, we set the payoffs

as follows:

ui,i(a) = 0 (∀a ∈ [3])

ui,j(a, b) ∼ N (0, 2) (∀a ∈ [2] ∧ b ∈ [3])

ui,j(3, b) = 0 (∀b ∈ [3])

We then generated a data set D from the game using the local noise model (3.5),

with the noise parameter qi = 0.6 for all i ∈ [p]. We then used our method to

learn a game Ĝ from the data set D, and computed 1
[
NE(Ĝ) = NE(G)

]
. We then

estimated the probability of successful PSNE recovery, Pr
{
NE(Ĝ) = NE(G)

}
, across

40 randomly sampled polymatrix games. Figure 3.1 plots the probability of successful
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PSNE recovery as the number of samples is varied as n = 10c(d+1)2 log(2p(d+1)/δ) and

for various values of d ∈ {1, 3, 5}, with c being the control parameter and δ = 0.01.

We observe that the scaling of the sample complexity prescribed by Theorem 3.3.7

indeed holds in practice. The results show a phase transition behavior, where if

the number of samples is less than c(d + 1)2 log(p(d+1)/δ), for some constant c, then

PSNE recovery fails with high probability, while if the number of samples is at least

C(d+ 1)2 log(p(d+1)/δ), for some constant C, then PSNE recovery succeeds with high

probability.

3.5.2 Real-world Experiments

We also evaluated our method on three publicly available real-world data sets

containing (a) U.S. supreme court justices rulings, (b) voting records of senators from

the 114th U.S. congress, and (c) roll-call votes in the U.N. General Assembly. We

present evaluations of our method for each of the data set below.

Supreme court voting records. We analyzed two data sets of supreme court

rulings: the first data set contains rulings of 9 justices across 512 cases spanning years

2010 to 2014, while the second data set contains rulings of 8 justices across 75 cases

from year 2015 onwards 3. We pre-processed the data, according the available code

book, to map the vote of each justice, which was originally an integer between 1 to 8,

to an integer between 1 to 3. Votes {1, 3, 4, 5} were mapped to 1 and was interpreted

as “voting with majority”, votes {6, 7, 8} were mapped to 2 and was interpreted as “not

participating in the decision” , while vote 3 was mapped to 2 and was interpreted as

“dissent”. Thus, after pre-processing, each justice’s vote was an integer between 1 to 3,

with 1 corresponding to majority, 2 corresponding to abstention, and 3 corresponding

to dissent.

After pre-processing the data, we learned a polymatrix game over supreme court

justices using our algorithm. The regularization parameter λ was set according to
3All the data sets are publicly available at http://scdb.wustl.edu.

http://scdb.wustl.edu
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Figure 3.2.: The graphical game recovered from supreme court rulings data set 1

(years 2010-2014) on the left, and data set 2 (year 2015 onwards) on the right. Justice

Thomas, Scalia, Roberts and Alito are widely known to be conservative and are

denoted by the color , while Justice Breyer, Kagan, Sotomayor and Ginsburg, who

are known to have a more liberal jurisprudence, are denoted by color . Justice

Kennedy, who has a reputation of being moderate, is denoted by the color . The

game graph was generated by adding all edges (i, j) if the corresponding payoff matrix

ui,j was not all zeros. The average “influence” from j to i was calculated as the mean

absolute payoff, i.e., 1
6

∑3
a=2

∑3
b=1 |ui,j(a, b)|. The thickness of the edge denotes this

influence of player j on i. Only the top 50% of the edges, in terms of influence, are

shown.

Theorem 3.3.7 with reasonable values for different unknown population parameters.

A more principled way to chose the regularization parameter λ is to assume a spe-

cific observation model, for instance, the global or local noise model, and then using

crossvalidation to maximize the log-likelihood. The game graphs are shown in Figure

3.2 and the PSNE sets are shown in Table 3.1 for the two supreme court rulings data

sets (years 2010-2014 and year 2015 onwards).

From 3.2 it is clear that our method recovers the well-established ideologies of

the supreme court justices. This is especially evident for the graph learned from the

first data set — there are two strongly connected components corresponding to the

conservative and liberal bloc within the supreme court. The PSNE set recovered by

our algorithm is also quite revealing. In both the data sets, a unanimous vote of 1 is a

Nash equilibrium. Justice Kennedy, who has a moderate jurisprudence, always votes
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Table 3.1.: The PSNE set learned from supreme court rulings data sets 1704 (top)

and 1705 (bottom) respectively. Conservatives, liberal, and neutral justices are rep-

resented using , , and respectively. The actions 1, 2, and 3 correspond to

“voted with majority”, “abstention”, and “dissent” respectively. The price of anarchy

for the two data sets was computed to be 1.9 and 1.6 respectively.

|Thomas| |Scalia| |Alito| |Roberts| |Kennedy| |Breyer| |Kagan| |Ginsburg| |Sotomayor|

1 1 1 1 1 1 1 1 1

1 1 1 1 1 3 3 3 3

2 2 2 2 1 2 2 2 2

3 3 3 3 1 1 1 1 1

3 3 3 3 1 3 3 3 3

|Thomas| |Alito| |Roberts| |Kennedy| |Breyer| |Kagan| |Ginsburg| |Sotomayor|

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 3 3

3 3 3 2 2 2 3 3

with the majority in the PSNE set. Further, strategy profiles where the conservative

blocs and liberal blocs vote unanimously but dissent against each other are also in the

PSNE set. In the second data set, there is a strongly connected component between

the justice Kagan, Kennedy, and Breyer — this also bears out in the corresponding

PSNE set where the strategies of the three justices are identical.

To compute the price of anarchy (PoA), we shifted all the payoff matrices by

a constant to make the payoffs non-negative. Note that this does not change the

PSNE set of the game. The price of anarchy was computed to be the ratio between

the maximum welfare across all strategy profiles and the minimum welfare across all

strategy profiles in the PSNE set. The PoA for the two data sets were, respectively,

1.9104 and 1.6115.

Senate voting records. We analyzed U.S. congressional voting records for the

second session of the 114th congress (January 4, 2016 to January 3, 2017) 4. The
4The data set is publicly available at http://www.senate.gov/legislative/votes.htm

http://www.senate.gov/legislative/votes.htm
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Figure 3.3.: The game graph learned from 114th U.S. congressional voting records.

Only nodes with degree greater than one are shown. Democrats, Republicans, and

Independent are denoted by , , and respectively. The graph on the right shows

the states that the senators belong to. The thickness of the edges denote the amount

of influence, computed as the mean absolute payoff, between the senators. Only nodes

with degree at least 1 are shown.

data set comprised of the votes of 100 senators on 63 bills. The votes were pre-

processed to take one of the three values: 1 (“yes”), 2 (“abstention”), and 3 (“no”).

After pre-processing the data set we ran our algorithm to recover a polymatrix game

from congressional voting records. Figure 3.3 shows the recovered game graph. Once

again our method recovers the connected components corresponding the republicans

and democrats. Interestingly, the connected components also have a nice geographic

interpretation, for instance, the graph groups senators from Idaho, New Mexico, New

York and midwestern states in their respective connected components. Strategy pro-

files where the overwhelming majority of senators in a connected component vote

“yes” are in equilibria.

United Nations voting data. In our final real-world experiment we analyzed roll-

call votes in the U.N. General Assembly. The data set contained votes of 193 countries
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Table 3.2.: The PSNE set for the major connected components in the game graph

learned from congressional voting records. The actions 1, 2, and 3 correspond to

“yea”, “abstain”, and “nay” respectively. The combined number of Nash equilibria

computed across senators with degree at least 1 was 144 and the price of anarchy was

computed to be 2.6297.

|Baldwin| |Bennet| |Blumenthal| |Cardin| |Casey| |Coons| |Feinstein| |King| |Klobuchar| |Peters| |Shaheen| |Stabenow|

1 1 1 1 1 1 1 1 1 1 1 1

|Cochran| |Roberts| |Rounds| |Wicker|

1 1 1 1

|Fischer| |Hoeven| |Moran| |Thune|

1 1 1 1

3 3 3 3

|Hirono| |Reed| |Schumer| |Whitehouse|

1 1 1 1

3 3 3 3

|Blunt| |Boozman| |Burr| |Capito| |Cassidy| |Coats| |Corker| |Cornyn| |Daines| |Ernst| |Grassley| |Hatch| |Isakson| |McCain| |McConnell| |Portman| |Tillis|

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1

1 3 3 3 1 3 3 3 1 1 3 3 1 3 3 1 3

3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1

3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 2 3

3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 3 3

for 847 U.N. resolutions 5. Each vote could take one of the three values in {1, 2, 3},
with 1 denoting “yes”, 2 denoting “abstention”, and 3 denoting “no”. The game graph

learned from the data set is shown in Figure 3.4 while the PSNE set is shown in

Table 3.3. As evident from Figure 3.4 our method recovered two major connected

components: the first consisting of members of the Arab League, and the second

consisting of majorly Southeast Asian countries and a few other Caribbean islands.

The PSNE set once again comprised of strategy profiles where the overwhelming

members of a connected component voted “yes”. Within the component corresponding

to the Arab league, Saudi Arabia, U.A.E., and Bahrain made up a small coalition of

countries that voted identically in the PSNE set.
5 The data set can be downloaded from https://dataverse.harvard.edu/dataset.xhtml?
persistentId=hdl:1902.1/12379.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/12379
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/12379
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Figure 3.4.: The game graph learned from United Nations voting data set. Nodes

belonging to the same connected component have the same color. Only countries

with degree at least 1 are shown.

3.6 Summary

In this chapter we considered the problem of recovering the Nash equlibria set

of a polymatrix game from observations of joint actions from repeated plays of the

game. We proposed an `1,2 group-regularized logistic regression method to learn

Table 3.3.: The PSNE set for the two major connected components in the game graph

learned from United Nations voting data set. The total number of PSNE was 24 and

the price of anarchy was computed to be 3.07.

Algeria Bahrain Djibouti Egypt Jordan Kuwait Libya Morocco Oman Qatar Saudi Arabia Sudan Tunisia UAE Yemen

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 2 1 1 2 1

Barbados Bangladesh Brunei Cambodia Eritrea Guyana Indonesia Jamaica Malaysia Mali Philippines Senegal Singapore Sri Lanka Thailand Togo Zambia

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 1 1 1 2 1 2 1 1 1 2 1 1 1 1

1 2 2 2 2 1 2 1 2 2 2 1 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2
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polymatrix games with discrete pure strategies. We characterized the number of

observations required by our method to recover an ε-Nash equilibria set of the game.

We also obtained fundamental lower bounds on the number of samples required by any

method to learn polymatrix games and showed that our method is close to optimal in

the number of observations required. We evaluated our method on synthetic and real

world data containing voting records of the U.S. supreme court, the United Nations,

and U.S. Congress. By learning polymatrix games from these data sets we were able

to quantify how supreme court justices, countries, and senators influence each other

and make inferences about the steady-state (equilibria) behavior of these entities in

a game-theoretic framework.
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4 STRUCTURED PREDICTION

Structured prediction can be thought of as a generalization of binary classification to

structured outputs, where the goal is to jointly predict several dependent variables.

Predicting complex, structured data is of great significance in various application do-

mains including computer vision (e.g., image segmentation, multiple object tracking),

natural language processing (e.g., part-of-speech tagging, named entity recognition)

and computational biology (e.g. protein structure prediction). However, unlike bi-

nary classification, structured prediction presents a set of unique computational and

statistical challenges. The chief being that the number of structured outputs is expo-

nential in the input size. For instance, in translation tasks, the number of parse trees

of a sentence is exponential in the length of the sentence. Second, it is very common

in such domains to have very few training examples as compared to the size of the

output space thereby making generalization to unseen inputs difficult.

The key computational challenge in structured prediction stems from the infer-

ence problem, where a decoder, parameterized by a vector w of weights, predicts (or

decodes) the latent structured output y given an observed input x. With the excep-

tion of a few special cases, the general inference problem in structured prediction is

intractable. For instance in many cases the inference problem reduces to the maxi-

mum acyclic subgraph problem which is NP-hard and hard to approximate to within

a factor of 1/2 of the optimal solution [GMR08], or cardinality-constrained submodu-

lar maximization, which is also NP-hard and hard to compute a solution better than

the (1 − 1/ε)-approximate solution returned by a greedy algorithm [NWF78]. The

learning problem, where the goal is to learn the parameter w of the decoder from

a set of labeled training instances, and which involves solving the inference problem

as a subroutine, is therefore intractable for all but a few special cases. Hardness of

max-margin learning (SVM) was shown by [SMGJ10].
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Hardness results notwithstanding, various methods — which are exponential-

time in the worst case— have been developed over the last decade for predicting

structured data including conditional random fields [LMP01], and max-margin ap-

proaches [TGK03], to name a few. In these approaches, learning the parameter w

of the decoder involves minimizing a loss function L(w, S) over a data set S of m

training pairs {(xi, yi)}mi=1. One could also take a Bayesian approach and learn a

posterior distribution Q over decoder parameters w by minimizing the Gibbs loss

Ew∼Q [L(w, S)]. McAllester [McA07] showed, using the PAC-Bayesian framework,

that the commonly used max-margin loss [TGK03] upper bounds the expected Gibbs

loss over the data distribution, upto statistical error. Therefore, minimizing the max-

margin loss provides a principled way for learning the parameters of a structured

decoder. More recently, [HJ16] showed that minimizing a surrogate randomized loss,

where the max-margin loss is computed over a small number of randomly sampled

structured outputs, also bounds the Gibbs loss from above upto statistical error.

The above can be thought of as weight based perturbation models. The perturb-

and-MAP framework introduced by [PY11], and henceforth referred to as MAP per-

turbation, provides an efficient way to generate samples from the Gibbs distribution

by injecting random noise (that do not depend on the weights of the decoder w) in

the potential or score function of the decoder and then computing the most likely

assignment or energy configuration (MAP). MAP perturbation models are an at-

tractive alternative to expensive Markov Chain Monte Carlo simulations for drawing

samples from the Gibbs distribution, in that the former facilitates one-shot sampling.

Moreover, learning MAP predictors for structured prediction problems is particularly

attractive because the predictions are robust to random noise. However, learning the

parameters of such MAP predictors involves solving the MAP problem, which in gen-

eral is intractable. In this paper we obtain a provably polynomial time algorithm for

learning the parameters of perturbed MAP predictors with structure based pertur-

bations. In the following paragraph we summarize the main technical contributions

of our paper.
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Our contributions. To the best of our knowledge, we are the first to obtain gener-

alization bounds for MAP-perturbation models with structure-based (Gumbel) per-

turbations — for detailed comparison with existing literature see Section 4.5. While it

is well known that Gumbel perturbations induce a conditional random field (CRF) dis-

tribution over the structured outputs, we show that the generalization error is upper

bounded by a CRF loss up to statistical error. We obtain Rademacher based uniform

convergence guarantees for the latter. However, the main contribution of our paper

is to obtain a provably polynomial time algorithm for learning MAP-perturbation

models for general structured prediction problems. We propose a novel randomized

surrogate loss that lower bounds the CRF loss and still upper bounds the expected

loss over data distribution, upto approximation and statistical error terms that decay

as Õ (1/√m) with m being the number of samples. While it is NP-Hard to compute

and approximate the CRF loss in general [Bar82,CSH08], our surrogate loss can be

computed in polynomial time. Our results also imply that one can learn parameters of

CRF models for structured prediction in polynomial time under certain conditions.

Our work is inspired by the work of [HJ16] who also propose a polynomial time

algorithm for learning the parameters of a structured decoder in the max-margin

framework. In contrast to prior work which consider weight based perturbations,

our work is concerned with structure based perturbations. Previous algorithms for

learning MAP perturbation models, for instance, the hard-EM algorithm by [GHJ14]

and the moment-matching algorithm by [PY11], are in general intractable and have

no generalization guarantees. Lastly, the main conceptual contribution of our work

is to demonstrate that it is possible to efficiently learn the parameters of a structured

decoder with generalization guarantees without solving the inference problem exactly.

4.1 Preliminaries

We begin this section by introducing our notations and formalizing the problem

of learning MAP-perturbation models. In structured prediction, we have an input



61

x ∈ X and a set of feasible decodings of the input Y(x). Without loss of generality,

we assume that |Y(x)| ≤ r for all x ∈ X. Input-output pairs (x, y) are represented

by a joint feature vector φ(x, y) ∈ Rd. For instance, when x is a sentence and y is

a parse tree, the joint feature map φ(x, y) can be a vector of 0/1-indicator variables

representing if a particular word is present in x and a particular edge is present in

y. We will assume that min{φj(x, y) 6= 0 | j ∈ [d]} ≥ 1 which commonly holds for

structured prediction problems, for instance, when using binary features, or features

that “count” number of components, edges, parts, etc.

A decoder fw : X → Y, parameterized by a vector w ∈ Rd, returns an output

y ∈ Y(x) given an input x. We consider linear decoders of the form:

fw(x) = argmax
y∈Y(x)

〈φ(x, y), w〉, (4.1)

which return the highest scoring structured output for a particular input x, where

the score is linear in the weights w. As is traditionally the case in high-dimensional

statistics, we will assume that the weight vectors are s-sparse, i.e., have at most s

non-zero coordinates. We will denote the set of s-sparse d-dimensional vectors by

Rd,s.

In the perturb and MAP framework, a stochastic decoder first perturbs the linear

score by injecting some independent noise for each structured output y, and then

returns the structured output that maximizes the perturbed score. Gumbel per-

turbations are commonly used owing to the max-stability property of the Gumbel

distribution. Denoting G(β) as the Gumbel distribution with location and scale pa-

rameters 0 and β respectively, we have the following stochastic decoder, where γ ∼ Gr

denotes a collection of r i.i.d. Gumbel-distributed random variables and γy denotes

the Gumbel random variable associated with structured output y:

fw,γ(x) = argmax
y∈Y(x)

〈φ(x, y), w〉+ γy. (4.2)
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For any weight vector w, and data set S = {(xi, yi)} i.i.d.∼ Dm, we consider the following
expected and empirical zero-one loss:

L(w,D) = E(x,y)∼D [Eγ∼Gr [1 [y 6= fw,γ(x)]]] , (4.3)

L(w, S) =
1

m

m∑

i=1

Eγ∼Gr [1 [yi 6= fw,γ(xi)]] , (4.4)

where 1 [·] denotes the indicator function and D is the unknown data distribution.

We will let the scale parameter depend on the number of samples m and the weight

vector w, and write β(m,w) > 0. The reason for this will become clear later, but

intuitively one would expect that as the number of samples increases, the magnitude

of perturbations should decrease in order to control the generalization error. Un-

der Gumbel perturbations, fw,γ(xi) is distributed according to following conditional

random field (CRF) distribution Q(xi, w) with pmf q(·;xi, w) [Gum54,PY11]:

q(yi;xi, w) = Prγ∼Gr(β) {fw,γ(xi) = yi}

=
exp(〈φ(xi,yi),w〉/β)

Z(w, xi)
, (4.5)

where Z(w, xi) =
∑

y∈Y(x) exp(〈φ(xi,y),w〉/β) is the partition function. The empirical

loss in (4.4) can then be computed as:

(CRF loss) L(w, S) =
1

m

m∑

i=1

Pr {fw,γ(xi) 6= yi} . (4.6)

The ultimate objective of a learning algorithm is to learn a weight vector w that

generalizes to unseen data. Therefore, minimizing the expected loss given by (4.3) is

the best strategy towards that end. However, since the data distribution is unknown,

one instead minimizes the empirical loss (4.4) on a finite number of labeled examples

S.

4.2 Generalization Bound

As a first step we will show that the empirical loss (4.6) indeed bounds the expected

perturbed loss (4.3) from above, upto statistical error that decays as Õ (1/√m). We
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have the following generalization bound whose proof, as well as proofs of other results

in the rest of the chapter, can be found in Appendix C.

Theorem 4.2.1 (Rademacher based generalization bound)

With probability at least 1− δ over the choice of m samples S:

(∀w ∈ Rd,s) L(w,D) ≤ L(w, S) + ε(d, s,m, r, δ),

where

ε(d, s,m, r, δ) = 2

√
s(ln d+ 2 ln(mr))

m
+ 3

√
ln 2/δ

2m
.

As a direct consequence of the uniform convergence bound given by Theorem 4.2.1,

we have that minimizing the CRF loss (4.6) is a consistent procedure for learning

MAP-perturbation models.

4.3 Towards an Efficient Learning Algorithm

While Theorem 4.2.1 provides theoretical justification for learning perturbation

models by minimizing the CRF loss (4.6), with the exception of a few special cases,

computing the loss function is in general intractable. This is due to the need for

computing the partition function Z(w, x) which is an NP-hard problem [Bar82]. Fur-

ther, even approximating Z(w, x) with high probability and arbitrary precision is also

known to be NP-hard [CSH08].

To counter this computational bottleneck, we propose an efficient stochastic de-

coder that decodes over a randomly sampled set of structured outputs. To elaborate

further, given some x ∈ X, let R(x,w) be some proposal distribution, parameterized

by x and w, over the structured outputs Y(x). We generate a set T′ of n structured

outputs sampled independently from the distribution R and define the following ef-

ficient stochastic decoder:

fw,γ,T′(x) = argmax
y∈T′

〈φ(x, y), w〉+ γy. (4.7)
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Therefore fw,γ,T′(x) is distributed according to the CRF distribution Q(x,w,T′) with

pmf q(·;x,w,T′) and support on T′ as follows:

q(y;x,w,T′) = Prγ∼Gn {fw,γ,T′(x) = y}

=
1 [y ∈ T′]

Zw,x,T′
exp(〈φ(x,y),w〉/β),

where Zw,x,T′ =
∑

y′∈T′ exp(〈φ(x,y′),w〉/β). Note that the partition function Zw,x,T′ can

be computed in time linear in n, since |T′| = n. Now, let T = {Ti | xi ∈ S} be the

collection of n structured outputs sampled for each xi in the data set, from the product

distribution R(S, w)
def
= ×mi=1(R(xi)

n). Note that the distribution R(S, w) does not

depend on the {yi}’s in S. We denote the distribution over the collection of sets {Ti}
by R(S, w) to keep the notation light. Additionally, we consider proposal distributions

R(x,w) that are equivalent upto linearly inducible orderings of the structured output.

Definition 4.3.1 (Equivalence of proposal distributions [HJ16]) For any x ∈
X, two proposal distributions R(x,w) and R(x,w′), with probability mass functions

p(·;x,w) and p(·;x,w′), are equivalent if:

∀y, y′ ∈ Y(x) : 〈φ(x, y), w〉 ≤ 〈φ(x, y′), w〉

and 〈φ(x, y), w′〉 ≤ 〈φ(x, y′), w′〉

⇐⇒ ∀y ∈ Y(x) p(y;x,w) = p(y;x,w′).

We then write R(x,w) ≡ R(x,w′) ≡ R(x, π(x)), where π(x) is the linear ordering

over Y(x) induced by w (and w′).

Intuitively speaking, the above definition requires proposal distributions to depend

only on the orderings of the values 〈φ(x, y1), w〉, . . . , 〈φ(x, yr), w〉 and not on the actual

value of 〈φ(x, yj), w〉.
To obtain an efficient learning algorithm with generalization guarantees, we will

use augmented sets T̄ = {T̄i}mi=1, where T̄i = Ti ∪{yi}. Then, given a random col-
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lection of structured outputs T, we consider the following augmented randomized

empirical loss for learning the parameters of the MAP-perturbation model:

L(w, S, T̄) =
1

m

m∑

i=1

Prγ∼Gn
{
fw,γ,T̄i(xi) 6= yi

}
. (4.8)

As opposed to the loss function given by (4.6), the loss in (4.8) can be computed

efficiently for small n. Our next result shows that the randomized augmented loss

lower bounds the full CRF loss L(w, S) as long as T̄i is a set, i.e., contains only unique

elements.

Lemma 4.3.1 For all data sets S, Ti ⊆ Y(xi), and weight vectors w:

L(w, S, T̄)− L(w, S) =

− 1

m

m∑

i=1

Prγ
{
fw,γ,T̄i(xi) = yi

}
×

Prγ
{
fw,γ(xi) ∈ (Y(xi) \ T̄i)

}
≤ 0 (4.9)

Remark 4.3.2 If T̄i = Y(xi) then L(w, S) = L(w, S, T̄i).

Next, we will show that an algorithm that learns the parameter w of the MAP-

perturbation model, by sampling a small number of structured outputs for each xi

and minimizing the empirical loss given by (4.8), generalizes under various choices

of the proposal distribution R. Our first step in that direction would be to obtain

uniform convergence guarantees for the stochastic loss (4.8).

4.3.1 Generalization Bound

To obtain our generalization bound, we decompose the difference the exact and

randomized loss L(w, S)− L(w, S, T̄) as follows:

L(w, S)− L(w, S, T̄) = A(w, S) +B(w, S, T̄), (4.10)

A(w, S) = L(w, S)− ET∼R(S)

[
L(w, S, T̄)

]
, (4.11)

B(w, S, T̄) = ET∼R(S)

[
L(w, S, T̄)

]
− L(w, S, T̄), (4.12)
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where A(w, S) can be thought of as the approximation error due to using a small

number of structured outputs Ti’s instead of the full sets Y(xi), while B(w, S, T̄) be

is the statistical error. In what follows, we will bound each of these errors from above.

From Lemma 4.3.1 it is clear that the proposal distribution plays a crucial role in

determining how far the surrogate loss L(w, S, T̄) is from the CRF loss L(w, S). To

bound the approximation error, we make the following assumption about the proposal

distributions R(x,w).

Assumption 4.3.3 For all (xi, yi) ∈ S and weight vectors w ∈ Rd,s, the proposal

distribution satisfies the following condition with probability at least 1 − ‖w‖1/√m, for
a constant c ∈ [0, 1]:

(i) Ti = {yi} if ∀ y 6= yi〈φ(xi, yi), w〉 > 〈φ(xi, y), w〉,

(ii) 1
n

∑
y∈Ti〈φ(xi, y), w〉 ≥ 〈φ(xi, yi), w〉+ c ‖w‖1 otherwise,

where the probability is taken over the set Ti.

Intuitively, Assumption 4.3.3 states that, if yi is not the highest scoring structure

under w, then the proposal distribution should return structures T = {y} whose

average score is an additive constant factor away from the score of the observed

structure yi with high probability. Otherwise, the proposal distribution should return

the singleton set T = {yi} with high probability. Note that Assumption 4.3.3 is in

comparison much weaker than the low-norm assumption of [HJ16], which requires

that, in expectation, the norm of the difference between φ(x, y) and φ(x, yi) (where

y is sampled from the proposal distribution) should decay as 1/√m. The following

lemma bounds the approximation error from above.

Lemma 4.3.4 (Approximation Error) If the scale parameter of the Gumbel per-

turbations satisfies: β ≤ min(‖w‖1/logm, wmin/log((r−1)(
√
m−1))) for all w 6= 0, and n ≥

m0.5−c, then under Assumption 4.3.3 A(w, S) ≤ ε1(m,n,w), where

ε1(m,n,w)
def
=
‖w‖1√
m

+
1

1 +
√
m
,

and wmin = min{|wj| | |wj| 6= 0, j ∈ [d]}.
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Note that for c ≥ 0.5 the number of structured outputs needed is n = 1, while in the

worst case (c = 0) n =
√
m. Furthermore, n needs to grow polynomially with respect

to m in order to achieve O (1/√m) generalization error.

Lemma 4.3.5 (Statistical Error) For any fixed data set S, the statistical error

B(w, S, T̄) is bounded, simultaneously for all proposal distributions R(xi, w) over

{Ti}, as follows:

PrT
{

(∀w ∈ Rd,s) B(w, S, T̄) ≤ ε2(d, s, n, r,m, δ) | S
}

≥ 1− δ, (4.13)

where

ε2(d, s, n, r,m, δ)
def
= 2

√
s(ln d+ 2 ln(nr))

m
+

√
ln 1/δ

2m
+

√
s(ln d+ 2 ln(mr)) + ln 1/δ

2m
.

Now, we are ready to present our main result proving uniform convergence of

the randomized loss L(w, S, T̄). More specifically, we provide Õ (1/√m) generalization

error.

Theorem 4.3.6 With probability at least 1 − 2δ over the choice of the data set S

and the set of random structured outputs T, and simultaneously for all w ∈ Rd,s and

proposal distributions R(x,w):

L(w,D) ≤ L(w, S, T̄) + ε1 + ε2, (4.14)

where ε1 and ε2 are defined in Lemma 4.3.4 and 4.3.5 respectively.

Proof The claim follows directly from Lemma 4.3.4 and Lemma 4.3.5 by taking an

expectation with respect to S.

4.3.2 Examples of Proposal Distributions

Having proved uniform convergence of our randomized procedure for learning the

parameters of a MAP decoder, we turn our attention to the proposal distribution.
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We want to construct proposal distributions of the form given by Definition 4.3.1

that satisfy Assumption 4.3.3 with a large enough constant c. Additionally, for our

randomized procedure to run in polynomial time we want the proposal distribution

to sample a structured output in constant time. The following algorithm is directly

motivated by Assumption 4.3.3 where the set neighborsk(y) for an input x is defined

as: neighborsk(y)
def
= {y′ ∈ Y(x)\{y} | H(y, y′) ≤ k}, withH(·, ·) being the Hamming

distance.

Algorithm 3 An example algorithm implementing a proposal distribution that

depends on yi ∈ S.

1: Input: Weight vector w ∈ Rd,s, (xi, yi) ∈ S, parameter α ∈ [0, 1] and k ≥ 1.

2: Output: A structured output y ∈ Y(x).

3: With probability α pick y′ uniformly at random from Y(xi), and with probability

1− α set y′ to yi.

4: y ← y′.

5: for y′ ∈ neighborsk(y) do

6: if 〈φ(x, y′), w〉 ≥ 〈φ(x, y), w〉 then
7: y ← y′.

8: end if

9: end for

10: Return y.

Remark 4.3.7 Setting α = ‖w‖1/√m, Algorithm 3 satisfies the condition given in

Definition 4.3.1 as well as Assumption 4.3.3. Since, for any w,w′ ∈ Rd,s that induce

the same linear ordering over Y(x), conditioned on the y′ sampled in Step 3, the

algorithm returns the same y for both w and w′ with probability 1.

Also note that using a larger k ensures that the above algorithm satisfies Assumption

4.3.3 with a larger constant c, thereby reducing the number of structured outputs

that need to be sampled (n), at the cost of increased computation for sampling a

single structured output.



69

The parameter α in Algorithm 3 controls exploration vs exploitation. As α be-

comes smaller Algorithm 3 returns a proposal from within the neighborhood of yi

while for larger α it explores high scoring structures in the entire set of candidate

structures.

Lastly, note that our results do not violate the hardness results of [SMGJ10], who

essentially show that it is NP-hard to decide if the training data is linearly separable.

Depending on whether or not the data is linearly separable, the loss L(w, S) (4.6)

can be large or small (for all or some weight vector). While computing L(w, S)

is intractable in general, we merely provide an efficiently computable lower bound

L(w, S,T) ((4.8)) that still upper bounds the expected loss L(w,D).

4.3.3 Minimizing the CRF Loss

In this section we discuss strategies for minimizing the (randomized) CRF loss

L(w, S, T̄). Minimizing the randomized CRF loss L(w, S, T̄) is equivalent to maxi-

mizing the randomized CRF gain U(w, S, T̄) = 1
m

∑m
i=1 Prγ

{
fw,γ,T̄i(xi) = yi

}
, which

in turn is equivalent to maximizing logU(w, S, T̄). The latter can be accomplished

by gradient based methods with the gradient of logU(w, S, T̄) given by:

∇w logU(w, S, T̄) =

∑m
i=1 qi(φ(xi, yi)− E [φ(xi, y)])∑m

i=1 qi
, (4.15)

where qi
def
= Prγ

{
fw,γ,T̄i(xi) = yi

}
, and the expectation is taken with respect to

y ∼ Q(xi, w, T̄i). The exact CRF loss (L(w, S)) can similarly be minimized by

using T̄i = Y(xi), for all xi ∈ S, in the above. Note that by Jensen’s inequality

logU(w, S, T̄) ≥ 1
m

∑m
i=1 log Prγ

{
fw,γ,T̄i(xi) = yi

}
, where the latter can be identified

as the log likelihood of the data set S under the CRF distributions {Q(xi, w, T̄i)}.
Therefore, L(w, S, T̄) can be equivalently minimized by minimizing the negative log-

likelihood of the data, which in turn gives rise to the well known moment-matching

rule known in the literature [PY11]. Thus, Algorithm 3 can be used with standard

moment matching where the expectation is approximated by averaging over y’s drawn

from the distribution Q(xi, w, T̄i). While standard moment matching is in general
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intractable, moment matching in conjunction with Algorithm 3 is always efficient.

Indeed, (4.15) can be thought of as a “weighted” moment matching rule with weights

qi.

4.4 Experiments

4.4.1 Synthetic Experiments

In this section, we evaluate our proposed method (CRF_RAND) on synthetic data

against three other methods: CRF_ALL, SVM_RAND, and SVM. The CRF_RAND method

minimizes the randomized loss L(w, S, T̄) (4.8) subject to `1 penalty (as prescribed by

Lemma 4.3.4) by sampling structured outputs from the proposal distribution given

by Algorithm 3. The CRF_ALL method minimizes the exact (exponential-time) loss

L(w, S) (4.6). Lastly, SVM is the widely used max-margin method of [TGK03], while

SVM_RAND is the randomized SVM method proposed by [HJ16].

We generate a ground truth parameter w∗ ∈ Rd with random entries sampled

independently from a zero mean Gaussian distribution with variance 100. We then

randomly set all but s =
√
d entries to be zero. We then generate a training set

of S of 100 samples. We used the following joint feature map φ(x, y) for an input

output pair. For every pair of possible edges or elements i and j, we set φ(x, y)i,j =

1 [xi,j = 1 ∧ i ∈ y ∧ j ∈ y]. For instance, for directed spanning trees of v nodes, we

have x ∈ {0, 1}(v2) and φ(x, y) ∈ R(v2). We considered directed spanning trees of 6

nodes, directed acyclic graphs of 5 nodes and 2 parents per node, and sets of 4

elements chosen from 15 possible elements. In order to generate each training sample

(x, y) ∈ S, we generated a random vector x with independent Bernoulli entries with

parameter 1/2. After generating x, we set y = fw∗(x), i.e., we solved (4.1) in order to

produce the latent structured output y from the observed input x and the parameter

w∗.

We set the `1 regularization parameter to be 0.01 for all methods. We used

20 iterations of gradient descent with step size of 1/
√
t for all algorithms, where
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Figure 4.1.: (Top) Training and test set loss (4.6), and test set hamming loss of

the exact method (CRF_ALL) and our randomized algorithm (CRF_RAND), the ran-

domized SVM method by [HJ16] (SVM_RAND), and the exact SVM (SVM_ALL), a.k.a

max-margin, method of [TGK03]. For the randomized algorithms, i.e., CRF_RAND

and SVM_RAND, the training loss is the randomized training loss, i.e., L(w, S, T̄) and

L(w, S,T) respectively. (Bottom) Training time in seconds for the various methods.
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t is the iteration, to learn the parameter w for both the exact method and our

randomized algorithm. In order to simplify gradient calculations, we simply set

β = 1/ log((r − 1))(
√
m − 1)) during training. For CRF_RAND, we used Algorithm

3 with α = ‖w‖1/√m and invoke the algorithm
√
m number of times to generate the

set Ti for each i ∈ [m] and w. This results in n = |Ti| ≤
√
m. To evaluate the

generalization performance of our algorithm we generated a test set S ′ = {x′i, y′i}mi=1

of 100 samples and calculated two losses. The first was the full CRF loss (4.6) on

the test set S ′, and the second was the test set hamming loss 1
m

∑m
i=1 Ĥ(fŵ(x′i), y

′
i),

where Ĥ(·, ·) is the normalized Hamming distance, and ŵ is the learned parameter.

Hamming distance is a popular distortion function used in structured prediction, and

provides a more realistic assessment of the performance of a decoder, since in most

cases it suffices to recover most of the structure rather than predicting the structure

exactly. For DAGs and trees the Hamming distance counts the number of different

edges between the structured outputs, while for sets it counts the number of different

elements. We normalize the Hamming distance to be between 0 and 1. We computed

the mean and 95% confidence intervals of each of these metrics by repeating the above

procedure 30 times.

Figure 4.1 shows the training and test set errors and the training time of the four

different algorithms. CRF_RAND significantly outperformed other algorithms in both

the test set loss and test set hamming loss, while being ≈ 6 times faster than the

exact method (CRF_ALL) for DAGs, ≈ 20 times faster for trees, and ≈ 3 times faster

for sets. The exact CRF method (CRF_ALL) was also significantly faster than the

exact SVM (SVM) method while achieving similar test set loss and test set hamming

loss.

4.4.2 Real-world Experiments

In this section, we evaluate the performance of our method on a image matching

task. We used the Buffy Stickmen data set (available at http://www.robots.ox.ac.

http://www.robots.ox.ac.uk/~vgg/data/stickmen/
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uk/~vgg/data/stickmen/), containing stills (images) from the television (TV) show

Buffy the Vampire Slayer. The data set contains 187 sequences from different episodes

and scenes from the TV series. Each sequence has 4 video frames and we match the

first and last frames in a sequence, resulting in 187 image pairs. Each image is anno-

tated with 18 keypoints corresponding to 6 body parts (head, torso, etc.). Given two

image pairs from a video sequence, the goal is to match the keypoints in the image.

Specifically, the input x = (x0, x1) corresponds to an RGB image pair, the correspond-

ing output y is a permutation of {1, . . . , 18}, where the i-th keypoint in x0 is matched

with the y(i)-th keypoint in x1. Note that this is a weighted bipartite matching prob-

lem and can be solved in polynomial time, e.g., using the Hungarian algorithm. More

specifically, given a weight vector w, fw(x) can be computed efficiently. We used the

following feature for a input-output pair φ(x, y) = 1
18

∑18
i=1(ψ(x0, i) − ψ(x1, y(i)))2,

where ψ(·, i) ∈ R128 are the (normalized) SIFT descriptors with scale 5 computed at

the i-th keypoint of the image. We compared our algorithm (CRF_RAND) against two

other methods: the moment-matching method (MM), where we solve fw(x) exactly,

and the SVM_RAND method of [HJ16]. For moment matching (MM), we learned using

exact inference, and approximated the expectation (for computing the expected suf-

ficient statistics) by averaging over 50 samples drawn using Gumbel perturbations.

For SVM_RAND, we used n = 5, i.e., we draw 5 samples from the proposal distribution.

For each of the methods we computed the mean test set error across 10 bootstrap

runs, where in each run we sample 187 image pairs (with replacement) to generate

the training set and use the complement of the training set as the test set. We tried

four different `1 regularization parameters for each method: 0, 0.001, and 0.01, and

report the highest mean test set error for each method. The error is computed as the

number of keypoints (out of a maximum of 18) that were matched incorrectly. Table

4.1 details the error of the three methods. Note that our method achieves similar

performance to that of moment matching even though the latter uses exact inference

during learning. Figure 4.2 shows the three best and three worst matches returned

http://www.robots.ox.ac.uk/~vgg/data/stickmen/
http://www.robots.ox.ac.uk/~vgg/data/stickmen/
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Table 4.1.: Test set hamming error (number of mismatched key points) of the three

methods on the image matching task.

Method Test set hamming error Train time (sec.)

CRF_RAND 6.94± 0.27 369.33± 2.36

MM 6.95± 0.3 487.58± 2.29

SVM_RAND 7.29± 0.5 665.42± 10.32

by our method for regularization parameter 0.01, and a train-test split where the odd

numbered (resp. even numbered) sequences were used for training (resp. test).

4.5 Related Work

Significant body of work exists in computing a single MAP estimate by exploiting

problem specific structure, for instance, super-modularity, linear programming relax-

ations to name a few. However, in this paper we are concerned with the problem of

Figure 4.2.: The three best (left) and three worst (right) matchings returned by our

algorithm (CRF_RAND) on the test set of the image matching task.
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learning the parameters of MAP perturbation models. Among generalization bounds

for MAP perturbation models, [HMKJ13] prove PAC-Bayesian generalization bounds

for weight based perturbations. [HMKJ13] additionally propose learning weight based

MAP-perturbation models by minimizing the PAC-Bayesian upper bound on the gen-

eralization error. However, their method for learning the parameters involves con-

structing restricted families of posterior distributions over the weights w that lead

to smooth, but not necessarily convex, generalization bounds that can be optimized

using gradient based methods. For learning MAP-perturbation models with struc-

ture based (Gumbel) perturbations, [GHJ14] propose a hard-EM algorithm which is

both worst-case exponential time and has no theoretical guarantees. [PY11] on the

other hand, propose learning Gumbel MAP-perturbation models by using the moment

matching method. However, such an approach is tractable only for energy functions

for which the global minimum can be computed efficiently. Lastly, [HMJ13,OHSJ14]

consider the problem of efficiently sampling from MAP perturbation models using low

dimensional perturbations. [HJ12,HMJ13] additionally propose ways to approximate

and bound the partition function. While such bounds on the partition function can

be used, in principle, to approximately minimize the CRF loss (4.6), it is unclear if

one can obtain uniform convergence guarantees for the same, given that computing

or even approximating the partition function is NP-hard [Bar82,CSH08].

4.6 Summary

In this chapter, we proposed a provably polynomial time randomized procedure

for learning the parameters of perturbed MAP predictors with generalization guar-

antees. Surprisingly, our results demonstrate that learning is possible in the MAP

perturbation framework without solving the inference problem exactly, i.e., only upto

a constant factor approximation. The main idea behind our approach was to use

a proposal distribution to sample a small number of structured outputs in order to

approximate the partition function. We obtained conditions on the proposal dis-
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tributions under which the learned structured predictor can generalize to unseen

examples. Our generalization bounds demonstrated that the proposed approach not

only achieves computationally efficiency, but also has better generalization than exact

methods. We evaluated the efficacy of our approach through synthetic and real-world

experiments and compared our method against state-of-the-art exact and approximate

learning algorithms where we demonstrated superior accuracy and computational ef-

ficiency. In the backdrop of results showing that it is hard to compute and accurately

approximate the partition function [Bar82,CSH08], our results represent a significant

advance in obtaining efficient learning algorithms by only roughly approximating the

partition function.
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5 CONCLUSION

This dissertation took an in-depth look at the general problem of recovering com-

binatorial structures from a limited amount of data. Such problems are pervasive

in many application domains like computer vision, natural language processing, and

genetics to name a few, and efficient algorithms with strong theoretical guarantees

for the same are of paramount importance.

Specifically, in Chapter 2 we considered the problem of recovering DAGs cor-

responding to a linear structural equation model from purely observational data.

Our work relaxed the homoscedastic noise condition to prove identifiability of linear

SEMs under a slightly more general condition. Furthermore, our method was the first

fully polynomial time algorithm for the problem and returns the correct DAG using

an (almost) information-theoretically optimal number of samples. The key concep-

tual leap made by our work was to exploit the identifiability condition to propose a

Cholesky factorization like algorithm for learning the edge weight matrix. Identifia-

bility has been previously exploited to obtain computationally efficient algorithms in

the LINGAM case. However, finite sample guarantees are yet to be obtained for the

same.

In Chapter 3, we considered the problem of learning graphical games from be-

havioral data. Here the combinatorial structure of interest corresponded to the set

of pure-strategy Nash equilibria of the “true game”. We presented a polynomial-time

algorithm based on one-vs-rest multinomial logistic regression that recovered the ε-

Nash equilibria set of the true game. Our method can be considered as a convex

relaxation of an objective that directly maximizes the number of empirical Nash equi-

libria [HO15]. While the latter objective is hard to optimize, our convex relaxation

approach can be solved in polynomial time.
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Lastly, in Chapter 4 we looked at the problem of learning (randomized) structured

predictors. The key computational bottleneck here was computing the partition func-

tion during learning. We circumvented the problem by proposing an efficient sampling

scheme for approximating the partition function that only computes a constant fac-

tor approximation. We obtained Rademacher-based generalization guarantees for our

randomized learning procedure.

The three approaches summarized above represent three general techniques for

coming up with efficient algorithms for combinatorial problems in machine learning

namely, exploiting structure, convex relaxations, and randomization. While all of

these techniques have been extensively used in the machine learning literature for

a wide variety of problems, this dissertation explored such techniques for learning

DAGs, games, and structured predictors. The proposed algorithms for the aforemen-

tioned problems are in many cases the first computational and statistically efficient

procedures known in the literature.
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A DETAILED PROOFS FOR SEMS

Proof [Proof of Proposition 2.3.1] When σ2
i = σ2 for all i ∈ [p], then (2.4) reduces

to:

∑

l∈φG[m,τ ](j)

B2
l,j

σ2
l

> 0,

which holds trivially by causal minimality since B2
l,j > 0 for (l, j) ∈ E. This proves

part (i).

Now under (ii), 1/σ2
i − 1/σ2

j < 1 , ∀i, j ∈ [p]. Also, B2
l,j/σ2

l ≥ 1 for all (l, j) ∈ E. Thus

(2.4) is satisfied.

Proof [Proof of Lemma 2.3.2] Consider the following two SEMs over three nodes,

where the noise variances are shown within braces below each node, and the edge

weights are shown on the edges.

1 2β 3b2 1 2β 3b2

(v1) (v1) (v2) (v1)(v2)(v1)

Both the SEMs make the following conditional independence assertion: X1⊥⊥X3 | X2,

and are therefore Markov and causal minimal to P(X). Set b2 =
√

1− v1
v2
. Then using

the formulas derived in Proposition 2.3.2 it can be verified that the full precision

matrix and the precision matrix obtained after removing vertex 1 (Ω(−1)), for both

the SEMs is:

Ω =
1

v1

×




1 −β 0

−β 1 + β2 −b2

0 −b2 1


 Ω(−1) =

1

v1

×


 1 −b2

−b2 1


 (A.1)

The SEM on the left does not satisfy Assumption 2.3.1 because vertex 3 is a non-

terminal vertex but 3 ∈ argmin(diag(Ω)). The SEM on the right does not satisfy
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Assumption 2.3.1 because after the vertex 1 is removed we have that vertex 2 is a

non-terminal vertex but satisfies 2 ∈ argmin(diag(Ω(−1))).

Now we construct the subset G̃p,d with p = 3k for k = 1, 2, . . ., as follows. We

randomly set the DAG structure over nodes (3i − 1), (3i) and (3i + 1) to one of the

two configurations shown in the above figure. Therefore we have,
∣∣∣G̃p,d

∣∣∣ = 2(p−1)/3. We

generate matrices B(β) and D(v1, v2) as prescribed. The precision matrix block over

the nodes (3i − 1), (3i), and (3i + 1), for i ∈ [(p−1)/3], is given by (A.1), and all the

other entries of the precision matrix are zeros. This proves our claim.

While the above constructions constructs a family of disconnected DAGs, with

d = 1, it is easy to come up with subsets of DAGs that are connected and still satisfy

the statement of the lemma. One such construction is shown below where d = (p−1)/3.

The entries of the first row (and also the first column) of the precision matrix, for

i ∈ [(p−1)/3], are as follows:

Ω1,1 =
1

v0

+
(p− 1)b2

0

3v1

, Ω1,3i−1 = − b0

v1

, Ω1,3i =
b0β

v1

.

1

(v0)

2

(v1)

3

(v1)

β 4

(v2)

b2 5

(v1)

6

(v1)

β 7

(v2)

b2 p-2

(v1)

p-1

(v1)

β p

(v2)

b2

b0 b0 b0

. . .

As shown before, each triplet of nodes (3i− 1)← (3i)← (3i+ 1), for i ∈ [(p−1)/3], can

be oriented as (3i− 1)← (3i)→ (3i+ 1) without changing the block of the precision

matrix over the nodes (3i− 1), (3i) and (3i+ 1), and the entries Ω1,∗ or Ω∗,1.

Proof [Proof of Proposition 2.3.2] From (2.2) we have that (I − B)X = N , and

since (I−B) is invertible, X = (I−B)−1N . Therefore:

Σ = E
[
XXT

]
= E

[
(I−B)−1NNT (I−B)−T

]
= (I−B)−1D(I−B)−T .
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From which it follows that Ω = (I−B)TD−1(I−B), where D−1 = Diag(1/σ2
1, . . . , 1/σ2

p).

From this the result for the entries of the precision matrix follows by sparsity pattern

of B.

Proof [Proof of Proposition 2.3.3] From (2.5) we have that for a terminal vertex i,

Ωi,i = 1/σ2
i , while for a non-terminal vertex j, Ωj,j = 1/σ2

j +
∑

l∈φ(j)
B2
l,j/σ2

l . Therefore,

by Assumption 2.3.1 we have that for all non-terminal vertices j and terminal vertices

i, Ωj,j > Ωi,i.

Now since every DAG has at least one terminal vertex, if i ∈ argmin(diag(Ω)),

then once again by Assumption 2.3.1, we have that i must be a terminal vertex.

Proof [Proof of Lemma 2.3.3] First note that since i is a terminal vertex, the autore-

gression matrix over X−i is simply B−i,−i. Denoting D′
def
= Diag(σ2

1, . . . , σ
2
i−1, σ

2
i+1, σ

2
p)

and by Proposition 2.3.2 we have:

Ω(−i) = (I−B−i,−i)
T (D′)−1(I−B−i,−i) =

∑

j∈−i

1

σ2
j

((ej)−i −BT
j,−i)((ej)

T
−i −B−i,j)

=
∑

j∈[p]

1

σ2
j

(
(ej −BT

j,∗)(e
T
j ,−Bj,∗)

)
−i,−i −

1

σ2
i

(
(ei −BT

i,∗)(e
T
i −Bi,∗)

)
−i,−i

= Ω−i,−i −
1

σ2
i

(
BT
i,−iBi,−i

)
= Ω−i,−i − Ωi,i

ΩT
i,−i

Ωi,i

Ωi,−i

Ωi,i

= Ω−i,−i −
1

Ωi,i

Ω−i,iΩi,−i,

where in the last line we used the fact that for a terminal vertex Ωi,i = 1/σ2
i (Propo-

sition 2.3.3), and Bi,−i = −Ωi,−i/Ωi,i (Proposition 2.3.4).

Proof [Proof of Lemma 2.3.4] First consider the case when j /∈ πG(i). Then, for any

k ∈ [p] \ {i, j}, i /∈ (φG(j)∩φG(k)). Therefore, by Proposition 2.3.2, (Ω(−i))j,k = Ωj,k,

and by symmetry of the precision matrix (Ω(−i))k,j = Ωk,j. Thus, we have that for

any (j, k) if at least one of {j, k} is not in πG(i), then (Ω(−i))j,k = Ωj,k, which proves

our first claim. Thus, the only remaining case to consider is when both j, k ∈ πG(i).

The are two ways is which the set S((Ω(−i))j,∗) can be larger than the set S(Ωj,∗),

i.e., the support set of the j-th node can increase after deleting the terminal node i.
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The first being when j, k ∈ πG(i) and either (j, k) ∈ E or (k, j) ∈ E but Ωj,k = 0, in

which case we have:

∑

l∈φ(j)∩φ(k)

(Bl,jBl,k)/σ2
l = Bj,k/σ2

j + Bk,j/σ2
k.

Then, after removing the terminal node i, we have

(Ω(−i))j,k = −Bj,k/σ2
j − Bk,j/σ2

k +
∑

l∈(φ(j)∩φ(k)\{i})

(Bl,jBl,k)/σ2
l 6= 0.

The other case is when j, k ∈ πG(i), (j, k) /∈ E, (k, j) /∈ E but Ωj,k = 0, in which case

we have:

∑

l∈φ(j)∩φ(k)

(Bl,jBl,k)/σ2
l = 0.

Therefore, after removing the terminal node we have:

(Ω(−i))j,k =
∑

l∈(φ(j)∩φ(k)\{i})

(Bl,jBl,k)/σ2
l 6= 0.

Thus, S((Ω(−i))j,∗) ⊆ (S(Ωj,∗) \ {i})∪ πG(i).

Proof [Proof of Theorem 2.3.5] Let it be the terminal vertex identified in iteration

t, It def
= {i1, . . . , it} and Rt

def
= [p] \ It. Let Ω(i) be the precision matrix after iteration

i. The correctness of the algorithm follows from the following loop invariants:

(i) By Lemma 2.3.3 we have that, (Ω(t))Rt,Rt is the correct precision matrix over

XRt .

(ii) The algorithm identifies a correct terminal vertex in iteration t, since the matrix

(Ω(t−1))Rt−1,Rt−1 is the correct precision matrix over XRt−1 , the SEM over XRt−1

satisfies Assumption 2.3.1 by definition, and ∀i ∈ It−1, Ωi,i =∞.

(iii) By proposition 2.3.3 we have that at the end of round t, the sub-matrix BIt,∗

has been correctly set and that ∀i ∈ It, πG(i) = S(Bi,∗).

To see that the algorithm returns a unique autoregression matrix B̂, consider the

following. If at iteration t there is a unique minimizer of diag(Ω(t−1)), which implies
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a single terminal vertex, then the algorithm selects it and the incoming edge weights

of the node is uniquely determined. While, in iteration t if there are multiple terminal

vertices, leading to multiple minimizers of diag(Ω(t−1)), then the order in which they

are eliminated does not matter. Or in other words, once a vertex becomes a terminal

vertex, for instance after deletion of its children, its edge weights do not change. To

see this, assume that there are two terminal vertices, i and j after iteration t − 1.

Then i and j are not in each other’s parent sets. Therefore, if node i is eliminated

in iteration t, then by Lemma 2.3.4 we have that (Ω(t))j,k = (Ω(t−1))j,k, ∀k ∈ πG(j).

Hence, we have that B is the unique autoregression matrix returned by the algorithm.

Proof [Proof of Lemma 2.3.9] Let Ω(−i) = (ωj)j∈−i be the true precision matrix

over X−i and let Ω̂′ = (ω′j)j∈[p] be the matrix returned by the function Update. The

estimator Ω̂(−i) = (ω̂j)j∈−i of Ω(−i) can be obtained by solving (2.7) using Σn
−i,−i. By

Lemma 2.3.7, and the facts that
∣∣Σn
−i,−i −Σ−i,−i

∣∣
∞ ≤ |Σ

n −Σ|∞ and
∥∥Ω(i)

∥∥
1
≤ M ,

we have that
∣∣∣Ω(−i) − Ω̂(−i)

∣∣∣ ≤ 4Mλn. Since i is a terminal vertex, by Proposition

2.3.4 we have πG(i) = S(Ωi,∗) \ {i}. Further, since S(Ωj,∗) ⊆ S(Ω̂j,∗), ∀j ∈ [p], we

have by Assumption 2.3.8 (ii) that, πG(i) ⊆ π̂(i) = S(Ω̂i,∗) \ {i} ⊆ Ŝ. By Lemma

2.3.4 and Assumption 2.3.8 (ii) we have that ∀j ∈ Ŝj, S(ωj) ⊆ S (Ωj,∗ \ {i})∪πG(i) ⊆
S
(
Ω̂j,∗ \ {i}

)
∪ π̂(i)

def
= Ŝj. Or in other words we have

(
Ω(i)

)
j,Ŝcj

=
(
Ω(i)

)
Ŝcj ,j

= 0.

Now for j ∈ −i we set (ω′j)Ŝj = ω̄j and (ω′j)Ŝcj
= 0, where ω̄j is obtained by solving:

argmin

ω∈R|Ŝj|
‖ω‖1 ,

sub. to
∣∣∣Σn

k,Ŝj
ω
∣∣∣ ≤ λn, ∀k /∈ {i, j},∣∣∣Σn

j,Ŝj
ω − 1

∣∣∣ ≤ λn.

Since ω̄j is a solution to the above linear program, we have that
∣∣Σn
−i,−iω

′
j − ej

∣∣ ≤ λn

and
∥∥ω′j

∥∥
1
≤ ‖ω̂j‖1. Therefore,

∣∣∣Ω(−i) − Ω̂′−i,−i

∣∣∣ ≤ 4Mλn. Moreover, by Assumption

2.3.8 (ii), and the fact that Ω̂′i,∗ = Ω̂′∗,i = 0, we get: S(Ω(−i)) ⊆ S(Ω̂′).

Proof [Proof of Theorem 2.3.10] Let it denote the terminal vertex identified in

iteration t and let It def
= {i1, . . . , it}. Let Rt

def
= [p] \ It denote the vertices remain-
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ing after iteration t. Let Ω̂(t) denote the precision matrix at the end of iteration

t, Ω̂(Rt)
def
= (Ω̂(t))Rt,Rt , and Ω∗(Rt) be the true precision matrix over XRt . Since

‖Ω∗‖1 ≤ M , where M is defined in (2.8), we have that λn ≥ M |Σn −Σ∗|∞ ≥
‖Ω∗‖1 |Σn −Σ∗|∞. Therefore, by Lemma 2.3.7 and Assumption 2.3.8 (ii), we have

that
∣∣∣Ω̂(R0) −Ω∗(R0)

∣∣∣
∞

=
∣∣∣Ω̂−Ω∗

∣∣∣
∞
≤ 4Mλn, and S(Ω∗(R0)) ⊆ S(Ω̂0). Therefore, by

Assumption 2.3.8 we have that the Algorithm 1 identifies the correct terminal vertex

in iteration 1. Therefore, by Lemma 2.3.9 we have that
∣∣∣Ω∗(Rt1 ) − Ω̂(Rt1 )

∣∣∣ ≤ 4Mλn

and S(Ω∗(Rt1 )) ⊆ Ω̂(t1).

Let E = (εi,j), where εi,j = Ω∗i,j − Ω̂i,j. To simplify notation in this paragraph, we

will denote the i1 vertex by simply i. Then, for any j 6= i, we have that

∣∣∣B̂i,j −B∗i,j
∣∣∣ =

∣∣∣∣∣
Ω̂i,j

Ω̂i,i

− Ω∗i,j
Ω∗i,i

∣∣∣∣∣ =

∣∣∣∣
Ω∗ii(Ω

∗
i,j − εi,j)− (Ω∗i,i − εi,i)Ω∗i,j

(Ω∗i,i − εi,i)Ω∗i,i

∣∣∣∣

=

∣∣∣∣
Ω∗i,iεi,j − Ω∗i,jεi,i

(Ω∗i,i − εi,i)Ω∗i,i

∣∣∣∣ =

∣∣∣∣
εi,i − σ2

i Ω
∗
i,jεi,i

1/σ2
i − εi,i

∣∣∣∣

=

∣∣∣∣
εi,i −B∗i,jεi,i

1/σ2
i − εi,i

∣∣∣∣

≤ 4Mλn(1 +
∣∣B∗i,j

∣∣)
|1/σ2

i − εi,i|
≤ 4cM(1 +

∣∣B∗i,j
∣∣)σ2

i λn,

where the second and third lines follow from the fact that i is a terminal vertex and

therefore, Ω∗i,i = 1/σ2
i and Ωi,j = −Bi,j/σ2

i . Therefore, we have that
∣∣∣B∗i1,∗ − B̂i1,∗

∣∣∣
∞

=

4cM(1 +Bmax)σ2
maxλn.

Next, assume that the algorithm correctly identifies terminal vertices upto round

t. Then
∣∣∣Ω̂(Rt) −Ω∗(Rt)

∣∣∣
∞
≤ 4Mλn, S(Ω∗(Rt)) ⊆ S(Ω̂(t)), and

∣∣∣B∗It,It − B̂It,It

∣∣∣ ≤
4cM(1+Bmax)σ2

maxλn. Therefore, once again by Assumption 2.3.8, it follows that the

algorithm identifies the correct terminal vertex in round t+1,
∣∣∣Ω̂(Rt+1) −Ω∗(Rt+1)

∣∣∣
∞
≤

4Mλn, S(Ω∗(Rt+1)) ⊆ S(Ω̂(t+1)), and
∣∣∣B∗It+1,It+1

− B̂It+1,It+1

∣∣∣ ≤ 4cM(1 +Bmax)σ2
maxλn.

Hence, the final claim follows by induction. The claim that S(B∗) ⊆ S(B̂) follows

from the fact that S(Ω∗) ⊆ S(Ω̂). Finally, since S(B∗) ⊆ S(B̂) implies that TĜ ⊆ TG∗ .
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Proof [Proof of Theorem 2.3.12] Given that the data was generated by the SEM

(G∗,B∗, {σ2
i }), each Xi can be written as follows:

Xi =
∑

j∈AG∗ (i)

wi,jNj,

for some wi,j 6= 0.

Sub-Gaussian case. Ni is sub-Gaussian with parameter σiν, Xi is sub-Gaussian

with parameter ν
√∑

j∈AG∗ (i) w
2
i,jσ

2
i and Σ∗i,i =

∑
j∈AG∗ (i) w

2
i,jσ

2
i . Therefore, it follows

that Xi/
√

Σ∗i,i is sub-Gaussian with parameter ν. From Lemma 1 of [RWRY11] and

Theorem 2.3.10 we have that the regularization parameter λn need to satisfy the

following bound in order to guarantee that
∣∣∣B̂−B∗

∣∣∣
∞
≤ ε:

MC1

√
2

n
log

(
2p√
δ

)
≤ λn ≤

ε

c4M(1 +Bmax)σ2
max

. (A.2)

The above holds in the regime where the number of samples scales as given in the

statement of the Theorem.

Bounded moment case. In this case we have:

(√
Σ∗i,i

)4m

=


 ∑

j∈AG∗ (i)

w2
i,jσ

2
i




2m

≥
∑

j∈AG∗ (i)

(wi,jσi)
4m (A.3)

Now, by Rosenthal’s inequality we have:

E
[
(Xi)

4m
]
≤ Cm





∑

j∈AG∗ (i)

w4m
i,j E

[
N4m
j

]
+
∑

j∈AG∗ (i)

w4m
i,j Var [Ni]

2m





≤ Cm





∑

j∈AG∗ (i)

w4m
i,j σ

4m
i Km +

∑

j∈AG∗ (i)

w4m
i,j σ

4m
i





= Cm(Km + 1)
∑

j∈AG∗ (i)

(wi,jσi)
4m (A.4)

Combining (A.3) and (A.4) we have

E



(

Xi√
Σ∗i,i

)4m

 ≤ Cm(Km + 1). (A.5)
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From the above and invoking Lemma 2 of [RWRY11] we get:

|Σn −Σ∗|∞ < C2

(
p2

nmδ

)1/2m

, (A.6)

with probability at least 1 − δ. From Theorem 2.3.10 and (A.6) we have that the

regularization parameter λ should satisfy the following for
∣∣∣B̂−B∗

∣∣∣
∞
≤ ε to hold:

MC2

(
p2

nmδ

)1/2m

≤ λn ≤
ε

c4M(1 +Bmax)σ2
max

. (A.7)

The above holds in the regime where the number of samples scales as given in the

statement of the Theorem.

Proposition A.0.1 Let (G,B, {σ2
i }) be an SEM over X with G ∈ Gp,d and precision

matrix Ω. Let ρ be the maximum degree of a node in G. Then, |S(Ωi,∗) \ {i}| ≤ ρ2 ≤
d, ∀i ∈ [p].

Proof [Proof of Proposition A.0.1] For any node i, we will define the following set:

SG(i) = {j ∈ −i | (i, j) /∈ E∧ (j, i) /∈ E∧ |Ωi,j| 6= 0}. Then, from Proposition 2.3.2, we

have: if j ∈ SG(i) then Ωi,j =
∑

l∈φ(i)∩φ(j)
(Bl,iBl,j)/σ2

l 6= 0. In other words, if j ∈ SG(i)

then i and j have at least one common child, i.e., φG(i)∩φG(j) 6= ∅. Node i can have

at most ρ children, and each child k ∈ φG(i) can have at most ρ − 1 parents other

than i making them all members of S(i). Thus, S(i) ≤ ρ(ρ− 1). Therefore, we have

that S(Ωi,∗) \ {i} ⊆ NG(i)∪ SG(i). Then, using the inclusion-exclusion principle we

have that:

|S(Ωi,∗) \ {i}| ≤ |NG(i)|+ |SG(i)| − |NG(i)∩ SG(i)|

= |NG(i)|+ |SG(i)| ≤ ρ+ ρ(ρ− 1) = ρ2.

The SEM which achieves the above upper bound is precisely the one constructed in

the proof, i.e., there exists a node i with exactly ρ children, each child in turn has

ρ− 1 “other parents” which are all members of SG(i).

Proposition A.0.2 Given an SEM (G,B, {σ2
i }) with precision matrix Ω, if σ2

i =

O (1) for all i ∈ [p], and Bi,j = O (1) for all (i, j) ∈ E, then the quantity M as defined

in (2.8) is O (d).
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Proof [Proof of Proposition A.0.2] Let σ2
min = min{σ2

i }. Let φij
def
= φ(i)∩φ(j) and

let Ci
def
= {j 6= i | φij 6= ∅}. Define:

fi(B) =
1

σ2
min

∑

j∈N(i)

|Bi,j +Bj,i|+
1

σ2
min

∑

j∈Ci

∣∣∣
∑

l∈φij

Bl,iBl,j

∣∣∣+
1

σ2
min

∑

l∈φ(i)

B2
l,i +

1

σ2
min

(A.8)

Then by (2.5) and by definition of M in (2.8), M ≤ maxpi=1 fi(B). Now, fi(B) is

maximized when MB(i) = d. There are two cases to consider: Case (i), φ(i) =
√
d,

π(i) = ∅, Ci = d −
√
d and |φij| = 1 for all j ∈ Ci. In this case, the first and

third term of (A.8) are O
(√

d
)
while the second term is O

(
d−
√
d
)
, and therefore

M = O (d). Case (ii), π(i) = d or φ(i) = d. In this case Ci = ∅ and therefore, the

first and third term in (A.8) dominate and M = O (d). Therefore, in the worst case

M = O (d).
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B DETAILED PROOFS FOR GAMES

Proof [Proof of Lemma 3.3.1 (Minimum eigenvalue of population Hessian)]

Fix any θ0,θ1 ∈ Θi, with θ1 6= 0. For any t ∈ (−∞,∞), let F (t;xi)
def
= (θ0 +

tθ1)T f(xi,x−i). Then for x ∈ A,

`(x;θ0 + tθ1) = −F (t;xi) + log(
∑

a∈Ai

exp(F (t; a))). (B.1)

A little calculation shows that the double derivative of `(x;θ0 + tθ1) with respect to

t is as follows:

∂2 `(x;θ0 + tθ1)

∂t2
=
∑

a∈Ai

σ(t; a)F ′(a)2 −
(∑

a∈Ai

σ(t; a)F ′(a)
)2

, (B.2)

σ(t; b) =
exp(F (t; b))∑

a∈Ai exp(F (t; a))
, (b ∈ Ai)

where F ′(a) is the derivative of F (t; a) with respect to t. Since F (t; a) is a linear

function of t, F ′(a) is not a function of t. Also note that
∑

a∈Ai σ(t; a) = 1. Since

θ0,θ1 have bounded norm and t ∈ (−∞,∞), we have that σ(t; a) > 0,∀a ∈ Ai.
Therefore, from (B.2), the strict convexity of (·)2 and Jensen’s inequality, we have:

∂2 `(x;θ0 + tθ1)

∂t2
> 0 (∀t ∈ (−∞,∞)).

Thus we have that `(x,θ) is strongly convex, i.e., λmin(Hi(x;θ)) > 0, ∀θ ∈ Θi.

Finally, by concavity of λmin(·) [BV04] and the Jensen’s inequality we have:

λmin(Hi(θi)) = λmin(E [x] Hi(x;θi)) ≥ E [x]λmin(Hi(x;θi)) > 0.
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Proof [Proof of Lemma 3.3.2 (Minimum eigenvalue of finite sample Hessian)]

To simply notation in the proof we will denote Si by S. The (j, k) block of H(D;θS),

where j, k ∈ {0}∪Ni, can be written as:

Hj,k(D;θS) =
n∑

l=1

∑

a∈Ai

σi(a,x
(l)
−i ;θS)f i,j(a, x

(l)
j )(f i,k(a, x

(l)
k ))T

︸ ︷︷ ︸
Bj,k(D;θS)

−

n∑

l=1

∑

a,b∈Ai

σi(a,x
(l)
−i ;θS)f i,j(a, x

(l)
j )f i,k(b, x

(l)
k )T

︸ ︷︷ ︸
Rj,k(D;θS)

,

where the matrices B and R have been defined above (blockwise). Since the matrix

R is positive semi-definite λmax(H(D;θS)) ≤ λmax(B(D;θS)). Further, since B is

positive semi-definite, we have, from Lemma B.0.1:

λmax(B(D;θS))

≤
∑

j∈{0}∪Ni

λmax(Bj,j(D;θS))

≤ (di + 1) max
j∈{0}∪Ni

λmax

( 1

n

n∑

l=1

∑

a∈Ai

σi(a,x
(l)
−i ;θS)f i,j(a, x

(l)
j )(f i,j(a, x

(l)
j ))T

)

≤ (di + 1)

n
max

j∈{0}∪Ni

n∑

l=1

∑

a∈Ai

σi(a,x
(l)
−i ;θS)λmax

(
f i,j(a, x

(l)
j )(f i,j(a, x

(l)
j ))T

)

= di + 1.

Thus we have that λmax(H(D;θS)) ≤ λmax(B(D;θS)) ≤ di + 1
def
= R. Also note that

H(D;θS) ∈ R|S|×|S|, with |S| ≤ mi(1 +dim). Then using the matrix Chernoff bounds

by [Tro12], we have:

Pr {λmin(H(D;θS)) ≤ (1− δ)λmin} ≤ |S|
(

exp(−δ)
(1− δ)(1−δ)

)(nλmin/R)

Setting δ = 1/2 we get:

Pr

{
λmin(H(D;θS)) ≥ λmin

2

}
≥ 1−mi(1 + dim) exp

(
− nλmin

8(di + 1)

)

Controlling the probability of error to be at most δ we obtain the lower bound on the

number of samples.
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Proof [Proof of Lemma 3.3.3 (Gradient bound)]

A simple calculation shows that

∂ `i(x;θi)

∂θi,j
= −f i,j(xi, xj) +

∑

a∈Ai

σi(a,x−i;θ
i)f i,j(a, xj), (B.3)

where σi(·) has been defined in (3.12). Let

g(x(1), . . . ,x(n)) = (gj(x
(1), . . . ,x(n)))j∈{0}∪Ni ,

where gj(·) =
∥∥∥ 1
n

∑n
l=1

∂ `i(x(l);θi)
∂θi,j

∥∥∥
2
. Then we have that ‖g(·)‖∞ = ‖∇Li(D;θi)‖∞,2

and ‖E [x] g(·)‖∞ = ‖E [x]∇`i(x;θi)‖∞,2 = ν. Then, for any x(l) 6= x(l)′ we have

that:
∣∣∣gj(x(1), . . . ,x(l), . . . ,x(n))− gj(x(1), . . . ,x(l)′ , . . . , gj(x

(n))
∣∣∣

=
1

n

∥∥∥f i,j(x(l)′

i , x
(l)′

j )− f i,j(x
(l)
i , x

(l)
j )

+
∑

a∈Ai

σi(a,x
(l)
−i ;θ

i)f i,j(a, x
(l)
j )− σi(a,x(l)′

−i ;θi)f i,j(a, x
(l)′

j )
∥∥∥

≤ 1

n

(
2 +

∑

a∈Ai

(σi(a,x
(l)
−i ;θ

i))2 + (σi(a,x
(l)′

−i ;θi))2
)1/2

≤ 1

n
(2 + 2)

1/2 = 2/n,

where in the last line we used the fact that
∑

a σ
i(a, ·) = 1 along with the Cauchy-

Schwartz inequality. Then using the McDiarmid’s inequality we have:

Pr {|gj(·)− E [x] gj(·)| ≤ t} ≥ 1− 2 exp
(−nt2

2

)
.

Then using a union bound over all j we have:

Pr

{
max
j
|gj(·)− E [x] gj(·)| ≤ t

}
≥ 1− 2(di + 1) exp

(−nt2
2

)

=⇒ Pr {‖g(·)− E [x] g(·)‖∞ ≤ t} ≥ 1− 2(di + 1) exp
(−nt2

2

)

=⇒ Pr {‖g(·)‖∞ − ‖E [x] g(·)‖∞ ≤ t} ≥ 1− 2(di + 1) exp
(−nt2

2

)

=⇒ Pr {‖g(·)‖∞ ≤ ν + t} ≥ 1− 2(di + 1) exp
(−nt2

2

)
,

where in the third line we used the reverse triangle inequality. Setting the probability

of error to be δ and solving for t, we prove our claim.
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Proof [Proof of Lemma 3.3.4 (Minimum population eigenvalue at arbitrary param-

eter)]

To simply notation in the proof we will denote Si by S. The population Hessian

matrix at H(θS) can also be written as H(θiS + ∆S), where ∆S = θS − θiS. Using

the variational characterization of the minimum eigenvalue of H(θiS + ∆S) and the

Taylor’s theorem, we have:

λmin(H(θiS + ∆S)) = min
{y∈R|S||‖y‖2=1}

∑

i,j∈S

yi{Hi,j(θ
i
S) + (∇Hi,j(θ̄S))T∆S}yj

≥ λmin(H(θiS))− max
{y∈R|S||‖y‖2=1}

∑

i,j∈S

yi{(∇Hi,j(θ̄S))T∆S}yj

≥ λmin(H(θiS))− max
{y∈R|S||‖y‖2=1}

∑

i,j∈S

yi{
∣∣(∇Hi,j(θ̄S))T∆S

∣∣}yj,

(B.4)

where θ̄ = tθiS + (1 − t)θS for some t ∈ [0, 1], and the third line follows from the

monotonicity property of the spectral norm |||·|||2 [JN91]. For any vector θ ∈ Θi, let

A(θS) = (Ai,j(θS)), where Ai,j(θS) =
∣∣(∇Hi,j(θS))T∆S

∣∣. Then,

|||A(θS)|||2 = |||E [x] A(x;θS)|||2 ≤ max
x∈A
|||A(x;θS)|||2. (B.5)

Now consider the (j, k) block of A(x;θS) for any x ∈ A, where j, k ∈ {0}∪Ni. Then,
from (3.11) we have that:

Aj,k(x;θ) =
∑

a∈Ai

∣∣(∇σi(a,x−i;θ))T∆S

∣∣ f i,j(a, xj)(f i,k(a, xk))T

︸ ︷︷ ︸
Bj,k(x;θ)

−
∑

a,b∈Ai

∣∣∣
{
σi(b,x−i)∇σi(a,x−i) + σi(a,x−i)∇σi(b,x−i)

}T
∆S

∣∣∣ f i,j(a, xj)f i,k(a, xk)T

︸ ︷︷ ︸
Rj,k(x;θ)

,

where in the above we have dropped the θ’s from the σ(·, ·;θ) for notational con-

venience. Thus, A(x;θ) = B(x;θ) − R(x;θ), where the matrices B and R have

been defined above (block-wise). Observe that the matrix R is positive semi-definite.

Therefore, |||A(x;θ)|||2 ≤ |||B(x;θ)|||2. Finally, since B is positive semi-definite, the
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spectral norm of B is at most the sum of the spectral norms of the diagonal blocks

(c.f. Lemma B.0.1). Therefore, we have

|||B(x;θ)|||2 ≤
∑

j∈{0}∪Ni

|||Bj,j(x;θ)|||2 ≤ (di + 1)
(

max
j∈{0}∪Ni

|||Bj,j(x;θ)|||2
)
. (B.6)

A little calculation shows that

∂ σi(a,x−i;θ)

∂θj
= σi(a,x−i;θ)

{
f i,j(a, xj)−

∑

a′∈Ai

σi(a′,x−i;θ)f i,j(a′, xj)
}
,

and ‖∂ σi(a,x−i;θ)/∂θj‖∞ ≤ 1/4. Further, since for any given a ∈ Ai, at most mj + 1

elements of the partial derivative vector above is non-zero, we have ‖∂ σi(a,x−i;θ)/∂θj‖2 ≤
(mj+1)/4 and ‖∇σi(a,x−i;θ)‖∞,2 ≤ (mj+1)/4 ≤ (m+1)/4. Then from Cauchy-Schwartz

inequality and the monotonicity property of spectral norm [JN91] we have:

|||Bj,j(x;θ)|||2 ≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

a∈Ai

∥∥∇σi(a,x−i;θ))
∥∥
∞,2 ‖∆S‖1,2 f i,j(a, xj)(f

i,j(a, xj))
T

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
2

≤ 1

4
mim ‖∆S‖1,2 (B.7)

Putting together (B.4), (B.5), (B.6) and (B.7) we get

λmin(H(θiS + ∆S)) ≥ λmin(H(θiS))− |||A(θS)|||2
≥ λmin(H(θiS))− (di + 1)

(
max
x∈A

max
j∈{0}∪Ni

|||Bj,j(x;θ)|||2
)

≥ λmin(H(θiS))− 1

4
(di + 1)mim ‖∆S‖1,2 .

Proof [Proof of Lemma 3.3.5 (Error of the i-th estimator on the support set)]

To simplify notation in the proof, we will write S instead of Si. Recall that Li(D;θ)

is the empirical loss for the i-th player for parameter θ. For the purpose of the proof

we will often write L(θ) instead of Li(D;θ). Let F (θ) = L(θ) + λ ‖θ‖1,2. For any

θ ∈ Θi, let ∆S = θS − θiS denote the difference between θ and the true parameter θi

on the true support set S. We introduce the following shifted and reparameterized

regularized loss function:

F̃ (∆S) = L(θiS + ∆S)− L(θiS)︸ ︷︷ ︸
term 1

+λ(
∥∥θiS + ∆S

∥∥
1,2
−
∥∥θiS

∥∥
1,2

)
︸ ︷︷ ︸

term 2

, (B.8)
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which takes the value 0 at the true parameter θi, i.e., F̃ (0) = 0. Let ∆̂S = θ̂iS − θiS,
where θ̂i minimizes F (θ). Since θ̂i minimizes F (θ), we must have that F̃ (∆̂S) ≤ 0.

Thus, in order to upper bound
∥∥∥∆̂S

∥∥∥
1,2

=
∥∥∥θ̂S − θiS

∥∥∥
1,2
≤ b, we show that there exists

an `1,2 ball of radius b such that function F̃ (∆S) is strictly positive on the surface of

the ball. To see this, assume the contrary, i.e, ∀∆ ∈ Θi ∧ ‖∆S‖1,2 = b, F̃ (∆S) > 0,

but ∆̂S lies outside the ball, i.e.,
∥∥∥∆̂S

∥∥∥
1,2

> b. Then, there exists a t ∈ (0, 1) such

that (1 − t)0 + t∆̂S lies on the surface of the ball, i.e.,
∥∥∥(1− t)0 + t∆̂S

∥∥∥
1,2

= b.

However, by convexity of F̃ we have that

0 < F̃ ((1− t)0 + t∆̂S) ≤ (1− t)F̃ (0) + tF̃ (∆̂S) = tF̃ (∆̂S),

which implies that F̃ (∆̂S) > 0 and therefore is a contradiction to the fact that

F̃ (∆̂S) ≤ 0. Going forward, our strategy would be to lower bound F̃ (∆S) in terms of

‖∆S‖1,2 = b. We then set the lower bound to 0 and solve for b, to obtain the radius

of the `1,2 ball on which the function is non-negative. Towards that end we first lower

bound the first term of (B.8).

Using the Taylor’s theorem and the Cauchy-Schwartz inequality, for some t ∈ [0, 1],

we have:

L(θiS + ∆S)− L(θiS)

= ∇L(θiS)T∆S + ∆T
S∇2L(θiS + t∆S)∆S,

≥ −
∥∥∇L(θiS)

∥∥
∞,2 ‖∆S‖1,2 + ‖∆S‖2

2 λmin(H(D;θiS + t∆S))

≥ −bλ
2

+
‖∆S‖2

1,2

di + 1
λmin(H(D;θiS + t∆S))

≥ −bλ
2

+
b2

2(di + 1)

(
Cmin −

m2b(di + 1)

4

)

≥ −bλ
2

+
b2Cmin

4(di + 1)
, (B.9)

where the third follows from our assumption that ‖∇L(θi)‖∞,2 ≤ λ/2 and the fact for

any vector x, ‖x‖2 ≥ (1/√g) ‖x‖1,2 where the `1,2 norm is evaluated over g groups.

The fourth line follows from Lemma 3.3.4 with t = 1 and Lemma 3.3.2. Finally, in

the last line we assumed that b ≤ 2Cmin/(m2(di+1)) — an assumption that we will verify
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momentarily. The second term of (B.8) is easily lower bounded using the reverse

triangle inequality as follows:

λ(
∥∥θiS + ∆S

∥∥
1,2
−
∥∥θiS

∥∥
1,2

) ≥ −λ ‖∆S‖1,2 = −bλ (B.10)

Putting together (B.8), (B.9) and (B.10) we get:

F̃ (∆S) ≥ −bλ
2

+
b2Cmin

4(di + 1)
− bλ.

Setting the above to zero and solving for b we get:

b =
6λ(di + 1)

Cmin

.

Finally, coming back to our assumption that b ≤ 2Cmin/(m2(di+1)), it is easy to show

that the assumption holds if the regularization parameter λ satisfies:

λ ≤ C2
min

3m2(di + 1)2
,

The lower bound on the number of samples is obtained by ensuring that the lower

bound on λ is less than the upper bound. The final claim follows from using the high

probability bound on ‖∇L(θi)‖∞,2 from Lemma 3.3.3.

Proof [Proof of Lemma 3.3.6 (Error of the i-th parameter estimator)]

∆
def
= θ̂i − θi. We will denote the true support of θi by S, and the complement of S

by Sc. We will also simply write L(θ) instead of Li(D;θ). For any vector y, let yS̄

denote the vector y with elements not in the support set S zeroed out, i.e.,

(yS̄)j =





yj j ∈ S,
0 otherwise

Then by definition of S, we have that
∥∥θi

S̄

∥∥
1,2

= ‖θi‖1,2.
∥∥∥θ̂i
∥∥∥

1,2
=
∥∥θi + ∆

∥∥
1,2

=
∥∥θiS̄ + ∆S̄ + ∆S̄c

∥∥
1,2

=
∥∥θiS̄ + ∆S̄

∥∥
1,2

+ ‖∆S̄c‖1,2

≥
∥∥θiS̄

∥∥
1,2
− ‖∆S̄‖1,2 + ‖∆S̄c‖1,2 ,
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where in the second line follows from the fact that the index sets S and Sc have

non-overlapping groups, and in the last line we used the reverse triangle inequality.

Rearranging the terms of the previous equation, and from the fact that
∥∥θi

S̄

∥∥
1,2

=

‖θi‖1,2, we get:

∥∥θi
∥∥

1,2
−
∥∥∥θ̂i
∥∥∥

1,2
≤ ‖∆S̄‖1,2 − ‖∆S̄c‖1,2 (B.11)

Next, by optimality of θ̂i we have that L(θi) + λ ‖θi‖1,2 ≥ L(θ̂i) + λ
∥∥∥θ̂i
∥∥∥

1,2
.

Rearranging the terms and continuing, we get

λ(
∥∥θi
∥∥

1,2
−
∥∥∥θ̂i
∥∥∥

1,2
) ≥ L(θ̂i)− L(θi)

≥ (∇L(θ̂i))T (θ̂i − θi)

≥ −
∥∥∥∇L(θ̂i))T

∥∥∥
∞,2
‖∆‖1,2

≥ −λ
2
‖∆‖1,2 , (B.12)

where the third line follows from the convexity of L(·), the fourth line follows from

the Cauchy-Schwartz inequality and the last line follows from our assumption that

λ ≥ 2 ‖∇L(θi)‖∞,2. Thus, from (B.11) and (B.12) we have that

1

2
‖∆‖1,2 ≥ ‖∆S̄c‖1,2 − ‖∆S̄‖1,2

=⇒ 1

2
‖∆S̄‖1,2 +

1

2
‖∆S̄c‖1,2 ≥ ‖∆S̄c‖1,2 − ‖∆S̄‖1,2

=⇒ 3 ‖∆S̄‖1,2 ≥ ‖∆S̄c‖1,2 .

Finally, from the above inequality, we have ‖∆‖1,2 = ‖∆S̄‖1,2 +‖∆S̄c‖1,2 ≤ 4 ‖∆S‖1,2.

The final result follows from the upper bound on ‖∆S‖1,2 derived in Lemma 3.3.5.

Lemma B.0.1 (Max eigenvalue of block positive semi-definite matrix)

Let X ∈ Rn×n � 0 be any positive semi-definite matrix, with Xi,i being the i-th

diagonal block of X. Then

λmax(X) ≤
∑

i

λmax(Xi,i)
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Proof We will prove the result by decomposing X into two blocks as follows:

X =


X1,1 X1,2

X2,1 X2,2


 ,

where X1,1 ∈ Rn1×n1 , X2,2 ∈ Rn2×n2 and n1 + n2 = 1. The general result for mul-

tiple diagonal blocks is obtained by recursively decomposing the blocks X1,1 and

X2,2. Any unit vector x can be written as x = c1(x)x1(x) + c2(x)x2(x), with

x1(x) = (x1/‖x1(x)‖2, . . . , xn1/‖x1(x)‖2,0), x2(x) = (0, xn2/‖x2(x)‖2, . . . , xn/‖x2(x)‖2), and

c1(x) = ‖x1(x)‖2 (similarly c2(x)). For notational simplicity we will drop the (x)s.

Note that c2
1 + c2

2 = 1, thus c = (c1, c2) is also a unit vector. Further, for any unit

vector x, we have xTXx = cTYc, where

Y =


xT1 Xx1 xT1 Xx2

xT2 Xx1 xT2 Xx2


 ∈ R2×2.

Note that xT1 Xx1 ≤ λmax(X1,1) and xT2 Xx2 ≤ λmax(X2,2) for all x. Thus, using the

variational characterization of the maximum eigenvalue of X we get:

λmax(X) = max
‖x‖2=1

xTXx

= max
{c=(‖x1(x)‖2,‖x2(x)‖2) : ‖x‖2=1}

cTYc

≤ max
‖c‖2=1

cTYc = λmax(Y) ≤ Tr (Y) (since Y is positive semi-definite)

≤ λmax(X1,1) + λmax(X2,2),

where the third line follows from the fact that the maximization is over a superset of

the set {c = (‖x1(x)‖2 , ‖x2(x)‖2) : ‖x‖2 = 1}.

Proof [Proof of Theorem 3.3.7] Note that:

∥∥f i(xi,x−i)
∥∥
∞,2 = max{

∥∥f i,0(xi)
∥∥

2
,
∥∥f i,1(xi, x1)

∥∥
2
, . . . ,

∥∥f i,p(xi, xp)
∥∥

2
} = 1, (B.13)
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for any x ∈ A, since each binary vector f i,j(xi, xj) has a single “1” at exactly one

location. Then, from the Cauchy-Schwartz inequality, Lemma 3.3.6, and a union

bound over all players, we have that:

(∀x ∈ A, ∀i ∈ [p])
∣∣ûi(xi,x−i)− ui(xi,x−i)

∣∣

=
∣∣∣(θ̂i − θi)T f i(xi,x−i)

∣∣∣

≤
∥∥∥θ̂i − θi

∥∥∥
1,2

∥∥f i(xi,x−i)
∥∥
∞,2

=
∥∥∥θ̂i − θi

∥∥∥
1,2
≤ 24(di + 1)

Cmin

λ =
ε

2
, (B.14)

with probability at least 1− pδ. Now consider any x ∈ NE(Ĝ) and any i ∈ [p]. Since

x ∈ NE(Ĝ), we have from (B.14), (∀x′i ∈ Ai):

ui(xi,x−i) + ε/2 ≥ ûi(xi,x−i) ≥ ûi(x′i,x−i)

=⇒ ui(xi,x−i) ≥ ûi(x′i,x−i)− ε/2

=⇒ ui(xi,x−i) ≥ ui(x′i,x−i)− ε,

where the last line again follows from (B.14). This proves that NE(Ĝ) ⊆ ε-NE(G).

Using exactly the same arguments as above, we can also show that for any x ∈ NE(G):

ûi(xi,x−i) ≥ ûi(xi,x−i)− ε (∀x′i ∈ Ai),

which proves that NE(G) ⊆ ε-NE(Ĝ). Thus we have that NE(Ĝ) = ε-NE(G),

i.e., the set of joint strategy profiles x ∈ NE(Ĝ) form an ε-Nash equilibrium set of

the true game G. This proves our first claim. For our second claim, consider any

(xi,x−i) ∈ NE(G) and (x′i,x−i) /∈ NE(G). Then:

ui(xi,x−i) > ui(x′i,x−i) + ε

=⇒ ûi(xi,x−i) + ε/2 > ûi(x′i,x−i)− ε/2 + ε

=⇒ ûi(xi,x−i) > ûi(x′i,x−i)

=⇒ (xi,x−i) ∈ NE(Ĝ) ∧ (x′i,x−i) /∈ NE(Ĝ),

where the first line holds by assumption, and the second line again follows from (B.14).

Thus we have that NE(G) = NE(Ĝ). By setting the probability of error pδ = δ′ for
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some δ′ ∈ (0, 1) we prove our claim. The second part of the lower bound on the

number of samples is due to Lemma 3.3.2.

Proof [Proof of Theorem 3.4.1] Consider the following restricted ensemble G̃ ⊂
Gp,d,m of p-player polymatrix games with degree d, and the set of pure-strategies of

each player being Ai = [m]. Each G = (G,U) ∈ G̃p,d,m is characterized by a set I of

influential players, and a set Ic def
= [p]\I of non-influential players, with |I| = d. The

graph G is a complete (directed) bipartite graph from the set I to Ic. After picking
the graph structure G, nature fixes the strategies of the influential players to some

a ∈ {b ∈ [m]|I| | ∃i, j ∈ I such that bi 6= bj}. Finally, the payoff matrices are chosen

as follows:

ui,i(xi) = 1 [xi = ai] (∀i ∈ I)

uj,j(xj) =
1

(2xj)
(∀j ∈ Ic)

uj,i(xj, xi) = 1 [xj = xi] (∀i ∈ I ∧ j ∈ Ic).

Therefore, each G ∈ G̃ game has a exactly one unique Nash equilibrium where the

influential players play a (decided by nature) and the non-influential players play

maj(a) — where maj(a) returns the majority strategy among a, and in case of a tie

between two or more strategies it returns the numerically lowest strategy (recall that

the pure-strategy set for each player is [m]). Thus we have that
∣∣∣G̃
∣∣∣ = (md −m)

(
p
d

)
.

Nature picks a game G uniformly at random from G̃ by randomly selecting a set of d

players as “influential”, and then selecting a strategy profile a uniformly at random for

the influential players and setting the payoff matrices as described earlier. Nature then

generates a dataset D using the global noise model with parameter q ∈ (1/mp, 2/(mp+1)].

Then from the Fano’s inequality we have that:

perr ≥ 1− I(D;G) + log 2

H(G)
, (B.15)
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where I(·; ·) and H(·) denote mutual information and entropy respectively. The

mutual information I(D;G) can be bounded, using a result by [Yu97], as follows:

I(D;G) ≤ 1∣∣∣G̃
∣∣∣
2

∑

G1∈G̃

∑

G2∈G̃

KL
(
PD|G=G1

∥∥PD|G=G2
)
, (B.16)

where PD|G=G1 (respectively PD|G=G2) denotes the data distribution under G1 (respec-

tively G2). The KL divergence term from B.16 can be bounded as follows:

KL
(
PD|G=G1

∥∥PD|G=G2
)

= n
∑

x∈A

PD|G=G1 log
PD|G=G1

PD|G=G2

= n

{ ∑

x∈NE(G1)

q log
q(mp − 1)

1− q +

∑

x∈NE(G2)

(1− q)
mp − 1

log
1− q

q(mp − 1)

}

=
n(qmp − 1)

mp − 1
log

(
q(mp − 1)

1− q

)

≤ n log

(
q(mp − 1)

1− q

)
≤ n log 2, (B.17)

where the first line follows from the fact that the samples are i.i.d. , the second

line follows from the fact the the distributions PD|G=G1 and PD|G=G2 assign the same

probability to x ∈ A \ (NE(G1)∪NE(G2)), and the last line follows from the fact

that q ∈ (1/mp, 2/(mp+1)]. Putting together (B.15), (B.16) and (B.17), we have that if

n ≤ log(md −m)
(
p
d

)

2 log 2
− 1,

then perr ≥ 1/2. Since, learning the ensemble G is at least as hard as learning a subset

of G, our claim follows.
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C DETAILED PROOFS FOR STRUCTURED PREDICTION

Proof [Proof of Theorem 4.2.1] Let

gw(x, y)
def
= Prγ∼Gr(β) {y 6= fw,γ(x)} ,

G
def
= {gw | w ∈ Rd,s}.

Then by Rademacher based uniform convergence, with probability at least 1− δ over
the choice of m samples, we have that:

(∀w ∈ Rd,s) L(w,D) ≤ L(w, S) + 2R̂S(G) + 3

√
log 2/δ

2m
, (C.1)

where R̂S(G) denotes the empirical Rademacher complexity of G. Let σ = (σi)
m
i=1 be

independent Rademacher variables. Also define W def
= {w/β(w,m) | w ∈ Rd,s}. Then,

R̂S(G)

= Eσ

[
sup
w∈Rd,s

1

m

m∑

i=1

σigw(xi, yi)

]

=
1

m
Eσ

[
sup
w∈Rd,s

m∑

i=1

σiPrγ∼Gr(β) {yi 6= fw,γ(xi)}
]

(a)
=

1

m
Eσ

[
sup
w∈W

m∑

i=1

σiPrγ∼Gr(1) {yi 6= fw,γ(xi)}
]

≤ 1

m
Eγ∼Gr(1)

[
Eσ

[
sup
w∈W

m∑

i=1

σi1 [yi 6= fw,γ(xi)]

]]

(b)

≤ 1

m
Eγ∼Gr(1)

[
Eσ

[
sup
w∈Rd,s

m∑

i=1

σi1 [yi 6= fw,γ(xi)]

]]
,

where step (a) follows from Prγ∼Gr(β) {yi 6= fw,γ(xi)}= Prγ∼Gr(1)

{
yi 6= fw/β,γ(xi)

}
, and

step (b) follows from W ⊆ Rd,s. We will enumerate the structured outputs Y(xi) as

yi,1, . . . , yi,r. For any fixed γ, the weight vector w induces a linear ordering πi(·; γ) over

the structured outputs Y(xi), i.e., 〈φ(xi, yi,πi(1;γ)), w〉+γ1 > 〈φ(xi, yi,πi(2;γ)), w〉+γ2 >
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. . . > 〈φ(xi, yi,πi(r;γ)), w〉+γr. Let π(γ) = {πi} be the orderings over all m data points

induced by a fixed weight vector w and fixed γ, and let Π(γ) be the collection of

all orderings π(γ) over all w ∈ Rd,s for a fixed γ. Since w is s-sparse we have,

from results by [Ben56,BH60,Cov67], that the number of possible linear orderings is

|Π(γ)| ≤
(
d
s

)
(mr)2s ≤ ds(mr)2s . Therefore we have:

R̂S(G)

≤ 1

m
Eγ∼Gr(β)

[
Eσ

[
sup

π(γ)∈Π(γ)

m∑

i=1

σi1
[
yi 6= yi,πi(1;γ)

]
]]

(a)

≤ 1

m

√
s(log d+ 2 log(mr))

√
m

=

√
s(log d+ 2 log(mr))

m
,

where the inequality (a) follows from the Massart’s finite class lemma.

Proof [Proof of Lemma 4.3.1] For any x ∈ X, T ⊆ Y(x), y ∈ T and weight vector

w:

Prγ {fw,γ(x) = y} − Prγ {fw,γ,T(x) = y}

= e〈φ(x,y),w〉
{
Z(w, x,T)− Z(w, x)

Z(w, x)Z(w, x,T)

}

=
e〈φ(x,y),w〉

Z(w, x,T)

1

Z(w, x)



−

∑

y′∈Y(x)\T

e〈φ(x,y′),w〉





= −Prγ {fw,γ,T(x) = y}Prγ {fw,γ(x) ∈ Y(x) \ T} .

Since by construction yi ∈ T̄i, the final claim follows.

Proof [Proof of Lemma 4.3.4] Let

Ai(w, S)
def
= Prγ∼G(β) {fw,γ(xi) 6= yi} − ETi

[
Prγ∼G(β)

{
fw,γ,T̄i(xi) 6= yi

}]

be the i-th term of A(w, S). We will consider two cases.
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Case I: yi is strictly the highest scoring structure for xi under w, i.e., ∀y 6=
yi 〈φ(xi, yi), w〉 > 〈φ(xi, y), w〉. First note that:

Ai(w, S) ≤ Prγ∼G(β) {fw,γ(xi) 6= yi} . (C.2)

We will prove that Prγ∼G(β) {fw,γ(xi) 6= yi} ≤ 1/√m. Assume instead that the following

holds: Prγ∼G(β) {fw,γ(xi) 6= yi} > 1/√m. Then

∑

y 6=yi

(
√
m− 1)e〈φ(xi,y),w〉/β > e〈φ(xi,yi),w〉/β

Let y′ ∈ Y(xi) \ {yi} be such that 〈φ(xi, y
′), w〉 is maximized. Then, (r − 1)(

√
m −

1)e〈φ(xi,y
′),w〉/β upper bounds the left-hand side of the above equation. Taking log on

both sides we get:

β >
〈φ(xi, yi)− φ(xi, y

′), w〉
log((r − 1)(

√
m− 1))

Since yi is the unique maximizer of the score 〈φ(xi, yi), w〉, φ(xi, y
′) and φ(xi, yi) must

differ on at least one element in the support set of w. This implies, from above and

the assumption that the minimum non-zero element of φ(x, y) is at least 1:

β >
wmin

log((r − 1)(
√
m− 1))

,

which violates Assumption 4.3.3. Therefore from (C.2) we have that Ai(w, S) ≤ 1/√m.

Case II: ∃y 6= yi : 〈φ(xi, y), w〉 ≥ 〈φ(xi, yi), w〉. Let ∆i(y)
def
= φ(xi, y) − φ(xi, yi).

In this case,

Ai(w, S)
(a)

≤ ETi

[
Prγ

{
fw,γ,T̄i(xi) = yi

}]

= ETi

[
exp(〈φ(xi, yi), w〉/β)

Z(w, xi, T̄i)

]

(b)
= ETi

[
1

1 +
∑

y∈Ti e
〈∆i(y),w〉/β

]

(c)

≤ ESi
[

1

1 + neSi/β

]
, (C.3)
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where we have defined Si
def
= 1

n

∑
y∈Ti〈∆i(y), w〉. In the above, in step (a) we dropped

the term Prγ {fw,γ(xi) = yi} to get an upper bound. Step (b) follows from dividing

the numerator and denominator by exp(〈φ(xi, yi), w〉) and that yi ∈ T̄i. Step (c)

follows from Jensen’s inequality. Now,

ESi
[

1

1 + neSi/β

]

= ESi
[

1

1 + neSi/β
| Si ≥ c ‖w‖1

]
Pr {Si ≥ c ‖w‖1}

+ ESi
[

1

1 + neSi/β
| Si < c ‖w‖1

]
Pr {Si < c ‖w‖1}

(a)

≤ ESi
[

1

1 + neSi/β
| Si ≥ c ‖w‖1

]
+
‖w‖1√
m

(b)

≤ ESi
[

1

1 + neSi logm/‖w‖1
| Si ≥ c ‖w‖1

]
+
‖w‖1√
m

= ESi
[

1

1 + nmSi/‖w‖1
| Si ≥ c ‖w‖1

]
+
‖w‖1√
m

≤ 1

1 + nmc
+
‖w‖1√
m
, (C.4)

where inequality (a) follows from Assumption 4.3.3 and (b) follows from the fact that

β ≤ ‖w‖1/logm. Thus from (C.3) and (C.4) we have that Ai(w, S) ≤ 1/(1+nmc) + ‖w‖1/√m.

The final claim follows from Case I and II.

Proof [Proof of Lemma 4.3.5] We adapt the proof of Rademacher based uniform

convergence for our purpose. Fix the distribution over T to R(S, w′) for some w′.

Recall that T̄ = {T̄i} with T̄i = {yi}∪Ti and the elements of Ti are drawn i.i.d. from

R(xi, w
′). Since the only random part in T̄i is Ti and yi ∈ S, it suffices to show

concentration of ET [L(w, S,T)] − L(w, S,T) for all w and S. For a fixed S, we will

consider L(w, S,T) to be a function of T and w and denote it by L(T, w; S). In what

follows, we will consider T to be anmn-dimensional vector whose elements (structured

outputs) are conditionally independent (but not identically distributed) given a data

set S. Define,

ϕ(T; S)
def
= sup

w∈Rd,s
ET∼R(S,w′) [L(T, w; S)]− L(T, w; S). (C.5)
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ϕ(T; S) is (1/m)-Lipschitz and the elements of T are independent. Therefore, by Mc-

Diarmid’s inequality, we have that:

PrT

{
ET [ϕ(T; S)]− ϕ(T; S) ≤

√
ln(1/δ)

2m
| S
}
≥ 1− δ. (C.6)

Therefore, with probability at least 1− δ over the choice of T:

(∀w ∈ Rd,s) ET [L(T, w; S)]− L(T, w; S)

≤ sup
w∈Rd,s

ET [L(T, w; S)]− L(T, w; S) = ϕ(T; S)

≤ ET [ϕ(T; S)] +

√
ln 1/δ

2m
. (C.7)

Next, we will use a symmetrization argument to bound ET [ϕ(T; S)]. Let T′ ∼ R(S)

be an independent copy of T. Observe that:

ET′ [L(T, w; S) | T] = L(T, w; S)

ET′ [L(T′, w; S) | T] = ET [L(T, w; S)] .

Now,

ET [ϕ(T)]

= ET

[
sup
w∈Rd,s

ET [L(T, w; S)]− L(T, w; S)

]

= ET

[
sup
w∈Rd,s

ET′ [L(T′, w; S) | T]− ET′ [L(T, w; S) | T]

]

≤ ET,T′

[
sup
w∈Rd,s

1

m

m∑

i=1

z′i − zi
]
,

where z′i = Prγ {fw,γ,T′(xi) 6= yi} and zi = Prγ {fw,γ,T(xi) 6= yi}. Since z′i − zi has

a distribution that is symmetric around zero, z′i − zi and σi(z
′
i − zi) have the same
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distribution, where σi’s are independent Rademacher variables. Continuing the above

derivation,

ET [ϕ(T)]

≤ ET,T′,σ

[
sup
w∈Rd,s

1

m

m∑

i=1

σi(z
′
i − zi)

]

=
2

m
ET,σ

[
sup
w∈Rd,s

m∑

i=1

σiPrγ {fw,γ,T(xi) 6= yi}
]

= 2ET

[
R̂T(G)

]
,

where R̂T(G) is the empirical Rademacher complexity of the function class G = {gw |
w ∈ Rd,s} with respect to T, with gw(x, y) = Prγ {fw,γ,T(x) 6= y}. Next, using the

same argument as in the proof of Theorem 4.2.1, we can bound R̂T(G) for any set T,

and get the following bound:

ET [ϕ(T)] ≤ 2

√
s(log d+ 2 log(nr))

m
(C.8)

Note that the above differs from the bound in Theorem 4.2.1 in the log factor since

we need to consider linear orderings of nr structured outputs. Therefore from (C.7)

and (C.8) we have that:

PrT{(∀w ∈ Rd,s) ET [L(T, w; S)]− L(T, w; S)

≤ ε2(d, s, n, r,m, δ) | S} ≥ 1− δ. (C.9)

By Definition 4.3.1 and from the results by [Ben56,BH60,Cov67], there are at most
(
d
s

)
(mr)2s effective (equivalence classes) proposal distributions R(.) Taking a union

bound over all such proposal distributions we prove our claim.
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