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 Continuous flow chemistry for organic synthesis is an emerging technique in academia and 

industry because of its exceptional heat and mass transfer ability and, in turn, higher productivity 

in smaller reactor volumes. Preparative electrospray (ES) is a technique that exploits reactions in 

charged microdroplets that seeks to accelerate chemical synthesis. In Chapter 2, the flow synthesis 

of atropine, a drug which is included in the WHO list of essential of medicines and currently in 

shortage according to the U.S Food and Drug Administration (FDA) is reported. The two steps of 

atropine synthesis were initially optimized separately and then continuously synthesized using two 

microfluidic chips under individually optimized condition. The telescoped continuous-flow 

microfluidics experiment gave a 55% conversion with an average of 34% yield in 8 min residence 

time. In Chapter 3, a robotic HTE technique to execute reactions in 96-well arrays was coupled 

with fast MS analysis. Palladium-catalyzed Suzuki-Miyaura (S-M) cross-coupling reactions were 

screened in this system and a heat map was generated to identify the best reaction condition for 

downstream scale up in continuous flow.  

 

In Chapter 4, an inexpensive and rapid synthesis of an old anticancer drug, lomustine, was 

synthesized. Using only four inexpensive commercially available starting materials and a total 

residence time of 9 min, lomustine was prepared via a linear sequence of two chemical reactions 

performed separately in two telescoped flow reactors. Sequential offline extraction and filtration 

resulted in 63% overall yield of pure lomustine at a production rate of 110 mg/h. The primary 

advantage of this approach lies in the rapid manufacture of lomustine with two telescoped steps to 

avoid isolation and purification of a labile intermediate, thereby decreasing the production cost 

significantly. A high throughput reaction screening approach based on desorption electrospray 

ionization mass spectrometry (DESI-MS) is described in Chapter 4 and 5 for finding the heat-map 

from a set of reaction conditions. DESI-MS is used to quickly explore a large number of reaction 
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conditions and guide the efficient translation of optimized conditions to continuous flow synthesis 

that potentially accelerate the process of reaction optimization and discovery. Chapter 5 described 

HTE of SNAr reactions using DESI-MS and bulk techniques with 1536 unique reaction conditions 

explored using both in DESI-MS and bulk reactors. The hotspots from the HTE screening effort 

were validated using a microfluidic system that confirmed the conditions as true positives or true  
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INTRODUCTION 

1.1 Introduction 

 Traditionally, organic synthesis is performed in round-bottomed flasks which allows for 

limited control with lengthy reaction times. Recently continuous flow reactors are gaining traction 

in the pharmaceutical and fine chemistry industries for the preparation of small and large molecules 

including active pharmaceutical ingredients (APIs). 1,2 Enhanced heat and mass transfer, controlled 

flow, ease of integration, flow chemistry on the micro scale, offers precise control of reaction time, 

efficiency and safety are the key advantages for continuous flow synthesis.3,4 Generally, reaction 

optimization and screening require significant investments in time and material.5,6 Pharmaceutical 

production still depends on multipurpose batch reactors that requires months to isolate and 

investigate of the intermediates in several steps.7 Microreactors can greatly accelerate rapid 

scanning8 of reactions and combined with quick analysis using nESI-MS, 9 reduce significant 

amount of material needed to perform screening, and optimize reaction conditions at higher 

temperature and pressure that cannot be possible in conventional glassware.10,11 Microreactors 

allow these reactions to be screened and optimized at reduced cost due to low material 

requirements and waste generation.12,13 The reduced channel widths, together with the exceptional 

mass-and heat transfer capacity of these reactors, enhance the reaction rate as fast that it is capable 

to occur a reaction in second.14 Therefore, it is predictable that continuous flow processes should 

emerge as an important technique for APIs synthesis.15,16. Chapter 1 & 3 describe the design and 

development of continuous-flow synthesis of APIs, atropine,17 and lomustine,18 respectively, 

which includes small scale synthesis to large scale synthesis in flow system. 

 High throughput experimentation (HTE) techniques allows the implementation of a large 

numbers of experiments in parallel spending minimum amount of compounds and time, involving 

less labor per experiment.19, 20 The technique can change the lab productivity by rapid generation 

of comprehensive data and knowledge, both in academic and industry.19, 21 HTE based on the 

screening of compounds across a range of settings have spread in the area of not only in biology, 

drug discovery22, and medicinal chemistry,23, 24 but also in other fields such as catalysis.20, 25, 26 

Originally these tools and techniques were used in the field of biology in the 1950s, but are 

routinely performed for HTE in 1,534 or 3,456-well microtiter plates.19 However, the analysis is 
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always a bottleneck because of significantly large time requirement and expenses. HTE coupled 

with MS analysis speeds up both the discovery and the optimization of reaction conditions, 

specially in the field of chemical process development.25, 27, 28 These impacts are particularly 

evident in the fields of pharmaceutical and biopharmaceutical industries where reduction in the 

time of experimental cycle is a necessity due to the higher importance of the reaction class.8, 14 

However, HTE is always a challenge in case of organic synthesis because of the presence of solid 

or volatile organic solvents.26, 27 Recently, our group reported the high throughput reaction 

screening using bulk microtiter20 and desorption electrospray ionization mass spectrometry (DESI-

MS) to guide scalable syntheses in continuous flow reactors at scale.28 DESI is an MS technique 

that analyses reaction results in droplets within about 1 s. 28 A reliable approach con be able to 

reduce the analysis time from 2 months to about a day. 28 Bulk microtiter HTE of Suzuki-Miyura 

cross-coupling reactions are described in Chapter 3 to inform the continuous flow synthesis. An 

expansion of the HTE studies were used to guide the flow synthesis of lomustine in Chapter 4. A 

further investigation to find the scope of chemistry explored using both bulk microtiter and DESI-

MS HTE techniques for nucleophilic aromatic substitution (SNAr) is described in Chapter 5. 
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CHAPTER 2. REACTION SCREENING AND OPTIMIZATION OF 
CONTINUOUS FLOW ATROPINE SYNTHESIS BY PREPARATIVE 

ELECTROSPRAY MASS SPECTROMETRY 

Reproduced (adapted) from Jaman, Z.; Falcone, C. E.; Wleklinski, M.; Koswara, A.; Thompson, D. H.; 
Cooks, R. G. ‘Reaction screening and optimization of continuous-flow atropine synthesis by preparative 
electrospray mass spectrometry’ Analyst 2017, 142, 2836 with permission from The Royal Society of 
Chemistry. 

2.1 Introduction 

 

 Traditionally, organic synthesis is performed in round-bottomed flasks which allow for 

limited control with lengthy reaction times. Continuous flow reactors are gaining traction in 

pharmaceutical and fine chemistry for the preparation of small and large molecules including 

Active Pharmaceutical Ingredients (APIs).1- 2 Key advantages of continuous flow are enhanced 

heat and mass transfer, controlled flow, ease of integration, precise control of reaction time, 

efficiency and safety.3-4 Generally, reaction optimization and screening take significant 

investments in time and material.5,6 Pharmaceutical production still utilizes a supply chain network 

where shortages often appear due to dependence on multipurpose batch reactors that require 

months for synthesis, isolation and validation of intermediates.7 Microreactors in conjunction with 

nESI-MS can accelerate optimization8 of reactions, while allowing reactions to be screened and 

optimized at reduced cost due to low material requirements and waste generation. 9,10 The reduced 

channel widths, together with the exceptional mass-and heat transfer capacity of these reactors can 

lead to enhanced reaction rate.11 With all of these advantages, continuous flow processes are 

emerging as an important new technique to synthesis APIs.12-13 APIs have been synthesized 

continuously by incorporating reaction telescoping and continuous work up techniques. 

Continuous flow synthesis of the APIs efaproxial, rimonabant14, imatinib15,16, ibuprofen8, 

rufinamide17, diphenhydramine hydrochloride18, (E/Z)-tamoxifen19 have been reported. 
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 In electrospray, accelerated chemical reactions occur in charged microdroplets that can 

accelerate reaction times.20 These accelerated reactions have been studied in the ambient ionization 

techniques like desorption electrospray ionization (DESI),21 paper spray22 and electrospray 

ionization (ESI).23  Accelerated reactions in charged microdroplets have been employed for 

derivatizing analytes for improved MS analysis20, mechanistic studies of reactions24-26, identifying 

reaction intermediates25, 27, 28 and the collection of products generated via microscale synthesis.29, 

30 Accelerated droplet reactions can be used to prepare milligram quantities of material in minutes 

in preparative electrospray (ES).29 Preparative ES is a method where a reaction mixture is 

electrosprayed onto a surface and the deposited material is washed for chemical analysis. 

Extractive electrospray ionization (EESI) is an ionization technique that utilizes two intersecting 

ESI emitters. One emitter nebulizes the sample in a complex matrix and the other produces charged 

microdroplets of solvent.31 The colliding microdroplets leads to the liquid–liquid extraction of the 

analytes from the complex matrix to a solvent amenable for on-line mass spectromic analysis. A 

technique similar to EESI, droplet fusion, uses two separate ESI emitters where two plumes of 

microdroplet reagents collide to form fused droplets consisting of both reagents. The reagents are 

mixed in the fused droplets and the reaction proceeds. Microdroplet fusion has been used to study 

the kinetics of phenolindophenol reduction by ascorbic acid, acid-induced cytochrome c unfolding, 

and HDX in Bradykinin.32 In a third multi ESI emitter technique, multichannel rotating 

electrospray ionization (MRESI), ESI emitters nebulize volatile reagents that induce reactions in 

the gas phase and the resulting products are extracted by droplets from another ESI emitter.33 

 

 Atropine is traditionally manufactured industrially from natural products extraction34. 

Atropine, a natural tropane alkaloid, exists as a racemic mixture of D-hyoscyamine and L-

hyoscyamine and has both anticholinergic and antiparasympathetic properties35. The U.S Food and 

Drug Administration (FDA) has reported a shortage drugs during 2011-2014 that include atropine 

salt36. The total synthesis of atropine has previously been published using a batch process37, 38, 39 

and has recently been published in continuous flow36. The previously published continuous flow 

process required multiple steps of purification by liquid-liquid extraction due to a variety of 

byproducts which in turn reduced the overall yield of atropine. Reported herein is a rapid screening 
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technique that utilizes preparative ES to screen pathways and microfluidics to optimize the 

pathway to produce a synthesis of atropine with an average yield of 33.45. This pathway has a 

4.34 fold increase in percent yield and a 1.9 fold reduction in reaction time in microfluidics, 

compared to the previously published continuous flow paper36. 

2.2 Results and Discussion 

 

 Pathways for the synthesis of atropine were explored in preparative ES (Figure 2.1). 

Preparative ES fundamentally gives a binary response of whether a synthetic route did or did not 

yield product. A successful reaction in spray guides which reactions should be pursued in 

microfluidics. Four synthetic routes (scheme 2.1) were screened in preparative ES for the 

fabrication of the atropine intermediate. The first pathway (scheme 2.1 a) explored the use of 

tropine 2, phenyl acetic acid 3 and HCl in both water and dioxane. The use of aqueous HCl yielded 

no intermediate 4 in the full scan, however it was present in low abundance in MS/MS of the 

protonated intermediate m/z 260. Using HCl in dioxane yielded low abundance of the intermediate 

4 in the full scan with a percent conversion of 1.4%. The second pathway (scheme 2.1 b) of tropine 

2 and phenyl acetic acid 3 yielded no intermediate 4 in the full scan in a solvent screen of 

acetonitrile (ACN), dichloromethane (DCM), dimethylacetamide (DMA), dimethylformamide 

(DMF), dimethyl sulfoxide (DMSO), ethanol, methanol, tetrahydrofuran (THF), and toluene. The 

third pathway (scheme 2.1 c), tropine 2, phenylacetyl chloride 5 and HCl in dioxane yielded a 

percent conversion of 29.5% (figure 2.2 a). The fourth pathway (scheme 2.1 d) eliminated the use 

of acid, with only tropine 2 and phenylacetyl chloride 5 in a solvent. A solvent screen was 

conducted in the fourth pathway for the esterification of tropine 2 and phenylacetyl chloride 5 

testing the 9 solvents previously discussed. The intermediate was produced in DMA, DMF, ethanol 

and methanol, however the highest percent conversion was from DMA with a percent conversion 

of 55.3% (figure 2.2 b). The percent conversion increased with each permutation of the pathway 

leading to the determination that tropine 2 and phenylacetyl chloride 5 with the addition of a 

solvent produced the highest percent conversion of the four pathways and was a promising 

pathway to carry forward for testing in microfluidics. The solvents ethanol and methanol will lead 

to byproducts in the aldol condensation reaction, therefore, only the solvents DMA and DMF were 



24 
 

examined in microfluidics. Full scan MS of the first step of the atropine synthesis by preparative 

ES were shown in APPENDIX A (Fig A1-A8). 

 

Scheme 2.1 Atropine intermediate routes 

 

Figure 2.1 Preparative ES. A high voltage is applied to the solvent through a syringe and the use 
of nitrogen nebulizes the liquid sample. The spray droplets are deposited on the glass wool for 

analysis. 
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Figure 2.2 Mass spectra of preparative ES deposited material. a) The full scan positive ion mode 
spectrum of the deposited material from the preparative ES reaction of tropine 2, phenylacetyl 
chloride 5 and HCl in dioxane yielding a percent conversion to intermediate of 29.5%. b) The 

full scan positive ion mode spectrum of the deposited material from the preparative ES reaction 
of tropine 2, and phenylacetyl chloride 5 in DMA yielding a percent conversion to intermediate 

of 55.3%. 

 

 The two best pathways (Scheme 2.1:  c & d) and solvents, DMA and DMF, for the synthesis 

of the intermediates 4 from preparative ES were examined in microfluidics. The flow reaction 

between tropine 2 (1 equivalent) and phenylacetyl chloride 5 (1.1 equivalent) in the presence of 

HCl in dioxane in DMA (Scheme 2.1, c) showed 85% conversion by LC-MS of intermediate salt 

4 at 100 °C  in 2 minutes. The second pathway of tropine 2 (1 equivalent) and phenylacetyl chloride 

5 (1.1 equivalent) (Scheme 2.1, d) in DMA (Scheme 2) at 100 °C in 2 minutes gave 62% 

conversion of the intermediate 4 along with quaternary ammonium salts byproducts (Scheme 2.2). 

The quaternary ammonium salts were produced from the reaction between ester intermediate and 

phenylacetyl chloride. The presence of solvent associated byproducts was noted at 150 °C and 

200 °C (Scheme 2.3). The microfluidic reaction using DMF as the solvent showed more solvent 

associated byproduct than DMA. For both of these processes, no quenching was performed. 

 Reducing the quaternary ammonium salt byproducts are important to reduce the probability 

of producing further byproducts in the next step of the atropine synthesis. For this, equimolar (1:1) 

amounts of tropine 2 and phenylacetyl chloride 5 were taken that gave 89% conversion of 
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intermediate 4 with less quaternary ammonium byproducts at the same reaction conditions. The 

latter route eliminates the step of producing tropine salt using hydrochloric acid with a similar 

percent conversion to intermediate. This route is 3.8 fold faster than the reported flow synthesis of 

atropine.36 Preparative ES and microfluidics both agreed that the highest percent conversion 

pathway to the production of intermediate 4 was tropine 2 and phenylacetyl chloride 5 in DMA. 

APPENDIX A has all the tables in details (Table A1 & A2). 

 

Scheme 2.2 Quaternary ammonium byproducts from first step 

 

Scheme 2.3 Byproduct associated with solvent DMF and DMA 

 

 The second step in the synthesis of atropine is a base catalyzed aldol condensation with the 

addition of formaldehyde and base to the step 1 intermediate. The crude product from the 

preparative ES reaction of tropine 2 and phenylaceyl chloride 5 in DMA, was telescoped with 

aqueous formaldehyde 37% and 1M base in DMA to form atropine. Twenty-two bases were 
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screened in preparative ES to determine the base that yielded the highest percent conversion to 

atropine with the least amount of byproduct formation. This methodology quickly screened 

different bases to determine which bases yield the highest conversion to atropine and examined 

the byproducts produced by each base.  Out of the 22 bases screened (APPENDIX A), 7 bases had 

a percent conversion to atropine larger than 5%. The percent conversion accounted for byproducts 

previously identified in the continuous flow synthesis of aldol condensation to atropine using 

aqueous formaldehyde and both sodium hydroxide and pH 10 buffer. Seven bases successfully 

produced atropine, therefore, the best bases for the aldol condensation were determined by both 

the percent conversion to atropine and the percent conversion to byproducts. The bases 1,8-

diazabicyclo[5.4.0]undec-7-ene, potassium ethoxide, potassium methoxide, sodium ethoxide, 

sodium hydroxide and sodium methoxide had a higher percent yield of apoatropine 6 the E1 

elimination byproduct, than atropine. The base 1,5-diazabicyclo[4.3.0]non-5-ene was the screened 

base with the highest percent conversion of 44.5% to atropine, but was the only base with nominal 

production of byproducts. The preparative ES suggestion for the best base for the synthesis of 

atropine in microfluidics is 1,5-diazabicyclo[4.3.0]non-5-ene. APPENDIX A (Fig A6-A26) shows 

the full scan MS of the second step base screen by preparative ES. 

 

 The hydroxymethylation step (aldol condensation, 2nd step) was examined in different 

reaction conditions using the intermediate from the first step in microfluidics without any further 

purification (Figure 2.3).  Nine bases were screened, which encompassed both successful and 

unsuccessful reactions in preparative ES. Their percent conversions are summarized in table 2.1. 

Apoatropine 6 (E1 eliminated byproduct) was produced in all conditions as the E1 elimination 

reaction is accelerated by temperature and base. Sodium ethoxide in ethanol produced solid during 

the microfluidic reaction leading to a clogged chip because the byproduct sodium chloride has a 

low solubility in ethanol forming transient solids during the reaction.  

 The pH 10 buffer had an overall conversion to atropine of 34% and this condition produced 

byproducts 6 and 8 (Scheme 2.4). Increasing the temperature led to more elimination byproduct 7 

as the higher temperatures helped to eliminate water from the atropine. Increasing the amount of 

formaldehyde or the residence time increased the second aldol byproduct 8. Further decreases in 

temperature did not lead to the production of atropine. Sodium methoxide and potassium 
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methoxide had similar overall percent conversions, 26% and 23%, respectively, however 

increasing residence time and temperature increased the production of byproduct 6.  A new 

byproduct 7 was found due to the Michael addition of methanol present in the base as well as 

formaldehyde solutions. Trimethylamine and DABCO showed poor conversion to atropine even 

at higher temperature and longer residence time. 

 

Scheme 2.4 Possible byproducts from second step reaction 

 Tetramethylammonium hydroxide took less than a minute to convert all intermediate to 

product and byproducts. The maximum conversion of atropine (37%) produced high amounts of 

byproducts 6, 7.  The best condition for tetramethylammonium hydroxide with the highest percent 

conversion (32%) and the smallest percent conversion of byproducts was found at 100 °C in 8.6-

seconds. Sodium hydroxide showed 13% maximum overall conversion of atropine in a 6-minute 

residence time with hydrolyzed tropine and byproducts 6, 8. 

 

Figure 2.3 Synthesis of Atropine in flow in two chips. A=Tropine; B=Phenylacetyl chloride, 
D=Base + Formaldehyde; E=Water 
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Table 2.1 Comparison of percent conversion to atropine and byproducts 

Base 

Maximum 

conversion 

of atropine 

(%) 

Reaction 

conditions 

Byproducts 

In flow 

Preparative 

ES percent 

conversion 

(%) 

Byproducts 

In ES 

pH 10 buffer 34* 
150 °C , 2 

min 
7, 9 1.6 7 

Sodium methoxide in 

methanol (CH3ONa) 
26 

150 °C , 

2.9 min 
7, 8 9.9 7 

Potassium methoxide in 

methanol (CH3OK) 
23* 

70 °C , 2 

min 
7, 8 7.6 7, 9 

Tetramethyl ammonium 

hydroxide 
36* 

100 °C , 

21.4 sec 
7, 8 1.6 7, 9 

Sodium hydroxide 13* 
22 °C , 6 

min 
7, 9 15.4 7 

1,5-

Diazabicyclo[4.3.0]non-

5-ene 

42* 
70 °C , 4 

min 
7 47.5 7 

Maximum percent conversion of atropine in two steps in two different chips. The percent conversion was determined 

by calculated by nESI-MS and * percent conversion was determined by LC-MS. The reaction conditions describe the 

temperature and residence time in the second chip.  

 The 1,5-diazabicyclo[4.3.0]non-5-ene base was the most effective base for the aldol 

condensation reaction in microfluidics, which correlates to the preparative ES data. The maximum 

overall conversion of atropine using 1,5-diazabicyclo[4.3.0]non-5-ene base was 42% (Table 2.1) 

at 70 °C in 4 and 6 minutes residence time with minimum amount of byproduct 6. Increasing 

residence time and temperature increased byproduct 6. The maximum yield of atropine was 30.3% 

at 70 °C with a 6 minutes residence time. 
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Table 2.2 Comparison of conversion of atropine in different base 

Base 
Overall Conversion of Atropine by LC/MS (%) 

2 min 4 min 6 min 8 min 

1,5-diazabicyclo[4.3.0]non-5-ene 39.61 42.42 42.25 37.83 

CH3OK 23.20 19.89 16.07 18.36 

NaOH 10.80 6.8 5.78 5.1 

pH 10 Buffer <1 <1 <1 <1 

Table 2.3 Comparison of percent conversion of byproducts in different bases 

    Percent Conversion of Byproducts (%) 

Byproduct Method 

1,5-diazabicyclo[4.3.0]non-5-

ene CH3OK NaOH 

6 
ES 11.4 45.1 40.3 

Flow 3.8 20.2 65.8 

7 
ES <1 <1 <1 

Flow <1 44.8 <1 

8 
ES 2.2 31.1 1.4 

Flow 1.5 4.1 13.4 

 The base 1,5-diazabicyclo[4.3.0]non-5-ene had the smallest percent conversion to 

byproducts and had only 3.8% of the byproduct 6 in 6 min residence time (Table 2.3). The best 

base for the aldol condensation was 1,5-diazabicyclo[4.3.0]non-5-ene in both preparative ES and 

microfluidics. 

 The reaction conditions (chip 3227, 4 equiv of formaldehyde, 4 equiv base, 70 °C, P = 9 

bar) for the highest percent conversion of 1,5-diazabicyclo[4.3.0]non-5-ene were used to compare 

the relative conversion of atropine in 1,5-diazabicyclo[4.3.0]non-5-ene, potassium methoxide, 

sodium hydroxide and pH 10 buffer (Table 2.2). The overall percent conversion of atropine using 

1,5-diazabicyclo[4.3.0]non-5-ene in two steps was almost identical in 4 and 6 minutes. Atropine 

conversion decreased with increasing residence time for both potassium methoxide and sodium 
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hydroxide bases. The pH 10 buffer did not lead to the production of atropine in this reaction 

condition. 

 

 The multi-step synthesis of atropine was prepared continuously using a derivative of 

extractive electrospray (EES) (figure 2.4). This technique utilized two electrospray emitters where 

the first ESI emitter produced the intermediate 4 and the second ESI emitter nebulized the 

hydroxymethylation reagents for the second and final step of the atropine synthesis. The reactive 

EES setup differs from traditional EES. In traditional EES the angle of intersection of the two ES 

emitters is 90, with a few variations using angles of 40-60 degrees.40, 41 For reactive EES, the angle 

of intersection is shallower (<22.5%), which allows for longer and more inclusion of the droplets 

from both ES emitters, allowing for a less extractive method. The second variation is distance 

where the distance of intersection is greater at 4 cm. This allows for adequate reaction time for the 

first step of the reaction to proceed before interacting with droplets from the second step reagents. 

The setup was optimized by different angles of emitters, distance of the emitters to droplet 

intersection and droplet intersection to the glass wool, and polarities applied (APPENDIX A, Fig 

A30-A33). 

 

Figure 2.4 Preparative reactive EES. A high voltage is applied to the solvent through a platinum 
electrode and the use of nitrogen nebulizes the liquid sample. The ES emitters are positioned at 
an angle of 22.50 and the point of intersection for the spray plumes is 4 cm. The spray droplets 

are deposited on the glass wool for analysis. 

When the ES emitters were orthogonal, like in traditional EES, the ratio of product to intermediate 

was less, potentially due to lack of interaction time with the droplets. The highest ratio of product 

to intermediate occurred when the emitters were placed laterally, with an angle less than 22.5°. A 

higher ratio of product to intermediate occurred when the point of intersection of the plume from 
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both emitters and distance from the intersection to the collection surface were greater, however, 

there was a trade off in quantity of material deposited to the glass wool. In preparative reactive 

EES, the unreacted phenylacetyl chloride reacted with the water in the aqueous formaldehyde to 

form [2M+H]+ of phenylacetic acid. This was expected as phenylaceyl chloride is highly reactive 

with water. Despite this, the percent conversion to atropine was 23.5%, which is similar to the total 

percent conversion from both steps of the preparative ES of 26.2% (Figure 2.5). Therefore, 

telescoped preparative EES is a valid microscale synthesis system with similar percent conversions 

to telescoped preparative ES.  

 

Figure 2.5 Mass spectrum of preparative ES deposited material. The full scan positive ion mode 
spectrum of the deposited material from the preparative reactive EES synthesis of atropine. 

 

 Telescoping in one reactor, 3224 led to more byproducts and less control over reactions, 

thus encouraging the use of two separate reactors to telescope the atropine synthesis (figure 2.6). 

The optimized conditions for 1,5-diazabicyclo[4.3.0]non-5-ene base in separate steps (1st step: 2 

min, 100 °C and 2nd step: 6 min, 70 °C) were used to telescope the synthesis of atropine at 32.14% 

and average yield of 33.45%. 
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Figure 2.6 Continues flow synthesis of atropine in separate reactors. 

 

 Preparative ES successfully predicted the reaction pathway, solvent and base with the 

highest percent conversion in microfluidics, however there were noticeable differences from the 

results of the two techniques in both percent conversion and production of byproducts. The percent 

conversion from starting material to product was higher in microfluidics than in preparative ES. 

This can be attributed the greater ability to control reactions in microfluidics. Elevated 

temperatures were used in microfluidics, which lead to a greater reaction efficiency. Elevated 

temperatures have been used for preparative ES experiments 42, 43. The successful synthesis of the 

intermediate at room temperature deemed heat was unnecessary for the binary reaction screen, 

however, elevated temperatures may be employed for other reaction screenings. Another factor 

impacting the percent conversion is the open atmosphere in preparative ES. In microfluidics, the 

reaction occurs in a closed pressurized system. In preparative ES, the system is open and subjected 

to the atmospheric environment in a chemical hood. This could be eliminated by preforming 

preparative ES in a controlled environment like a glove box.  The third factor effecting the 

difference in percent conversion is the vapor pressure of both the reagents and solvents. The 

reaction acceleration in preparative ESI relies heavily on the evaporation of the charged droplets. 

When a reagent evaporates and leaves the droplet significantly faster than the solvent, there may 

not be ample time for the reagents to interact leading to an unsuccessful or diminished reaction. 

When the solvent does not evaporate from the charged droplet in a timely manner, the reaction 

will not accelerate solely on volume reduction. 

 There were differences in the formation of byproducts for the second step of the atropine 

synthesis in preparative ES and microfluidics (Figure 2.7). While both techniques heavily favored 
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the E1 eliminated byproduct, byproduct 6, the major difference occurred in the production of 

byproducts 7 and 8. In preparative ES, byproduct 7 was not produced and there was a percent 

conversion greater than 5% of byproduct 8 in every successful base with the exception of 1,5-

diazabicyclo[4.3.0]non-5-ene, sodium hydroxide and sodium methoxide. Conversely, byproduct 7 

was produced in the cases in microfluidics with sodium methoxide, potassium methoxide and 

tetramethyl ammonium hydroxide. The only bases to produce byproduct 8 with a percent 

conversion greater that 5 was sodium hydroxide and pH 10 buffer. Byproduct 8 is formed when 

two formaldehyde molecules react with the intermediate 4 and byproduct 7 is a Michael addition 

of methanol to 6 at high temperature. Byproduct 7 was not formed in preparative ES due to the 

lack of heat necessary for the Michael addition of methanol. The rest of the figures and datasets 

related to this chapter are in APPENDIX A. 

 

Figure 2.7 Mass spectra of microfluidic and preparative ES products using 3 different bases. a) 
The full scan positive ion mode spectrum of atropine synthesis using 1,5-diazabicyclo[4.3.0]non-
5-ene in microfluidics. b) The full scan positive ion mode spectrum of atropine synthesis using 

1,5-diazabicyclo[4.3.0]non-5-ene in preparative ES. c) The full scan positive ion mode spectrum 
of atropine synthesis using potassium methoxide in microfluidics. d) The full scan positive ion 
mode spectrum of atropine synthesis using potassium methoxide in preparative ES. e) The full 

scan positive ion mode spectrum of atropine synthesis using sodium hydroxide in microfluidics. 
f) The full scan positive ion mode spectrum of atropine synthesis using sodium hydroxide in 

preparative ES. 



35 
 

2.3 Experimental 

 

 All chemicals and solvent were purchased from Sigma-Aldrich (St. Louis, Missouri) and 

used without any purification. pH=10 buffer was purchased from Macron (Avantor Performance 

Materials, Center Valley, PA) 

 

 Samples were analyzed on a Thermo LTQ linear ion trap mass spectrometer (ThermoFisher 

Scientific, San Jose, CA, USA). NanoESI analysis in both positive and negative ion mode were 

performed with a 2.0 kV spray voltage. Other experimental parameters were: capillary temperature: 

200C; tube lens (V): -85 V; capillary voltage: -20 V for positive ion mode and tube lens (V): 85 

V; capillary voltage: 20V for negative ion mode. Tandem mass spectrometry was performed with 

an isolation window of 1.5 (m/z units) and 25% collision energy. The spectra were acquired with 

automatic gain control while averaging 3 micro-scans for each spectrum. Samples were prepared 

for nanoESI by diluting 100-fold in acetonitrile. 

 

 Labtrix Start Flex (Chemtrix BV, Labtrix S1, Netherlands) employs custom fabricated 

parts made of PPS (polyphenylsulfide) and perfluoroelastomer. PPS provides excellent chemical 

resistance against hydrochloric acid, trifluoroacetic acid, nitrobenzene, acetic acid, sulfuric acid 

and butyl lithium. It can be used to perform syntheses at temperatures ranging from -20 °C to 

+195 °C and under pressures of up to 25 bar. The outer diameter of the tube of the flex/ultraflex 

system is 1/32 inches and inner diameter is 150 µm that is made of fluorinated ethylene 

propylene (FEP). The micro reactors differ in volume and number of connections. The micro 

reactors are made of glass. All staggered orientated micro reactors (SOR) have width channel 300 

µm and depth channel 120 µm. The SOR chips used were: 3221 (three inlets and one outlet, volume 

1 µl), 3332 (three inlets and one outlet, volume 2 µl), 3223 (three inlets and one outlet, volume 5 

µl), 3224 (four inlets and one outlet, volume 10+5 µl), 3225 (four inlets and one outlet, volume 10 

µl), and 3227 (three inlets and one outlet, volume 19.5 µl). The Labtrix unit is enabled to pump 

five syringes with liquids into the microreactor with a heating and cooling unit. All the gastight 

glass syringes were bought separately from Innovative Labor System. (ILS, Philadelphia, PA). 
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The tubing and fittings connect the syringes with the selected connection port on the microreactor. 

All operations are controlled via a ChemTrix GUI software, which is installed on a laptop and 

connected to the Labtrix S1 housing with a USB cable. 

 

 Separations were performed on an Agilent 1100 HPLC system (Palo Alto, CA) using a 

Varian C18 Amide column (3 µm, 150 x 2.1 mm i.d) and 10 µL injection volume. A binary mobile 

phase consisting of solvent systems A and B were used in gradient elution where A was 0.1% 

formic acid (v/v) in ddH2O and B was 0.1% formic acid (v/v) in acetonitrile.  The mobile phase 

flow rate was 0.3 mL/min.  Initial conditions were set at 90:10 A:B with a linear gradient to 80:20 

from 0 to 12 min, conditions were held at 80:20 from 12 to 18 minutes, followed by a linear 

gradient to 50:50 from 18 to 24 minutes and held at 50:50 until 30 minutes.  Gradient conditions 

were reset to 90:10 A:B from 30 to 32 minutes, and the column was equilibrated for 10 minutes at 

initial conditions prior to the next run.  Following the separation, the column effluent was 

introduced by negative mode electrospray ionization (ESI) into an Agilent MSD-TOF 

spectrometer. The parameters were: ESI capillary voltage: −3.5 kV, nebulizer gas: nitrogen at 35 

psi and 350 °C, drying gas flow rate: 9.0 L/min, fragmentor voltage: 165 V, skimmer: 60 V and 

OCT RF V: 250 V.  Spectroscopic (UV at 280 nm) and mass data (from m/z 60-1000) were 

collected and analyzed using MassHunter software. The percent conversion was calculated by 

integrating the all peaks in the chromatogram. 

 

 An isocratic reverse-phase ultra-high performance liquid chromatography method (RP-

UPLC) using the PATROL UPLC Process Analysis System (Waters Corp.) was developed to 

determine the yield of atropine reaction in continuous flow. The method was developed using an 

ACQUITY BEH C18 (130 Å pore size, 1.7 µm particle size, 2.1 mm ID X 100 mm) as the 

stationary phase with potassium dihydrogen phosphate:methanol (80:20, v/v) at pH = 3.5 as the 

mobile phase. The mobile phase was prepared by dissolving potassium dihydrogen phosphate 

powder (Sigma-Aldrich, CAS: 7778-77-0) in HPLC-grade water (Fisher Scientific, CAS: 7732-

18-5), which is pH-adjusted via titration using 85% orthophosphoric acid (Fisher Scientific, CAS: 

7664-38-2,7732-18-5). The mobile phase flow rate through the column was 0.4 mL/min and the 
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column temperature was maintained at 40 °C during the run. The detection of eluted atropine was 

accomplished using a dual-channel PDA detector at 190 and 225 nm in conjunction with 

ApexTrack analysis for integrating the atropine peak that was matched with an atropine standard 

chromatogram. The quantitation was then performed via interpolation using a standard calibration 

curve at 225 nm. Three standard stock solutions of atropine sulphate were prepared by dissolving 

atropine sulphate powder (Sigma-Aldrich, CAS: 5908-99-6) in the mobile phase to generate 

concentrations of 1.20 mg/mL, 1.17 mg/mL, and 0.960 mg/mL. The solutions were used to 

generate three separate calibration curves by diluting the stock solutions inline to 1X, 2X, 4X, 8X, 

16X, and 32X to cover a concentration range of 20-1200 µg/mL; the mean R2 was 0.9997 (n=5). 

The mean slope of the curves was used for quantitation. The method’s precision was calculated by 

repeated injections of the same standard solution without any change to the chromatographic 

methods. 

 

 1H-NMR and 13C-NMR samples were prepared by dissolving ~10 mg of sample in CDCl3 

and spectra were acquired using a Bruker AV-III-500-HD NMR spectrometer (Billerica, 

Massachusetts, USA). The NMR data was analyzed using MestReNova 10.0 software. 

 

 A homebuilt electrospray source was enclosed in a polypropylene tube (15 mL Falcon tube) 

with a small piece of glass wool for deposition. The reaction mixture was pumped through a fused 

silica capillary at a rate of 10 µL/min and a high voltage of 5kV is applied through the stainless 

steel needle of the 250 µL Hamilton gastight syringe. A nitrogen sheath gas was used at 100 psi. 

The sprayed droplets were collected on the gas wool and washed with a solvent for analysis by 

nanoESI or to be telescoped for the next step in the reaction.  

 

 Two homebuilt electrospray sources were angled at 22.5o with the intersection of the spray 

plumes occurring at 4 cm. The deposition surface of glass wool in a polypropylene tube was placed 

at varying distances from the intersection. Each ES emitter was connected to two syringes via 

tubing and mixed in line with a mixing T. Each syringe had a flow rate of 5 µL/min with a total 
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flow rate of 10 µL/min for each ES emitter. The high voltage was applied through a platinum 

electrode in a T junction. A nitrogen sheath gas was used at 100 psi. The sprayed droplets were 

collected on the gas wool and washed with a solvent for analysis by nanoESI. 

 

 For the synthesis of intermediate 4, 0.1 mmoles of solid tropine 2 and 0.1 mmoles of 

phenylacetic acid or phenylacetyl chloride 5 were added to 100 µL of aqueous 3 M HCl or 100 µL 

of 4 M HCl in dioxane and sprayed for 5 minutes. For the synthesis of intermediate 4, 0.1 mmoles 

of solid tropine 2 and 0.1 mmoles of phenyl acetic acid or phenylacetyl chloride 5 were added to 

100 µL of solvent and sprayed for 5 minutes. All deposited products were washed with 500 µL 

ACN and analyzed via nanoESI-MS.  

 

 A DMF solution of tropine 2, HCl in dioxane and phenylacetyl chloride 6 were individually 

loaded into 1 mL ILS gas tight glass syringes. Each solution was in turn dispensed into the SOR 

3225 reactor to react and produce intermediate 4. Similarly, a DMA solution of tropine 2 and 

phenylacetyl chloride 5 were loaded in a pair of 1 mL syringes and reacted onto the SOR 3227 

reactor to prepare for intermediate 4. The esterification reaction was run at 100 °C, 150 °C and 

200 °C and for a residence time of 1 min, 2 min, 5 min, and 8 min. The intermediate was collected 

without any quenching. The subsequent nESI-MS and HPLC-MS analyses were performed 

without further purification. In contrast, NMR analysis was performed after neutralization and 

extraction of the reaction mixture. 

 

 The first step product of the atropine synthesis was made by preparative ES spraying 200 

µL 1:1 0.5 M tropine in DMA: 0.5 M phenylacetyl chloride in DMA and then washing the 

deposited product from the glass wool with 500 µL DMA. The second step of the atropine 

synthesis was prepared by spraying 50 µL of the following solution: 10 µL Step 1 product, 30 µL 

36-37% formaldehyde solution in water and 30 µL 1M base in DMA. The glass wool was 

quenched with 500 µL water and the product was extracted with 100 µL DCM. The preparative 

ESI product was analyzed via nanoESI. 
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 The first ES emitter sprayed the step 1 reagents to form the intermediate and the first 

syringe contained 0.1 M tropine in DMA and the second syringe contained 0.1 M phenylacetyl 

chloride in DMA. The second ES emitter sprayed the second step reagents and the first syringe 

contained 1 M 1,5-diazabicyclo[4.3.0]non-5-ene in DMA and the second syringe contained 36-37% 

formaldehyde solution in water. A total of 100 µL of each reagent was sprayed for 20 minutes. 

The glass wool was quenched with 2 mL water and the product was extracted with 100 µL DCM. 

For analysis via nanoESI, 10 µL of the DCM extract was diluted in 90 µL of ACN. 

 

 The DMA solution of intermediate 4 and aqueous formaldehyde solution with nine bases 

were loaded onto a pair of 1 mL glass syringes and delivered at temperatures starting from room 

temperature to 200 °C. All the bases were diluted in DMA. The residence times of the reactions 

also varied from 10 sec to 8 minutes depending on the base in a Labtrix SOR reactors, such as the 

3227, 3225, 3223 or 3222 reactors. Deionized water was loaded into the last 1 mL glass syringe 

and delivered to quench the reaction. 

 

 The DMA solutions of tropine 2 (1.0 equiv) and phenylacetyl chloride 5 (1.0 equiv) were 

loaded onto a pair of 1 mL glass syringes and delivered to SOR 3221 at 100 °C in 2-min residence 

time. The solution coming from SOR 3221 was entered to the first inlet of SOR 3223. A DMA 

solution of 1,5-diazabicyclo[4.3.0] non-5-ene base + formaldehyde solutions (4.0 equiv)  and water 

were loaded onto a pair of 1 mL glass syringes and delivered to SOR 3223 at 70 °C in 6-min 

residence time. 

2.4 Conclusion 

 Preparative ES was compared with continuous microfluidic synthesis of atropine. 

Preparative ES was used to explore new pathways for the two steps synthesis of atropine. This 

investigation led to a highly efficient first step esterification of tropine to intermediate without the 

use of tropine salt or the additional supplement of an acid, which is a route first published by the 
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authors in Wleklinski et.al.42 The first step was optimized in flow utilizing the information 

obtained in charged microdroplets. The intermediate from the first step in preparative ES was used 

to screen 22 unique bases for the base catalyzed aldol condensation to form the final product, 

atropine. Seven bases were shown to yield atropine and with the exception of transient solids, all 

lead to the production of atropine in flow. In both preparative ES and continuous microfluidics, 

the base with the highest percent conversion and lowest percent conversion to byproducts was 1,5-

diazabicyclo[4.3.0]non-5-ene.  

 In preparative ES the first step yielded a percent conversion of 55.3% to intermediate and 

the second step yielded a 47.4% conversion to atropine, with an overall percent conversion of 26.2% 

to atropine. In flow, the percent yield was 30.3% with a 42.2% percent conversion to atropine. 

Atropine was continuously synthesized in both preparative EES and microfluidics with a percent 

conversion of 23.5% in preparative EES and 33.45% yield in flow. This represents an increase in 

yield a factor of 4.34 and the 8-minute pathway is almost 1.9 times faster than the previously 

published state-of-the-art flow synthesis. The correlation of the data between preparative ES and 

microfluidics provides evidence that accelerated reactions in droplets can guide microfluidics. This 

is the first detailed investigation of spray reactions guiding microfluidic synthesis where 

preparative ES has been explicitly used for route screening, solvent screening and acid/base 

screenings on a large scale. Preparative ES was used as a rapid way to discover new synthetic 

pathways and this methodology led to faster optimization of microfluidic reactions by determining 

unsuccessful reaction pathways. Pathways discovery to determine new and faster reactions for 

formulations from raw materials can improve the current workflow and manufacturing in the 

pharmaceutical and chemical industries. 
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CHAPTER 3. HIGH THROUGHPUT EXPERIMENTATION AND 
CONTINUOUS FLOW VALIDATION OF SUZUKI-MIYAURA CROSS-

COUPLING REACTIONS 

Reproduced (adapted) from Jaman, Z.; Mufti, A.; Sah, S.; Avramova, L.; Thompson, D. H. ‘High 
Throughput Experimentation and Continuous Flow Validation of Suzuki-Miyaura Cross-Coupling 
Reactions’ Chem. Eur. J 2018, 24, 9546-9554 with permission provided by John Wiley and Sons and 
Copyright Clearance Center. 

3.1 Introduction 

 The development of automated high-throughput (HT) methods has been shown to boost 

lab productivity by rapid generation of comprehensive reaction data that enriches our 

understanding of reaction scope and limitations.1 HT experimentation (HTE) based on the 

screening of compounds across a range of settings have impacted many areas of biology, drug 

discovery, medicinal chemistry, 2, 3 and catalysis.4, 5 Automated reactions can often be run in 

parallel, but the downstream analysis is typically a bottleneck due to relatively slow 

chromatographic separation and quantitation. HTE coupled with mass spectrometry (MS) analysis 

can accelerate both the discovery and optimization of reaction conditions, particularly in the cases 

of chemical process development4, 6, 7 and (bio)pharmaceutical drug development where pressures 

to shorten the time to market are increasing.8, 9 HTE has been  challenging in the case of organic 

reaction optimization, especially for catalytic reactions that may employ solid catalysts or volatile 

organic solvents. 5, 6  

The central goal in reaction HTE is the discovery of the best conditions for a given set of 

precursors to identify reaction hotspots. After HTE, a quick validation of these reaction hotspots 

is used to build confidence in the hits identified by this method. Microfluidic reaction screening 

of the HTE hits are an ideal method for validating organic transformations10 under continuous flow 

conditions. This has been shown to be especially true for catalytic reactions that can be achieved 

under faster and greener conditions.11 Moreover, fast microfluidic synthesis of small organic 

molecules, coupled with continuous reaction monitoring using electrospray ionization mass 

spectrometry (ESI-MS) shows even greater promise for rapid optimization of continuous 

production methodology. 12-15   Here, we report a study of the Suzuki-Miyura (S-M) cross-coupling 
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reaction as a HTE test bed using ESI-MS as a readout tool. The S-M reaction was chosen because 

the carbon–carbon bond formation via palladium-catalyzed S-M cross-coupling is an important 

reaction for small molecule synthesis 16 that has been widely used. 17-19  

A simple, and efficient technique for identifying and optimizing S-M reaction conditions 

with different functional group tolerance is described. Biologically important synthons were 

synthesized using S-M cross coupling reaction without protecting the functional groups. The HT 

screening was used as a faster way of finding best reaction parameters that can lead to faster 

optimization of microfluidic reactions by eliminating failed reaction conditions. Decreasing the 

number of unsuccessful opportunities will result in different libraries that has compounds with 

various physicochemical properties. There is a high chance of finding drug candidates by building 

such library in a short time. 

The S-M reaction has already been reported under some limited ranges of flow conditions 
11, 20-22, nonetheless, we explored its utility toward the synthesis of biologically as well as 

pharmaceutically important synthons23-29 without protecting groups (Figure 3.1) in a microfluidic 

reactor using EtOH as the solvent to make broadly explore the utility of this transformation. 11, 19 

 

Figure 3.1 Biologically and materially important synthons containing common [1,1'-biphenyl]-4-
ol cores. 
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 An automated HTE of S-M reactions was performed in 96-well plates using 4-

hydroxyphenylboronic acid and 11 different aryl halides (Scheme 3.1) with order of addition, 

stoichiometry, temperature, and concentration as independent variables. These experiments led to 

the discovery of optimized batch conditions from hundreds of different reaction conditions using 

XPhosPdG3 catalyst and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as base. A small scale 

microfluidic reaction employing the best conditions from the batch reaction screening produced 

up to 98% yield of S-M coupled product by HPLC/MS-MS analysis, thus validating our finding 

from HT experimentations. 

3.2 Results and Discussion 

 

 A high-precision robot was used for the preparation of nanoliter scale reaction mixtures for 

automated HT screening of S-M reaction conditions with downstream MS analysis. The reactions 

were performed in a glass vials sealed within four 96-well aluminum blocks using EtOH as solvent 

and heating of single block for 1h either at 50 °C,100 °C,150 °C, or 200 °C. A highly sensitive 

triple quadrupole MS coupled to an autosampler was used for rapid investigation of the reaction 

product distribution. Full mass spectra in negative ion mode were recorded for each reaction 

mixture. 

 The S-M cross-coupling reactions were screened using 4-hydroxyphenylboronic acid, 

various aryl halides, and a commercially available palladium catalyst, XPhosPdG3 (Scheme 3.1), 

to explore the impact of different aryl halide substrates on reaction efficiency without the use of 

additional protection/deprotection steps. Reaction mixtures (45 µL of total volume of each well) 

were deposited in duplicate in 96 glass-lined Al well plates and the reactions heated at either 50 °C, 

100 °C, 150 °C, or 200 °C for 1 h before quenching to 20 °C, centrifuging, and diluting into 384 

well plates for MS analysis. Each square in Table 3.1 represents a unique reaction condition. The 

first two columns and last four columns are negative controls. Although the ionization efficiencies 

vary for each compound, the outcomes are reported on the basis of reaction product peak intensity 

to enable a simple and uniform comparison. 
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Scheme 3.1 scope evaluated in high-throughput experimentation of S-M cross-coupling reactions 
to generate various biphenyl products. 
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Table 3.1 HTE outcomes as a function of reagent addition order and substrate concentration in 
the reaction mixture. Each quantity is an average of two experimental measurements. Each set of 
similar substrates and stoichiometries appears as a set of four conditions wherein the top left, top 
right, bottom left and bottom right entries are reactions run at 200 °C, 150 °C, 100 °C and 50 °C, 
respectively. The first two columns (St. = 1:0) and last four columns (St. = (R'X:0 and 0:0) are 

the negative controls. Sub = substrates; St = stoichiometry.    

 

 Our initial HTE explored the S-M reaction by adding in sequence a mixture of 1, base, and 

catalyst solution in EtOH, followed by aryl halide (2-12) addition. Unfortunately, no product peak 

was detected in MS, although a prominent peak corresponding to the hydrolyzed boronic acid 

product was observed. These findings suggest that the catalyst was poisoned by the base while 

sitting idle at 20 °C during subsequent robotic reagent transfers over the intervening period (20 

min) before the reaction was initiated by heating. When the order of addition was changed to aryl 

halide and 1, followed by base and catalyst in sequence, the product peak was observed in resulting 

MS, although the product yields were not satisfactory (Table 3.1, A). We attribute these finding to 

the consumption of 1 by base before catalyst addition such that insufficient boronic acid was 

available to participate in the catalytic cycle. Nonetheless, when the base solution was added after 

the catalyst, a significant increase in product conversion was observed (Table 3.1, B) with the 

accompanied detection of self-coupled 1-1 product by MS. 

Addition Sequence: XPhos Pd G3 Base1+ R’X

Addition Sequence: XPhos Pd G3Base1+ R’X

Product Peak Intensity 

Min Max

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0
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Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

1+3, 100

200�, 
150�
100�, 
50�

1+3, 200

200�, 
150�
100�, 
50�

1+4, 100

200�, 
150�
100�, 
50�

1+4, 200

200�, 
150�
100�, 
50�

Product Peak Intensity 

Min Max



50 
 

 

Figure 3.2 Comparative coupling efficiencies for anisole-type biphenyl products formed under 
different temperature, and stoichiometric conditions. Reactant concentrations were 200 mmol 

except for 1+5 that was run at 100 mmol, 400 mmol DBU, and 10% XPhosPdG3. A = 1+2; B = 
1+3; C = 1+4; D = 1+5. 

 We subsequently utilized the optimal conditions identified in Table 3.1 for a broader screen 

of aryl halide substrates. Our results show that both electron-rich and electron-deficient aryl 

halides (2-12) were tolerated to produce cross coupled products in moderate to good yield as 

assessed by product peak intensities (Figure 3.2A-D). Comparison of the anisole family of 

precursors (2-5) revealed that the meta-positioned methoxy group (4, Figure 3.2C) provided more 

desired product than ortho (5, Figure 3.2D) or para (2&3, Figure 3.2A&B) due to the reduced 

electron donating contribution from the meta placement of this substituent.30  
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Figure 3.3 Comparative coupling efficiencies for aniline-type biphenyl products formed under 
different temperature and stoichiometric conditions.  Reactant concentrations were 200 mmol, 
400 mmol DBU, and 10% XPhosPdG3. A = 1+6; B = 1+7; C = 1+8; D = 1+10, E = 1+9, F = 

1+11, G = 1+12. 

 Electron-rich amino aryl halides (6-11) were also transformed to the corresponding 

biphenyl products, yielding moderate peak intensities for the cross-coupled products (Figure 3.3A-

G). As seen in the anisole family of compounds, the meta product, 17 (1+8, Figure 3.3C) produces 
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a higher peak intensity than para, 16 (1+6/7, Figure 3.2A&B), for the primary amine substrates. 

When aniline- and anisole-derived products were compared, higher product peak intensities were 

observed for the anisole family of compounds, 13-15, than the anilines series, 16-20 (Figures 3.2 

and 3.3). We attribute these finding to the greater electron donating property of the amine versus 

methoxy substituents such that formation of the aminophenyl palladium intermediate is less 

favorable in the rate limiting oxidative addition step of the catalytic cycle in the aniline series.  

Table 3.2 Product peak intensities observed for 504 unique S-M reactions run in bulk mode with 
the order of addition of base solution after the catalyst. Each quantity is an average of two 

experimental measurements. Each row indicates reactions of nine ratios of substrates including 
the control reactions at two different temperatures. Each set of similar substrates and 

stoichiometries appears as a set of four conditions wherein the top left, top right, bottom left and 
bottom right entries are reactions run at 200 °C, 150 °C, 100 °C and 50 °C, respectively. The first 

two columns (St. = 1:0) and last four columns (St. = (R'X:0 and 0:0) are the negative controls. 
Sub = substrates; St = stoichiometry. 

 

 The product peak intensities for secondary and tertiary were higher than those observed for 

the primary amines (Figure 3.3A-C vs. Figure 3.3D-F), consistent with the observation that 

primary amines are known to more readily coordinate with palladium catalysts than secondary or 

tertiary amines due to steric hindrance.31 In the case of the pyridine derivative, a higher product 
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�
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�
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peak intensity was observed due to the comparative electron deficiency of the pyridine ring relative 

to the aniline series (1+12, Figure 3.3G). 

 Table 3.2 shows the product peak intensities for 504 unique Suzuki-Miyaura reactions, 

employing one of 11 different aryl halides and 4-hydroxyphenyl boronic acid in the presence of 

DBU and 10% XPhosPdG3. Since some low level product peak intensities were observed in the 

negative control reactions, we used >50% peak intensity as a selection criterion to select reaction 

hotspots in this map for evaluation in a subsequent set of microfluidic reactions. 

 

 After identifying reaction hotspots from the high throughput experimentation campaign, 

we proceeded to test one of the favorable conditions for each reaction to determine the confidence 

level that could be assumed for the two different reaction formats (i.e., batch 96-well vs. 

continuous flow). For all microfluidic reactions, the reactions employing a 1:1 ratio of 4-

hydroxyphenylboronic acid and aryl halide were evaluated for 0.5, 1, 3 and 6 min residence times 

at either 100 °C or 150 °C. Reactions using 10% catalyst loadings were complicated by chip 

clogging problems shortly after initiating the reaction. This problem was obviated by reducing the  

 

Figure 3.4 Chemtrix reactor and fluid handling for continuous flow synthesis of S-M cross 
coupling reactions. A = 1:1 mixture of 4-hydroxyphenylboronic acid and aryl halide; B = DBU, 

C = XPhosPdG3. 

catalyst loading to 0.5% since prior work has shown that S-M transformations are more efficient 

in continuous flow than under traditional bulk reaction conditions due to superior mass and heat 

transfer and greater mixing efficiency in the narrow reactor channels. The order of addition did 
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not matter in the microfluidic synthesis since all the reagents come into contact within the same 

mixing region (Figure 3.4). The formation of the expected products was confirmed by TLC and 

MS. As the data in Table 3.3 shows, the results from microfluidic continuous reactions were 

comparable to the findings from bulk screening. 

Table 3.3 Comparison of microfluidic and bulk screening outcomes for S-M reactions performed 
under similar conditions using 200 mmol substrate loading and a 1:1 4-hydroxyphenylboronic 
acid:aryl halide stoichiometry. In the microfluidic reaction tables, time is reported in min and 

temperature in °C. 

 

 The data in Table 3.3 shows that the S-M reaction tolerates electron donating substitutes in 

the aryl halide substrate to afford the cross coupled products with varying efficiency. In both bulk 

and microfluidic experiments, meta (1+4) directed anisole biphenyl products showed higher 

product conversion than ortho (1+5), but in continuous flow processes, para (1+2 & 1+3) also 

showed higher product peak intensities (Figure 3.3 and Table 3.3).  Similarly, bulky tertiary amine 

(1+9) and pyridine (1+12) precursors generated higher product peak intensities in both the bulk 

screening and flow synthesis formats.  

Bulk Reactions µFluidic Reactions

Product Peak Intensity 
Min Max

1+2
SM

Product
1+2 1+2

Time   

Temp
0.5 1 3 6

13 200 °C 150 °C 100
100 °C 50 °C 150

1+3
SM

Product
1+3 1+3

Time   

Temp
0.5 1 3 6

13 200 °C 150 °C 100
100 °C 50 °C 150

1+4
SM

Product
1+4 1+4

Time   

Temp 
0.5 1 3 6

14 200 °C 150 °C 100
100 °C 50 °C 150

1+5
SM    

Product
1+5 1+5

Time   

Temp 
0.5 1 3 6

15 200 °C 150 °C 100
100 °C 50 °C 150

1+6
SM    

Product
1+6 1+6

Time   

Temp 
0.5 1 3 6

16 200 °C 150 °C 100
100 °C 50 °C 150

1+7
SM    

Product
1+7 1+7

Time   

Temp
0.5 1 3 6

16 200 °C 150 °C 100 �
100 °C 50 °C 150 �

1+8
SM 

Product
1+8 1+8

Time   

Temp
0.5 1 3 6

17 200 °C 150 °C 100
100 °C 50 °C 150

1+9

SM 
Product 1+9 1+9

Time   

Temp
0.5 1 3 6

18 200 °C 150 °C 100
100 °C 50 °C 150

1+10
SM

Product
1+10 1+10

Time   

Temp
0.5 1 3 6

19 200 °C 150 °C 100
100 °C 50 °C 150

1+11
SM

Product
1+11 1+11

Time   

Temp
0.5 1 3 6

20 200 °C 150 °C 100
100 °C 50 °C 150

1+12
SM

Product
1+12 1+12

Time   

Temp
0.5 1 3 6

21 200 °C 150 °C 100
100 °C 50 °C 150

Bulk Reactions µFluidic ReactionsA B
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 We next investigated the negative results obtained from HTE to evaluate those reaction 

conditions under continuous flow (Table 3.4).  In both cases, almost no product peak was observed 

even at extended residence times (e.g., 15 min at 150 °C in the case of 1+8). 

Table 3.4: Comparison of microfluidic and bulk screening outcomes for S-M reactions that gave 
negative bulk reaction results. The same reaction conditions were used in each case with 200 

mmol substrate loading and 1:20 4-hydroxyphenylboronic acid:aryl halide stoichiometry. In the 
microfluidic reaction tables, the units are time in min and temperature in °C. 

 

 Next, we focused on testing the validity of using product ion intensities as a measure of 

reaction progress. The anisole and pyridine reaction products were selected for evaluation by 

HPLC/MS-MS since these products showed high peak intensities in both bulk screening and 

microfluidic reactions. 

Table 3.5 Quantified yields of some S-M microfluidic reactions using HPLC/MS-MS. The same 
reaction conditions were used in each case (i.e., 200 mmol substrate loading and 1:1 4-

hydroxyphenylboronic acid:aryl halide stoichiometry). Peak intensity values are multiples of 
1´106. 

 

1+3
SM

Product
1+3 1+3

Time   

Temp
0.5 1 3 6

13
200 °C 150 °C 100
100 °C 50 °C 150

1+8
SM

Product
1+8 1+8

Time   

Temp
0.5 1 3 6 15

17
200 °C 150 °C 100
100 °C 50 °C 150

Product Peak Intensity 
Min Max

Bulk Reactions µFluidic Reactions

Reaction 
Condition

13 (1+2) 13 (1+3) 14 (1+4) 15 (1+5) 21 (1+12)
Peak 

intensity %Yield Peak 
intensity %Yield Peak 

intensity %Yield Peak 
intensity %Yield Peak 

intensity %Yield

100 �, 0.5 min 1.1 3.4 3.1 13.8 1.3 46.8 0.6 3.5 6.1 23.2
100 �, 1 min 1.1 4.6 3.5 24.5 2.6 54.0 1.6 6.5 4.7 37.7
100 �, 3 min 1.8 6.1 7.6 27.8 3.7 70.9 2.1 15.1 5.1 47.7
100 �, 6 min 5.2 10.5 5.6 48.1 6.1 95.5 4.3 17.6 6.3 48.1

150 �, 0.5 min 2.3 8.0 4.4 48.7 2.8 61.9 1.2 5.6 1.8 45.8
150 �, 1 min 1.6 12.5 2.2 71.2 2.8 93.9 1.1 15.1 2.3 68.6
150 �, 3 min 3.2 35.4 2.8 71.8 3.9 95.6 2 17.1 12.2 70.5
150 �, 6 min 5.3 77.8 7.1 73.1 5.8 97.9 5.2 20.8 6.5 95.6
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A general trend of increasing product yield was observed for all anisoles (2-5) and pyridine 

12 starting materials (Table 3.5). High yields were observed for 14 and 21 as was expected from 

the screening results. In most of the cases, there was good agreement between peak intensities and 

quantitative product yield.  The reason for this outlier remains unclear at this time. Low yield for 

15 were observed due to the steric demands of the o-MeO substituent that requires more energy to 

derive the reaction27, 30. The rest of the figures and datasets related to this chapter are in 

APPENDIX B. 

3.3 Experimental 

 

 All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) and used 

without purification. All standards for quantitation were purchased from Combi-Blocks, Inc. (San 

Diego, CA). 

 

 Reaction plate set up and sample preparation for automated mass spectrometry analysis 

(384-well) was performed using a dual-bridge liquid handling Biomek FX robot (Beckman Coulter, 

Inc., Indianapolis, IN). A 96-tip head enables the simultaneous transfer of 96 samples under the 

same conditions (speed of aspiration and dispensing, height of pipetting at source and destination 

positions, pattern of pipetting, etc.). Although the 8-channel head treated less sample 

simultaneously, it provided more flexibility in terms of volumes transferred, layout of source and 

destination plates, pipetting height, and speed. The high capacity deck of this device fits all labware 

(robotic tips, plates, reservoirs) needed for one operational step. Tips boxes were transferred to the 

loading station with the Biomek FX gripper, thus minimizing human intervention into the process. 

All robotic tips were disposable polypropylene to maximize organic solvent and reagent 

compatibility. Polypropylene multi-well plates and reservoirs, as well as custom made Teflon 

reservoirs, were used during the experiments to evaluate catalyst and base resistance. Methods 

were developed and validated using the Biomek software-unique point-and-click programming 

tool. The standard pipetting techniques of the device were modified to optimize accurate transfer 

of highly volatile liquids. 
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 An aluminum heating block containing four, 100 W cartridge heaters was fabricated in-

house. Temperature control was provided by a CNi series temperature controller (Omega 

Engineering, Stamford, CT) and a solid state relay was used to modulate the 120 V power to the 

heaters to provide temperature control over a range from +20 °C to +200 °C. 

 

 The mass spectrometer used was a TSQ Quantum Access MAX connected to a Dionex 

Ultimate 3000 Series Pump and WPS-3000 Autosampler (Thermo Fisher Scientific, Waltham, 

MA). Electrospray ionization (ESI) analysis in full scan mode was used to monitor each reaction 

in both positive and negative ion modes. These data were recorded using parameters optimized for 

the ESI source and MS as follows: spraying solvent, acetonitrile; spray voltage +3.5 kV (positive 

mode) & -4.0 kV (negative mode); capillary temperature, 250 °C; sheath gas pressure, 10 psi; scan 

time, 1 s; Q1 peak width (FWHM), 0.70 Th; micro scans, 3. The autosampler settings were as 

follows: MS acquire time, 2 min; sample injection volume, 10 µL. Data acquisition and processing 

were performed using Thermo Fisher Xcalibur software. MS data from Xcalibar software were 

converted to text files using MS converter. Script was written for Perl terminal command to convert 

the text file to csv format. (see APPENDIX B to find the script) 

 

 All microfluidic validation reactions were performed using a Labtrix S1 (Chemtrix, Ltd, 

Netherlands). The system is same as described in chapter 2. Here, the staggered orientated micro-

reactor (SOR) chip 3225 (four inlets and one outlet, volume 10 µL) that has channels width 300 

µm wide and 120 µm deep was used. Gastight glass syringes mounted on the Chemtrix unit were 

obtained from Innovative Labor System (ILS, Philadelphia, PA). All operations were controlled 

via the Chemtrix GUI software. 

 

 Chromatographic separations were performed using an Agilent 1100 HPLC system with 

an Agilent XDB-C18 (2.1 × 50 mm, 3.5 µm) reversed-phase column for all anisole compounds, 

13-15, or an Agilent SB-CN (4.6 × 150 mm, 3.5 µm) reversed-phase column for 21 with a flow 
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rate of 0.4 mL/min at ambient temperature. The mobile phase consisted of A (0.1% formic acid in 

water) and B (0.1% formic acid in acetonitrile), starting with 10% B for 0.5 min, with a linear 

gradient of 10–100% B from 0.5-6 min, and a hold at 100% B from 6-7 min.  Column re-

equilibration was performed from 100-10% B from 7-7.1 min, with at 10% B hold from 7.1-10 

min.  Online mass spectrometry detection was performed using an Agilent 6410 triple quadrupole 

mass spectrometer, utilizing negative electrospray ionization mode.  ESI capillary voltage was 

−4.0 kV, nebulizer gas pressure was set at 40 psig, gas temperature was 325 °C, and the drying 

gas flow rate was 8.0 L/min.  Multiple Reaction Monitoring (MRM) was used and quantitation 

was accomplished using a multi-level calibration curve constructed with authentic standards 

ranging from 0.01 – 100 mM. (see APPENDIX B for details table) 

 

 High-throughput screening of palladium catalyzed S-M reactions were performed in 96-

well parallel synthesis metal block assemblies (Analytical Sales and Services, Inc., Flanders, NJ). 

The reaction mixtures in each glass vial insert of the 96-well metal block were prepared using the 

Beckman Coulter FX liquid handling robot. 4-Hydroxyphenylboronic acid (1, 400 mmol) and aryl 

halide (2-12, 400 mmol) in EtOH were pipetted via the Span 8 arm into a master plate and then 

distributed equally into another set of three 96-well plates using the 96-tip head (Figure 3.5). A 

master plate was made containing nine different ratios of boronic acid, 1, and aryl halide 2-12. 

Next, DBU (800 mmol) was dispensed separately into each plate followed by XPhosPdG3 (40 

mmol) solutions in EtOH using the 96-tip head. The top of the metal block was covered with a 

sheet of perfluoroalkoxy (PFA) film and two silicone rubber mats that fully covered the reaction 

vials. The metal blocks were heated at 50 °C, 100 °C, 150 °C or 200 °C using the home made 

block heater for 1 h (Figure 3.5). Extensive testing revealed that the reactor is sealed well enough 

to heat above the solvent boiling point with less than 5% solvent loss and no cross talk between 

wells. After 1 h heating, the plates were cooled to room temperature, centrifuged, and loaded back 

onto the deck of the liquid handling robot. Samples for MS autosampling were prepared in 384-

well plates by robotic pipetting and diluted by 1000-fold in EtOH. The MS analysis method 

includes pre-wash and post-wash of the needle to avoid contamination between sample analyses. 
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Figure 3.5 Schematic flow of preparation and analysis of microtiter plates for bulk screening of 
S-M reaction. 

 

 ESI-MS was performed using a TSQ Quantum Access MAX connected with Dionex 

Ultimate 3000 Series Pump and WPS-3000 Autosampler (Thermo Fisher Scientific, Waltham, 

MA). Full scan mode was used for ESI analysis. Data from Thermo TSQ Xcalibar software was 

converted to text files using MS converter (Figure 3.6). The Script that was used in the Perl 

terminal command to convert text files to the csv format is given in APPENDIX B. All other 

analysis was done using Microsoft Excel 2016. 

 

Figure 3.6 Schematic flow of 384-well plate preparation for MS and analysis using an auto- 
sampler. 

 

 A 1:1 mixture of 4-hydroxyphenylboronic acid (1, 400 mmol, 1 equiv) and aryl halide (2-

12, 400 mmol, 1 equiv) in EtOH was loaded into a 1 mL ILS gas tight glass syringe. DBU (800 
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mmol, 2 equiv) and XPhosPdG3 (2 mmol, 0.5%) solutions in EtOH were individually loaded into 

another two 1 mL ILS gastight glass syringes. Each solution was successively dispensed into the 

SOR 3225 reactor to engage the reactants. All cross-coupling reactions were run at either 100 °C 

or 150 °C, with residence times of 0.5, 1, 3, or 6 min. The reaction mixtures were collected after 

quenching and stored at -80 °C. The subsequent ESI-MS and HPLC/MS-MS analyses were 

performed without further purification. 

3.4 Conclusion 

 This investigation explored the use of a robotic HTE technique to execute reactions in 96-

well arrays that were subsequently coupled with fast MS analysis using an autosampler. Palladium 

catalyzed S-M cross-coupling reactions were screened in this system to generate a heat map of 

reactivity to inform conditions for the downstream scale up in continuous flow. A total of 648 

unique experiments using 4-hydroxyphenylboronic acid and 11 different aryl halides were 

explored in duplicate and the results reported as a function of MS peak intensity. The comparison 

of some successful reactions from HTE were run under microfluidic conditions; these experiments 

confirmed that the positive conditions identified by HTE were true positives. Furthermore, 

negatives reaction conditions identified by HTE also produced negative results under microfluidic 

conditions, even when long residence times at higher temperature were used. Moreover, 

quantitative analysis by HPLC/MS-MS provided evidence of a good correlation between HTE and 

microfluidic reactions.  

This HTE and microfluidic validation approach may be equally applicable to other catalytic 

and noncatalytic reactions to rapidly reveal vast reactivity landscapes to guide reaction 

optimization efforts. This approach might also be applied to the identification of the best conditions 

for challenging substrates or the discovery of new routes for the production of bioactive molecules. 

Further investigation along these lines will be needed to strengthen this correlation.  
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CHAPTER 4. ON-DEMAND RAPID SYNTHESIS OF LOMUSTINE 
UNDER CONTINUOUS FLOW CONDITIONS 

Reproduced (adapted) from Jaman, Z.; Sobreira, T. J. P.; Mufti, A.; Ferreira, C. R.; Cooks, R. G.; 
Thompson, D. H., ‘On-Demand Rapid Synthesis of Lomustine Under Continuous Flow Conditions’ 
Org. Process Res. Dev 2019, 23, 334–341 with permission provided by American Chemical 
Society Publications. 

4.1 Introduction 

 Lomustine, a widely used anticancer agent, is a highly lipophilic alkylating agent that 

produces chloroethyl carbonium ions and carbamylating intermediates in vivo.1, 2 This electrophilic 

compound attacks the nucleophilic sites on DNA to form alkylated products.1 Other anticancer 

agents such as mitomycin C, streptonigrin, bleomycin, and the anthracyclines require bioactivation 

to react with their cellular targets, whereas lomustine does not require pre-activation.3 Unlike 

alkylating agents that form adducts at the most reactive N7 position of guanine, chloroethylating 

compounds like lomustine form adducts at O6, leading to interstrand DNA cross-linking. If DNA 

repair does not occur, this crosslinking can cause double strand breaks during DNA replication, 

eventually leading to cell death via apoptosis.4 

Lomustine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitroso-urea (commercial names: CCNU, 

CeeNU, Gleostine) is used as an oral antineoplastic agent that is administered every 6 weeks. It 

was first evaluated in clinical trials in the late 1960s5 and approved by the US FDA in 19766 for 

primary and metastatic brain tumors as well as Hodgkin’s lymphoma.4 Bristol-Myers Squibb 

originally held the patent for the agent under the brand name CeeNu. In 2014, Next Source 

Biotechnology LLC (NSB) was approved by the FDA for the rebranding of lomustine under the 

trade name Gleostine.6 The average wholesale price for one dose of rebranded Gleostine is 

$1,645.68, while the generic formulation costs $203.38.6 The huge price discrepancy (700%) 

between Gleostine and the generic formulation has created patient access problems, thus 

motivating our effort to develop a rapid and low cost lomustine synthesis method by continuous 

flow. 
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Continuous flow synthesis has been reported as an efficient methodology and has been 

explored in both industry and academic labs for the last few decades.7-18 Compared to traditional 

batch synthesis processes, flow reactors provide better control over reaction conditions and 

selectivity owing to rapid mixing and precise control of reaction parameters such as temperature, 

stoichiometry, pressure, and residence time. The enhanced heat and mass transfer capabilities also 

provide safer and greener operational conditions.8, 19-25 Generally, these aspects of continuous flow 

synthesis contribute to improved chemical reaction efficiency25, 26 and shorter reaction times, 

enabling process intensification19, and more facile scale-up, with improved quality and consistency 

in production. Motivated by these factors, continuous flow synthesis of active pharmaceutical 

ingredient has recently become more attractive,23, 27-39 however efficient execution of multistep 

reactions in a telescoped manner still remains a challenge due to challenges arising from workup 

conditions32, 40, 41, solvent switches,42, 43 and flow rate differences.42, 44 Moreover, optimization of 

continuous flow conditions and analysis require significant investments in time and material.32, 45-

50  

Recently, our group reported a robust high throughput reaction screening method using 

desorption electrospray ionization mass spectrometry (DESI-MS) to guide scalable synthesis in 

continuous flow reactors at scale.49 Herein, we report the continuous flow synthesis of lomustine 

using an optimization protocol that was guided by DESI-MS. The final method consists of two 

reactions telescoped without isolation or purification of intermediates. This approach can reduce 

production costs radically by using a simple reactor set up and inexpensive starting materials 

(Scheme 4.1). To the best of our knowledge, this is the first synthesis of lomustine telescoped in 

continuous flow using an approach that does not interrupt the flow sequence due to intermediate 

workup requirements. 

Scheme 4.1 Synthesis plan for lomustine in continuous flow, where 4 = NaNO2/HCO2H and 5 = 
tBuONO. 
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 Lomustine, an important agent for treatment of brain tumors and Hodgkin’s lymphoma, 

has been synthesized using continuous flow methodology. DESI-MS was used to quickly explore 

a large number of reaction conditions and guide the efficient translation of optimized conditions 

to continuous lomustine production at a rate of approximately one dose/2h. Using only four 

inexpensive commercially available starting materials and a total residence time of 9 min, 

lomustine was prepared via a linear sequence of two chemical reactions performed separately in 

two telescoped flow reactors. Sequential offline extraction and filtration resulted in 63% overall 

yield of pure lomustine at a production rate of 110 mg/h. The primary advantage of this approach 

lies in the rapid manufacture of lomustine with two telescoped steps to avoid isolation and 

purification of a labile intermediate, thereby decreasing the production cost of this active 

pharmaceutical ingredient to approximately $5/gram in total material cost.  

4.2 Results and Discussion 

 

 The first step in the synthesis of lomustine (Scheme 1) is a fast reaction at room temperature. 

This transformation was optimized in continuous flow as a function of temperature, solvent, and 

stoichiometry to discover the conditions for maximum product yield. The reactions were 

monitored by TLC and MS using a triple quadrupole mass spectrometer operating in positive ion 

mode to afford rapid investigation of full mass spectra and product ion distribution for each 

reaction condition.  
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Figure 4.1 Microfluidic synthesis of intermediate 3 in a glass reactor chip (Chemtrix SOR 3225). 

A = 1 in THF; B = 2 in THF, C = TEA in THF. 

 A cascade method was designed to reveal the best conditions for the first step. 

Cyclohexylamine, 1, 1-chloro-2-isocyanatoethane, 2, and triethylamine (TEA) solutions were 

pumped through a Chemtrix 3225 SOR chip with automatic collection of the products in vials via 

an autosampler (Figure 4.1). The individual reaction mixtures were evaporated and the white solid 
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Table 4.1: Reaction conditions evaluated for the synthesis of 3 in flow using a Chemtrix S1 glass 
system fitted with a 3225 SOR reactor chip. 

Entry Solvent 
2 

equivalent 
Temperature, °C 

Residence 

time, sec 

Isolated 

Yield % 

1 EtOH 1 50 10 42.8 

2 EtOH 1 50 30 0.00 

3 EtOH 1 50 60 0.00 

4 ACN 1 50 10 56.2 

5 ACN 1 50 30 clogged 

6 ACN 1 25 30 clogged 

7 Toluene 1 50 10 clogged 

8 Ether 1 50 10 clogged 

9 THF 1 25 10 50.0 

10 THF 1 25 30 56.4 

11 THF 1 50 10 59.5 

12 THF 1 50 30 62.1 

13 THF 1 65 10 47.5 

14 THF 1 65 30 29.1 

15 THF 1.2 50 10 61.2 

16 THF 1.2 50 30 64.8 

17 THF 1.2 50 60 71.3 

18 THF 1.4 50 10 67.1 

19 THF 1.4 50 30 82.0 

20 THF 1.4 50 60 91.7 

21 THF 1.4 50 180 82.8 

washed with cold Et2O before drying under vacuum for overnight prior to analysis by TLC, MS, 

MS/MS, and NMR (1H and 13C). 
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 Parameters such as residence time (t), reaction temperature (T), and 1-chloro-2-

isocyanatoethane:cyclohexylamine ratio were investigated systematically under continuous flow 

conditions. As shown in Table 1, product yield dropped sharply in EtOH at longer residence times 

(entries 1−3) due to ethanolysis of the 1-chloro-2-isocyanato-ethane starting material. Though the 

yield of 3 in ACN was significant, its low solubility in this solvent led to significant chip clogging 

(entries 4−6). Similar clogging problems were found for toluene and Et2O, even at low 

concentrations (entries 7−8). The yield increased to 50-62% with longer residence times (entries 

9−14) in THF, reaching a maximum when t = 30 s at 50 °C and decayed rapidly with increased 

temperature (entries 13, 14) due to increased product decomposition at elevated temperature. The 

yield of 3 was also found to increase with proportions of 2 ratio (entries 15-21), whereas longer 

residence times promoted product decomposition (entry 21). Consequently, a maximum yield of 

intermediate 3 (92%) was achieved under conditions of t = 60 s, T = 50 °C, and 1.4 equivalents of 

1-chloro-2-isocyanatoethane (entry 20).  

 

 We employed DESI-MS to evaluate the impact of solvent, concentration and nitrosation 

reagent type on the efficiency of lomustine production. DESI-MS was originally applied to the 

surface analysis of intact samples such as biological tissues for cancer diagnosis or human 

fingerprints for drug detection,51, 52 although more recently, the DESI-MS approach has been used 

for reaction analysis.49 This approach is based on the phenomena of reaction acceleration that 

occurs within confined volumes such as microdroplets that originate from spray-based MS 

ionization processes.51 MS analysis speeds approaching 10,000 reaction spots/hour can be 

achieved by this technique.49 

 As shown in Scheme 4.1 (2nd step), two nitrosation methods were investigated. First, the 

efficiency of sodium nitrite, 4, in formic acid as the nitrosation reagent toward the conversion of 

3 to lomustine was evaluated. This conversion was then compared with tert-butyl nitrite (TBN, 5) 

as the nitrosation reagent. DESI-MS was used to evaluate the NaNO2/HCO2H transformation 

under different reactant concentrations and solvents. The expected m/z 234 value for lomustine 

was not observed. Analysis of a commercial lomustine sample yielded a very similar MS, 

suggesting that fragmentation occurs readily during the ionization process. Triple quadrupole MS 
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with electrospray ionization, as well as ion trap mass spectrometry coupled with DESI, revealed 

the presence of a stable lomustine ion at m/z 169. This was further confirmed by the fact that the 

losmustine fragments from this reaction matched with commercially available lomustine (See 

APPENDIX C for the figures). Reactions for all NaNO2 concentrations in THF:H2O worked better 

than for ACN:H2O (Figure 2, A). Also, the fragments from 3 were most abundant in the ACN:H2O 

reactions compared to reactions in THF:H2O, suggesting that the conversion of starting material 

was comparatively sluggish in ACN:H2O.  Next, eight different solvents (EtOH, MeOH, DCM, 

ACN, toluene, DMSO, THF and EtOAc) were compared for guiding the continuous flow synthesis. 

All eight solvents produced similar outcomes using 4 as the nitrosation reagent (Figure 2, B). When 

5 was used, lomustine was detected in all solvents except THF and EtOAc (Figure 2, C). 

 

Figure 4.2 DESI-MS plate maps showing the presence or absence of expected ions at each spot 
where the nitrosation reaction conditions were tested using different stoichiometries and with 

commercially available standards. Blue dots indicate the presence of the m/z 169 expected stable 
fragment for the reaction product (successful reaction), Red dots indicate that the expected m/z 

for the reaction product was not present at the reaction spot (unsuccessful reaction condition). A: 
Concentration screening using the lomustine ion (m/z 169) intensity and NaNO2 as nitrosation 

reagent; B: Solvent screening using the lomustine ion (m/z 169) intensity and NaNO2 as 
nitrosation reagent; C: Solvent screening using the lomustine ion (m/z 169) intensity and 

tBuONO as nitrosation reagent. 

 

 We utilized the reaction conditions emerging from the DESI-MS high throughput 

A B C
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experiments to optimize the flow synthesis and also check whether unsuccessful reactions 

identified by DESI-MS would also negatively translate under flow conditions. From the DESI-MS 

experiments, THF was identified as the best solvent for nitrosation using 4. Excess 4 was also used 

to maximize conversion of 3 to lomustine since the nitrosation reagents are hygroscopic and 

readily oxidize to nitrate.53, 54 Overall, the DESI-MS experiments were in excellent agreement with 

the outcomes of flow reaction conditions in terms of stoichiometry, reagents and solvents. 

 A series of reactions (Table 4.2) were performed to maximize the conversion of 3 to 

lomustine under continuous synthesis conditions (Figure 4.3). Initially, we examined the reaction 

at 0 °C with a residence time of 30 sec using TLC and MS to monitor the reaction progress. 

Gratifyingly, lomustine was obtained through this very short reaction time, albeit in low 

conversion (Table 2, entry 1). A systematic evaluation of residence times led to good lomustine 

yields and starting material conversions, however, longer residence times appeared enhance the 

decomposition of lomustine (Table 2, entries 2-6).  Consequently, we kept the temperature 

constant at 0 °C to avoid NaNO2 decomposition of  sodium nitrite to the diazonium salt that occurs 

at higher temperatures.54 

 

Figure 4.3 Microfluidic synthesis of lomustine using NaNO2/HCO2H as nitrosation reagent in a 
Chemtrix 3225 SOR glass reactor chip. A = 3 in THF; B = HCO2H (neat), C = NaNO2 in 

MeOH:H2O (4:1). 

Different purification methods were evaluated to isolate pure lomustine.  At first, the 

product was extracted with Et2O (3 times) to exploit the low solubility of 3 in this solvent (Method 
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1). Unfortunately, the TLC analysis revealed the presence of 3 in the organic layer as well as in 

the aqueous layer. Therefore, the combined organic extracts were dried over anhydrous Na2SO4 

and concentrated in vacuo to produce a yellowish oil that re-dissolved in Et2O, heated and cooled 

in an ice bath to precipitate 3 from the mixture. NMR analysis of the filtrate revealed that 22% of 

3 remained in the isolated lomustine product. Next, we purified the product by recrystallization 

from ACN (Method 2). Although we obtained very pure lomustine as identified by NMR analysis, 

recovery using this approach was low. Finally, we found that hot filtration from petroleum ether 

removed the insoluble 3 impurity (Method 3).  Concentration of the filtrate after drying gave pure 

lomustine without detectable amount of 3 by NMR. Using this method, we obtained 74% isolated 

yield of pure lomustine under the conditions of 0 °C reaction and a residence time of 5 min using 

3 equivalents of 4 (see APPENDIX C for NMR). 

Table 4.2 Isolated yields of lomustine under different reaction conditions using 4 as the 
nitrosation reagent. Temperture = 0 °C, solvent = MeOH:H2O (4:1) 

Entry 
Residence time, 

min 

Isolated Yield 

(Method 1) % 

Isolated Yield 

(Method 2) % 

Isolated Yield 

(Method 3) % 

1 0.5 26.8 --- 43.7 

2 1 48.8 --- 50.6 

3 3 51.6 41.2 63.1 

4 5 79.0 54.4 74.5 

5 8 59.0 --- 68.7 

6 10 50.2 --- 65.3 
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Figure 4.4 Microfluidic synthesis of lomustine using 5 as nitrosation reagent in a Chemtrix 3223 
SOR glass reactor chip. A = 3 in ACN:EtOH (3.7:1) ; B = 5 in ACN. 

Table 4.3 Synthesis of lomustine under at different reaction conditions using 5 as the nitrosation 
reagent. 

Entry Solvent (3.7:1) 
Temperature, 

(°C) 

Residence 

time, (min) 

Isolated 

Lomustine 

Yield (%) 

1 ACN:EtOH 50 0.5 68.3 

2 ACN:EtOH 50 1 69.8 

3 ACN:EtOH 50 3 60.0 

4 ACN:EtOH 50 5 58.8 

5 ACN:EtOH 50 8 51.9 

6 ACN:EtOH 50 10 49.4 

7 ACN:EtOH 25 0.5 48.8 

8 ACN:EtOH 25 1 54.1 

9 ACN:EtOH 25 3 66.5 

10 ACN:EtOH 25 5 79.3 

11 ACN:EtOH 25 8 91.2 

12 ACN:EtOH 25 10 89.8 

13 THF 25 3 36.5 
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 The reaction was also optimized with respect to residence time, temperature, and solvent 

using 5 as nitrosation agent (Figure 4.4 and Table 4.3). This optimization process led to the finding 

that an elevated residence time (8 min), lower temperature (25 °C) and increased 5 ratio (3 equiv) 

resulted in the most efficient conversion to lomustine (91% isolated yield) after Method 3 

purification (Table 4.3, entry 11). 

 

 The next step was to adapt the whole two step sequence to a continuous flow setup. We 

sought to telescope the carbamylation and nitrosation reactions using the Chemtrix reactor chips, 

however, an extraction needed to be incorporated between the steps to remove the TEA present in 

the first reaction to avoid competitive consumption of the nitrosation reagent in the second step. 

We achieved this objective by incorporating a commercially available Zaiput liquid-liquid 

extractor to remove the base before the nitrosation step and by re-optimizing the synthesis using 

FEP tubing reactors (Figure 4.5). In the beginning, the best reaction conditions were a 1 min 

residence time at 50 °C for the first step and a 5 min residence time at 0 °C for the second step, 

yielding 43 mg (51.8% overall yield) of pure lomustine (Table 4.4, entry 1). Efforts to improve the 

lomustine yield by changing the residence times of either the first or second steps were 

unsuccessful in the FEP tubing reactor using 4 as nitrosation reagent (Table 4.4, entry 1-4). 

 
 

Figure 4.5 Schematic for the telescoped synthesis of lomustine using NaNO2/HCO2H (4) as 
nitrosation reagent. 
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Table 4.4 Lomustine synthesis yields for telescoped reactions under different reagents, residence 
time, stoichiometry, and temperature conditions. 

Entry 

Nitrosation 

reagent Step 1 Step 2 

TEA 

Stoichiometry  

Isolated 

Lomustine 

Yield % 

1 4 1 min, 50 °C 5 min,  0 °C 1 51.8 

2 4 2 min, 50°C 5 min,  0 °C  1 44.2 

3 
4 10 min, 

50 °C  
5 min,  0 °C  

1 
38.6 

4 
4 10 min, 

50 °C  
3 min,  0 °C  

1 
24.0 

5 5 1 min, 50 °C  5 min,  50 °C  1 41.5 

6 5 1 min, 50 °C  5 min,  25 °C  1 21.8 

7 5 1 min, 50 °C  8 min,  25 °C  1 24.6 

8 5 1 min, 50 °C  8 min,  25 °C  0.1 55.5 

9 5 1 min, 50 °C  8 min,  25 °C  0.01 63.7 

 

 Subsequent telescoping experiments indicated that 5 was a better nitrosation reagent than 

4 for the efficient synthesis of lomustine in flow. This is also true when the synthesis of lomustine 

were performed separately in glass reactor chips (Table 4.2 and 4.3). The final optimized 

conditions were 1 min reaction time at 50 °C for the first step and 8 min reaction time at 25 °C for 

the second step (Figure 4.6). As the small amount of extracted TEA from the first step minimized 

the TBN activity, lowering the amount of TEA used led to an increased production of lomustine 

(Table 4, entries 7-9) such that 1% TEA produced 110 mg (63% overall yield) of pure isolate 

lomustine via this reaction setup (Table 4.4, entry 9). TLC, NMR (1H and 13C), MS and MS/MS 

data of lomustine obtained by this telescoped continuous route were a direct match with values 

measured for commercially available lomustine.  
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Figure 4.6 Schematic for the final telescoped synthesis of lomustine using 5 as a nitrosation 
reagent. 

HPLC-MS was used to certify the purity of the synthesized lomustine and compare the 

total ion chromatogram (TIC) values of this material with a commercial lomustine standard. The 

TIC profile fully overlapped with the commercial standard without the appearance of any new 

byproducts (Figure 7). 

 

Figure 4.7 Total ion chromatogram (TIC) from HPLC-MS/MS and comparison between 
synthesized lomustine (top, red) and commercially available lomustine (bottom, black). 

4.3 Experimental 

 

 All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, Missouri) and 

used without any purification. Intermediate 3 standard was purchased from 1Click Chemistry, Inc. 

(Kendall Park, NJ). Lomustine was purchased from ApexBio (Houston, TX). 
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 Assay plate set up and sample preparation steps for DESI-MS were done using a Biomek 

i7 (Beckman Coulter, Inc., Indianapolis, IN) dual-bridge liquid handling robot. A 384-tip head was 

employed to enable simultaneous transfer of 384 samples under the same conditions (speed of 

aspiration and dispensing, height of pipetting at source and destination positions, pattern of 

pipetting, etc.). An 8-channel head was used to provide more flexibility in terms of volumes 

transferred, layout of source and destination places, pipetting height, speed, and reaction 

stoichiometry. The high capacity deck accommodated all labware (robotic tips, plates, reservoirs) 

needed for assembling one reaction step. All robotic tips were made of chemically resistant 

polypropylene and disposable. Polypropylene multi-well plates and reservoirs, as well as custom 

made Teflon reservoirs were used during the experiments for reagent solutions. Methods were 

developed and validated using the Biomek point-and-click programming tool. Standard pipetting 

techniques used in this software were modified to optimize accurate transfer of highly volatile 

liquids. 

 

 Samples were analyzed using a Thermo Fisher TSQ Quantum Access MAX mass 

spectrometer that was connected with a Dionex Ultimate 3000 Series Pump and WPS-3000 

Autosampler (Thermo Fisher Scientific, Waltham, MA). Electrospray ionization (ESI) analysis in 

full scan mode was used to monitor each reaction in both positive and negative ion modes. These 

data were recorded using optimized parameters for the ESI source and MS as follows: spraying 

solvent, ACN; spray voltage +3.5 kV (positive mode) and -4.0 kV (negative mode); capillary 

temperature, 250 °C; Sheath gas pressure, 10 psi; scan time, 1 s; Q1 peak width (FWHM), 0.70 

Th; micro scans, 3. The autosampler settings were as follows: MS acquire time, 2 min; sample 

injection volume, 10 µL. Thermo Fisher Xcalibur software was used to process the data from the 

MS spectrometer.  

 

 The first and second steps of the lomustine synthesis were individually optimized using a 

Labtrix S1 (Chemtrix, Ltd, Netherlands) fitted with glass microreactor containing staggered 

orientated ridges (SOR): chips 3223 (three inlets and one outlet, volume = 10 µL) and 3225 (four 
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inlets and one outlet, volume = 10 µL) having channel widths of 300 µm and channel depth 120 

µm. The S1 unit is able to independently drive five syringes connected to the micro reactor 

mounted on a Peltier heating and cooling unit. All the gastight glass syringes were bought 

separately from Hamilton Company (Hamilton, Reno, Nevada). FEP tubing and fittings were used 

to connect the syringes with the selected connection port on the microreactor. All operations were 

controlled using a ChemTrix GUI software installed on a laptop that was connected to the Labtrix 

S1 via an USB cable. 

 

 HPLC/MS analysis was performed using an Agilent 6545 UPLC/quadrupole time-of-flight 

(Q-TOF) mass spectrometer (Palo Alto, CA), with an Agilent XDB-C18 column (3.5 µm, 150 x 

2.1 mm i.d.) and 5 µL injection volume.  A binary mobile phase, consisting of solvent systems A 

and B was used. A was 0.1% formic acid (v/v) in ddH2O and B was 0.1% formic acid (v/v) in 

ACN.  Isocratic elution of A:B at 95:5 was used, with a column flow rate of 0.3 mL/min.  

Following the separation, the column effluent was introduced by positive mode electrospray 

ionization (ESI) into the mass spectrometer.  High mass accuracy spectra were collected between 

70 – 1000 m/z.  Mass accuracy was improved by continuously infusing Agilent Reference Mass 

Correction Solution (G1969-85001).  The MS detection conditions were: ESI capillary voltage, 

3.5 kV; nebulizer gas pressure, 30 psig; gas temperature, 325 °C; drying gas flow rate, 8.0 L/min; 

fragmentor voltage, 130 V; skimmer, 45 V; and OCT RF V, 750 V. 

 

 The DESI-MS evaluation was done following the previously published method of  

Wleklinski et al49 except that the density of reaction spots was 1,536 spots/plate instead of 

6,144/plate using reagents that were pipetted into standard polypropylene 384-well plates using a 

liquid handling robot (Biomek i7; Beckman-Coulter, US). DESI-MS slides were fabricated from 

porous PTFE sheets (EMD, Millipore Fluoropore, Saint-Gobain) glued onto a glass support (Foxx 

Life Sciences). The PTFE sheet was cut with scissors and bonded to the glass slides using spray 

adhesive (Scotch Spray mount). No signs of interference from the glue was observed. The reagents 

were mixed at 1:1 stoichiometry in various solvents (EtOAc, THF, DMSO, Toluene, ACN, DCM, 

EtOH and MeOH) and rhodamine B dye was added to some wells of the plate as a fiducial marker. 
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After the reagents were mixed, 50 nL of the reactions were deposited onto a porous PTFE surface 

at 1,536 spot density using a magnetic pin tool equipped with slotted transfer pins. DESI-MS data 

was acquired using a linear ion trap mass spectrometer (LTQ XL; Thermo Scientific, San Jose, 

CA) equipped with a commercial DESI-imaging source (DESI 2D source, Prosolia Inc., 

Indianapolis, IN). The instrument was controlled using Xcalibur v. 4.0 software to run worklists 

for DESI-MS data acquisition. The DESI spray angle was 55o using MeOH as spray solvent, and 

with an applied voltage of 5kV.  Mass spectra were acquired at the positive ion mode over the m/z 

range of 50-500. The DESI-MS imaging lateral resolution was 350 µm. This was achieved using 

stage speed of 4,376 µm/sec and the instrument scan time of 80 ms. For data processing, data were 

visualized using an in-house software designed49 to automatically search for the m/z values of 

reactants, intermediates, and lomustine fragments to generate a YES/NO visualization output for 

each spot in the PTFE plate imaged by DESI-MS. Data files also were combined into .img files 

using Firefly software (Prosolia Inc., Indianapolis, IN). Ion images were plotted using BioMAP 

(Novartis, freeware). The expected m/z values for the lomustine fragments were plotted and 

visualized using the BioMAP rainbow false color scale where the minimum and maximum ion 

intensity values were set to the best contrast for each ion. 

 

 1H-NMR and 13C-NMR were acquired using a Bruker AV-III-500-HD NMR spectrometer 

(Billerica, Massachusetts, USA). Samples for NMR were prepared by dissolving ~5 mg of sample 

in CDCl3. MestReNova 10.0 software was used to analyze the 1H-NMR and 13C-NMR.  

 

 A solution of cyclohexylamine (1, 500 mmol, 1 equiv) in THF was loaded into 1 mL 

Hamilton gas tight glass syringe. Triethylamine (TEA) (500 mmol, 1 equiv) and 1-chloro-2-

isocyanatoethane (2, 700 mmol, 1.4 equiv) solutions in THF were individually loaded into another 

two 1 mL Hamilton gas tight glass syringes. Each solution was simultaneously dispensed into the 

SOR 3225 reactor to engage the reactants. The syringe containing 2 was protected from light by 

covering it with aluminum foil. The reactions were run at 25 °C, 50 °C and 65 °C at residence 

times of 10 sec, 30 sec, 60 sec and 180 sec. The reactions were monitored by TLC and ESI-MS. 

Product 3 was collected after evaporation and washing with cold Et2O. The white solid product 
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was stored in the dark at 4 °C. Any clogged chips or tubing of the setup was cleaned using THF 

and EtOH. The subsequent TLC, ESI-MS, MS/MS and NMR (1H and 13C) analyses were 

performed after purification. 

 

Scheme 4.2 Synthesis of 3 in flow. 

 

Figure 4.8 Set up of continuous flow synthesis of 3, using chemtrix S1 system. 

NMR 
1H NMR (500 MHz, CDCl3, ppm): δH = 4.84 (t, J= 5.85, 1 H), 4.42 (d, J = 7.35 Hz, 1 H), 3.62 (t, 

J=5.60Hz, 2 H), 3.54 (t, J=5.70Hz, 2 H), 3.51-3.45 (m, 1 H), 1.95-1.92 (m, 2 H), 1.72-1.67 (m, 2 

H), 1.62-1.58 (m, 1 H), 1.39-1.30 (m, 2 H), 1.19-1.06 (m, 3 H); 13C NMR (500 MHz, CDCl3, ppm): 
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SOR 3221
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   120 µm

Reactor volume: 1 µl

T-MIXER 3021
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   60 µm

Reactor volume: 1 µl

Quench volume: 1.5 µl

SOR 3222
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   120 µm

Reactor volume: 5 µl

T-MIXER 3022
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   60 µm

Reactor volume: 5 µl

Quench volume: 1.5 µl

SOR 3223
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   120 µm

Reactor volume: 10 µl

T-MIXER 3023
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Quench volume: 1.5 µl
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Reactor volume: 10 µl

T-MIXER 3025
Reactor  with  five  inlets  and  one

outlet: A+B+C=P1+D=P2+Q=P

Width channel: 300 µm

Depth channel: 60 µm

Reactor volume: 10 µl (=2+8µl)

Quench volume: 1.5 µl

SOR 3227
Reactor  with  three  inlets  and  one

outlet: A+B=P1+Q=P

Width channel:   300 µm

Depth channel:   120 µm

CATALYST REACTOR 3026
Catalyst reactor with two inlets and

one outlet: A+B=P1+C=P

Width channel: 300 µm

Depth channel: 60 µm
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δC= 157.04, 49.29, 45.25, 42.12, 33.88, 25.57, 24.9 (see APPENDIX C for the spectrum). 

ESI-MS 

 

Figure 4.9 Fragments from 1-(2-chloroethyl)-3-cyclohexylurea, 3. 

ESI-MS (m/z): 205/207 (M+H+), 227/229 (M+Na+). 

ESI-MS/MS of m/z 205: 205 (M+H+), 123 (C3H7ClN2O+H+), 83 (C6H11
+) (80 (C2H6ClN+) 

 

Figure 4.10 Full ESI-MS scan of commercially available 3 and synthesized 3 derived from flow 
under the reaction conditions of 50 °C, 1 min. 
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Figure 4.11 MS/MS of m/z=205 from commercially available 3 and synthesized 3 derived from 
flow under the reaction conditions of 50 °C, 1 min. 

 

 Stock solutions of 3 and nitrosation reagents were made at 4 different concentrations (50, 

100, 150, 200 mmol) in THF and ACN (Figure S2). Each reagent solution was also prepared (0.1 

M) in eight different solvents ((EtOAc, THF, DMSO, Toluene, ACN, DCM, EtOH and MeOH)  

(Figure S3). At first, 20 µL of 3 solution was dispensed into a 384-well master plate and then the 

corresponding nitrosation reagents added to the plate in a stoichiometry 1:1 using a Beckman i7 

liquid handling robot, resulting in a final volume of 40 µL in each well. Moreover, a master plate 

was made using only commercially available 3 and lomustine to compare the data (Figure S4).  

Rhodamine was dissolved in acetonitrile (0.25mg/mL) and transferred to a reservoir. A pin tool 

fitted with 50 nL pins was used to transfer solutions from the master plates as well as from the 

Rhodamine reservoir onto the DESI-MS substrates. The master plate was pinned three times in 

separate locations with reaction mixtures and Rhodamine once, resulting in 1,536 density on the 

microtiter plate used as the DESI-MS substrate.  
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Figure 4.12 (left & center) Direct DESI-MS data comparison between the two nitrosation 
reactions in different solvents. (right) DESI-MS data of commercially available 3 and lomustine 

standards.  The data was analyzed using BioMAP imaging software. 

 

 A solution of 3 (245 mmol, 1 equiv) in 98% formic acid was loaded into a 1 mL Hamilton 

gas tight glass syringe. NaNO2 (735 mmol, 3 equiv) solution in MeOH:H2O (4:1) was separately 

loaded into another 1 mL Hamilton gas tight glass syringe and dispensed into the SOR 3225 reactor 

to engage the reactants. The reactions were run at 0 °C at residence times of 30 sec, 1 min, 3 min, 

5 min, 8 min, and 10 min. For nitrosation with 5, a solution of 3 in ACN:EtOH (3.7:1) (200 mmol, 

1 equiv) and 5 in ACN (600 mmol, 3 equiv, protected from light by covering the syringe with 

aluminum foil) were loaded into two separate 1 mL Hamilton gas tight glass syringes and 

dispensed into the SOR 3223 reactor. All the reactions were monitored at two different 

temperatures (50 °C and 25 °C) at residence times of 30 sec, 1 min, 3 min, 5 min, 8 min, and 10 

min. Reaction progress was monitored by TLC and ESI-MS. The reaction mixtures were extracted 

by Et2O, evaporated, and dried over anhydrous Na2SO4. The crude oily product was purified by 

dissolving it in hot petroleum ether, hot filtering the solution, and evaporating the filtrate to dryness 

in vaccuo to give the yellowish solid lomustine that was stored at -20 °C. TLC, ESI-MS, MS/MS, 

NMR (1H and 13C), and yield analyses were performed after purification. Three purification 
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methods were examined to purify the compounds as described in the main manuscript. The NMR 

spectra for the different purification methods are shown here for comparison.  

 

Figure 4.13 Comparison of 1H NMR of lomustine synthesized by continuous flow for different 
methods of purification. Method 1: extraction with Et2O; method 2: recrystallization from CAN; 

method 3: hot filtration and recrystallization from petroleum ether 

ESI-MS 

 

Figure 4.14 Fragments of lomustine in MS 
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Figure 4.15 Full MS scan of commercially available lomustine and synthesized lomustine from 
flow. Reaction conditions were 25 °C, 8 min. 
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Figure 4.16 MS/MS of m/z=169 from commercially available lomustine and synthesized 
lomustine from flow. Reaction conditions were 25 °C, 8 min. 

 

 Reactors: For scale up and telescoping of the two steps, fluorinated ethylene 

propylene (FEP) tubing was used. The outer diameter of the FEP tube was 1/16 inches and the 

inner diameter is 0.8mm. The first reactor volume was 5 µL and the second reactor volume was 

100 µL. 
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 Experimentation: Cyclohexaneamine, 1 (1 M, 1 equiv) and triethylamine (0.01 M, 0.01 

equiv) were prepared in DCM separately. Next, the two separate solutions were mixed in a 1:1 

(v:v) ratio and loaded into a 5 mL Hamilton gastight syringe. Then, a solution of 1-chloro-2-

isocyanatoethane, 2 (0.7 M) was prepared in THF and loaded into a 5 mL Hamilton gastight 

syringe that was covered with aluminum-tape for light protection since it is light sensitive. The 

two syringes were connected to a T-connection and outlet of the T-connector was connected to the 

first tubing reactor using micro-tubes, check valves and other connectors (Figure S14 & S15). The 

setup for producing 3 was assembled and placed in a heated H2O bath that was maintained at 50 

°C. The outlet of the tube-reactor was connected to a four-way connector, where two of the outlets 

of the connectors were connected to a 10 mL Hamilton gastight syringe containing H2O and a 5 

mL Hamilton gastight syringe containing DCM. The four-way connector provide sufficient mixing 

for the extraction of the triethylamine base in the aqueous phase and leaving 3 in the organic phase. 

The fourth outlet was connected to the liquid-liquid separator (SEP-10) in which the DCM passes 

through the membrane carrying with it 3 to the next reaction step. The outlet of the aqueous phase 

from the separator was connected to a waste vial. For using sodium nitrite as a nitrosation reagent, 

the outlet of the organic phase was connected to a four-way connector. Sodium nitrite, 4 (1.5 M, 3 

equiv) solution in THF and formic acid were loaded into two separate 5 mL Hamilton gastight 

syringes and connected to the a four-way connector. The outlet of the four-way connector is 

connected to the second tubing reactor. When using TBN, 5, as a nitrosation reagent, we doubled 

the concentration of the starting material. The outlet of the organic phase from liquid-liquid 

extractor was connected to a T-connector, where one outlet was connected to a 5 mL Hamilton 

gastight syringe containing tert-butyl nitrite, 5 (5 M) in ACN. The outlet of the T-connector was 

connected to the second tubing reactor. The second reactor was placed in a H2O bath with a 

constant temperature of 25 °C and the outlet of this reactor was connected to a collection vial. The 

reactions were monitored by TLC and ESI-MS. The purification and analyses were conducted as 

described above, except that HPLC-MS analysis was performed to evaluate the purity of the 

product (Figures are in APPENDIX C). 

 TLC and Purification: Reaction progress was monitored by TLC using 1:1 EtOAc:Hexanes 

as eluent. Lomustine was visualized under shortwave UV light (230 nm), while 3 was observed 

after staining with ninhydrin solution and heating. The extraction and purification was conducted 

by taking 500 µL from the collection vial and washing it with 2 mL of H2O and 2 mL of Et2O and 
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extracted three times. The combined organic layers were dried using anhydrous NaSO4. The Et2O 

was evaporated and the yellowish oil/solid was dissolved in hot petroleum ether, hot filtered, and 

the filtrate was removed under vacuum. The resulting solid was recrystallized from petroleum 

ether. 

 

Figure 4.17 TLC monitoring during lomustine synthesis in flow. 

 

Figure 4.18 Comparison of TLC of telescoped lomustine synthesis using different equivalents of 
base 

NMR 
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H), 1.32-1.24 (m, 3 H); 13C NMR (500 MHz, CDCl3, ppm): δC= 151.78, 49.98, 40.03, 38.89, 33.09, 

25.39, 24.76 (NMR spectrum are in APPENDIX C). 

  

(Before stain) Under UV After Ninhydrin stain

Reaction mixture

Lomustine intermediate

Commercial 
lomustine

1	equiv TEA 0.1	equiv TEA 0.01	equiv TEA

Under	UV After	ninhydrin stain Under	UV After	ninhydrin stain Under	UV After	ninhydrin stain



89 
 

4.4 Conclusion 

 In summary, we have developed a rapid continuous synthesis of lomustine using DESI-MS 

to guide the selection of reaction conditions in the second step of the two steps overall 

transformation. The total residence time is 9 minutes to produce pure lomustine in 63% overall 

isolated yield compared to over 2 hours to generate a lower product yield using batch conditions.2, 

3, 55, 56The two synthetic steps were optimized separately in glass chips and then translated to FEP 

tubing for telescoped scaling of the whole process. Only one in-line workup step was required for 

the two-step reaction sequence. Mixed solvents were used in the telescoped reaction to avoid 

clogging due to the low solubility of 3. tButyl nitrite, 5, was found to be a milder and more efficient 

nitrosation reagent in this process to enable the isolation of pure lomustine via simple extraction, 

filtration and washing. This synthesis is a faster and greener process that affords a significant 

reduction in reaction time, lower waste production, and avoidance of any chromatographic steps. 

Using this method, 110 mg/hour of lomustine can be produced, equivalent to one dose/2h for an 

agent that is administered orally every 6 weeks. Scale up and in-line recrystallization of lomustine 

are in progress.  
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CHAPTER 5. HIGH THROUGHPUT EXPERIMENTATION AND 
CONTINUOUS FLOW VALIDATION OF NUCLEOPHILIC 

AROMATIC SUBSTITUTION REACTIONS 

5.1 Introduction 

 High throughput experimentation (HTE) technique allows the implementation of a 

large numbers of experiments in parallel, spending minimum amounts of compounds and time, 

and involving less labor per experiment.1, 2 The technique can boost the lab productivity by rapid 

generation of comprehensive data and knowledge for the selected transformation.1, 3 HTE based 

experiment focused across a range of settings have spread in biology, drug discovery4, medicinal 

chemistry5, 6 as well as catalysis.2, 7, 8 Analysis of the resulting large data sets can be a bottleneck. 

The discovery and optimization of reaction conditions in chemical process development can be 

accelerated when HTE is coupled with MS analysis.7, 9, 10 These impacts are particularly evident 

in the fields of pharmaceutical and biopharmaceutical industries where reduction in the time of 

experimental cycle is a necessity due to the higher importance of these product classes.11, 12 HTE 

described in this chapter is based on two well-established techniques: (i) desorption electrospray 

ionization (DESI) and (ii) bulk microtiter (small scale batch) reaction. The reaction product 

analysis for HTE is done using a quick DESI-MS method (usually < 1 s per reaction spot)13. DESI 

can accelerate reactions on a surface in droplets in some cases by reportedly reducing the energy 

required for desolvation of reagents.14, 15 

Nucleophilic aromatic substitution (SNAr) reactions are a versatile transformation in the 

modern organic chemistry arsenal16 and one of the important reactions used for making 

pharmacologically17, 18 and biologically important molecules.19-24 The SNAr reaction mechanism 

have been extensively investigated.25, 26 It involves stepwise addition–elimination process27-29 

wherein the first step involves nucleophilic attacks of the substrate to provide a Meisenheimer 

complex (MC) followed by the loss of the leaving group (LG) through either catalyzed or non-

catalyzed pathways.29-31 The reaction typically involves an amine as the nucleophile.25 This 

chapter reports SNAr reaction in HTE for both DESI and bulk microtiter formats that are coupled 

with electrospray ionization mass spectrometry (ESI-MS) using amines and aryl halides in 

presence of bases. 
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After HTE optimization, quick validation reactions of the hotspots were performed to 

increase confidence in the HTE findings. Microfluidic reactions versions of these are attractive 

alternatives for these transformations in organic synthesis, especially in catalysis, since continuous 

flow methods have shown great potential to achieve faster syntheses in a greener way32 for more 

than a decade. Moreover, fast microfluidic synthesis of small drug molecules and analysis using 

ESI-MS has been reported by our group33-36. The SNAr reaction is already known in flow37, but we 

chose new substrates for this study since these derivatives are biologically as well as 

pharmaceutically important synthons.10 The preparation of automated SNAr reactions mixtures for 

both HTE methods was performed in glass-lined 96-well metal plates using sixteen different 

amines and thirteen different aryl halides. Additional variables included bases, reaction solvent, 

DESI analysis spray solvent, and temperature at various time points in the bulk reaction. 

 

 An important class of reactions, nucleophilic aromatic substitution (SNAr), was explored 

using HTE techniques. A total of 3,072 unique reactions were evaluated in DESI and bulk 

techniques using only approximately 3.5 sec/reaction for analysis. Microfluidic reactions were also 

performed to determine the correlation between bulk, DESI and flow based on heat map finding 

from HTE.  

5.2 Results and Discussion 

 

 Automated preparation of the HTE of SNAr reaction plates were done using a Beckman i7 

high-precision nanoliter robot in conjunction with high throughput MS analysis. Two high 

throughput experimentation methods were tested: reaction in droplets using the DESI technique 

and reactions in bulk microtiter plates. N-Methyl-2-pyrrolidone (NMP) and 1,4 dioxane were 

chosen as solvents for the reaction because all the reagents dissolved in these solvents and they are 

polar aprotic reaction media.38 DESI-MS analysis allowed rapid investigation of reactions that 

were capable of producing a diverse product profile. The spray solvents were MeOH or MeOH 

with 1% formic acid (FA). Full mass spectra in positive mode were recorded for each reaction 

mixture. 
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Scheme 5.1. Scope of different substitutes in SNAr reactions studied using a high throughput 
experimentation (HTE) protocol (Round 1). 

Initially, the SNAr reactions were screened between eight amines and twelve aryl halides 

(Scheme 5.1) using different bases in NMP and 1,4-dioxane. The bulk HTE was done at 150 °C 

for 15 h. The ratio between the amines and aryl halides were 1:1 and 2.5 equivalent of different 

bases were used. All the amines and aryl halides for this reaction were explored without additional 
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Table 5.1: A) The DESI and B) bulk HTE result of the same set of reaction condition. The 
conditions are, spray solvent: methanol; reaction solvent: NMP; base: DIPEA. C) Same B 

condition but the spray solvent is methanol with 1% formic acid, FA D) Same condition as C, 
but the solvent is 1,4 dioxane. 

A) 

 
B)  

 
C) 

 
D) 

 
Green cells represent "yes" reactions (product ion intensity > 150 counts) 

Red cells represent "no" reactions (product ion intensity < 150 counts)  

Each cell is an average of two data points 

B12 can form both single and double addition products, and the double addition product can form multiple ions 

B12 (S) is the singly charged ion of the single addition product 

B12 (D) is the sum of the average intensities of all the double addition ions 

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 (S) B12 (D)
R1-A1 5.3 3.3 6.6 281.3 12.4 6.3 3564.2 50.0 7.0 9.7 8.0 241.3 139.8
R1-A2 8.6 18.0 11.9 5.0 0.0 0.0 35.3 3.0 0.0 0.0 2.5 135.0 495.2
R1-A3 1.6 0.0 0.0 5.7 1.7 3.0 12.8 3.6 0.5 1.6 2.0 6.2 131.5
R1-A4 90.3 21.0 36.5 1213.7 30.0 15.4 38.9 7.5 511.1 117.4 5.1 286.8 3939.0
R1-A5 3.7 1.1 2.9 17.5 18.1 22.6 15.5 0.6 0.0 1.4 8.0 14.0 35.3
R1-A6 4.3 5.0 9.7 27.4 13.1 6.0 6.5 1.8 2.3 7.0 24.6 159.7 22.7
R1-A7 23.4 21.5 8.8 1080.1 8.3 8.7 5302.0 79.4 69.2 11.2 13.9 2787.1 91.9
R1-A8 19.8 7.6 5.8 4.0 9.2 4.7 11.5 4.7 7.5 2.6 3.4 2.5 33.6

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 (S) B12 (D)
R1-A1 1094.1 25.5 24.1 1194.2 656.6 585.0 2243.6 197.7 1392.9 374.1 10.4 16.0 181.9
R1-A2 185.4 18.6 30.0 1058.7 68.8 76.5 49.6 64.6 508.6 56.1 6.0 256.4 431.4
R1-A3 113.6 6.4 10.2 69.2 324.5 154.8 6.3 6.2 5.9 14.0 24.0 7.7 548.2
R1-A4 999.1 312.1 1226.1 1367.7 4597.2 4515.4 2765.5 18.4 1112.3 4002.5 13.4 20.3 1296.5
R1-A5 32.8 18.6 13.4 25.1 14.2 16.9 1794.2 2.6 6.6 9.8 9.6 10.3 129.3
R1-A6 13.6 10.2 7.9 97.6 20.5 27.4 380.3 7.6 42.3 3.9 31.9 98.4 26.7
R1-A7 3534.2 166.5 200.2 5661.2 2939.8 2234.9 12713.1 203.8 1446.7 1292.6 11.9 18.5 2074.6
R1-A8 117.7 51.2 28.9 144.9 18.3 10.1 744.7 3.9 66.3 6.6 4.5 1.2 24.3

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 (S) B12 (D)
R1-A1 3190.2 96.7 184.1 5502.0 1555.6 1730.2 4618.4 1363.4 7221.4 1584.5 31.3 27.0 243.1
R1-A2 277.5 56.9 56.2 1978.4 93.7 120.0 123.8 226.0 759.2 63.5 24.2 357.7 605.4
R1-A3 826.1 11.7 24.6 667.0 522.0 219.5 8.0 34.2 17.4 16.8 44.6 8.9 1069.7
R1-A4 3499.9 641.3 3345.7 4973.7 7199.4 10005.9 1267.5 63.9 2467.0 5317.5 25.8 27.5 893.9
R1-A5 1226.0 26.4 79.7 347.5 113.6 137.4 5435.5 17.2 488.3 54.4 44.4 67.8 431.9
R1-A6 61.7 31.2 37.1 209.2 53.4 93.1 684.4 35.6 110.5 29.3 31.5 757.1 62.0
R1-A7 6125.1 342.7 826.9 9886.8 4780.8 5175.7 15343.0 229.0 11798.2 2489.6 37.4 34.3 2467.7
R1-A8 703.4 145.3 113.3 5357.4 69.5 72.8 360.8 68.8 1975.1 40.1 14.8 17.0 110.5

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 (S) B12 (D)
R1-A1 192.9 22.2 34.4 1434.0 34.6 149.1 3245.3 78.6 76.2 24.4 56.2 49.4 201.0
R1-A2 31.5 43.9 37.6 115.7 25.1 32.4 43.8 104.5 42.9 46.5 43.7 97.1 379.0
R1-A3 129.8 85.2 70.0 1271.0 270.3 474.3 51.2 30.6 26.4 13.4 538.0 26.4 159.6
R1-A4 804.0 506.7 481.4 6017.3 2571.8 5834.3 9662.2 92.0 50.5 51.1 50.6 140.4 171.2
R1-A5 248.3 67.4 40.3 272.1 30.1 37.8 7219.7 22.1 24.8 18.1 21.9 59.7 152.0
R1-A6 50.8 77.0 92.8 443.1 195.7 181.1 565.0 43.6 51.9 25.8 181.9 94.8 109.6
R1-A7 1217.9 456.7 426.0 4228.0 1030.4 1271.5 8747.6 89.7 37.8 43.5 61.2 56.1 208.3
R1-A8 1640.6 1819.0 860.8 4791.9 19.3 11.6 530.2 36.6 20.7 26.4 27.7 75.8 92.2
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of the reaction solution was used per well in the 96 well metal plates. Four identical metal blocks 

were prepared each utilizing one of the four different bases. The bases used were: i) N,N-Diisopro- 

pylethylamine (DIPEA), (ii) Sodium tert-butoxide (NaOtBu), (iii) Triethylamine (TEA) and (iv) 

no base, only added same amount of solvent. The reaction solution (40 µL) were then transferred 

to a 384 well plate and a DESI slide was prepared (porous Polytetrafluoroethylene, PTFE sheet 

glued on a glass support) using the 384 pin-tool by spotting the reaction solutions onto the PTFE 

surface of the DESI slide.  The work flow for the automated high throughput reaction screening 

experiment by DESI-MS was described by Wleklinski et.13 The liquid handling robot transferred 

50 nL volumes of each reaction mixture to the DESI plate for the droplet reactions. The remaining 

reaction solutions in the metal blocks were heated for 15 h at 150 °C to effect the bulk reaction. 

After heating, the well plates were cooled, and transferred to 384 well plates for DESI-MS analysis. 

This set of experiments were spotted on the same DESI plate using the same pin-tool to enable 

direct comparison. Rhodamine in solution was used as a reference spot and the DESI plate was 

analyzed after spotting both reactions (droplet and bulk). An in-house software was used to analyze 

the data and produce heat map capable of guiding MS/MS experiments for structural conformation 

of both products and byproducts. 

We analyzed the SNAr reactions using both the DESI and bulk HTE techniques. Though 

the ionization varies for different compounds, a uniform analysis tool was used to plot peak 

intensities of the product m/z values for simple comparison of reaction efficiencies. Each square 

in Table 5.1 represents a unique reaction condition and is an average of two data points. Twelve 

successful reactions were found for the droplet reactions where as for the same conditions in bulk, 

41 successful reactions were found (Table 5.1, A &B). There was no doubt that some of the 

reactions were favorable under droplet conditions, however SNAr reaction are typically accelerated 

with heating,39 so it was not surprising that more ‘yes’ reaction were observed in the bulk reaction 

conditions. Moreover, MeOH with 1% FA was found to be a better spray solvent than MeOH alone 

due to the better product ionization in presence of acid40, 41 (Table 5.1, C). This change increased 

the number of successful reactions by 30% (54 count). It is also worth noting that the reaction 

worked better in NMP than 1,4 dioxane (54 ‘yes’ reactions vs 40 ‘yes’ reactions) (Table 5.1, C 

&D) since NMP is much more polar and basic 38, we attribute these finding to the stabilization of 

sigma complex transition state found after the addition step.  
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Figure 5.1. Heat map of 1,536 reactions of R-1 SNAr HTE using MeOH with 1% FA as spray 
solvent under DESI-MS or bulk microtiter plate conditions at 150°C with four different basic 

condition. A) reaction solvent: NMP; B) reaction solvent: 1,4-dioxane. 
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Figure 5.1 shows the heat map of SNAr HTE reactions (R-1) using eight amines and twelve 

aryl halides in both DESI and bulk using MeOH with 1% FA as spray solvent.  In general, electron 

donating groups (EDG) in the aromatic moiety of the amines and electron withdrawing groups 

(EWG) in the aryl halides favored product formation.25, 26 For this experiments, the most reactive 

amines were 1-methylpiperazine, R1-A4 and 3-(2-methylpiperidin-1-yl) propan-1-amine, R1-A7, 

both of which possess electron donating groups. Similarly, a strong electron withdrawing nitro 

group in 1-fluoro-4-nitrobenzene, R1-B4, 1-chloro-4-nitrobenzene, R1-B5, 1-bromo-4-

nitrobenzene, R1-B6, and 2,4-dichloro-5-nitropyrimidine, R1-B12 makes these aryl halides very 

reactive.  4-Bromo-N,N-diethylaniline, R1-B11 did not work at all (except for 2 reactions) due to 

the electron donating amine group. All other aryl halides reacted to the same extent. Also, ortho 

substituents in both amines or aryl halides retarded the reaction due to steric hindrances.42 Thus, 

pyridine-2,3-diamine, R1-A6 or 2,4-dichloro-5-nitropyrimidine, R1-B12 did not react well, 

although (1R,2R)-cyclohexane-1,2-diamine, R1-A1 reactions were facile since the two adjacent 

amino groups are on different faces of the cyclohexane ring. 1-Methyl-1H-imidazole, R1-A2, a 

tertiary amine, do not react. Also, R1-A2 is less reactive because of dearomatization meaning that 

the loan pair of nitrogen are less available due to participation in the aromatic resonance. 

APPENDIX D represents all the data tables in detail. 

Table 5.2: Summary of Round 1 SNAr reaction. FA=formic acid 

No. of successful reactions in DESI-MS HTE 

Base ® DIPEA NaOtBu TEA No Base 

Spray solvent 

¯/reaction solvent ® 
NMP Dioaxne NMP Dioxane NMP Dioxane NMP Dioxane 

MeOH 12 -- 10 -- 21 -- 13 -- 

MeOH with 1% FA 18 22 22 09 22 21 19 20 

No. of successful reactions in Bulk HTE 

MeOH 41 -- 18 -- 40 -- 41 -- 

MeOH with 1% FA 54 40 35 08 55 32 54 33 
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The structure of piperidine, R1-A3, and 1-methylpiperazine, R1-A4 are similar, but R1-

A4 always worked better than R1-A3 due to the presence of an electron donating group (EDG) in 

R1-A4 that enhances its reactivity. Moreover, benzylamine, R1-A5, pyridine-2,3-diamine, R1-A6, 

and benzimidazole, R1-A8 showed lower reactivity due to the oresence of an electron withdrawing 

aromatic moiety in these molecules that makes them less nucleophilic toward the addition reaction 

step in the sequence.  

The summary of successful SNAr reactions of 1,536 unique reactions both in DESI and 

bulk is shown in Table 5.2. Among all the reactions, 311 ’yes’ reactions were observed in bulk 

HTE while less than half that number were observed (153) in DESI-MS HTE.  All the results are 

normalized and reported with the average peak intensity for each reaction. 

 

Scheme 5.2. Scope of different substitutes in SNAr reactions in HTE protocol (Round 2). 
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After observing a set of successful HTE SNAr reactions, a second family of biologically 

active amines was evaluated. For this, a new set of eight different amines were chosen, however 

the aryl halides were same except for R1-B9. The new R1-B9 was 1-chloro-4-(trifluoromethyl) 

benzene (Scheme 5.2).  

The reaction conditions for this set of SNAr reaction was also almost same as R-1for the 

HTE. The only difference was the bulk reaction analyses were performed in only NMP solvent at 

three different time points. The analyses of the bulk reactions were performed after 1 h, 4 h and 15 

h heating at 150 °C. Furthermore, methanol with 1% FA was the only spray solvent used. Figure 

5.2 shows the heat map of the R-2 THE study. These results are normalized to show the average 

peak intensity for each reaction (Figure 5.2 A). 

Unfortunately, this set of reactions did not work very well because most of the amines used 

have electron withdrawing groups in the aromatic moiety, thus making them much very less 

nucleophilic toward the addition step (Figure 5.2 B). Only thiophen-2-ylmethanamine, R2-A5, and 

2-morpholinoethan-1-amine, R2-A6, worked comparatively better than the other amines due to 

their electron donating moiety. Again, R1-B4, R1-B5, R1-B6, R1-B7, and R1-B12 worked better 

due to the presence of their strong electron withdrawing nitro and chloro groups. The result after 

1 h and 4 h were almost the same indicating that long time reaction times did not push the reaction, 

rather the product seemed to be decomposed after 15 h heating (Table 5.3).  
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Figure 5.2. Heat map of 1,536 reactions (768 in DESI and 768 in bulk at three time points) of R-
2 SNAr HTE using MeOH with 1% FA as spray solvent in NMP at A) 150 °C; B) 200 °C. 
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Table 5.3. Summary of Round 2 SNAr HTE reactions. The bulk reaction results are reported for 
three different the time points.  

 DIPEA NaOtBu TEA No Base 

°C DESI Bulk (h) DESI Bulk (h) DESI Bulk (h) DESI Bulk (h) 

  1 4 15  1 4 15  1 4 15  1 4 15 

150 4 8 9 6 4 8 7 7 7 11 11 9 3 11 9 6 

200 7 8 9 6 4 3 2 3 5 9 7 7 6 8 7 6 

Table 5.3 shows the summary of the R-2 SNAr HTE reactions both in DESI and bulk at 

different time points. Only 18 reactions worked in DESI where as 38 reactions worked in bulk 

after 1 h heating. Efforts to push the reaction at higher temperatures and times (200 °C for 15 h), 

did not improve the outcome (Figure 5.2 B). Heating helped to promote reactions with the most 

reactive aryl halides (R1-B1-R1B7) with the most reactive amine being 2-morpholinoethan-1-

amine, R2-A6, however, very high heating appeared to promote product degradation. Actually, 

most of the amines were much less nucleophilic, therefore higher reaction temperatures did not 

help the reaction even after longer times reaction at higher temperature. See APPENDIX D for 

detailed peak intensity values. 

 

 After identifying reaction hotspots from HTE, we sought to validate some of the good 

reaction conditions to build the confidence between three different sets of reactions. For all 

microfluidic reactions, the reactions were explored for 30 sec, 1 min, 3 min, and 5 min residence 

times at 100 °C and/or 150 °C using 1:1 ratio of amines and aryl halides in NMP (Figure 5.3). 

DIPEA (2.5 equiv.) was used as it showed the most successful results for both sets of HTE. 

Reactions in 1,4-dioxane were confounded by the low solubility of the base that ultimately clogged 

the chip when using this solvent. 
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Figure 5.3. Continuous flow synthesis of SNAr reactions in a glass chip reactor, SOR 3225. A = 
amine; B=aryl halide; C = DIPEA 

The reaction evaluation were begun from 30 sec because the transformation has been 

already proven to be more efficient in continuous flow than in traditional bulk reaction due to 

superior mass to heat transfer capability and greater mixing in narrow reactor channel. The 

formation of expected product was confirmed by TLC and TSQ ESI-MS and the results from the 

microfluidic reactions were comparable to bulk and DESI screening experiments. Scheme 5.3 

showed the ‘yes’ reactions that were conducted in flow. Here, it was also observed that amines 

with EWG reacted successfully. The reaction of 4-chloro-6-ethyl-5-fluoropyrimidine, R1-B7, with 

3-(2-methylpiperidin-1-yl) propan-1-amine, R1-A7, and 1-methylpiperazine, R1-A4, always 

produced the chloride eliminated products. 1-Methyl-1H-imidazole, R1-A2, does not have a 

reactive amine site and did not participate in SNAr reaction. The possibility of obtaining a false 

positive result in MS for the reaction between 1-methyl-1H-imidazole, R1-A2, and 4-bromo-N,N-

diethylaniline, R1-B11, because the m/z of the aryl halide starting material and the product are 

same. 2-Morpholinoethan-1-amine, R2-A6, was the only reactive amine in the round 2 reaction 

set and the continuous flow synthesis using this amine that was explored. A negative result was 

observed for this reaction, however, both under HTE and in continuous flow conditions. We also 

examined some other negative results obtained from HTE and evaluated those reaction conditions 

under continuous flow. In both cases, almost no product peak was observed (Scheme 5.4) (see 

Appendix D for spectrum). 
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Scheme 5.3. Microfluidic evaluation of select ‘yes’ reactions from the HTE study. 

  

N

N

F
NH

N

Exact Mass: 280.21

NH2

N

3-(2-methylpiperidin-1-
yl)propan-1-amine
Exact Mass: 156.16

R1-A7

N

N
F

4-chloro-6-ethyl-5-
fluoropyrimidine

Exact Mass: 160.02

Cl

R1-B7

+

N
HN

1-methylpiperazine
Exact Mass: 100.10

R1-A4

NO2

Br

1-bromo-4-nitrobenzene
Exact Mass: 200.94

R1-B6

NO2

Exact Mass: 221.12

N

N

+

N

N

H
N

Cl

+ N

Exact Mass: 296.18

N
HN

1-methylpiperazine
Exact Mass: 100.10

R1-A4

N

N
F

4-chloro-6-ethyl-5-
fluoropyrimidine
Exact Mass: 160.02

Cl

R1-B7

N

N
F

N
N

Exact Mass: 224.14

+ DIPEA

NMP N

N
N

Cl

N

Exact Mass: 240.11

+

N
HN

1-methylpiperazine
Exact Mass: 100.10

R1-A4

NO2

F

1-fluoro-4-nitrobenzene
Exact Mass: 141.02

R1-B4

NO2

N

N

+

Exact Mass: 221.12

DIPEA

NMP

DIPEA

NMP

DIPEA

NMP

‘yes’ reactions

NO2

F

1-fluoro-4-nitrobenzene
Exact Mass: 141.02

R1-B4R2-A6

N
O

NH2

2-morpholinoethan-1-
amine

Exact Mass: 130.11

NH

N

O

NO2

Exact Mass: 251.13

N

N
F

4-chloro-6-ethyl-5-
fluoropyrimidine

Exact Mass: 160.02

Cl

R1-B7R2-A6

N
O

NH2

2-
morpholinoethan-

1-amine
Exact Mass: 

130.11

N

N
F

N
H

N
O

Exact Mass: 254.15

+

+

DIPEA

NMP

DIPEA

NMP



107 
 

 

Scheme 5.4. Microfluidic evaluation of some ‘no’ reactions from the HTE. 

5.3 Experimental 

 

All chemicals and reagents were purchased from Sigma-Aldrich (St Louis, Missouri) and 

used without any purification. 

 

 Samples in 96 well aluminum blocks fitted with glass vial liners (Analytical Sales and 

Services, Inc., NJ, USA) or 384 well polypropylene plates (Analytical Sales and Services, Inc., NJ, 

USA) were prepared both for DESI-MS and bulk HTE using a Biomek i7 (Beckman Coulter, Inc., 

Indianapolis, IN) dual-bridge liquid handling robot. A 384-tip head was used to transfer a single 

volume of 384 samples under the same speed of aspiration and dispensing conditions. Also, the 

heights of pipetting at the source and destination positions, pattern of pipetting, etc. remained 

constant for each transfer. An 8-channel head provided more flexibility in the amount of liquid 

transferred. Moreover, the 8-channel tip head provided better flexibility in terms of the layout of 

source and destination platforms, speed, pipetting height, and reaction stoichiometry. The i7 deck 

is also capable of accommodating all necessary labware including robotic tips, plates, reservoirs, 

etc. for assembling one reaction step. Chemically resistant polypropylene and disposables tips 

(Beckman Coulter, Inc., Indianapolis, IN) were used to make the reaction mixtures. The reservoirs 

of reagents solutions were the polypropylene multi-well plates and reservoirs, as well as custom 
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made Teflon reservoirs. Development of new transfer methods and validation were done using the 

Biomek point-and-click programming tool. Standard pipetting techniques that used this software 

were adjusted and optimized for highly volatile liquids. 

 

The heating device made of an aluminum heater block containing four, 100 W cartridge 

heaters was fabricated to accommodate standard size 96 well plates. A CNi series temperature 

controller (Omega Engineering) enabled precise temperature control and a solid-state relay was 

used to modulate the 120 Vac power to the heaters.2 The heating blocks tolerates temperatures 

ranging from -20 °C to 200 °C. 

 

DESI-MS analysis was performed following the previously published method of 

Wleklinski et al13. However, in this work, the density of reaction spots was 3,072 spots/plate 

instead of 6144/plate. The Biomek i7 robot was used to prepare the DESI slide using reagents that 

were pipetted into standard polypropylene 384-well plates. Porous polytetrafluoroethylene (PTEF) 

sheets (EMD, Millipore Fluoropore, Saint-Gobain) were glued (Scotch Spray mount) onto glass 

slides (Foxx Life Sciences) to make the DESI-MS slides. No signs of interference from the glue 

were observed. The reagents were mixed, and rhodamine B dye in a separate reservoir was added 

to the robotic deck as a fiducial marker. The liquids (50 nL) were deposited onto a porous PTFE 

surface using the magnetic pin tool at 3,072 spot densities. A linear ion trap mass spectrometer 

(LTQ XL; Thermo Scientific, San Jose, CA) equipped with a commercial DESI-imaging source 

(DESI 2D source, Prosolia Inc., Indianapolis, IN) was used to collect the DESI-MS data. Xcalibur 

v. 4.0 software is used to control the instrument and run the worklists for DESI-MS data acquisition. 

The DESI spray angle was 56° using MeOH or MeOH with 1% formic acid (FA) as spray solvent, 

and with an applied voltage of 5 kV.  Mass spectra were collected in positive ion mode over the 

m/z range of 50-500. The DESI-MS imaging lateral resolution was 350 µm. This was achieved 

using a stage speed of 4,376 µm/sec and an instrument scan time of 80 ms. For data processing, 

data were visualized using an in-house software designed13 to automatically search for the m/z 

values of reactants, intermediates, and byproducts. The analysis using the in-house software 
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generates a heat map indicating ‘yes/no’ output for each spot on the PTFE surface of the DESI 

slide. 

 

 The Chemical Reaction Integrated Screening (CHRIS) is an In-house software suite 

developed to automatically control the DESI system (mass spectrometer, solvents system, and 

Prosolia DESI 2D stage) and search the captured data for m/z values that correspond to the starting 

materials, intermediates, by-products, and products. CHRIS generates a yes/no report, through a 

web interface and displays the mass spectrum of any spot as well as spreadsheets with the intensity 

for the selected molecules, the possible contaminants, or unknown by-products as guided by the 

user. 

 

 A Thermo Fisher TSQ Quantum Access MAX mass spectrometer connected to a Dionex 

Ultimate 3000 Series Pump and WPS-3000 Autosampler (Thermo Fisher Scientific, Waltham, 

MA), was used to acquire electrospray ionization mass spectra (ESI-MS) of the samples. The 

analysis was performed in full scan mode, monitoring each analysis in both positive and negative 

ion modes. The optimized parameters for the ESI source and MS are as follows: spraying solvent, 

MeOH; spray voltage +5 kV (positive mode) and -5.0 kV (negative mode); capillary temperature, 

250 °C; Sheath gas pressure, 20; scan time, 0.5 s; Q1 peak width (FWHM), 0.70 Th; micro scans, 

1. The autosampler settings were as follows: MS acquire time, 2 min; sample injection volume, 1 

µL. The data from MS spectrometer was processed using Thermo Fisher Xcalibur software. 

 

 All microfluidic validation reactions were performed using the Labtrix S1 (Chemtrix, Ltd, 

Netherlands). The system was described in chapter 2 & 3.2,33 All the gastight glass syringes were 

bought separately from Hamilton Company (Hamilton, Reno, Nevada). All operations are 

controlled via a ChemTrix GUI software, connected to the Labtrix S1 casing using a USB cable. 

 

 High throughput SNAr experimentation in bulk was performed in 96-well metal block 

assemblies (Analytical Sales and Services, Inc., NJ, USA). The reaction mixtures were prepared 



110 
 

in 1 mL glass inserts of the 96-well metal block. All the reagent transfers and mixing were 

performed by the Beckman Coulter i7 liquid handling robot. The stock solutions were 111 mM for 

amines and aryl halides, and the base stock solution concentration was 1.25 M in NMP or 1,4-

dioxane. The final reaction concentrations were 50 mM (1 equiv.) both for the amines and aryl 

halides, and 125 mM (2.5 equiv.) for the bases. All solutions were prepared in appropriate solvent, 

and they were added to the 96-well plate in a ratio of 9:9:2 (amine:aryl halide:base). Solvent was 

used instead of base for the ‘no base’ condition. For DESI-MS HTE, 384 well plates were prepared 

from the 96 well plates using the robot; a 384 pintool was used to transfer the final reagent mixtures 

(50 nL) onto the PTFE slides. For bulk HTE, the plates were heated in the customized heating 

block at 150 °C or 200 °C for varying times. The cover on top of the glass inserts (top of the metal 

block) is made by chemically resistant perfluoroalkoxy (PFA) film. Double silicone rubber mats 

were used on top of the PFA film, providing a tight seal that is enough to heat the solution above 

the boiling point with less than 5% solvent loss and no cross talk between wells. After heating, the 

plates were cooled to room temperature, and loaded back on the deck of the liquid handling robot 

to prepare 384-well plates. The reactions mixtures were pinned onto the same DESI slide as 

described above before and after heating using the same transfer method. 

 

 Solutions of amines (100 mM, 1 equiv) and aryl halides (100 mM, 1equiv) in NMP were 

loaded individually into two separate 1 mL Hamilton gastight glass syringes (Hamilton Company, 

Reno, NV). DIPEA (150 mM, 1.5 equiv) solution in NMP was loaded into another 1 mL Hamilton 

gastight glass syringe. Each solution was continuously dispensed into the SOR 3225 reactor to 

engage the reactants. All the SNAr reactions were run at 100 °C and/or 150 °C using residence 

times of 30 sec, 1 min, 3 min, and 5 min. The products were collected without quenching and 

stored at -80 °C. TLC analyses were performed at the end of the reactions. Also, the subsequent 

ESI-MS analysis was performed after extraction in ether and dilution into methanol. (see Appendix 

D for details). 

5.4 Conclusion 

 The power of HTE both in DESI and bulk reaction modes enables chemists to rapidly 
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perform large arrays of rationally designed experiments. Moreover, it makes it possible to derive 

multidimensional hypotheses that can be explained from easily collected huge data sets. This 

investigation led to a robotic HT technique to execute SNAr reactions in 96-well arrays which was 

coupled with a fast DESI-MS analysis that boosts the reaction screening process. A total sixteen 

amines and thirteen aryl halides were used for the HTE. A total 1,536 unique reactions in droplet 

mode and 1,536 reactions in bulk were performed using four different bases in two different 

solvents. A total of 170 reactions were worked in DESI and 351 reactions worked were worked in 

bulk screening. The general expectations for the impact donating and withdrawing substituents on 

SNAr reactions were observed in the HTE. The comparison of a few successful reactions identified 

by HTE were evaluated in continuous flow conditions. These finding showed that the positive 

conditions identified by HTE were true positives. Furthermore, the same was true for negative 

reaction conditions. Though we found a lot of unsuccessful reactions in HTE, these negative results 

are valuable in that they are very important for machine learning.43, 44  The next step in this project 

is to use these results for machine learning.  

An easy, simple and efficient technique for identifying SNAr reaction conditions with 

different functional groups tolerance is described. Biologically important synthons were 

synthesized without protecting the functional groups. The HT screening was used as a faster way 

of finding the best reaction parameters that can lead to faster optimization of microfluidic reactions 

by eliminating failed reaction conditions. Decreasing the number of unsuccessful opportunities 

will result in libraries with more compounds for evaluating various physicochemical properties. 

Further, by applying this process to other common important class of reactions, it may have a 

significant impact on library synthesis and identifying of the right conditions for challenging 

substrates. The data could also be used to find new opportunities and patterns of the chemical 

reactivity, and reaction design that may facilitate new routes for organic synthesis.  
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APPENDIX A 

 
Figure A1: Full scan MS of the preparative ES product of scheme 1a with HCl in water 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine, phenyl acetic 

acid and hydrochloric acid in water.  In this sample m/z 142 [tropine+H]+ and m/z 319 [2tropine + HCl]+ are the most abundant ions. 

 

 

Figure A2: Full scan MS of the preparative ES product of scheme 1a with HCl in dioxane 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine, phenylacetic 

acid and hydrochloric acid in dioxane.  In this sample m/z 142 [tropine +H]+ and m/z 319 [2tropine + HCl]+ are the most abundant ions. 
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Figure A3: Full scan MS of the preparative ES product of scheme 1b with DMA 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine and phenylacetic 

acid in DMA.  In this sample m/z 142 [tropine +H]+ is the most abundant ion. 

 

 
FigureA4: Full scan MS of the preparative ES product of scheme 1c with HCl in dioxane 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine, phenylacetyl 

chloride acid and hydrochloric acid in dioxane.  In this sample m/z 142 [tropine +H]+, m/z 260 [intermediate +H]+, and m/z 319 [2tropine + HCl]+ 

are present. 
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Figure A5: Full scan MS of the preparative ES product of scheme 1d with DMA 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine, phenylacetyl 

chloride acid and hydrochloric acid in dioxane.  In this sample m/z 142 [tropine +H]+ and m/z 260 [intermediate +H]+ are present. 

 
Figure A6: Full scan MS of the preparative ES product of scheme 1d with DMF 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine and phenylacetyl 

chloride acid in DMF.  In this sample m/z 142 [tropine +H]+ and m/z 260 [intermediate +H]+ are the most abundant ions. 
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Figure A7: Full scan MS of the preparative ES product of scheme 1d with ethanol 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine and phenylacetyl 

chloride acid in ethanol.  In this sample m/z 142 [tropine +H]+ and m/z 260 [intermediate +H]+ are present. 

 
Figure A8: Full scan MS of the preparative ES product of scheme 1d with methanol 
Full scan positive ion mode mass spectrum of the preparative ES product from the first step of the atropine synthesis with tropine and phenylacetyl 

chloride acid in methanol.  In this sample m/z 142 [tropine +H]+ and m/z 260 [intermediate +H]+ are the most abundant ions. 
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Table A1: Microfluidic synthesis of intermediate 4 using hydrochloric acid in dioxane 
R1 

Tropine 

(0.4M) 

µl/min 

R2  

HCl in 

dioxane 

(0.4M) 

µl/min 

R3 

Phenylacetyl 

chloride 

(0.4M) 

 µl/min 

R4  

DMF 

µl/min 

 

1st Residence 

time 

Tr1min 

2nd Residence 

time 

Tr2 min 

Temperature 
oC 

Conversion of 

Intermediate 

(%) 

(by nESI-MS) 

2.5 2.5 2.75 2.5 1 1.29 200 19.44 

1.25 1.25 1.37 1.25 2 2.78 200 6.29 

0.625 0.625 0.687 0.625 4 5.16 200 4.34 

2.5 2.5 2.75 2.5 1 1.29 150 61.45 

1.25 1.25 1.37 1.25 2 2.78 150 89.67 

0.625 0.625 0.687 0.625 4 5.16 150 85.63 

2.5 2.5 2.75 2.5 1 1.29 100 75.37 

1.25 1.25 1.37 1.25 2 2.78 100 80.34 

0.625 0.625 0.687 0.625 4 5.16 100 90.62 

All reactions used the SOR 3224 chip (5+10 µl) and a pressure of 7 bar 

Table A2: Microfluidic synthesis of intermediate 4 without hydrochloric acid 

R1 

 Tropine 

(1M) 

µl/min 

R2 

Phenylacetyl 

chloride (1M) 

µl/min 

Residence 

time 

Tr min 

Ratio Temperature 
oC 

Conversion of 

intermediate (%) 

(by nESI-MS) 

9.286 10.214 1 1:1.1 200 67.76 

4.643 5.107 2 1:1.1 200 87.22 

2.321 2.554 4 1:1.1 200 93.19 

9.286 10.214 1 1:1.1 150 93.45 

4.643 5.107 2 1:1.1 150 93.27 

2.321 2.554 4 1:1.1 150 94.45 

9.286 10.214 1 1:1.1 100 90.41 

4.643 5.107 2 1:1.1 100 88.94 

2.321 2.554 4 1:1.1 100 88.39 

4.643 5.107 2 1:1 100 89.33 

All reactions used the SOR 3227 chips (19.5 µl), pressure of 6 bar and DMA 
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Table A3: Percent conversion of the second step base screen in preparative ES 

Base 

4 

m/z 260 

6 

m/z 272 

1 

m/z 290 

7 

m/z 304 

8 

m/z 320 

ammonia 98.8% <1% <1% <1% <1% 

dabco 99.2% <1% <1% <1% <1% 

1,5-diazabicyclo[4.3.0]non-5-ene 38.9% 11.4% 47.4% <1% 2.2% 

1,8-diazabicyclo[5.4.0]undec-7-ene 40.7% 16.0% 15.0% 13.7% 14.6% 

diethylamine 99.8% <1% <1% <1% <1% 

N,N-diisopropylethylamine 99.8% <1% <1% <1% <1% 

diisopropylmethylamine Not Soluble 

4-(dimethylamino)pyridine 79.8% 11.1% 2.1% 3.1% 3.9% 

2,6-lutidine 95.6% 1.6% 1.2% <1% <1% 

pH 10 buffer 96.6% 1.3% 1.6% <1% <1% 

piperidine 87.4% 4.2% <1% 2.1% 5.6% 

potassium ethoxide 10.7% 64.7% 15.7% 1.1% 7.8% 

potassium methoxide 15.3% 45.1% 7.6% <1% 31.1% 

potassium tert-butoxide Not Soluble 

sodium ethoxide 12.1% 66.1% 16.4% <1% 5.2% 

sodium hydroxide 42.8% 40.3% 15.4% <1% 1.4% 

sodium methoxide 20.6% 66.3% 9.9% 1.8% 1.4% 

sodium tert-butoxide Not Soluble 

tetrabutylammonium hydroxide 5.1% 19.0% 16.6% 48.6% 10.7% 

tetramethylammonium hydroxide 4.2% 9.5% 1.1% 1.8% 83.4% 

1,5,7-triazabicyclo[4.4.0]dec-5-ene Not Soluble 

triethylamine 99.8% <1% <1% <1% <1% 
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Figure A9: Full scan MS of the second step of the atropine synthesis by preparative ES using 

ammonia. 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and ammonia.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 

 

 
Figure A10: Full scan MS of the second step of the atropine synthesis by preparative ES using 

dabco 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and dabco.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 
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Figure A11: Full scan MS of the second step of the atropine synthesis by preparative ES using 1,5-

diazabicyclo[4.3.0]non-5-ene 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and 1,5-diazabicyclo[4.3.0]non-5-ene.  In this sample m/z 260 [intermediate +H]+ and m/z 290 [atropine+H]+ are the most abundant 

ions. 

 
Figure A12: Full scan MS of the second step of the atropine synthesis by preparative ES using 1,8-

diazabicyclo[5.4.0]undec-7-ene 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and 1,8-diazabicyclo[5.4.0]undec-7-ene. 
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Figure A13: Full scan MS of the second step of the atropine synthesis by preparative ES using 

diethylamine. 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and diethylamine.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 

 
Figure A14: Full scan MS of the second step of the atropine synthesis by preparative ES using 

N,N-diisopropylethylamine 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and N,N-diisopropylethylamine.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 
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Figure A15: Full scan MS of the second step of the atropine synthesis by preparative ES using 4-

(dimethylamino)pyridine 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and 4-(dimethylamino)pyridine. 

 
Figure A16: Full scan MS of the second step of the atropine synthesis by preparative ES using  

2,6-lutidine 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and 2,6-lutidine.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 
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Figure A17: Full scan MS of the second step of the atropine synthesis by preparative ES using pH 

10 buffer 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and pH 10 buffer.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion. 

 
Figure A18: Full scan MS of the second step of the atropine synthesis by preparative ES using 

piperidine 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and piperidine.  In this sample m/z 260 [intermediate +H]+ is one of the most abundant ions. 
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Figure A19: Full scan MS of the second step of the atropine synthesis by preparative ES using 

potassium ethoxide 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and potassium ethoxide.  In this sample the byproduct m/z 272 [6 +H]+ is the most abundant ion and the product m/z 290 

[atropine+H]+ is also present. 

 
Figure A20: Full scan MS of the second step of the atropine synthesis by preparative ES using 

potassium methoxide 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and potassium methoxide.  In this sample the byproduct m/z 272 [6 +H]+ is the most abundant ion and the byproduct m/z 320 [8+H]+ 

is also present in high abundance.  
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Figure A21: Full scan MS of the second step of the atropine synthesis by preparative ES using 

sodium ethoxide 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and sodium ethoxide.  In this sample the byproduct m/z 272 [6 +H]+ is the most abundant ion and both m/z 260 [intermediate +H]+ 

and m/z 290 [atropine +H]+ are present. 

 
Figure A22: Full scan MS of the second step of the atropine synthesis by preparative ES using 

sodium hydroxide. 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and sodium hydroxide.  In this sample the m/z 260 [intermediate +H]+ and byproduct m/z 272 [6 +H]+ are the most abundant ions 

and the product m/z 290 [atropine +H]+ is present. 
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Figure A23: Full scan MS of the second step of the atropine synthesis by preparative ES using 

sodium methoxide 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and sodium methoxide.  In this sample the byproduct m/z 272 [6 +H]+ is the most abundant ion and both m/z 260 [intermediate +H]+ 

and m/z 290 [atropine +H]+ are present. 

 
Figure A24: Full scan MS of the second step of the atropine synthesis by preparative ES using 

tetrabutyl ammonium hydroxide. 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and tetrabutyl ammonium hydroxide.  
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Figure A25: Full scan MS of the second step of the atropine synthesis by preparative ES using 

tetramethyl ammonium hydroxide. 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and tetramethyl ammonium hydroxide.  In this sample byproduct m/z 320 [8+H]+ is the most abundant ion. 

 

 
Figure A26: Full scan MS of the second step of the atropine synthesis by preparative ES using 

triethylamine 
Full scan positive ion mode mass spectrum of the preparative ES product from the second step of the atropine synthesis with step 1 product, aqueous 

formaldehyde and triethylamine.  In this sample m/z 260 [intermediate +H]+ is the most abundant ion.  
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Table A4: Microfluidic synthesis of atropine with pH 10 buffer 
R1 

Intermediate and 

formaldehyde (0.117M) 

µl/min 

R2 

pH10 

(10.18M) 

µl/min 

Residence time 

Tr min 

Temperature 
oC 

Conversion to 

atropine (%) (by 

nESI-MS) 

9.286 10.214 1 200 13.67 

4.643 5.107 2 200 12.49 

2.321 2.554 4 200 15.59 

9.286 10.214 1 150 17.61 

4.643 5.107 2 150 30.00 

2.321 2.554 4 150 25.25 

9.286 10.214 1 100 15.89 

4.643 5.107 2 100 6.61 

2.321 2.554 4 100 3.78 

All reactions used chip 3227 (19.5 µl), with 87 equivalents of formaldehyde and a pressure of 6 bar. 

Table A5: Microfluidic synthesis of atropine with sodium methoxide 

R1 

Intermediate 

(0.5M) 

µl/min 

R2 

Formaldehyde 

(13.3M) 

µl/min 

R3 

Sodium methoxide 

(0.5M) µl/min 

Base 

equivalent 

Residence 

time  

Tr min 

Conversion to 

atropine (%) (by 

nESI-MS) 

0.4 1.504 2.37 5.9 2.34 18.98 

0.4 1.504 1.8 4.5 2.7 16.91 

0.3 1.128 2.5 8.3 2.55 18.22 

0.3 1.128 1.5 5.0 3.42 18.33 

0.2 0.752 2.5 12.5 2.9 23.57 

0.2 0.752 1.5 7.5 4.08 19.62 

0.1 0.372 2.5 25 3.36 21.15 

All reactions used chip 3225 (10 µl) at 50oC and pressure of 9 bar. 
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Table A6:  Microfluidic synthesis of atropine with tetramethyl ammonium hydroxide  
R 

Intermediate 

(0.5M) 

µl/min 

R2 

Formaldehyde 

(1M) 

µl/min 

R3 

Tetramethyl 

ammonium 

hydroxide 

(0.6M) 

µl/min 

Residence 

time 

Tr  sec 

Conversion 

to atropine 

(%) (by 

nESI-MS) 

Conversion 

to atropine 

(%) 

(by LC-MS) 

5 30 35 8.6 22.8 32.3 

2 10 12 21.4 30.2 36.4 

1 6 7 42.9 16.3 -- 

0.5 3 3.5 85.8 7.3 -- 

All reactions used chip 3222 (5 µl) at 100oC and pressure of 8 bar. 

Table A7: Base comparison of microfluidic synthesis of atropine  

R1 

Intermediate 

µl/min 

R2 Base & 

formaldehyde 

(1M) µl/min 

R3 

water 

µl/min 

Residence 

time Tr 

min 

Conversion to atropine (%) 

1,5-Diazabicyclo[4.3.0]non-

5-ene 
CH3OK NaOH 

LC-MS nESI-MS 
LC-

MS 

nESI-

MS 

LC-

MS 

nESI-

MS 

3.25 6.5 8.12 2 41.62 32.1 24.38 18.1 11.35 22.6 

1.62 3.25 4.06 4 44.58 34.1 20.9 13.7 7.15 13.4 

1.08 2.17 2.71 6 44.4 37.2 16.89 6.9 6.07 10.4 

0.812 1.62 2.03 8 39.76 28.3 19.3 6.8 5.35 11.4 

 All reactions used chip 3227 (19.5 µl) at 70oC and pressure of 9 bar. 
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Figure A27: LC-MS analysis of microfluidic synthesis of atropine using1,5-
diazabicyclo[4.3.0]non-5-ene 
 
 

 

 

 
 
 
Figure A28: LC-MS analysis of microfluidic synthesis of atropine using CH3OK 
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Figure A29: LC-MS analysis of microfluidic synthesis of atropine using NaOH 

 

 
Figure A30: Angle dependence of the continuous synthesis of atropine by preparative reactive 

extractive electrospray 
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Full scan positive ion mode mass spectrum of the preparative reactive EES product from the continuous synthesis of atropine varying only the angle 

of intersection of the ES emitters. The percent conversion to atropine at 90°, 45° and 22.5° were 7.9%, 6.3% and 19.2% respectively. 

 
Figure A31: Voltage dependence of the continuous synthesis of atropine by preparative reactive 

extractive electrospray 
Full scan positive ion mode mass spectrum of the preparative reactive EES product from the continuous synthesis of atropine varying only the 

polarity of the voltage of the ES emitter spraying the second step reagents. The percent conversion to atropine at positive, negative and neutral 

polarities were 15%, 17% and 19.2% respectively.   
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Figure A32: Distance dependence of point of intersection in the continuous synthesis of atropine 

by preparative reactive extractive electrospray 
Full scan positive ion mode mass spectrum of the preparative reactive EES product from the continuous synthesis of atropine varying only the 

distance of intersection of the two ES emitters. The percent conversion to atropine at 2cm and 4cm were 3.1% and 5.8% respectively. The was not 

a significant difference in percent conversion because the first step of the reaction occurs rapidly. 

  



137 
 

 
Figure A33: Distance dependence of deposition distance in the continuous synthesis of atropine 

by preparative reactive extractive electrospray 
Full scan positive ion mode mass spectrum of the preparative reactive EES product from the continuous synthesis of atropine varying only the 

distance of the deposition surface. The percent conversion to atropine at 2cm, 6cm and 11cm were 4.7%, 7.9%, and 9.4% respectively. The percent 

conversion to product increased with the deposition distance, however there is a decrease in collection efficiency. 
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Table A8: Continuous synthesis of atropine in one chip in microfluidics 

 
R1, 

µl/min 

(2+3) 

R2, µl/min 

(Formaldehyde) 

R3, 

µl/min 

(base) 

R4, 

µl/min 

(water) 

1st 

Residence 

time, Tr1 

min 

2nd 

Residence 

time, Tr2 

min 

Conversion 

of atropine 

by ESI-MS 

Yield of 

Atropine 

(by 

UPLC) 

1.25 1.25 1.25 1.25 2.00 2.69 27.5 -- 

1.00 1.00 1.00 1.00 2.50 3.33 21.0 6.67 

0.75 0.75 0.75 0.75 3.33 4.44 24.5 6.88 

0.5 0.5 0.5 0.5 5.00 6.67 7.0 7.10 

All reactions used 1,5-diazabicyclo[4.3.0]non-5-ene chip 3224 (5+10 µl) at 100oC and pressure of 7 bar. 

Table A9: Continuous synthesis of atropine in two chips in microfluidics  

 
R1, 

tropine 

(1 M) 

µl/min 

 

R2, 

Phenylacetyl 

chloride 

(1M) 

µl/min 

 

R3, 

(R1+R2) 

µl/min 

 

R4,  

formaldehyde 

+base 

(0.85M) 

µl/min 

 

R5,  

Water 

µl/min 

1st  

Residence 

time, Tr1 

min 

2nd 

Residence 

time, Tr2 

min 

Conversion 

of atropine 

by ESI-MS 

Yield of 

Atropine 

(by 

UPLC) 

0.25 0.25 0.5 1.17 1.67 2 6 32.14 33.45 

The first step used chip 3221 (1 µl) at 100oC and pressure of 7 bar and the second step used 1,5-

diazabicyclo[4.3.0]non-5-ene, chip 3223 (10 µl) at 70oC and pressure of 7 bar. 
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Figure A34: 1H NMR of crude intermediate 4  

NMR analysis was performed after neutralization and extraction of the reaction mixture. 

1H NMR (500 MHz, CDCl3): δ = 7.35-7.28 (m, 5 H), 5.01 (t, J = 5 Hz, 1 H), 3.61 (s, 2 H), 3.20-

3.17 (m,2 H), 2.34 (s, 3 H), 2.30-2.26 (m, 2 H), 1.90-1.88 (m, 2 H), 1.69-1.66 (m, 4 H) 
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Figure A35: 1H NMR of crude atropine. 

1H NMR (500 MHz, CDCl3): δ = 7.35-7.31 (m, 5 H), 5.02 (t, J = 5.0 Hz, 1 H), 4.19-4.15 (m, 1 H), 
4.02-3.77 (m, 3 H), 3.09-3.06(m, 1 H), 2.97-2.95 (m, 1 H), 2.18 (s, 3 H), 2.03-2.02 (m, 2 H), 1.87-
1.86 (m, 4 H), 1.48-1.43 (m, 1 H), 1.18-1.13 (m, 1 H). 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APPENDIX B 

The Script that was used in Chapter three in the Perl terminal command to convert text files to the 

csv format is given below. All other analysis was done using Microsoft Excel 2016. 

 

#!/usr/bin/perl 

 

@ms_list = qw"m/z values"; 

 

$mz_error = 0.5; 

 

open (OUT, ">$ARGV[0]"); 

print OUT "File"; 

 

for my $ms (@ms_list){ 

    print OUT ",$ms"; 

} 

print OUT "\n"; 

@ls = `ls -1 *.txt`; 

#@ls = `dir /b *.txt`; 

chomp @ls; 

#print "@ls\n"; 

 

for $file (@ls){ 

#print "$file\n" ; 

#next; 

    open (DATA,"$file"); 

 

    %data = (); 

    %tic_data = (); 

    while(<DATA>){ 
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 #print; 

 if ($_ =~ m/cvParam: scan start time,\s+([\d\.]+), minute/){ 

     $time = $1  

 } 

 $mz = 1 if ($_=~ m/cvParam: m\/z array, m\/z/); 

 $int = 1 if ($_=~ m/cvParam: intensity array/); 

 

 $tic_time = 1 if ($_=~ m/cvParam: time array, minute/); 

 $tic = 1 if ($_=~ m/cvParam: intensity array, number of detector counts/); 

 

  

 if (($mz == 1) && ($_ =~  m/binary: \[\d+\] (.*)/)){ 

     @mz = split (/\s+/,$1); 

     $mz = 0; 

 } 

 if (($int == 1) && ($_ =~  m/binary: \[\d+\] (.*)/)){ 

     @int = split (/\s+/,$1); 

     $int = 0; 

      

     $cont = 0; 

     for $mz (@mz){ 

  for $mz_value (@ms_list){ 

      if (($mz >= $mz_value - $mz_error) && ($mz <= $mz_value + $mz_error )){ 

   $data{$time}{$mz_value} += $int[$cont]; 

      } 

  } 

  $cont++ 

     } 

 } 

 

 if (($tic_time == 1) && ($_ =~  m/binary: \[\d+\] (.*)/)){ 
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     @tic_time = split (/\s+/,$1); 

     $tic_time = 0; 

 } 

 if (($tic == 1) && ($_ =~  m/binary: \[\d+\] (.*)/)){ 

     @tic = split (/\s+/,$1); 

     $tic = 0; 

 

     $cont = 0; 

     for $tic_time (@tic_time){ 

  $tic_data{$tic_time} = $tic[$cont]; 

  $cont++ 

     } 

 } 

    } 

    close(DATA); 

 

    $average_time = 4; 

    @last3 = (); 

    $sum_max = 0; 

    @sum_max = (); 

 

    for $tic_time(sort {$a<=>$b} keys %tic_data){ 

 if (@last3+0 >= $average_time){ 

     shift(@last3); 

     push (@last3,$tic_time); 

 

     $sum = 0; 

     for my $aux (@last3){ 

  $sum += $tic_data{$aux}; 

     } 
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     if ($sum > $sum_max){ 

  $sum_max = $sum; 

  @sum_max = @last3; 

     } 

 } 

 else{ 

     push (@last3,$tic_time); 

 } 

    } 

    %average = (); 

    for $time(sort {$a<=>$b} keys %data){ 

 for $time1(@sum_max){ 

     if (($time >= $time1 - 0.03) && ($time <= $time1 + $0.03 )){ 

  for $mz(sort {$a<=>$b} keys %{$data{$time}}){ 

      $average{$mz} += $data{$time}{$mz}; 

  } 

     } 

 } 

    } 

     

    print OUT "\"$file\""; 

    for $mz(@ms_list){ 

 print OUT ",",$average{$mz}/$average_time; 

    } 

    print OUT "\n"; 

     

} 

close(OUT); 
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 Order of addition 

a) 

 
b)  

 
 

Figure B1. HT experimentation of bulk reaction results using the same set of reactants, but 

different orders of addition of catalyst and base. a) Temperature details b) peak intensity values 

  

Addition Sequence: XPhos Pd G3 Base1+ R’X

Addition Sequence: XPhos Pd G3Base1+ R’X

Product Peak Intensity 

Min Max

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

1+3, 100

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+3, 200

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+4, 100

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+4, 200

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

1+3, 100

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+3, 200

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+4, 100

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

1+4, 200

200�, 
150� 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C
100�, 
50� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

Product Peak Intensity 

Min Max

Addition Sequence: XPhos Pd G3 Base1+ R’X

Addition Sequence: XPhos Pd G3Base1+ R’X

Product Peak Intensity 

Min Max

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

1+3, 100

200�, 
150� 8.92E+04 4.56E+04 6.07E+05 4.33E+05 7.30E+05 7.73E+05 2.48E+06 9.82E+05 1.66E+06 2.96E+06 2.45E+06 1.81E+06 1.96E+06 2.29E+06 5.97E+05 7.90E+05 1.11E+05 5.19E+04 8.80E+04 6.88E+04 2.66E+04 6.10E+04 6.37E+04 6.48E+04

100�, 
50� 3.32E+04 5.13E+04 1.13E+06 5.53E+05 1.62E+06 8.20E+05 2.48E+06 7.18E+05 1.90E+06 2.50E+06 4.18E+06 2.03E+06 1.92E+06 9.96E+05 8.96E+05 6.85E+05 1.24E+05 9.84E+04 4.61E+04 8.63E+04 3.24E+04 7.05E+04 7.87E+04 6.68E+04

1+3, 200

200�, 
150� 9.04E+04 7.44E+04 1.18E+06 1.98E+06 1.30E+06 3.13E+06 3.10E+06 2.81E+06 4.44E+06 2.77E+06 3.59E+06 4.78E+06 2.17E+06 2.83E+06 9.07E+05 1.17E+06 2.85E+05 2.29E+05 1.28E+05 8.39E+04 6.14E+04 9.21E+04 5.76E+04 8.14E+04

100�, 
50� 4.49E+04 6.21E+04 1.31E+06 8.80E+05 1.49E+06 1.80E+06 2.04E+06 2.21E+06 3.17E+06 2.69E+06 2.61E+06 1.89E+06 4.09E+06 2.33E+06 3.31E+06 1.41E+06 3.95E+05 2.69E+05 1.05E+05 1.01E+05 1.00E+05 7.74E+04 1.63E+05 9.22E+04

1+4, 100

200�, 
150� 1.09E+05 1.84E+05 6.55E+05 4.44E+05 6.92E+05 1.52E+06 2.06E+06 1.68E+06 4.44E+06 3.82E+06 4.01E+06 5.98E+06 2.07E+06 3.99E+06 1.39E+06 9.13E+05 2.81E+05 1.63E+05 1.00E+05 1.16E+05 7.64E+04 7.37E+04 1.68E+05 6.55E+04

100�, 
50� 9.37E+04 3.29E+05 8.39E+05 4.35E+05 1.72E+06 9.70E+05 2.09E+06 1.53E+06 4.27E+06 2.28E+06 2.61E+06 2.38E+06 3.58E+06 8.60E+05 1.34E+06 4.07E+05 3.34E+05 3.86E+05 8.67E+04 2.93E+05 5.42E+04 1.91E+05 2.09E+05 1.38E+05

1+4, 200

200�, 
150� 1.48E+05 1.58E+05 5.79E+05 1.14E+06 1.53E+06 2.43E+06 1.59E+06 3.91E+06 6.77E+06 4.53E+06 4.81E+06 5.53E+06 5.33E+06 5.54E+06 3.42E+06 2.11E+06 1.16E+06 1.36E+06 2.90E+05 2.45E+05 6.33E+04 8.03E+04 7.95E+04 1.05E+05

100�, 
50� 1.16E+05 1.99E+05 5.72E+05 5.72E+05 1.66E+06 8.33E+05 2.91E+06 2.63E+06 2.25E+06 2.73E+06 5.95E+06 2.93E+06 5.55E+06 2.63E+06 3.84E+06 1.29E+06 9.52E+05 6.02E+05 3.75E+05 5.99E+05 8.60E+04 1.10E+05 1.19E+05 2.13E+05

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

1+3, 100

200�, 
150� 7.55E+04 7.94E+04 2.10E+06 1.18E+06 1.79E+06 2.98E+06 5.37E+06 8.92E+05 3.18E+06 8.12E+05 4.17E+05 1.57E+05 6.50E+04 1.15E+05 7.77E+04 9.27E+04 7.73E+04 1.15E+05 4.70E+04 1.34E+05 5.20E+04 9.21E+04 8.73E+04 7.35E+04

100�, 
50� 9.51E+04 6.69E+04 1.33E+05 3.18E+05 2.08E+05 4.95E+05 1.24E+05 8.41E+05 1.33E+05 4.51E+05 1.09E+05 2.61E+05 1.12E+05 2.68E+05 8.93E+04 1.12E+05 7.93E+04 8.36E+04 2.75E+04 4.73E+04 2.40E+04 2.60E+04 6.46E+04 1.93E+04

1+3, 200

200�, 
150� 8.31E+04 4.66E+04 2.00E+06 1.74E+06 1.67E+06 3.45E+06 5.28E+06 1.56E+06 2.47E+06 7.03E+05 4.35E+05 1.12E+05 2.05E+05 8.52E+04 5.98E+04 1.23E+05 3.71E+04 1.48E+05 3.42E+04 8.94E+04 3.79E+04 9.09E+04 8.63E+04 5.55E+04

100�, 
50� 3.97E+04 6.93E+04 1.28E+05 1.76E+05 1.69E+05 4.47E+05 1.59E+05 7.57E+05 1.00E+05 1.08E+06 8.01E+04 2.98E+05 8.00E+04 2.03E+05 4.78E+04 1.31E+05 6.23E+04 9.66E+04 4.79E+04 3.13E+04 3.63E+04 2.57E+04 4.91E+04 3.41E+04

1+4, 100

200�, 
150� 1.65E+05 2.15E+05 8.94E+05 6.59E+05 1.80E+06 1.52E+06 4.02E+06 9.66E+05 5.44E+06 2.55E+05 1.90E+05 1.41E+05 1.30E+05 1.18E+05 7.09E+04 1.37E+05 1.10E+05 1.47E+05 1.12E+05 9.75E+04 1.05E+05 1.02E+05 1.64E+05 1.94E+05

100�, 
50� 2.84E+05 2.27E+05 1.65E+05 2.58E+05 2.89E+05 6.07E+05 2.51E+05 5.04E+05 1.94E+05 8.49E+05 3.47E+05 5.54E+05 2.16E+05 4.11E+05 1.34E+05 2.33E+05 1.27E+05 2.93E+05 1.92E+05 1.74E+05 1.73E+05 2.46E+05 2.25E+05 2.56E+05

1+4, 200

200�, 
150� 2.16E+05 1.74E+05 6.95E+05 1.01E+06 2.45E+06 1.28E+06 4.32E+06 1.82E+06 2.84E+06 1.18E+06 1.05E+06 1.46E+05 1.06E+05 5.86E+04 1.39E+05 1.15E+05 1.21E+05 1.17E+05 1.07E+05 9.95E+04 1.03E+05 7.53E+04 1.97E+05 2.06E+05

100�, 
50� 4.15E+05 2.93E+05 2.06E+05 5.47E+05 5.78E+05 7.96E+05 4.93E+05 4.21E+05 4.39E+05 5.44E+05 3.92E+05 3.01E+05 1.63E+05 2.96E+05 2.93E+05 2.83E+05 2.27E+05 2.23E+05 1.68E+05 2.52E+05 1.80E+05 1.95E+05 2.05E+05 1.71E+05

Product Peak Intensity 

Min Max
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 Peak intensities data from HT screening 

a) 

 

 
b) 

 
Figure B2. Product peak intensities for 504 unique S-M reactions run in bulk mode. a) Temperature 

details, b) Peak intensity values. 

  

Product Peak Intensity 
Min Max

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

2, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

2, 200

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

3, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

4, 200 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

4, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

5, 200 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

6, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

7, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

8, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

9, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

10, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

11, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

12, 200 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

12, 400 

200 �, 
150 � 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C 200 °C 150 °C

100 �, 50 
� 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C 100 °C 50 °C

St.                
Sub.,
mmol

Temp. 1:0 1:0 20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20 R'X:0 R'X:0 0:0 0:0

2, 400 

200 �, 
150 � 6.88E+04 5.70E+04 1.44E+05 1.63E+05 1.71E+05 4.49E+05 3.46E+05 1.03E+06 7.43E+05 1.90E+06 9.90E+05 1.36E+06 1.42E+06 7.92E+05 4.83E+05 4.48E+05 1.72E+05 1.80E+05 1.27E+05 5.99E+04 6.33E+04 1.32E+05 7.50E+04 7.94E+04

100 �, 50 
� 1.92E+05 7.48E+04 2.84E+05 4.26E+05 4.56E+05 6.47E+05 1.12E+06 1.66E+06 1.02E+06 3.02E+06 1.45E+06 4.23E+06 1.56E+06 1.32E+06 5.29E+05 1.28E+06 2.10E+05 1.87E+05 2.22E+05 1.31E+05 5.81E+04 2.53E+05 1.12E+05 1.35E+05

2, 200

200 �, 
150 � 1.45E+05 1.70E+05 9.92E+05 1.08E+06 1.59E+06 1.49E+06 4.35E+06 5.38E+06 5.29E+06 6.86E+06 2.66E+06 3.03E+06 3.39E+06 2.08E+06 3.94E+05 2.90E+05 1.84E+05 1.64E+05 8.21E+04 9.25E+04 6.30E+04 3.71E+04 1.79E+05 1.90E+05

100 �, 50 
� 3.94E+05 3.05E+05 9.43E+05 6.98E+05 7.11E+05 1.26E+06 7.16E+05 3.07E+06 6.64E+05 2.46E+06 6.85E+05 4.27E+05 3.51E+05 4.37E+05 3.16E+05 3.55E+05 1.79E+05 3.00E+05 1.26E+05 2.11E+05 1.85E+05 1.76E+05 2.37E+05 1.73E+05

3, 400 

200 �, 
150 � 1.05E+05 1.64E+05 3.16E+05 3.02E+05 3.78E+05 4.35E+05 5.91E+05 7.95E+05 6.94E+05 1.14E+06 1.67E+06 1.26E+06 1.14E+06 8.39E+05 3.87E+05 3.39E+05 1.66E+05 1.01E+05 7.05E+04 6.35E+04 5.69E+04 5.30E+04 8.30E+04 1.12E+05

100 �, 50 
� 1.17E+05 1.83E+05 3.39E+05 2.66E+05 5.33E+05 5.86E+05 9.02E+05 5.11E+05 1.58E+06 1.52E+06 8.97E+05 7.12E+05 1.07E+06 5.96E+05 6.05E+05 2.74E+05 1.73E+05 2.75E+05 8.39E+04 1.76E+05 7.56E+04 1.24E+05 1.70E+05 1.29E+05

4, 200 

200 �, 
150 � 1.09E+05 1.84E+05 6.55E+05 4.44E+05 6.92E+05 1.52E+06 2.06E+06 1.68E+06 4.44E+06 3.82E+06 4.01E+06 5.98E+06 2.07E+06 3.99E+06 1.39E+06 9.13E+05 2.81E+05 1.63E+05 1.00E+05 1.16E+05 7.64E+04 7.37E+04 1.68E+05 6.55E+04

100 �, 50 
� 9.37E+04 3.29E+05 8.39E+05 4.35E+05 1.72E+06 9.70E+05 2.09E+06 1.53E+06 4.27E+06 2.28E+06 2.61E+06 2.38E+06 3.58E+06 8.60E+05 1.34E+06 4.07E+05 3.34E+05 3.86E+05 8.67E+04 2.93E+05 5.42E+04 1.91E+05 2.09E+05 1.38E+05

4, 400 

200 �, 
150 � 1.48E+05 1.58E+05 5.79E+05 1.14E+06 1.53E+06 2.43E+06 1.59E+06 3.91E+06 6.77E+06 4.53E+06 4.81E+06 5.53E+06 5.33E+06 5.54E+06 3.42E+06 2.11E+06 1.16E+06 1.36E+06 2.90E+05 2.45E+05 6.33E+04 8.03E+04 7.95E+04 1.05E+05

100 �, 50 
� 1.16E+05 1.99E+05 5.72E+05 5.72E+05 1.66E+06 8.33E+05 2.91E+06 2.63E+06 2.25E+06 2.73E+06 5.95E+06 2.93E+06 5.55E+06 2.63E+06 3.84E+06 1.29E+06 9.52E+05 6.02E+05 3.75E+05 5.99E+05 8.60E+04 1.10E+05 1.19E+05 2.13E+05

5, 200 

200 �, 
150 � 2.52E+05 9.85E+04 8.48E+05 6.24E+05 2.17E+06 1.77E+06 4.07E+06 3.30E+06 4.92E+06 5.85E+06 4.50E+06 1.70E+06 1.71E+06 5.22E+05 4.18E+05 2.91E+05 7.79E+04 2.25E+05 1.27E+05 1.15E+05 9.46E+04 6.74E+04 1.68E+05 2.59E+05

100 �, 50 
� 2.12E+05 2.55E+05 2.89E+05 6.36E+05 4.72E+05 1.30E+06 4.00E+05 1.54E+06 3.85E+05 2.56E+06 5.70E+05 9.79E+05 2.50E+05 4.64E+05 3.18E+05 3.18E+05 1.38E+05 3.21E+05 1.74E+05 2.29E+05 2.21E+05 1.25E+05 2.91E+05 2.01E+05

6, 400 

200 �, 
150 � 3.57E+05 2.75E+05 2.92E+05 2.20E+05 3.10E+05 2.87E+05 3.10E+05 1.98E+05 3.56E+05 2.72E+05 2.94E+05 2.78E+05 1.86E+05 1.79E+05 2.88E+04 1.03E+05 3.73E+04 5.00E+04 3.64E+04 8.09E+04 3.76E+04 3.10E+04 8.46E+04 9.52E+04

100 �, 50 
� 1.06E+05 8.75E+04 1.06E+05 1.05E+05 1.74E+05 6.98E+04 1.75E+05 1.08E+05 2.27E+05 8.77E+04 1.88E+05 1.08E+05 1.11E+05 8.45E+04 1.07E+05 6.24E+04 7.32E+04 7.00E+04 6.09E+04 7.30E+04 5.09E+04 5.79E+04 5.46E+04 8.80E+04

7, 400 

200 �, 
150 � 1.84E+05 2.48E+05 1.99E+05 2.22E+05 2.20E+05 1.79E+05 3.50E+05 2.47E+05 3.59E+05 2.71E+05 2.70E+05 2.16E+05 1.50E+05 1.17E+05 5.91E+04 7.50E+04 3.51E+04 5.02E+04 3.24E+04 7.87E+04 5.24E+04 3.24E+04 9.42E+04 8.05E+04

100 �, 50 
� 1.43E+05 7.76E+04 1.27E+05 1.00E+05 1.01E+05 1.31E+05 1.10E+05 1.21E+05 1.52E+05 2.44E+05 2.99E+05 1.19E+05 2.18E+05 6.74E+04 8.91E+04 6.81E+04 9.87E+04 1.16E+05 4.88E+04 9.99E+04 7.52E+04 9.29E+04 5.54E+04 5.82E+04

8, 400 

200 �, 
150 � 2.31E+05 4.03E+05 2.49E+05 4.66E+05 3.41E+05 3.46E+05 4.93E+05 3.16E+05 4.29E+05 6.84E+05 7.80E+05 5.53E+05 2.46E+05 1.64E+05 1.81E+05 8.43E+04 9.28E+04 1.02E+05 5.19E+04 1.01E+05 3.67E+04 5.77E+04 1.33E+05 1.11E+05

100 �, 50 
� 1.23E+05 1.31E+05 1.91E+05 2.88E+05 3.53E+05 5.33E+05 3.02E+05 9.49E+05 3.64E+05 1.02E+06 5.01E+05 9.62E+05 2.37E+05 8.41E+05 1.21E+05 1.22E+05 7.81E+04 4.65E+04 6.27E+04 4.50E+04 7.48E+04 3.30E+04 9.24E+04 7.96E+04

9, 400 

200 �, 
150 � 2.41E+05 1.52E+05 4.21E+05 2.22E+05 5.04E+05 5.39E+05 3.39E+05 6.34E+05 3.87E+05 8.27E+05 2.61E+05 5.79E+05 3.90E+05 2.79E+05 1.73E+05 2.51E+05 1.70E+05 3.24E+05 3.56E+05 2.63E+05 1.75E+05 2.16E+05 3.15E+05 2.86E+05

100 �, 50 
� 2.93E+05 3.42E+05 2.03E+05 5.95E+05 3.39E+05 6.26E+05 3.17E+05 7.22E+05 4.14E+05 1.04E+06 5.06E+05 9.26E+05 3.70E+05 2.41E+05 5.25E+05 3.03E+05 4.12E+05 3.36E+05 3.28E+05 1.84E+05 4.26E+05 3.32E+05 2.63E+05 2.22E+05

10, 400 

200 �, 
150 � 6.00E+04 1.22E+05 1.17E+05 8.18E+04 2.48E+05 1.81E+05 2.40E+05 1.70E+05 6.42E+05 5.63E+05 4.56E+05 5.48E+05 2.90E+05 3.22E+05 9.85E+04 3.47E+05 5.97E+04 8.42E+04 4.73E+04 5.15E+04 3.18E+04 6.87E+04 8.77E+04 7.38E+04

100 �, 50 
� 1.10E+05 1.87E+05 1.33E+05 1.38E+05 1.43E+05 2.99E+05 3.84E+05 2.19E+05 5.52E+05 4.38E+05 4.66E+05 6.23E+05 5.08E+05 3.02E+05 1.35E+05 1.90E+05 1.18E+05 1.36E+05 7.54E+04 8.42E+04 8.48E+04 1.19E+05 5.76E+04 1.08E+05

11, 400 

200 �, 
150 � 3.69E+05 6.45E+05 4.03E+05 6.94E+05 8.47E+05 4.95E+05 1.34E+06 1.26E+06 2.10E+06 2.23E+06 2.71E+06 9.61E+05 9.90E+05 9.29E+05 3.04E+05 6.22E+05 2.49E+05 3.64E+05 2.51E+05 4.17E+05 1.50E+05 2.01E+05 2.04E+05 2.54E+05

100 �, 50 
� 3.10E+05 1.69E+05 3.97E+05 4.17E+05 7.55E+05 6.45E+05 1.16E+06 1.18E+06 1.16E+06 2.79E+06 7.09E+05 3.05E+06 7.27E+05 3.23E+06 5.36E+05 9.77E+05 5.79E+05 5.72E+05 4.07E+05 4.73E+05 5.05E+05 3.31E+05 3.13E+05 3.35E+05

12, 200 

200 �, 
150 � 8.92E+04 4.56E+04 6.07E+05 4.33E+05 7.30E+05 7.73E+05 2.48E+06 9.82E+05 1.66E+06 2.96E+06 2.45E+06 1.81E+06 1.96E+06 2.29E+06 5.97E+05 7.90E+05 1.11E+05 5.19E+04 8.80E+04 6.88E+04 2.66E+04 6.10E+04 6.37E+04 6.48E+04

100 �, 50 
� 3.32E+04 5.13E+04 1.13E+06 5.53E+05 1.62E+06 8.20E+05 2.48E+06 7.18E+05 1.90E+06 2.50E+06 4.18E+06 2.03E+06 1.92E+06 9.96E+05 8.96E+05 6.85E+05 1.24E+05 9.84E+04 4.61E+04 8.63E+04 3.24E+04 7.05E+04 7.87E+04 6.68E+04

12, 400 

200 �, 
150 � 9.04E+04 7.44E+04 1.18E+06 1.98E+06 1.30E+06 3.13E+06 3.10E+06 2.81E+06 4.44E+06 2.77E+06 3.59E+06 4.78E+06 2.17E+06 2.83E+06 9.07E+05 1.17E+06 2.85E+05 2.29E+05 1.28E+05 8.39E+04 6.14E+04 9.21E+04 5.76E+04 8.14E+04

100 �, 50 
� 4.49E+04 6.21E+04 1.31E+06 8.80E+05 1.49E+06 1.80E+06 2.04E+06 2.21E+06 3.17E+06 2.69E+06 2.61E+06 1.89E+06 4.09E+06 2.33E+06 3.31E+06 1.41E+06 3.95E+05 2.69E+05 1.05E+05 1.01E+05 1.00E+05 7.74E+04 1.63E+05 9.22E+04
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Figure B3. Comparative coupling efficiencies at different temperatures for anisole-type biphenyl 

products formed under different temperature and stoichiometric conditions.  Reactant 

concentrations were 200 mmol except for 5 that was run at 100 mmol, 400 mmol DBU, and 10% 

XPhosPdG3. A = 200 °C; B = 150 °C; C = 100 °C; D = 50 °C. 
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 Byproduct analysis 

 

 
 

Scheme B1. Ethoxy-modified byproducts generated from 4-hydroxyphenylboronic acid solvolysis. 

a) 

b)

 

Figure B4. Product peak intensities of solvolyzed 4-hydroxyphenylboronic acid. a) Temperature        

details b) peak intensity values. 

 

Scheme B2: Self-coupled byproducts from S-M reactions. 

OH(HO)2B

(4-hydroxyphenyl) 
boronic acid

OH
OHBC2H5O

HO

M.W=165.98 M.W=194.04M.W=137.93

OHBC2H5O
C2H5O

OH

EtOHEtOH

Product peak intensity 

St.                
Sub.,
mmol

20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20

1+3, 100 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+3, 200 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+4, 100
200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+4, 200
200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

St.                
Sub.,
mmol

20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20

1+3, 100 5.34E+05 2.78E+05 3.22E+05 2.15E+05 3.23E+05 1.30E+05 1.40E+05 2.26E+05 1.93E+05 1.46E+05 2.26E+05 2.59E+05 2.64E+05 3.34E+05 2.55E+05 2.29E+05 4.67E+05 3.06E+05

3.75E+05 2.64E+05 2.46E+05 1.95E+05 2.71E+05 1.39E+05 1.96E+05 3.71E+05 4.85E+05 4.22E+05 3.59E+05 4.93E+05 3.23E+05 3.30E+05 2.58E+05 5.31E+05 2.32E+05 5.59E+05

1+3, 200 2.66E+05 3.92E+05 1.25E+05 3.52E+05 2.28E+05 2.19E+05 1.93E+05 1.11E+05 1.66E+05 2.15E+05 1.65E+05 1.48E+05 2.52E+05 1.22E+05 2.86E+05 2.32E+05 2.48E+05 2.41E+05

3.18E+05 3.04E+05 1.96E+05 2.94E+05 1.51E+05 2.72E+05 2.38E+05 2.71E+05 1.62E+05 3.41E+05 3.05E+05 3.32E+05 3.06E+05 4.21E+05 2.92E+05 5.57E+05 3.13E+05 3.76E+05

1+4, 100
4.11E+05 3.05E+05 2.87E+05 3.98E+05 3.94E+05 2.34E+05 5.83E+05 3.50E+05 3.26E+05 4.06E+05 1.94E+05 3.66E+05 3.64E+05 2.73E+05 3.72E+05 3.69E+05 3.03E+05 3.28E+05

4.05E+05 2.67E+05 5.32E+05 3.98E+05 4.30E+05 4.26E+05 4.88E+05 3.28E+05 2.19E+05 6.52E+05 4.94E+05 3.87E+05 3.83E+05 4.22E+05 3.44E+05 8.92E+05 1.94E+05 8.77E+05

1+4, 200
2.15E+05 3.90E+05 4.38E+05 3.12E+05 1.45E+05 3.01E+05 2.72E+05 2.87E+05 1.22E+05 1.63E+05 1.72E+05 1.59E+05 1.84E+05 1.02E+05 1.77E+05 2.10E+05 1.91E+05 2.19E+05

2.46E+05 3.18E+05 4.00E+05 2.69E+05 3.90E+05 5.55E+05 1.29E+05 5.25E+05 2.51E+05 4.10E+05 2.41E+05 4.21E+05 3.50E+05 4.88E+05 3.01E+05 5.65E+05 3.04E+05 7.81E+05

N N

M.W=214.26 M.W=156.19

HO OH

M.W=186.21

H3CO

OCH3
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a) 

b)

 
 

Figure B5. Product peak intensity of self-coupled byproducts from 4-hydroxyphenylboronic acid. 

a) Temperature details b) peak intensity values. 

 

 
Figure B6. Cleaning of Chemtrix 3223 reactor chip with aqua regia while using 10% XPhosPdG3. 

  

Product peak intensity 

St.                
Sub.,
mmol

20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20

1+3, 100 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+3, 200 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+4, 100
200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

1+4, 200
200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C 200°C 150°C

100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C 100°C 50°C

St.                
Sub.,
mmol

20:1 20:1 10:1 10:1 5:1 5:1 2:1 2:1 1:1 1:1 1:2 1:2 1:5 1:5 1:10 1:10 1:20 1:20

1+3, 100
8.99E+05 7.13E+05 7.31E+05 4.64E+05 5.90E+05 2.68E+05 2.20E+05 3.82E+05 3.49E+05 2.47E+05 3.03E+05 3.65E+05 2.41E+05 2.72E+05 1.53E+05 1.31E+05 2.01E+05 1.71E+05

1.22E+06 4.15E+05 9.14E+05 3.26E+05 7.65E+05 2.10E+05 4.19E+05 5.31E+05 7.83E+05 5.05E+05 4.35E+05 4.33E+05 2.78E+05 3.08E+05 1.33E+05 1.61E+05 8.80E+04 1.52E+05

1+3, 200
1.37E+06 2.09E+06 6.83E+05 1.86E+06 7.71E+05 7.13E+05 3.43E+05 2.19E+05 3.11E+05 3.63E+05 3.23E+05 2.43E+05 2.96E+05 1.34E+05 1.36E+05 1.33E+05 1.13E+05 1.18E+05

8.76E+05 4.81E+05 4.37E+05 4.73E+05 3.65E+05 4.49E+05 4.33E+05 3.27E+05 3.14E+05 3.25E+05 4.30E+05 3.19E+05 3.04E+05 2.88E+05 1.49E+05 1.96E+05 1.25E+05 1.13E+05

1+4, 100
1.39E+06 9.79E+05 7.51E+05 1.96E+06 1.16E+06 9.54E+05 1.08E+06 7.41E+05 4.84E+05 6.74E+05 2.84E+05 5.08E+05 3.81E+05 2.98E+05 2.69E+05 2.35E+05 1.65E+05 2.06E+05

1.23E+06 4.09E+05 1.41E+06 5.65E+05 1.09E+06 5.37E+05 1.10E+06 3.78E+05 3.92E+05 7.22E+05 6.34E+05 3.69E+05 4.17E+05 2.49E+05 2.49E+05 3.33E+05 9.89E+04 2.75E+05

1+4, 200
9.50E+05 2.36E+06 1.30E+06 1.67E+06 6.54E+05 1.64E+06 9.89E+05 8.84E+05 2.85E+05 2.81E+05 3.55E+05 2.55E+05 2.97E+05 1.24E+05 2.00E+05 2.03E+05 1.33E+05 1.47E+05

6.18E+05 3.42E+05 8.82E+05 2.67E+05 7.77E+05 4.87E+05 2.96E+05 3.81E+05 5.12E+05 3.34E+05 3.27E+05 3.45E+05 3.55E+05 3.16E+05 2.26E+05 2.77E+05 1.75E+05 3.17E+05

After cleaning

Before cleaning
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Table B1. Microfluidic evaluation of Suzuki-Miyaura cross-coupling reactions, Chemtrix reactor 

chip: 3223, pressure: 6-7 bar 

 

R1 
1 + aryl halide 
(0.2 M, 1:1) 

µL/min 

R2 
DBU 

(0.4 M) 
µL/min 

R3 
XPhosPdG3 

(0.5%) 
µL/min 

 
Residence 

Time 
Tr in Minutes 

 
Temperature 

oC 

10 5 5 0.5 150 
5 2.5 2.5 1 150 

1.67 0.833 0.833 3 150 
0.833 0.417 0.417 6 150 

10 5 5 0.5 100 
5 2.5 2.5 1 100 

1.67 0.833 0.833 3 100 
0.833 0.417 0.417 6 100 

 

 

Figure B7: TLC monitoring during the progress of the flow reaction. 

1+3 1+2

Solvent: 2:1 EtOAc:hexane

Standard

Product

Standard

Product
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Figure B8. Comparison of microfluidic and bulk screening outcomes for S-M reactions performed 
under similar conditions using 200 mmol substrate loading and 1:1 4-hydroxyphenylboronic 
acid:aryl halide stoichiometry. The table entries are the relative abundance of the product peak 
intensities. 

 

Figure B9. Comparison of microfluidic and bulk screening outcomes for S-M reactions that gave 
negative bulk reaction results. The same reaction conditions were used in each case with 200 mmol 
substrate loading and 1:20 4-hydroxyphenylboronic acid:aryl halide stoichiometry. The values are 
the relative abundance of the product peak intensities. 

 

Bulk Reactions µFluidic Reactions

Product Peak Intensity 
Min Max

1+2

SM    

Product
Temp 1+2 1+2

Time   

Temp
30 s 1 min 3 min 6 min

13
200�, 150� 990246.12 1364590.17 100� 1045254.566 1135715.833 1749526.509 5241698.855

100�, 50� 1447834.135 4234642.83 150� 2344396.665 1595250.57 3150090.873 5287176.159

1+3

SM    

Product
Temp 1+3 1+3

Time   

Temp
30 s 1 min 3 min 6 min

13
200�, 150� 1671363.275 1263088.78 100� 3089934.179 3535674.716 7614919.338 5548250.27

100�, 50� 897254.22 711657.23 150� 4439708.007 2239429.791 2844453.825 7076129.833

1+4

SM    

Product
Temp 1+4 1+4

Time   

Temp 
30 s 1 min 3 min 6 min

14
200�, 150� 4811618.73 5528966.635 100� 1280039.923 2592778.782 3742014.741 6123280.568

100�, 50� 5954450.4 2929524.935 150� 2817696.446 2816431.707 3945609.983 5751260.16

1+5

SM    

Product
Temp 1+5 1+5

Time   

Temp 
30 s 1 min 3 min 6 min

15
200 �, 150 � 4500215.895 1698903.125 100� 594787.436 1601403.135 2147694.521 4355349.784

200 �, 150 � 569719.71 978615.77 150� 1248567.952 1140598.862 2037811.558 5181386.451

1+6

SM    

Product
Temp 1+6 1+6

Time   

Temp 
30 s 1 min 3 min 6 min

16
200�, 150� 293745.62 278377.375 100� 321320.2423 337953.6909 610049.04 608252.7333

100�, 50� 188032.525 107663.28 150� 198264.0848 394147.3008 624356.6029 697738.9077

1+7

SM    

Product
Temp 1+7 1+7

Time   

Temp 
30 s 1 min 3 min 6 min

16
200�, 150� 270446.575 215888.81 100� 201553.4201 128198.5386 237022.4222 924855.6602

100�, 50� 298605.635 119435.615 150� 220337.8284 582275.727 809019.5278 764825.1542

1+8

SM    

Product
Temp 1+8 1+8

Time   

Temp 
30	s 1	min 3	min 6	min

17
200�,	150� 780387.74 553476.255 100� 373831.1177 273042.6655 1209101.085 2294966.174
100�,	50� 501344.465 962445.065 150� 1109274.763 2965197.248 1115704.543 3291140.394

1+9

SM    

Product
Temp 1+9 1+9

Time   

Temp 
30	s 1	min 3	min 6	min

18
200�,	150� 260528.315 578588.995 100� 1759562.89 1101173.843 755932.6836 1343209.712
100�,	50� 505663.26 925916.11 150� 1526390.366 878218.2089 1603145.893 1571427.815

1+10

SM    

Product
Temp 1+10 1+10

Time   

Temp 
30	s 1	min 3	min 6	min

19
200�,	150� 398943.0025 311925.4 100� 1166449.721 1636873.909 2413295.807 3976212.72
100�,	50� 148754.91 131855.41 150� 3182389.932 3401777.939 1834187.229 4102829.884

1+11

SM    

Product
Temp 1+11 1+11

Time   

Temp 
30	s 1	min 3	min 6	min

20
200�,	150� 2714662.965 960938.575 100� 410255.9062 37652381.37 25203829.57 35747590.31
100�,	50� 708718.535 3054006.93 150� 1093509.365 1280512.677 1619761.193 2652425.337

1+12

SM    

Product
Temp 1+12 1+12

Time   

Temp 
30	s 1	min 3	min 6	min

21
200�,	150� 3587581.115 4780830.23 100� 6129622.177 4668048.409 5139161.758 6344865.739
100�,	50� 2607411.48 1888739.885 150� 1846473.815 2315900.033 12241328.96 6542905.209

Bulk Reactions µFluidic Reactions

1+3
SM    

Product
Temp 1+3 1+3

Time   

Temp
30	s 1	min 3	min 6	min

13 200�,	150� 70504.85 63536.4 100� 1045905.824 1550626.338 1271433.25 1207885.711
100�,	50� 83851.73 176350.61 150� 185445.2739 431687.7856 396757.6716 373794.5328

1+8
SM    

Product 
Temp 1+8 1+8

Time   

Temp 
30	s 1	min 3	min 6	min 15min

17 200�,	150� 51899.775 100566.31 100� 67844.45041 108250.1439 123654.9512 118368.5928
100�,	50� 62714.645 44972.82 150� 61088.63064 73806.90468 26239.21126 24368.99383 17392.48713

Product Peak Intensity 
Min Max

Bulk Reactions µFluidic Reactions
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 Full MS spectra  
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Figure B10: Full MS scan from microfluidic evaluation of S-M reactions identified by HT 
experimentation. Reaction conditions for each reaction are 150 °C, 6 min. 
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Figure B11. Full MS scan from microfluidic evaluation of S-M reactions between 1 and 3 (product 

13). Reaction conditions for each reaction are labeled on each spectrum. 

 HPLC/MS-MS analysis 

Table B2: Parameters used for Multiple Reaction Monitoring (MRM) via HPLC/MS-MS analysis. 

Compound 
Name 

Precursor Ion 
MS1 
Res 

Product Ion 
MS2 
Res 

Dwell 
(ms) 

Fragmentor (V) 
Collision 

Energy (V) 
Cell Accelerator 

Voltage (V) 

4,2 methoxy,13 199 Unit 184 Unit 80 80 10 1 

4,2 methoxy, 13 199 Unit 183 Unit 80 80 25 1 

4,3 methoxy, 14 199 Unit 184 Unit 80 80 15 1 

4,3 methoxy, 14 199 Unit 156 Unit 80 80 20 1 

4,4 methoxy, 15 199 Unit 184 Unit 80 80 10 1 

4,4 methoxy, 15 199 Unit 156 Unit 80 80 20 1 

Pyridine, 21 170.1 Unit 142.1 Unit 80 80 40 1 

Pyridine, 21 170.1 Unit 93 Unit 80 80 40 1 
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APPENDIX C 

NMR 
1H NMR (500 MHz, CDCl3, ppm): δH = 4.84 (t, J= 5.85, 1 H), 4.42 (d, J = 7.35 Hz, 1 H), 3.62 (t, 

J=5.60Hz, 2 H), 3.54 (t, J=5.70Hz, 2 H), 3.51-3.45 (m, 1 H), 1.95-1.92 (m, 2 H), 1.72-1.67 (m, 2 

H), 1.62-1.58 (m, 1 H), 1.39-1.30 (m, 2 H), 1.19-1.06 (m, 3 H); 13C NMR (500 MHz, CDCl3, ppm): 

δC= 157.04, 49.29, 45.25, 42.12, 33.88, 25.57, 24.9 

 

Figure C1: 1H NMR of 1-(2-chloroethyl)-3-cyclohexylurea, 3, from flow synthesis  
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Figure C2: 13C NMR of 1-(2-chloroethyl)-3-cyclohexylurea, 3, from flow synthesis 

 

Figure C3: Comparison of 1H NMR of 1-(2-chloroethyl)-3-cyclohexylurea, 3,  derived from 

flow synthesis with commercially available 3. 
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Figure C4: Comparison of 13C NMR of 1-(2-chloroethyl)-3-cyclohexylurea, 3,  derived from 

flow synthesis with commercially available 3. 

DESI-MS Outline. 

1.  

Figure C5: DESI master plate layout using four different concentrations in two solvents. 

 
Figure C6: DESI master plate layout using eight different solvents. 
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Figure C7: DESI master plate layout using only commercially available 3 and lomustine 

 
 

Figure C8: (left) Direct DESI-MS data comparison between the two nitrosation reactions in THF 

and ACN in different concentration. (right) DESI-MS data of commercially available 3 and 

lomustine standards.  The data was analyzed using BioMAP imaging software. 
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 Figure C9: (left & center) Direct DESI-MS data comparison between the two nitrosation 
reactions in different solvents. (right) DESI-MS data of commercially available 3 and lomustine 
standards.  The data was analyzed using BioMAP imaging software. 
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Figure C10: Map of the DESI-MS plates showing some of the expected ions where the nitrosation 

reaction using was screened using different stoichiometries as well as commercially available 
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standards. Green dots indicate the presence of the m/z expected for the reaction product (successful 

reaction), Red dots indicate that the expected m/z for the reaction product was not present at the 

reaction spot (unsuccessful reaction condition). A: NaNO2, concentration screening using the 

lomustine ion (m/z 169) intensity; B: NaNO2, solvent screening using the lomustine ion (m/z 169) 

intensity; C: TBN, solvent screening using the lomustine ion (m/z 169) intensity 

 

 
Figure C11: Telescoped two step syntheses of lomustine using sodium nitrite in the second step.  

1st Step

2nd Step

Pumps

Pumps
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Figure C12: First step of the telescoped synthesis of lomustine.  

 
Figure C13: Second step of the telescoped synthesis of lomustine using NaNO2 as a nitrosation 

reagent. 
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Figure C14: Telescoped lomustine synthesis using TBN as a nitrosation reagent, before reaction 

initiation. 

 

Figure C15: Telescoped lomustine synthesis using TBN (protected from light). 
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1st Step

1st Step
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Figure C16: Second step of the telescoped synthesis of lomustine using TBN. 

 
Figure C17: Full MS from HPLC-MS/MS and comparison between synthesized lomustine and 

commercially available lomustine. 
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Figure C16: Second step of the telescoped synthesis of lomustine using TBN. 

 

 
Figure C17: Full MS from HPLC-MS/MS and comparison between synthesized lomustine and 

commercially available lomustine. 
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Flow Rates  

Table C1: Flow Rates for 1st step Reaction in Labtrix S1 system  

Chemtrix reactor chip: 3225, 10 µL, pressure: ambient pressure 

R1 

Cyclohexane 

amine, 1 

µL/min 

R2 

Triethylamine 

µL/min 

R3 

2-Chloroethyl 

isocyanate, 2 

µL/min 

Residence 

Time 

in min 

Temperature 
oC 

20 20 20 0.167 50 

6.67 6.67 6.67 0.5 50 

3.33 3.33 3.33 1 50 

1.11 1.11 1.11 3 50 

0.67 0.67 0.67 5 50 

0.417 0.417 0.417 8 50 

0.333 0.333 0.333 10 50 

 

Table C2: Flow Rates for 2nd step Reaction using NaNO2/HCO2H , 4 in Labtrix S1 system 

Chemtrix reactor chip: 3225, 10 µL, pressure: ambient pressure 

R1 

3 µL/min 

R2 

Sodium Nitrite 

µL/min 

R3 

Formic Acid 

µL/min 

Residence Time 

in min 
Temperature oC 

6.67 6.67 6.67 0.5 0 

3.33 3.33 3.33 1 0 

1.11 1.11 1.11 3 0 

0.67 0.67 0.67 5 0 

0.417 0.417 0.417 8 0 

0.333 0.333 0.333 10 0 
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Table C3: Flow Rates for 2nd step Reaction using TBN, 5 in Labtrix S1 system. 

Chemtrix reactor chip: 3223, 10 µL, pressure: ambient pressure 

R1 

3 µL/min 

R2 

tert-Butyl nitrite 

µL/min 

Residence Time 

in min 

Temperature oC 

10 10 0.5 50 

5 5 1 50 

1.67 1.67 3 50 

1 1 5 50 

0.625 0.625 8 50 

0.5 0.5 10 50 

10 10 0.5 25 

5 5 1 25 

1.67 1.67 3 25 

1 1 5 25 

0.625 0.625 8 25 

0.5 0.5 10 25 
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Table C4: Telescoped reaction in Tube 

Nitrosation Reagent: NaNO2/HCO2H 4 

R1 

1 + 

Triethyl 

amine 

µL/min 

R2 

2 

µL/min 

Reactor 

volume, 

cm 

Step 1 

Extraction 

step, H2O 

µL/min 

Extraction 

step, 

DCM 

µL/min 

R3 

NaNO2 

µL/min 

R3 

HCO2H 

µL/min 

Step 2 

12.56 12.56 
Step 1: 5 

Step 2: 

100 

1 min, 

50 ℃ 
50.24 25.12 25.12 25.12 

5 min, 

0 ℃ 

12.56 12.56 

Step 1: 

10 

Step 2: 

100 

2 min, 

50 ℃ 
50.24 25.12 25.12 25.12 

5 min, 

0 ℃ 

12.56 12.56 

Step 1: 

50 

Step 2: 

100 

10 

min, 

50 ℃ 

50.24 25.12 25.12 25.12 
5 min, 

0 ℃ 

12.56 12.56 

Step 1: 

50 

Step 2: 

100 

10 

min, 

50 ℃ 

50.24 25.12 50.24 67.02 
3 min, 

0 ℃ 
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Table C5: Nitrosation Reagent: TBN , 5 

Reactor volume: Step 1=5 cm; Step 2= 100 cm 

R1 

1 + Triethyl 

amine 

µL/min 

R2 

2 

µL/min 

Step 1 

Extraction 

step, H2O 

µL/min 

Extraction 

step, 

DCM 

µL/min 

R3 

TBN 

µL/min 

Step 2 

12.56 12.56 
1 min, 

50 ℃ 
50.24 25.12 50.2 

5 min, 

25/50 ℃ 

12.56 12.56 
1 min, 

50 ℃ 
50.24 25.12 12.56 8 min, 25 ℃ 
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Table C6: DESI-MS data of the nitrosation reaction using 4 in different stoichiometries 

 

Starting 
Material

Starting 
Material Solvent Stoichiom

etry
Product 
m/z

Intensity 
(Average) Stdev Intensity 

(max)

Normalized 
Intensity 
(Average)

Normalized 
Stdev

Normalized 
Intensity 

(max)

no of 
spots

, n
3 4 Acetonitrile 150 169.2 213.3 191.6 934.1 0.025 0.030 0.166 144
3 4 Acetonitrile 150 234.7 8.0 6.7 45.1 0.001 0.001 0.007 144
3 4 Acetonitrile 150 239.4 1206.9 1349.7 6575.7 0.069 0.066 0.284 144
3 4 Acetonitrile 150 241.0 390.4 412.9 1980.9 0.022 0.020 0.088 144
3 4 Acetonitrile 150 250.4 143.7 184.3 923.0 0.008 0.005 0.024 144
3 4 Acetonitrile 150 251.2 34.7 40.6 205.3 0.002 0.001 0.006 144
3 4 Acetonitrile 150 337.4 831.0 707.6 4214.5 0.043 0.016 0.100 144
3 4 Acetonitrile 150 373.4 195.1 203.4 1017.1 0.010 0.006 0.026 144
3 4 Acetonitrile 100 169.2 428.3 487.1 3538.6 0.021 0.019 0.124 144
3 4 Acetonitrile 100 234.7 19.3 15.1 80.5 0.002 0.002 0.008 144
3 4 Acetonitrile 100 239.4 2066.8 2519.0 12435.6 0.061 0.049 0.220 144
3 4 Acetonitrile 100 241.0 664.8 776.1 3676.1 0.020 0.015 0.070 144
3 4 Acetonitrile 100 250.4 179.0 200.3 1072.1 0.006 0.003 0.016 144
3 4 Acetonitrile 100 251.2 50.4 57.4 348.6 0.002 0.001 0.005 144
3 4 Acetonitrile 100 337.4 1541.9 1537.4 9588.3 0.050 0.018 0.105 144
3 4 Acetonitrile 100 373.4 261.3 307.9 1751.0 0.008 0.004 0.022 144
3 4 Acetonitrile 50 169.2 53.9 58.1 322.0 0.018 0.019 0.105 144
3 4 Acetonitrile 50 234.7 11.7 16.2 177.5 0.004 0.002 0.015 144
3 4 Acetonitrile 50 239.4 382.9 825.0 5452.0 0.045 0.062 0.326 144
3 4 Acetonitrile 50 241.0 124.8 257.2 1692.1 0.016 0.019 0.101 144
3 4 Acetonitrile 50 250.4 21.3 24.1 145.3 0.005 0.002 0.012 144
3 4 Acetonitrile 50 251.2 6.3 6.7 37.3 0.001 0.001 0.004 144
3 4 Acetonitrile 50 337.4 116.2 130.7 681.0 0.020 0.015 0.075 144
3 4 Acetonitrile 50 373.4 21.0 24.5 133.5 0.004 0.003 0.014 144
3 4 Acetonitrile 200 169.2 134.4 122.3 642.8 0.007 0.002 0.012 144
3 4 Acetonitrile 200 234.7 7.7 8.7 57.9 0.001 0.001 0.003 144
3 4 Acetonitrile 200 239.4 2162.9 2123.7 15812.4 0.119 0.056 0.297 144
3 4 Acetonitrile 200 241.0 608.6 518.4 4106.0 0.035 0.017 0.090 144
3 4 Acetonitrile 200 250.4 39.5 26.3 138.1 0.003 0.001 0.006 144
3 4 Acetonitrile 200 251.2 20.5 49.7 382.9 0.001 0.000 0.002 144
3 4 Acetonitrile 200 337.4 485.0 296.1 1620.7 0.028 0.007 0.042 144
3 4 Acetonitrile 200 373.4 73.1 51.3 324.3 0.004 0.001 0.007 144
3 4 THF 200 169.2 1024.5 744.7 6746.3 0.041 0.059 0.443 144
3 4 THF 200 234.7 30.8 36.3 222.7 0.002 0.001 0.006 144
3 4 THF 200 239.4 1067.2 1527.8 7808.4 0.022 0.034 0.174 144
3 4 THF 200 241.0 333.9 480.7 2373.1 0.007 0.010 0.057 144
3 4 THF 200 250.4 749.2 367.0 2331.3 0.011 0.004 0.022 144
3 4 THF 200 251.2 237.1 227.8 1263.0 0.003 0.002 0.009 144
3 4 THF 200 337.4 13765.9 7680.8 50455.2 0.186 0.054 0.343 144
3 4 THF 200 373.4 1096.5 568.4 3314.2 0.016 0.005 0.038 144
3 4 THF 150 169.2 680.3 705.5 3251.7 0.036 0.033 0.202 144
3 4 THF 150 234.7 43.2 44.1 295.0 0.003 0.001 0.009 144
3 4 THF 150 239.4 1106.3 2107.4 12553.7 0.021 0.031 0.143 144
3 4 THF 150 241.0 366.5 601.2 2985.4 0.008 0.009 0.044 144
3 4 THF 150 250.4 349.0 338.2 1672.1 0.007 0.004 0.020 144
3 4 THF 150 251.2 92.1 92.6 353.0 0.002 0.001 0.008 144
3 4 THF 150 337.4 2590.0 3621.7 15618.2 0.044 0.051 0.185 144
3 4 THF 150 373.4 291.1 374.6 1736.1 0.006 0.006 0.024 144
3 4 THF 100 169.2 1152.9 849.2 4316.7 0.053 0.038 0.236 144
3 4 THF 100 234.7 40.4 42.7 243.0 0.002 0.001 0.014 144
3 4 THF 100 239.4 486.4 1259.8 8600.9 0.008 0.019 0.149 144
3 4 THF 100 241.0 166.2 407.2 2879.3 0.003 0.006 0.044 144
3 4 THF 100 250.4 1070.5 451.4 2449.5 0.013 0.004 0.020 144
3 4 THF 100 251.2 260.9 172.7 1492.2 0.003 0.001 0.011 144
3 4 THF 100 337.4 14213.4 9456.4 39713.7 0.157 0.076 0.339 144
3 4 THF 100 373.4 1262.2 675.0 3233.6 0.016 0.006 0.030 144
3 4 THF 50 169.2 708.7 560.9 3726.2 0.060 0.034 0.211 144
3 4 THF 50 234.7 46.1 56.3 341.8 0.003 0.002 0.020 144
3 4 THF 50 239.4 91.6 164.1 938.4 0.003 0.003 0.023 144
3 4 THF 50 241.0 54.0 70.6 369.5 0.003 0.003 0.015 144
3 4 THF 50 250.4 783.5 422.1 2172.0 0.012 0.003 0.018 144
3 4 THF 50 251.2 227.3 310.1 2172.0 0.003 0.002 0.014 144
3 4 THF 50 337.4 10050.7 9141.9 52775.8 0.125 0.074 0.268 144
3 4 THF 50 373.4 911.9 744.6 4270.9 0.012 0.006 0.022 144

Rhodamine 443.3 12213.1 8739.2 70545.6 0.491 0.101 0.690 384
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Table C7: DESI-MS data of the nitrosation reaction using 4 as a nitrosation reagent 

 

Starting 
Material

Starting 
Material Solvent Product 

m/z
Intensity 
(Average) Stdev Intensity 

(max)

Normalized 
Intensity 
(Average)

Normalized 
Stdev

Normalize
d 

Intensity 
(max)

No of 
spots, n

3 4 Toluene 169.2 2554.4 5564.3 36332.5 0.406 0.173 0.719 144
3 4 Toluene 205.7 7.2 10.4 63.4 0.003 0.003 0.015 144
3 4 Toluene 234.7 2.8 4.5 24.2 0.001 0.001 0.004 144
3 4 Toluene 239.4 2.7 5.8 38.3 0.000 0.001 0.007 144
3 4 Toluene 241.0 2.5 5.8 38.1 0.000 0.001 0.004 144
3 4 Toluene 250.4 1.4 4.4 43.3 0.000 0.001 0.004 144
3 4 Toluene 251.2 30.9 134.5 1279.6 0.002 0.006 0.039 144
3 4 Toluene 337.4 100.7 267.5 1413.6 0.007 0.018 0.146 144
3 4 Toluene 373.4 440.4 1209.9 8746.2 0.026 0.043 0.215 144
3 4 Acetonitrile 169.2 861.8 2266.6 24796.5 0.471 0.136 0.774 144
3 4 Acetonitrile 205.7 6.4 12.7 84.5 0.003 0.004 0.026 144
3 4 Acetonitrile 234.7 0.8 2.0 15.5 0.000 0.001 0.007 144
3 4 Acetonitrile 239.4 1.1 2.4 17.8 0.000 0.000 0.002 144
3 4 Acetonitrile 241.0 6.9 18.6 151.1 0.001 0.002 0.008 144
3 4 Acetonitrile 250.4 5.3 13.5 106.8 0.001 0.002 0.012 144
3 4 Acetonitrile 251.2 330.2 517.7 2676.7 0.039 0.035 0.213 144
3 4 Acetonitrile 337.4 46.4 73.3 493.7 0.005 0.006 0.033 144
3 4 Acetonitrile 373.4 651.5 1237.0 9488.0 0.065 0.035 0.190 144
3 4 DMSO 169.2 4904.5 8789.6 53558.7 0.355 0.137 0.642 144
3 4 DMSO 205.7 25.7 26.7 151.4 0.002 0.002 0.012 144
3 4 DMSO 234.7 1.8 2.3 13.1 0.000 0.001 0.002 144
3 4 DMSO 239.4 17.1 26.6 228.2 0.001 0.000 0.002 144
3 4 DMSO 241.0 5.2 6.1 26.9 0.000 0.000 0.002 144
3 4 DMSO 250.4 1.6 9.6 110.6 0.000 0.000 0.001 144
3 4 DMSO 251.2 101.2 179.2 1054.9 0.002 0.003 0.021 144
3 4 DMSO 337.4 443.8 791.7 4937.7 0.009 0.011 0.053 144
3 4 DMSO 373.4 2602.8 3506.2 30323.8 0.049 0.033 0.232 144
3 4 THF 169.2 1604.6 1828.4 9837.0 0.343 0.165 0.671 144
3 4 THF 205.7 14.3 16.2 107.3 0.002 0.003 0.014 144
3 4 THF 234.7 9.2 20.8 141.7 0.000 0.001 0.003 144
3 4 THF 239.4 68.5 72.4 381.6 0.002 0.002 0.007 144
3 4 THF 241.0 22.7 22.2 99.5 0.001 0.000 0.004 144
3 4 THF 250.4 4.1 7.3 32.2 0.000 0.000 0.001 144
3 4 THF 251.2 254.1 351.0 1963.4 0.008 0.008 0.040 144
3 4 THF 337.4 122.6 116.9 840.1 0.003 0.002 0.019 144
3 4 THF 373.4 3643.6 3629.0 24476.2 0.079 0.036 0.222 144
3 4 Ethanol 169.2 1939.9 2663.0 23988.5 0.315 0.159 0.644 144
3 4 Ethanol 205.7 18.0 22.0 108.9 0.003 0.003 0.017 144
3 4 Ethanol 234.7 9.7 28.9 313.9 0.001 0.001 0.003 144
3 4 Ethanol 239.4 3.1 3.4 20.9 0.000 0.000 0.002 144
3 4 Ethanol 241.0 4.1 3.4 17.3 0.000 0.000 0.003 144
3 4 Ethanol 250.4 3.5 3.4 17.0 0.000 0.000 0.002 144
3 4 Ethanol 251.2 53.0 37.6 152.7 0.002 0.001 0.006 144
3 4 Ethanol 337.4 263.7 193.3 1112.6 0.009 0.005 0.049 144
3 4 Ethanol 373.4 553.9 508.5 2842.8 0.024 0.010 0.074 144
3 4 DCM 169.2 463.4 643.7 3574.7 0.429 0.135 0.733 144
3 4 DCM 205.7 6.8 10.5 72.0 0.005 0.008 0.056 144
3 4 DCM 234.7 1.8 9.0 77.5 0.000 0.001 0.006 144
3 4 DCM 239.4 1.6 3.8 22.9 0.000 0.001 0.005 144
3 4 DCM 241.0 6.9 17.3 111.6 0.001 0.003 0.027 144
3 4 DCM 250.4 4.4 11.7 91.1 0.001 0.002 0.009 144
3 4 DCM 251.2 68.1 211.5 1683.3 0.009 0.014 0.103 144
3 4 DCM 337.4 32.4 77.4 572.0 0.007 0.013 0.060 144
3 4 DCM 373.4 381.0 586.2 3159.2 0.072 0.062 0.206 144
3 4 Ethyl Acetate 169.2 2710.5 3037.9 15437.7 0.325 0.124 0.586 144
3 4 Ethyl Acetate 205.7 23.4 33.0 173.7 0.005 0.006 0.042 144
3 4 Ethyl Acetate 234.7 7.6 29.1 260.3 0.001 0.002 0.017 144
3 4 Ethyl Acetate 239.4 2.0 3.6 16.7 0.000 0.000 0.002 144
3 4 Ethyl Acetate 241.0 4.7 9.6 73.9 0.000 0.000 0.002 144
3 4 Ethyl Acetate 250.4 3.5 7.4 58.3 0.000 0.000 0.002 144
3 4 Ethyl Acetate 251.2 115.4 304.2 2298.6 0.005 0.009 0.058 144
3 4 Ethyl Acetate 337.4 34.3 65.0 512.9 0.002 0.002 0.012 144
3 4 Ethyl Acetate 373.4 2627.7 3123.4 13965.7 0.104 0.081 0.247 144
3 4 Methanol 169.2 1516.5 3046.6 34891.7 0.369 0.172 0.780 144
3 4 Methanol 205.7 15.8 21.8 167.1 0.003 0.004 0.028 144
3 4 Methanol 234.7 1.3 1.6 7.2 0.000 0.001 0.002 144
3 4 Methanol 239.4 1.6 2.1 15.3 0.000 0.000 0.002 144
3 4 Methanol 241.0 2.7 4.0 22.3 0.000 0.000 0.002 144
3 4 Methanol 250.4 1.3 2.3 14.7 0.000 0.000 0.002 144
3 4 Methanol 251.2 19.6 25.3 173.7 0.001 0.001 0.006 144
3 4 Methanol 337.4 288.8 315.4 1590.6 0.013 0.010 0.052 144
3 4 Methanol 373.4 510.8 507.8 2698.7 0.027 0.014 0.072 144
3 443.3 12333.9 13328.7 384.0 0.354 0.083 0.646 384
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Table C8: DESI-MS data of the nitrosation reaction using 5 as a nitrosation reagent 

 
 

 

Starting 
Material

Starting 
Material Solvent Product m/z Intensity 

(Average) Stdev Intensity (max) Normalized Intensity 
(Average)

Normalized 
Stdev

Normalized 
Intensity (max)

No of 
spots, n

3 5 Ethyl Acetate 169.2 41.1 47.5 326.1 0.006 0.005 0.028 144
3 5 Ethyl Acetate 205.7 26.2 10.1 59.8 0.004 0.001 0.011 144
3 5 Ethyl Acetate 234.7 46.6 22.4 225.0 0.007 0.002 0.026 144
3 5 Ethyl Acetate 239.4 54.1 121.6 768.5 0.005 0.006 0.027 144
3 5 Ethyl Acetate 241.0 18.6 34.1 215.5 0.002 0.002 0.010 144
3 5 Ethyl Acetate 250.4 243.1 89.4 605.5 0.038 0.008 0.076 144
3 5 Ethyl Acetate 251.2 239.7 89.6 605.5 0.039 0.010 0.112 144
3 5 Ethyl Acetate 337.4 6.5 4.5 38.0 0.001 0.001 0.004 144
3 5 Ethyl Acetate 373.4 19.5 23.7 107.1 0.003 0.004 0.022 144
3 5 Ethanol 169.2 1059.5 1113.0 5710.9 0.047 0.027 0.128 144
3 5 Ethanol 205.7 44.2 47.6 224.7 0.002 0.001 0.006 144
3 5 Ethanol 234.7 22.5 14.2 73.3 0.001 0.000 0.002 144
3 5 Ethanol 239.4 437.1 485.3 2453.7 0.016 0.012 0.091 144
3 5 Ethanol 241.0 155.0 199.6 1496.5 0.005 0.004 0.027 144
3 5 Ethanol 250.4 75.4 57.5 339.3 0.003 0.002 0.009 144
3 5 Ethanol 251.2 33.5 21.6 123.8 0.001 0.000 0.003 144
3 5 Ethanol 337.4 28.4 16.3 85.8 0.001 0.000 0.003 144
3 5 Ethanol 373.4 547.1 727.2 4628.6 0.021 0.014 0.065 144
3 5 THF 169.2 77.4 147.1 824.4 0.008 0.009 0.066 144
3 5 THF 205.7 23.6 18.8 81.5 0.004 0.002 0.009 144
3 5 THF 234.7 55.6 74.9 771.9 0.008 0.004 0.020 144
3 5 THF 239.4 98.5 215.8 1279.6 0.008 0.010 0.046 144
3 5 THF 241.0 31.2 63.7 401.6 0.002 0.003 0.013 144
3 5 THF 250.4 278.7 221.3 1061.8 0.046 0.021 0.088 144
3 5 THF 251.2 285.5 222.9 1061.8 0.048 0.020 0.088 144
3 5 THF 337.4 5.7 5.9 46.3 0.001 0.001 0.007 144
3 5 THF 373.4 23.1 41.3 258.5 0.003 0.004 0.021 144
3 5 DCM 169.2 357.7 408.6 2428.0 0.028 0.018 0.076 144
3 5 DCM 205.7 56.1 22.9 159.1 0.005 0.002 0.011 144
3 5 DCM 234.7 111.7 69.4 561.9 0.010 0.003 0.017 144
3 5 DCM 239.4 255.9 372.5 1692.9 0.019 0.016 0.055 144
3 5 DCM 241.0 76.3 115.2 670.7 0.006 0.005 0.018 144
3 5 DCM 250.4 538.9 212.4 1632.1 0.057 0.017 0.086 144
3 5 DCM 251.2 551.4 202.1 1632.1 0.058 0.015 0.086 144
3 5 DCM 337.4 3.3 3.5 28.0 0.000 0.000 0.002 144
3 5 DCM 373.4 102.8 212.9 2118.2 0.007 0.007 0.038 144
3 5 Toluene 169.2 292.1 271.9 1570.8 0.025 0.016 0.098 144
3 5 Toluene 205.7 25.0 15.0 107.4 0.003 0.001 0.011 144
3 5 Toluene 234.7 37.9 32.5 268.9 0.005 0.001 0.012 144
3 5 Toluene 239.4 179.6 173.3 1095.6 0.012 0.007 0.034 144
3 5 Toluene 241.0 57.9 59.1 394.2 0.004 0.002 0.011 144
3 5 Toluene 250.4 257.8 80.3 515.9 0.040 0.006 0.054 144
3 5 Toluene 251.2 257.5 78.3 463.2 0.040 0.006 0.054 144
3 5 Toluene 337.4 5.5 4.5 24.3 0.001 0.000 0.002 144
3 5 Toluene 373.4 136.8 119.1 632.3 0.012 0.008 0.045 144
3 5 DMSO 169.2 3063.0 4126.1 20263.6 0.192 0.113 0.754 144
3 5 DMSO 205.7 28.5 52.8 347.2 0.003 0.002 0.014 144
3 5 DMSO 234.7 19.5 14.6 117.7 0.004 0.003 0.033 144
3 5 DMSO 239.4 30.2 77.6 745.0 0.002 0.003 0.016 144
3 5 DMSO 241.0 10.1 24.1 233.9 0.001 0.001 0.005 144
3 5 DMSO 250.4 108.8 94.5 872.6 0.020 0.008 0.039 144
3 5 DMSO 251.2 105.8 71.3 325.7 0.022 0.007 0.040 144
3 5 DMSO 337.4 5.5 8.9 57.0 0.001 0.001 0.007 144
3 5 DMSO 373.4 2038.4 3628.2 27327.2 0.095 0.060 0.239 144
3 5 Methanol 169.2 1526.0 1662.0 6465.5 0.070 0.055 0.179 144
3 5 Methanol 205.7 46.2 46.0 249.9 0.002 0.001 0.006 144
3 5 Methanol 234.7 24.3 25.1 113.3 0.001 0.000 0.003 144
3 5 Methanol 239.4 483.9 642.3 3403.1 0.019 0.017 0.090 144
3 5 Methanol 241.0 194.0 382.7 3346.8 0.006 0.006 0.029 144
3 5 Methanol 250.4 71.5 104.6 744.7 0.003 0.002 0.010 144
3 5 Methanol 251.2 43.1 65.4 548.5 0.002 0.001 0.006 144
3 5 Methanol 337.4 26.3 29.5 167.7 0.001 0.001 0.004 144
3 5 Methanol 373.4 1043.9 1687.0 11607.0 0.039 0.035 0.128 144
3 5 Acetonitrile 169.2 3290.0 3100.9 15073.0 0.150 0.056 0.313 144
3 5 Acetonitrile 205.7 33.4 12.5 102.0 0.004 0.001 0.008 144
3 5 Acetonitrile 234.7 57.2 44.7 317.8 0.006 0.002 0.012 144
3 5 Acetonitrile 239.4 187.1 221.0 1440.7 0.008 0.004 0.025 144
3 5 Acetonitrile 241.0 64.9 87.3 669.7 0.003 0.001 0.008 144
3 5 Acetonitrile 250.4 299.6 100.6 629.8 0.038 0.010 0.063 144
3 5 Acetonitrile 251.2 311.5 96.9 629.8 0.040 0.009 0.063 144
3 5 Acetonitrile 337.4 8.2 9.1 50.7 0.000 0.000 0.005 144
3 5 Acetonitrile 373.4 1274.8 1544.7 12113.3 0.049 0.025 0.120 144
3 443.3 40997.0 24891.7 384.0 0.654 0.118 0.807 384
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APPENDIX D 

 

 

 

 

 

 

Base: DIPEA Base: NaOtBu

Base: No baseBase: TEA

A)

15 h heating

DESI-MS

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D)

15 h heating

DESI-MS

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D)

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D) R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 

(S)
R1-B12 

(D)

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

31.7 28.0 24.5 868.6 17.8 23.0 3866.6 165.5 61.9 45.0 28.7 171.0 244.1

52.3 29.5 32.6 21.2 5.5 5.8 59.3 40.8 14.4 6.5 17.3 258.0 669.6

12.2 3.9 9.9 31.4 37.3 30.0 13.2 26.9 12.6 13.5 20.3 22.4 463.9

410.3 56.8 136.5 1041.5 58.5 55.7 40.7 28.7 1412.2 206.0 9.2 87.7 2215.1

24.3 6.6 5.3 135.1 32.6 30.6 44.0 9.5 31.2 30.9 28.3 51.0 116.8

47.2 32.1 28.9 38.1 42.2 18.1 18.0 26.5 14.4 25.6 36.8 382.4 84.2

38.5 30.0 20.0 4690.9 29.1 26.7 3444.5 183.3 135.2 38.1 31.8 2299.4 418.7

124.2 14.8 14.4 19.4 26.7 30.4 29.1 20.8 25.1 21.4 16.6 16.6 117.4

3190.2 96.7 184.1 5502.0 1555.6 1730.2 4618.4 1363.4 7221.4 1584.5 31.3 27.0 243.1

277.5 56.9 56.2 1978.4 93.7 120.0 123.8 226.0 759.2 63.5 24.2 357.7 605.4

826.1 11.7 24.6 667.0 522.0 219.5 8.0 34.2 17.4 16.8 44.6 8.9 1069.7

3499.9 641.3 3345.7 4973.7 7199.4 10005.9 1267.5 63.9 2467.0 5317.5 25.8 27.5 893.9

1226.0 26.4 79.7 347.5 113.6 137.4 5435.5 17.2 488.3 54.4 44.4 67.8 431.9

61.7 31.2 37.1 209.2 53.4 93.1 684.4 35.6 110.5 29.3 31.5 757.1 62.0

6125.1 342.7 826.9 9886.8 4780.8 5175.7 15343.0 229.0 11798.2 2489.6 37.4 34.3 2467.7

703.4 145.3 113.3 5357.4 69.5 72.8 360.8 68.8 1975.1 40.1 14.8 17.0 110.5

20.3 25.0 25.2 230.2 11.6 12.1 961.5 216.0 61.4 38.9 19.0 381.6 311.1

31.2 39.2 36.0 4.2 7.4 3.2 41.3 22.9 7.0 8.3 19.9 497.3 764.0

18.2 4.8 9.6 24.3 26.1 23.8 17.7 19.2 10.0 11.3 14.2 14.4 316.8

195.8 50.7 79.7 429.5 57.3 44.4 99.1 34.0 1249.7 135.9 10.5 67.8 1051.8

19.9 13.0 11.8 73.4 28.7 27.6 34.2 7.2 25.1 23.8 53.6 18.5 144.2

44.6 49.9 71.2 75.7 63.9 57.0 25.0 22.9 25.3 16.9 35.2 248.4 122.1

61.7 18.6 26.8 2092.5 31.7 26.5 2431.8 251.9 61.7 28.9 34.4 5218.1 1930.3

139.9 42.5 33.9 37.7 17.5 14.8 52.4 14.4 30.9 12.2 13.3 29.3 175.4

2227.5 128.2 264.1 6332.4 936.7 1176.3 3019.4 1228.2 5713.0 811.7 24.3 15.4 1598.0

705.9 108.9 81.4 3748.9 466.8 1010.0 236.3 121.9 699.4 94.5 16.1 349.6 530.2

1151.9 16.7 15.6 806.2 552.9 203.9 11.6 22.0 19.0 34.4 26.2 12.7 2050.1

1763.0 1480.0 1688.8 7254.4 2988.2 8730.5 2784.0 72.4 2232.3 7262.8 10.3 83.8 558.3

952.0 70.7 27.1 536.2 95.0 141.2 2197.2 13.7 356.2 37.8 33.7 20.2 561.1

53.5 40.1 34.8 2411.4 58.7 87.4 112.6 36.8 41.2 34.1 28.8 28.0 80.0

3759.6 345.3 177.2 9100.4 2474.4 2045.4 14913.2 224.9 5458.0 1381.9 45.6 26.5 12413.1

352.7 45.5 27.4 7312.9 53.4 48.2 1181.3 14.1 597.6 38.2 11.6 13.5 114.9

47.4 42.1 36.5 36.3 15.8 16.5 757.3 74.0 49.0 31.9 29.0 167.6 167.8

38.1 31.7 35.7 5.3 4.5 8.4 27.3 119.2 8.7 12.7 26.2 299.3 657.4

6.9 6.3 7.0 31.7 22.8 26.6 11.0 20.1 5.9 25.2 39.2 9.8 347.9

46.7 25.1 23.7 1256.3 16.8 16.6 36.1 76.6 266.1 29.4 11.8 52.7 1579.4

11.1 10.8 8.0 28.7 22.2 25.7 47.7 11.2 15.2 22.0 23.3 41.0 192.5

38.8 36.2 42.9 69.3 67.6 16.7 34.0 35.0 85.3 17.7 25.9 392.4 82.7

54.0 38.5 17.7 295.2 35.6 24.0 669.9 211.1 35.2 25.5 62.9 3230.9 378.7

207.6 542.7 55.8 2714.9 39.4 51.8 698.4 32.3 633.1 30.2 18.7 8.9 152.3

515.8 69.9 60.0 170.3 109.0 31.4 181.3 822.8 209.2 86.0 30.4 26.8 162.9

28.5 40.4 38.0 10.7 7.8 8.0 44.1 34.3 6.0 13.8 18.2 281.6 451.3

209.4 14.9 8.3 112.3 41.2 32.3 21.1 19.3 11.1 12.7 62.8 10.9 1220.1

1170.9 137.5 167.3 1502.7 35.6 27.9 31.5 17.8 1235.4 262.7 22.7 30.6 551.2

90.6 15.2 14.0 36.8 45.1 55.5 86.3 11.2 37.9 22.9 25.1 53.0 321.1

566.7 38.5 43.6 212.3 221.5 28.5 16.0 17.7 250.6 54.1 30.1 40.0 61.4

10173.7 96.6 133.7 1417.9 76.1 64.4 159.4 994.0 576.2 110.1 38.8 37.1 1598.8

12616.3 2644.3 4162.5 1908.6 798.0 755.3 297.3 1552.9 144.8 126.9 129.6 18.2 101.1

31.4 25.9 25.9 668.2 26.9 16.0 1744.8 410.6 43.2 53.9 15.1 205.9 287.8

42.9 29.3 34.3 6.7 6.7 2.2 55.9 30.2 19.0 11.0 17.1 495.8 981.8

22.9 5.6 7.5 27.4 42.6 29.7 10.8 23.4 13.3 16.7 15.9 13.7 339.6

256.2 52.7 133.8 816.7 68.1 49.8 112.8 71.0 1664.2 347.5 13.8 93.2 1968.0

26.7 9.8 8.5 152.8 27.4 37.6 73.6 13.6 30.9 34.2 44.0 32.2 126.9

59.6 28.9 36.0 61.0 56.8 72.5 16.3 31.5 18.2 14.0 33.3 494.6 125.7

70.0 27.2 18.8 2975.9 25.5 31.1 2116.1 323.6 203.9 41.0 37.8 1476.6 844.8

31.5 69.0 29.1 35.5 19.0 18.8 27.0 21.0 31.9 24.3 15.5 25.3 206.6

4415.0 355.7 453.5 3898.7 1419.4 930.9 2006.8 4209.2 4961.7 2439.3 31.6 23.6 316.0

906.0 36.7 74.6 203.1 60.0 50.2 21.8 119.0 1585.2 68.6 20.8 330.7 631.4

458.9 11.7 11.4 674.5 364.5 194.2 19.3 26.3 13.2 13.1 64.8 13.6 1876.8

2947.3 1736.2 4490.4 4408.3 5651.0 8079.0 1990.6 88.3 3114.8 7248.9 20.5 14.9 576.4

1807.1 53.5 161.3 407.2 119.9 130.8 1726.1 100.2 784.9 344.6 31.4 81.7 589.7

81.8 29.7 30.5 236.9 75.9 88.2 210.1 57.4 50.3 25.2 45.0 78.0 107.6

4214.8 579.6 427.5 6296.3 3314.8 2428.3 13119.6 745.7 8081.4 2200.2 53.7 117.8 686.0

2620.4 56.2 85.3 3787.6 82.5 89.2 997.8 73.1 2200.6 18.7 15.5 16.4 109.0
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Figure D1: Heat map of 1,536 reactions of R-1 SNAr HTE using MeOH with 1% FA as spray 

solvent at 150 °C.  A) reaction solvent: NMP; B) reaction solvent: 1,4-dioxane. 

 

Base: DIPEA Base: NaOtBu

Base: No baseBase: TEA

15 h heating

DESI-MS

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D)

15 h heating

DESI-MS

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D)

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 
(S)

R1-B12 
(D) R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R1-B9 R1-B10 R1-B11 R1-B12 

(S)
R1-B12 

(D)

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

R1-A1

R1-A2

R1-A3

R1-A4

R1-A5

R1-A6

R1-A7

R1-A8

34.1 43.4 39.6 64.1 53.1 56.1 1146.4 45.2 72.3 32.1 37.4 73.5 1511.9

29.8 52.7 52.7 20.0 5.8 7.2 27.8 56.2 12.3 36.9 54.3 47.8 937.9

74.5 52.3 76.0 27.5 74.9 55.0 55.5 41.2 18.4 17.3 19.2 28.3 111.3

332.8 82.0 88.6 511.5 203.4 497.8 504.4 35.4 17.3 46.4 14.9 30.0 242.6

326.8 155.4 97.1 45.1 33.7 25.8 325.1 21.3 17.3 23.9 47.3 22.4 200.1

59.1 76.0 69.1 355.6 258.0 281.5 97.3 51.0 81.8 55.5 41.0 47.4 91.0

233.8 388.0 398.4 63.3 40.9 41.5 3349.6 77.6 32.7 48.1 40.6 46.7 223.3

316.5 62.0 40.2 44.0 41.9 34.4 72.4 29.6 28.9 41.7 28.4 35.7 114.7

192.9 22.2 34.4 1434.0 34.6 149.1 3245.3 78.6 76.2 24.4 56.2 49.4 201.0

31.5 43.9 37.6 115.7 25.1 32.4 43.8 104.5 42.9 46.5 43.7 97.1 379.0

129.8 85.2 70.0 1271.0 270.3 474.3 51.2 30.6 26.4 13.4 538.0 26.4 159.6

804.0 506.7 481.4 6017.3 2571.8 5834.3 9662.2 92.0 50.5 51.1 50.6 140.4 171.2

248.3 67.4 40.3 272.1 30.1 37.8 7219.7 22.1 24.8 18.1 21.9 59.7 152.0

50.8 77.0 92.8 443.1 195.7 181.1 565.0 43.6 51.9 25.8 181.9 94.8 109.6

1217.9 456.7 426.0 4228.0 1030.4 1271.5 8747.6 89.7 37.8 43.5 61.2 56.1 208.3

1640.6 1819.0 860.8 4791.9 19.3 11.6 530.2 36.6 20.7 26.4 27.7 75.8 92.2

30.0 50.6 31.9 45.4 20.6 30.9 676.5 66.9 47.7 29.9 32.8 101.6 673.3

39.2 38.2 57.6 13.5 6.1 6.8 26.1 109.2 7.8 14.9 29.7 26.8 345.8

49.3 42.3 55.8 83.5 43.2 37.1 40.2 21.0 14.0 10.8 19.4 18.0 54.2

230.3 81.6 139.6 372.0 211.7 214.3 373.9 34.7 17.5 138.0 3.6 17.7 136.2

190.7 109.8 122.9 52.9 33.0 52.9 278.5 19.5 25.3 24.1 24.4 9.4 64.8

63.6 80.0 87.6 253.6 212.4 271.5 129.2 32.5 124.5 59.7 22.2 28.5 45.9

128.7 212.1 454.8 47.9 28.4 35.5 1539.1 85.8 45.6 35.5 27.9 21.4 168.2

1826.2 319.7 550.0 24.8 20.6 12.5 61.5 27.2 10.7 20.1 6.9 15.9 102.6

148.2 24.6 35.5 1429.4 21.6 72.7 1784.6 132.6 44.0 59.8 31.5 61.7 134.0

56.5 74.9 255.8 88.8 6.4 6.9 144.0 314.4 11.7 35.4 19.7 12.7 210.0

143.6 69.6 56.1 1681.9 96.6 464.0 22.0 35.3 13.9 22.0 373.6 19.9 44.5

2030.4 455.3 643.6 7339.9 2065.5 6621.2 8273.6 59.7 49.6 241.1 36.2 55.3 50.0

47.8 30.3 37.9 74.6 27.6 43.0 8215.1 34.1 28.4 24.8 31.9 23.2 79.0

404.0 106.2 109.7 284.0 100.8 189.9 664.1 104.4 52.1 19.8 169.8 77.2 83.6

1228.6 311.6 174.9 4752.6 349.3 686.4 8343.6 92.1 82.6 64.6 49.7 30.1 103.2

890.4 545.5 793.8 86.9 14.4 21.7 846.6 147.3 31.2 31.6 13.9 60.2 78.5

86.5 37.9 53.0 69.0 27.9 38.9 392.8 62.4 50.2 41.4 21.6 80.4 610.3

37.0 37.2 32.4 6.9 4.7 7.2 36.6 138.1 9.1 14.1 12.1 28.2 549.9

15.6 19.9 17.1 38.2 31.6 29.0 121.2 17.2 15.0 14.1 73.7 43.2 53.6

69.4 46.9 39.2 138.0 200.7 69.2 52.3 31.8 20.5 292.7 8.6 10.8 224.6

21.0 20.6 24.7 54.7 29.2 30.4 92.9 11.5 14.0 14.8 27.6 8.9 49.4

61.2 49.0 70.1 164.6 76.9 62.4 8749.3 46.5 42.5 27.9 19.4 40.2 68.5

46.7 42.2 37.5 36.5 34.2 18.5 649.1 39.9 27.1 30.2 12.2 15.0 74.7

58.0 38.3 43.3 32.4 23.8 13.9 85.3 129.7 19.2 35.7 29.5 14.4 52.8

34.2 26.8 27.9 36.3 19.2 21.1 537.4 38.6 43.7 51.6 27.9 31.4 119.5

37.9 38.5 46.4 22.0 7.5 12.4 26.3 469.1 10.7 10.5 14.4 42.0 386.5

26.1 83.4 26.1 53.0 43.3 21.4 59.3 20.2 21.2 16.4 14.7 13.9 61.8

46.6 90.7 62.5 269.1 145.6 98.7 2558.7 22.0 26.6 322.8 24.9 15.5 95.1

15.7 26.3 27.7 54.0 39.6 91.0 230.4 16.5 25.0 31.5 31.9 12.9 49.6

86.0 97.7 102.5 54.7 45.8 26.8 75.1 29.5 26.8 46.1 31.4 19.3 81.5

114.3 72.7 44.4 80.9 57.6 22.8 1007.4 61.6 35.5 55.2 36.6 16.9 63.3

80.9 47.8 42.8 40.2 30.4 22.1 59.5 10.7 16.0 28.9 15.7 20.6 59.7

28.0 48.2 45.3 96.7 27.7 53.7 572.9 42.7 66.7 28.2 45.6 32.6 969.7

26.3 41.0 62.3 29.3 47.2 24.2 19.9 54.5 7.5 38.0 44.2 29.1 328.1

43.3 24.2 39.7 39.9 68.6 107.6 38.1 27.9 18.6 17.7 42.4 14.9 130.3

253.5 88.7 149.5 656.1 159.9 611.1 573.4 29.8 29.0 47.5 19.0 38.4 185.6

137.1 70.0 108.5 57.9 38.7 29.1 1862.1 19.6 24.4 27.0 49.2 22.2 101.1

55.7 69.2 94.0 373.2 218.4 152.5 119.7 34.8 71.2 38.1 35.4 36.5 103.0

183.4 220.4 353.6 264.8 68.9 99.1 2768.9 71.6 37.2 41.4 55.4 38.9 248.0

102.1 2072.7 399.7 34.3 22.4 22.5 50.5 18.6 20.1 11.3 19.8 21.6 127.9

149.2 24.1 42.9 1579.2 53.8 91.9 4517.8 62.7 81.7 29.3 34.8 233.7 253.1

31.9 62.9 64.6 118.1 23.8 22.6 25.6 174.7 42.6 99.3 141.5 43.1 230.8

100.6 101.1 61.2 3364.5 216.8 571.2 74.1 39.6 20.5 17.8 479.3 70.4 128.2

129.4 673.4 539.9 13179.8 1626.7 5754.4 1339.5 86.0 73.6 34.0 61.5 224.1 134.8

107.7 133.5 29.1 167.5 38.9 34.5 6762.9 32.7 37.0 28.5 41.0 73.8 106.9

52.1 90.3 75.4 224.3 137.1 128.0 339.7 36.5 51.4 24.6 136.6 122.4 129.9

1486.9 425.0 535.5 9830.6 631.7 484.6 7931.6 88.6 55.6 81.0 65.8 66.5 143.6

1964.7 1621.4 2018.3 54.6 66.9 18.6 597.6 18.4 13.4 38.6 111.8 49.7 80.9

B)

Base: DIPEA

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

4.2 1.6 0.0 4.9 1.1 2.0 59.6 3.5 1.8 3.2 5.0 11.1 111.0
5.5 3.6 7.5 12.7 7.9 12.4 0.6 9.7 8.8 11.8 5.0 146.2 239.2
3.4 3.7 3.3 14.3 6.9 15.2 5.8 7.5 8.5 15.7 4.7 37.5 57.0
1.6 1.7 1.9 5.4 2.7 2.5 609.9 3.9 1.4 2.1 77.6 8.9 34.5
1.4 0.0 0.5 15.0 14.7 10.7 44.9 5.5 33.4 7.0 13.0 29.5 59.5
20.1 4.6 2.0 284.7 1.1 6.4 879.2 4.5 3.9 3.2 4.3 55.3 325.5
1.4 0.8 0.7 3.6 5.8 5.1 0.8 1.6 0.0 2.1 9.1 4.3 45.0
10.8 9.5 16.1 9.1 4.2 5.1 9.3 15.8 15.1 15.5 5.5 9.6 25.0

7.0 4.2 1.7 13.8 3.0 11.1 56.7 4.4 5.1 4.0 3.8 7.7 72.8
2.0 5.0 4.7 16.4 7.6 10.4 21.0 9.8 9.2 11.0 23.2 78.1 194.3
5.1 6.8 3.7 13.0 5.5 10.6 18.4 23.1 41.6 16.5 2.8 20.0 43.7
2.5 3.7 4.0 8.7 3.3 2.4 682.1 5.5 5.1 4.7 52.3 6.6 22.5
18.8 2.0 6.9 26.6 9.9 18.7 1216.9 6.6 7.9 3.6 22.9 15.4 78.4
530.9 27.4 98.9 895.2 180.6 264.4 4688.6 5.5 12.8 6.1 9.4 13.7 210.3
2.2 1.8 2.9 6.6 4.4 12.9 7.6 11.3 2.2 1.3 4.0 4.4 48.6
11.3 14.8 9.0 14.5 12.5 17.4 311.9 13.7 13.2 13.5 17.1 4.5 86.1

4.6 7.0 3.2 18.8 4.0 3.6 45.1 5.7 3.1 8.0 4.1 13.8 93.5
2.3 5.6 4.4 15.4 8.9 13.5 26.9 10.2 13.7 7.2 34.0 100.1 189.3
2.1 4.5 3.2 10.7 14.3 11.6 7.7 13.7 20.7 26.4 1.1 19.0 89.4
1.3 3.1 2.8 8.5 2.0 4.3 595.4 3.7 2.7 4.2 50.0 15.9 33.5
33.3 2.3 2.3 28.2 14.8 15.4 652.0 6.4 6.1 6.9 32.5 24.8 161.1
612.2 30.4 65.6 1260.8 273.0 202.6 3237.5 12.1 10.4 5.5 6.8 6.4 305.5
2.6 5.5 2.6 12.7 12.1 11.2 3.8 2.7 4.7 2.0 6.5 11.3 49.2
10.2 10.3 13.7 18.3 8.8 13.3 250.1 10.4 13.1 14.1 10.4 3.0 72.6

1.6 11.4 13.1 21.7 4.9 7.3 38.5 4.5 2.6 5.5 6.1 19.2 58.4
5.3 5.0 10.3 13.8 10.6 6.9 8.8 7.7 10.4 10.6 4.2 101.5 153.6
5.2 2.7 3.9 14.4 9.8 10.2 10.4 13.4 17.2 9.8 4.5 21.8 74.9
2.4 3.2 4.5 13.9 3.5 2.6 553.0 8.9 2.9 3.0 14.2 15.6 25.9
63.3 1.9 4.3 32.5 12.1 14.5 971.1 11.4 7.7 4.0 26.3 15.5 49.7
692.2 39.0 82.1 1208.8 24.2 123.6 3852.7 49.3 6.8 9.4 6.1 10.9 77.1
1.7 1.6 3.4 9.0 10.4 12.2 9.8 3.9 4.0 1.1 4.3 15.6 83.5
12.0 10.2 9.8 22.9 10.0 20.5 575.2 12.3 12.6 12.3 13.3 2.4 34.3

A)
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Base: NaOtBu

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

6.8 5.1 13.9 10.5 5.5 9.4 54.7 4.1 2.9 4.3 7.8 18.2 165.8
11.1 6.6 12.0 94.9 8.6 12.4 1.6 49.7 36.2 19.3 7.1 217.0 299.0
14.5 8.9 13.8 9.2 10.4 18.0 8.4 12.0 7.6 18.8 4.1 17.9 80.8
1.8 2.1 3.5 3.6 15.5 4.7 742.8 4.0 2.8 2.8 71.7 7.6 27.2
0.6 2.7 3.3 12.8 27.9 12.4 40.0 8.7 13.8 8.8 31.2 28.4 115.5
6.1 3.5 3.4 32.5 8.1 6.3 51.4 15.4 28.8 6.4 1.2 54.5 405.7
1.5 18.8 13.5 10.3 42.3 39.7 8.0 6.2 5.2 1.7 10.7 6.0 38.2
11.5 11.2 9.3 82.5 36.9 8.3 2.6 16.0 10.6 12.9 4.2 30.1 131.6

78.7 3.3 13.8 28.7 8.5 10.8 92.9 22.6 4.9 3.4 19.1 11.8 91.7
29.2 8.0 10.9 114.6 24.1 29.9 15.7 19.3 25.0 29.4 5.6 227.4 280.7
1.9 6.5 11.1 11.1 7.8 17.9 17.6 34.7 67.8 20.9 3.2 20.4 148.8
3.8 4.4 4.2 13.5 19.3 17.6 734.7 7.7 8.4 26.6 13.5 6.5 44.5
1.6 2.9 5.8 13.1 15.7 31.1 273.6 12.4 17.4 7.2 41.6 14.0 209.5
183.8 18.7 21.9 315.7 37.8 13.5 23.5 13.5 13.7 10.6 5.5 63.1 545.6
6.2 12.6 14.7 5.7 9.7 14.5 5.0 4.3 6.4 4.4 6.1 9.7 38.6
67.5 55.1 60.8 72.3 49.3 15.9 103.7 21.2 15.7 18.5 15.6 12.9 102.8

169.5 4.7 8.7 15.6 6.5 14.6 17.7 22.3 9.9 8.5 18.2 14.0 147.5
22.2 8.0 9.0 41.2 10.3 19.0 15.3 22.2 28.9 24.5 17.4 206.8 302.9
3.5 4.2 10.5 11.0 10.3 16.8 17.6 15.9 35.1 13.6 3.7 20.2 85.7
2.9 3.1 3.6 8.8 17.1 12.7 821.4 11.8 4.7 23.4 16.2 7.3 55.1
1.2 6.0 3.5 10.2 14.7 25.8 171.8 18.0 17.1 11.6 34.3 31.4 178.6
149.5 14.3 14.7 227.0 45.1 12.5 29.8 20.9 12.3 15.0 5.5 60.6 484.5
1.3 19.6 6.9 9.6 11.2 17.3 8.7 2.9 3.7 4.6 8.9 5.8 57.2
78.7 49.3 42.3 71.2 50.6 19.1 76.1 30.5 21.1 17.7 12.0 18.0 58.1

41.0 6.9 8.7 18.2 14.6 15.6 18.4 13.8 1.8 7.8 12.9 15.9 83.4
12.4 8.5 12.5 22.2 15.3 12.7 8.3 19.6 12.4 7.5 4.8 187.5 239.2
2.4 5.1 8.0 11.2 8.2 16.0 14.2 13.7 27.1 14.5 3.9 18.4 75.6
3.1 4.3 5.5 10.9 14.4 14.3 867.5 8.6 5.2 19.8 12.7 5.6 33.4
7.5 2.1 5.8 21.7 17.1 24.6 445.0 9.5 9.4 11.6 41.9 27.0 77.3
496.3 17.1 30.1 356.2 53.2 9.1 70.0 16.7 3.4 9.2 6.8 10.2 307.6
0.7 10.0 13.3 2.9 8.2 9.5 8.3 7.6 2.9 5.9 5.0 13.3 55.6
84.8 45.3 47.9 57.2 31.5 14.6 94.3 17.8 25.4 30.7 12.8 23.6 30.7

B)

Base: TEA

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

9.6 1.2 1.8 1.7 1.9 0.0 42.5 4.3 2.5 2.2 2.1 13.0 120.7
4.6 3.5 4.9 9.5 7.5 11.2 0.5 9.2 10.9 13.5 2.3 150.8 238.1
1.4 3.1 1.8 12.6 16.5 15.1 2.9 7.4 5.0 8.4 3.1 34.8 151.0
0.0 3.4 2.8 5.1 4.4 1.5 555.8 0.7 2.5 0.0 33.5 8.4 32.5
2.6 0.6 0.0 144.1 92.5 153.5 86.3 12.5 9.1 8.1 23.6 45.3 66.9
27.3 4.6 4.5 180.8 10.8 3.9 328.4 15.5 4.0 5.7 4.8 66.1 294.0
2.0 1.1 1.3 9.3 2.6 2.0 1.8 1.9 1.9 0.6 9.7 4.5 43.6
11.2 13.5 10.4 9.5 9.4 3.6 13.2 13.7 15.3 14.5 12.5 11.9 39.2

4.6 1.0 6.1 7.0 1.4 5.9 69.6 3.2 0.7 1.8 5.5 11.4 140.6
2.7 4.1 5.6 16.4 6.3 7.1 1.4 10.7 20.2 18.9 3.1 178.0 188.7
1.3 3.6 1.8 13.3 13.7 8.4 5.8 19.3 30.3 16.9 3.8 26.3 58.7
0.6 6.9 3.7 5.0 1.3 3.5 557.5 3.7 3.0 2.7 23.8 4.7 25.5
16.9 0.6 2.4 34.8 15.6 13.9 967.8 9.0 14.5 7.7 17.7 34.5 168.3
256.9 26.8 46.2 1107.0 264.2 340.3 2758.4 14.3 4.4 4.7 3.7 5.4 795.6
1.4 1.4 2.7 11.5 6.9 9.0 1.1 6.6 5.2 1.9 7.9 5.0 44.7
6.8 11.8 8.3 9.6 13.1 10.8 123.1 11.5 12.6 14.3 9.3 4.5 106.2

2.4 0.6 3.1 13.7 0.5 4.5 44.8 0.0 1.5 2.8 5.9 12.4 110.7
3.3 3.3 4.0 9.2 9.1 10.6 3.4 11.8 9.3 6.6 6.5 127.7 209.9
2.2 2.2 1.7 12.8 11.6 9.9 9.1 26.0 35.5 13.9 3.9 13.2 61.9
2.7 7.2 2.6 4.7 2.3 3.9 533.8 5.8 4.8 1.8 15.7 6.9 32.3
25.9 4.0 4.1 36.3 17.7 16.1 404.2 9.2 10.7 14.9 26.5 20.5 174.7
354.1 29.6 45.8 1285.1 277.9 249.2 2767.3 14.9 9.4 3.7 4.1 11.5 770.0
2.4 2.9 2.1 11.2 17.4 10.6 2.8 5.7 3.5 4.6 10.5 4.3 47.1
7.3 8.1 10.0 17.0 18.7 11.3 293.9 18.2 11.4 12.6 8.4 7.2 134.9

5.2 3.3 4.8 11.4 1.1 2.5 74.8 2.8 2.7 4.0 5.3 24.0 72.8
2.1 3.0 5.9 14.0 5.6 8.4 1.9 14.6 13.7 9.2 6.1 139.4 255.2
3.1 1.4 1.3 18.0 12.1 9.8 12.8 15.9 14.0 18.0 3.6 25.8 108.5
1.2 2.3 3.5 11.4 3.7 4.3 547.7 2.0 8.1 3.1 29.3 6.8 22.1
7.7 1.1 2.9 37.1 22.0 21.3 479.9 11.5 16.7 6.6 19.4 39.8 103.2
366.9 33.1 67.0 1216.9 127.7 320.2 3017.0 63.6 6.6 6.0 7.7 4.2 239.0
4.1 1.6 3.5 10.1 15.9 13.2 4.8 7.5 3.1 1.5 11.0 8.7 43.9
16.4 12.0 13.7 19.6 17.2 20.8 620.3 14.4 11.6 13.8 18.4 5.7 83.3

C)
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Figure D2: Heat map of 1,536 reactions of R-2 SNAr HTE using MeOH with 1% FA as spray 

solvent at 150 °C using NMP as the reaction solvent. The four basic conditions are A) DIPEA B) 

NaOtBu C) TEA D) No base. 

 

3.6 1.3 1.2 1.2 2.0 1.8 56.9 4.1 3.8 1.9 4.5 16.3 132.6
1.9 7.7 4.1 5.5 13.0 12.0 0.6 13.0 10.4 11.6 3.4 244.6 451.9
0.7 3.6 1.7 7.4 7.8 15.2 7.1 12.2 6.6 12.0 4.4 37.1 90.8
1.2 3.0 1.4 4.5 3.2 4.6 844.5 5.1 0.7 0.8 44.1 5.2 24.2
0.0 3.5 0.5 10.7 14.1 14.0 21.8 19.4 16.5 6.5 17.3 32.7 53.6
8.4 7.5 3.4 48.8 3.5 4.7 50.0 7.8 2.6 4.1 2.8 43.3 115.3
1.1 1.8 1.1 3.3 2.8 3.1 4.6 3.6 1.3 0.5 11.5 3.6 40.7
8.4 8.3 9.8 5.2 4.2 2.4 9.8 21.2 14.2 17.5 8.3 11.3 39.7

0.0 1.1 5.9 5.6 1.2 3.8 63.9 8.4 1.7 4.0 1.9 14.0 142.8
4.4 1.4 8.8 12.4 9.1 11.8 5.0 12.3 8.1 13.4 4.1 137.4 290.9
0.0 4.8 7.6 11.1 6.6 23.3 6.7 16.1 16.5 14.5 2.7 10.4 87.2
2.4 3.8 5.2 3.1 3.6 2.5 816.5 1.6 2.0 0.0 18.9 8.1 30.3
1.8 1.7 0.0 19.6 12.6 19.4 514.2 8.1 8.3 3.5 20.7 17.5 140.9

190.7 18.4 46.1 700.6 247.6 360.2 1515.5 4.4 5.7 2.5 3.8 5.0 715.0
2.8 1.3 0.0 4.4 6.7 10.7 2.2 1.6 3.5 1.3 11.6 6.3 39.8
5.9 10.3 12.3 7.5 16.2 8.2 241.4 14.2 18.4 13.9 9.0 6.1 113.7

1.2 1.0 3.4 11.1 0.6 5.3 43.4 2.7 3.6 2.6 5.7 17.1 147.2
3.2 5.7 9.0 16.0 7.2 8.8 1.2 22.0 9.8 10.6 6.5 196.5 264.1
8.0 3.6 6.6 11.0 7.4 14.2 9.3 39.8 38.1 17.3 4.8 12.6 122.6
4.7 7.5 8.3 3.7 3.3 5.9 759.6 1.9 1.5 1.1 36.7 5.9 22.5

34.5 2.6 4.8 12.4 11.0 16.0 1415.5 6.9 10.1 5.1 16.7 13.7 90.2
242.2 36.1 48.9 982.0 138.9 211.7 1977.9 12.0 8.6 4.3 4.8 6.0 180.8

1.3 1.4 1.6 2.8 5.9 5.6 12.8 4.0 1.7 5.2 6.6 3.6 49.2
10.4 10.4 12.9 25.3 7.9 7.2 1112.9 16.4 14.7 15.5 17.5 11.7 92.8

1.1 1.8 2.4 20.5 2.4 5.0 11.1 3.9 2.7 1.8 2.0 27.0 98.4
3.2 4.7 6.2 11.7 9.3 10.5 4.9 13.9 7.5 8.3 6.5 144.0 149.4
0.0 8.0 3.0 6.3 8.0 17.9 8.2 30.5 21.4 17.0 4.4 8.0 124.8
3.5 4.6 9.0 8.5 3.7 3.9 782.2 2.6 2.0 0.0 23.2 2.2 16.7

38.8 3.0 4.9 13.9 10.8 9.5 1294.9 13.0 7.5 2.3 25.6 18.1 68.5
266.0 70.4 112.4 850.7 67.6 138.9 3468.2 26.7 5.0 1.7 4.6 6.6 56.9

3.3 2.3 2.7 4.0 4.8 9.0 32.9 3.8 5.5 5.4 8.2 3.4 40.4
13.5 15.5 12.2 16.9 8.8 11.8 901.3 14.3 14.7 16.2 18.4 4.2 83.5

Base: No base

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

D)

Base: DIPEA

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

7.1 3.7 6.1 9.9 8.6 8.9 235.5 4.3 6.6 3.1 9.6 16.2 112.7
13.2 3.0 5.3 30.9 32.1 29.9 3.7 5.4 21.9 10.8 4.1 32.1 79.6
497.9 8.4 142.1 15.3 16.7 11.4 47.0 16.7 30.6 20.8 1.9 18.9 53.1
24.4 4.0 9.6 3.1 2.6 2.2 49.6 14.4 15.4 10.2 30.0 9.3 22.0
50.1 11.4 19.6 18.7 11.3 10.0 281.1 10.3 16.1 10.8 15.0 13.8 122.3
90.5 8.2 11.8 320.0 4.9 2.7 584.1 21.4 11.9 12.2 3.6 252.0 346.2
24.9 15.8 11.2 27.1 26.9 26.2 7.7 4.5 7.8 4.8 8.5 12.1 16.8
19.5 53.1 11.7 10.9 18.1 19.2 23.0 7.6 13.1 6.0 9.5 34.5 79.8

55.7 36.7 45.2 26.6 14.4 16.6 141.3 7.6 12.4 10.6 4.8 13.4 47.7
12.5 6.0 5.5 25.8 38.6 27.1 24.1 8.1 17.4 9.5 35.5 19.4 59.6
27.2 11.3 15.6 14.5 12.3 9.8 10.8 21.2 23.4 28.5 3.0 21.5 36.6
26.6 9.3 21.9 7.8 4.0 4.3 64.4 10.8 18.3 12.6 30.4 13.0 25.2
153.2 7.2 27.6 39.4 18.9 17.8 1135.6 8.5 24.5 9.2 62.1 7.2 36.4
3765.1 107.0 321.1 1438.5 196.3 142.4 4023.1 21.7 14.8 13.4 10.0 10.6 74.2
26.8 14.8 13.5 25.7 23.5 25.9 8.1 7.8 6.8 9.1 7.0 13.9 33.5
30.4 15.6 18.0 43.7 29.6 32.2 1123.6 10.4 11.4 7.4 35.9 5.7 65.5

21.7 15.5 16.4 32.6 15.8 20.5 68.8 6.8 10.2 7.6 6.2 15.8 48.9
13.6 3.7 6.5 21.5 24.8 35.2 11.0 5.7 16.8 8.5 13.8 19.0 72.9
22.4 12.0 11.1 17.3 13.9 13.8 21.3 17.8 18.5 21.7 2.6 22.1 56.2
21.7 8.2 8.1 13.5 6.9 7.0 50.0 12.4 20.3 17.8 24.5 12.1 20.9
318.1 8.9 13.8 28.4 17.9 18.8 910.8 6.9 9.7 10.9 24.3 8.2 35.6
4585.7 171.0 272.4 340.5 38.8 38.5 2951.8 117.3 19.2 12.9 5.3 9.2 42.5
31.0 11.1 10.0 24.8 35.5 23.8 12.8 4.9 7.3 6.0 9.4 14.9 39.4
30.6 13.4 20.4 42.8 27.4 24.2 846.6 11.0 12.8 8.7 29.3 8.2 85.3

24.3 7.4 8.7 21.8 18.2 10.2 53.6 3.9 29.7 6.6 9.5 10.4 41.1
23.2 11.4 21.9 26.4 30.1 24.2 48.5 4.8 11.2 10.7 13.7 21.0 49.9
24.2 17.1 9.7 22.2 15.2 13.4 54.7 24.9 21.9 27.7 4.8 17.2 43.3
24.3 5.6 7.9 28.0 13.0 11.0 81.2 13.9 18.8 14.9 12.8 9.3 17.5
136.1 14.9 8.8 17.7 17.7 16.0 1120.3 7.6 13.4 10.5 11.4 14.7 25.8
2838.4 225.7 334.8 25.1 14.3 10.7 1631.1 218.9 33.2 21.6 4.6 24.1 108.4
40.5 15.8 14.1 38.7 36.1 30.6 7.4 2.4 3.0 3.6 29.1 15.7 17.5
58.4 24.2 21.2 37.2 40.5 26.8 230.8 12.7 13.0 8.1 23.3 10.1 85.0

A)
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Base: NaOtBu

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

24.6 25.4 18.7 40.7 17.8 7.8 14.1 5.1 7.8 7.8 6.5 16.9 137.2
5.4 7.8 5.0 43.1 38.9 35.2 8.7 315.4 237.8 142.3 9.2 41.8 99.3
48.7 34.4 52.0 18.3 20.5 15.6 5.1 19.6 28.4 19.0 5.6 26.4 88.7
5.1 2.1 7.7 11.2 6.6 12.1 107.3 17.4 11.7 13.0 39.3 12.7 38.7
2.8 8.3 6.5 47.3 11.2 12.7 26.7 8.6 13.7 6.9 39.1 15.9 90.7
28.0 7.0 5.8 45.0 4.8 3.5 212.7 27.9 17.1 12.8 4.0 12.1 225.5
44.0 40.8 31.2 25.7 24.2 32.5 5.3 7.2 9.8 4.0 1.7 17.6 27.1
11.4 9.3 10.6 12.8 8.8 7.8 7.3 17.7 13.6 3.5 8.0 22.7 93.4

27.3 10.7 15.5 11.3 7.0 9.3 32.2 6.5 8.1 2.4 21.8 16.9 67.6
37.2 19.1 25.5 19.6 23.3 26.1 9.6 24.5 18.6 8.1 14.9 36.4 68.1
19.8 30.7 14.0 11.4 12.2 15.8 10.3 20.6 53.1 17.8 3.3 18.2 53.7
11.8 6.7 7.0 11.9 11.6 8.4 108.3 18.8 13.9 10.8 5.2 11.6 30.6
2.6 1.8 6.6 196.2 56.2 42.1 36.2 14.3 18.1 5.5 32.3 7.5 37.4
100.3 31.9 31.3 162.2 13.3 9.6 628.2 20.4 15.8 5.1 7.8 18.8 87.8
21.4 25.2 26.4 24.8 19.9 25.6 4.6 5.5 5.3 1.9 4.9 17.6 27.6
45.2 25.4 26.3 17.2 15.5 13.3 22.8 22.2 11.6 10.7 3.4 8.0 82.8

6.6 8.6 11.9 18.2 12.4 18.2 37.6 10.5 6.4 6.8 14.5 16.9 52.2
40.1 30.2 29.5 28.8 25.8 21.8 10.1 22.9 41.0 14.7 12.2 33.9 70.5
16.5 29.7 19.0 14.4 9.7 11.0 9.9 21.7 42.7 17.9 3.0 21.9 70.6
5.0 7.8 10.9 10.3 7.8 10.4 104.5 13.6 20.2 17.2 10.4 13.4 35.5
5.7 3.9 6.8 18.8 14.0 16.0 26.7 15.4 20.8 12.9 27.2 10.1 33.9
197.8 33.2 45.4 43.3 13.8 10.4 426.2 25.9 34.7 14.4 3.0 15.7 86.0
21.5 21.8 28.5 25.5 16.8 31.6 8.4 9.8 7.2 4.5 5.3 20.9 39.4
56.2 33.8 24.0 16.9 18.7 17.8 12.5 18.4 17.5 8.0 8.1 11.2 103.0

6.3 10.5 3.0 37.2 19.5 23.6 19.1 12.6 8.3 6.2 15.8 24.0 52.9
42.0 30.7 26.7 26.5 15.7 20.4 13.3 29.2 40.7 7.5 10.7 28.6 68.6
7.9 15.6 18.0 16.3 10.7 16.9 7.4 21.4 19.0 15.5 4.6 22.7 57.1
13.0 12.5 11.3 9.3 5.4 9.5 103.3 14.6 15.2 11.4 13.5 7.2 29.7
10.4 7.1 5.2 15.4 15.1 18.4 204.3 11.5 12.7 7.9 9.0 11.0 33.1
245.5 25.2 31.8 15.2 9.9 7.2 713.3 89.0 76.7 9.7 5.5 31.3 105.1
17.4 23.0 18.7 23.1 30.3 26.3 13.4 10.7 10.2 5.7 6.6 21.8 38.5
39.8 18.4 29.6 18.7 23.9 24.1 32.8 26.0 30.1 16.0 30.0 10.4 87.6

B)

Base: TEA

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

8.0 2.5 5.1 8.1 9.0 5.5 290.3 6.1 42.4 7.1 5.1 9.1 75.5
7.9 2.0 7.4 25.5 29.1 31.0 4.2 5.2 21.5 9.1 2.2 19.8 75.8
132.9 5.6 9.8 17.5 18.0 13.4 26.5 21.0 27.3 29.8 1.8 29.3 59.6
15.1 4.7 6.1 4.5 6.3 3.5 82.2 10.5 17.6 15.3 27.3 8.6 27.3
38.5 4.7 8.9 139.5 58.8 147.0 434.3 12.7 16.4 26.2 7.9 13.2 123.7
199.8 12.6 18.9 66.0 7.2 6.4 829.5 45.4 14.5 7.4 2.9 83.0 607.0
34.9 14.3 16.7 31.9 25.3 20.8 2.9 4.8 6.7 5.2 3.2 21.7 23.2
69.2 15.1 35.8 12.5 14.2 8.9 58.7 12.0 9.1 12.0 14.1 127.1 97.8

41.9 34.9 26.5 18.9 11.7 17.0 125.6 2.3 7.3 7.2 3.4 10.8 38.2
22.4 3.7 10.1 22.0 29.3 23.4 4.1 3.0 12.8 11.2 27.1 18.6 52.5
38.5 6.4 6.7 18.2 12.1 7.6 7.8 21.1 25.2 19.8 1.1 21.0 64.5
15.3 4.2 7.2 8.0 7.2 6.0 57.5 13.5 12.0 15.0 51.5 8.0 28.5
219.4 7.0 24.1 64.1 23.1 13.0 907.4 15.1 11.4 12.1 15.6 13.2 138.6
3741.6 92.5 352.3 1544.5 256.6 191.2 3062.2 37.3 13.5 9.4 8.1 5.5 40.2
24.9 14.4 13.2 30.2 24.4 23.6 8.3 18.9 25.6 19.6 4.2 15.0 55.7
26.4 12.8 12.7 61.4 43.0 23.1 389.2 9.9 12.0 8.9 15.5 7.6 92.2

18.5 11.5 13.2 33.5 26.0 23.9 75.5 8.0 8.2 6.2 6.2 11.7 39.7
13.1 6.2 6.2 28.6 29.7 27.1 9.0 4.2 7.7 6.8 10.2 22.1 66.6
22.4 5.4 7.7 15.5 15.8 10.6 11.9 23.9 21.4 18.1 4.3 17.8 72.6
19.8 4.8 6.7 24.8 13.0 8.7 71.9 10.5 18.8 14.2 20.4 9.2 22.9
425.2 10.4 20.0 61.5 29.2 12.3 970.3 12.1 14.8 15.7 27.4 14.5 36.5
2943.3 182.9 284.7 689.8 60.4 60.1 2932.4 93.4 17.8 11.3 25.9 4.1 37.4
33.5 10.6 10.8 34.8 25.5 38.1 7.3 13.5 16.3 11.2 5.9 22.0 29.1
26.9 4.9 9.0 32.2 16.8 8.1 121.8 5.5 7.9 4.8 15.1 10.5 112.4

13.9 6.6 6.5 59.3 22.8 18.2 36.1 2.6 26.3 6.3 4.0 10.7 46.0
51.0 12.9 10.8 33.7 20.7 28.4 12.9 6.5 12.5 15.0 10.6 17.8 37.8
27.7 6.3 22.7 19.3 15.7 7.7 29.6 22.8 23.4 23.1 4.5 15.0 88.3
23.9 7.1 13.5 60.0 14.3 18.1 58.4 11.7 15.8 13.1 16.1 6.5 19.4
332.7 9.8 32.9 13.6 16.4 18.7 965.4 10.1 12.5 11.5 23.2 11.6 29.0
3186.7 172.9 428.9 72.2 18.1 14.8 2577.8 247.0 37.6 15.9 12.5 11.0 43.2
45.1 13.4 13.8 43.4 39.1 38.3 10.1 10.6 10.8 8.1 12.5 17.0 25.7
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C)
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Figure D3: Heat map of 1,536 reactions of R-2 SNAr HTE using MeOH with 1% FA as spray 

solvent at 200 °C using NMP as the reaction solvent. The four basic conditions are A) DIPEA B) 

NaOtBu C) TEA D) No base. 

Continuous Flow Synthesis 

Table D1: Chemtrix reactor chip: 3225, reactor volume:10 µL, pressure: ambient pressure 

Amines 

µL/min 

Aryl halides 

µL/min 

Base 

µL/min 

Residence Time 

Tr in Minutes 
Temperature oC 

6.67 6.67 6.67 0.5 100/150 

3.33 3.33 3.33 1 100/150 

1.11 1.11 1.11 3 100/150 

0.67 0.67 0.67 5 100/150 

  

Base: No base

1 h 
heating

4 h 
heating

DESI-MS

15 h 
heating

R1-B1 R1-B2 R1-B3 R1-B4 R1-B5 R1-B6 R1-B7 R1-B8 R2-B9 R1-B10 R1-B11 R1-B12 (S) R1-B12 (D)

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

R2-A1
R2-A2
R2-A3
R2-A4
R2-A5
R2-A6
R2-A7
R2-A8

1.6 3.2 2.7 7.0 11.0 7.5 277.6 6.7 4.0 5.3 4.1 21.3 91.8
2.8 4.3 5.0 26.0 27.1 27.5 10.2 11.5 12.6 5.6 2.5 19.4 114.0
230.9 61.7 6.4 14.5 12.1 13.0 62.9 20.2 22.7 17.4 3.6 47.7 115.1
6.9 6.6 10.7 2.9 2.0 3.4 37.9 15.6 21.2 12.5 46.8 8.3 22.0
8.5 35.8 6.8 11.7 7.4 7.4 160.3 13.7 15.0 9.7 29.1 18.6 43.4
68.4 16.0 16.1 74.2 6.1 4.4 317.8 31.8 12.7 7.8 4.6 84.7 240.1
14.8 14.1 22.3 26.0 27.1 25.2 3.2 6.2 6.0 5.0 4.6 18.6 25.9
120.9 38.7 208.1 12.1 12.4 14.0 36.2 14.9 8.5 5.4 11.5 76.3 104.0

3.2 1.6 3.7 25.8 11.3 8.3 100.2 6.2 6.7 2.6 4.2 9.0 59.4
3.9 2.6 4.0 27.1 28.0 32.3 7.6 6.6 10.5 3.8 48.4 32.1 91.0
17.2 26.4 18.6 14.1 10.2 11.0 4.0 25.4 19.4 14.9 4.5 17.0 95.1
28.1 19.1 16.4 3.2 6.3 4.3 62.2 16.5 17.1 9.4 49.8 7.8 19.5
55.0 10.6 10.2 38.5 21.7 13.3 1579.9 14.9 12.0 6.7 17.4 7.8 35.6
2387.9 107.9 174.9 2328.7 198.4 224.5 2402.8 41.9 13.7 5.4 10.0 10.8 52.1
18.6 12.6 15.4 29.9 41.6 22.8 11.1 10.3 11.2 8.9 8.2 14.5 29.4
17.3 12.1 11.9 53.2 22.2 20.7 1801.4 11.9 9.7 9.1 38.8 6.2 88.7

10.7 4.2 4.9 42.8 11.9 9.4 34.0 6.7 6.6 4.9 4.2 10.3 68.7
2.9 2.6 3.8 22.0 28.0 23.8 6.7 6.7 13.4 4.3 22.8 18.9 80.0
15.2 30.2 32.4 25.1 10.4 8.0 4.5 25.0 17.1 16.6 2.6 20.0 109.8
14.3 13.6 11.6 17.3 7.9 3.4 39.5 15.9 20.2 13.4 38.1 8.7 22.5
93.2 13.5 12.8 29.6 16.1 9.9 575.4 12.6 13.6 6.7 13.4 12.0 25.0
2237.3 172.1 280.4 1281.3 138.2 93.8 1835.6 79.0 18.1 9.9 8.3 10.7 60.0
14.0 9.8 17.2 27.6 25.6 22.5 15.8 9.7 12.1 3.8 25.0 15.2 32.0
14.8 5.2 10.6 16.2 15.1 9.2 932.4 9.6 6.0 6.6 37.6 8.8 102.3

4.7 3.6 2.0 36.3 9.6 9.2 17.7 6.5 6.9 1.1 4.8 11.0 52.3
5.7 3.6 4.6 26.2 22.8 26.3 6.7 7.2 9.5 5.7 9.3 32.6 88.0
30.6 23.9 18.2 17.1 21.0 11.0 26.7 25.3 21.9 12.0 0.6 13.3 86.5
10.7 5.5 8.3 24.7 11.6 7.5 59.0 14.3 14.0 11.4 14.0 10.7 24.8
90.3 13.1 20.7 23.5 9.3 6.6 663.2 14.0 13.8 5.5 14.7 15.1 29.6
1733.2 133.1 223.4 571.6 29.0 10.2 2109.0 294.6 24.8 9.4 10.8 5.7 43.1
16.4 16.3 20.8 27.9 29.5 35.4 5.2 9.2 9.7 3.9 20.1 14.9 27.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

D)
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 “Yes” Reaction in Flow 

 

 

 

N

N

F
NH

N

Exact Mass: 280.21

NH2

N

R1-A7

N

N
F

4-chloro-6-ethyl-5-
fluoropyrimidine

Exact Mass: 160.02

Cl

R1-B7

+ N

N

H
N

Cl

+ N

Exact Mass: 296.18

DIPEA

NMP
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100.05
122.04 199.32 597.5860.01 311.05 408.29 464.78 531.21 675.42

281.23

100.19
199.32122.25 311.26 408.43 444.41 675.49604.37530.02

281.37

100.19
198.97 310.98 597.4459.94 411.09 676.68446.37 563.07

100.19

281.44
145.07 189.10 352.49

446.09 675.77575.04526.87

NL: 2.03E7
ZJ-4-
153,150C,ZSnaR,5min#
17-21  RT: 0.82-1.02  
AV: 5 T: + p ESI Q3MS 
[50.000-700.000] 

NL: 7.96E6
zj-4-
153,150c,zsnar,3min#18
-21  RT: 0.87-1.03  AV: 
4 T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.60E7
zj-4-
153,150c,zsnar,1min#17
-21  RT: 0.82-1.03  AV: 
5 T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.42E5
zj-4-153,a5oc,30sec#18-
21  RT: 0.87-1.03  AV: 4 
T: + p ESI Q3MS 
[50.000-700.000] 

Product
Solvent, 
NMP

30 sec, 150 ℃

1 min, 150 ℃

3 min, 150 ℃

5 min, 150 ℃

N
HN

1-methylpiperazine
Exact Mass: 100.10

R1-A4

N

N
F

Cl

R1-B7

N

N
F

N
N

Exact Mass: 224.14

+ DIPEA

NMP N

N
N

Cl

N

Exact Mass: 240.11

+
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MS/MS of m/z = 225 MS/MS of m/z = 241 

 
 

 

 

30 sec, 100 ℃

1 min, 100 ℃
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225.29

241.32

130.23
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283.33219.41 369.36100.19 443.36 523.37 683.48639.51
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283.33 369.29219.27 443.36 523.44 683.41639.44

NL: 6.36E7
Zj-4-
162,100C,5min#118-
162  RT: 1.05-1.45  
AV: 45 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 1.99E8
zj-4-
162,100c,3min#116-
161  RT: 1.03-1.44  
AV: 46 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.20E8
zj-4-
162,100c,3min#127-
166  RT: 1.13-1.48  
AV: 40 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 1.56E8
zj-4-
162,100c,30sec#127-
179  RT: 1.13-1.60  
AV: 53 T: + p ESI 
Q1MS 
[50.000-700.000] 
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NL: 1.42E8
zj-4-
162,150c,5min#123-
188  RT: 1.10-1.68  
AV: 66 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 1.15E8
zj-4-
162,150c,3min#119-
185  RT: 1.06-1.65  
AV: 67 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 1.34E8
zj-4-
162,150c,1min#119-
186  RT: 1.06-1.66  
AV: 68 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 1.95E8
zj-4-
162,150c,30sec#126-
194  RT: 1.12-1.73  
AV: 69 T: + p ESI 
Q1MS 
[50.000-700.000] 

Zj-4-162 MSMS #152-156 RT: 1.56-1.60 AV: 5 NL: 1.47E8
T: + p ESI Full ms2 225.000 [50.070-580.000]
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Zj-4-162 MSMS #191-194 RT: 1.94-1.96 AV: 4 NL: 1.29E8
T: + p ESI Full ms2 241.000 [50.070-580.000]
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221.23

413.40

130.30 369.36 421.17 512.5296.20 325.12 683.55563.56235.23 639.51
221.30

122.18

130.23

413.26 512.38369.08235.30154.17100.05 683.55563.56 621.52
221.30

122.18

130.23

413.26
512.45369.29154.2499.98 235.30 683.55563.49 621.38

221.09122.11

130.23
413.40154.17 459.53 512.38100.05 360.40235.16 683.55563.42

NL: 1.72E8
ZJ-4-156,100oC,5min#18-
21  RT: 0.87-1.02  AV: 4 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.58E8
zj-4-156,100oc,3min#18-
21  RT: 0.87-1.02  AV: 4 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.59E8
zj-4-156,100oc,1min#17-
23  RT: 0.82-1.13  AV: 7 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-156,100oc,30sec#16-
26  RT: 0.77-1.28  AV: 11 
T: + p ESI Q3MS 
[50.000-700.000] 30 sec, 100 ℃

1 min, 100 ℃

3 min, 100 ℃

5 min, 100 ℃

NMP+Na=122
Product, M+

30 sec, 150 ℃

1 min, 150 ℃

3 min, 150 ℃

5 min, 150 ℃
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220.88122.04

413.33130.16 235.30 512.45320.08100.05 683.48639.51595.48
220.88122.11

130.23
413.33320.22235.23 512.52100.12 683.55639.37595.41

220.88122.04

130.30 413.26320.15235.23 459.60 512.38100.12 683.62639.37
220.95122.11

130.30 413.26235.23 459.53 512.45320.22100.05 683.48639.51

NL: 2.60E8
zj-4-156,150oc,5min#18-
24  RT: 0.87-1.18  AV: 7 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-156,150oc,3min#18-
24  RT: 0.87-1.18  AV: 7 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-156,150oc,1min#18-
24  RT: 0.87-1.18  AV: 7 
T: + p ESI Q3MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-156,150oc,30sec#17-
25  RT: 0.82-1.23  AV: 9 
T: + p ESI Q3MS 
[50.000-700.000] 

Exact Mass: 221.12

N
HN

1-methylpiperazine
Exact Mass: 100.10

R1-A4

NO2

F

1-fluoro-4-nitrobenzene
Exact Mass: 141.02

R1-B4

NO2

N

N

+

DIPEA

NMP

30 sec, 150 ℃

1 min, 150 ℃

3 min, 150 ℃

5 min, 150 ℃
Product
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122.11

222.28

413.33

369.29 443.36283.26136.18 683.41523.37 639.37
122.11

222.28

413.33

369.29 443.36136.25 283.33 683.41639.44523.37
122.11

222.21

413.33

369.29 443.36136.11 283.33 683.41523.44 639.44
122.11

222.28

413.33

369.36 443.36283.33136.18 683.41523.37 639.44

NL: 2.57E8
zj-4-
167,150c,5min#114-
157  RT: 1.02-1.40  
AV: 44 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.57E8
zj-4-
167,150c,3min#111-
159  RT: 0.99-1.42  
AV: 49 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.59E8
zj-4-
167,150c,1min#117-
173  RT: 1.04-1.54  
AV: 57 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.44E8

zj-4-
167,150c,30sec#109-
159  RT: 0.97-1.42  
AV: 51 T: + p ESI 
Q1MS 
[50.000-700.000] 
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NO2

F

1-fluoro-4-nitrobenzene
Exact Mass: 141.02

R1-B4R2-A6

N
O

NH2

2-morpholinoethan-1-
amine

Exact Mass: 130.11

NH

N

O

NO2

Exact Mass: 251.13

+

DIPEA

NMP

Product

30 sec, 150 ℃

1 min, 150 ℃
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221.23

252.24

413.26
369.29218.36 443.29283.33 683.41639.30523.37

122.11

221.23

252.24

413.33

369.29 443.29218.29 325.26 683.34639.37523.30
122.11

221.23

252.24 413.33

369.29218.29 443.29325.26 683.34639.37523.37
121.90 221.23

413.26252.24
369.29130.16 443.29325.33 683.34639.37523.37

NL: 2.58E8
zj-4-
179,150c,5min#67-
144  RT: 0.59-1.28  
AV: 78 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
179,150c,3min#66-
135  RT: 0.59-1.20  
AV: 70 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
179,150c,1min#61-
144  RT: 0.54-1.29  
AV: 84 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8

zj-4-
179,150c,30sec#82-
142  RT: 0.73-1.27  
AV: 61 T: + p ESI 
Q1MS 
[50.000-700.000] 

Na+ NMP

N

N
F

4-chloro-6-ethyl-5-
fluoropyrimidine

Exact Mass: 160.02

Cl

R1-B7R2-A6

N
O

NH2

2-
morpholinoethan-

1-amine
Exact Mass: 

130.11

N

N
F

N
H

N
O

Exact Mass: 254.15

+
DIPEA

NMP
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“No” Reaction in Flow 

 

 
 

 

Product

Na+ NMP

30 sec, 150 ℃

1 min, 150 ℃

3 min, 150 ℃

5 min, 150 ℃
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413.33
369.29169.22 443.29 683.34639.37523.30

122.18
221.23

255.32

413.33
130.16 369.29 443.29 683.41639.37523.37

122.11

221.23

255.25

413.33
169.29 369.29 443.29 683.34639.30523.37

122.11
221.23

255.25
413.26

369.29169.22 443.29325.33 683.34639.37523.37

NL: 2.59E8
ZJ-4-
180,150C,5min#90-
146  RT: 0.80-1.30  
AV: 57 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.59E8
zj-4-
180,150c,3min#83-
140  RT: 0.74-1.25  
AV: 58 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.57E8
zj-4-
180,150c,1min#82-
144  RT: 0.73-1.28  
AV: 63 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
180,150c,30sen#76-
133  RT: 0.67-1.18  
AV: 58 T: + p ESI 
Q1MS 
[50.000-700.000] 

R1-A2

N

N

1-methyl-1H-imidazole
Exact Mass: 82.05

+
N

Br

4-bromo-N,N-diethylaniline
Exact Mass: 227.03

R1-B11

N

NN

Exact Mass: 230.17

DIPEA

NMP

30 sec, 150 ℃

1 min, 150 ℃

3 min, 150 ℃

5 min, 150 ℃
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122.11 228.16

221.23

413.33
283.33130.23 359.35 443.36 683.48505.45 639.44

121.90

228.23

221.23

130.16
413.33283.26154.10 523.44 683.48629.43

122.11 228.16

130.30

413.33
283.26136.11 447.42 523.44 683.34

122.11
228.16

221.23
413.33

283.33 369.29 443.36154.17 523.37 683.41639.37

NL: 2.60E8
zj-4-
165,150c,5min#117-
177  RT: 1.04-1.58  
AV: 61 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
165,150c,3min#115-
148  RT: 1.02-1.32  
AV: 34 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.59E8
zj-4-
165,150c,1min#119-
155  RT: 1.06-1.38  
AV: 37 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.58E8
zj-4-
165,150c,30sec#120-
195  RT: 1.07-1.74  
AV: 76 T: + p ESI 
Q1MS 
[50.000-700.000] 
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228.16

221.23
231.17

199.18 239.36207.23 275.28245.10 266.25

228.23

221.23

231.17
199.25 239.22207.23 278.29271.36246.29

228.16

221.23
231.17

199.18 278.36239.22218.22 244.26 271.29263.24

228.16

221.23

231.17
278.36199.04 239.29 271.29246.22218.36

NL: 2.53E8
zj-4-
165,150c,5min#117-
177  RT: 1.04-1.58  
AV: 61 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.25E8
zj-4-
165,150c,3min#115-
148  RT: 1.02-1.32  
AV: 34 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.53E8
zj-4-
165,150c,1min#119-
155  RT: 1.06-1.38  
AV: 37 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.34E8

zj-4-
165,150c,30sec#120-
195  RT: 1.07-1.74  
AV: 76 T: + p ESI 
Q1MS 
[50.000-700.000] 
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R1-A3

HN

piperidine
Exact Mass: 85.09

Cl

O

4'-chloroacetophenone
Exact Mass: 154.02

R1-B2

DIPEA

NMP
+

O
Exact Mass: 203.13

N

30 sec, 150 ℃

1 min, 150 ℃

5 min, 150 ℃
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221.23 413.33
369.29 443.36136.25 283.33 683.48523.44 639.44

122.11

221.23
413.33

176.71 369.29 443.29228.30 683.41523.44 639.44
122.11

221.23
413.33

369.36176.92 443.36228.23 683.48523.44 639.37
122.11

221.23 413.33
228.16 369.36 443.29136.04 683.41523.44 639.44

NL: 2.56E8
Zj-4-
166,150C,5min#115-
169  RT: 1.03-1.51  
AV: 55 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
166,150c,3min#126-
166  RT: 1.12-1.48  
AV: 41 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.60E8
zj-4-
166,150c,1min#128-
167  RT: 1.14-1.49  
AV: 40 T: + p ESI 
Q1MS 
[50.000-700.000] 

NL: 2.55E8
zj-4-
166,150c,30sec#117-
163  RT: 1.04-1.45  
AV: 47 T: + p ESI 
Q1MS 
[50.000-700.000] 

3 min, 150 ℃
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VITA 

Summary 

• Highly motivated, and passionate synthetic organic and analytical chemist with a strong 

background of modern synthetic methodology such as small molecule synthesis both in 

continuous flow as well as in batch process for more than eight years leading to the successful 

publications of 8 journal papers. 

• High-level strategic planner with experience in analyzing large scientific datasets as 

demonstrated by the optimization of 3 high-throughput methodologies, resulting in a new area 

of synthesis route screening that published in Analyst, Chem. Sci. and Chem. Eur. J. 

• Excellent teamwork and collaboration skills established by managing a multidisciplinary team 

of chemists, analysts, engineers and computer scientists in a DARPA funded project, resulting 

in the development of 4 internal collaborations and 3 external collaborations. 

• Highly skilled synthetic chemist in the area of methodology development and multistep 

synthesis with strong knowledge of techniques related to purification and characterization of 

organic compounds. 

• Strong fundamental background in chemistry, as reflected from the excellent grades, 

knowledge of current industry trends and experience clearly communicating complex topics to 

diverse audiences, as evidenced by 6 award-winning scientific presentations. 

Work Experience 

Research Assistant, Prof. David H. Thompson, Purdue University--Aug/2014-present 

• Lead chemist for automated robust continuous flow synthesis of active pharmaceutical 

ingredient (APIs) using catalysts, resulting in the publication of the projects in Analyst, Chem. 

Eur. J. and one patent 

• Develop high throughput reaction screening technology both in batch and droplet reactor for 

the synthesis of molecules using liquid handling robots and identify the reaction hotspots in a 

collaborated project, published in Chem. Sci. and Chem. Eur. J. 

• Investigate, design, develop, execute, and optimize APIs manufacturing efficiently and 

statistical analysis the data using various analytical tools including MS, DESI-MS, NMR, GC, 

UPLC, LC, HPLC-MS. 
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• Document work procedure timely, and demonstrate progress to technical and non-technical 

person, manage project deliverables with tight deadlines, and gained business acumen. 

Research Assistant, Prof. Mohammad R. Karim, Tennessee State University--Aug/2012-Jul/2014 

• Synthesized Schiff-bases and characterized the compounds using spectroscopic methods, 

subsequent publishing in Int. J. Org. Chem. as a first author 

• Investigated the antibacterial activity of the Schiff-bases and determine minimum 

inhibitory concentration (MIC) of compounds, following in publication in Adv. Microbiol. 

as a first author. 

MS Exchange Student, Prof. Takashi Sugimura, University of Hyogo, Japan Oct/2010-Mar/2011 

• Methodological development of polyheterocyclic compounds and synthesized of precursors 

for heteropolycycles and studied of stereo-selectivity of synthesized compounds. 

Research Assistant, Prof. Md. Giasuddin Ahmed, University of Dhaka, Bangladesh--Oct/2009-

Sep/2010 

• Synthesized and characterized of a,b-unsaturated cyanoesters with cyclic 1,3-diketones. 

Education  

Doctor of Philosophy, Organic Chemistry, Purdue University, West Lafayette, IN--May/2019  

Dissertation: High Throughput screening guided continuous flow synthesis of active 

pharmaceutical ingredient (APIs) and optimization of the reaction conditions. 

GPA: 4.00/4.00 

Master of Science, Chemistry, Tennessee State University, Nashville, TN--Aug/2014 

Dissertation: Synthesis and antibacterial study of Schiff Bases from 5-substituted-2, 9-dimethyl-

1,10- phenanthroline dialdehyde and sulfur-containing amines 

GPA: 4.00/4.00 

Master of Science, Organic Chemistry, University of Dhaka, Dhaka, Bangladesh-- May/2011 

Dissertation: Studies on the reactions of a,b-unsaturated cyanoesters with cyclic 1,3-diketones. 

GPA: 4.00/4.00 (USA equivalent grade converted by WES) 

Bachelor of Science, Chemistry, University of Dhaka, Dhaka, Bangladesh-- Jun/2009 

GPA: 3.87/4.00 (USA equivalent grade converted by WES) 

Techniques, Instrumentation & Software 

• UV/VIS, IR, FTIR, GC, HPLC, UPLC, HPLC-MS, MS (EI and ESI), DESI-MS, DLS, NMR 

(1D and 2D) 
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• Chemtrix Labtrix S1 flow system, Bruker AV-III-400/500-HD NMR spectrometer, Biotage 

(Flash+), ThermoFisher TSQ QA MAX MS w/ Autosampler, ThermoFisher LTQ MS, Prosolia 

DESI 2D molecular imaging, Beckman Biomek FX and i-7, Agilent 1100 HPLC w/ Agilent 

MSD-TOF MS, Agilent 6410 NanoLC QQQ-MS, Agilent 6545 UPLC/Q-TOF MS, Thermo 

TSQ 8000 QQQ GC/MS/MS, DynaProTM DLS 

• MS Office, ChemDraw, OriginPro, MestReNova, Perl, Xcalibur, BioMap, Sci-Finder, 

EndNote, Reaxys  

Selected Publications (7 out of 9) 

• Zinia Jaman, Tiago J. P. Sobreira, Ahmed Mufti, Christina R. Ferreira, R. Graham Cooks and 

David H. Thompson, “On-demand Rapid Synthesis of Lomustine Under Continuous Flow 

Conditions” accepted, Org. Process Res. Dev, 2019, 23, 334–341 

• Zinia Jaman, Samyukta Sah, Ahmed Mufti, Larisa Avramova, Tiago J. P. Sobreira, David H. 

Thompson, “High Throughput Experimentation and Continuous Flow Validation of Suzuki-

Miyaura Cross-Coupling Reactions” Chem. Eur. J 2018, 24, 9546-9554. (Citation:3) 

• Michael Wleklinskiǂ, Bradley P. Lorenǂ, Christina R. Ferreira, Zinia Jaman, Larisa Avramova, 

Tiago J. P. Sobreira, David H. Thompson and R. Graham Cooks, “High Throughput Reaction 

Screening Using Desorption Electrospray Ionization Mass Spectrometry” Chem. Sci 2018, 9, 

1647-1653. (Citation:7) 

• Zinia Jamanǂ, Caitlin E. Falconeǂ, Michael Wleklinski, Andy Koswara, David H. Thompson, 

R. Graham Cooks, “Reaction screening and optimization of continuous-flow atropine synthesis 

by preparative electrospray mass spectrometry” Analyst 2017, 142, 2836-2845. (Citation:6) 

• Michael Wleklinski, Caitlin E. Falcone, Bradley P. Loren, Zinia Jaman, Kiran Iyer, H. Samuel 

Ewan, Seok-Hee Hyun, David H. Thompson, and R. Graham Cooks, “Can Accelerated 

Reactions in Droplets Guide Chemistry at Scale?”, Eur. J. Org. Chem. 2016, 2016, 5480-5484. 

(Citation:14) 

• Zinia Jaman, Mohammad R. Karim, Korsi Dumenyo, Aminul H. Mirza, “Antibacterial 

activities of new Schiff bases and intermediate Silyl compounds sythesized from 5-substituted-

1,10-phenanthroline-2,9-dialdehyde”. Adv Microbiol, 2014, 4, 1140-1153. (Citation:5) 

• Zinia Jaman, Mohammad R. Karim, Tasneem A. Siddiquee, Aminul H. Mirza, Mohamad A. 

Ali, “Synthesis of 5-Substituted 2, 9-Dimethyl-1,10-Phenanthroline Dialdehydes and Their 
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Schiff bases with Sulfur-containing Amines”. Int J Org Chem, 2013, Vol 3, 214-219. 

(Citation:6) 

Selected Presentations (9 out of 14) 

• Oral Presentation, Bangladesh Student Association, Purdue University, IN, 2018 

• Oral Presentation, Cal Meyers Memorial Organic Chemistry Symposium, Southern Illinois 

University, Carbondale, IL, 2017 

• Oral Presentation, 36th Annual University-Wide Research Symposium, Tennessee State 

University, TN, 2014. 

• Poster Presentation, Flow Chemistry Congress, Miami, FL, 2018. 

• Poster Presentation, H.C Brown Symposium, Purdue University, IN, 2018. 

• Poster Presentation, 9th Chicago Organic Symposium, Northwestern University, IL, 2018. 

• Poster Presentation, Flow Chemistry Europe, Cambridge, UK, 2018. 

• Poster Presentation, 247th ACS National Meeting, Dallas, TX, 2014. 

• Poster Presentation, 35th Annual University-Wide Research Symposium, Tennessee State 

University, TN, 2013. 

Selected Fellowship, Awards and Honors (11 out of 16) 

• Best Poster Award, Flow Chemistry Congress, Miami, FL, 2018. 

• First Prize, Poster presentation, H.C Brown Symposium, Purdue University, IN, 2018. 

• Poster Award, 9th Chicago Organic Symposium, Northwestern University, IL, 2018 

• Cagiantas Fellowship, College of Science, Purdue University, IN, 2017-2018. 

• H.C Brown Organic Travel Grant, Department of Chemistry, Purdue University, IN, 2017. 

• Best Poster, Ei-ichi Negishi 80th Birthday Symposium and 8th Negishi- Brown Lectures, 

Department of Chemistry, Purdue University, IN, 2015. 

• Outstanding (Masters) Graduate Student, College of Agriculture, Human and Natural Sciences, 

Tennessee State University, Nashville, TN, 2014. 

• First Place, Oral presentation at 36th Annual University-Wide Research Symposium, 

Tennessee State University, Nashville, TN, 2014. 

• Second Place, Poster presentation at 35th Annual University-Wide Research Symposium, 

Tennessee State University, Nashville, TN, 2013. 

• Gold Medal, First Place in Graduate Study (M.S), University of Dhaka, Bangladesh, 2011. 
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• Dean’s award, Undergraduate Study (B.S), University of Dhaka, Bangladesh, 2009.  

Outreach and Engagement Activities 

• Bindley Ambassador, Discovery Park, 2018-2019, Purdue University 

• Volunteer, National Chemistry Week, 2017 & 2016, Purdue University 

• Community Volunteer, Winterization, 2017, Fund Raising, 2016, Purdue University-

BoilerLink 

• Social Correspondent, Bangladesh Student Association, 2016-2017, Purdue University 

• Member: Toastmaster, Flow Chemistry Society, American Chemical Society; Bangladesh 

Student Association at Purdue (BDSA) 
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LIST OF PUBLICATIONS 

1. Zinia Jaman, Tiago J. P. Sobreira, Ahmed Mufti, Christina R. Ferreira, R. Graham Cooks 

and David H. Thompson, “On-demand Rapid Synthesis of Lomustine Under Continuous 

Flow Conditions” Org. Process Res. Dev 2019, 23, 334–341. 

2. Zinia Jaman, Samyukta Sah, Ahmed Mufti, Larisa Avramova, Tiago J. P. Sobreira, David 

H. Thompson, “High Throughput Experimentation and Continuous Flow Validation of 

Suzuki-Miyaura Cross-Coupling Reactions” Chem. Eur. J 2018, 24, 9546-9554. 

3. Michael Wleklinskiǂ, Bradley P. Lorenǂ, Christina R. Ferreira, Zinia Jaman, Larisa 

Avramova, Tiago J. P. Sobreira, David H. Thompson and R. Graham Cooks, “High 

Throughput Reaction Screening Using Desorption Electrospray Ionization Mass 

Spectrometry” Chem. Sci. 2018, 9, 1647-1653. 

4. Zinia Jamanǂ, Caitlin E. Falconeǂ, Michael Wleklinski, Andy Koswara, David H. 

Thompson, R. Graham Cooks, “Reaction screening and optimization of continuous-flow 

atropine synthesis by preparative electrospray mass spectrometry” Analyst 2017, 142, 

2836-2845.  

5. Michael Wleklinski, Caitlin E. Falcone, Bradley P. Loren, Zinia Jaman, Kiran Iyer, H. 
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