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ABSTRACT 
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Title: A HUB-CI Model for Networked Telerobotics in Collaborative Monitoring of Agricultural 

Greenhouses 

Committee Chair: Shimon Y. Nof 

 

Networked telerobots are operated by humans through remote interactions and have found 

applications in unstructured environments, such as outer space, underwater, telesurgery, 

manufacturing etc. In precision agricultural robotics, target monitoring, recognition and detection 

is a complex task, requiring expertise, hence more efficiently performed by collaborative human-

robot systems. A HUB is an online portal, a platform to create and share scientific and advanced 

computing tools. HUB-CI is a similar tool developed by PRISM center at Purdue University to 

enable cyber-augmented collaborative interactions over cyber-supported complex systems. 

Unlike previous HUBs, HUB-CI enables both physical and virtual collaboration between several 

groups of human users along with relevant cyber-physical agents. This research, sponsored in 

part by the Binational Agricultural Research and Development Fund (BARD), implements the 

HUB-CI model to improve the Collaborative Intelligence (CI) of an agricultural telerobotic 

system for early detection of anomalies in pepper plants grown in greenhouses. Specific CI tools 

developed for this purpose include: (1) Spectral image segmentation for detecting and mapping 

to anomalies in growing pepper plants; (2) Workflow/task administration protocols for 

managing/coordinating interactions between software, hardware, and human agents, engaged in 

the monitoring and detection, which would reliably lead to precise, responsive mitigation. These 

CI tools aim to minimize interactions’ conflicts and errors that may impede detection 

effectiveness, thus reducing crops quality.  Simulated experiments performed show that planned 

and optimized collaborative interactions with HUB-CI (as opposed to ad-hoc interactions) yield 

significantly fewer errors and better detection by improving the system efficiency by between 

210% to 255%. The anomaly detection method was tested on the spectral image data available in 

terms of number of anomalous pixels for healthy plants, and plants with stresses providing 

statistically significant results between the different classifications of plant health using ANOVA 
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tests (P-value = 0). Hence, it improves system productivity by leveraging collaboration and 

learning based tools for precise monitoring for healthy growth of pepper plants in greenhouses.    
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1. INTRODUCTION 

 Background - Precision Agriculture, Automation in Greenhouse Agriculture, E-work 

and E-Systems, Collaboration Engineering  

 Precision agriculture is agricultural management system where practices for crop 

production and their corresponding inputs such as seed, fertilizers, pesticides etc. are variably 

applied within an agricultural area. Optimum production needs determine the input rates for 

resources at each specific field location (Sudduth, 1998). Precision agriculture techniques can 

improve the economic and environmental sustainability of crop production. Another term used to 

refer to precision agricultural techniques is precision farming, defined as the farm management 

strategy utilizing precise information and information gathering technology i.e. different types of 

sensors to increase profit and reduce environmental impact (An, Wu et al., 2017).  

 An agricultural environment is a complex and unstructured environment. Production in 

an agricultural environment is intensive and requires development of robust systems with short 

development time at low cost. The unstructured nature of the external environment increases 

chances of failure (Han, Edan, Kondo, 2009). The introduction of automation into agriculture has 

resulted in lowered production costs, reduced tedious manual labor, raised quality of fresh 

produce, and improved control of the production environment for crops. Industrial applications 

usually deal with simple, repetitive, well-defined, and a known a priori tasks. This differs from 

automation in agriculture which requires advanced technologies to deal with the complex and 

highly variable environment and produce (Edan, Han, Kondo, 2009). Automation increases the 

productivity of agricultural machinery via increased efficiency, reliability, and precision, and 

minimal human intervention all of which is achieved by adding sensors and controls (Edan, Han, 

Kondo, 2009). 
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 Greenhouses have been developed through the 20th century to contain energy from solar 

radiation, to protect products from various hazardous natural climates and insects, and to produce 

suitable environments for growing plants (Edan, Han, Kondo, 2009). The greenhouse 

environment is a relatively easy environment for introduction of automated machinery due to its 

structured nature. Automation systems for greenhouses deal with tasks like climate control, 

seedling production, spraying, and harvesting (Edan, Han, Kondo, 2009). The research for this 

thesis was undertaken as part of an effort to create an agricultural robotic system (ARS) for 

disease detection of pepper plants in greenhouses.  

 Here are some other terms and concepts that are part of this research that need to be 

defined: HUB as defined in this research is an online portal built on the HUBzero technology to 

support collaborative development and sharing of scientific models and tools that are running in 

a cloud-based infrastructure of computing resources (McLennan, Kennell, 2010). Cyber Physical 

Systems (CPS): CPSs are commonly defined as the systems which offer collaborative 

integrations of computation, networking, and physical processes (Khaitan et al., 2015). As per 

the US National Science Foundation, “In cyber-physical systems, physical and software 

components are deeply intertwined, each operating on different spatial and temporal scales, 

exhibiting multiple and distinct behavioral modalities, and interacting with each other in a 

myriad of ways that change with context.” e-Work is a collection of collaborative, computer-

supported, and communication-enabled e-Activities, e-Operations, e-Functions, and e-Support 

systems that enables other e-Systems and e-Activities (Nof, 2003). Decision Support System 

(DSS) is generally an auxiliary interactive computer-based system that leverages computer 

communications, data, knowledge, and relevant models to identify and solve problems, and 

complete various decision process tasks (Nof et al., 2015). Agents are defined as independent and 
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autonomous programs, which operate and execute specific tasks under certain protocols, and are 

responsible for handling expected and unexpected events (Nof et al., 2015). Collaboration 

engineering as defined by Nof et. al 2015, refers to the “development of tools and techniques to 

go beyond better communication technologies and provide significantly improved collaboration 

support by cyber through algorithms, protocols, and collaboration support software agents.”  

 Agricultural robotic applications do require advanced technologies to be productive and 

to handle complex environments with high variability (Nof, 2009) and not all agricultural 

applications can be fully automated in the near term. However, partial autonomy with 

collaboration can add value in terms of efficiency and productivity and its capabilities before full 

autonomy is achieved. In a target recognition task collaboration between a human operator and a 

robot increases probability of detection by 4 percent when compared to a HO alone and by 14 

percent when compared to a fully autonomous system (Bechar, Edan, 2003).  

 Research Objectives 

 The problem addressed in this research is how to create a collaborative human robot 

greenhouse crop management system. This research aims to develop a human-robot collaborative 

system based on the concepts of HUB, Decision Support System (DSS), and Collaboration 

Engineering to improve the process of disease detection of pepper plants in greenhouses with 

spectral imaging sensors, and automated robot navigation processes.  The objectives of this 

research include: 

1) To create a HUB based Human Robot Interaction (HRI) mechanism that facilitates 

physical and virtual collaboration between a) Agricultural Experts, b) Human operators, 

c) Multiple software agents related to navigation, control and disease detection, all of 

which are not at the same geographical location (remote agents/operators).  
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2) To develop learning-based protocols to enhance Human Robot Interaction and Decision 

Support capabilities of the Integrated Planner 

3) To enable early detection of anomalous pepper plants likely to have biotic or abiotic 

stress.  

 Research Questions 

The following research questions are addressed in this work: 

1. How to design a collaborative e-system comprised of remote agents (human, machine 

and software) for the detection and identification of anomalies in pepper plants in a 

greenhouse setting such that the system performance is optimized and robust for error? 

2. What task administration protocols are necessary for collaborative control of this system? 

3. What DSS tools are necessary for a) optimal collaboration and minimal error in an 

agricultural setting, and b) enable early detection of stresses in plants? 
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 Significance of Research 

This research attempts to address the following questions/issues: 

1) How to build an optimal agricultural greenhouse system that combines the cognitive and 

perceptive capabilities of a human agent, with the precision, speed and consistency of a 

robot, in a way that optimizes the output of the greenhouse? 

2) Use of learning-based Decision Support Tools to improve collaboration and enhance the 

Collaborative Intelligence of the system 

3) Creating a strategy for Human-Robot collaboration for greenhouse monitoring and 

simulating it for effectiveness.  

These are key issues that will help create the future Agricultural Systems that leverage both 

human intelligence and machine intelligence in a symbiotic and productive manner.  
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2. LITERATURE REVIEW 

 Collaborative Robotics in Agriculture 

 Unstructured environments such as agriculture are characterized by rapid changes in time 

and space unlike in industrial environments where working conditions are usually fixed and 

predictable (Bechar et al., 2003). Humans have superior and acute perception capabilities which 

enables them to work in a broad scope of relatively vague and unstructured conditions (Chang, 

Song, Hsu, 1998). Moreover, humans have superior recognition capabilities and can adapt easily 

to changing environmental and object conditions (Rodriguez, Weisbin, 2003). However, a 

human operator is not consistent, prone to fatigue, and is subject to distraction. Bechar et al., 

2009 developed an objective function designed to allow computation of the expected value of 

system performance, given the parameters of the overall system, the task, and the environment. It 

evaluates statistically the value of a specific system in a specific task and includes the direct 

gains, rewards, costs, and penalties of such a system (Bechar et al., 2009). Cheein et al., 2015 

performed a study that surveyed Human Robot Interaction practices in harvesting and included 

guidelines for designing a human-robot interaction strategy for harvesting tasks, which could 

also be used for other agricultural tasks. As per that research, the four design cores of a service 

unit are: mapping, navigation, sensing and action. This research was addressing the problem of 

declining human labor force in agriculture in the countries of Chile and Argentina. That study 

discussed the advantages and challenges associated with flexible automated farming. 
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 Simulating an Agricultural Robotic System 

 As more robotic systems are being developed and implemented in the field of agriculture, 

it would be cost effective to simulate such systems in the development phase. Recently there 

have been a few research projects on simulating a robotic system for Human-Robot 

collaboration. A computational simulation environment named “Simulation Environment for 

Precision Agriculture Tasks using Robot Fleets” (SEARFS) was developed (Emmi et al., 2013) 

to study and evaluate the execution of agricultural tasks that can be performed by an autonomous 

fleet of robots. The environment is based on a mobile robot simulation tool that enables the 

analysis of performance, cooperation, and interaction of a set of autonomous robots while 

simulating the execution of specific actions on a three-dimensional (3D) crop field. The 

environment is capable of simulating new technological advances such as a GPS, a GIS, 

automatic control, in-field and remote sensing, and mobile computing, which will permit the 

evaluation of new algorithms derived from Precision Agriculture techniques. This environment 

was designed as an open source computer application. The SEARFS environment consists of 

four levels of configurations, where the lower levels depend on the configuration of the higher 

levels.  

 

 

 Figure 2-1 SEARFS environment configuration levels (Courtesy of Emmi et al., 2013)  
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 A general method for development of customized robot simulation and control system 

software with robot operating system (ROS) was also developed (Wang, et al., 2016). The 

simulation designed in this research involves a) A 3D visualization model, created in URDF 

(unified robot description format) and viewed in Rviz to achieve motion planning with MoveIt! 

software package; b) A machine vision provided by camera driver package in ROS to enable the 

use of tools for image processing,  and 3D point cloud analysis to reconstruct the environment to 

achieve accurate target location; and c) Communication protocols provided by ROS for serial, 

Modbus support of the communication system development. A tomato harvesting scenario was 

simulated using this methodology to demonstrate its features and effectiveness.  

 Collaborative Control Theory 

 Collaborative Control Theory has been developed by researchers at the PRISM center at 

Purdue University and elsewhere (Nof et al., 2015) to optimize distributed, decentralized, and 

multi-agent-based e-Work and s-Service. Collaboration is known to be an essential means for 

effective design and control of e-Work and e-Service. Collaboration enables all involved entities, 

human and artificial, in decentralized e-Systems to share their resources, information, and 

responsibilities, such that mutual benefits are obtained.  
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Figure 2-2 Coordination vs Cooperation vs Collaboration in terms of interaction level  

(Source: Nof et al., 2015)  

 

 As future precision agricultural systems are likely to be comprised of multiple distributed 

and autonomous agents, the efficiency and effectiveness of the CPS would depend upon how 

well its constituent agents can collaborate.  

 

Figure 2-3  The different components of cyber enhanced processes i.e. e-Work 
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Below is a summary of the basics of Collaborative Control Theory (Nof et al., 2015): 

1) Collaboration Requirement Planning (CRP): The first step necessary is to make use of 

planned collaboration, as opposed to ad hoc or unplanned collaboration. Effective 

collaboration requires advanced planning and feedback loops, as targeted by the CRP 

principle. CRP is composed of two phases namely Plan Generation, and Plan Execution 

and Revision.  

2) E-Work Parallelism (EWP):  The EWP principle is based on the fact that in any e-

System, as a distributed network of agents, some activities can and should be performed 

in parallel. The principle of EWP has deeper implications due to the distributed nature of 

the e-Systems and the fact that interactions take place through human and software 

workspaces, including 1) human-human interactions, 2) human-machine and human-

computer interactions, and/or 3) machine-machine and computer-computer interactions. 

3)  Keep It Simple, System (KISS): Any e-System can be as complicated as need be, as long 

as it is as simple as possible for human participants’ interactions. This principle builds on 

and embraces traditional human-computer and human-automation usability design 

principles and goes beyond them. 

4) Error Prevention and Conflict Resolution (EPCR): This principle deals with the detection 

of errors and conflicts among collaborating agents, and the costs associated with 

resolving the detected errors and conflicts. Naturally, any system that cannot overcome 

effectively its errors and conflicts will get out of control and eventually collapse. In 

general, the rates of errors and conflicts among agents are proportional to the rate of 

interactions and the number of active collaborating agents. Hence, effective collaboration 

requires timely detection and resolution of errors and conflicts as economically as 
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possible. The EPCR principle is composed of eight consecutive functions that begin with 

detection and end with resolution and exception handling. These include 1) Detection i.e. 

searching for existing Errors/Conflicts, 2) Identification i.e. classification of the 

observation as an error or conflict, 3) Isolation i.e. determining the exact point of an error 

or conflict in the system, 4) Diagnostics of Error/Conflict, 5) Prognostics, 6) Error 

recovery i.e. removing or mitigating the effects of an error, 7) Conflict Resolution, 8) 

Exception handling i.e. managing exceptions in the process.  

5) Collaborative Fault Tolerance (CFT): The purpose is to achieve higher efficiency and 

reliability from a network of weak agents (e.g., micro-sensors) rather than a single 

stronger agent. 

6) Association and Dissociation (AD): This principle addresses dynamic variations in the 

formation (topology), size, and operations of collaborative networks of agents. The AD 

principle analyzes the conditions and timing for individual agents or networks of agents 

to associate with or disassociate from a collaborative network.  

7) Emergent Lines of Collaboration and Command (ELOCC): The purpose of this principle 

to overcome drastic changes facing networks, e.g. under emergency, and the volatility of 

formal and informal communications between the individual and clustered agents. 

8) Best Matching (BM): Matching between the collaborative agents is a fundamental 

concern in the design and execution of collaborative e-Work networks. The objective of 

the BM principle is to find the best match between two or more sets of agents, such that a 

set of objectives is satisfied. 

9) Collaborative Visualization and Comprehension (CVC): Visual analytics focuses on the 

integration of interactive visualization with analytic tools and techniques to deal with the 
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rising complexities of e-Work systems. The aim is to integrate computer graphics, 

interaction, visualization, analytics, perception, and cognition domains to enhance and 

support the human machine interactions.  

 HUB-based Telerobotic Systems 

 With decreasing prices and fast paced advances in ubiquitous computing, telerobotics is 

gaining popularity as an attractive framework that allows true physical collaboration among 

distributed users (Song et al., 2008). Telerobotics can be seen as a form of e-work, which is a 

collaborative, computer-supported, and communication-enabled platform for operations in highly 

distributed organizations (Nof 2003).  

 What is HUB-CI and how can it improve an Agricultural Robotic System (ARS)? 

 HUB-CI was inspired from the research and implementation of HUBZero system 

developed by researchers at Purdue university. The HUBzero cyberinfrastructure, facilitates 

researchers to work together online to develop simulation tools (McLennan et al., 2010). 

Collaborators can access the resulting tools by ordinary Web browser and launch simulation runs 

on the national Grid infrastructure, without having to download any code. The Pegasus 

Workflow Management System can manage workflows comprising millions of tasks and 

recording data about their execution simultaneously (McLennan 2015). HUB is an online portal 

that provides users to create and share research materials and computational tools. HUB can 

deliver all resources and simulations via a regular web browser and utilize high performance 

Grid computing resources (McLennan et al., 2010). HUB along with cloud computing allows 

software and data to be easily shared among groups of users. Most HUBs allow collaborative 

jobs on virtual materials and simulations, but there was no tool for users to perform physical 

collaboration (McLennan et al., 2010). The innovation of HUB-CI is that it addresses managing 
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physical collaboration between groups of human users plus relevant cyber physical agents 

(Zhong et al., 2014). HUB-CI is a continuous project aimed at improving the collaboration 

methods over HUB-like systems. HUB-CI i.e. HUB-based Collaborative Intelligence is a set of 

collaborative intelligence algorithms and tools have been developed to enhance HUB and 

augment productivity with more efficient functions to support collaborations (Zhong et al., 

2014).  

 So, for an Agricultural Robotic System (ARS), the aspect of physical along with virtual 

collaboration is where HUB-CI could add the most value in terms of augmenting efficiency and 

productivity.  

 The Networked Telerobot System for Agricultural Robotics over HUB involves multiple 

operators, single or multiple robots, and cyberinfrastructure to support collaboration. 

 Collaborative control is a process that is fault tolerant, and its benefit is that it can yield 

better results from a team of weak agents when compared to a system that depends on an agent 

that is faultless. (Nof et al., 2015).  

Figure 2-4 Architecture of HUB-based NTR Systems (Zhong, 2012) 



25 

 

 

Figure 2-5  HUB-CI model for three-tier collaboration infrastructure (Zhong et. al 2014) 

 

     The HUB-CI used in this research follows the same high-level concept as that depicted in Fig. 

2-5. The purpose of the HUB-CI is to serve as a) The Integrated Planner, b) Human Robot 

Interaction interface and Decision Support System. 

 Collaborative intelligence 

 Collaborative intelligence (CI) is a concept developed at PRISM center, Purdue 

University.   With regard to Collaborative Control Theory (CCT) described earlier, the processes 

of collaborative E-Systems can be improved building and augmenting the Collaborative 

Intelligence (CI) of participants which can provide better support for achieving their individual 

and common goals (Zhong et al, 2015). Collaboration a necessary foundation for sustainability 

and evolution of any organization of natural or artificial agents, including cyber-physical systems 

(Nof et al., 2015). As seen in Fig. 2-2 regarding the differences between coordination, 

cooperation and collaboration, collaborative intelligence is a metric that incorporates and 

combines measures regarding all three. Zhong et al., 2015 defines collaborative intelligence as 

“CI is a measure of an agent’s capability to perceive and comprehend new information, share 
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required resources, information, and responsibilities with other peers to resolve new local and 

global problems in a dynamic environment.  

 

Figure 2-6 Interdependence of interaction intelligences (Courtesy: Devadasan et al., 2013) 

 

 Devadasan et al., 2013 collaborative intelligence (CI) in the knowledge-based service 

industry and to identify measures for finding the best collaborators during the formation and 

functioning stages of collaborative networks. 

 Agricultural Cyber Physical System framework for greenhouses 

Guo, Dusadeerungsikul, Nof 2017 presented a CPS oriented framework and workflow for 

agricultural greenhouse stresses management, called MDR-CPS which has been designed to 

focus on monitoring, detecting and responding to various types of stress. The system combines 

sensors, robots, humans and agricultural greenhouses as an integrated CPS, for monitoring, 

detecting, and responding to abnormal situations and conditions aiming to provide an innovative 

solution combined wireless sensor networks, agricultural robots, and humans based on 

collaborative control theory in order to detect and respond to detected stresses as early as 

possible. Figure 2-7 describes the Agricultural CPS framework (Guo, Dusadeerunsikul and Nof 

2017): 
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Figure 2-7 Agricultural CPS Framework (Courtesy of Guo, Dusadeerunsikul, Nof, 2017)  

 

Sensors’ nodes are deployed in the greenhouses to provide information of environmental 

parameters that influence the development of the agricultural crops. An agricultural cloud model 

platform is used in the agricultural field based on a number of server clusters (Guo et al., 2017). 

It contains two components which are cloud storage and cloud computing/expert systems, and 

not only stores large amounts of sensing data, but also provides services such as crop diseases 

analysis, intruders’ alarm, and stresses identified. Furthermore, the network layer provides 

routing and data aggregation services. The gateway connects the agricultural cloud by GPRS/4G, 

Internet, WiFi, or local area networks. Users or farmers can access agricultural data through web 

browser or smart phone. The agricultural robot is used to aid detection in special situations for 

special stresses. Though sensors can do much of the monitoring work, and also can obtain 
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pictures or photos, they are limited by power, fixed location, and constraint transmission ability. 

The robot computer is to run the necessary software for interfacing to the robot platform and 

sensors, sensor information processing, mission planning and execution, navigation, 

implementation control, user interface, network communication, etc.  

Below are the MDR-CPS workflow diagrams (Guo et al., 2017): 

Figure 2-8 MDR-CPS workflow diagram (Courtesy of Guo, Dusadeerunsikul, and Nof, 2017)  
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Figure 2-9 MDR-CPS workflow chart (Courtesy of Guo, Dusadeerunsikul, and Nof, 2017)  

 Spectral imaging on plants for stress detection 

 There have been several studies performed in the 21st century on the application of 

hyperspectral imaging for agricultural plants. Hyperspectral imaging has been applied 

successfully in plant disease classification and detection (Moghadam, Ward et al., 2017). A few 

general findings using hyperspectral images on plants include (Moghadam, Ward et al., 2017):  

• A plant’s interaction with different parts of the electromagnetic spectrum depends on leaf 

biochemical compounds and leaf anatomical structure. Healthy plants typically absorb 

light in the visible range (VIS 400-700 𝑛𝑚) due to leaf photosynthesis pigments.  
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• Amount of light scattered in the near-infrared range (NIR 700-1000 𝑛𝑚) is strongly 

sensitive to leaf cell structure.  

• Factors that influence leaf reflectance in short-wave infrared (SWIR 1000-2500 𝑛𝑚) 

include leaf water and chemical contents.  

 Moghadam et al., 2017 used hyperspectral imaging (VNIR and SWIR) and machine 

learning techniques like feature extraction, cluster analysis and k-means for detection of the 

Tomato Spotted Wilt Virus (TSWV) in capsicum plants. Mahlein et al., 2013 developed 

specific spectral disease indices (SDIs) for the detection of diseases in crops specifically 

sugar beet plants with regard to three major leaf diseases of sugar beet plants. One key 

takeaway from that study relevant to this thesis is: Efficient use of spectral reflectance 

measurements for disease detection relies on identifying the most significant spectral 

wavelength which correlates strongly to a specific disease (Mahlein et al., 2013). A few 

regions of the spectrum are of interest and this depends on the application. Several studies 

developed advanced algorithms based on machine learning and image processing to 

determine plant part features and improve accuracy of monitoring, classification and feature 

extraction (AlSuwaidi et al., 2018; Nansen et al., 2013; Cheng et al., 2013). Wang, Vinson et 

al., (2018) developed a hyperspectral imaging technique for detection and classification of 

the plant disease TSVW using Generative Adversarial Nets, outlier removal, deep learning 

techniques which provided sensitivity and specificity of the classification at 92.59% and 

100% respectively. 
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 Summary of literature review 

Table 2.1: Literature review and corresponding research questions 

  

Research Question Literature surveyed  

How to model a collaborative e-system that 

accommodates remote agents (human, 

machine and software) for the detection and 

identification of anomalies in pepper plants in 

a greenhouse setting? 

Guo et al., 2017; Emmi et al., 2013; Zhong et 

al., 2015; Nof et al., 2015; Wang, et al., 2016; 

Devadasan et al., 2013; Nof 2003; Bechar et 

al., 2003 

 

What task administration protocols are 

necessary for collaborative control of this 

system? 

Nof et al., 2015; McLennan et al., 2010; 

Zhong et al., 2014; Zhong, 2012; McLennan 

2015; Bechar et al., 2009 

What DSS tools are necessary for a) optimal 

collaboration with minimal error in an 

agricultural setting, and b) enable early 

detection of stresses in plants? 

AlSuwaidi et al., 2018; Nansen et al., 2013; 

Cheng et al., 2013; Moghadam, Ward et al., 

2017; Mahlein, Rumpf et al., 2013, Wang, 

Vinson et al., 2018 
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3. METHODOLOGY 

 HUB-CI in an Agricultural robotics system 

 With regards to previous research regarding the usefulness of Human-Robot 

collaboration as a productivity multiplier, this research aims to create a model that optimizes the 

collaborative capability of this multi-agent agricultural robotic system for the greenhouse. This is 

where the HUB-CI is relevant.  HUB-CI serves as a Decision Support System and a Resource 

management tool. For the tasks in an agricultural robotic system that requires a human-in-the-

loop, an experimental platform and a simulation of the concept of HUB-CI (hub for 

Collaborative Intelligence) system has been developed for this research to incorporate agents 

from other teams for collaboration that may need more than simple information sharing. The 

objective: Enabling effective integration and collaboration tasks, exchanging and leveraging 

collaborative intelligence from the ARS networked components whose physical location may be 

local or remote. 



 

 

 Agents based models of the ARS HUB-CI 

 

Figure 3-1 Agent based model for all hardware and software agents for the ARS HUB-CI system based on location  
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Table 3.1: Inputs and Outputs for agents in an Agricultural Robotic System  

Agent Input Data type Output Data type 

A Direction 

commands (via 

keyboard) 

String Direction 

commands 

String 

B 1) Disease 

name 

2) Direction 

of disease 

propagation 

3) Distance 

matrix 

between 

nodes in 

greenhouse 

1) String 

2) String 

3) Float 

Near optimal 

routing sequence for 

robot cart. 

Array 

E - - Spectral Images m*n*k 

array 

F 1) Map 

2) Direction 

commands 

Array, String 1) Robot 

odometry  

2) Robot Pose 

(3D position 

and 3D 

orientation) 

Array 

G Navigation sensor 

information 

 Map of greenhouse  

I Spectral Images m*n*k array Stress diagnosis String 

 

 Table 3.1 provides an example of inputs and outputs that are expected to be part of the 

agricultural robotic system. An important aspect of the HUB-CI is facilitating communication 

via data, information, knowledge and logic transfer across multiple agents in the system. It 

determines which agents must collaborate on which task or set of tasks. From the standpoint of 

developing the software, the above table helps define expected data types for each of the inputs 

and outputs.  
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 How these agents communicate and collaborate with each other i.e. under what set of 

protocols should they communicate is illustrated in Figure 3-2. Figure 3-2 is a representation of 

the HUB-CI system based on its functions and the interactions between agent-based systems.  

Figure 3-2 Diagram describing interaction of agents along with HUB-CI functions and processes  
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 Unsupervised Learning methods – Clustering and Anomaly Detection 

 To build a HUB system in a precision agriculture domain, a much-needed feature and 

mechanism is a Decision Support System (DSS) (Mehta et. al, 2015). Unsupervised learning 

involves machine learning algorithms and processes that generates patterns and learns from data 

that has not been labelled, classified or categorized. The purpose of unsupervised learning is to 

extract valuable concepts or information from the data. The main tasks of unsupervised learning 

often include several clustering approaches and anomaly detection (also known as novelty 

detection, or outlier detection) (Wang et. al 2016). Two unsupervised machine learning 

algorithms have been included to enable this DSS for the agricultural robotic system namely k-

means clustering and anomaly detection. One important purpose of the DSS is to find previously 

unknown patterns in the agricultural spectral images which could provide farmers, agricultural 

experts etc. better insights on the condition of the greenhouse system that were previously 

unknown. Hence k-means clustering, and spectral anomaly detection have been included as DSS 

tools.  

 HUB-CI function 1: Data and Knowledge sharing across the networked system 

 With regard to an agricultural greenhouse robotic system, the following functionalities 

are proposed: 

• Decision Support System type: A combination of communication, data and knowledge 

driven database. System information and data: Time series information of the day to day 

operation of the system. Machine learning (Anomaly detection) of this data can detect 

existing and potential errors and conflicts.  

• Domain knowledge: A repository of information on plant illnesses and stresses, 

agricultural best practices, case study information, plant information etc.  
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• System metadata: All knowledge (model, configuration, manuals etc.) of robots, sensors, 

operators etc. 

 HUB-CI function 2: Workflow Optimization- Ascertain task and data dependencies 

Assumption: Data mining agents can provide required data to any agent in a timely manner.  

Figure 3.3 is the workflow for the system and task and data dependencies for the task of 

detection of diseases in a greenhouse setting. It describes the Collaborative Control Theory 

(CCT) principle of E-Work Parallelism (described in Section 2.3) with regard to a robotic system 

for disease detection in a greenhouse. The tasks described in the figure are the key tasks 

identified for this system: 
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Figure 3-3 Key tasks for the networked agricultural robotic system and the corresponding flow of 

data/information   

 

 Based on the data dependencies identified in the Figure 3.3, Figure 3.4 is an example 

more optimized workflow. The optimized workflow in an implementation is intended to be 

collaboratively decided by decision making agents within the HUB depending on the specifics of 

the situation.  
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Figure 3-4 Example of an optimized and parallel workflow for semi-automated detection of 

diseases in a greenhouse  

 

 The characterization of system tasks and agents modelled here also highlights another 

relevant Collaborative Control Theory (CCT) principle i.e.  Association and Dissociation (AD), 

described in section 2.3. Here is how the AD principle is in effect in this agricultural robotic 

system: 
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• Not all sensors need to participate in the detection and diagnosis process at a time. 

Example: Suppose out of n sensors, by using information provided by the DSS, if it is 

concluded that 2 specific sensors are optimal for the diagnosis of plant i, then the set of 

participating sensors S becomes S = {s1, s2}.  

• Not all human operators are required to participate in system activities at all times. The 

system can calculate service level (SL) for each of the operators and pick the most 

required operators based on the problem.  

• Service levels (SL) of the agent can be compared relative to the collaborative network. 

SL can be calculated by the following logic based on that proposed in Nof et al., 2015: 

𝑆𝐿𝜔𝑎
=  𝑃𝑟(𝐷𝜔𝑎

< 𝐾𝜔𝑎
)  →  𝑆𝐿𝛼 =  𝑃𝑟(𝐷𝛼 < 𝐾𝛼)      (1) 

Dω → Demand of agent, Kω → Capacity of agent, Dα → Demand of collaborative 

network, Kα → Capacity of collaborative network 

 HUB-CI function 3: Collaborative detection of anomalies in plants from spectral 

images 

Research Question 3:  What DSS tools are necessary for a) optimal collaboration with minimal 

error in an agricultural setting, and b) enable early detection of stresses in plants? 

Figure 3-5 presents an overview of the protocol for human robot collaborative detection of 

anomalies in plants.



 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Protocol for detecting anomalous plants in a semi-automated greenhouse  
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3.6.1 Protocol 1: Detecting anomalous images captured and performing segmentation 

This protocol can be summarized in the following two questions: 

1. How can the ARS HUB-CI system determine automatically if the image taken may not 

be sufficient for analysis or if an operator needs to review the plant? Example image 

anomalies include but are not limited to: 

- Weeds or grasses in the background 

- Other aspects in the foreground that compromise precise imaging of the leaves 

- Poor lighting 

2. How to determine which part of the image to extract for analysis i.e. how to segment out 

the leaf? 

Solution: Use k-means clustering to create a predetermined number of clusters for each image. If 

the correct bands and number of clusters are used the leaf will be a distinct cluster. If the number 

of pixels for the leaf cluster do not meet minimal thresholds, then the imaging must be performed 

again. Figure 3.6 describes the process methodology for imaging plants in order to determine 

their condition.                                              
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Figure 3-6 Protocol for collaborative imaging of plants 

 

3.6.2 Protocol 2: Detecting anomalies in plants 
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• Most importantly, how to enable early detection of anomalous pepper plants 

likely to have biotic or abiotic stress? 

Solution: Use anomaly detection on the spectral images. Statistical anomaly detection on the 

spectral images 

Description: The protocol uses the squared Mahalanobis distance as a measure of how 

anomalous a pixel is with respect to an assumed background.  

𝐷𝑀 (𝑥⃗)  =  √(𝑥⃗ − 𝜇)𝑇𝑆−1(𝑥⃗ − 𝜇)       (2) 

𝑥 → 𝑝𝑖𝑥𝑒𝑙 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 , 𝜇 → 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑒𝑎𝑛,    𝑆−1 → 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

Figure 3-7 Protocol for collaborative detection of plant anomalies 

 

 To declare pixels as anomalous, a threshold Mahalanobis distance score must be 

specified. One method is to choose all image pixels whose score has say a probability of less 

than 0.01, for example. The chi-squared distribution was used to do this. The inputs to the chi-

squared quantile function include desired probability and degrees of freedom (df).  
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𝑓(𝑥, 𝑑𝑓)  =  
𝑥𝑑𝑓 −1

2
(
𝑑𝑓
2

−1)𝛾(
𝑑𝑓
2

)
               (3)  

𝑥 → 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑖𝑥𝑒𝑙  , 𝛾 →  𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,    𝑑𝑓 → 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 

 HUB-CI function 4: Best Matching of Networked System Agents to Tasks 

3.7.1 Collaboration Requirement Planning (CRP) and Best Matching (BM) 

The CCT principle of Collaboration Requirement Planning (CRP) (section 2.3) is relevant here. 

• Set S denotes the combination of agents required to resolve issue D 

• S = {s1, s2, s3, s4, s5} and D = {d1, d2, d3, d4} 

• Then the Collaboration Requirement Matrix (CRM) and for would look similar to:  

CRM = 

[
 
 
 
 
1 2 0 1
0 1 3 2
1 1 1 0
0 3 2 1
2 0 1 1]

 
 
 
 

 

• The value range [0,3] indicates an increasing “Preference.”  

 Furthermore, the CCT principle of Best Matching (section 2.3) is most applicable for this 

system to match individual or groups of agents to specific tasks i.e. issues detected in plants. A 

Best Matching formulation can be set up as follows: 

• I {Agents} → J {Problem Areas in the greenhouse(s)} 

o Multiple agents (≥ 2) can be matched to a single problem area at a time 

o 𝑃𝑖𝑗 is based on the Preference matrix calculated on basis of available 

sensors and agents required at area j  

o Robot availability is a key constraint  

o Optimizes the detection of issues based on sensor requirements and 

availability 
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The assignment problem formulation can hence be written as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑃𝑖𝑗 ∗ 𝑥𝑖𝑗∈𝐽∈𝐼          (4) 

            s.t,  

           ∑ 𝑥𝑖𝑗 ≤ 2,             𝑖 ∈ 𝐼  ∈𝐼          (5) 

           ∑ 𝑥𝑖𝑗 = 1,            𝑗 ∈ 𝐽∈𝐽         (6)  

          𝑥𝑖𝑗 = {0,  1},    𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  

3.7.2 Collaboration Strategy for Collaborative Monitoring of Greenhouse Plants 

Collaboration Strategy: Human operator performs supervisory tasks and tasks requiring superior 

expertise, perception and skill, whereas robot performs manual and repetitive tasks.   
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Table 3.2: ARS System without HUB-CI vs ARS System with HUB-CI 

 

Assumptions  

1) Diseases in plants will tend to spread to other plants that are nearby. Certain areas of the 

greenhouse are expected to have certain diseases and defects 

2) Equipment inspection, servicing and maintenance is a fixed cost. 

Without HUB-CI With a HUB-CI based Decision Support 

1) Robot checks all plants 

on each and every run 

2) Assuming a 

supervisory role 

Human operator has to 

verify all the diseased 

or anomalous cases 

3) Human operator will 

also be required to 

verify a few randomly 

sampled cases that 

were detected as 

healthy  

1) The HUB-CI will use  

a) Information contained in one or several 

knowledgebases,  

b) inputs and outputs of multiple agents (human or 

automated),  

c) Outputs of HUB-CI based tools for Decision 

Support (described in section 3),  

to generate probabilities of the condition of the 

plant (diseased, healthy, low N2 content etc.) in 

several areas of the greenhouse.  

2) Each and every plant in the greenhouse does not 

need to be monitored at each monitoring cycle. 

The integrated planner based on the HUB-CI 

assigns areas in the greenhouse which need to be 

monitored and by which agent (robot or human). 

3) Human operator checks certain areas for 

anomalies that require some domain knowledge 

and expertise, and which cannot be automatically 

detected and determined by an algorithm.  

4) The robot with mounted detection sensors 

CONCURRENTLY checks areas which are most 

likely to contain diseased plants. These diseases 

can be detected by a corresponding disease 

detection algorithm.  

5) After both agents (human and robot) have 

concurrently performed tasks that have been 

assigned based on their strengths, the human 

operator in a supervisory role may random sample 

some of the detections performed by the robot to 

ensure accuracy.  

6) After this task both agents should random sample 

a few plants in the areas that are determined to 

have a low probability for diseased and other 

anomalous plant cases to ensure that the plants are 

in a healthy condition.  
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3) The human operator/agent involved has sufficient domain knowledge in agriculture and 

has working knowledge regarding management of greenhouse crops. 

4) Owing to a) a superior domain knowledge and expertise with regard to agricultural 

aspects, and b) better perception and adaptability to surroundings/conditions; the human 

operator/agent involved can identify and categorize the various other plant anomalies that 

are not included in the automated disease detection algorithm.  

5) The HUB-CI based integrated planner and DSS is periodically updating based on new 

inputs and information, local and global from multiple agents and knowledgebases.  

6) Human operator takes the same amount of time to move between two locations of a 

greenhouse. Time to move by the human operator is marked as fixed and is relatively 

insignificant for this problem as he may begin from any location in the greenhouse and 

can move without any encumbrance that a robot cart would have.  
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Figure 3-8 Workflow diagram for HUB-CI Collaboration Strategy 

 HUB-CI function 5: Handling Conflicts and Errors 

Objective: Maximize resolution of Conflicts and Errors (C&Es)  

Conflicts and Errors are to be expected in an Agricultural Robotic system given the relatively 

unstructured nature of agriculture. The goal of the HUB-CI based networked telerobotics is to 

implement a collaborative process for disease detection with enhanced decision-making tools 

and processes.  Below are some expected errors and conflicts: 
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Table 3.3: List of potential Errors and Conflicts  

Type Error or 

Conflict name 

Description Agents concerned Agents and 

Information 

required for 

resolution 

Error Routing and 

navigation 

error 

• Robot cart 

cannot follow 

prescribed 

routing plan 

• System unable 

to generate a 

routing plan 

• Automated 

Routing 

algorithm 

• Navigation 

agent 

• Robot cart 

• Human agent 

Human 

agent with 

navigation 

sensor data  

Error Imaging 

anomalies 
• Imaging sensors 

do not capture 

the desired 

plant part 

 

• Spectral 

image sensors 

• Image 

segmentation 

and anomaly 

detection 

agent  

 

Human 

agent with 

data from 

Spectral 

sensors and 

outputs from 

image 

segmentation 

agent. 

Conflict Conflict 

between 

Routing agent, 

imaging 

agents, and 

stress detection 

agents 

Contradictory 

commands for robot 

cart from imaging, 

stress detection and 

routing agents.  

• Robot cart 

• Image 

segmentation 

agent 

• Anomaly and 

stress 

detection 

agent 

• Routing 

algorithm 

• Navigation 

agents 

HUB-CI 

protocol to 

manage 

interaction 

between 

automated 

agents 
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Table 3.3 continued 

Conflict Plant 

diagnosis 

conflict 

• Disagreements 

between one or 

more human 

agents 

regarding nature 

of plant stress 

• Disagreement 

between one or 

more human 

agents 

regarding 

existence of 

stress in 

specific plant 

Multiple human 

operators across the 

network. Examples 

include Agricultural 

experts, farmers, 

system engineers etc.  

Human agent 

like the 

system 

supervisor 

and the 

parties in 

conflict.  

Conflict Procedural 

conflict 

Disagreements between 

one or more human 

agent regarding system 

procedures and 

processes for disease 

detection 

Multiple human 

operators across the 

network. Examples 

include Agricultural 

experts, farmers, 

system engineers etc. 

Human agent 

like the 

system 

supervisor 

and the 

parties in 

conflict. 

Error Navigation 

sensor failure 

Faulty navigation 

sensor outputs. 
• Navigation 

sensor(s) 

• Mapping 

agents 

• Navigation 

agents 

Trained 

human 

operator with 

knowledge 

of navigation 

sensors/came

ras 

 

 Assumptions 

1. Static/well-defined conflict and error classifications 

2. Broad categories for conflict and error classifications due to absence of prior knowledge 

3. As there is no a priori knowledge, the list of conflicts and errors described above are not 

exhaustive and hence new categories of conflicts and errors can be defined. Furthermore, 

existing error and conflict categories may also be modified in future as needed.  

Formalization of Objective 

• Maximize Resolution of Errors and Conflicts 
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Errors and Conflicts resolved =  𝑤1 ∑𝛼1 + 𝑤2 ∑𝛼2  + 𝑤3 ∑𝛼3 + 𝑤4 ∑𝛼4 +

𝑤5 ∑𝛼5 +. . . . . . . + 𝑤𝑛 ∑𝛼𝑛                                                                          (7) 

Subject to the following time constraint(s): 

• 
∑𝑡𝛼𝑚

∑𝛼𝑚
≤  𝑠 𝑚𝑖𝑛𝑢𝑡𝑒𝑠   (Average time to resolve conflict/error α in category m of 

Conflict/Error cannot exceed s minutes)                                                                           (8) 

Where,  

• wk are constants represent the relative importance of the category m of Conflict/Error (as 

defined in the Table 3.2).  

• αm represents the conflict/error α in category m of Conflict/Error (as defined in Table 3.2) 
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4. EXPERIMENTS AND RESULTS 

“HUB-CI Function 3” and the Collaboration Strategy for Collaborative Monitoring of 

Greenhouse Plants from Section 3.7.2 have been tested and demonstrated in the experiments in 

this section. The other functions were described as part of the design of the HUB-CI DSS and to 

illustrate how it works for the purpose of agricultural greenhouse monitoring.  

 Simulation of Collaboration Strategy 

Plants in this section as per 

HUB-CI are expected to be 

Healthy 

Plants in this section as per 

HUB-CI are expected to 

have Disease X 

Plants in this section as per 

HUB-CI may require to be 

checked by expert 

Figure 4-1 Example of DSS outputs for Greenhouse sections using collaborative machine 

learning protocols  

 

 The workflow diagram described in Section 3.6.2 and the baseline scenario (no HUB-CI) 

were programmed using Python programming (2 programs), and the following experiments were 

conducted on it. 

Experiment 1a): How much more efficient is a HUB-CI system with an Integrated Planner 

(based on DSS) compared to a system that does not harness collaborative intelligence? 

Setup 

• A plant can be either a) Healthy, b) With Disease, or c) Having other anomalies 

• For the scenario without the HUB-CI system, the plants “With Disease,” “Healthy” and 

“Having Other anomalies” are randomly determined using Python Numpy package’s 

“random.randint”. 
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• The task requiring superior perception and skills that for the human operator to perform 

are set as the plants of the condition “Having other anomalies.” 

• For this scenario with the HUB-CI system the plants “With Disease,” “Healthy” and 

“Having Other defects” are allotted specific probabilities at different zones of the 

greenhouse 

• It takes 3 minutes for the robot to a perform detection task, which involves moving to the 

adjacent plant, and performing a detection/evaluation of the plant.  

• It takes a human operator the same time as the robot i.e. 3 minutes to perform a detection 

task which involves moving to the plant and performing a detection/evaluation of the 

plant.  

• In Step 4, the human operator randomly checks 10% of the detections performed by the 

robot. 

• In Step 5, the robot and the human operator EACH sample 20% of the plants expected to 

be healthy. As these 2 agents are communicating via the HUB, these 2 agents do not 

sample the same plants.   

• 20 runs of the simulation for both the systems were performed 
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Table 4.1: Variables for experiment 1a) 

Controlled variables Dependent variables 

1) Time for robot to perform a detection 

task = 3 minutes 

2) Time for human operator to perform a 

detection task = 3 minutes  

3) The number of healthy, diseased, or 

“other anomalous” cases are 

uniformly distributed across all plants 

in the greenhouse. 

4) Step 4: Human operator randomly 

checks 10% of the robot’s detections 

5) Step 5: Human and robot both sample 

20% of the plants expected to be 

healthy 

6) Total number of plants in greenhouse 

= 400 

1) Time to complete (TTC) 

2) Defects detected (D) 

 

Performance metric: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 (η) =
𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝐷)

𝑇𝑖𝑚𝑒 𝑡𝑜 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (𝑇𝑇𝐶)
      (9)  

This efficiency ratio was chosen as it is important to optimize the defects detected and also 

minimize the time required to perform routine inspections. The underlying assumption is that a 

higher time to complete implies an increase in cost of operation for the overall system which 

would include human operator costs, energy costs etc.  

Table 4.2: Summary of Results for Experiment 1a) 
 

Average Defects 

Detected 

Average TTC 

(minutes) 

Standard 

deviation 

(Defects) 

Standard 

Deviation 

(TTC) 

η 

Without HUB-CI 262.65 2017.95 10.39 31.18 0.13 

With HUB-CI 240.65 763.95 4.37 12.77 0.32 
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Figure 4-2 Performance of the system with HUB-CI vs a system without HUB-CI  

 



57 

 

Table 4.3: Statistical significance for experiment 1a) 

Two-sided t-test (95% Confidence Interval)   
T-Value P-Value DF 

Defects Detected 8.73 0 25 

TTC 166.43 0 25 

η -271.22 0 19 

 

Observations 

The preliminary run indicates that this system with HUB-CI is expected to have a better 

Efficiency and take only 38% of the time taken by a system that has no HUB-CI which is 

significant as it demonstrates the superior efficiency that comes with planned human robot 

collaboration as opposed to unplanned collaboration or agricultural monitoring systems that are 

purely manual or purely automated. The defects detected may be slightly lower, but this can be 

accounted to the decision to have the human and robot sample only 20% of the plants expected 

to be healthy in step 5. This will be addressed in subsequent sections.  

 

Experiment 1 b): What would be the HUB-CI system performance be if the tasks performed by 

the human operator i.e. the tasks requiring superior perception and skills are expected to take 

more time than the tasks performed by the robot i.e. tasks that require manual and repetitive 

work? 

Setup 

• Most conditions are set the same as experiment 1a) with the following considerations: 

➢ It takes 3 minutes for the robot to a perform detection task, which involves 

moving to the adjacent plant, and performing a detection/evaluation of the plant.  

➢ It takes a human operator twice the time as the robot that is 6 minutes to perform 

a detection task which involves moving to the plant and performing a 

detection/evaluation of the plant. This adjustment has been made to both systems. 
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➢ When it comes to the supervisory task of checking the robot’s detection, the 

human operator will still take 3 minutes as in Experiment 1a) 

Table 4.4: Variables for experiment 1b) 

Controlled variables Dependent variables 

1) Time for robot to perform a detection 

task = 3 minutes 

2) Time for human operator to perform a 

detection/evaluation task = 6 minutes 

3) Time for the human operator to 

perform a supervisory task = 3 

minutes.  

4) The number of healthy, diseased, or 

“other anomalous” cases are 

uniformly distributed across all plants 

in the greenhouse. 

5) Step 4: Human operator randomly 

checks 10% of the robot’s detections 

6) Step 5: Human and robot both sample 

20% of the plants expected to be 

healthy 

7) Total number of plants in greenhouse 

= 400 

1) Time to complete (TTC) 

2) Defects detected (D) 

 

Table 4.5: Summary of Results for Experiment 1b) 
 

Average Defects 

Detected 

Average TTC 

(minutes) 

Standard 

deviation 

(Defects) 

Standard 

Deviation 

(TTC) 

η 

Without HUB-CI 268.8 2842.8 11.21 67.29 0.09 

With HUB-CI 240.65 1068.45 4.92 19.72 0.23 

 

Table 4.6: Statistical significance for Experiment 1b) 

Two-sided t-test (95% Confidence Interval)   
T-Value P-Value DF 

Defects Detected 10.28 0 26 

TTC 113.17 0 22 

η -293.64 0 34 
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Observations 

Despite doubling the expected task time for the human operators, the average Time to Complete 

of the system with HUB-CI is still less than half of that for the system without HUB-CI. The 

number of defects detected is lower on average but that can be attributed to the relatively low 

number of plants sampled in Step 5, which has been corrected in the next experiment run. 

System efficiency is more than double than that of the case where there is no HUB-CI.  
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Figure 4-3 Performance of the system with HUB-CI vs a system without HUB-CI 
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Experiment 1 c) Assuming the conditions of experiment 1 b), how can the number of detections 

made by the HUB-CI integrated planner equal or exceed those made by the baseline system and 

yet have a better TTC compared to the baseline scenario? 

• Most conditions are set the same as experiment 1b) i.e.:  

➢ It takes 3 minutes for the robot to a perform detection task, which involves 

moving to the adjacent plant, and performing a detection/evaluation of the plant.  

➢ It takes a human operator twice the time as the robot i.e. 6 minutes to perform a 

detection task which involves moving to the plant and performing a 

detection/evaluation of the plant. This adjustment has been made to both systems. 

➢ When it comes to the supervisory task of checking the robot’s detection, the 

human operator will still take 3 minutes as in Experiment 1a) 

• The major change made here is: 

➢ In step 5, human and robot both sample 45% of the plants expected to be healthy 

(more than double the amount sampled in Step 5 for experiments 1a) and 1b) but 

still lesser than the total number of plants sampled under the baseline (no HUB-

CI) scenario). 
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Table 4.7: Variables for experiment 1c) 

Controlled variables Dependent variables 

1) Time for robot to perform a detection 

task = 3 minutes 

2) Time for human operator to perform a 

detection/evaluation task = 6 minutes 

Time for the human operator to 

perform a supervisory task = 3 

minutes.  

3) The number of healthy, diseased, or 

“other anomalous” cases are 

uniformly distributed across all plants 

in the greenhouse. 

4) Step 4: Human operator randomly 

checks 10% of the robot’s detections 

5) Step 5: Human and robot both sample 

45% of the plants expected to be 

healthy 

6) Total number of plants in greenhouse 

= 400 

1) Time to complete (TTC) 

2) Defects detected (D) 

 

Table 4.8: Summary of Results for Experiment 1c) 
 

Average 

Defects 

Detected 

Average 

TTC 

(minutes) 

Standard 

deviation 

(Defects) 

Standard 

Deviation 

(TTC) 

η 

Without HUB-CI 270.45 2852.7 9.71 58.28 0.09 

With HUB-CI 270.65 1202.4 4.57 21.87 0.23 
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Figure 4-4 Performance of the system with HUB-CI vs a system without HUB-CI 
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Observations 

As shown in the above Table, the average defects detected by the HUB-CI system match the case 

of when there is no HUB-CI system. The TTC for the HUB-CI system is still less than half of 

that with no HUB-CI system which is highly desirable. Increasing the percentage of plants 

sampled in Step 5 optimizes the number of defects detected. System efficiency is once again 

superior for the monitoring system that uses HUB-CI.  

Table 4.9: Statistical significance for Experiment 1c) 

Two-sided t-test (95% Confidence Interval)   
T-Value P-Value DF 

Defects Detected -0.08 0.934 27 

TTC 118.56 0 24 

η -336.93 0 35 

 

Experiment 1 d) Does increasing the number of plants impact the performance of the 

collaboration strategy using the HUB-CI system? Assuming all the other conditions of 

experiment 1 c), how will increasing the number of plants impact the performance of this 

system? 

• Most conditions are set the same as experiment 1c) with the following change: 

➢ The number of plants in the greenhouse has been increased from 400 to 1600.  
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Table 4.10: Variables for Experiment 1d) 

Controlled variables Dependent variables 

1) Time for robot to perform a detection 

task = 3 minutes 

2) Time for human operator to perform a 

detection/evaluation task = 6 minutes 

Time for the human operator to 

perform a supervisory task = 3 

minutes.  

3) The number of healthy, diseased, or 

“other anomalous” cases are 

uniformly distributed across all plants 

in the greenhouse. 

4) Step 4: Human operator randomly 

checks 10% of the robot’s detections 

5) Step 5: Human and robot both sample 

45% of the plants expected to be 

healthy 

6) Total number of plants in greenhouse 

= 1600 

1) Time to complete (TTC) 

2) Defects detected (D) 

 

Table 4.11: Summary of Results for Experiment 1d) 
 

Average 

Defects 

Detected 

Average 

TTC 

(minutes) 

Standard 

deviation 

(Defects) 

Standard 

Deviation 

(TTC) 

η 

Without HUB-CI 1075.1 11280.6 15.84 95.04 0.10 

With HUB-CI 1135.7 5310.9 8.19 34.45 0.21 
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Figure 4-5 Performance of the system with HUB-CI vs a system without HUB-CI 
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Table 4.12: Statistical significance for Experiment 1d) 

Two-sided t-test (95% Confidence Interval)   
T-Value P-Value DF 

Defects Detected -15.2 0 28 

TTC 264.08 0 23 

η -605.29 0 37 

 

Observations 

 The HUB-CI system again delivers superior performance when compared to the baseline 

scenario on all metrics. An interesting outcome of this simulation shows that as the size of the 

system (number of plants) increase, the defects detected also improves. This fact is highly 

desirable as it indicates that in larger greenhouse systems, collaborative intelligence would be 

instrumental to system efficiency.  

 Protocol 1: K-means clustering analysis of the spectral images 

Setup: Using trial and error, 50 spectral bands within the blue range were determined that would 

generate clusters that were unique to the leaf pixels i.e. those specific clusters did not merge with 

the background and was restricted to the plants. This step would make image segmentation 

feasible. A specific sensor or a multispectral camera could image the leaf using a specific band 

that would be optimal for image segmentation for the leaves.  

Detecting anomalies in imaging: The k-means clustering was run on 30 hyperspectral images of 

pepper plants. 6 clusters were generated in 40 iterations.  Detecting image anomalies via 

analyzing cluster centers vs. the hyperspectral band range can enable to automatically determine 

whether or not an image is likely anomalous (as defined in Section 3.5.1) and needs to be 

retaken. This was tested on the dataset with 30 images out of which 5 images were anomalous. 
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For the anomalous images the pattern of cluster centers vs the hyperspectral band range differed 

significantly from that of non-anomalous images.  

 Another key motivation behind using k-means clustering was for image segmentation. 

The k-means was run with 6 clusters generated over 40 iterations. Figure 3-6 are some examples 

of clusters used for image segmentation: 

Figure 4-6 Generation of leaf clusters for image segmentation using k-means 

 

 Notice that in each of the above pictures, the clusters representing the leaves are different 

from those that represent objects in the background. This is where the choice of the spectral band 

range determined earlier in this section and the number of clusters that would enable the leaf 
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pixels to be differentiated from those in the background. At other spectral band ranges, clustering 

often resulted in large parts of the leaves merging with the background. 

 Protocol 2: Detecting anomalies in plants 

Experiment 2:  

Objective:  

• To perform a check on Protocol 2 to evaluate its effectiveness with regard to detecting 

early anomalous plants that may have biotic or abiotic stresses.  

Assumptions: 

• Image segmentation has been performed with precision 

Experiment setup and steps: 

1. 28 uniformly distributed bands out of 840 spectral bands are selected for this analysis  

2. The Gaussian statistics mean, covariance, number of samples (pixels) are calculated for 

each spectral band from the training sample which in this case was 14 spectral images of 

Healthy plants 

3. The testing sample includes plants with 7 Tomato Spot Wilt Virus (TSWV), 7 Powdery 

Mildew (PM), 6 plants with both TSVW and PM, as well as 8 Healthy plants 

4. The protocol for detecting anomalous plants described in Section 3.6.2 was run on the 

testing sample and for all images the Mahalanobis distance for each pixel was calculated 

5. Pixels whose Mahalanobis distance values had a probability of less than 0.001 were 

identified by modeling the data with the chi-squared distribution using the number of 

bands sampled as the degrees of freedom (df). These pixels are considered anomalous. 

6. Anomalous pixels that were not based on the plant images were removed manually 
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7. The mean, variance, and standard deviation of the number of anomalous pixels were 

considered for each image in the testing set. 

Controlled variables: 1) Spectral bands selected, 2) Threshold probability to classify pixel as 

anomalous, 3) Degrees of freedom for the chi-squared distribution. 

Dependent/test variable: Number of anomalous pixels 

Table 4.13: Anomaly detection tests for Healthy plants, plants with TSVW and PM  

Plant number Class Number of anomalous pixels based 

on threshold probability P < 0. 001 

1 Healthy 10200  

2 Healthy 30662 

3 Healthy 15250 

4 Healthy 5880 

5 Healthy 9275 

6 Healthy 7590 

7 Healthy 27257 

8 Healthy 87027 

9 Powdery Mildew 59612 

10 Powdery Mildew 71082 

11 Powdery Mildew 68175 

12 Powdery Mildew 61435 

13 Powdery Mildew 54734 

14 Powdery Mildew 86409 

15 Powdery Mildew 79526 

16 TSWV 207036 

17 TSWV 219852 

18 TSWV 55186 

19 TSWV 206048 

20 TSWV 157752 

21 TSWV 201141 

22 TSWV 326144 

23 TSWV and PM 354830 

24 TSWV and PM 326471 

25 TSWV and PM 423569 

26 TSWV and PM 407670 

27 TSWV and PM 485720 

28 TSWV and PM 532405 

 

  



71 

 

Table 4.14: Summary of Results for Experiment 2 

 Mean Variance Standard Deviation 

Healthy plants 24142.63 729811559 27015.03 

TSWV plants 196165.57 6507810721 80671.00 

PM plants 68710.43 127863478 11307.67 

TSWV and PM plants 421777.5 6018922958 77581.72 

 

Statistical significance test 

 A One-way ANOVA test was performed using Minitab 18 taking the four categories as 

factors. 

Table 4.15: One-way ANOVA test summary  

Source DF Adj SS Adj MS F-Value P-Value 

Factor 3 6.01824E+11 2.00608E+11 61.69 0.000 

Error 23 74795173133 3251964049       

Total 26 6.76619E+11          

Figure 4-7 Results of the One-sided ANOVA test 
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Notice that, P-Value < α, hence the results are statistically significant i.e. the means are different. 

Experiment images 

Figure 4-8 Images from the test set of Healthy plants. White indicates pixels anomalous with 

regard to the training set.  
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Figure 4-9 Images from the test set of plants with Powdery Mildew. White indicates pixels 

anomalous with regard to the training set. 
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Figure 4-10 Images from the test set of plants with TSWV. White indicates pixels anomalous 

with regard to the training set. 
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Figure 4-11 Images from the test set of plants with TSWV and Powdery Mildew. White indicates 

pixels anomalous with regard to the training set. 

 

Observations 

• The differences in the number of anomalous pixels detected between each of these sets 

were tested for statistical significance using the One-sided ANOVA test. The means are 

different with statistical significance at 95% confidence level. This concludes that on an 
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initial and basic level, the protocol can be used to identify anomalous plants in the 

greenhouse based on the background statistics of healthy plant images.  

• The mean number of anomalous pixels in each of the categories tested progresses in the 

following order: Healthy < PM < TSWV < TSWV & PM. The categories are statistically 

significant based on tests performed on the available data.  

• This result is significant as the pixels with only a probability of less than 0.001 were 

considered anomalous.  

• Despite the random uniformly chosen spectral bands chosen to perform the analysis, the 

methodology to detect anomalies could differentiate between the four biotic stresses 

considered for this experiment. Hence it can be used to perform an initial and early 

anomaly detection as part of the task of monitoring the condition of pepper plants in the 

greenhouse.  

Limitations of experiment  

• The size dataset used for this implementation was 42 spectral images, 14 for training and 

28 for testing which is a relatively small dataset.   

• The number of anomalous pixels could also be created by the positioning of the camera 

over the leaf which was generally precise but there were variations 

• Since the anomalies that were not based on the plant images were discounted manually, 

there is some uncertainty in the exact number of anomalous pixels in the image 

• The exact type of anomaly or stress is expected to depend upon the spectral wavelength 

range used for detection. The determination of the stress and their optimal wavelengths is 

beyond the scope of this work.  
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 Telerobotic control of robot in agricultural setting using HUB-CI system 

• A robot cart with a Kinect camera physically located at the Agricultural Research 

Organization at Rishon LeZion, Israel was remotely controlled by researchers at Purdue 

University using the HUB-CI direct steering software (Agent A in Fig 3-2).  

• Commands were sent using Python and Robotic Operating System (ROS) programs via a 

Google Drive. Vision was facilitated via ROS and TeamViewer software 

• Average lag time of remotely sent commands was 1.06 seconds across 2 different sets of 

runs of 30 minutes each.  

Figure 4-12 Remote Teleoperation of the robot in an agricultural setting using the HUB-CI 

system 
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5. CONCLUSION AND DISCUSSION 

 Advantages of Organized Collaboration via HUB-CI in an agricultural domain 

The following is a summary of benefits of using a HUB based system for networked 

management of an agricultural greenhouse system: 

1) Better overall system efficiency as demonstrated by Experiment 1. In terms of time to 

complete and detections detected, organized collaboration has been demonstrated as 

providing superior performance. 

2) Capability of agents to gather inputs from multiple other agents in a distributed network 

or from multiple knowledgebases on the web 

3)  Planning of greenhouse activities can be performed collaboratively by remote and local 

agents with access to the same Decision Support Tools. 

4) Optimized matching of tasks to agents based on availability, capacity, capability etc.  

5) Based on near real time information, teams of agents to handle a particular task can be 

formed with agents able to Associate or Disassociate with the concerned team. Issues 

with the greenhouse can be resolved via the formation of dynamic teams of agents via 

cyber augmented methods 

6) Synchronization of machine intelligence with human intelligence in real time to perform 

agricultural and maintenance activities in the greenhouse. Generation of optimal 

collaboration and task requirement schedules based on near real time inputs from sensors 

and human operators of different domain expertise.  

7) The CI-tool of statistical anomaly detection on spectral images of plant can be applied for 

the early detection of biotic and abiotic stresses in plants in the greenhouse as 

demonstrated by Experiment 2. 
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 Objectives and Research Questions and how they were addressed 

The following table describes the objectives of this research and how they were addressed: 

Table 5.1:  Contribution of this research 

 Objective Research 

Question 

Research Contribution 

1) To create a HUB based Human Robot 

Interaction (HRI) system that facilitates 

collaboration between a) Agricultural Experts, 

b) Human operators, c) multiple software 

agents related to navigation, control and 

disease detection, all of which are not at the 

same geographical location i.e. remote 

agents/operators. 

RQ 1 The HUB-CI-DSS for 

Agricultural Robotic systems 

with all the functions 

described in Sections 3.2 to 

3.6 

2) To develop learning-based protocols to 

enhance Human Robot Interaction and 

Decision Support capabilities of the Integrated 

Planner 

RQ 2 The learning-based protocols 

to detect imaging anomalies 

and perform segmentation 

(Protocol 1), and the protocol 

to detect anomalous plants 

(Protocol 2) described in 

Sections 3.6, 4.1, 4.2 and 4.3. 

3) What DSS tools are necessary for a) optimal 

collaboration and minimal error in an 

agricultural setting, and b) enable early 

detection of stresses in plants? 

RQ 3 The collaborative anomaly 

detection protocol to detect 

any anomalies based on the 

spectral images of leaves 

(Protocol 2), and the 

collaborative clustering 

protocol (Protocol 1) for 

imaging described in 

Sections 3.6, 4.1, 4.2 and 4.3 
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 Limitations and Future Research 

This research has the following limitations: 

1) HUB-CI Function 2 i.e. “Workflow Optimization- task and data dependencies” has not 

been tested rigorously based on realistic simulations or real-world implementations. 

2) HUB-CI Function 4 i.e. “Best Matching of Networked System Agents to Tasks” has been 

defined but not yet tested rigorously based on realistic simulations or real-world 

implementations. 

3) HUB-CI Function 5 i.e. “Handling Conflicts and Errors” has been well defined and 

articulated but not yet tested rigorously based on realistic simulations or real-world 

implementations. 

4) A real-world implementation of the system has only been performed for direct steering 

and remote teleoperation tasks but not yet for imaging, and early detection of stresses.  

5) The collaboration strategy outlined in this work has been simulated with sensitivities to 

multiple factors as shown in Section 4.1 but has not yet been tested in a real-world 

greenhouse or agricultural setting.  

Future work in this area would include the following: 

1) Full scale testing of the system described between Sections 3.2 to 3.8 in a real-world 

agricultural environment in order to assess the value added by each of the HUB-CI 

functions and protocols, and the effectiveness of the collaboration strategy. 

2) Rigorous simulations of HUB-CI Functions 2, 4 and 5 would be required to determine 

effectiveness and improve implementation.  

3) Creation of “Recommender Systems” that learns the past agent decisions and activities 

under specific conditions and make recommendations to operators in the present. This 

would be a beneficial towards the overall goal of Decision Support.  
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APPENDIX A. CODE 

A.1. To detect anomalous plants from spectral images (Python programming language) 

import os 

import time 

import numpy # Import python package for scientific computing 

from scipy.stats import chi2  #Import the chi square distribution function 

from spectral import * # Import all python spectral imaging functions 

import spectral.io.envi as envi 

# Generate matrix for storing background statistics 

mean_mat = numpy.zeros((10)) 

var_mat = numpy.zeros((10,10)) 

# To open several hyperspectral images in a database 

train_length = 21 

f11 = "15.10.16_8am_Healthy_#" 

f12 = 0 

f13 = "_up_HS.hdr" 

f21 = "15.10.16_8am_Healthy_#" 

f22 = 0 

f23="_up_HS.raw" 

i = 0 

for i in range(1,train_length + 1):  

    print(i) 

    f1 = f11 + str(i) + f13 

    f2 = f21 + str(i) + f23 

    temp_img =  envi.open(f1,f2) 

    sample = temp_img[:, :,0:840:84] # Uniform selection of bands from each image 

    # Calculate background statistics i.e. mean and covariance 

    A = calc_stats(sample ,mask=None, index=None, allow_nan=False) 

    temp_mean = A.mean 
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    mean_mat = mean_mat + temp_mean 

    temp_var = A.cov 

    var_mat = var_mat + temp_var 

# Store background statistics as variables 

m = mean_mat/train_length 

cv = var_mat/train_length 

t_stats = GaussianStats(mean=m, cov=cv) 

 

# Open a sample test image 

img1 = envi.open('day1healthy2_2016-07-25_06-49-44_botritis.hdr','day1healthy2_2016-07-

25_06-49-44_botritis.raw') 

sample1 = img1[:,:,0:840:10] 

 

rxvals = rx(sample1, t_stats) # Calculate the Mahalanobis distance of the sampled image 

                                # with respect to the background statistics 

P = chi2.ppf(0.99, nbands)  # Determine the pixels with probability less than 0.01 

                             # using Chi Square distribution 

 

v = imshow(1 * (rxvals > P)) # Display the most anomalous pixels 

v = imshow(rxvals)   # Display entire image based on the Anomaly Score 

A.2. To determine if sufficient image has been taken (Python programming language) 

import os 

import time 

import numpy    # Import Python package for scientific computing 

from spectral import *    # Import all python spectral imaging functions 

import spectral.io.envi as envi 

import gc 

length = 8 

# To open several hyperspectral images in a database 

f11 = "15.10.16_9+6dai_8am_TSWV+PM_#" 
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f12 = 0 

f13 = "_up_HS.hdr" 

f21 = "15.10.16_9+6dai_8am_TSWV+PM_#" 

f22 = 0 

f23="_up_HS.raw" 

i = 0 

for i in range(1,length + 1): 

    print(i) 

    f1 = f11 + str(i) + f13      

    f2 = f21 + str(i) + f23           # Calculate k-means clustering given the 

    temp_img =  envi.open(f1,f2)      # maximum number of clusters and the 

    sample1 = temp_img[:,:,0:840:30] # maximum number of iterations for specified images 

    (m, c) = kmeans(sample1, 12, 50) 

A.3.  Simulation for Collaboration Strategy using HUB-CI DSS (Python programming 

language) 

import numpy as np 

def check_defect(P,x,y):            #function to simulate 

                                    # robot's search for disease or plant defect 

    if (P[x][y] == 1) or (P[x][y] == 2): 

        return [P[x][y], x, y] 

    else: 

        return [] 

def generator(P): 

    p1=[0.8, 0.1, 0.1] # area modeled as mostly healthy plants 

    p2=[0.1, 0.8, 0.1] #area modeled as mostly diseased plants 

    p3=[0.1, 0.1, 0.8] #area modeled as mostly plants with unknown anomalies 

    for i in range(0,40): 

        if i < 14: 

            p = p1 

        if (i >= 14) and (i < 28): 
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            p = p3 

        if i >= 28: 

            p = p2 

         

        r = np.random.choice(3, 40, p=p) 

        #print(r) 

        P[i,:]= r 

    return [P,0,13,14,27,28,40] 

def traverse(P): #Function for Step 3 

    timer = 0 

    defects = [] 

    for i in range(0,len(P)): 

        for j in range(0,40): 

            R = check_defect(P,i,j) 

            if len(R) ==0 :             # check if Robot or HO has returned a  

                                         # defect 

                pass 

            elif len(R) == 3: 

                defects.append(R) 

                timer = timer + 1 

    #print(len(defects)) 

    return [timer, len(defects)] 

def sampler(P): #Function for Step 4 

    rows = len(P) 

    cols = len(P[0]) 

    sample_size = int(cols*rows*0.1) 

    random_x = np.random.randint(0,rows, size=sample_size) 

    random_y = np.random.randint(0,cols, size=sample_size) 

    timer = 0 

    for i in range(0,sample_size): 
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            check_defect(P,random_x[i],random_y[i]) 

            timer = timer + 1 

    return timer 

 

def sampler2(P): # Function for Step 5 

    rows = len(P) 

    cols = len(P[0]) 

    sample_size = int(cols*rows*0.45) 

    random_x = np.random.randint(0,rows, size=sample_size) 

    random_y = np.random.randint(0,cols, size=sample_size) 

    timer = 0 

    timer_robot = 0 

    timer_human = 0 

    defects = [] 

    for i in range(0,sample_size): 

            if timer > int(sample_size/2): 

                timer_human = timer_human + 1 

            else: 

                timer_robot = timer_robot + 1 

                 

            R= check_defect(P,random_x[i],random_y[i]) 

            defects.append(R) 

            timer = timer + 1 

    return [timer_robot, timer_human, len(defects)] 

def main(): 

    P = np.random.randint(0,3, size=(40, 40)) #Generate plants as diseased, 

                                              # anomalous, or healthy randomly 

    [P,hl,hul,al,aul,dl,dul] = generator(P) 

     P = P.tolist() 

     P_2 = P[hl:hul] 
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    robot_P = P[dl:dul] # plants with high disease probabilities 

    human_P = P[al:aul] # plants with "unknown anomalies/other defects" 

    [timer_robot_1, defects_R1] = traverse(robot_P)  

    [timer_human_1, defects_H1] = traverse(human_P) 

    timer_human_2 = sampler(robot_P) 

    [timer_robot_2, timer_human_3, defects_RH2] = sampler2(P_2) 

     

   print(defects_R1 + defects_H1 + defects_RH2) 

   print(timer_robot_1 + 2*timer_human_1 + timer_human_2 + timer_robot_2 + 

2*timer_human_3)     

A.4.  Simulation for Baseline Scenario – No HUB-CI DSS (Python programming language) 

import numpy as np 

def check_defect(P,x,y):            #function to simulate 

                                    # robot's search for disease or anomaly 

    if (P[x,y] == 1) or (P[x,y] == 2): 

        return [P[x,y], x, y] 

    else: 

        return [] 

def check_defect_HO(P,x,y):            #function to simulate 

                                    # human's search for disease or anomaly 

    if (P[x,y] == 1) or (P[x,y] == 2): 

        return [P[x,y], x, y] 

    else: 

        return [] 

def increment(P,x,y, dflag):  # Function for simulating robot cart 

                              #traversing greenhouse   

    cflag = True 

    x_max = P.shape[0] - 1 

    y_max = P.shape[1] - 1 

    if dflag is True: 
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        x_new = x+1 

        y_new = y 

        cflag = False 

        if x_new > x_max: 

            x_new = x 

            y_new = y+1 

            dflag = False 

            cflag = False 

    if cflag is True: 

        if dflag is False: 

            x_new = x - 1 

            y_new = y 

            if x_new < 0: 

                x_new = x 

                y_new = y+1 

                dflag = True 

                cflag = False 

    if y_new > y_max: 

        x_new = False 

        y_new = False 

        dflag = False 

    return [x_new,y_new,dflag] 

 

 

def main(): 

    P = np.random.randint(0,3, size=(40, 40)) #Generate plants as diseased, 

                                              # anomalous, or healthy randomly 

#    P = generator(P) 

    x = 0       

    y = 0           

    dflag = True 
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    tflag = True 

    defects = [] 

    timer_robot = 0 

    timer_human = 0 

    while (x or y) or tflag:                #Run the program and above functions 

        [x,y,dflag] = increment(P,x,y,dflag) 

        R = check_defect(P,x,y) 

        if len(R) ==0 :                     # check if Robot or HO has returned a  

            #print(x,y, R)                  # defect 

            pass 

        elif len(R) == 3: 

            defects.append(R) 

        tflag = False 

        timer_robot = timer_robot + 1 

   for defect in defects: 

        typ = defect[0] 

        x = defect[1] 

        y = defect[2] 

        timer_human = timer_human + 1 

    print(len(defects)) 

    print(timer_robot + 2*timer_human + 10) 
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