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ABSTRACT

Tamrazian, Sebastian MSAAE, Purdue University, May 2019. Development of a
Coupled Orbit-Attitude Propagator for Spacecraft of Arbitrary Geometry. Major
Professor: David A. Spencer.

The successful prediction of spacecraft motion is often heavily based upon assump-

tions used to simplify the problem without compromising solution accuracy. For many

analyses, a primary assumption used is the decoupling of trajectory and attitude dy-

namics when calculating trajectories. In cases where spacecraft or objects have high

area to mass ratios, non-conservative effects such as atmospheric drag and solar radia-

tion pressure can greatly perturb spacecraft translational motion based on rotational

state. A modular, six degree of freedom (6DOF) simulation with coupled orbit and

attitude dynamics has been developed to model spacecraft and orbits of arbitrary

geometries. First, the basis for the modular rotational and translational equations

of motion are introduced. Next, formulations are provided for the gravity gradient

torque, solar radiation pressure, aerodynamic, and non-spherical gravity potential

sources of perturbations, and the Marshall Engineering Thermosphere atmospheric

model used is described. A first test case is performed using the 6DOF simulation to

simulate the deorbit of the spacecraft Lightsail 1, which flew in 2015. Next, predic-

tive cases are demonstrated using the simulation for a theoretical sail-boom-rocket

combination representative of a debris removal scenario, and for the Aerodynamic

Deorbit Experiement, which will demonstrate a passively stable drag sail technology

and characterize its effectiveness on orbit. All simulation cases have had aerody-

namic perturbation formulations compared against high fidelity Direct Simulation

Monte Carlo runs, and suggestions have been made for the future development of the

simulation tool.
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1. INTRODUCTION

For as long as we have been able to observe, we have attempted to predict. As in many

branches of physics, successful state prediction in celestial mechanics is predicated on

the careful application of assumptions and the selection of models that best represent

the physical system. The assumptions made are dependent on the level of fidelity the

analysis requires; the proper selection of assumptions can greatly reduce complexity

while minimally reducing solution accuracy. In the orbital analysis of spacecraft,

assumptions are often made in neglecting the perturbing effects of any number of

physical phenomena. Relativistic effects, tidal gravitational perturbations, most n-

body accelerations, and most higher order non-spherical gravity potential terms are

frequently among the many possible sources of perturbing effects ignored. Of primary

interest to this work is the common assumption that a trajectory can be analyzed

while disregarding spacecraft attitude. For most traditional spacecraft applications

where the area to mass ratio is low and attitude is strictly controlled, this three

degree-of-freedom (3DOF) approach is valid. However, when considering objects or

craft with high area to mass ratios, the coupling of attitude and trajectory can no

longer be ignored, and a six degree-of-freedom (6DOF) analysis is necessary. In

particular, the orientation of a spacecraft is a significant contributor to how solar

radiation pressure (SRP), aerodynamics, and gravity gradient torques will perturb

6DOF motion.

Space debris is a topic that is closely tied to the orbital modeling of uncontrolled

objects. At high Earth orbits such as geostationary orbit, damaged sheets of Multi

Layer Insulation (MLI) flake off of large communications satellites and are easily

perturbed by SRP, and the analysis of motion using 6DOF methods is necessary [1].

There is no universal definition at which an object is defined as having a high area to

mass ratio, but the discovery of objects in orbit that are heavily perturbed by solar
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radiation pressure at high orbits by Schildknecht [2–4] has led to increased interest

in analyzing the effects of SRP on the trajectories of objects with area to mass ratios

ranging from 0.1m2/kg to 20 m2/kg. For Low Earth Orbit (LEO), the impact of

a different area to mass ratio is very dependent on altitude. While solar radiation

pressure force magnitudes are determined by the distance from the object in question

and the sun, which is roughly 150 million kilometers at any Earth orbit, aerodynamic

forces depend on the density of the immediate environment, which can vary greatly

at different LEO altitudes. Although the study of motion for high area to mass ratio

objects has been primarily concerned with space debris at higher orbits, planned high

volume satellite constellations in LEO must expand the conversation to include lower

orbits and subsequent aerodynamic effects as well.

At LEO, private enterprises are in the process of launching tens of thousands of

small satellites in order to establish global communications networks [5–8]. With

improper debris mitigation techniques and technologies, there exists a significant risk

to the usability of certain orbits [9]. Of the many proposed technologies to reduce

this space debris induced risk, drag sail technologies are perhaps among the most

promising. By taking advantage of the rarefied gas environment in LEO, drag sails

greatly increase a satellite’s area to mass ratio and aerodynamic drag, allowing for an

accelerated deorbit time line. For these craft, understanding of the attitude behav-

ior concurrently with trajectory is critical, but is often neglected, as the traditional

tools for the analysis of orbital motion are based on 3DOF models. This work is

thus focused on developing an orbital propagation tool which accounts for the 6DOF

motion of a body of arbitrary geometry while considering the effects of the rarefied

aerodynamic environment, gravitational perturbations, and SRP.

1.1 Contemporary relevance

Satellite constellations can offer robust, modular, and dispersed solutions to global

inter-connectivity. Companies such as SpaceX, Samsung, OneWeb, Boeing, and oth-
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ers are looking to collectively place over 20,000 satellites in LEO to provide the global

population with internet access [5–8]. These massive networks seek to provide a valu-

able service, but risk exacerbating the already precarious space debris situation in

the high value orbits they will occupy. Although space debris has always been of

some concern to the spaceflight community, the Iridium-Kosmos collision of 2009

demonstrated the real risk of a quickly accumulating debris field in LEO. Kessler

first described the risk of forming a debris belt from the cascading effects of artifi-

cial satellite collisions, in a process analogous to that which formed the asteroid belt

in our solar system, in 1978 [9]. Upon revisiting these theories in 2010, Kessler’s

conclusion was that the amount of debris in many critical orbits is already past the

threshold of the ‘Kessler Syndrome’ cascading effect, and that there is a necessity to

selectively deorbit large objects that are most likely to cause future debris through

collisions [10]. Further, in order to prevent the growth of the debris cloud, there

must be strict compliance with deorbit procedures designed to mitigate the amount

of defunct spacecraft in critical orbits for extended periods of time [10].

Many technologies have been proposed for safe and effective spacecraft deorbit and

debris mitigation. Thruster based mitigation methods are diverse and can be applied

to a number of mission scenarios. The type of thruster required is dependent on

the delta V necessary to deorbit; electric propulsion can provide superior efficiency

when the extended time lines of deorbit are considered, while chemical propulsion

can act more quickly to deorbit a craft [11]. A critical drawback is that the craft

must be fully functional with working attitude control systems at the end of its

mission, since the thrust must be directed on a specific vector for optimal deorbit.

Electrodynamic tethers can also be used for deorbit by utilization of the Lorentz

force, and can passively stabilize with gravity gradient torques. However, wires used

for electrodynamic tethers, typically on the order of hundreds of meters or kilometers

long, greatly increase collision likelihoods with other objects in LEO [10]. The final

main approach of deorbit technologies is to alter the spacecraft ballistic coefficient.

Reducing spacecraft mass and increasing effective area are both methods that lead
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to a lower ballistic coefficient for a faster deorbit, however reducing spacecraft mass

is difficult to do without introducing more debris into the environment [11]. Drag

based approaches can be used passively without the requirement of active control,

and designs have been developed for passive attitude stability using environmental

torques [12,13]. This drag based deorbit method is reliant on the fact that a rarefied

atmosphere extends for over 1000 km past the surface of the Earth, and always imparts

some aerodynamic drag on spacecraft in LEO. By greatly increasing a satellite’s area

to mass ratio, a drag sail works to magnify the effects of aerodynamics.

Just as a flat plate provides maximum drag when oriented perpendicular to a flow,

a spacecraft with a drag sail has a similar maximum drag orientation, which is ideally

passively maintained throughout the deorbit time line. In modeling the performance

of a technology that perturbs translational motion based on its orientation relative to

the environment, it becomes apparent that a coupled, 6DOF attitude and trajectory

analysis must be used.

1.2 6DOF modeling

Many have explored the necessity of 6DOF simulation for spacecraft orbit prop-

agation in various scenarios, however a generalized, modular simulation approach

that calculates aerodynamic forces and torques analytically is yet unavailable. In the

1980s, concepts on large scale space structures, such as solar power farms and modular

space stations began to gain interest after the end of the space race. For such struc-

tures, the combination of scale and mass is enough for gravity gradient torques to be

of primary interest in understanding attitude behavior in orbit. Researchers under-

stood that these torques are dependent on the orientation of the craft with respect to

the attracting body, and so the necessity of coupled orbit and attitude became appar-

ent. Sincarsin and Hughes incorporated higher order gravity gradient torque terms

in a coupled orbit attitude framework inspired by these large orbital structures in

1983 [14]. More recently, coupled attitude and orbital analyses have been performed
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for specific geometries in the context of relative spacecraft motion and control, again

with a focus on gravity gradient torques [15,16]. Growing interest in the field of space

debris has led many researchers to try to better understand how to best propagate

the orbits of debris to determine how long objects could stay in orbit, and what kind

of damage they may cause based on what orbits they cross. Much of this work has

been done for high area to mass ratio objects, as in the work of Früh. Früh utilized

a coupled orbit and attitude motion approach to analyze the effects of SRP on space

debris in high orbits, and showed that attitude is significantly perturbed by SRP for

high area to mass ratio debris, which then results in notable changes in long term

trajectory modeling [17]. Further, Früh determined that the trajectory cannot safely

be decoupled from the propagation of the orientation state for these objects being

perturbed by SRP in high orbits; approximations based on averaged attitudes over

specific time periods may be inadequate, and it was common for the simulated ob-

jects to end up in a rapidly rotating uncontrolled attitude state [18]. There are other

cases where gravity gradient and SRP based torques are accounted for in a coupled

simulation, but these analyses did not account for aerodynamic torques, as in [19]

and [20].

Considerations for LEO

Now, with the effort spent developing drag sails, high area to mass ratio objects

must also be considered in LEO, where aerodynamic effects are dominant. Many

studies on specific drag sail technologies have been proposed with some form of aero-

dynamic modeling to validate system designs. Effective representation of the aero-

dynamic environment for satellite applications requires an understanding of the free

molecular flow regime. Approaches have been detailed without utilizing the analytical

equations for surface flux modeling derived for the regime, instead using, for exam-

ple, a quasi-coupled effective drag area simplification. This approach also requires

terms that must be determined uniquely each time a different spacecraft configura-
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tion or orbit is used [21]. Roberts and Harkness derive forces and moments based

on particle interaction, and subsequently propagate the motion of a conical drag sail

spacecraft, but utilize a simplified 2D orbit while neglecting SRP and gravity gra-

dient torques [12]. Long developed an analysis tool to characterize performance of

the passively stable pyramid sail concept which takes into account the rarefied gas

dynamic environment, SRP, and gravity gradient torques, but for a specific geom-

etry, with minimal modularity, and exclusively for circular orbits [22]. POST2 is

a tool developed by NASA for simulating point mass trajectories, but, refers to an

aerodynamic database instead of determining aerodynamic forces and torques during

simulation time for maximum accuracy [23]. To date, no modular, generalized, 6DOF

propagation tool has been developed with attention to accurate modeling of the free

molecular flow regime.

1.2.1 Goals

Trajectory perturbations for drag sail craft are heavily dependent on spacecraft

orientation; a coupled orbit-attitude propagator is necessary to assess technology

performance. The goal of this work is to develop a 6DOF propagator that is both

fully modular, meaning it can be improved by incorporating more perturbations and

complexity (and have specific perturbations removed at will), as well as non geometry

specific, meaning any spacecraft geometry can be tested as provided by the user.

Further, the propagator is to use accurate free molecular analytical equations to

solve surface pressure and shear for determining aerodynamic forces and moments.

These aerodynamic quantities will be evaluated against high fidelity Direct Simulation

Monte Carlo (DSMC) method simulations. Finally, three spacecraft with high area to

mass ratios will have their trajectories and behavior simulated using the propagator:

Lightsail 1, which has already flown and will be used as a validation case, a Sail-

Boom-Rocket (SBR) configuration proposed to deorbit spent rocket bodies, and the

Aerodynamic Deorbit Experiement (ADE), which will flight test the passively stable
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pyramid sail technology. Finally, recommendations will be made as to what aspects

of the simulation could be improved upon for future refinement.
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2. MATHEMATICAL MODELS

6DOF propagation of spacecraft motion is reliant upon correctly identifying reference

frames, defining the spacecraft geometry that will be perturbed, using relevant equa-

tions of motion to propagate motion, and solving for perturbation sources to feed into

the equations of motion. Initial state and spacecraft property data is also required,

and is discussed as a set of inputs specific to each run case in subsequent chapters.

2.1 Reference frame definitions

There are three reference frames used in the 6DOF simulation. First, the space-

craft body frame is established as fixed in the spacecraft, translating and rotating

with the spacecraft body such that a discrete point on the spacecraft is in a fixed

location in space relative to the frame. This is used to define the tessellated surface

geometry upon which force and torque calculations will be applied. Further, this body

axis system is defined with the origin at the body center of mass, which allows for

usage of the principal moments of inertia. This definition allows for simplified equa-

tions of motion as shown in Section 2.3.2. Second, a normal, tangential, cross-track

(NTW) satellite frame is used to determine the spacecraft’s angular displacement in

orbit. The NTW frame shares an origin with the body frame, but is not fixed in the

body; the frame rotates with the orbital position rather than the body it is centered

on, and provides a reference to which the body frame can be compared. The NTW

frame is also useful in that aerodynamic drag forces act directly opposite the tangent

vector, since the tangent vector is aligned with the spacecraft velocity vector, and

the frame is used as an intermediate step to convert from the body frame to the final

frame used, Earth centered inertial (ECI). The ECI frame is used to represent the

spacecraft translational displacement and the sun position for calculation of earth
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shadowing and SRP. The ECI frame is located at the center of the Earth, and is an

inertial frame that does not rotate with the rotation of the planet. The fundamental

plane of the ECI system is defined by the equator, and the x̂ direction is defined in

the direction of the vernal equinox for a specific epoch, J2000.0. The body, NTW,

and ECI frames are shown in relation with each other in Figure 2.1.

ECI

N
BODY

TW

Fig. 2.1. ECI, NTW, and body frames shown in relation to one another

To convert between the body frame and NTW frame, a direction cosine matrix

can be used. Here, a standard body 3-2-1 (roll pitch yaw) rotation order is used. The

matrix is used such that NTW = [DCM ]BODY . C() represents the cosine of an

angle, and S() represents the sine. Here, roll is represented by φ, pitch is represented

by θ, and yaw is represented by ψ. The matrix is shown below in (2.1) [24].


C(φ)C(θ) C(φ)S(θ)S(ψ)− C(ψ)S(φ) C(φ)S(θ)C(ψ) + S(ψ)S(φ)

S(φ)C(θ) S(φ)S(θ)S(ψ) + C(ψ)C(φ) S(φ)S(θ)C(ψ)− S(ψ)C(φ)

−S(θ) C(θ)S(ψ) C(θ)C(ψ)

 (2.1)

Representing the relationship between the NTW and ECI frames requires the

spacecraft position and velocity vectors. The fact that the tangential T component



10

is aligned with the spacecraft orbital velocity can be used here, and then the out of

plane, orthogonal W component can be found using a cross product. The final, in

plane normal component N completes the right handed set. The relations can be

found in Equation set (2.2).

T̂ =
~v

|~v|

Ŵ =
~r × ~v
|~r × ~v|

N̂ =T̂ × Ŵ

(2.2)

2.2 Geometry representation

In order to determine the environmental effects on the rotational state of the

spacecraft, a model for geometry must be developed. Since the goal of the propaga-

tor is to be generally applicable, a standard file format that presents the geometry

in a method that allows for calculation of imparted surface momenta is preferred.

Specifically, as will be seen in the following sections on perturbation sources, a polyg-

onal representation of the geometry surface that allows for the calculation of surface

element areas and surface normal unit vectors is desired. The .STL file format [25],

which uses stereolithography techniques patented by Hull in 1986 [26], provides a

triangular mesh of the surface defined by a list of vertices and normal vectors. An

example geometry represented through the .STL file format is shown in Figure 2.2.

If the pressure and shear are known on a surface, the area can be used to provide

the total force, and the vector from the center of mass to the centroid of the surface

element can be used to determine the moment. Summed over all surface elements,

these individual forces and torques can be used to find the total imparted perturbation

from an environmental effect, for example aerodynamics or SRP. Finding the centroid,



11

Fig. 2.2. Example of a simplified Aerodynamic Deorbit Experiment
geometry represented through the STL file format

C, of a triangle in 3D space is simple, as shown in Equation (2.3) for a triangle with

vertices i, j, k.

(Cx, Cy, Cz) =
1

3
[(ix, iy, iz) + (jx, jy, jz) + (kx, ky, kz)] (2.3)

The area of a triangle can be found using Heron’s formula, known to the ancients.

If the lengths of the sides of a triangle are known as a, b, c, and half of the perimeter
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(the semi-perimeter) of the triangle is s, then the triangle area is found as shown in

Equation (2.4)

A =
√
s(s− a)(s− b)(s− c) (2.4)

With the area, centroid, and normal vector of each surface element, pressure and

shear effects from the environment can be used to determine the effect on the 6DOF

motion of the spacecraft by applying them to the equations of motion, discussed next.

2.3 Equations of motion

The equations of motion used for the propagation of spacecraft motion must be

generic such that any elliptical orbit geometry and any number of perturbations can

be accounted for. The differential equations of motion apply either to translational or

rotational motion. For rotation, the dynamic equations of motion are used to deter-

mine angular rates based off of perturbing torques, while the kinematic equations of

motion use these angular rates to determine the orientation state. In this work, spe-

cial perturbation techniques are used to resolve the motion, resulting in a formulation

that can easily be modified to include other perturbations. The coupled nature of

the problem does not lend itself well to general perturbation analysis for the host of

external forces being considered. In particular, Cowell’s formulation is used to model

orbital motion, while Euler parameters (quaternions) are used as the kinematic vari-

ables used to resolve the rotational state using the dynamic and kinematic equations

of motion.

2.3.1 Translational motion

As described in Battin [27], Cowell’s formulation is the simplest way to determine

the translational state of an orbiting body in a Cartesian coordinate system when the

motion is non-Keplerian. Cowell, along with Cromellin, first utilized this approach as

a numerical method to predict the motion of Halley’s comet, based on numerical inte-
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gration methods first described by Gauss [28]. The formulation affords the inclusion

of any number of linearly summed perturbing accelerations, such that the resulting

aperturbing captures the effects that cause the trajectory to deviate from the two body

Keplerian motion. Cowell’s formulation is shown in Equation (2.5).

~̈r = − µ
r3
~r + ~aperturbing (2.5)

Here, on the left hand side ~̈r represents the second time derivative of the position

vector of the craft: the acceleration, or specific force. The standard gravitational

paremeter of the central body is represented by µ, r represents the distance mag-

nitude of the orbiting body to the origin of the central body, and ~r represents the

position vector of the craft from the same origin. All translational perturbations are

captured by the aperturbing term. As long as a calculation is performed to determine

an acceleration on the orbiting body for some force, conservative or non-conservative,

for the instantaneous state, any number of these accelerations can be summed to de-

termine a net acceleration on the craft which will deviate it from the Keplerian orbit.

In the case of this work, perturbations from an non-spherical gravity potential model

(J2 effects), SRP, and aerodynamics are considered, such that the aperturbing can be

described as in Equation (2.6).

~aperturbing = ~aJ2 + ~aSRP + ~aAero (2.6)

Upon integration of (2.5) using the accelerations in (2.6), the new position and ve-

locity can be determined in Cartesian coordinates for the specified timestep. Brouwer

and Clemence [29] note how for this method a small integration step is necessary as

the integration is slowly convergent. The original way in which Cowell numerically

integrated (2.5) is known as Cowell’s method. With contemporary computational

advances, there are many ways to integrate the equation of motion. In the case of

this simulation, a variable time step integrator is utilized to meet a specified solver

tolerance, as discussed in Section 2.5.
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2.3.2 Rotational motion

Successful determination of the rotational state for this work utilizes a set of dy-

namic equations of motion, and a set of kinematic equations of motion. The dynamic

equations of motion relate the body torques to angular rates based on the inertia

properties of the body. Using these angular rates, the kinematic equations of mo-

tion, in this case using quaternions, are used to determine the orientation state of the

spacecraft.

Dynamic equations of motion

The dynamic equations of motion will be used to determine the body angular

rates based on the body torques and spacecraft inertia properties. The two frames

necessary for this derivation are the body centered NTW frame (does not rotate with

the body), and the body fixed frame (rotates with the body), both with origins at the

body center of mass. Let b̂i represent the body fixed frame unit vectors, âi represent

the NTW frame unit vectors, and B∗ represent the body center of mass. Assume an

arbitrary body mass distribution, such that the inertia dyadic in the body frame at

the center of mass is represented by Equation (2.7).

¯̄Ib/B
∗

= Ib̂1b̂1 + Jb̂2b̂2 +Kb̂3b̂3 (2.7)

Here, I, J , and K represent the principal inertias of the spacecraft. The formula-

tion is general and there is no assumption on symmetry of mass distribution. Since

the body frame and NTW frame share an origin, only rotational displacements sepa-

rate the two. A set of angular velocities, represented by aω̄b can be used to quantify

the rates of these displacements, as in Equation (2.8).

aω̄b = ω1b̂1 + ω2b̂2 + ω3b̂3 (2.8)
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Finally, consider some arbitrary torque defined with the body axes, which will

represent the perturbing torques from the spacecraft environment. This moment can

be represented as shown in Equation (2.9).

M
B∗

= M1b̂1 +M2b̂2 +M3b̂3 (2.9)

In a rotational context, the moment of inertia is analogous to linear inertia, rep-

resented by mass, just as angular velocity is analogous to linear velocity. In a linear

context, momentum is the product of mass and velocity. As such, the angular mo-

mentum of the body in the â frame is the product of the inertia tensor and angular

velocities shown in Equation (2.10).

aH
B∗

= ¯̄Ib/B
∗aω̄b (2.10)

Again, in a linear context, the specific acceleration, or force, is equal to the first

time derivative of the linear momentum. Here, the moment is equivalent to the first

time derivative of angular momentum. Since this analysis is in a rotating environment,

special care must be taken to preserve the correct frame representations for the terms.

By expanding this relation, the dynamic equations of motion for the rotating system

can be found. The relation is shown in Equation (2.11).

M
B∗

=
adaH

B∗

dt
(2.11)

The first step is to expand the dyadic form in Equation (2.10). Expanding the

dyadic using Equation (2.7) and Equation (2.8) gives Equation (2.12).

aH
B∗

= (Ib̂1b̂1 + Jb̂2b̂2 +Kb̂3b̂3)(ω1b̂1 + ω2b̂2 + ω3b̂3)

= Iω1b̂1 + Jω2b̂2 +Kω3b̂3

(2.12)

Notice that the angular momentum is given in terms of the body frame. In order

to take the derivative of this quantity in the NTW frame while keeping the body
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frame representation, the basic kinematic equation must be used, which uses the

relationship between the body and NTW frames previously established through the

angular velocities in Equation (2.8). This formulation is given in Equation (2.13).

adaH
B∗

dt
=

bdaH
B∗

dt
+ aω̄b × aH

B∗

(2.13)

Using Equation (2.12) and Equation (2.8) in Equation (2.13) gives Equation

(2.14).

adaH
B∗

dt
=Iω̇1b̂1 + Jω̇2b̂2 +Kω̇3b̂3

+ ω1Jω2b̂3 − ω1Kω3b̂2

− ω2Iω1b̂3 + ω2Kω3b̂1

+ ω3Iω1b̂2 − ω3Jω2b̂1

(2.14)

Recalling the relation between angular momentum and the moment as in Equation

(2.11), and then simplifying the right hand side of Equation (2.14), the relation

between the moment and angular rates is found, which is a form of the dynamic

equations of motion. This can further be adjusted by grouping terms expressed in

the same body direction, as in Equation (2.15).

M =[Iω̇1 +Kω2ω3 − Jω3ω2]b̂1

+[Jω̇2 + Iω3ω1 −Kω1ω3]b̂2

+[Kω̇3 + Jω1ω2 − Iω2ω1]b̂3

(2.15)

Finally, solving for the angular rate derivatives in Equation (2.15) and simplifying

gives the dynamic equations of motion, shown in Equation set (2.16).
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ω̇1 =[(J −K)ω2ω3 +M1]/I

ω̇2 =[(K − I)ω1ω3 +M2]/J

ω̇3 =[(I − J)ω1ω2 +M3]/K

(2.16)

These dynamic equations of motion relate the angular rates to an arbitrary mo-

ment. The most important aspect of these equations is that they are generalized,

meaning there are no assumptions regarding what axes the torques act upon, or how

the mass is distributed in the spacecraft. The Mi terms represent the summation of

all torques imparted on the spacecraft. Similar to how the accelerations from different

sources were summed to provide the total perturbing acceleration in Equation (2.6),

the summation of the perturbing torques can be captured using Equation (2.17).

M = MGravityGradient +MSRP +MAero (2.17)

Now, a relation between the moments on the craft and the craft angular rates

has been established. In Section 2.4, the calculations to determine these torques are

shown. Next, a relationship must be established between the dynamic equations of

rotational motion and the spacecraft orientation and the body angles used to represent

the spacecraft attitude state.

Kinematic equations of motion

The kinematic equations of motion are used to describe the attitude state of the

spacecraft based on the angular rates that the dynamic equations of motion pro-

vide. Many different methods of representing the kinematic equations of motion

exist, but for spacecraft application, Euler parameters, or quaternions, are often
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used. Euler first derived formulae for the rotation of arbitrary rigid bodies using

one axis and rotation, as in Figure 2.3, from which any orientation could be accom-

plished [30]. Hamilton first described a four dimensional non commutative system he

called quaternions [31] in 1843. A self described pure mathematician, many of Hamil-

ton’s discoveries are now of great importance in physics, with quaternions being no

exception.

Fig. 2.3. Example of rigid body rotation through the Euler axis prin-
cipal: one vector defines an axis about which the body rotates

By representing the concept of the Euler axis rotation using quaternions (three

components in a vector form to define the axis, one scalar component to define the

rotation), the arbitrary rotation of a rigid body can be performed without reliance

on trigonometric functions which can produce singularities and reduce computational

efficiency. Skylab is an example of a spacecraft which used quaternions for attitude

modeling to explicitly avoid these singularities [32]. Wie mentions how the use of

quaternions instead of Euler angles is now preferred in spacecraft dynamical mod-

eling, especially for on-board operations and state determination, due to reduced

computational requirements [24]. The use of quaternions in this context of rigid body
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rotations was developed independently by Robinson, Harding, Mortensen, and Mar-

guiles [?,33–36]. The derivation is described in detail in the provided references, and

results in the following kinematic equations of motion, shown in Equation set (2.18).

q̇1 = (ω1q4 − ω2q3 + ω3q2)/2

q̇2 = (ω1q3 − ω2q4 + ω3q2)/2

q̇3 = (−ω1q2 − ω2q1 + ω3q4)/2

q̇4 = −(ω1q1 − ω2q2 + ω3q3)/2

(2.18)

Here, the vector component is q1−3, and the scalar component is q4. With this

formulation, the angular rates determined in the dynamic equations of motion in

Equation set (2.16) can be related to the orientation state of the body using quater-

nions. By integrating these equations, the spacecraft attitude at an instance in time

can be found from the result of some arbitrary perturbing torque.

2.4 Perturbations

Now that the equations of motion governing the craft’s 6DOF motion have been

established, the perturbations that will feed into those equations must be introduced.

As previously mentioned, and shown in Equations (2.6) and (2.17), the perturbations

considered for this analysis are gravity gradient torques, Earth oblateness accelera-

tions, SRP forces and torques, and aerodynamic forces and torques. In the following

sections, the determinations of these forces and torques in the context of the 6DOF

simulation will be explained.



20

2.4.1 Aerodynamics

In order to properly model the aerodynamic forces in the simulated environment,

there must be an understanding of the applicable aerodynamic flow regime. Although

there has been study of rarefied gas dynamics since the late 1800s, the mid 20th cen-

tury brought about new thinking as a result of the great advances in high altitude

flight. Whereas much previous study was focused on the applicability to rarefied gas

dynamics in the context of a vacuum type chamber or some type of internal interac-

tion, there was now an interest in determining the effects of rarefied gas dynamics on

‘submerged’ bodies, for example a very high altitude craft experiencing atmospheric

drag [37]. There was significant work done around this time to then characterize

and categorize aerodynamic regimes. Based on this work from the mid century, all

aerodynamic modeling can be divided into three flow regimes: free molecular flow,

transitional flow, and continuum flow. Sometimes, a category known as ’slip flow’ is

used to describe the regime between continuum and transitional, but this regime is

not relevant to this work.

Flow regimes

The categorization of the flow regime can be based on the degree of flow rarefac-

tion, modeled by the non-dimensional Knudsen number. The Knudsen number is the

ratio between the average distance between molecular collisions in the freestream, and

a characteristic length of the body being modeled in the flow. This nondimensional

quantity is given by Equation (2.19).

Kn =
λ

L
(2.19)

Here, λ represents the molecular mean free path, which is the average distance

between particle collisions in the flow, and L is the characteristic length of the body

being modeled. A high Knudsen number, (Kn >> 1), corresponds to a free molecular
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flow [38]. An overview of the modeling techniques applicable to each flow regime is

recreated in Figure 2.4 here from Bird [39].

Knudsen Number

0 .001 .01 .1 1 10

Fluid 
Modeling

Particle 
Modeling

Navier Stokes 
Equations

Regime Continuum Flow Transitional Flow
Free 

Molecular 
Flow

Boltzmann Equation – DSMC
Free Molecular 

Analytical 
Equations 

Fig. 2.4. Modeling methods for different flow regimes

It can be seen that the Navier stokes equations typically used in computational

fluid dynamics cannot be used for high Knudsen numbers, since the approximation

that the flow acts as a fluid is no longer applicable. Here, the discrete particle

nature of the gas must be taken into account. For all flow regimes, the Boltzmann

transport equation is able to capture the physics of the flow. However, this approach

is extremely computationally intensive, and is not suitable to run on the timesteps

required for 6DOF modeling on a spacecraft in orbit. The DSMC method was first

proposed by Bird in 1963 [40], and is discussed in Section 2.6. For the case of a

spacecraft in orbit, however, the flow regime is dominantly free molecular flow, and

certain assumptions can be made to greatly simplify the calculation of aerodynamic

forces on a body. In particular, particles are assumed to not collide with each other in

the flowfield for free molecular flow. The significance here is that there is no flowfield

to resolve; only surface interactions are relevant. Gombosi describes this by saying

that the molecules travel such a relatively long distance between a surface collision
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and a second collision with an incoming particle, that there is no shock wave ahead of

a body in the free molecular flow regime [38]. In fact, the boundary layer is expected

to be extremely diffuse and have no effect on the incident flow. A consideration to

make here is that free molecular flow is not necessarily suited well for concave bodies,

since particles may reflect off of a surface back onto a different surface, which is not

inherently taken into account. Determination of the level of validity to which the free

molecular models recreate the true flow can be done with DSMC modeling, and is

discussed for specific geometries in the following chapters.

Free molecular aerodynamic force modeling

Schaaf and Chambré outline the method to determine aerodynamic forces on a

surface [41], and their formulations guided the development of the free molecular

interaction model for the spacecraft used in this work. First, consider a surface

element in 3D space as shown in Figure 2.5.

X2

X1

X3

U θ

Fig. 2.5. Surface element sample defining coordinates, velocity, and incidence angle
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It has been shown through experiment [42] that a singular accommodation coef-

ficient, used to model the expected ratio between diffuse and specular particle reflec-

tions on a surface, can be insufficient for determination of certain surface fluxes. For

the force modeling, consider two different accommodation coefficients, one describing

the tangential interaction, and one describing the normal interaction, as shown in

Equation set (2.20),

σ =
τi − τr
τi − τw

, (τw = 0)

σ′ =
pi − pr
pi − pw

(2.20)

Here, the subscript i refers to incident flux, r refers to the reflected flux, and

w represents the flux of the particles remitted with a Maxwellian distribution at

the surface temperature of the body with which they collide. The letters σ and τ

represent the tangential components, while σ′ and p represent the normal components.

An assumption is made where the velocity of the molecules in the flow follows a

Maxwellian distribution in order to determine the number density. Using the same

coordinates defined in Figure 2.5 to describe the absolute velocity components v1−3,

the number density, f , per unit volume can be given by Equation (2.21).

f =
ρ∞

m(2πRT∞)3/2
exp

[
−(v1 − U sin(θ)2 + (v2 + U cos(θ))2 + v23

2RT

]
(2.21)

Here, m represents the averaged molecular mass of the flow, R represents the

specific gas constant, T∞ represents the freestream temperature, θ is the incidence

angle as shown in Figure 2.5, ρ∞ is the freestream density, and U is the steady gas

velocity. This can be used to determine the incident number of molecules on a surface

element of area dA per unit time, modeled in Equation (2.22).

Ni =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

v1fdv1dv2dv3dA (2.22)



24

Integrating this using the number density function given in Equation (2.21) gives

Equation (2.23).

Ni =
ρ∞
m

√
RT

2π
[exp(−(s ∗ sin(θ))2) +

√
π(s ∗ sin(θ))(1 + erf(s ∗ sin(θ)))]dA (2.23)

Where erf() represents the error function, and s is the molecular speed ratio,

defined by the ratio between the bulk gas velocity and random thermal motion of the

constituent flow particles, as in Equation (2.24).

s =
U√
2RT

(2.24)

Equation (2.23) is general and can be used to determine energy flux and heat

transfer. Building off of this can also give the formulation for the normal and tan-

gential incident stresses on the surface (pressure and shear), shown in Equation set

(2.25). Here, the solution of each integral is listed beneath each relevant equation.

pi =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

mv21fdv1dv2dv3dA

pi =
ρ∞U

2

2
√
πs2

[
(s ∗ sin(θ))exp(−(s ∗ sin(θ))2) +

√
π[

1

2
+ (s ∗ sin(θ))2][1 + erf(s ∗ sin(θ))

]

τi =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

mv1v2fdv1dv2dv3dA

τi = −ρ∞U
2 cos(θ)

2
√
πs

[
exp(−(s ∗ sin(θ))2) +

√
π(s ∗ sin(θ)[1 + erf(s ∗ sin(θ))]

]
(2.25)

To find the total pressure and shear, the reflected components, pr and τr, must also

be accounted for. These can be obtained using the definitions of the accommodation

coefficients from Equation (2.20), resulting in Equation set (2.26).
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pr =(1− σ′)pi + σ′pw, pw =
1

2
m
√

2πRTwNi

τr =(1− σ)τi

p =(pi + pr)

τ =(τi − τr)

(2.26)

With Tw representing the surface wall temperature, and Ni coming from Equation

(2.23). Using Equation sets (2.25) and (2.26), the total pressure and shear values on

the surface can be found, shown in Equation set (2.27)

p =
ρ∞U

2

2s2

[(
2− σ′√

π
s ∗ sin(θ) +

σ′

2

√
Tw
T∞

)
exp(−(s ∗ sin(θ))2)

+

[
(2− σ′)[(s ∗ sin(θ))2 +

1

2
] +

σ′

2

√
Twπ

T∞
(s ∗ sin(θ))

]
[1 + erf(s ∗ sin(θ))

]

τ =− σρ∞U
2 cos(θ)

2
√
π

[
exp(−(s ∗ sin(θ))2) +

√
π(s ∗ sin(θ))[1 + erf(s ∗ sin(θ))]

]
(2.27)

By applying the Equations in (2.27) to a surface element that is a component of

the total spacecraft geometry, the local pressure and shear can be found. As seen

in Hart [43], it can be convenient to non-dimensionalize these equations to obtain

pressure and shear coefficients. This non-dimensional form is shown in Equation set

(2.28).
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Cp =
1

s2

[(
2− σ′√

π
s ∗ sin(θ) +

σ′

2

√
Tw
T∞

)
exp(−(s ∗ sin(θ))2)

+

[
(2− σ′)[(s ∗ sin(θ))2 +

1

2
] +

σ′

2

√
Twπ

T∞
(s ∗ sin(θ))

]
[1 + erf(s ∗ sin(θ))

]

Cτ =− σ cos(θ)

s
√
π

[
exp(−(s ∗ sin(θ))2) +

√
π(s ∗ sin(θ))[1 + erf(s ∗ sin(θ))]

]
(2.28)

The coefficients of pressure and shear can then be summed by converting them

to vector form using the normal and tangential unit vectors of the surface element.

This is shown in Equation (2.29).

CF =
[
Cp( ˆnormal) + Cτ ( ˆtangential)

]
(2.29)

Using this intermediate ‘force coefficient’, the total force and moment can be found

on the craft by summing over all elements i as in Equation set (2.30).

~FAero =
1

2
ρ∞U

2
(∑

CF,iAi

)

~aAero = FAero/m

~MAero =
1

2
ρ∞U

2
[∑

~rcm,i × (CF,iAi)
]

(2.30)

Here, the spacecraft mass is represented byms/c and is used to find the acceleration

on the body, which will be used to propagate orbital motion. The moment is also

found using the force, with rcm,i representing the vector between the spacecraft center

of mass and the centroid of the surface element. With this moment and acceleration,

the 6DOF motion due to aerodynamics can be found. Note that to propagate this
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correctly based on the equations of motion previously defined, the acceleration must

be represented in the ECI frame, and the torque must be represented in the body

frame. The force is represented in the NTW frame, so conversions using the relations

in Section 2.1 are necessary.

Atmospheric modeling

Selection of the atmospheric model can be as important as the selection of the

force model. In this work, a version of the Marshall Engineering Thermosphere (MET)

model has been used, as translated from FORTRAN 77 to MATLAB by Long [22].

The model itself is a modified Jacchia 70 atmospheric model, and is a semi-empirical

model that is based on satellite drag analyses [44]. The model is particularly useful

due to the fact that it can be used to calculate approximate species concentrations and

freestream temperatures in the exosphere, which can be used to determine properties

required by the free molecular analytical equations. The model uses solar flux and

geomagnetic index values as inputs, which are available through the NASA Marshall

Space Flight Center solar activity forecast from the Natural Environments Branch

as well [45]. Note that the forecast for these values changes over time as new data

becomes available to researchers, and so for propagation at future epochs, the most

up to date forecast values should be used.

2.4.2 Solar radiation pressure

Modeling the solar radiation pressure is similar to modeling the aerodynamics, in

that force is calculated for each discrete element of the surface geometry. However,

sun vector information and Earth shadow geometry information are also necessary.
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Sun position determination

As the Earth revolves around the Sun, the vector from which sunlight is directed

varies throughout the year. To determine the effects of SRP on a spacecraft, the

direction from which incoming photons are coming must first be ascertained. For this

work, a simple approximate model is used to determine the Sun position vector as

described in the 1992 Astronomical Almanac [46]. The formulation allows a simple

algorithm to replace the need for high accuracy ephemerides or Earth orbit propa-

gation while retaining an accuracy of 0.01o from 1950 to 2050, with loss of accuracy

past these dates due to truncation error inherent in the approximation [47].

Beginning with an initial epoch for propagation, the Julian date, in the form of

Julian centuries, is used to find the mean longitude and mean anomaly, the ecliptic

longitude, obliquity of the ecliptic, and magnitude of the Earth Sun distance. An

example of the geometry is shown in Figure 2.6, where the direction of the first point

of Aries (vernal equinox) is denoted as �.

♈︎

♈︎

ε

λecliptic

Fig. 2.6. Sun position determination visualization, with the longitude
and obliquity of the ecliptic shown
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The formulation is demonstrated in Equation set (2.31), with JC representing

Julian centuries, λM representing mean longitude, M representing mean anomaly,

λecliptic representing ecliptic longitude, and ε representing the obliquity of the ecliptic.

λM = 280.46 + 36000.771 ∗ JC

M = 357.5291092 + 35999.05034 ∗ JC

λecliptic = λM + 1.914666471 ∗ sin(M) + .019994643 ∗ sin(2M)

r� = 1.000140612− .016708617 ∗ cos(M)− .000139589 ∗ cos(2M)

ε = 23.439291− .0130042 ∗ JC

~r� =


r� cos(λecliptic)

r� cos(ε) sin(λecliptic)

r� sin(ε) sin(λecliptic)



(2.31)

Earth shadow

For many orbits without very high inclinations, the orbiting spacecraft will enter

the shadow cast by the Earth, either fully or partially negating any effects of SRP.

Figure 2.7 demonstrates the geometry of the Earth Sun shadow that can be used to

determine if the satellite is in Earth’s umbra or penumbra.

The umbra and penumbra shadow angles can be calculated by using right triangle

relations as demonstrated in Vallado [47]. The formulation is shown in Equation set

(2.32), with R� and R⊕ representing the Sun and Earth radii, respectively.

αumbra =
R� −R⊕

r�

αpenumbra =
R� +R⊕

r�

(2.32)

Next, the angular separation between the satellite and sun vector must be deter-

mined, which can be done using the dot product as shown in Equation (2.33).
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r☉

rsat

Fig. 2.7. Earth shadow diagram, showing angles of penumbra and umbra

cos(φ) =
~r�~rsat
r�rsat

(2.33)

Using the values from Equation set (2.32) and Equation (2.33), the satellite can

be determined to either be in the umbra or penumbra. The method is outlined in

Vallado [47], and given in Equation set (2.34).

IF :
[
|~rsat|sin(φ)

]
≤
[
tan(αpenumbra)

(
r�

sin(αpenumbra)
+ |~rsat| cos(φ)

)]
SHADOW = PENUMBRA

IF :
[
|~rsat| sin(φ)

]
≤
[
tan(αumbra)

(
r�

sin(αumbra)
− |~rsat| cos(φ)

)]
SHADOW = UMBRA

(2.34)
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SRP force modeling

Now that the vector from which incoming photons are coming from is established,

and it is known when and how the stream of photons is cut from the spacecraft due

to Earth shadowing, the force model for SRP can be introduced. First, the energy

coming from the sun must be quantified. Baker provides the average solar flux as

1367W/m2 [48], based on the number of photons reaching the Earth at a certain

frequency and with a specific amount of energy. Using Einstein’s famous energy mass

relation [49], which eventually took the form E = mc2, the solar pressure over some

area at the average orbital distance of Earth can be calculated as in Equation set

(2.35).

mc =
E

c

pSRP =
1367

3 ∗ 108

[W/m2]

[m/s]
= 4.57 ∗ 10−6

[N ]

[m2]

(2.35)

Note that this calculation uses the average solar flux value. Higher fidelity analyses

may consider using a variable solar flux value based on solar cycle information. By

introducing a coefficient of reflectivity, CR, an expression for the force on a spacecraft

surface element due to SRP can be found. As in Vallado, [47], the coefficient can

be taken to be between 0 and 2, with 0 meaning a transparent spacecraft that does

not interact with incoming photons, 1 being a blackbody that absorbs all incoming

photons, and 2 being a perfectly reflecting body. Similar to Equation set (2.30), the

force, acceleration, and moment from SRP can be found as in Equation set (2.36).
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~FSRP = pSRPCR
∑

Air̂�−i

~aSRP = FSRP/m

~MSRP = pSRPCR
∑

rcm,i × (Air̂�−i)

(2.36)

Again, care must be taken as to what frames are being used. The acceleration

again should be in ECI, whereas the torques should be in the body frame. Reference

Section 2.1 for frame conversion information.

2.4.3 Gravitational perturbations

The final set of perturbations considered in this work are gravity based. The anal-

yses of the two effects, Earth oblateness perturbations and gravity gradient torques,

are separate. Earth oblateness analysis is concerned with quantifying the effect of an

uneven mass distribution in the Earth, whereas gravity gradient torques are a result of

uneven mass distributions in a spacecraft. For the Earth, spherical harmonics, in the

form of zonal, sectoral, and tessoral harmonics are used to quantify the unevenness of

Earth’s mass distribution, and the resulting altered gravity field. For the spacecraft,

the inertia tensor conveniently holds the information required to understand the mass

distribution.

Earth Oblateness

Derivation of the non-spherical potential function that models the Earth’s gravity

field has been done in many forms, for example in Lambeck [50]. Here, the goal is to

use a simplified model to obtain accelerations on the orbiting spacecraft that perturb

the orbit. Most of the effects of oblateness can be captured simply by accounting

for the second zonal term, often denoted J2, and ignoring higher order terms Jn.



33

The end result of the accelerations derived from this analysis is usually that the

orbit plane is rotated in the opposite direction of the motion of the spacecraft, while

the argument of perigee increases [51]. Vallado [47] provides simple formulations for

the accelerations on a spacecraft due to Earth oblateness. Higher order terms can

be found in Escobal [52], but are omitted here since the extra computation gives

diminishing returns on solution accuracy due to the small magnitude of the other Jn

terms. The formulation for the J2 accelerations is given in Equation set (2.37). The

subscripts x,y, and z represent the position of the spacecraft in ECI coordinates.

ax = −
3J2µ⊕R

2
⊕rx

2r5

(
1− 5r2z

r2

)

ay = −
3J2µ⊕R

2
⊕ry

2r5

(
1− 5r2z

r2

)

az = −
3J2µ⊕R

2
⊕rz

2r5

(
3− 5r2z

r2

)
(2.37)

The z term here is perpendicular to the equator, extending through the north

pole, whereas the x and y terms are in the equatorial plane, following ECI convention.

These accelerations are already in the ECI frame, and can be used directly as a vector

in Equation (2.6).

Gravity gradient torque

For most spacecraft, there exists a physical distance between the center of gravity

and the center of mass. When the vectors between the center of mass and center

of gravity are not aligned with the gravity vector, there exists a torque that acts to

restore the orientation to such an aligned attitude. The magnitude of this torque is

dependent on both the distribution of mass of the satellite, as well as the relative

orientation to the gravity vector. A typical derivation exists in Wie [24], which uses

direction cosines for orientation. In this work, the satellite coordinates are converted
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to the body frame, and the resulting expressions for the torque due to gravity gradients

are given in Equation set (2.38), with the subscripts x,y, and z again representing the

position of the spacecraft in ECI coordinates.

Mx =
3µ⊕
r5

ryrz(I33 − I22)

My =
3µ⊕
r5

rxrz(I11 − I33)

Mz =
3µ⊕
r5

rxry(I22 − I11)

(2.38)

2.5 Numerical method

The propagator itself is written in MATLAB, which is efficient for vector oper-

ations and provides ample built in features for numerical simulation. A users guide

of the propagation software is provided in the appendix. Here, a discussion on the

methods used for numerical simulation will be discussed.

There are two operating modes of the simulation software, orbital mode and wind

tunnel mode. Orbital mode is the 6DOF propagator that has so far been the topic of

discussion, while wind tunnel mode is a 3DOF simulation that ignores trajectory, and

only propagates attitude dynamics. While orbital mode is designed to recreate the

dynamics of a spacecraft in orbit, wind tunnel mode is more of an analysis tool that

can be used to gain a better understanding of the dynamic behavior of a spacecraft

due to aerodynamic torques.

A large difference in the methods of propagation between the wind tunnel and

orbital modes exists in the stiffness of the problems. The orbital mode must propagate

both trajectory and attitude together, which effect the motion of the spacecraft on

different time scales. While stiffness is not rigorously defined, a problem with multiple

answer components that vary on different time scales can be thought of as stiff.

Meanwhile, stiffness is not a relevant concern for the wind tunnel simulation.

MATLAB has several built-in differential equation solvers which are optimized

for different types of problems, as described in Shampine [53]. While solvers such as
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ode15s are designed to better handle stiff problems, they suffer from lower accuracy

than newer nonstiff solvers such as ode113. For this work, it was seen that ode113

outperforms ode15s even for the stiff orbital case, and so ode113 is used for both the

orbital and wind tunnel modes.

2.6 DSMC

To verify the accuracy of the aerodynamics formulation and determine the valid-

ity of the free molecular assumption for specific flow cases, the high fidelity DSMC

method can be used. DSMC, first formulated by Bird in the 1960s [40], is a stochas-

tic method that can model the molecular motion of particles in a flow by solving

the Boltzmann equation. At a very simple level, the technique works by repeatedly

moving and colliding simulated flow particles according to specified physical models

and probabilities [54]. Due to the vast number of particles inherent in the simulated

flows, the computational demand is high, even when simulated particles are used

to account for over many trillions of real particles. The operation is still intensive,

and to date around a dozen codes have been developed. In 2014, Sandia National

Labs released an open source DSMC code, SPARTA (Stochastic PArallel Rarefied-gas

Time-accurate Analyzer), which is a high speed code capable of efficient DSMC anal-

ysis [55] using parallel computing. SPARTA has been validated against test data [56],

and the code enjoys excellent documentation and modularity [57], and has therefore

been used in this work to analyze the aerodynamics of each tested geometry in a high

fidelity environment.

2.7 Additional considerations

In modeling the solar radiation pressure and aerodynamics using free molecular

flow, considerations on self shadowing become relevant. The current model used in

the propagator is a simple shadowing model that determines if a surface element

would be ’wetted’ by incoming flow or radiation, but does not take into account self
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shadowing from geometry upstream. This is typically a very computationally inten-

sive calculation, especially for more complex spacecraft geometries with more surface

elements. The simple model has been utilized in this work, but recommendations are

made for exploring more complex models in the Future Work section.

A point of debate in this work is the dynamic modeling of the spacecraft motion

in the atmosphere by accounting for aerodynamic damping factors. Work has been

done for this topic in hypersonics using the Newtonian approach [58], which has been

re-purposed for use in free molecular regimes [22]. There is not conclusive proof that

this method of modeling aerodynamic damping is valid for free molecular regimes, so

it has not been used in this work.
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3. APPLICATION - LIGHTSAIL

As a whole, the Lightsail program is working towards progressing the current state

of the art for solar sailing technologies. The first mission in the program, Lightsail 1,

successfully demonstrated solar sail deployment on a 3U CubeSat in LEO in 2015 [59].

Lightsail 1 is an excellent example of the type of high area to mass ratio craft that

could benefit from 6DOF analysis. Since the craft has already flown, it can be used

as a validation case to test the 6DOF code’s predictive ability.

3.1 Mission description and Modeling considerations

Lightsail 1 launched as a secondary payload aboard a United Launch Alliance

Atlas V rocket on May 20th, 2015 into a 356 km x 705 km elliptical orbit with

an inclination of 55 degrees. The craft was deployed two hours after launch, and

recovered from several anomalies in flight before sail deployment on June 7th. After

an image was returned confirming deployment, the mission was considered a success,

and Lightsail 1 eventually deorbited seven days after deploying the sail, on June 14th.

Due to the large reflective solar sail and low orbit, Lightsail 1 was particularly

suspect to aerodynamic and solar radiation pressure based perturbations. In order

to test the model using Lightsail 1, the geometry must first be put into an STL file

format. The spacecraft used a 3U CubeSat spacedart configuration, with the solar

sail at the front. The geometry is shown in 3.1, with the point [0, 0, 0] coinciding with

the spacecraft center of mass.

In order to model Lightsail 1 in the six DOF simulation, the physical parameters

of the spacecraft and the initial state must be identified. These values are shown in

Table 3.1.
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(a) Side view (b) Front view

(c) Isometric view

Fig. 3.1. Lightsail geometry represented in STL format

The spacecraft mass and inertia properties are directly from Lightsail 1 technical

documentation. The surface reflectance coefficient is an assumption that approxi-

mates the total surface of the spacecraft to be 90 percent reflective, and the surface is
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Table 3.1.
Lightsail 1 6DOF simulation initial conditions and parameters

Parameter Value

Inertia matrix [kg ∗m2]


7.33 0 0

0 3.79 0

0 0 3.79


Mass [kg] 4.93

Surface reflectance coefficient 1.8

Surface temperature [K] 350

Semi-major axis [km] 6908

Eccentricity .0253

Inclination [deg] 55

Argument of perigee [deg] 0

Right ascension [deg] 0

Initial roll angle [deg] 0

Initial pitch angle [deg] 70

Initial yaw angle [deg] 50

Initial roll rate [deg/s] 14

Initial pitch rate [deg/s] -5

Initial yaw rate [deg/s] -1

Epoch [dd-mm-yyyy HH:MM:SS] 07-06-2015 12:00:00

assumed to be at an average of 350K. The surface temperature can certainly change

over time, which can effect how particles interact with the surface, but the energy

flux to the spacecraft is not modeled in this simulation. The initial orbital state used

is based on the launch vehicle insertion, and the initial attitude state is provided by

telemetry packets downlinked from the spacecraft for the time at deployment. Since

the telemetry packets came at a delay, there is no attitude telemetry that is available
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for the time directly after deployment. Instead, to account for some uncertainty in

the rotational state after sail deployment, the packets directly prior to deployment,

and the first set of packets available after sail deployment were averaged to determine

an approximate initial post-deployment rotational state. Using this information, the

6DOF simulation was initialized and ran until the deorbit of the lightsail craft, which

the simulation detects when altitude is below 150 km. The actual spacecraft deorbited

on June 14th 2015, seven days after sail deployment, and the goal of this validation

is to see how accurately this deorbit time can be reproduced using only the geometry

of the spacecraft and initial conditions described in Table 3.1.

3.2 6DOF simulation results

The simulation provides insight on both the overall attitude and trajectory behav-

ior of the spacecraft, as well as the individual contributors of the torques and forces

from gravity, solar radiation pressure, and aerodynamics. First, the overall deorbit

timeline can be assessed using the plot of altitude history, shown in Figure 3.2.

Fig. 3.2. Lightsail 1 simulated altitude history

The plot demonstrates that the software simulated about 600600 seconds of flight

time, after which it detected that the craft deorbited (deorbit is detected when altitude

dips below 150 km), and thus ended the simulation. This time corresponds to 6.95

days of flight time, which closely matches the true flight lifetime of the spacecraft

after the sail was deployed. Spacecraft telemetry from the majority of the Lightsail
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1 deorbit phase is unavailable due to a telecom anomaly during flight, and so the

attitude state history cannot directly be confirmed. Still, the successful prediction of

the overall deorbit time of the spacecraft is a good indication as to the accuracy of the

simulation. To gain further insight on the spacecraft state history, specific histories of

the gravitional, solar radiation pressure, and aerodynamics based perturbations are

analyzed.

First consider the gravitational perturbations, shown in Figure 3.3. The gravity

gradient torque is expected to orient the center of gravity between the attracting body

and the spacecraft center of mass, and is a destabilizing torque when considering the

dominant effect of aerodynamics in LEO. The non-spherical gravity potential will

effect the trajectory based on the position of the craft over the Earth, and works to

precess the orbit plane.

Fig. 3.3. Lightsail 1 simulated gravitational perturbation history

The precession of the orbit plane is apparent when looking at the 3D orbit geom-

etry, shown in Figure 3.4.

The gravity gradient torque, like all the other perturbing torques, is a function of

the environment and the relative spacecraft orientation. The orientation relative to

the orbital velocity vector in the NTW frame can be used to determine aberration
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Fig. 3.4. Lightsail 1 simulated orbital motion history

from the trimmed orientation. A total orientation offset, or total angle of attack, can

be determined from the combined magnitude of the yaw and pitch angles, shown in

Figure 3.5. This figure shows an interesting trend for the geometry to tend towards

orienting itself backwards relative to the flow, with the sail downstream of the Cube-

Sat body, rather than having the sail upstream of the body as shwon in Figure 3.1.

The reason for this is the offset between the center of pressure and center of mass.
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Fig. 3.5. Lightsail 1 simulated combined total angular displacement
from flow velocity vector based on yaw and pitch

In Figure 3.1, the displacement between the main sail, which is approximately

where the center of pressure lies in the nominal state, and the center of mass, is

apparent. The initial orientation in this figure, with the center of pressure upstream of

the center of mass, is inherently unstable, and leads to the seemingly chaotic rotational

motion near the beginning of the simulation. After some time, the aerodynamic

restoring torques are given time to adjust the spacecraft towards the passively stable

orientation, which happens to be backwards, with the CubeSat body upstream of the

sail. This trimming effect brings the craft to its maximum drag orientation, which

then explains why the deorbit near the end of the simulated mission seems so sudden

- instead of tumbling, the spacecraft is passively being oriented in the maximum drag

orientation. The aerodynamic forces and torques can be seen in Figure 3.6.

In the aerodynamics figure, it is clear where the perigee and apogee passes occur

due to the respective spike and drop in aerodynamic perturbing effects on the space-

craft. Of interest is also the large increase in aerodynamic force near the end of the

mission, which is the direct cause of deorbit, as seen at the end of the altitude plot.
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Fig. 3.6. Lightsail 1 simulated aerodynamic forces and torques

Finally, to account for the apogee raise near the middle of the mission as shown in

the altitude plot, the solar radiation pressure effects plot can be examined, as shown

in Figure 3.7. From this figure, it can be seen that there is an interesting combination

of the sun position vector and orbit geometry that leads to an extended period in

which the satellite does not pass behind the Earth, leading to an increase in the

net effect of SRP. Unlike the aerodynamics plot where the drop off in force signifies a

return to apogee, the SRP is dependent on the satellite position relative to the Earth’s

umbra and penumbra. These shadow positions are constant through the simulation,

but there is nothing that dictates the spacecraft must pass through a shadow every

orbit. The precession of the orbit by the Earth’s non-spherical gravity potential

leads the spacecraft to approach an orbit that exposes it to extended sunlight, which

subsequently effects the overall trajectory significantly, as reflected in the altitude

plot.
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Fig. 3.7. Lightsail 1 simulated solar radiation pressure forces and torques

3.3 DSMC comparison

Using the Direct Simulation Monte Carlo method, the magnitude of the force on

the body exerted by the particles in the flow can be determined. Comparing this to

the force magnitudes determined by the simulation can give insight on the accuracy of

the simulation. For the Lightsail 1 spacecraft, the geometry used in the DSMC runs is

the same as shown in Figure 3.1. The parameters used in the DSMC calculation using

SPARTA can be found in Appendix B, outlining the specific run inputs like number

density, species composition, grid size, and other parameters. For this comparison,

the spacecraft was oriented at four different angles of attack, each separated by 30

degrees. A demonstration of the pitch rotation for a 30 degree angle of attack is

shown in Figure 3.8. The results for the calculations are shown in Table 3.2.

An interesting observation is that the simulation estimates a higher force for the

non perturbed orientation, but then the DSMC estimates a higher force for the per-

turbed orientations. Once again looking at the lightsail geometry, it seems that the

large sail at the front of the craft would shadow the back of the craft from any par-
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ticle interactions. This shadowing is automatically taken into account using DSMC,

but the free molecular code in the simulation does not have a shadowing formulation

complex enough to take this into account. The result is that there is a slight overes-

timation in the force for the back of the spacecraft. For the perturbed orientations,

the concave nature of the body can be used to describe the force discrepancy. The

free molecular approximation is suited for convex bodies, since there is nothing used

in the formulation to account for self-reflected particles, meaning particles that strike

one surface of the craft and then bounce off to impart more momentum on another

surface. Here, this explanation can be used to describe why the greater pertubations

have in fact a greater force magnitude for the DSMC runs.

(a) Side view (b) Front view (freestream projection)

Fig. 3.8. Lightsail geometry (blue) and Lightsail geometry pitched by
30 degrees (red)

Overall, the difference is subtle, and the DSMC shows that the free molecular

approximation used for this modeling can give reasonable results.
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Table 3.2.
Lightsail 1 DSMC aerodynamics comparison

Angle of attack [deg] Force DSMC [N] Force 6DOF [N] % Difference

0 0.009012 0.009072 0.66

30 0.007758 0.007105 8.42

60 0.004394 0.003978 9.47

90 0.000605 0.000234 61.32

3.4 Conclusions

Although there is a demonstrated discrepancy between the 6DOF simulation aero-

dynamic results and the SPARTA DSMC results, the simulated deorbit timeline

closely matches the true deorbit time of the Lightsail 1 spacecraft. An important

factor to consider here is the significance of the rotational initial conditions on the

final result. Here, initial conditions for the simulation were provided through teleme-

try data from actual flight downlink packets, but in predictive cases, this information

is unavailable. For proper prediction of the orbit profiles of missions that have yet to

fly, a Monte Carlo use of the 6DOF simulation, where multiple initial angular rates

and states are used, could potentially give the best insight. Further, it cannot be

said with certainty that the simulation is highly accurate because of this prediction.

Certain spacecraft geometries may more readily expose the shortcomings of the free

molecular aerodynamic approximation, and could be susceptible to effects like struc-

tural deformation or changes in mass properties during orbit, neither of which are

currently in the simulation’s capability to predict.
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4. APPLICATION - SAIL-BOOM-ROCKET

Much of the space debris in orbit around Earth can be traced back to to the spent

upper stages of launch vehicles. These objects are large and can pose a significant

collision risk to other objects in orbit. One of the concepts being considered to safely

deorbit these objects is a craft that can rendezvous with the debris, attach to it, and

deploy a drag sail on a boom. The boom acts to offset the center of pressure from

the center of mass, providing a restoring torque that will passively help the structure

maintain the maximum projected area to the flow for the fastest possible deorbit.

The geometry used here is shown in Figure 4.1.

(a) Side view (b) Isometric view (c) Front view

Fig. 4.1. SBR geometry represented in STL format

4.1 Mission description and Modeling considerations

Although there has been no mission to date demonstrating this technology, a

hypothetical scenario can be analyzed using the 6DOF simulation. Of particular
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interest is the attitude behavior over time and ability to damp a perturbation through

aerodynamic restoring torques at varying altitudes.

Consider the set of initial conditions in Table 4.1 for analysis with the 6DOF sim-

ulation. Inertia and mass properties describe a representative rocket body geometry,

with the surface reflectance estimated based on the combination of a slightly reflective

body and transparent sail.

Table 4.1.
SBR 6DOF simulation initial conditions and parameters

Parameter Value

Inertia matrix [kg ∗m2]


16600 0 0

0 107900 0

0 0 107900


Mass [kg] 8329.942

Surface reflectance coefficient .5

Surface temperature [K] 350

Semi-major axis [km] 7028.1, 6878.1, 6828.1

Eccentricity 0

Inclination [deg] 0

Argument of perigee [deg] 0

Right ascension [deg] 0

Initial roll angle [deg] 0

Initial pitch angle [deg] 20

Initial yaw angle [deg] 10

Initial roll rate [deg/s] 0

Initial pitch rate [deg/s] 0

Initial yaw rate [deg/s] 0

Epoch [dd-mm-yyyy HH:MM:SS] 10-05-2020 12:00:00
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4.2 6DOF simulation results

Three different orbital altitudes are considered, with each case propagated for one

day. The total longitudinal angle offset for the 650 km orbit case is shown in Figure

4.2. In this figure, there is no apparent damping to the maximum drag attitude over

the time shown, and instead the spacecraft is seen to be tumbling.

Fig. 4.2. SBR simulated combined total angular displacement from
flow velocity vector based on yaw and pitch, 650 km case

To analyze the cause of this, the magnitudes of the different perturbation sources

are examined. First, consider the aerodynamic perturbation, with the force and

torque component histories shown in Figure 4.3. It is seen that the total magnitude

for the torque is never greater than 0.2 Nm, and the maximum torque experienced

for the time is 0.1806 Nm.

Fig. 4.3. SBR simulated aerodynamic perturbation history, 650 km case
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Next, consider the gravity based perturbations, shown in Figure 4.4. The torques

here are on the same order of magnitude as the aerodynamic torques in the previous

figure, with the maximum torque being 0.1630 Nm.

Fig. 4.4. SBR simulated gravitational perturbation history, 650 km case

Finally, the solar radiation pressure based perturbations can be examined, shown

in Figure 4.5.

Fig. 4.5. SBR simulated solar radiation pressure perturbation history, 650 km case

In summary, for the 650km case, the aerodynamic torques are not yet sufficient

to stabilize the spacecraft into the maximum drag orientation.

Next, the 500 km orbit case can be considered. Here, it is expected that the

effect of aerodynamics is greater, and so a more stabilized behavior may be expected.

The total combined angular displacement for the 500 km case is shown in Figure 4.6,

where there is clearly more of a trend for the spacecraft to trim to the maximum drag

orientation.
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Fig. 4.6. SBR simulated combined total angular displacement from
flow velocity vector based on yaw and pitch, 500 km case

Again, further insight can be gained from analysis of the individual perturbation

sources. The aerodynamic force and torque components are shown in Figure 4.7. The

aerodynamic torques in this case are nearly 25 times higher than those in the 650 km

case, explaining why there is a trend to trim to the maximum drag orientation.

Fig. 4.7. SBR simulated aerodynamic perturbation history, 500 km case

The gravity based perturbations shown in Figure 4.8, while larger in magnitude

than in the 650 km case, do not nearly approach the magnitude of the aerodynamic

perturbing torques.

Similarly, the solar radiation pressure forces and torques, shown in 4.9, are essen-

tially the same magnitude as those in the 650 km case.
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Fig. 4.8. SBR simulated gravitational perturbation history, 500 km case

Fig. 4.9. SBR simulated solar radiation pressure perturbation history, 500 km case

Because the atmosphere increases in density so rapidly as altitude decreases, an

orbit altitude difference of 150 km is sufficient to see the transition from tumbling

motion to marginal stability. Finally, the 450 km case can be observed to further

demonstrate this phenomenon. The total combined angular displacement plot is

shown in Figure 4.10. Wheras the 500 km case ended up seemingly oscillating about

a total angle of around 25 degrees, the 450 km tightens this oscillation around seven

degrees. This is because the magnitude of the aerodynamic restoring torque has

again increased. While the other perturbing effects are non-zero, their effects begin to

diminish more and more with decreased altitude as the aerodynamic torque becomes

more and more dominant.
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Fig. 4.10. SBR simulated combined total angular displacement from
flow velocity vector based on yaw and pitch, 450 km case

The aerodynamic force and torque components for this 450 km case are shown in

Figure 4.11, with the gravity based perturbations shown in Figure 4.12, and the solar

radiation pressure perturbations shown in 4.13

Fig. 4.11. SBR simulated aerodynamic perturbation history, 450 km case

Overall, it is seen that at a 650 km altitude, the aerodynamic, gravitational, and

solar radiation pressure torques are around the same magnitude, but the aerodynamic

perturbations quickly take over as the dominant effect as altitude decreases. This

geometry has the ability to passively damp perturbations by virtue of the inherent
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Fig. 4.12. SBR simulated gravitational perturbation history, 450 km case

Fig. 4.13. SBR simulated solar radiation pressure perturbation history, 450 km case

offset between the center of pressure and center of mass in the nominal orientation,

since the resulting restoring torque acts to trim the attitude.

4.2.1 DSMC comparison

Using the SPARTA DSMC code, the aerodynamic force magnitude on the SBR

craft was calculated for the 650 km circular orbit case. The results are compiled in

Table 4.2, with the parameters used to run the analysis contained in Appendix B.

Again, the results suggest that the lack of more accurate shadowing leads the

free molecular approximation to slightly overestimate the force in the unperturbed
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Table 4.2.
SBR DSMC aerodynamics comparison

Angle of attack [deg] Force DSMC [N] Force 6DOF [N] % Difference

0 0.001485 0.001542 3.84

30 0.001275 0.001211 5.02

60 0.000767 0.000648 15.51

90 0.000163 0.000094 42.33

orientation. In the perturbed state, the concave geometry and subsequent surface

reflections cause a larger force than the 6DOF simulation predicts, due to the fact

that these re-emitted particles are not modeled. The simulation overall provides a

fairly accurate approximation of the aerodynamic forces acting on the spacecraft in

orbit.

4.3 Conclusions

This example demonstrated the feasibility of a physical offset boom to create a

center of pressure/center of mass offset in order to induce restoring torques to trim

a spacecraft to the maximum drag orientation for fast deorbit and debris mitigation.

At higher altitudes, the aerodynamic torques are unable to overcome the gravita-

tional and SRP torques that perturb the craft, and there is a tumbling motion. At

lower altitudes however, the geometry serves its purpose and takes advantage of the

aerodynamic restoring torques to maximize the frontal projected area. An interesting

note is that while the gravity gradient torques and aerodynamic perturbation magni-

tudes varied as a function of altitude, the solar radiation pressure perturbations were

mostly constant. For an uncontrolled spacecraft or object in a high orbit, this could

lead to tumbling.
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5. APPLICATION - AERODYNAMIC DEORBIT

EXPERIMENT

The Aerodynamic Deorbit Experiment 1U CubeSat will provide flight qualification

and characterize the performance of a deployable drag device to accelerate the de-

orbit of small satellites. ADE will test the passively stable pyramid sail technology

developed by Long [22]. While a concept like the sail-boom-rocket device creates an

offset between the center of pressure and center of mass through using a long boom,

the passively stable pyramid sail instead angles back the drag sail itself, leading to a

more compact design while still facilitating the use of aerodynamic restoring torques

to maintain the maximum drag orientation.

5.1 Mission description and Modeling considerations

ADE will be deployed by a Poly-Picosatellite Orbital Deployer (PPOD) from a

United Launch Alliance Atlas V as a secondary payload into a geosynchronous transfer

orbit (GTO). Upon spacecraft checkout, ADE will deploy a drag sail, nominally during

tracking coverage, and will begin the main phase of its mission as it slowly deorbits.

The extremely elliptical orbit allows for small windows centered around perigee where

significant aerodynamic drag perturbs motion. At these perigee passes, an on-board

inertial measurement unit will quantify the acceleration and observe the spacecraft

rotational rates to assist in characterizing the performance of the drag device. An

illustration of the GTO trajectory is shown in Figure 5.1.

The ADE geometry is based on the work done by Long [22], and is represented

here for simulation by the STL geometry shown in Figure 5.2.

The initial conditions for the simulation are provided in Table 5.1
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(a) GTO out of equatorial plane view

(b) GTO equatorial plane view

Fig. 5.1. Geosynchronous trasnsfer orbit geometry

As described, the initial orbit is modeled to be a geosynchronous transfer orbit.

The initial conditions for the attitude are randomly selected as a predicted rotational
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(a) ADE side view (b) ADE front view

(c) ADE isometric view

Fig. 5.2. ADE geometry represented in STL format

state after sail deployment, and the epoch is an approximate time that launch may

occur at, as ADE has yet to be confirmed for a specific flight. Since the sail material

to be used, CP-1, is transparent, a very low reflectance coefficient has been selected.

After sail deployment, ADE will gather and downlink accelerometer and gyro data
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Table 5.1.
ADE 6DOF simulation initial conditions and parameters

Parameter Value

Inertia matrix [kg ∗m2]


0.075 0 0

0 0.05 0

0 0 0.05


Mass [kg] 2.0

Surface reflectance coefficient .01

Surface temperature [K] 350

Semi-major axis [km] 24348.2

Eccentricity .73062

Inclination [deg] 27

Argument of perigee [deg] 0

Right ascension [deg] 0

Initial roll angle [deg] 15

Initial pitch angle [deg] 20

Initial yaw angle [deg] 10

Initial roll rate [deg/s] -2

Initial pitch rate [deg/s] 3

Initial yaw rate [deg/s] 1

Epoch [dd-mm-yyyy HH:MM:SS] 07-06-2020 12:00:00

for at least five perigee passes. The spacecraft will frequently be flying through the

Val Allen radiation belts, so a quick time line to achieve mission success after sail

deployment is desirable. A 6DOF analysis has been performed on the first week of

the ADE mission after sail deployment, to simulate what the behavior of the craft will

be as it travels the initial highly elliptical orbit that will provide the data required

for full mission success.
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5.2 6DOF simulation results

From the initial epoch, a period of seven days has been examined for the Aero-

dynamic Deorbit Experiment. The Euler angle history is shown in 5.3. The altitude

history is shown in 5.4 to reference where perigee passes occur. The angle histories

indicate that the spacecraft is precessing and nutating about the longitudinal axis

while spinning, with abrupt changes in behavior at every perigee pass. A green box

is used to indicate a time period surrounding a sample perigee pass. A zoomed in

view of this green area is provided in 5.5

Fig. 5.3. ADE simulated Euler angle history for first seven days after
sail deployment

Fig. 5.4. ADE simulated orbital altitude history for first seven days
after sail deployment
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Fig. 5.5. ADE simulated Euler angle history for first seven days after
sail deployment, zoomed in on a perigee pass

The zoomed in plot demonstrates that while ADE is in a loosely bound, marginally

spin stabilized attitude induced by environmental torques at high altitudes, the craft

tends to trim to the maximum drag orientation during perigee passes due to the

restoring torques generated by the center of pressure center of mass offset. This

stabilization at low altitudes is critical to the ADE mission, since the sail geometry

used has been designed specifically to stabilize the craft in the presence of aerodynamic

torques. With this stabilization, the craft oscillates within a 30 degree total angle

of attack displacement during the perigee pass, providing more drag than would a

tumbling state, and decreasing the orbital lifetime. The aerodynamic perturbation

history shows how the aerodynamic effects spike at every perigee pass in Figure 5.6,

with a zoomed in version shown in Figure 5.7.

As the spacecraft ascends in orbit following perigee, the aerodynamic effects

rapidly diminish, and the angular rates imparted by the perigee pass are maintained

in the orbit until the next perigee pass again perturbs the motion. In the altitude

history plot, it can be seen that apogee decreases by nearly four thousand kilometers

in the first seven days alone.
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Fig. 5.6. ADE simulated aerodynamic perturbation history for first
seven days after sail deployment

Fig. 5.7. ADE simulated aerodynamic perturbation history for first
seven days after sail deployment, zoomed in on a perigee pass

The gravitational perturbations, shown in Figure 5.8 are the most intense near

perigee, but never come close in magnitude to the aerodynamic perturbations. The

effects of the J2 perturbation are also made apparent when observing the 3D orbit

geometry, shown in Figure 5.9. The solar radiation pressure perturbations, shown

in Figure 5.10 act very weakly on the mostly transparent ADE spacecraft, but are

nearly continuously applied due to the orbit geometry and sun position for this case.
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Fig. 5.8. ADE simulated gravitational perturbation history for first
seven days after sail deployment

Fig. 5.9. ADE simulated trajectory for first seven days after sail deployment

Fig. 5.10. ADE simulated solar radiation pressure perturbation his-
tory for first seven days after sail deployment
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5.3 DSMC comparison

The ADE spacecraft was similarly analyzed using DSMC to compare to the aero-

dynamic formulation used in the 6DOF code. The results are shown in Table 5.2.

Table 5.2.
ADE DSMC aerodynamics comparison

Angle of attack [deg] Force DSMC [N] Force 6DOF [N] % Difference

0 0.098503 0.094237 4.33

30 0.085155 0.072496 14.88

60 0.050519 0.035605 29.52

90 0.017727 0.004186 76.39

This comparison is an excellent example of the shortcomings of the simplified shad-

owing analysis. While the comparison shows good agreement in orientations where

self shadowing is not an issue, it breaks down when geometry is placed upstream of

other geometry. This phenomenon is captured in Figure 5.11. In this figure, it is

clear that in the 90 degree angle of attack orientation, the sail segment upstream

should be totally shadowing the sail segment downstream from any flow particles.

However, the current shadowing analysis does not take this into account due to com-

putational requirements. The result is as follows: since the back plate has a resulting

force component in a direction opposite a force component for the upstream sail seg-

ment, the net force is in fact reduced. While there is a component of force in the

freestream direction, the angles of the geometry relative to the freestream result in it

being lesser in magnitude than the components that cancelled each other due to the

inaccurate shadowing. In the DSMC analysis, this shadowing is automatically taken

into account, and there is no falsely calculated force on the downstream sail segment

cancelling out a component from the upstream segment. For this reason, the DSMC
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shows an increasingly higher force magnitude for each case where the shadowing grows

more relevant, while the inaccurate shadowing approximation fails to capture this ef-

fect. On the other hand, the geometry of the craft has been designed to maintain a

zero, or trim, angle of attack when in the presence of aerodynamic torques. For this

reason, these inaccuracies are not as detrimental as they could be if the craft did not

passively maintain an orientation where the resulting force calculations are the most

accurate. Considerations for future development with shadowing are discussed in the

Future Work chapter.

Fig. 5.11. Self shadowing diagram, showing how the simulation falsely
identifies certain geometry downstream as ”wetted” by the flow

5.4 Conclusions

The ADE case presents an interesting case where the spacecraft orientation sta-

bilizes under the influence of atmospheric torques, but spends the majority of time

in orbit well past altitudes where atmospheric effects are noticeable. It was demon-
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strated that even with a very loosely bound attitude oscillation at higher altitudes,

the geometry of ADE and the inherent offset in the center of pressure and center

of mass induce restoring torques that stabilize the spacecraft during perigee passes,

working to decrease orbital lifetime - the ultimate goal of the technology that ADE is

demonstrating. The self shadowing issue for the ADE geometry was identified using

the SPARTA DSMC code. However, it is noted that ADE spends most of its time

in the atmosphere closer to a max drag trim orientation than the orientations that

showed the most discrepancy between the free molecular and DSMC formulations.
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

A six degree of freedom simulation tool has been developed for the analysis of

coupled orbit attitude motion of spacecraft in Earth orbit. Use of a common STL

file format for geometry definition allows for quick comparison in 6DOF behavior for

different structures, and modular equations of motion have been used which can allow

for the addition of other perturbations in the future. A free molecular aerodynamics

formulation has been used along with formulations for solar radiation pressure, grav-

ity gradient torques, and non-spherical gravity potential accelerations to determine

deviations from a constant orientation state and two body motion. Three test cases

were used with the developed simulation: one validation case involving a spacecraft

that has already flown, Lightsail 1, and two predictive test cases for spacecraft that

have not yet flown, the SBR assembly and ADE. The 6DOF simulation was able to

accurately predict the orbit lifetime of the Lightsail 1 craft using initial conditions

from downlinked telemetry packets and a representative STL geometry. The simula-

tion demonstrated that accounting for gravitational, aerodynamic, and solar radiation

pressure based perturbations in the context of rotation and translation can produce

an accurate state history that closely matches an actual spacecraft orbital lifetime.

The SBR experiment demonstrated that an offset of the center of pressure and cen-

ter of mass can lead to stabilizing effects for a spacecraft in LEO, but only when

the atmospheric effects dominate over the gravitational and solar radiation pressure

perturbations. The ADE simulation demonstrated that even though the spacecraft

may oscillate at a wide range of attitudes for most of a highly elliptical orbit, the

stabilizing pyramid sail geometry oriented the spacecraft near the maximum drag

orientation during atmospheric passes. The free molecular theory used was shown
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to have good agreement with high fidelity DSMC runs in cases where self shadowing

is not significant, and discrepancies between the simulation prediction and DSMC

prediction were identified at orientations where the effects of shadowing and convex

geometries become significant.

6.2 Future Work

There are several aspects that can be improved with regards to the current state

of the simulation. First, the code is currently written in MATLAB, which although

is a user friendly system for debugging and analysis, is not as fast as languages like

C that can be compiled to run optimally on a specific machine, especially for pro-

cesses like numerical integration. Translating the code to a faster language could open

up many possibilities in increasing simulation fidelity without sacrificing significantly

more computational time. One example would be the incorporation of a high fidelity

shadowing model. Currently, low resolution STL files are used to resolve aerodynamic

and solar radiation pressure based surface interactions with good accuracy. Incorpo-

rating shadowing could mean requiring higher resolution meshes. Not only would this

cause the SRP and aerodynamic calculations to take more time, but the shadowing

algorithm itself would take significant time to identify what surface elements are up-

stream of the flow and to what degree that flow is being blocked. There exist methods

for analyzing shadowing using averaged parameters, but this approach would have to

be carefully examined to determine applicability with a simulation that is focused on

allowing for interchangeable geometry. Another option for this is to allow the user

to define the geometry using simple geometric elements like cones, prisms, pyramids,

etc., as demonstrated by Hart [43]. This would replace requiring the user to input

an STL file, and could draw from pre-determined quantities of aerodynamics and

other perturbations to resolve motion. Further, mass distributions can be calculated

through the geometry itself if the user defines mass properties to the volume elements,

a capability that does not exist with STL files.
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Another interesting aspect that has not been addressed in this work is the effect

of structural deformation on the motion. In the presence of aerodynamic loads and

atmospheric heating, thin membrane sails and tape-spring-like booms could very likely

undergo deformations that change the geometry of the spacecraft. This change in

geometry would alter the stability characteristics and in turn trajectory of a spacecraft

in orbit. Furthermore, surface heating and cooling of a spacecraft can significantly

modify the way in which surface particle impingement results in momentum transfer.

The analyses of aeroelasticity and transient surface thermal profiles could add a new

layer of depth and fidelity to the simulation, and increase the accuracy of its predictive

capability.

In the future, it may also be beneficial to incorporate some attitude control capa-

bility to the simulation. It could be of interest for the simulation to tell the user what

amount of control is necessary to offset the torque loads the simulation calculates at

different points in an orbit. Additionally, the ability to add maneuvers to a simulation

could also provide more insight on realistic mission scenarios.

A potential point of future analysis is the effect that the spacecraft roll has on

stabilization. It was seen that the ADE spacecraft has some constant roll during

the simulation time, which may end up spin stabilizing the spacecraft. When the

spacecraft enters the atmosphere, this stabilization may be detrimental to re-orienting

to the maximum drag orientation, since the stabilizing effect must be temporarily

overcome. Finding geometries which may damp this roll could allow the spacecraft

to more readily trim to the maximum drag orientation during perigee passes, giving

a faster deorbit time.

Finally, more test cases should be run on uncontrolled high area to mass ratio

orbiting objects or spacecraft that have both already flown, and also have had their

state history recorded. These test cases can provide valuable insight into the strengths

and weaknesses of the simulation’s predictive ability, and can be used to identify where

higher fidelity models are warranted.
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A. 6DOF SIMULATION USER’S GUIDE

The 6DOF simulation developed for and described in this work is a coupled orbit

attitude propagator capable of analyzing the rotational and translational motion of

spacecraft in elliptical Earth orbits. The code is written in MATLAB, and has been

developed for version 2018b. There is one main script in which the run parameters and

initial conditions are defined and supplied to the relevant functions. The breakdown

of the function calling structure is shown in A.1.

A.1 Summary

There are two modes in which the simulation can operate. The first is a simplified

3DOF ”windtunnel” mode, and the second is a full orbital 6DOF mode. The wind-

tunnel only simulates attitude dynamics in the presense of aerodynamic torques, and

does not simulate orbital motion. The 6DOF mode simulates coupled orbit attitude

motion of a spacecraft, and takes into account aerodynamics, solar radiation pressure,

gravity gradient torques, and J2 perturbations. Both cases require an input of ini-

tial orbital and rotational states. The windtunnel simulation uses the initial orbital

state to determine the atmospheric properties that will be used for the aerodynamic

analysis, whereas the 6DOF mode will use it as an initial condition from which to

propagate. Both cases simulate attitude dynamics based on the perturbing torques

and initial conditions. While a windtunnel mode run will always run until the time

specified by the user, an orbital mode may complete propagation early if the program

detects that the spacecraft has dipped below 150km in altitude, signaling a deorbit.

Upon completion of the propagation, the simulation will output plots that display

all calculated forces and torques, as well as overall attitude state history. For the
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6DOF propagation, a figure displaying the 3D orbit geometry and a figure showing

the altitude history will also be produced.

Table A.1.
6DOF Simulation function call breakdown

Identifier File Functions Called

1 SixDOF Main.m 2,4,15

2 Propagation.m 3,5,6,7,8,9,10,13,14,16,17

3 PlotResults.m 5,6,7,8,9,13,16,17

4 MeshData.m -

5 Perturbations Aerodynamics.m -

6 Perturbations Gravitational.m -

7 Perturbations SolarRadiationPressure.m -

8 AtmosphericProperties.m 11

9 EarthShadow.m -

10 SunPosition.m -

11 AirDenTemp.m 12

12 MET.m -

13 Convert BODY2NTW.m -

14 Convert COES2ECI.m -

15 Convert EA2EP.m -

16 Convert EP2EA.m -

17 Convert NTW2ECI.m -
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A.2 How to Run a Simulation

Running a simulation requires tailoring the input script, SixDOF Main.m to

be specific to the case being analyzed. The steps to setting up a simulation are as

follows.

A.2.1 Defining File Paths

The first section of the SixDOF Main.m script defines where the supporting

files, geometry files, and supporting functions for the simulation are held. Further,

the output directory for all plots generated is also defined. These file paths are defined

based on the path of the present working directory, and in most cases do not need

to be redefined. If the used desires to store the supporting material elsewhere, these

paths must then be redefined. Additionally, if the user wishes to change the directory

for the plot outputs, this should be done here.

A.2.2 Defining Geometry

The next section in the SixDOF Main.m script is concerned with inputting ge-

ometry parameters. The User should enter the file name of the STL geometry they

plan to use for the simulation. Note that it is useful to simplify the geometry to

reduce the number of triangles on the surface to reduce computational burden. The

user must make sure that the STL file being used is in either the same folder that the

SixDOF Main.m script is in, or in one of the folders that the user specified earlier

to add to the path in the previous section (e.g. the ’Geometry Files’ folder). The

user then has the option of turning on visualization options for the geometry. The

first option causes the program to output a figure of the STL file as the program

interprets it. The second and third options will turn on or off the the normal vectors

and centroid labels for the figure. The final option allows for the user to scale the

geometry into the proper dimension of meters. Sometimes, a program will output an
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STL file in terms of units like mm or cm. If that is the case, the scale factor adjusts

the file data to the correct units. If the STL file is in mm, the user may input 1000 to

correct that, if in cm, 100, and so on. It is important to note that CAD software can

sometimes erroneously define surface normal vectors for STL geometries while still

showing the vertex definitions correctly. The user should be careful to verify normal

vector positions using the built in visualization features for each geometry.

A.2.3 Defining Spacecraft Properties

This section is concerned with the other physical properties of the spacecraft

besides geometry. First, the user can define a surface temperature for the spacecraft

in Kelvin, which effects how the free molecular analytical equations determine the

aerodynamic forces and torques. There is currently no capability for the calculation

of aerodynamic or radiative heating for the spacecraft, so this value is set and fixed as

a constant throughout the run. The next parameter is a surface reflectance coefficient

that is used to determine the magnitude at which solar radiation pressure effects the

craft. This should be selected based on the materials that the spacecraft is comprised

of, and must range from zero to two. A coefficient of zero corresponds to a totally

transparent medium, a coefficient of one represents a totally absorbing black body,

and a coefficient of two represents a totally reflective surface. The user should next

enter the mass of the spacecraft in kg and the inertia matrix of the spacecraft in

kgm2. For the inertia matrix, the user should use the principal moments of inertia,

since that is what the equations of motion have been simplified to do. To do this,

the spacecraft body axes must be centered with the body center of mass. The next

parameter is a vector that can be used to correct for the spacecraft center of mass

location. If the origin of the STL file does not coincide with the spacecraft center

of mass, this value can be adjusted to align the two points. This vector should be

expressed in meters regardless of the units of the STL file, since the scale factor used

in the previous section will work to adjust the geometry into meters.
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A.2.4 Miscellaneous Settings

Here, the user may specify whether the windtunnel analysis or obrital 6DOF

analysis is used by the program. The windtunnel mode can give insight on attitude

behavior of an object in a free molecular flow regime, and the 6DOF simulation should

be used when understanding of the spacecraft trajectory and orientation in an orbital

context is required. Additionally, the user can custom define the solver tolerances

used during numerical integration of the equations of motion.

A.2.5 Defining Time Settings

The user should first input an epoch in the format dd-mm-yyyy HH:MM:SS in

this section. This epoch is used to both calculate the sun position vector for SRP

and Earth shadow calculations, and to determine solar cycle activity so as to more

accurately model the atmosphere. Note that there is by default a file in the sup-

porting functions directory along the lines of ’MSFC Solar Flux Data’ which holds

the data needed by the atmospheric properties determination functions to properly

model the atmosphere. This file is valid for a specific range of epochs based on the

information published by Marshall Space Flight Center on the solar activity forecast

page at https://sail.msfc.nasa.gov/. The user may get an error if the epoch they are

attempting to use lies outside of the epochs defined by this file. If so, the user should

visit the government site to acquire the data needed. If the epoch is too far in the

past or future, data may not be available, and the user may need to manually input

data into the file for a specific date. Next, the user should input the time for propa-

gation. In windtunnel mode, the propagation will always carry out to the final time

specified by the user. In orbital 6DOF mode, there is a chance that the simulation

may detect that the spacecraft has deorbited if the altitude goes below 150 km. If

the spacecraft has deorbited, the simulation will end and data will be available for all

timesteps leading up to deorbit. The user may sometimes wish to use the software to

predict deorbit, in which a large propagation time should be used, so the simulation
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may determine when the deorbit occurs. Should the user wish to change the value at

which the simulation determines deorbit has occurred, the check value in the Deorbit

subfunction of Propagation.m should be altered.

A.2.6 Defining Initial State

In this section, the user can enter the initial translational and rotational state of

the spacecraft. The program is designed for the user to input the initial orbital state

in classical Keplerian orbital elements. The semi-major axis length should be given in

km, while the initial inclination, argument of perigee, right ascension of the ascending

node, and true anomaly should all be given in radians. In the sample orbits provided,

there is a build in conversion from degrees to radians using the matlab deg2rad

function, so the user should be mindful not to double convert. The eccentricity

is dimensionless, and should be entered as a value less than one. The simulation

currently does not support parabolic or hyperbolic orbit geometries. Further, the

only central body currently supported is the Earth.

After entering the orbital elements, the user can specify an initial orientation

in terms of roll, pitch and yaw. The sequence used for rotations is a body 1-2-3,

meaning roll would be about the x axis, pit would be about the y axis, and yaw

would be about the z axis. The x axis of the craft should nominally point in the

direction of the spacecraft velocity unless perturbed, the user is encouraged to use

the built in geometry viewing capabilities of the software described in the first section

to make sure that the axes are properly defined in the way the software expects them.

The user may finally decide to apply intial angular rates about the three axes to the

spacecraft as well. All initial angles and angular rates should be entered in degree

and degrees per second, respectively. The software later converts the orbital state to

position and velocity vectors in the Earth Centered Inertial frame, and the orientation

is converted to a quaternion representation for propagation.

The program is ready to run after setting the initial 6DOF state in this section.
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A.3 Simulation Logic

This section outlines the logical path the simulation takes, and can be used to

help give the user an idea of the thought process behind the code.

A.3.1 Mesh Generation

The first step of the simulation after running the SixDOF Main.m script, regard-

less of if windtunnel mode or 6DOF mode was selected, is to read the STL file and

generate the mesh data. The STL file is provided to MeshData.m, which determines

if the STL file is in ASCII or binary format, and then reads the vertex and face data

to create a triangular mesh. Using the vertex data, MeshData.m find the centroid of

each triangle, as well as the area of each triangle. If the user specified for the geometry

to be displayed, MeshData.m will display the geometry. MeshData.m returns the

surface element areas, centroids, and normal vectors to the SixDOF Main.m script.

A.3.2 Propagation

The SixDOF Main.m script next sends the initial conditions defined by the user

as well as the geometry information calculated byMeshData.m to the Propagation.m

function. The remainder of the simulation will occur within this function. The first

step in Propagation.m is to parse the user defined run parameters into a set of initial

conditions depending on if windtunnel or 6DOF mode was selected. To do this, the

function converts the classical orbital elements into an r and v vector set using the

Convert COES2ECI.m function, and then compiles the initial conditions into one

vector variable. The function then proceeds based on if the user specified 6DOF

(orbital) or 3DOF (windtunnel) mode using a conditional selection.
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A.3.3 6DOF Mode

6DOF mode begins in the Propagation.m function after the initial conditions are

parsed if the user did not select windtunnel mode in the SixDOF Main.m script.

First, the ODE solver options are set based on what the user set as the integration

tolerances, and since this is 6DOF mode, an event for detecting deorbit (default:

if altitude ¡ 150km) is also set as part of the options. Next, the sun position vec-

tor is determined for use in calculating the solar radiation pressure and shadowing.

Currently, the sun position is not updated from where it is located at the initial

epoch. For short integration times, this is valid, but can lead to inaccuracies when

considering very long propagation times. The Propagation.m function then hands

off control to the ode113 function, which solves the system of differential equations in

the Propagation.m subfunction, Orbitalcase. Here, the initial state vector is parsed.

First, the initial quaternions and angular rates are obtained, and then an Euler angle

representation of the orientation state is obtained by using the conversion function

Convert EP2EA.m. Further, a relation between the NTW frame and the body axis

reference frame is obtained using Convert BODY 2NTW.m. The translational state

is then parsed into the relevant r and v vectors, and a relation between the NTW and

ECI frames is obtained using the Convert NTW2ECI.m. With the current state

and relevant frame rotations obtained, the subfunction then determines the atmo-

spheric properties based on the current state and epoch using the Marshall Engineer-

ing Thermosphere model codes using AtmopshericProperties.m, AirDenTemp.m,

and MET.m. After determining the freestream conditions, the Earth shadow state

is obtained using EarthShadow.m. This function determines whether the spacecraft

is in Earth’s umbra, penumbra, or neither.

Upon determining these environmental parameters, the perturbations can then

be calculated from aerodynamic, SRP, and gravitational sources. Each group of

perturbations has a corresponding torque and force that perturb the orientation and

trajectory, respectively.
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Aerodynamic Perturbations

The Perturbations Aerodynamics.m function calculates all aerodynamic pertur-

bations. The function receives freestream properties, spacecraft geometry and pa-

rameters, and rotation matrices from Propagation.m. The function cycles through

every surface element and uses the subfunction FMFC to determine the pressure and

shear coefficients on the surface element using free molecular analytical equations.

The function uses the forces and centroids to determine torques for each element, and

then sums the forces and torques to get the net body torque and force. The accelera-

tion is then found using the spacecraft force and mass. These values are converted to

the proper reference frames for propagation and then returned to the Propagation.m

function. Note that this function contains the definitions of the accommodation co-

efficients. If the user desires to modify them from the current approximation (totally

diffuse collisions), that can be done in this function.

Solar Radiation Pressure Perturbations

The Perturbations SolarRadiationPressure.m fucntion is used to calculate per-

turbations from SRP. Propagation.m passes information on the reflectivity coefficient

, spacecraft position, Earth shadow state, spacecraft geometry properties, and the ro-

tation matrices to the function. Similar to how the aerodynamics function calculates

the forces on every surface element, the Perturbations SolarRadiationPressure.m

function cycles through every element and determines force and torque, and subse-

quently sums to find the net effects. If the spacecraft is in Earth’s umbra, these values

are not calculated and instead set to zero. In penumbra, the values are calculated

and halved. The acceleration is again found by using the force and spacecraft mass.

The acceleration and torque values are returned to the Propagation.m function after

the relevant frame conversions.
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Gravitational Perturbations

The Perturbations Gravitational.m function is called by the Propagation.m

function to find the gravity gradient torque and J2 perturbing effect on trajectory.

The function takes the current position vector, Earth properties, spacecraft proper-

ties, and frame conversions from the Propagation.m function. This function does not

need to operate on the individual surface elements to determine forces and torques

unlike the other perturbation functions. Here, the J2 acceleration is determined using

a simple analytical model, and the gravity gradient torque is determined based on

the spacecraft orientation and inertia properties. Conversions are mostly used here

to put the input values in the proper frames for calculation. Acceleration and torque

terms are then returned to the Propagation.m function.

Equation of motion integration

When all of the perturbing effects have been accounted for, the accelerations can

be summed and used to perturb the two body motion using Cowell’s formula, and the

torques can be applied to the dynamic equations of motion to determine the resulting

angular rates, from which the orientation is determined using the kinematic equations

of motion. The integration is performed on a variable time step to satisfy the user

specified integration tolerance, and the attitude and trajectory are calculated simul-

taneously. Upon successful integration, the state vector is returned from Orbitalcase

to Propagation.m, and the ode function then integrates the next timestep, recalcu-

lating all torques, forces and accelerations. This continues until either the final time

arrives, or the simulation breaks the propagation after detecting an orbit altitude

below 150 km. When this happens, the propagation is complete and the state data

is passed to the PlotResults.m function.
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Plotting results

The PlotResults.m function takes all of the data from the simulation and com-

piles them into a series of plots for user visualization, and then saves them to the

directory specified by the user. First, the program checks if the directory specified by

the user exists, and if not, it is created. Next, the function recalculates the pertur-

bation values found for every timestep in the propagation. This is done because the

variable timestep integrator used for integration does not have the capability of stor-

ing intermediate information such as the forces and torques, only the end result, the

spacecraft state, is integrated. This cannot be mitigated by using persistent or global

variables since the integrator frequently backtracks timesteps when integration toler-

ances are not met, so if in actuality there is one timestep between state A and state B

in a simulation, saving the values persistently may provide four extra data sets, which

do not reflect the actual values used to integrate the motion. A more elegant solution

may exist, but this brute force method is sufficient and reduces the amount of error

by directly calculating the perturbations from the state history. When recalculation

is finished, the plots will be displayed to the user, and the command window will tell

the user where they have been saved.

A.3.4 3DOF Mode

In 3DOF mode, the simulation determines the freestream parameters outside of

the main integration loop, since the position will not be updated, and the freestream

should thus be persistent among all timesteps. Using this persistent freestream, the

Propagation.m function solves for the orientation state in the Windtunnelcase sub-

function using MATLAB’s built in ODE solvers. Like in the 6DOF case, the data is

first parsed, and then the body to NTW frame conversion occurs. In this case however,

only the aerodynamic torque is calculated using the Perturbations Aerodynamic.m

function, with no other perturbations considered. The dynamic equations of motion

are solved using this torque for the angular rates, and then the kinematic equations of
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motion are solved to give the orientation state in terms of quaternions. Unlike in the

6DOF simulation, this integration will always carry out to the final time specified by

the user. Upon completion, the PlotResults.m function will be called. Here, only the

aerodynamics will be calculated, and there will be no orbit or altitude plots supplied.

A.4 How to Add Perturbations

Since the equations of motion can account for additional perturbations through

linear summations, adding additional sources of perturbations is simple. The user

will need to create a function that can output the accelerations, torques, and forces

due to the perturbation, and then sum the results in the subfunction Orbitalcase of

the Propagation.m function. Further, the user should add the function in the re-

calculation section of the PlotResults.m function. If the perturbation requires more

input variables than the Propagation.m function can currently provide, there should

be sections added in the SixDOF Main.m script so that variables can readily be

changed between runs. For a general reference that includes many types of perturba-

tion sources, the user is directed to Vallado [47].
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B. SPARTA DSMC RUN PARAMETERS

The SPARTA DSMC software was used as a comparison to the free molecular methods

used in the 6DOF simulation. SPARTA operates off of a user provided input script

that directs the software to perform specific actions and use specific flow parameters.

For each SPARTA case ran, the freestream data was obtained from the 6DOF sim-

ulation, such that the simulated flow would be identical between each SPARTA and

6DOF comparison case. The differences in results could then be attributed to the

way each system solved for the forces on the geometries. All geometries used were

constant between the types of cases as well. In short, given one geometry and one

set of freestream conditions, a result for force magnitude was obtained using both

the 6DOF and SPARTA formulations. Table B.1 shows the more detailed parameters

behind each DSMC run.

Table B.1.
SPARTA DSMC Parameters

Case # den Domain [m] Grid fnum Step [s] Seed

Lightsail 1.600e14 6x6x6 100x100x100 1.728e9 8e-6 12345

SBR 1.849e12 36x36x36 100x100x100 4.431e9 5e-5 12345

ADE 1.337e16 2x2x2 100x100x100 6.687e8 2e-7 12345

The ratio of real to simulated particles, fnum, was calculated by requiring that

at least 20 simulated particles should occupy the smallest volume element defined by

the grid, which was done by accounting for the domain size, grid size, and number

density. The time step was calculated by requiring that at least five time steps are

required for a particle to pass from one end of a grid cell to the other. Domain sizing
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was done by rounding up the maximum dimension of the craft. There was no concern

for cutting the flowfield off to soon with this approach since no diffuse shocks are

expected, due to the extremely rarefied nature of the flows (no flows here have a

Knudsen number below 100).

For each case, the variable soft sphere collision model was used. For the species

composition and ambient temperature, the Marshall Engineering Thermopshere model

was used, just as in the 6DOF simulation. All flow parameters were found at the clos-

est approach for each case. This means perigee for Lightsail and ADE, since they

have elliptical orbits, and at a 650 km circular orbit for the SBR system. For all

cases, a nonracting flow was assumed, and the simulations were run using 20 cores

for four hours on a supercomputer cluster.


