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ABSTRACT 
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Degree Received: May 2019 

Title: Remote Sensing of Soybean Canopy Cover, Color, and Visible Indicators of Moisture Stress 

using Imagery from Unmanned Aircraft Systems. 

Committee Chair: Dharmendra Saraswat 

 

Crop improvement is necessary for food security as the global population is expected to exceed 9 

billion by 2050. Limitations in water resources and more frequent droughts and floods will make 

it increasingly difficult to manage agricultural resources and increase yields. Therefore, we must 

improve our ability to monitor agronomic research plots and use the information they provide to 

predict impacts of moisture stress on crop growth and yield. Towards this end, agronomists have 

used reductions in leaf expansion rates as a visible ‘plant-based’ indicator of moisture stress. Also, 

modeling researchers have developed crop models such as AquaCrop to enable quantification of 

the severity of moisture stress and its impacts on crop growth and yield. Finally, breeders are using 

Unmanned Aircraft Systems (UAS) in field-based High-Throughput Phenotyping (HTP) to 

quickly screen large numbers of small agronomic research plots for traits indicative of drought and 

flood tolerance. Here we investigate whether soybean canopy cover and color time series from 

high-resolution UAS ortho-images can be collected with enough spatial and temporal resolution 

to accurately quantify and differentiate agronomic research plots, pinpoint the timing of the onset 

of moisture stress, and constrain crop models such as AquaCrop to more accurately simulate the 

timing and severity of moisture stress as well as its impacts on crop growth and yield. We find that 

canopy cover time series derived from multilayer UAS image ortho-mosaics can reliably 

differentiate agronomic research plots and pinpoint the timing of reductions in soybean canopy 

expansion rates to within a couple of days. This information can be used to constrain the timing of 

the onset of moisture stress in AquaCrop resulting in a more realistic simulation of moisture stress 

and a lower likelihood of underestimating moisture stress and overestimating yield. These 

capabilities will help agronomists, crop modelers, and breeders more quickly develop varieties 

tolerant to moisture stress and achieve food security. 
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 INTRODUCTION 

1.1 Background 

Due to global population rise, yields of major food crops must be increased to ensure future food 

security. At the same time, limitations in water resources and climate change will make it 

increasingly difficult to manage agricultural resources and obtain higher yields (Bradshaw & Barry, 

2014; Cohen, 2003; FAO, 2009; Sinha et al., 1989). This is particularly true for the US Midwest 

region, in which climate models predict more extreme weather, including droughts and floods, will 

reduce yields (Cherkauer & Sinha, 2010; Fan, 2014; Pryor, 2013; Rosenzweig, 2002). We 

therefore need to improve our understanding of how droughts and floods impact crop growth and 

yield.  

Research in agronomy, crop modeling, and breeding have advanced our understanding of crop 

growth dynamics and water relations to yield by assimilating current knowledge and relying on 

meteorological and agronomic data to test our understanding (Boote et al., 1996). This has led to 

more accurate yield predictions, more effective breeding, better agricultural resource management, 

and higher yields. For example, agronomists have identified visible ‘plant-based’ indicators of 

moisture stress, such as reductions in leaf expansion rates, which help identify when crops are 

experiencing moisture stress (Widuri et al., 2017; Jones, 2004). Also, crop modeling researchers 

have developed models such as AquaCrop that allow quantification of impacts of moisture stress 

on crop growth and yield (Steduto et al., 2009a). And recently, breeders have begun studies on 

field-based High-Throughput Phenotyping (HTP) (Xing et al., 2017; Araus and Cairns, 2014; 

Cabrera-Bosquet et al., 2012). This involves planting many varieties of a crop in thousands of 

small agronomic research plots and precisely measuring standard physical traits, or ‘phenotypes’, 

for every plot. These phenotypes serve as indicators of crop performance. This allows many 

varieties to be quickly screened for desired characteristics, enabling rapid progress towards 

varieties that are high-yielding and tolerant to moisture stress. 

The main challenges of field-based HTP are that phenotypes must be measured precisely enough 

to distinguish the often-subtle differences between plots, and, when fields are large enough, 

additional field observations may be needed to prevent within-field variation from confounding 

observed differences between plots. The need for high measurement precision and the high cost of 
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manual labor traditionally required to collect these data are significant obstacles that must be 

addressed for these types of studies to progress (Araus & Cairns, 2014).  

To overcome these obstacles, it will be critical for researchers to exploit new technologies as they 

become available. For example, with minimal manual labor, Unmanned Aircraft Systems (UAS) 

equipped with imaging sensors can acquire imagery at the field scale with the spatial resolution 

required to resolve individual plots and the temporal resolution required to capture differences in 

plot behavior over time. With appropriate remote sensing and image analysis techniques, these 

data may enable frequent, rapid, and precise observations of crop status at the plot scale, leading 

to more rapid research progress at the field scale (Araus & Cairns, 2014). 

For example, a promising phenotype for UAS observation is plot-scale observations of canopy 

cover. Canopy cover is defined as the fraction of a fixed ground area covered by the canopy or 

delimited by the vertical projection of the outermost perimeter of the canopy (Eysn et al., 2012). 

With regards to plant breeding, canopy cover has proven useful for field-based HTP because it 

may be measured precisely and is related to light interception and yield (Xavier et al., 2017). With 

regards to crop modeling, the Food and Agriculture Organization (FAO) developed the AquaCrop 

model to rely on observations of canopy cover instead of Leaf Area Index (LAI) (the surface area 

of leaves per area of ground surface) with the expectation that canopy cover is a reliable indicator 

of crop status that is easier to measure remotely (Steduto et al., 2009b).  

UAS observations of canopy cover may also be detailed enough to provide new avenues for 

calibrating crop models such as AquaCrop to simulate impacts of moisture stress on crop growth 

and yield. For example, if canopy cover is measured frequently and precisely enough, then perhaps 

an analyses of canopy cover, combined with meteorological and agronomic data, could pinpoint 

the timing of reductions in leaf expansion rates in field-grown soybean to within a few days. This 

could be used to constrain AquaCrop to more accurately simulate the timing of moisture stress as 

well as the severity of its impacts on crop growth and yield. 

These challenges, knowledge gaps, and possibilities bring up specific topics for investigation. First, 

it is necessary to confirm whether canopy cover and color can be measured at the plot scale with 

UAS imagery. Next, it is critical to quantify how accurate and precise these observations can be 

and how frequently they can be collected. Once potentially valuable data in the UAS imagery are 
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identified, the next step is to apply these data to see if they lead to more accurate simulations of 

moisture stress or better selections of high-yielding varieties that are resistant to moisture stress.  

The goal of this study is to evaluate UAS observations of canopy cover and color and combine 

these data with meteorological and agronomic data to see if UAS observations enable detection of 

visible indicators of moisture stress that can be used to constrain AquaCrop to more realistically 

and accurately simulate impacts of moisture stress on crop growth and yield. This would not only 

demonstrate the utility of UAS imagery for providing precise and useful data for research in 

agronomy, crop modeling, and breeding at minimal labor cost, but it would also demonstrate that 

UAS observations can lead to a better understanding of crop growth dynamics and water relations 

to yield. This is critical in a world where water resources are increasingly scarce and food security 

is at risk. 

1.2 Hypotheses and Objectives 

Hypothesis 1 

In the context of field-based research in agronomy, crop modeling, and breeding, plot scale 

observations of canopy cover and color can be obtained from visual UAS imagery with enough 

accuracy, precision, and frequency to detect changes within plots and differences between plots 

during a growing season.  

Hypothesis 2 

When combined with meteorological and agronomic data, visual UAS imagery enables detection 

of visible indicators of moisture stress such as reductions in canopy expansion rates. 

Hypothesis 3 

Plot scale observations of canopy cover and reductions in canopy expansion rates derived from 

visual UAS imagery provide additional constraints for calibrating AquaCrop to more realistically 

simulate the timing and severity of moisture stress as well as its impacts on crop growth and yield.   
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Objective 1. Experimental Design and Data Acquisition  

Identify appropriate experimental crop fields for this study and obtain visual UAS imagery, 

meteorological data, and agronomic data for these experiments for multiple growing seasons that 

represent moisture-stressed and non-stressed conditions.  

Objective 2. Image Analysis at the Plot Scale  

Evaluate whether the UAS imagery allows canopy cover and color to be measured at the plot scale 

with enough accuracy, precision, and frequency to detect differences between plots and changes 

within plots during a growing season.  

Objective 3. Analysis of Stress Indicators  

Perform a joint analysis of the UAS imagery, meteorological data, and agronomic data to 

determine whether visible indicators of moisture stress can be detected. 

Objective 4. Crop Modeling and Yield Prediction  

Use the AquaCrop model to evaluate whether plot scale observations of canopy cover, color, and 

visible indicators of moisture stress from visual UAS imagery provide additional constraints for 

calibrating AquaCrop to more realistically simulate the timing and severity of moisture stress as 

well as its impacts on crop growth and yield.  

1.3 Significance of Research 

This study will demonstrate new ways of obtaining plot scale observations of canopy cover, color, 

and visible indicators of moisture stress in experimental crop fields using visual UAS imagery. 

This could lead to drastic reductions in manual labor for field-based research in agronomy, crop 

modeling, and breeding. This will be one of the first studies that attempts to quantify both the 

precision and accuracy of UAS observations of canopy cover and color. This will also be one of 

the first studies that attempts to use UAS imagery to constrain both the timing and severity of 

moisture stress in a crop model. This study will also contribute to the discovery and 

characterization of new phenotypes related to moisture stress that may most effectively be 

observed by a UAS. Such phenotypes could be applied in field-based HTP to discover new 

varieties that are high-yielding and resistant to moisture stress. 
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1.4 Dissertation Organization 

First, a review of literature on impacts of moisture stress on soybean growth and yield is provided. 

Then, chapters 2 through 4 present three case studies - the first two addressing hypothesis 1 and 

objectives 1 and 2 and the third addressing hypotheses 2 and 3 and objectives 3 and 4. Finally, 

chapter 5 concludes with a summary of findings and recommendations for future work.  

1.5 Literature Review 

1.5.1 Soybean Growth and Development 

Field-grown soybean begin as seeds planted in soil which germinate and form roots. A few days 

later, the first leaves emerge from the soil and the plant becomes autotrophic (it attains enough leaf 

area to synthesize its own food and sustain growth via photosynthesis). From this point, stress free 

soybean exhibit exponential canopy growth until they approach full size (Oikawa et al., 2013; 

Board, 1996). During this period, soybean progress through various vegetative and reproductive 

growth stages. These stages may overlap for indeterminate cultivars (Purcell et al., 2014).  

The entire growth cycle, from emergence to maturity, takes approximately four months. During 

this period, the plant relies on pressure gradients within its shoots and roots to take up water and 

nutrients from the soil to use for gas exchange and photosynthesis. Soybean maintain the required 

temperature and pressure (turgor) for these physiological processes to occur via transpiration 

(Ahuja, 2008). Denmead & Shaw (1962) describe this as a dynamic process, in which water moves 

from the soil to the roots and finally to transpiring leaves along pressure gradients in the soil and 

within the plant. At any time during this process, there is a certain pressure gradient between the 

soil and roots that is required to maintain a given rate of water uptake by the roots and a given 

transpiration rate. The required pressure gradient is proportional to the potential transpiration rate 

and inversely proportional to the capillary conductivity of the soil. The potential transpiration rate 

corresponds to the transpiration rate that a non-stressed plant would maintain under a given set of 

environmental conditions. It varies dynamically depending on air temperature, humidity, and other 

variables. The capillary conductivity represents the tendency of the soil to allow water to flow out 

of it and into the plant. Capillary conductivity decreases rapidly as the soil dries out. Therefore, to 

maintain a given transpiration rate in drying soil, the pressure gradient within the plant must 
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continually rise. Under non-stressed conditions, the plant adjusts its pressure gradients as needed 

to maintain the potential transpiration rate. 

1.5.2 Moisture Stress 

There may come a point when there is not enough moisture in the soil to maintain the potential 

transpiration rate. As the soil dries beyond this point, the pressure gradient in the plant is forced to 

rise to a level that causes a decrease in turgor in the plant tissue (Denmead & Shaw, 1962). As a 

result, the stomata close and the leaves become dehydrated. Once this occurs, the permeability of 

the plant to water flow decreases and the transpiration rate is forced to drop below the potential 

rate. The onset of drought stress is defined as the moment when the transpiration rate drops below 

that of a well-watered crop in the same locality (Meyer & Green, 1981).  

From the dynamics described by Denmead & Shaw (1962) we gain a better understanding of the 

conditions under which drought stress may occur. For example, we expect drought stress to occur 

when the soil moisture drops below a certain threshold, and we expect it to occur at higher soil 

moistures when environmental conditions demand higher potential transpiration rates. 

Additionally, we understand that the soil moisture threshold at which drought stress occurs 

depends on local soil properties such as capillary conductivity, which may vary throughout a crop 

field depending on soil type, compaction, and possibly other factors. For example, in soils in which 

most of the water is loosely held at low pressure (high capillary conductivity), drought stress 

should not occur until most of the available soil water has been depleted.   

This brings up the concept of Plant Available Water (PAW) (Sadras & Milroy, 1996). PAW 

represents the fractional amount of total soil water capacity that is available for extraction by the 

plant (Ritchie, 1981). It is defined according to the following expression: 

𝑃𝐴𝑊 =  
(𝜃 − 𝜃𝑃𝑊𝑃)

(𝜃𝐹𝐶 − 𝜃𝑃𝑊𝑃)
 

Where 𝜃 is the volumetric water content of the soil within the root zone, 𝜃𝑃𝑊𝑃 is the volumetric 

water content at the plant wilting point, and 𝜃𝐹𝐶 is the volumetric water content at field capacity. 

At any given moment, there is a specific PAW threshold below which a plant begins to experience 

drought stress (Sadras & Milroy, 1996).  
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Excessive soil moisture can also cause stress in plants. Terminology for this type of stress varies 

in the literature, so for the purposes of this discussion, we refer to this type of stress as ‘flood 

stress’. Flood stress occurs when excessively high soil moisture causes the root zone of the crop 

to lose access to oxygen which is needed for proper root functioning and nutrient uptake (Rhine et 

al., 2010). Such conditions have been classified as saturated, waterlogged, and flooded, and 

soybean respond differently to each type of condition (Pezeshki & Delaune, 2012; Troedson et al., 

1989). Saturated conditions are when the soil moisture is maintained above field capacity (PAW 

> 1) (Troedson et al., 1989). Waterlogged conditions are when the water level is a few millimeters 

to a few centimeters above the soil surface (Rhine et al., 2010). Flooded conditions are when the 

water level is high enough to submerge all or part of the plant (Sullivan et al., 2001). With regards 

to the onset of flood stress, a comprehensive review of soybean waterlogging and flooding studies 

reported that most cultivars can endure waterlogged or flooded conditions for 48-96 hours without 

injury depending on the cultivar (Rhine et al., 2010).  

Both drought and flood stress negatively impact crop growth and yield (Rhine et al., 2010; Steduto 

et al., 2009a). The magnitude of this impact depends on the timing, duration, and severity of the 

stress (Ahuja, 2008; Steduto et al., 2009a). For example, it has been shown that soybean yields are 

most vulnerable to drought and flood stress during the reproductive growth stages, particularly 

flowering and seed filling (De Souza, 1997; Rhine et al., 2010). Quantifying how sensitive soybean 

is to moisture stress during each of its growth stages is a subject of ongoing research. Here we 

briefly summarize findings on these topics. 

With regards to drought stress, studies have typically withheld irrigation from stressed treatments 

for a period ranging from a few days to a few weeks. They then resumed irrigation, allowed the 

soybean to recover, and recorded yields. These types of studies have shown that drought stress 

may decrease yields by 30-70% (Ahuja, 2008; De Souza, 1997; Pathan, 2014; Sloane et al., 1990). 

In a similar manner, studies focused on assessing the impacts of flood stress on soybean yields 

have typically imposed saturated, waterlogged, or flooded conditions for a few days to a couple of 

weeks. The plots were then drained, allowed to recover, and yields were recorded. In general, 

saturated soil conditions have been found to decrease yields by up to 40% (Troedson et al., 1989). 

But, in hot, arid climates they have also been found to increase yields by as much as 50% (Purcell 

et al., 1997). Waterlogging has been found to decrease yields by 20-80% (Linkemer, 1998; Reyna 
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et al., 2003; Rhine et al., 2010). Flooding has been found to reduce yields by 40-100% (all plants 

dead) (Henshaw, 2007; Rhine et al., 2010; Sullivan et al., 2001).  

Clearly, it is important to simulate impacts of moisture stress on crop growth and yield. A great 

deal of progress has been made with regards to understanding conditions that lead to drought and 

flood stress and quantifying their impacts on yield. But many challenges remain in terms of 

understanding how to simulate these scenarios. It is particularly difficult to simulate the timing of 

the onset of moisture stress within a crop. Traditionally, this has been accomplished using sensors 

installed in individual plots that continuously monitor transpiration, turgor, soil moisture, and other 

stress-related properties. However, this is impractical for experimental crop fields containing 

thousands of small agronomic research plots that require separate analysis (Jones, 2004).  

1.5.3 Visible Indicators of Moisture Stress 

One goal of this study is to determine whether UAS observations of canopy cover could enable 

detection of visible indicators of moisture stress that can pinpoint the timing of the onset of 

moisture stress in large numbers of small agronomic research plots. This goal is shared by research 

on ‘plant-based’ irrigation scheduling (Widuri et al., 2017; Jones, 2004). These studies advocate 

plant-based indicators of moisture stress since they provide a more direct indication of stress than 

soil moisture observations alone (Widuri et al., 2017; Jones, 2004; Sivakumar & Shaw, 1978). 

Here we review research on plant-based indicators of moisture stress to identify indicators that 

may be detected by a UAS.  

1.5.4 Indicators of Drought Stress 

There are multiple visible indicators of drought stress in soybean. The earliest is a reduction in leaf 

expansion rate (Ahuja, 2008; Denmead & Shaw, 1962). In general, researchers agree that a 

reduction in leaf expansion rate precisely indicates the timing of the onset of drought stress. This 

is because of the strong coupling between leaf expansion and the turgor of plant tissue (Ahuja, 

2008; Boyer, 1970; Sadras & Milroy, 1996). Greenhouse experiments have demonstrated that this 

indicator can be detected at the leaf and plant scale within 24 hours of the onset of drought stress 

(Ahuja, 2008; Boyer, 1970; Jones, 2004; Liu et al., 2003). Field-based studies have found that 

weekly measurements of leaf area in selected plots can allow moisture stress to be detected early 

enough to avoid significant crop damage or yield reductions (Sivakumar & Shaw, 1978). 
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Another visible indicator of drought stress in soybean is increases in leaf angle (Ahuja, 2008; 

Boyer, 1970; King, 2009; Oosterhuis et al., 1985; Sivakumar & Shaw, 1978; Wright & Berliner, 

1986). Studies have shown that leaf angles begin increasing immediately upon the onset of drought 

stress, but they increase slowly and progressively over a period of a few days. On top of this, leaf 

angles vary diurnally, which makes early or precise detection of this indicator difficult (Oosterhuis 

et al., 1985; Wright & Berliner, 1986).  

After changes in leaf angle, the next visible indicator of drought stress in soybean is leaf wilting 

(King, 2009; Pathan, 2014; Sloane et al., 1990). The PAW threshold known as the ‘Permanent 

Wilting Point’ (PWP) was named after this stress indicator (Denmead & Shaw, 1962). However, 

leaf wilting begins before the PWP is reached. The precise timing of this indicator relative to the 

onset of drought stress remains unclear. In field experiments with multiple varieties of soybean, 

King (2009) and Pathan (2014) observed signs of leaf wilting approximately two to three weeks 

after withholding irrigation from stress treatments. In these experiments, the timing of the onset of 

drought stress was unclear, so it is difficult to draw conclusions about the timing of leaf wilting 

relative to the onset of drought stress.  

Finally, leaf yellowing is a late indicator of drought stress in soybean that it is induced by severe, 

prolonged drought (Ahuja, 2008; Carter & Miller, 1994; Marquez-Garcia, 2015). Based on the 

reviewed studies, it appears that yellowing becomes visible approximately two weeks after the 

onset of drought stress and begins in the oldest leaves in the understory of the canopy before 

progressing to the leaves at the top of the canopy (Ahuja, 2008; De Souza, 1997; Marquez-Garcia, 

2015). When leaf yellowing is induced by drought stress near the end of the growth cycle, this 

phenomenon is referred to as ‘accelerated leaf senescence’ and it may lead to a reduction in the 

duration of the seed-filling period and losses in yield (De Souza, 1997). 

1.5.5 Indicators of Flood Stress 

As with drought stress, there are multiple visible indicators of flood stress in soybean. Again, the 

earliest indicator is a decrease in leaf expansion rate (Henshaw, 2007; Kramer, 1951; Linkemer, 

1998; Rhine et al., 2010). Observations collected by Linkemer (1998) and Henshaw (2007) 

indicate that leaf expansion rates decrease immediately upon initiating a flooding treatment. 

Linkemer (1998) report that leaf expansion rates in a well-drained site increased in a pattern 
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indicative of normal exponential growth while a flooded treatment exhibited constant or slowly 

increasing leaf expansion rates, which they interpret as a sign of ongoing flood stress.  

Kramer (1951) and Henshaw (2007) report that leaf wilting is the next visible indicator of flood 

stress in soybean. But they do not precisely quantify leaf wilting due to flood stress or relate the 

timing of leaf wilting to the timing of the onset of flood stress.  

The last visible indicator of flood stress in soybean is chlorosis, in which leaf color transitions 

from a healthy dark green to pale green and finally to yellow (Kramer, 1951; Mozafar et al., 1992; 

Reyna et al., 2003; Rhine et al., 2010). Mozafar et al. (1992) report that soybean leaves show 

visible signs of chlorosis three to five days after flooding begins and recover from chlorosis (re-

green) as soon as four to five days after the soil dries out. Rhine et al. (2010) reported chlorosis 

one week after flooding was initiated. Troedson et al. (1989) reported chlorosis starting within one 

week of the start of a saturated soil treatment. The chlorosis persisted for approximately seven to 

ten days and then the leaves recovered. Nathanson et al. (1984) reported chlorosis within several 

days of applying flooding treatments. The chlorosis persisted for seven to fourteen days. Reyna et 

al. (2003) found that ten to fourteen days of flooding were required for soybean to exhibit moderate 

to severe yellowing due to chlorosis. In general, these studies suggest that chlorosis sets in 

approximately three to fourteen days after a flooding event.   

In summary, visible indicators of drought stress in soybean are: 1) reduced leaf expansion rates, 2) 

increases in leaf angle, 3) leaf wilting, and, 4) yellowing, while visible indicators of flood stress in 

soybean are: 1) reduced leaf expansion rates, 2) leaf wilting, and 3) chlorosis. Next, we review 

research on remote sensing of these visible indicators of moisture stress.  

1.5.6 Remote Sensing of Visible Indicators of Moisture Stress 

There has been a great deal of research on remote sensing of moisture stress using thermal imagery 

(Govender et al., 2009; Jones, 2004). A review of thermal remote sensing could help provide a 

broader historical context for this study. However, we are interested primarily in using visible UAS 

imagery to detect these visible indicators of moisture stress. Therefore, we consider studies on 

thermal imagery to be beyond the scope of this review.  
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When focusing on the visible spectrum, we find that few researchers have attempted to remotely 

measure these specific visible indicators of moisture stress. Gradual changes in leaf angle and leaf 

wilting have been observed visually, but not remotely. Changes in leaf color have been observed 

remotely but based on our review this is not an early or precise indicator of the onset of moisture 

stress in soybean. Zhou et al. (2016) are one of the only research groups that have attempted to use 

a UAS to remotely measure canopy cover in outdoor environments for the purpose of detecting 

moisture stress – most other researchers have only monitored individual leaves using ground-based 

methods (e.g. Jones, 2004). However, Zhou et al (2016) limited their analysis to distinguishing 

stressed treatments from non-stressed treatments using imagery from a single sampling date rather 

than looking at time series. Therefore, we focus on measuring canopy expansion rates, as it seems 

reasonable to expect that this can be done with a UAS with enough spatial and temporal resolution 

to pinpoint the timing of reductions in canopy expansion rates and the onset of moisture stress. 

Although reductions in canopy expansion rates have been strongly linked to moisture stress, it is 

important to recognize that this indicator could be elicited by other sources of stress, such as 

adverse air temperatures or soil nutrient deficiencies (Ahuja, 2008; Steduto et al., 2009a). 

Therefore, it is best to think of such indicators as indicative of stress in general. The type of stress 

that is occurring can be determined using meteorological and agronomic data. For example, one 

may analyze rainfall, soil moisture, and air temperature around the time the indicator of stress was 

observed to identify whether it was elicited by adverse soil moisture, temperature, or other factors. 

This highlights the need for meteorological and agronomic data for such indicators to be useful. 

Therefore, it makes sense to apply them in a crop modeling study. 

1.5.7 Crop Modeling 

The goal of this study is to demonstrate that UAS observations of canopy cover and visible 

indicators of moisture stress can provide additional constraints for calibrating AquaCrop to more 

realistically simulate the timing and severity of moisture stress and its impacts on crop growth and 

yield. To clarify our modeling objectives, we provide a brief overview of crop modeling, including 

an explanation of what crop models are, what they are used for, and basic techniques for simulating 

crop growth and yield. We then discuss model calibration, with a focus on calibrating models to 

simulate impacts of moisture stress on crop growth and yield. Finally, we explain why we selected 

the AquaCrop model for this study, how it works, and how we used it to test hypothesis 3.  
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A crop model is a conceptual and mathematical model used to make quantitative predictions about 

the behavior of a crop within a limited range of scenarios (van Ittersum et al., 2003). Crop models 

are inherently a simplification of the complexities of the physical systems that they are trying to 

represent (Boote et al., 1996). The amount of simplification that is allowable depends on the 

processes that are being simulated and the intended purpose of the model (van Ittersum et al., 2003). 

Crop models typically require input data, which represent the scenario of interest, and rely on a set 

of equations and parameters that, when properly calibrated, allow them to calculate output 

variables that represent how the crop would behave in similar scenarios.  

One of the most important uses of crop models is to combine data from multiple sources and utilize 

our current understanding of crop growth to enable research applications that would otherwise be 

impossible (Boote et al., 1996). Modeling objectives vary widely, as they can range from 

investigating detailed crop growth mechanisms to predicting farm yields or assessing impacts of 

pollution or soil erosion. Crop models have also been developed for a variety of spatial and 

temporal scales, such as the leaf, plant, plot, field, and regional scale, and for time periods spanning 

hours to years (Hammer et al., 2002).   

Many state-of-the-art crop models such as CropSyst (Stöckle et al., 2003), CROPGRO (Wang et 

al., 2003), APSIM (Keating, 2003), SWAT (Gassman et al., 2007), and AquaCrop (Steduto et al., 

2009a) have been designed to simulate crop growth and yield on a daily time step at the plot and 

field scale. To accurately simulate crop growth, many models start by simulating the progression 

of the crop through its basic vegetative and reproductive growth stages (Hammer et al., 2002). 

This is typically accomplished using a concept referred to as Growing Degree Days (GDD) 

(McMaster & Wilhelm, 1997). GDD are accumulated daily according to the following equation:  

𝐺𝐷𝐷 =
(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)

2
− 𝑇𝑏𝑎𝑠𝑒 

Where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the daily minimum and maximum air temperatures and 𝑇𝑏𝑎𝑠𝑒 is a crop-

specific parameter that represents a median air temperature below which no crop growth occurs 

(if (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2  < 𝑇𝑏𝑎𝑠𝑒 , then 𝐺𝐷𝐷 = 0 ). Basically, the rate of progression of the crop 

through its basic growth stages is assumed to be largely determined by daily air temperatures 

represented by an accumulation of 𝐺𝐷𝐷 over time (McMaster & Wilhelm, 1997).  
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As the crop proceeds through its various growth stages, crop growth is simulated concurrently as 

the production of biomass over time. At the end of the simulation, yield is estimated as a fraction 

of the total biomass. This fraction is typically expressed in terms of a parameter known as the 

Harvest Index (𝐻𝐼), which represents the fraction of the total biomass that is partitioned into the 

yield component of the crop at harvest (Bindi et al., 1999). 

Crop growth is driven primarily by leaf area, water use, and photosynthesis. Therefore, some 

measure of leaf area available for photosynthesis and transpiration is necessary for accurate 

simulation of crop growth (Ahuja, 2008; Hammer et al., 2002; van Ittersum et al., 2003). For this 

purpose, models typically rely on observations of LAI over time. There are also a few models that 

have been developed to rely on canopy cover instead of LAI (Steduto et al., 2009b). Based on this 

review, there is no evidence suggesting that one approach is necessarily better than the other, and 

both approaches have been shown to produce accurate simulations in a variety of scenarios 

(Gassman et al., 2007; Keating, 2003; Steduto et al., 2009a; Stöckle et al., 2003; Wang et al., 2003).  

Different models use different equations to describe crop growth. We will not present specific 

equations here. Instead, we will discuss their basic characteristics. Many of the first crop models 

and most currently existing models estimate biomass production by assuming that it is proportional 

to the amount of leaf area, the solar radiation intercepted by the canopy, and a Radiation Use 

Efficiency (RUE) parameter. The decision to estimate crop growth by relying on RUE has been 

largely motivated by the fact that the RUE of a crop is a relatively stable parameter that is 

straightforward to estimate (Hammer et al., 2002; Steduto et al., 2007; Warmink, 2010).  

To better simulate moisture stress, researchers have also developed ‘water-driven’ models that 

assume that biomass production is proportional to the amount of leaf area, the amount of water 

transpired by the crop, and a Water Use Efficiency (WUE) parameter (Steduto et al., 2007). 

Estimating WUE is more difficult than estimating RUE, mainly because it requires the 

measurement of crop transpiration separate from soil evaporation. But recent advances have made 

it easier to estimate WUE and there have been several studies suggesting that WUE is a more 

stable and conservative parameter than RUE that enables better model performance (Hammer et 

al., 2002; Steduto et al., 2007; Warmink, 2010). For this reason, researchers advocate further 

testing and evaluation of water-driven models, especially when the objective of the study is to 

improve our understanding of water relations to yield (Hammer et al., 2002; Steduto et al., 2007).   
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In addition to using water-driven growth equations, some models simulate the soil-water balance 

over the course of the growing season (Ahuja, 2008; Gassman et al., 2007; Hammer et al., 2002; 

Keating, 2003; Steduto et al., 2009a; Stöckle et al., 2003; Wang et al., 2003). This is typically 

accomplished by treating the root zone of the crop as a compartment of porous soil of fixed volume. 

This compartment is assumed to have fixed soil properties that determine its ability to absorb water 

from precipitation or irrigation, provide water to the plant, or drain water to deeper soil layers 

(Saxton & Rawls, 2006). These soil properties are typically determined experimentally or 

estimated based on soil type and texture (Saxton & Rawls, 2006).  

Typically, a soil-water balance equation is used to compute the Plant Available Water (PAW) in 

the root zone over time. Precipitation data are the main input for this equation. Different models 

use different soil-water balance equations. We will not present specific equations here. Instead, we 

will discuss their basic applications. Models typically assume that certain PAW thresholds 

correspond to drought or flood stress (Sadras & Milroy, 1996). Proper specification of these 

thresholds is critical for accurately simulating impacts of moisture stress on crop growth and yield, 

since they determine both the timing and severity of simulated stress (Sadras & Milroy, 1996; 

Steduto et al., 2009a). Currently, many models simulate drought stress, but few simulate both 

drought and flood stress (Steduto et al., 2009a; Wang et al., 2016).  

In addition to precipitation data, meteorological data such as air temperature and humidity are used 

as inputs for estimating crop transpiration. Sometimes, air temperature is also used to simulate heat 

stress (Ahuja, 2008; Hammer et al., 2002; Steduto et al., 2009a). Some models even attempt to 

simulate impacts of soil salinity, fertility, and differences between cultivars (Boote et al., 1996; 

Hammer et al., 2002; Steduto et al., 2009a).    

When the objective of the model is to estimate crop growth and yield, impacts of stress are typically 

modeled as penalties to biomass production or the harvest index administered via stress 

coefficients (Bindi et al., 1999; Gassman et al., 2007; Keating, 2003; Steduto et al., 2009a; Stöckle 

et al., 2003; Wang et al., 2003). Different models assign penalties differently and the best ways of 

doing so remains an active area of research (Boote et al., 1996; Hammer et al., 2002). 
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1.5.8 Model Calibration 

Crop models typically require a significant amount of input data and direct observations of model 

outputs to calibrate various model parameters. Calibration is typically a manual and iterative 

process involving the following three steps: 1) Obtain model inputs and direct observations of 

model outputs (observed data), 2) Run the model to obtain simulated outputs (simulated data), and, 

3) Evaluate the agreement between simulated and observed data using appropriate metrics 

(Hammer et al., 2002). For example, Wilmott’s index of agreement (𝑑) is often used to evaluate 

the agreement between simulated and observed data (Willmott, 1982): 

𝑑 = 1 −
∑(𝑆𝑖 − 𝑂𝑖)2  

∑(|𝑆𝑖 − �̅�| + |𝑂𝑖 − �̅�|)2
 

Here, 𝑆𝑖 are the simulated values for a given variable, 𝑂𝑖 are the corresponding observed values, 

and �̅� is the mean of the observed values. The value of 𝑑 ranges from 0 to 1, with 0 indicating no 

agreement and 1 indicating perfect agreement between simulated and observed data. Unlike 

simpler metrics such as the coefficient of determination (r2) or the Root-Mean-Squared-Error 

(RMSE), this metric is sensitive to systematic overestimation or underestimation (Gaile & 

Willmott, 1984; Legates & McCabe, 1999). These three steps are repeated until one gets the best 

overall agreement between simulated and observed data.  

Every direct observation of a simulated output variable provides an additional constraint on the 

model parameters during calibration, so the more output variables that are observed, the more 

likely a calibration will be successful. For example, if a model is designed to simulate the soil-

water balance, canopy expansion, and biomass production, then observations of soil moisture, 

canopy cover, and biomass will help constrain parameters related to these processes. However, 

such processes are often simulated as being interdependent. For example, canopy cover may 

impact the amount of water transpired by the canopy, which may impact the amount of biomass 

produced (Steduto et al., 2009a). As a result, it is usually not possible to calibrate parameters 

independently using different sets of observations. Instead, parameters must be jointly optimized 

to maximize the overall agreement between observed and simulated data.  

This brings up a major issue in model calibration - equifinality - in which multiple sets of parameter 

values lead to the same simulation results for a given set of input data (Beven, 2006; Rajib et al., 

2016). The possibility of equifinality increases as the model becomes more complex. In such cases, 
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there is an increased risk of obtaining erroneous parameters that appear to reproduce observed 

results but lead to errors in other scenarios. The likelihood of encountering problems related to 

equifinality may be reduced by using a model that is as simple as possible and by using as many 

different types of observations as possible to constrain the model (Hammer et al., 2002; Beven, 

2006; Rajib et al., 2016). This includes dynamic constraints such as ensuring that the timing of 

simulated moisture stress is consistent with the timing of observed indicators of moisture stress.   

1.5.9 Model Selection 

Considering the challenges of model calibration, it is best to use the simplest model that is 

appropriate for the study objectives and best utilizes the available observations for calibration. It 

is also critical that the intended purpose of the model supports the study objectives (Boote et al., 

1996). In this study, we are focused on using ground and UAS-based observations of canopy cover 

and visible indicators of moisture stress to constrain calibration of PAW thresholds and stress 

coefficients to simulate moisture stress and yield for a single soybean cultivar. This objective is 

simple and applicable to almost any plot or field scale model that implements a soil-water balance 

with PAW thresholds and stress coefficients. Therefore, in this case, it is acceptable to use a model 

that is relatively simple, in which the specification of PAW thresholds and stress coefficients for 

moisture stress have significant, easily measurable impacts on simulation results.  

Various crop models that roughly satisfy these criteria were considered for this study, including 

CropSyst (Stöckle et al., 2003), Crop-Gro-Soybean (Bhatia, 2008; Wang et al., 2003), APSIM 

(Holzworth, 2014; Keating, 2003), SWAT (Gassman et al., 2007), and AquaCrop (Steduto et al., 

2009a). We selected AquaCrop for this study because it is the only plot and field scale model that 

uses canopy cover, rather than Leaf Area Index (LAI), as the primary metric of leaf area available 

for crop growth (Steduto et al., 2009a). Also, AquaCrop was designed specifically to address the 

problem of increasing yields with finite water resources by improving our ability to model water 

relations to yield (Steduto et al., 2007). For example, it has been successfully applied to modeling 

drought stress for irrigation scheduling (Geerts et al., 2010). Also, among the considered models, 

it is the simplest and easiest to calibrate (while still representing the characteristics of crop growth 

that are most important to this study), requiring the smallest number of input parameters and 

providing resources and tools to facilitate iterative model calibration and evaluation (Lorite, 2013; 

Raes et al., 2009; Steduto et al., 2009a; Vanuytrecht, 2014). Various sensitivity analyses of 
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AquaCrop have shown that it would be well suited to a study focused on PAW thresholds and 

stress coefficients, since variations in these parameters have been shown to significantly impact 

yield predictions (Vanuytrecht, 2014).  

With regards to yield prediction errors, error tolerance depends on the study objectives (Refsgaard, 

2007). For this study, we do not require maximal accuracy, only that AquaCrop simulates crop 

growth and yield realistically enough to compare the relative accuracy of two different calibration 

methods. Yield prediction error may be defined as follows: 

𝑌𝑖𝑒𝑙𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑌𝑖𝑒𝑙𝑑 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌𝑖𝑒𝑙𝑑

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑌𝑖𝑒𝑙𝑑
 

Researchers have reported field-scale yield prediction errors with AquaCrop ranging from 1% to 

31% for sixteen experiments with irrigated soybean in Brazil (Da Silva et al., 2018), 1% to 20% 

for four experiments in Nigerya (Abeboye et al., 2017), 4% to 33% for six experiments with rain-

fed soybean in India (Steduto et al., 2009b), 2% to 12% for five experiments with irrigated soybean 

in China (Paredes, 2015), and 10% for one experiment with irrigated soybean in Lebanon (Saab et 

al., 2014). AquaCrop has also been applied to other crops with similar success, including corn 

(Heng et al., 2009; Hsiao et al., 2009; Mebane et al., 2013; Steduto et al., 2009b), sorghum (Steduto 

et al., 2009b), wheat (Jin et al., 2014), sunflower (Saab et al., 2014), quinoa (Steduto et al., 2009b), 

and cotton (Steduto et al., 2009b). Based on these results, it seems reasonable to assume that 

AquaCrop simulates crop growth and yield accurately enough for the purposes of this study.  

1.5.10 The AquaCrop Model 

Here we provide a brief description of AquaCrop’s basic algorithms and parameters. Like most 

crop models, AquaCrop uses Growing Degree Days (𝐺𝐷𝐷) to model the progression of the crop 

through its basic reproductive growth stages: 1) flowering, 2) yield formation, and, 3) maturity. 

Calculations run on a daily time step. Here we present the basic form of the most important 

equations in AquaCrop to illustrate AquaCrop’s basic concepts. For further detail, the reader is 

referred to various papers describing the model (Raes et al., 2009; Steduto et al., 2009a) and the 

user manual (Raes et al., 2012). AquaCrop calculates yield (𝑌) by multiplying the biomass of the 

crop (𝐵) by a harvest index (𝐻𝐼): 

𝑌 = 𝐵 × 𝐻𝐼 
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AquaCrop estimates biomass production using a water-driven growth equation: 

𝐵 = 𝑊𝑃 × ∑ 𝑇𝑟 

Where ∑ 𝑇𝑟  is the cumulative crop transpiration and 𝑊𝑃  is the biomass water productivity 

(biomass per unit of cumulative crop transpiration). 𝑊𝑃 is a constant and conservative parameter 

for a given crop type and climate (Steduto et al., 2009a). 𝑇𝑟 is calculated as follows: 

𝑇𝑟 = 𝐾𝑐𝑏 × 𝐸𝑇0 

Where 𝐾𝑐𝑏 is the crop coefficient for transpiration and 𝐸𝑇0 is the reference evapotranspiration 

according to the Penman-Monteith Equation (Monteith, 1965). 𝐾𝑐𝑏 is calculated as the product of 

the crop coefficient at 100% canopy cover (𝐾𝑐𝑏𝑥) and the current canopy cover (𝐶𝐶):  

𝐾𝑐𝑏 = 𝐶𝐶 × 𝐾𝑐𝑏𝑥 

Canopy cover increases exponentially for non-stressed soybean until full size is approached (Board, 

1996). Accordingly, AquaCrop simulates canopy expansion using exponential growth and decay 

equations. The form of the equation depends on how close the crop is to maximum canopy cover 

and maturity. Exponential growth is assumed during the first half of canopy expansion. During the 

second half, canopy cover increases according to an exponekrntial decay equation until maximum 

canopy cover is reached. Later, a different form of exponential decay is used to simulate the 

expected decline in canopy cover approaching maturity: 

1st half of canopy expansion (𝐶𝐶 <
𝐶𝐶𝑥

2
):   𝐶𝐶 = 𝐶𝐶0𝑒(𝐶𝐺𝐶)𝑡 

2nd half of canopy expansion (𝐶𝐶 ≥
𝐶𝐶𝑥

2
):   𝐶𝐶 = 𝐶𝐶𝑥 − (𝐶𝐶𝑥 − 𝐶𝐶0)𝑒−(𝐶𝐺𝐶)𝑡 

Decline of 𝐶𝐶 towards maturity:   𝐶𝐶 = 𝐶𝐶𝑥 [1 − 0.05 (𝑒
(

𝐶𝐷𝐶

𝐶𝐶𝑥
)𝑡

− 1)] 

Here, 𝐶𝐶0 is the canopy cover at which the canopy first becomes autotrophic and starts to grow 

exponentially, 𝐶𝐶𝑥 is the maximum canopy cover, 𝐶𝐺𝐶 is a canopy growth coefficient, 𝐶𝐷𝐶 is a 

canopy decline coefficient, and 𝑡 is the time passed. Together, these equations allow AquaCrop to 

simulate non-stressed canopy expansion, transpiration, biomass production, and yield.   
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Evaluating the detailed mechanics of AquaCrop’s simulation of the soil-water balance or 

comparing this aspect of AquaCrop to other models is beyond the scope of this study. Therefore, 

we describe AquaCrop’s soil-water balance with enough detail to show that this aspect of the 

model is reasonable, similar to other models, and appropriate for this study.   

AquaCrop simulates the soil-water balance by estimating surface run-off, soil evaporation, 

infiltration, drainage, and root uptake for different soil compartments within the root zone. 

Surface-runoff is estimated based on the Curve Number method (Hjelmfelt, 1991). The Curve 

Number method was originally developed for large scale hydrologic modeling of storm runoff in 

agricultural areas. It is a simple and computationally efficient method which makes it desirable for 

many modeling applications. However, there has been a great deal of debate as to whether the 

Curve Number method is appropriate for different environments or smaller spatial scales such as 

the plot scale (Hawkins, 2014). Fortunately, AquaCrop allows the user to avoid relying on the 

Curve Number method by assuming that surface runoff is negligible. This assumption is 

reasonable for flat, well-drained crop fields where little to no runoff occurs.  

Soil evaporation is modeled in two stages; 1) an energy limiting stage where there is readily 

available water on the soil surface for evaporation and, 2) a falling-rate stage where water transport 

to the surface from layers below is limiting (Philip, 1957; Ritchie, 1972). Soil evaporation (𝐸) is 

calculated as follows: 

𝐸 = 𝐾𝑟 × (1 − 𝐶𝐶∗) × 𝐾𝑐𝑒,𝑤𝑒𝑡 × 𝐸𝑇0 

Where 𝐸𝑇0 is the reference evapotranspiration, 𝐾𝑐𝑒,𝑤𝑒𝑡 is the evaporation coefficient for fully wet 

and unshaded soil surface (Allen et al., 1998), 𝐶𝐶∗ is the canopy cover slightly adjusted for micro-

advective effects, and 𝐾𝑟 is an evaporation reduction coefficient (𝐾𝑟 = 1 for stage I evaporation). 

Details on the adjustment of 𝐶𝐶∗  are available in Adams et al. (1976) and Villalobos (1990). 

Details on the adjustment of 𝐾𝑟 are available in Raes et al. (2009). 

Rainfall that is not lost as runoff or soil evaporation is assumed to infiltrate the soil and drain 

through the root zone. The depth of the root zone is simulated using the following equation: 

𝑍 = 𝑍𝑖𝑛𝑖 + (𝑍𝑥 − 𝑍𝑖𝑛𝑖) √
(𝑡 −

𝑡0

2
)

(𝑡𝑥 −
𝑡0

2
)

𝑛
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Where 𝑍 is the effective rooting depth, 𝑍𝑖𝑛𝑖 is the planting depth, 𝑍𝑥 is the maximum effective 

rooting depth, 𝑡 is the time after planting, 𝑡0 is the time when the canopy becomes autotrophic, 𝑡𝑥 

is the time when 𝑍𝑥 is reached, and 𝑛 is a shape factor. This equation results in a slow and steady 

increase in root length over the course of the growing season. The root zone is divided into 

compartments of different depths (12 by default). AquaCrop adjusts the thickness of each 

compartment to best simulate the soil-water balance. For example, for deep root zones, the 

thickness is not constant but increases exponentially with depth so that infiltration, evaporation, 

and transpiration from the top layers are simulated with enough detail.  

Drainage of water through soil compartments in the root zone is simulated by a set of equations 

where the volumetric water content (𝜃) of the soil is the dependent variable. A drainage coefficient 

(𝜏) is calculated based on the saturated hydraulic conductivity of the soil (𝐾𝑠𝑎𝑡) and it is used to 

simulate downward movement of water through the soil profile. Drainage occurs when the 

volumetric water content of a soil compartment is above field capacity. The amount of water that 

drains out of soil compartment 𝑖 at time step ∆𝑡 is described by an exponential drainage function:  

∆𝜃𝑖

∆𝑡
= 𝜏(𝜃𝑠𝑎𝑡 − 𝜃𝐹𝐶) (

𝑒𝜃𝑖−𝜃𝐹𝐶 − 1

𝑒𝜃𝑠𝑎𝑡−𝜃𝐹𝐶 − 1
) 

Where ∆𝜃𝑖 is the volumetric water content of soil compartment 𝑖,  𝜃𝑠𝑎𝑡 and 𝜃𝐹𝐶 are the volumetric 

water contents of the soil at saturation and field capacity, and 
∆𝜃𝑖

∆𝑡
 is the decrease in the volumetric 

water content of soil compartment 𝑖 during time step ∆𝑡. When 𝜏 is close to 1, a thoroughly wetted 

soil profile will drain to field capacity in approximately 1 day. Lower values of 𝜏 result in slower 

drainage (Raes et al., 2009). This function has been shown to closely mimic drainage observed in 

the field (Geerts, 2008; Raes et al., 2009).  

Finally, extraction of water by the roots within each soil compartment is estimated based on the 

simulated transpiration rate (𝑇𝑟), the depth of the root zone (𝑍), and a sink term (𝑆) that denotes a 

maximum rate of water extraction per unit of soil depth (Belmans et al., 1983; Feddes, 1978):  

𝑆 =
𝑇𝑟

𝑍
 

The total extraction of water from the root zone is calculated by integrating water extraction over 

the soil compartments until it equates to the simulated transpiration rate.  
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AquaCrop simulates various types of stress due to drought, flood, heat, cold, soil fertility, and soil 

salinity. Stress caused by diseases or pests are not considered. Here we focus on illustrating how 

moisture stress is simulated in AquaCrop and how this relates to the specification of PAW 

thresholds and stress coefficients. AquaCrop simulates moisture stress by applying stress 

coefficients to its equations governing canopy expansion, transpiration, and yield formation. These 

stress coefficients are functions of simulated PAW values and thresholds for moisture stress. For 

example, the onset of drought stress is simulated by assuming that there are upper and lower PAW 

thresholds between which canopy expansion rates are reduced. When the simulated PAW drops 

below the upper PAW threshold, a stress coefficient for expansive growth (𝐾𝑠𝑒𝑥𝑝) is reduced from 

1 to some number between 1 and 0 according to a convex curved mapped between the upper and 

lower PAW thresholds (Figure 1). The shape of this curve is typically convex to account for plant 

acclimation to mild stress and decreased soil capillary conductivity at low PAW values, but it may 

be adjusted using a shape factor (𝑓𝑒𝑥𝑝). This stress coefficient slows canopy expansion by reducing 

the 𝐶𝐺𝐶 parameter according to the following equation: 

𝐶𝐺𝐶𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐾𝑠𝑒𝑥𝑝 × 𝐶𝐺𝐶 

AquaCrop uses four different stress coefficients to simulate impacts of moisture stress on crop 

growth, stomatal conductance, canopy senescence, transpiration, and yield formation. Three of 

these coefficients affect drought stress and one affects flood stress. The coefficients for drought 

stress are referred to as coefficients for expansive growth (𝐾𝑠𝑒𝑥𝑝), stomatal closure (𝐾𝑠𝑠𝑡𝑜), and 

accelerated senescence (𝐾𝑠𝑠𝑒𝑛). The coefficient for flood stress is referred to as an aeration stress 

coefficient (𝐾𝑠𝑎𝑒𝑟). All of AquaCrop’s moisture stress coefficients are defined in the same manner 

as 𝐾𝑠𝑒𝑥𝑝 (using upper and lower PAW thresholds and a shape factor). 

Overall, there are eight independent parameters that must be correctly specified for moisture stress 

to be triggered and simulated properly in AquaCrop. Five of these are PAW thresholds: upper and 

lower thresholds for reductions in canopy expansion (𝑎𝑒𝑥𝑝  and 𝑏𝑒𝑥𝑝 ), an upper threshold for 

accelerated senescence (𝑎𝑠𝑒𝑛 ), an upper threshold for stomatal closure (𝑎𝑠𝑡𝑜 ), and an upper 

threshold for aeration stress (𝑎𝑎𝑒𝑟). Three are shape factors for: expansive growth (𝑓𝑒𝑥𝑝), stomatal 

closure (𝑓𝑠𝑡𝑜), and accelerated leaf senescence (𝑓𝑠𝑒𝑛). The remaining PAW thresholds and shape 

parameters are fixed. For example, the lower PAW threshold for flood stress is set to PAW = 1 so 

flood stress only occurs when the soil moisture exceeds field capacity. 
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AquaCrop’s parameters for stressed and non-stressed growth may be calibrated separately (Raes 

et al, 2012). Specifically, parameters such as the canopy growth coefficient (𝐶𝐺𝐶) and maximum 

canopy cover (𝐶𝐶𝑥) may be calibrated using observations of non-stressed plants, while parameters 

related to stressed growth such as PAW thresholds and shape parameters for stress coefficients 

may be calibrated using observations of stressed plants. In summary, AquaCrop is a water-driven 

model that dynamically simulates canopy cover, root length, the soil-water balance, and their 

combined impacts on transpiration, biomass production, and yield via stress coefficients (Figure 

2). The basic inputs required to run AquaCrop include daily air temperature, reference 

evapotranspiration, rainfall, initial soil moisture conditions, soil drainage properties, flowering, 

seed-filling, and maturity (Table 1). Observations of model outputs required for calibration include 

periodic observations of canopy cover and biomass (Table 2). Additional constraints such as 

periodic observations of soil moisture, root length, and yield are considered optional but can 

enhance the quality of the calibration (Raes et al., 2012). 

Here we present three case studies addressing our primary hypotheses and objectives. The first 

two address hypothesis 1 and objectives 1 and 2, while the third addresses hypotheses 2 and 3 and 

objectives 3 and 4. We conclude with a summary of findings and recommendations for future work. 
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 MULTILAYER UAS IMAGE ORTHOMOSAICS FOR 

FIELD-BASED HIGH-THROUGHPUT PHENOTYPING 

2.1 Abstract 

High-Throughput Phenotyping (HTP) of agronomic research plots using imagery from Unmanned 

Aircraft Systems (UAS) is a promising area of research for increasing crop yields to ensure food 

security. Currently, researchers are extracting phenotypes from single-layer image ortho-mosaics 

(SLMs) generated by stitching overlapping frame photos into a single composite image using 

commercial software such as Pix4DmapperTM. SLMs are prone to geometric and radiometric 

distortion and row-offset errors caused by image stitching errors and variations in lighting, bi-

directional reflectance, and image quality. In addition, they provide only one observation per plot 

per flight date, which makes it impossible to quantify measurement precision or apply statistical 

quality control. To reduce geometric and radiometric distortion and allow better quality control, 

we propose separately ortho-rectifying replicate images of plots from overlapping frame photos 

using collinearity and nearest-neighbor resampling. We tile these images to form ‘multilayer 

mosaics’ (MLMs), in which replicate images of plots are contained in different layers of the mosaic. 

We demonstrate advantages of MLMs by evaluating row-offset errors, canopy cover, and color 

for twenty-one soybean research plots on thirteen flight dates spanning canopy emergence to 

closure. We find row-offset errors in 24 out of 3790 replicate plot images. Canopy cover 

measurements from SLMs and MLMs were significantly different for 198 out of 273 sampling 

points (21 plots x 13 flight dates), with median values from MLMs being closer to ground reference 

values by an average of 2.4% cover. Canopy hues were also significantly different for 153 out of 

273 sampling points. 

Keywords 

(1) High-throughput phenotyping, (2) unmanned aircraft systems, (3) single-layer image ortho-

mosaics (SLMs), (4) multilayer image ortho-mosaics (MLMs), (5) geometric distortion, (6) 

radiometric distortion, (7) row-offset errors, (8) canopy color, (9) canopy cover.  
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2.2 Introduction 

Field-based High-Throughput Phenotyping (HTP) of agronomic research plots is a promising area 

of research for increasing crop yields to ensure food security (Araus & Cairns, 2014). HTP 

involves measuring physical characteristics of hundreds to thousands of small research plots in 

experimental crop fields. In this case, the field scale corresponds to a few hectares and the plot 

scale corresponds to a few square meters (1 ha = 10,000 m2). Plots may be used to identify best 

performing varieties, or for other purposes, such as optimizing management practices. Measuring 

phenotypes can require excessive manual labor. In addition, phenotypic differences between plots 

are often subtle, so measurements must be precise. Labor costs and the need for high precision and 

accuracy are major obstacles to research progress (Araus & Cairns, 2014). 

Unmanned Aircraft Systems (UAS) are a promising low-cost platform for collecting plot-scale 

observations for field-based HTP. They can automatically and rapidly collect hundreds of 

overlapping frame photos of a crop field from a low altitude. These photos can be stitched into a 

single large composite image ortho-mosaic (hence referred to as a ‘single-layer mosaic’ or SLM) 

using techniques from photogrammetry and computer vision implemented in commercial software 

such as Pix4Dmapper (Pix4D, Lausanne, Switzerland). Phenotypes for each plot can then be 

extracted from the SLM or the frame photos.  

So far, researchers have focused on extracting phenotypes from SLMs. They have reported high 

measurement accuracies for various phenotypes including canopy cover and color 

(Haghighattablab et al., 2016; Shi et al., 2016). However, they have also found that SLMs are 

prone to geometric and radiometric distortion caused by image stitching errors and variations in 

lighting, bi-directional reflectance, and image quality (Tao et al., 2017). This is especially true in 

agricultural terrain that lacks distinct features needed for image stitching.  

Image stitching errors often show up in SLMs as spatial discontinuities. If these occur within plots, 

they can obstruct phenotype measurements related to crop structure. They can also cause row-

offset errors, in which a row of plants is incorrectly aligned with imagery of a neighboring row. 

This problem is exacerbated when blending algorithms combine overlapping photos into a single 

composite image that appears to be spatially continuous and representative of the scene, as done 

by default in Pix4Dmapper. In this case, an image of a plot in an SLM may appear reliable, but it 

may actually be composed of some images of the correct plot and some images of neighboring 
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plots. This can lead to costly mistakes in small plot research, such as selecting wrong varieties for 

advancement through breeding pipelines when their neighboring plots should have been selected.  

Image stitching errors and variations in lighting, bi-directional reflectance, and image quality also 

show up in SLMs as discontinuities in brightness, color, and sharpness. If these occur within plots, 

they can obstruct phenotype measurements related to color. This too is exacerbated by image 

blending algorithms which can radiometrically and geometrically distort objects in areas of image 

misalignment.  

Few researchers (e.g. Tao et al., 2017) have been able to quantify impacts of these types of 

distortion on the precision and accuracy of UAS observations because SLMs only offer one 

observation per plot per sampling date. A better understanding of these problems is needed to 

ensure effective usage of UAS imagery for making important research decisions.  

Instead of using SLMs, we propose separately ortho-rectifying replicate images of plots from 

overlapping frame photos using collinearity and nearest-neighbor resampling. These images can 

be tiled to form a new type of ortho-mosaic – a ‘multilayer mosaic’ or MLM – in which replicate 

images of plots are contained in different mosaic layers. This will allow researchers to: 1) improve 

mosaic fidelity to the raw frame photos, 2) avoid undesired color modification by commercial 

image stitching software, 3) minimize geometric and radiometric distortion caused by image 

stitching errors, 4) visualize and correct row-offset errors, 5) visualize variations from photo to 

photo caused by changes in lighting, bi-directional reflectance, and image quality, and, 6) quantify 

and enhance the precision and accuracy of UAS observations.  

Here we present a case study to illustrate a methodology for generating MLMs from overlapping 

frame photos of two hectares of experimental soybean. The imagery was collected on thirteen 

flight dates spanning emergence to canopy closure and processed with Pix4Dmapper and Matlab. 

We evaluate whether our methodology achieves the capabilities listed above by comparing plot-

scale measurements of two phenotypes – canopy cover and color – from SLMs and MLMs. Ground 

reference measurements from ground-based imagery and replicate measurements from MLMs and 

allow us to quantify both the precision and accuracy of our UAS observations. We also measure 

the frequency of row-offset errors and explain how to correct them. This will help researchers 

understand how to maximize the precision and accuracy of UAS observations for field-based HTP 

and other research applications.   
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2.3 Methods 

2.3.1 Field Site 

The case study was a collaborative research project involving soybean breeders in the Agronomy 

Department and remote sensing researchers in the Agricultural and Biological Engineering 

Department at Purdue University. The field site was located at the Agronomy Center for Research 

and Education at Purdue University. It consisted of two hectares of experimental soybean planted 

with a precision plot planter on May 23rd, 2016 as arrays of plots classified by row and range 

numbers. The row orientation was south to north and the row spacing was 76 cm. Each two-row 

plot was approximately 4 m2 in size. Twenty-one test plots were used for this study (Figure 3).   

2.3.2 Image Acquisition 

The UAS was a small, fixed-wing Precision Hawk Lancaster Mark-III (3 kg total weight, 1.5 m 

wingspan) equipped with a 14-megapixel Nikon 1-J3 digital camera collecting imagery in the 

visible spectrum with manually adjusted aperture, shutter speed, ISO sensitivity, and focus. The 

UAS stored GPS coordinates for each photo with a horizontal and vertical accuracy of 

approximately 2 m and 5 m, respectively. 

We conducted flights twice a week from June 3rd to July 19th, 2016 resulting in thirteen sampling 

dates spanning canopy emergence to closure. We flew the UAS 50 m above ground level resulting 

in a spatial resolution of 1.5 cm per pixel. We captured 70-90% forward and lateral image overlap 

to allow accurate image stitching and at least four images of each plot on every sampling date.  

2.3.3 Single-Layer Mosaic Generation 

We stitched the imagery using Pix4Dmapper with default settings for mosaic generation. This 

produced SLMs, digital elevation models, and estimates of camera positions and orientations for 

every photo and flight date. Pix4Dmapper also provided estimates of internal camera parameters 

for modeling geometric lens distortion. These outputs were horizontally co-registered to UTM 

eastings and northings of twenty-five Ground Control Points (GCPs) that were set up in the field 

before flights and imported into Pix4Dmapper before image stitching. 
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2.3.4 Multilayer Mosaic Generation 

Our methodology differs from previous studies in the way we ortho-rectified the imagery. 

Researchers in photogrammetry have known for many years that it is possible to remove geometric 

lens distortion from frame photos and apply a collinearity relationship to trace rays of light from 

3D coordinates in the scene to their corresponding 2D coordinates in the frame photos (e.g. Mikhail, 

1974). In this case, if we obtain map coordinates of individual research plots (UTM eastings, 

northings, and altitudes) from the SLMs and digital elevation models, then we can apply 

collinearity to the camera positions and orientations and internal camera parameters to locate the 

plots in the frame photos and separately ortho-rectify multiple replicate images of plots.   

We obtained the map coordinates of the plots as follows: First, we segmented an SLM into green 

vegetation and background using the Excess Green Index (ExG) and Otsu thresholding (Otsu, 1979; 

Woebbecke et al., 1995). Then, we gridded the segmented mosaic into individual plots using a 

custom algorithm implemented in Matlab. This gave us image coordinates for every plot in the 

SLMs. We used the appropriate affine transformations to convert these image coordinates into 

UTM eastings and northings (Hearst & Cherkauer, 2015). We obtained altitudes from 

corresponding coordinates in the digital elevation models. These coordinates were consistent 

across flight dates due to image co-registration.  

Once we had map coordinates for every plot, we applied collinearity to the camera positions and 

orientations and internal camera parameters to locate the plots in the frame photos and separately 

ortho-rectify replicate images of every plot. Ortho-rectification calculations were performed in 

Matlab using nearest-neighbor resampling to preserve pixel colors from the raw frame photos.  

Small errors in image stitching led to small spatial offsets from correct plot locations when 

collinearity was used to extract plots from the frame photos. When these offsets were large enough, 

they led to row-offset errors. These could be visualized by inspecting replicate images of each plot 

and determining whether they were centered on the correct plot. To ensure that every plot was 

extracted in its entirety from every frame photo, we ortho-rectified an additional spatial buffer 

around the edges of each plot. Finally, we corrected row-offset errors by manually cropping each 

image to the correct plot.  
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We saved the plot images in uncompressed Tiff format using a file-naming convention that 

documented the flight date, field experiment, row and range number, and replicate image number 

for each plot. We grouped the plot images by flight date and field experiment. Then we tiled the 

images in positions corresponding to their rows and ranges in the field and layered them according 

to their replicate image numbers to form MLMs. There was one MLM per field experiment per 

flight date (Figure 4). Each MLM had 𝑁 layers, where 𝑁 was the maximum number of replicate 

images in that experiment on that flight date.  

Ortho-rectifying images of plots of fixed pixel dimensions and tiling them in this manner allowed 

us to; 1) preserve pixel colors from the raw frame photos, 2) avoid color modifications by 

Pix4Dmapper, and, 3) avoid geometric and radiometric distortion from image stitching errors. It 

guaranteed spatial continuity within plot images in the mosaic. However, it did not guarantee 

spatial continuity between plots since the spacing between the plots in the field was not perfectly 

constant. As a result, small portions of the field near the borders of the plots were either replicated 

or omitted at the borders between plots in the MLMs.  

2.3.5 Ground Reference Imagery 

Ground photos of the twenty-one test plots were also collected on every flight date. These were 

captured from 4 m above the canopy at nadir perspective using a 13-megapixel smartphone camera 

fixed to a pole. Real-time digital video feed from the smartphone camera to a smartwatch 

facilitated manual adjustment of the pole to ensure nadir camera perspective. The ground photos 

were manually cropped to the same plot areas that were analyzed in the SLMs and MLMs. Thus, 

we obtained detailed time series of twenty-one plots from ground photos, SLMs, and MLMs 

(Figure 5).  

2.3.6 Row-Offset Errors 

We evaluated row-offset errors by visually inspecting replicate images of plots and determining 

whether they were centered on the correct plot. We measured the frequency of row-offset errors 

on each date as the number of offset images divided by the total number of replicate images.  
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2.3.7 Phenotype Measurements 

For phenotype measurements, we chose to focus on canopy cover and color because recent studies 

indicate that they are critical for field-based HTP and can be measured accurately via remote 

sensing techniques (Normanly, 2012; Xavier et al., 2017). Canopy cover is defined as the fraction 

of a fixed ground area covered by the canopy (Eysn et al., 2012). It is a useful phenotype because 

it is closely related to light interception and yield (Hall, 2015). For example, the Food and 

Agriculture Organization (FAO) developed the AquaCrop model to predict yield based on periodic 

observations of canopy cover instead of Leaf Area Index (LAI – the surface area of leaves per area 

of ground surface), with the expectation that canopy cover is a reliable indicator of crop status that 

can be more easily and accurately measured via remote sensing techniques (Steduto et al., 2009a). 

We measured canopy cover as the fraction of canopy pixels in each plot image based on maximum-

likelihood classification. 

Canopy color is also a useful indicator of crop status that has been applied in HTP (Normanly, 

2012). Researchers speculate that it can be used to model crop stress, senescence, and maturity 

(Hatfield et al., 2010; Viña, 2004). Canopy color is determined by its spectral reflectance. It has 

been characterized using a variety of absolute and relative image-based metrics including spectral 

vegetation indices and pixel hues. When imagery is not calibrated to absolute units of color such 

as reflectance, relative color metrics such as pixel hues allow comparison of imagery collected 

with the same sensor under similar lighting conditions (Hatfield et al., 2010; Normanly, 2012; Xue 

et al., 2017). It was not possible to calibrate our imagery to reflectance due to a lack of 

documentation of sensor characteristics. Therefore, we measured canopy color as the average hue 

of all canopy pixels in each plot image and we limited color analyses to relative differences 

between images from the SLMs and MLMs. 

Our analysis focuses on assessing row-offset errors, visualizing variations in canopy cover and 

color from photo to photo, and quantifying measurement precision and accuracy. We used the 

frequency of row-offset errors to evaluate how often row-offset errors occur and how significant 

of a problem they might be. We evaluated variations from photo to photo using medians and 

standard deviations from MLM images. We plotted measurements from SLM and MLMs to 

visualize variations from photo to photo and impacts of geometric and radiometric distortion. We 

evaluated whether these distortions significantly influenced canopy cover and color measurements 
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by using t-tests to determine whether measurements from SLMs and MLMs were significantly 

different. Finally, we compared canopy cover measurements from SLMs and MLMs to ground 

reference measurements to evaluate their accuracy. Our results shed light on the quality of UAS 

data and methods of enhancing its precision and accuracy.    

2.4 Results 

2.4.1 Evaluation of Row-Offset Errors 

Row-offset errors occurred on four out of thirteen sampling dates with frequencies ranging from 

1/22 to 6/27 offset images per replicate plot image (Table 3). Over the entire study period, they 

occurred in 24 out of 3790 replicate plot images. 

2.4.2 Evaluation of Phenotype Measurements 

UAS and ground-based time series of canopy cover exhibited sigmoidal curves typical of plant 

growth (Figure 6). T-tests indicate that measurements from SLMs and MLMs were significantly 

different (P < 0.01) for 198 (73%) out of 273 sampling points (21 plots x 13 sampling dates). 

Median values from MLMs were closer to ground reference values by an average of 2.4% cover 

for 173 of those 198 sampling dates. Measurements from SLMs were higher than MLMs by an 

average of 3.4% cover for 153 of those sampling dates. These differences were caused by 

geometric and radiometric distortion in the SLMs. 

Canopy cover measurements from MLMs had standard deviations ranging from 0.3% cover to 7.2% 

cover with an overall average standard deviation of 1.7% cover. Measurement errors (median – 

reference value) ranged from -12.2% cover to 9.8% cover with an overall average of 0.4% cover. 

Standard deviations and errors were twice as large on the last four flight dates compared to the 

first nine. This is due to a low sun angle causing small portions of the canopies to be shadowed 

which prevented them from being classified accurately.  

Canopy pixel hues exhibited slow and primarily upward shifts in value (Figure 7). T-tests indicate 

that hues from the SLMs and MLMs were significantly different (P < 0.01) for 153 (56%) out of 

273 sampling points. These differences are also caused by geometric and radiometric distortion in 

the SLMs. 
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2.5 Discussion 

Our results confirm that row-offset errors can occur, although they are probably rare. A simple 

remedy would be to use median values from MLMs. Further research on row-offset errors, their 

frequency, and methods of detection and avoidance is recommended. 

Our results also confirm that measurements from SLMs and MLMs are significantly different with 

SLMs over-estimating canopy cover. These results are consistent with Tao et al. (2017) who also 

found that SLMs over-estimate canopy cover.  However, they compared measurements from 

ortho-mosaics to measurements from nadir-perspective ‘undistorted’ frame photos generated by 

Pix4Dmapper. Our method is not limited to nadir-perspective imagery since it removes perspective 

distortion via ortho-rectification.  

Small standard deviations of canopy cover and color from MLMs reflect the small changes from 

photo to photo that are expected due to changes in wind, lighting, shadowing, viewing angle, and 

camera focus. Some researchers have suggested that using weighted average pixel colors or other 

methods of color blending in SLMs might help account for variations in lighting, bi-directional 

reflectance, and image quality from photo to photo (e.g. Haghighattalab et al., 2016). By allowing 

us to quantify these variations, MLMs can play an important role in investigating this possibility. 

Researchers have also attempted to minimize geometric and radiometric distortion in SLMs by 

only using pixel colors from the closest frame photo to every point in the scene (e.g. 

Haghighattalab et al., 2016). Although this preserves raw pixel colors in the mosaic, it does not 

prevent the possibility of introducing spatial discontinuities within plots and it needlessly discards 

replicate observations. MLMs avoid these problems by retaining replicate observations and 

constraining spatial discontinuities to the borders between plots.  

MLMs create new opportunities for evaluating and enhancing the quality of UAS observations. 

They can help standardize UAS observations by ensuring that all measurements are extracted 

directly from raw frame photos without unintended modifications. This will make it easier to 

replicate studies. In addition, knowledge of the precision of UAS measurements will facilitate 

outlier detection and other methods of quality control. For example, in this study, the unusually 

low and highly variable canopy cover measurements on the last four flight dates caused by variable 

shadowing might have been improved by using maximum values on these dates. As additional 

examples, one could investigate whether applying an image-sharpening filter could improve 
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measurement precision and one could compare the precision of different methods of pixel 

classification. MLMs could also be used to evaluate different metrics of color or temperature 

derived from multispectral or thermal imagery.  

The ability to quantify the precision of UAS observations has great practical value. For example, 

it allows us to calculate how often we need to fly to track canopy expansion, since we know how 

much growth we can reliably detect from day to day. Most importantly, we can now determine 

whether observed differences between experimental plots are statistically significant. 

2.6 Conclusion 

MLMs are more appropriate than SLMs for field-based HTP and other areas of research in which 

we wish to observe large numbers of small spatial plots with as much precision and accuracy as 

possible. This is because they preserve replicate observations of plots in their raw format and avoid 

much of the geometric and radiometric distortion present in SLMs. They also make it possible to 

evaluate and enhance the precision and accuracy of UAS observations by correcting row-offset 

errors and applying outlier detection and other statistical analyses to the results. MLMs do not 

preserve spatial continuity from plot to plot, so SLMs may still be needed in mapping and other 

applications where positioning is critical. Hopefully new software or other resources will become 

available that will make MLMs available to more researchers.  

The primary objective of this study was to introduce MLMs and demonstrate their advantages over 

SLMs. Weaknesses of this study include the inability to calibrate our imagery to reflectance and 

only testing one method of quantifying canopy cover and color. Follow up studies could focus on 

comparing different methods of measuring canopy cover and color and assessing impacts of image 

distortion on other types of downstream analyses. 
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 THE RELATIVE ACCURACY OF SOYBEAN CANOPY 

COVER AND COLOR FROM SINGLE AND MULTILAYER UAS 

IMAGE ORTHOMOSAICS 

3.1 Abstract 

Crop improvement is necessary for food security as the global population is expected to rise to 9.1 

billion by 2050. Imagery from Unmanned Aircraft Systems (UAS) will facilitate crop 

improvement by providing breeders more precise plant phenotypes that enable discrimination of 

higher-performing varieties in agronomic research plots with higher throughput and less manual 

labor. To help breeders avoid basing selections on phenotype values that are statistically 

indistinguishable, it will be critical to maximize the relative accuracy of UAS observations of plant 

phenotypes and enable statistical comparison of agronomic research plots. Towards these aims, 

we evaluate the relative accuracy of three plant phenotypes (canopy cover, hue, and green-to-red 

ratio or GR) for twenty-one soybean plots on thirteen sampling dates spanning canopy emergence 

to closure, extracted from two types of UAS ortho-image products: 1) single composite stitched 

image ortho-mosaics, or Single Layer Mosaics (SLMs), and, 2) separately ortho-rectified and tiled 

replicate ortho-images of individual research plots, or Multilayer Mosaics (MLMs). We measure 

relative accuracy by 1) ranking plots from lowest to highest phenotype values, and, 2) estimating 

relative phenotype values for all 210 unique pairs of 21 plots on each sampling date and evaluating 

the agreement with ground reference data. We find that MLMs and SLMs perform equally well at 

ranking plots, but MLMs enable higher relative accuracy by restricting analyses to significantly 

different plots using two-sided hypothesis testing. We also find that GR is more sensitive, accurate, 

and computationally efficient than hue at characterizing the relative greenness of soybean plots. 

Keywords 

(1) High-Throughput Phenotyping (HTP), (2) Unmanned Aircraft Systems (UAS), (3) Single-layer 

UAS image ortho-mosaic (SLM), (4) Multilayer UAS image ortho-mosaic (MLM), (5) Canopy 

cover, (6) Hue, (7) Green-to-red ratio (GR).  
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3.2 Introduction 

Crop improvement is necessary for food security as the global population is expected to rise to 9.1 

billion by 2050 (FAO, 2009). This requires both lab and field-based research in High-Throughput 

Phenotyping (HTP), since studies in controlled environments cannot ensure specific varieties will 

achieve desired performance in outdoor environments. Unfortunately, field-based HTP is costly 

and logistically challenging as it requires regularly and precisely measuring physical traits or plant 

phenotypes for large numbers of small agronomic research plots scattered across multiple 

environments. Traditionally, breeders have accomplished this by relying heavily on subjective 

visual ratings of plant phenotypes, as this has been the fastest and most economical way of 

collecting the data needed to make selections. However, as crop varieties have improved, it has 

become increasingly difficult to discriminate higher-performing varieties solely by eye. Therefore, 

breeders are looking to Unmanned Aircraft Systems (UAS) with imaging sensors as a low-cost 

platform for digitally measuring plant phenotypes more quickly and precisely than previously 

possible (Araus & Cairns, 2014; Cabrera-Bosquet et al., 2012).  

Successful application of UAS imagery in field-based HTP depends on our ability to quickly and 

accurately convert raw UAS imagery into ortho-images and plant phenotypes for individual 

research plots. This process is not trivial – proper application of various techniques from remote 

sensing, photogrammetry, and computer vision are necessary to extract individual research plots 

from raw UAS imagery and measure plant phenotypes in a manner that is robust to image distortion. 

Unfortunately, no standard methodology currently exists for this process. Identifying a standard 

requires testing different methods on multiple phenotypes, crops, growth stages, environments, 

and seasons. Such a standard should optimize sensitivity to phenotypic differences between plots, 

or relative accuracy, since the goal is usually to discriminate varieties based on their relative 

phenotype values rather than accurately measure the phenotypes themselves (e.g. does plot A have 

a lower or higher phenotype value than plot B?). It would be particularly helpful if this 

methodology could help breeders avoid basing selections on phenotype values that are statistically 

indistinguishable.  

Currently, the most common method of converting raw UAS imagery into ortho-images and plant 

phenotypes for agronomic research plots is to stitch raw UAS imagery into a large composite 

image ortho-mosaic of an entire field site and extract images and plant phenotypes for individual 
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plots from the ortho-mosaic (Tao et al., 2017; Shi et al., 2016; Haghighattalab et al., 2016). We 

refer to this approach as the ‘Single-Layer Mosaic’ (SLM) approach, as it relies on a single 

composite stitched image of the field site. Alternatively, it is possible to extract plant phenotypes 

from separately ortho-rectified and tiled replicate ortho-images of individual research plots from 

overlapping UAS images. We refer to this approach as the ‘Multilayer Mosaic’ (MLM) approach, 

as it relies on multiple layers of replicate imagery of the field site.  

MLMs could enable higher relative accuracy by allowing breeders to restrict analyses to plots with 

significantly different phenotype values based on two-sided hypothesis testing. This is not possible 

with SLMs since they only offer one observation per plot. It seems that both SLMs and MLMs 

warrant consideration as standard methodologies for applying UAS imagery in field-based HTP, 

but to our knowledge, no studies have compared the relative accuracy of phenotypes from these 

two different types of UAS ortho-image products. 

To address these knowledge gaps, we evaluate the relative accuracy of three plant phenotypes 

(canopy cover, hue, and green-to-red ratio or GR) for twenty-one soybean plots on thirteen 

sampling dates spanning canopy emergence to closure using SLM and MLM ortho-imagery. We 

measure relative accuracy in two ways: 1) ranking plots from lowest to highest phenotype values, 

and, 2) estimating the relative phenotype values of all 210 unique pairs of 21 plots on each 

sampling date and evaluating the agreement with ground reference data. We also investigate 

whether relative accuracy can be improved by restricting analyses to plots with significantly 

different phenotype values using two-sided hypothesis testing. 

We consider canopy cover (the fraction of a fixed ground area covered by the canopy) to be a good 

target for analysis because it is closely related to light interception and yield (Hall, 2015). For 

example, the Food and Agriculture Organization (FAO) developed the AquaCrop model to predict 

yield based on periodic observations of canopy cover instead of Leaf Area Index (LAI – the surface 

area of leaves per area of ground surface), with the expectation that canopy cover is a reliable 

indicator of crop status that can be more easily and accurately measured via remote sensing 

techniques (Steduto et al., 2009b).  

We also consider hue and GR to be good targets for analysis because both are designed to measure 

relative color differences in uncalibrated digital imagery and both have been used extensively in 

previous phenotyping research as metrics of plant greenness (e.g. Normanly, 2012; Majer, 2010; 
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Adamsen et al., 1999; Marchant, 2004). However, the GR ratio is less computationally intensive 

than hue, which may be a significant advantage when breeders must extract greenness from large 

numbers of high-resolution ortho-images of agronomic research plots. Therefore, if GR and hue 

offer similar relative accuracy, it may make sense for breeders to favor GR as a more efficient 

metric of plant greenness for field-based HTP. Our results lead to practical recommendations for 

applying UAS imagery in field-based HTP and outdoor small plot research in general.  

3.3 Methods 

3.3.1 Field Site 

The field site is located at the Agronomy Center for Research and Education (ACRE) at Purdue 

University. It consists of two hectares of experimental soybean used for plant breeding research. 

The field was planted with a precision plot planter on May 23rd, 2016 as rectangular arrays of plots 

classified by row and range number. The row orientation was south to north and the row spacing 

was 76 cm. Twenty-one test plots scattered across the field were used for this study. Each two-row 

plot was approximately 4 m2 in size (Figure 3). 

3.3.2 Image Acquisition 

The UAS was a small, fixed-wing Precision Hawk Lancaster Mark-III (3 kg total weight, 1.5 m 

wingspan) equipped with a 14-megapixel Nikon 1-J3 digital camera. It collected imagery from 

nadir-view in the visible spectrum with manually adjusted aperture, shutter speed, ISO sensitivity, 

and focus. It recorded GPS coordinates for each photo with a horizontal and vertical positional 

accuracy of approximately 2 m and 5 m, respectively. 

Flights were conducted approximately twice a week from June 3rd to July 19th, 2016 between 

9:00AM and 11:00AM local time resulting in thirteen sampling dates spanning canopy emergence 

to closure. We flew the UAS at an altitude of 50 m above ground level resulting in a nominal 

spatial resolution of 1.5 cm per pixel. We captured 70-90% forward and lateral image overlap to 

allow accurate image stitching and at least four replicate images of each plot on every sampling 

date. Concurrent with flights, we also collected ground reference (REF) images of the twenty-one 

test plots between 2:00PM and 4:00PM local time from 4 m above the canopy at nadir-view using 

a 13-megapixel digital camera mounted on a pole. 
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3.3.3 Single-Layer Mosaic Generation 

We stitched the raw UAS imagery into single-layer ortho-mosaics (SLMs) using Pix4DmapperTM 

with default settings for image stitching and mosaic generation (Pix4D, Lausanne, Switzerland). 

This produced SLMs, digital elevation models, and estimates of internal and external camera 

parameters. Outputs were horizontally co-registered to the UTM eastings and northings of twenty-

five ground control points that were surveyed with 1 cm horizontal and vertical positional accuracy 

to ensure accurate image stitching and co-registration. We gridded the SLMs to obtain ortho-

images and GPS coordinates for every plot. 

3.3.4 Multilayer Mosaic Generation 

We applied the collinearity equation with nearest-neighbor resampling to the camera internals, 

externals, and plot GPS coordinates to separately ortho-rectify multiple replicate ortho-images of 

every plot (Mikhail, 1974). Then, we manually centered every replicate image of every plot on the 

correct plot to ensure no row-offset errors were present. Finally, we tiled the plot ortho-images 

according to their row and range numbers in the field and stacked replicate images on top of each 

other to form multilayer mosaics (MLMs).  

3.3.5 Phenotype Measurements  

We used supervised maximum-likelihood classification to accurately segment the REF, SLM, and 

MLM images of each plot into canopy and background pixels (Campbell & Wynne, 2011). Then, 

we calculated canopy cover for each plot as the fraction of canopy pixels in each plot image. 

Finally, we calculated canopy greenness in terms of the average hue and average green-to-red ratio 

(GR) of the raw digital number values of canopy pixels in each plot image.  

3.3.6 Plot Rankings  

To evaluate the relative accuracy of canopy cover, hue, and GR observations from SLMs and 

MLMs, we ranked the twenty-one test plots from lowest to highest phenotype values on each flight 

date (Tables 4-6). We obtained REF and SLM rankings by comparing single phenotype 

observations for the plants in each plot. We obtained MLM rankings by comparing median 

phenotype observations for the plants in each plot. We used median observations because these 

are robust to outliers caused by the occasional blurry or poorly-stitched UAS image. We measured 
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the accuracy of SLM and MLM rankings based on their agreement with REF rankings according 

to Cohen’s Kappa statistic with linear weighting. Cohen’s Kappa ranges from 1 if metrics are in 

complete agreement, 0 if there is no more agreement than would be expected by chance, and 

negative if the agreement is worse than by chance (Watson & Petrie, 2010).  

3.3.7 Pairwise Plot Comparisons 

As another means of evaluating the relative accuracy of canopy cover, hue, and GR observations 

from SLMs and MLMs, we compared plant phenotypes for all unique pairs of the twenty-one test 

plots on every flight date. This resulted in 210 (21-choose-2) pairs of plots on each flight date, for 

a total of 2730 (13 × 210) pairwise plot comparisons over the study period. First, we obtained 

relative phenotype values (e.g. plot A has a lower or higher phenotype value than plot B) from the 

REF and SLM images by comparing single phenotype observations for each pair of plots. Then, 

we obtained relative phenotype values from the MLM images by comparing median phenotype 

observations for each pair of plots. We also restricted MLM analyses to pairs of plots with 

significantly different phenotype values using Wilcoxon Rank-Sum tests with a range of 

significance levels to show its effect on the sensitivity and accuracy of the test. Finally, we 

measured the relative accuracy of canopy cover, hue, and GR for pairs of plots by calculating the 

fraction of pairwise plot comparisons that indicated the same relative values as the REF images. 

3.4 Results 

3.4.1 Evaluation of Plot Rankings  

In general, the relative accuracy of plot rankings based on median phenotype values from MLM 

images and single phenotype values from SLM images were very similar (Figures 8-10). One 

exception was the first flight date in which the canopies were too small to be detected in the SLM 

images. The minimum, maximum, and overall average Cohen’s Kappa (𝜅) with REF canopy cover 

rankings were 0.29, 0.77, and 0.53 for the SLMs and 0.28, 0.81, and 0.53 for the MLMs, 

respectively. For hue, the minimum, maximum, and overall average 𝜅 with REF rankings were 

0.13, 0.62, and 0.28 for the SLMs and 0.07, 0.71, and 0.28 for the MLMs, respectively. For GR, 

the minimum, maximum, and overall average 𝜅 with REF rankings were 0.07, 0.52, and 0.31 for 

the SLMs and 0.13, 0.52, and 0.30 for the MLMs, respectively. For both the MLMs and SLMs, 

the overall average 𝜅 with REF rankings was slightly higher for GR (0.30) than hue (0.28). 
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3.4.2 Evaluation of Pairwise Plot Comparisons 

The fraction of 2730 pairs of plots in this study that were found to have significantly different 

phenotype values based on Wilcoxon Rank-Sum tests increased as the significance level of the test 

was increased (Figure 11). At a standard significance level of 0.05, 68%, 48%, and 51% of all 

pairs of plots were found to have significantly different canopy cover, hue, and GR, respectively. 

For all significance levels, GR was slightly more sensitive than hue to relative differences in 

greenness between pairs of plots.  

The downside of increasing the significance level of the two-sided hypothesis test was that the 

fraction of pairs of plots that had significantly different and correct relative phenotype values 

decreased (Figure 12). This reflects that there is a tradeoff in the sensitivity and accuracy of the 

test with respect to detecting phenotypic differences between pairs of agronomic research plots. 

At a standard significance level of 0.05, 87%, 74%, and 76% of pairs of plots with significantly 

different canopy cover, hue, and GR had correct relative values, respectively. For all significance 

levels, GR measured greenness with slightly higher relative accuracy than hue. 

The relative accuracy of pairwise plot comparisons based on median phenotype values from 

MLMs and single phenotype values from SLMs were similar (Figures 13-15). For canopy cover, 

the minimum, maximum, and overall fraction of pairs of plots with correct relative values were 

62%, 90%, and 78% for the SLMs and 67%, 93%, and 79% for the MLMs, respectively. For hue, 

the minimum, maximum, and overall fraction of pairs of plots with correct relative values were 

58%, 82%, and 66% for the SLMs and 54%, 89%, and 65% for the MLMs, respectively. For GR, 

the minimum, maximum, and overall fraction of pairs of plots with correct relative values were 

53%, 78%, and 67% for the SLMs and 53%, 80%, and 66% for the MLMs, respectively.  

When Wilcoxon Rank-Sum tests with a standard significance level of 0.05 were used to restrict 

analyses to significantly different pairs of plots, the relative accuracy of the MLM observations 

was higher than that of the SLM observations for all phenotypes and almost all flight dates. For 

canopy cover, the minimum, maximum, and overall increases in relative accuracy for a given flight 

date were 4%, 14%, and 9%, respectively. For hue, the minimum, maximum, and overall increases 

in relative accuracy were -4%, 27%, and 8%, respectively. For GR, the minimum, maximum, and 

overall increase in relative accuracy were -3%, 19%, and 9%, respectively. The tradeoff of these 
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increases in accuracy were that 32%, 52%, and 49% of pairs of plots were found to have 

statistically indistinguishable canopy cover, hue, and GR, respectively. 

3.5 Discussion 

There have been many studies on the absolute accuracy of observations of canopy cover and color 

from SLMs (e.g. Tao et al., 2017; Shi et al., 2016; Haghighattalab et al., 2016). However, to our 

knowledge, this is the first study focused on evaluating the relative accuracy of phenotypes from 

SLMs and MLMs. Our results indicate that SLMs and MLMs measure canopy cover, hue, and GR 

for small soybean research plots with similar relative accuracy, particularly with regards to ranking 

plots from lowest to highest phenotype values. However, when Wilcoxon Rank-Sum tests with a 

standard significance level of 0.05 are used to restrict analyses to pairs of plots with significantly 

different phenotype values, the relative accuracy of MLM observations can become up to 27% 

higher than that of SLM observations. This increase in relative accuracy comes at the expense of 

designating up to 50% of pairs of plots as statistically indistinguishable.  

However, relative accuracy can also be increased by other means, such as decreasing the flying 

height of the UAS or using higher quality imaging sensors to improve measurement precision. 

Whether such measures can render differences between SLMs and MLMs negligible remains an 

important topic for future research. Ultimately, breeders will need to determine what tradeoffs in 

sensitivity and accuracy are appropriate for their research purposes.  

These results also indicate that GR measures the greenness of soybean plots with a relative 

accuracy and sensitivity at least equivalent to hue, both in terms of ranking plots and detecting 

significant differences between pairs of plots. Therefore, breeders may want to consider using GR 

rather than hue as a more efficient metric of plant greenness for field-based HTP. 

3.6 Conclusion 

MLMs and SLMs perform similarly well at ranking canopy cover, hue, and GR for small soybean 

research plots, but MLMs enable higher relative accuracy by restricting analyses to pairs of plots 

with significantly different phenotype values. This can help breeders avoid making selections 

based on phenotype values that are statistically indistinguishable. We also find that GR 

discriminates soybean plot greenness at least as well as hue both when ranking and comparing 
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pairs of plots. Therefore, breeders may want to consider using GR rather than hue as a more 

efficient metric of greenness for field-based HTP.  

It would be interesting to investigate whether two-sided hypothesis testing could be used to 

produce more accurate rankings of plots. Perhaps this would involve ranking plots based on the 

number of plots that have significantly smaller phenotype values and assigning equal ranks to plots 

that are statistically indistinguishable. It would also be interesting to compare the absolute 

accuracy of SLMs and MLMs and see how this relates to their relative accuracy. Further research 

covering other phenotypes, crop types, growth stages, environments, and seasons is needed before 

more general recommendations can be made. Ultimately, breeders must decide what levels of 

sensitivity and accuracy are appropriate for their research purposes. 
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 CONSTRAINING THE ONSET OF MOISTURE STRESS 

IN AQUACROP USING CANOPY COVER TIME SERIES FROM 

UNMANNED AIRCRAFT SYSTEMS 

4.1 Abstract 

Crop improvement is necessary for food security as the global population is expected to exceed 9 

billion by 2050. Limitations in water resources and more frequent droughts and floods will make 

it increasingly difficult to manage agricultural resources and increase yields. Therefore, we must 

improve our ability to predict impacts of moisture stress on crop growth and yield. Towards this 

end, agronomists have identified visible ‘plant-based’ indicators of moisture stress, such as 

reductions in leaf expansion rates, which identify when crops are experiencing moisture stress. 

Also, modeling researchers have developed crop models such as AquaCrop that enable 

quantification of the severity of moisture stress and its impacts crop growth and yield. Finally, 

breeders are applying Unmanned Aircraft Systems (UAS) in field-based High-Throughput 

Phenotyping (HTP) to quickly screen many crop varieties for traits indicative of drought and flood 

tolerance. Here we investigate whether canopy cover time series from high-resolution UAS 

imagery could pinpoint the timing of reductions in leaf expansion rates in field-grown soybean 

and whether this information can be used to constrain AquaCrop to more accurately simulate the 

timing and severity of moisture stress as well as its impacts on crop growth and yield. We find that 

UAS observations of canopy cover can pinpoint the timing of reductions in canopy expansion rates 

to within a couple of days and that this can be used to help AquaCrop avoid underestimating 

moisture stress and overestimating yield. This approach to model calibration will help agronomists 

and breeders more quickly identify varieties tolerant to moisture stress and achieve food security. 

Keywords 

(1) High-Throughput Phenotyping, (2) Unmanned Aircraft Systems (UAS), (3) Canopy Cover, (4) 

Crop Modeling, (5) Moisture Stress, (6) Drought Stress, (7) Flood Stress, (8) AquaCrop 
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4.2 Introduction 

4.2.1 Background 

Due to global population rise, yields of major food crops must be increased to ensure future food 

security. Limitations in water resources and climate change will make it increasingly difficult to 

manage agricultural resources and obtain higher yields (Bradshaw & Barry, 2014; Cohen, 2003; 

FAO, 2009; Sinha et al., 1989). This is particularly true for the US Midwest region, in which 

climate models predict more extreme weather, including droughts and floods, will reduce yields 

(Cherkauer & Sinha, 2010; Fan, 2014; Pryor, 2013; Rosenzweig, 2002). We therefore need to 

improve our understanding of how droughts and floods impact crop growth and yield.  

Research in agronomy, crop modeling, and breeding advance our understanding of crop growth 

dynamics and water relations to yield by assimilating current knowledge and relying on 

meteorological and agronomic data to test our understanding (Boote et al., 1996). This leads to 

more accurate yield predictions, more effective breeding, better agricultural resource management, 

and higher yields. For example, agronomists have identified visible ‘plant-based’ indicators of 

moisture stress, such as reductions in leaf expansion rates, which help identify when crops are 

experiencing moisture stress (Jones, 2004). Also, crop modeling researchers have developed 

models such as AquaCrop that allow quantification of impacts of moisture stress on crop growth 

and yield (Steduto et al., 2009a). And recently, breeders have begun studies on field-based High-

Throughput Phenotyping (HTP) (Araus and Cairns, 2014; Cabrera-Bosquet et al., 2012). This 

involves planting many varieties of a crop in thousands of small agronomic research plots and 

precisely measuring standard physical traits, or ‘phenotypes’, for every plot. These phenotypes 

serve as indicators of crop performance. This allows many varieties to be quickly screened for 

desired characteristics, enabling rapid progress towards varieties that are high-yielding and tolerant 

to moisture stress. 

The main challenges of field-based HTP are that phenotypes must be measured precisely enough 

to distinguish the often-subtle differences between plots, and, when fields are large enough, 

additional field observations may be needed to prevent within-field variation from confounding 

observed differences between plots. The need for high measurement precision and the high cost of 

manual labor traditionally required to collect these data are significant obstacles that must be 

addressed for these types of studies to progress (Araus & Cairns, 2014).  
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To overcome these obstacles, it will be critical for researchers to exploit new technologies as they 

become available. For example, with minimal manual labor, Unmanned Aircraft Systems (UAS) 

equipped with imaging sensors can acquire imagery at the field scale with the spatial resolution 

required to resolve individual plots and the temporal resolution required to capture differences in 

plot behavior over time. With appropriate remote sensing and image analysis techniques, these 

data may enable frequent, rapid, and precise observations of crop status at the plot scale, leading 

to more rapid research progress at the field scale (Araus & Cairns, 2014). 

For example, a promising phenotype for UAS observation is plot-scale observations of canopy 

cover. Canopy cover is defined as the fraction of a fixed ground area covered by the canopy or 

delimited by the vertical projection of the outermost perimeter of the canopy (Eysn et al., 2012). 

With regards to plant breeding, canopy cover has proven useful for field-based HTP because it 

may be measured precisely and is related to light interception and yield (Xavier et al., 2017). With 

regards to crop modeling, the Food and Agriculture Organization (FAO) developed the AquaCrop 

model to rely on observations of canopy cover instead of Leaf Area Index (LAI) (the surface area 

of leaves per area of ground surface) with the expectation that canopy cover is a reliable indicator 

of crop status that is easier to measure remotely (Steduto et al., 2009b).  

UAS observations of canopy cover may also be detailed enough to provide new constraints for 

calibrating crop models such as AquaCrop to simulate impacts of moisture stress on crop growth 

and yield. For example, if canopy cover is measured frequently and precisely enough, then perhaps 

analyses of these data, combined with meteorological and agronomic data, could pinpoint the 

timing of reductions in leaf expansion rates in field-grown soybean to within a few days. This 

could be used to constrain AquaCrop to more accurately simulate the timing of the onset of 

moisture stress as well as the severity of its impacts on crop growth and yield. 

This study focuses on exploring these possibilities by comparing the performance of AquaCrop 

calibrated in the traditional manner with ground-based observations and in an alternative manner 

using UAS observations of soybean canopy cover and dates corresponding to reductions in canopy 

expansion rates. Our hypothesis is that UAS observations of canopy cover can be collected with 

enough precision and temporal resolution to pinpoint the timing of reductions in canopy expansion 

rates in field-grown soybean to within a few days and that these observations can be used to 

constrain AquaCrop to more accurately simulate the timing of the onset of moisture stress and the 
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severity of its impacts on soybean growth and yield. This type of analysis may reveal new 

phenotypes related to moisture stress that could be applied in field-based HTP. For example, 

possible phenotypes may include 1) the number of times crops exhibit reduced canopy expansion 

rates during a growing season, and, 2) how long crops endure adverse soil moisture conditions 

before exhibiting reduced canopy expansion rates. Such phenotypes could help quickly identify 

varieties that are resistant to moisture stress. This would not only demonstrate that UAS imagery 

can provide precise and useful data for research in agronomy, crop modeling, and breeding at 

minimal labor cost, but it would also demonstrate that UAS observations can lead to a better 

understanding of crop growth dynamics and water relations to yield. This is critical in a world 

where water resources are increasingly difficult to manage and food security is at risk.  

To clarify our modeling objectives, we provide a brief description of the AquaCrop model and 

aspects of the model relevant to our study. For further detail, the reader is referred to various papers 

describing the model (Raes et al., 2009; Steduto et al., 2009a) and the user manual (Raes et al., 

2012). Then we present a case study in which we test our hypothesis by comparing the performance 

of AquaCrop calibrated with ground vs. UAS observations of canopy cover. 

4.2.2 The AquaCrop Model 

AquaCrop dynamically simulates canopy expansion, root growth, Plant Available Water (PAW), 

and their combined impacts on transpiration, biomass production, and yield via the application of 

a harvest index and stress coefficients (Figure 2). The basic inputs required to run AquaCrop 

include daily air temperature, reference evapotranspiration, rainfall, initial soil moisture conditions, 

soil drainage properties, flowering, seed-filling, and maturity (Table 1). Observations of model 

outputs required for calibration include periodic observations of canopy cover and biomass (Table 

2). Periodic observations of soil moisture, root length, and yield are considered optional but can 

enhance the quality of the calibration (Raes et al., 2012).  

AquaCrop uses growing degree days to simulate a crop’s progression through its basic 

reproductive growth stages: 1) flowering, 2) yield formation, and, 3) maturity (Purcell et al., 2014). 

Concurrently, AquaCrop simulates root growth, canopy expansion, transpiration, and biomass 

production. Finally, AquaCrop estimates yield (𝑌) by multiplying biomass (𝐵) by a harvest index 

(𝐻𝐼) (Steduto et al., 2009a; McMaster & Wilhelm, 1997): 
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𝑌 = 𝐵 × 𝐻𝐼 

AquaCrop estimates biomass production over time using a water-driven growth equation: 

𝐵 = 𝑊𝑃 × ∑ 𝑇𝑟 

Where ∑ 𝑇𝑟  is the cumulative crop transpiration and 𝑊𝑃  is the biomass water productivity 

(biomass per unit of cumulative crop transpiration). 𝑊𝑃 is constant for a given crop and climate 

(Steduto et al., 2009a; Steduto et al., 2007). 𝑇𝑟 is calculated as follows: 

𝑇𝑟 = 𝐾𝑐𝑏 × 𝐸𝑇0 

Where 𝐾𝑐𝑏 is the crop coefficient for transpiration and 𝐸𝑇0 is the reference evapotranspiration 

according to the Penman-Monteith Equation (Monteith, 1965). 𝐾𝑐𝑏 is calculated as the product of 

the crop coefficient at 100% canopy cover (𝐾𝑐𝑏𝑥) and the canopy cover of the crop (𝐶𝐶):  

𝐾𝑐𝑏 = 𝐶𝐶 × 𝐾𝑐𝑏𝑥 

Canopy cover increases exponentially for non-stressed soybean until full size is approached (Board, 

1996). Accordingly, AquaCrop simulates canopy expansion using exponential equations. The 

form of the equation depends on how close the crop is to maximum canopy cover and maturity: 

1st half of canopy expansion (𝐶𝐶 <
𝐶𝐶𝑥

2
):   𝐶𝐶 = 𝐶𝐶0𝑒(𝐶𝐺𝐶)𝑡 

2nd half of canopy expansion (𝐶𝐶 ≥
𝐶𝐶𝑥

2
):   𝐶𝐶 = 𝐶𝐶𝑥 − (𝐶𝐶𝑥 − 𝐶𝐶0)𝑒−(𝐶𝐺𝐶)𝑡 

Decline of 𝐶𝐶 towards maturity:   𝐶𝐶 = 𝐶𝐶𝑥 [1 − 0.05 (𝑒
(

𝐶𝐷𝐶

𝐶𝐶𝑥
)𝑡

− 1)] 

Here, 𝐶𝐶0 is the canopy cover at which the canopy first becomes autotrophic (attains enough leaf 

area to synthesize its own food and sustain growth via photosynthesis) and starts to grow 

exponentially, 𝐶𝐶𝑥 is the maximum canopy cover, 𝐶𝐺𝐶 is a canopy growth coefficient, 𝐶𝐷𝐶 is a 

canopy decline coefficient, and 𝑡  is the time after planting. Together, these equations allow 

AquaCrop to simulate non-stressed crop growth and yield.   

AquaCrop simulates various types of stress due to drought, flood, heat, cold, soil fertility, and soil 

salinity. Stress caused by diseases or pests are not considered. Parameters for stressed and non-

stressed growth may be calibrated separately (Raes et al, 2012). Specifically, parameters such as 
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the canopy growth coefficient (𝐶𝐺𝐶) and maximum canopy cover (𝐶𝐶𝑥) may be calibrated using 

observations of non-stressed plants, while parameters related to stressed growth may be calibrated 

using observations of stressed plants. Here we focus on illustrating how moisture stress is 

simulated in AquaCrop.  

AquaCrop simulates moisture stress by applying stress coefficients to its equations governing 

canopy expansion, transpiration, and yield formation. These stress coefficients are functions of 

simulated Plant Available Water (PAW) values, PAW thresholds for moisture stress, and the 

growth stage of the crop. For example, the onset of drought stress is simulated by assuming that 

there are upper and lower PAW thresholds between which canopy expansion rates are reduced. 

When the simulated PAW drops below the upper PAW threshold, a stress coefficient for expansive 

growth (𝐾𝑠𝑒𝑥𝑝) is reduced from 1 to some number between 1 and 0 according to a convex curved 

mapped between the upper and lower PAW thresholds (Figure 1). The shape of this curve is usually 

convex to account for plant acclimation to mild stress and decreased soil capillary conductivity at 

low PAW, but it may be adjusted using a shape factor (𝑓𝑒𝑥𝑝) (Denmead & Shaw, 1962). This 

coefficient slows simulated canopy expansion by reducing AquaCrop’s 𝐶𝐺𝐶 parameter as follows: 

𝐶𝐺𝐶𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐾𝑠𝑒𝑥𝑝 × 𝐶𝐺𝐶 

Overall, AquaCrop uses four stress coefficients to simulate impacts of moisture stress on four 

processes: 1) canopy expansion, 2) stomatal conductance, 3) canopy senescence, and, 4) root 

aeration. The first three coefficients represent drought stress and are referred to as coefficients for: 

1) expansive growth (𝐾𝑠𝑒𝑥𝑝), 2) stomatal closure (𝐾𝑠𝑠𝑡𝑜), and, 3) accelerated leaf senescence 

(𝐾𝑠𝑠𝑒𝑛 ). The fourth represents flood stress and is referred to as an aeration stress coefficient 

(𝐾𝑠𝑎𝑒𝑟). All four are defined by upper and lower PAW thresholds and a shape factor. Some of 

these parameters are predetermined. For example, the lower PAW threshold for flood stress (𝑏𝑎𝑒𝑟) 

is set to 1 so flood stress can only occur when the soil moisture exceeds field capacity. 

4.2.3 Constraining the Onset of Moisture Stress in AquaCrop 

During the first half of canopy expansion, a linear equation in which the 𝐶𝐺𝐶 is given by the slope 

may be obtained by taking the logarithm of the canopy expansion equation: 

ln(𝐶𝐶) = ln(𝐶𝐶0) + (𝐶𝐺𝐶)𝑡 
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Accordingly, one may detect the timing of the onset of moisture stress during the first half of 

canopy expansion by testing for decreases in slope or 𝐶𝐺𝐶 between canopy cover values from 

successive pairs of sampling dates. Dates when adverse soil moisture conditions and reductions in 

slope are observed correspond to onsets of moisture stress. This approach (linearization, followed 

by detection of reductions in slope) is also applicable during the second half of canopy expansion.  

Decreases in 𝐶𝐺𝐶  detected in this manner will have limited temporal precision, as the actual 

decrease in 𝐶𝐺𝐶 may have occurred at any time between the successive pairs of sampling dates. 

For example, if the sampling interval is 4 days, then a decrease in 𝐶𝐺𝐶 detected between three 

successive sampling dates will have a temporal precision of approximately ±4 days about the 

middle date. The shorter the sampling interval, the more precisely the timing of the decrease in 

𝐶𝐺𝐶  (and onset of moisture stress) may be pinpointed. Additionally, the canopy cover 

observations will have limited precision. Therefore, only statistically significant reductions in 𝐶𝐺𝐶 

should be considered indicative of stress. This may be enforced by applying classical linear 

regression to replicate observations of canopy cover on successive pairs of sampling dates and 

checking if confidence intervals for the 𝐶𝐺𝐶 overlap.  

Decreases in 𝐶𝐺𝐶 are also more likely to be detected at the plot scale than field scale. This is 

because within-field variation of terrain and soil conditions will lead to variation in the timing of 

the onset of moisture stress from plot to plot. For example, ponding may cause plots at low spots 

in a field to exhibit drought stress later than plots at higher elevations. Therefore, if plot-scale 

canopy cover times series are aggregated to the field scale, reductions in 𝐶𝐺𝐶  may become 

smoothed out and harder to pinpoint. To overcome this issue, one may detect reductions in canopy 

expansion rates at the plot scale and then calculate the overall fraction of plots in the field that 

exhibit reduced canopy expansion rates on each sampling date. One may then calibrate AquaCrop 

such that it simulates moisture stress on dates when any field plots exhibit significant reductions 

in canopy expansion rates. This equates to imposing a temporal constraint on simulated moisture 

stress during model calibration in a way that is currently only feasible with UAS imagery. Here 

we present a case study in which we calibrate AquaCrop in this manner and evaluate whether this 

produces more realistic and accurate simulations of moisture stress, crop growth, and yield 

compared to the traditional ground-based method of calibration.   
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4.3 Methods 

4.3.1 Field Site 

The field site was located at the Agronomy Center for Research and Education at Purdue 

University in West Lafayette, Indiana (Figure 16). It consists of flat fields of silty-clay loam soil 

with sub-surface tile-drainage. It was planted with 151, 47, 147, and 11 plots of IA-3023 soybean 

in late May 2014, 2015, 2016, and 2017, respectively, at a density of 35 plants per square meter 

using a precision plot planter. The rows were oriented north-to-south with a spacing of 0.76 m. 

Each two-row plot was approximately 4 square meters in area. 

4.3.2 Climate 

Daily air temperature, rainfall, and reference evapotranspiration were obtained from a weather 

station located a few hundred yards from the field site. The total amount of rainfall from planting 

to harvest for all four seasons was 455 mm, 446 mm, 492 mm, and 524 mm in 2014, 2015, 2016, 

and 2017, respectively (Figure 17). However, during the first five weeks of the growing season 

(May 23rd to July 1st), which is when most of the canopy expansion occurred, there was relatively 

little rain in 2014 (81 mm) compared to 2015 (228 mm), 2016 (127 mm), and 2017 (169 mm). 

Therefore, if any early season drought stress occurred, it was expected to be most pronounced in 

2014. In contrast, there was heavy rain in the beginning of the 2015 season (228 mm). Visual 

observations of early season flooding, delayed canopy expansion, and chlorosis indicated that 

flood stress was most pronounced in 2015. In 2016, rain was infrequent but heavy. Visual 

observations of slightly delayed canopy expansion in the early season and mild chlorosis during 

the late season supported the expectation that 2016 might exhibit mild drought and flood stress. 

4.3.3 Ground Observations 

During the 2016 growing season, we measured flowering, seed-filling, maturity, soil moisture, 

above-ground biomass, yield, root length, and canopy cover at twenty-one selected plots uniformly 

dispersed across the field site. Soil moisture was measured in the center of each plot at 20 cm depth 

using a Campbell Scientific HydroSense II probe with nine replicate measurements per plot. Based 

on the size of the field and the spatial distribution of sampling locations, we expected this sampling 

scheme to allow us to accurately estimate the average soil moisture of the field near the soil surface 

(Brocca, 2010; De Lannoy, 2006; Reynolds, 1974; Vereecken et al., 2014; Wang, 2008) and we 
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assumed this would enable accurate simulation of the soil water balance. We regularly monitored 

the growth stage of the plots via visual inspection. We measured above-ground biomass by 

destructively sampling randomly selected plots. Each sample was dried in a controlled temperature 

oven at 65°C until constant weight was reached and weighed using a scale sensitive to the nearest 

0.1 gram (Paredes, 2015). We measured root length by digging up the roots of five randomly 

selected plants within each sampled plot and measuring their length with a ruler.  

We obtained ground-based observations of canopy cover from ground-based digital imagery of 

the twenty-one selected plots taken between 2:00PM and 4:00PM local time from 4 m above the 

soil surface at nadir-view with a 13-megapixel digital camera mounted on a pole. These images 

were manually cropped to the plot area and accurately segmented into canopy and non-canopy 

pixels using the Excess Green index and Otsu’s Method (Meyer, 2008; Otsu, 1979). Canopy cover 

was then calculated as the fraction of canopy pixels in each plot image. Yield data (and flowering, 

seed-filling, and maturity notes when available), were provided by researchers from the 

Department of Agronomy at Purdue University who managed the field site. 

4.3.4 UAS Observations 

The UAS was a small, fixed-wing Precision Hawk Lancaster Mark-III (3 kg total weight, 1.5 m 

wingspan) equipped with a 14-megapixel Nikon 1-J3 digital camera and a GPS sensor accurate to 

2 m and 5 m in the horizontal and vertical, respectively. The camera collected imagery from nadir-

view in the visible spectrum with manually adjusted aperture, shutter speed, ISO sensitivity, and 

focus. We conducted flights in June, July, and August 2014, 2015, 2016, and 2017 between 

9:00AM and 1:00PM local time resulting in multiple sampling dates spanning canopy emergence 

to closure (Table 7 and Figure 18). We flew the UAS at an altitude of 50 m above ground level 

resulting in a spatial resolution of 1.5 cm per pixel. We captured 70-90% forward and lateral image 

overlap and used a minimum of four Ground Control Points (GCPs) along the perimeter of the 

field to ensure accurate image stitching and geo-referencing (Hearst & Cherkauer, 2015).  

We obtained UAS observations of canopy cover for all plots using Pix4DmapperTM, MATLABTM, 

and ENVI-IDLTM (Pix4D, Lausanne, Switzerland). First, we marked GCPs in the images using 

MATLAB. Next, we stitched the imagery into geo-referenced ortho-mosaics using Pix4Dmapper. 

Then, we used MATLAB to grid the ortho-mosaics into individual plots and extract replicate 

ortho-images of every plot. This was done by applying collinearity (Mikhail, 1974) to the internal 
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and external camera parameters and plot coordinates from Pix4Dmapper. We captured four to 

twenty-five replicate ortho-images of every plot on every sampling date depending on the image 

overlap. We manually centered these ortho-images on their respective plots and accurately 

segmented canopy and non-canopy pixels using maximum likelihood classification implemented 

in ENVI-IDL. Finally, we detected dates corresponding to significant reductions in canopy 

expansion rates by taking the natural logarithm of the canopy cover time series and applying 

classical linear regression with a significance level of 0.05 to test for significant decreases in slope 

or 𝐶𝐺𝐶 between successive pairs of sampling dates. 

4.3.5 Ground-Based Model Calibration 

In general, we assumed there was no heat stress, cold stress, salinity stress, or fertility stress. We 

believe these were reasonable assumptions because air temperatures remained well above freezing, 

the fields were fertilized, soybean is a nitrogen-fixing species, and no problems related to heat or 

salinity were reported by the field managers during the study period. We also assumed there was 

no surface runoff, since the fields were flat, well-drained through sub-surface tile drainage, and 

almost never received enough rainfall to produce visible runoff.  

Generally, it is best to use multiple years of ground reference data to calibrate a model if the 

objective is to produce a model capable of accurate predictions in a wide range of scenarios. 

However, due to limited field personnel and the extensive amount of time required for UAS flight 

planning, image acquisition, and processing, we were only able to obtain enough ground and UAS 

observations for model calibration in 2016. Nevertheless, a single year of calibration data is 

enough at least for an insightful comparison of our two calibration methods. First, in accordance 

with traditional methods, we calibrated AquaCrop using ground-based observations of soil 

moisture, flowering, seed-filling, maturity, above-ground biomass, yield, root length, and canopy 

cover aggregated to the field scale (Tables 8 and 9). Initially, we fixed parameters related to 

stressed conditions such that they had no impact on the simulation results. Then, we manually 

adjusted parameters related to non-stressed conditions until the agreement between simulated and 

observed canopy cover, above-ground biomass, and soil moisture was maximized according to 

Wilmott’s index of agreement (with other metrics such as RMSE used as a secondary means of 

evaluation) (Willmott, 1982). Finally, we manually optimized all parameters, including those 

related to stressed conditions, resulting in our ‘ground-based’ model.  
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4.3.6 UAS-Based Model Calibration 

Alternatively, we calibrated AquaCrop using UAS observations of canopy cover and dates 

corresponding to reductions in canopy expansion rates detected at the plot scale and aggregated to 

the field scale (Tables 10 and 11). First, we categorized plots as ‘stressed’ and ‘non-stressed’ based 

on whether they exhibited any statistically significant reductions in canopy expansion rates during 

the 2016 season. Then, using canopy cover observations from non-stressed plots, we manually 

adjusted parameters related to non-stressed conditions until the agreement between simulated and 

observed canopy cover, above-ground biomass, and soil moisture was maximized for non-stressed 

plots according to Wilmott’s index of agreement (with other metrics such as RMSE used as a 

secondary means of evaluation). Finally, using canopy cover observations from stressed plots and 

dates corresponding to significantly reduced canopy expansion rates, we manually optimized 

parameters related to stressed conditions until the agreement between simulated and observed 

canopy cover, above-ground biomass, soil moisture, and dates of moisture stress was maximized 

for stressed plots to obtain our ‘UAS-based’ model (Table 12). 

4.3.7 Model Validation 

We validated the ground and UAS-based models using plot scale observations of canopy cover 

and yield from 2014, 2015, and 2017 aggregated to the field scale. The primary metric of 

agreement between observed and simulated canopy cover was Wilmott’s index of agreement (with 

other metrics such as the RMSE used as a secondary means of evaluation). The primary metric of 

agreement between observed and simulated yields was the percent error of simulated yields. We 

also evaluated the correspondence between dates of simulated moisture stress and dates when 

visible indicators of moisture stress were observed in the field.  

4.4 Results 

4.4.1 Calibration 

In 2016, Wilmott’s index of agreement for canopy cover was 1.00 for the ground-based model and 

0.99 for the UAS-based model. Similarly, Wilmott’s index of agreement for biomass was 1.00 for 

the ground-based model and 0.99 for the UAS-based model. For soil water content, Wilmott’s 

index of agreement was 0.58 for both the ground and UAS-based models (Figures 19 and 20, Table 
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13). During the first five weeks of the 2016 season, the timing of simulated moisture stress 

corresponded closely to the timing of reductions in canopy expansion rates for the UAS-based 

model, but the ground-based model indicated no moisture stress during this period (Figure 20). 

4.4.2 Validation 

In 2014, 2015, and 2017, Wilmott’s index of agreement for canopy cover was 0.98, 0.64, and 0.97 

for the ground-based model and 0.99, 0.65, and 0.98 for the UAS-based model, respectively 

(Figure 21, Table 14). Corresponding yield prediction errors were 44%, 30%, and 12% for the 

ground-based model and 42%, 23%, and 8% for the UAS-based model (Table 15). 

4.5 Discussion 

In general, calibrated values for the conservative crop parameters were consistent with those 

reported in the literature. For example, our biomass water productivity (𝑊𝑃) and harvest index 

(𝐻𝐼) were 20 g m-2 and 32%, respectively, while Paredes et al. (2015) reported 17 g m-2 and 38% 

and Adeboye et al. (2018) reported 17.6 g m-2 and 40% for soybean grown under similar conditions. 

However, our soil drainage coefficient (𝜏 = 1.0) was considerably higher than those reported in 

the literature (𝜏 ≤ 0.5), indicating that we over-estimated soil drainage. This may have been due 

to our lack of soil moisture observations at multiple depths in the soil profile and our assumption 

that surface runoff was negligible. 

The least accurate canopy cover simulations occurred in 2015 (Wilmott’s index of agreement 

below 0.66). As expected, this corresponded with relatively poor yield predictions (errors greater 

than 23% for both models). However, in 2014, the most accurate canopy cover simulations 

(Wilmott’s index of agreement above 0.97) corresponded with the least accurate yield predictions 

(errors above 41% for both models). This inconsistency between canopy cover and yield 

simulation accuracies during the seasons when drought and flood stress were expected to be most 

pronounced, along with the fact that the ground-based model failed to detect any stress in early 

2016, further suggest that parameters related to soil drainage were not well calibrated for either 

model. This demonstrates a need for additional constraints on the soil water balance to improve 

the sensitivity of the model to drought and flood stress.  
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In general, both the ground and UAS-based models systematically over-estimated yield but errors 

were consistently lower for the UAS-based model by 2-7%. However, these differences in 

accuracy are small and could be attributed to the fact that the UAS observations were simply more 

numerous and covered more plots than the ground-based observations. Although these results may 

be inconclusive, they illustrate the potential benefit of using indicators of moisture stress (e.g. 

reductions in canopy expansion rates) as an additional constraint during model calibration – they 

can improve the sensitivity of the model to moisture stress and thereby help prevent overestimation 

of yield.  

4.6 Conclusion 

Overall, the UAS-based model was more sensitive to moisture stress than the ground-based model 

and produced slightly more accurate simulations of canopy cover and yield. Although these results 

may not be conclusive, they warrant further investigation of this approach to model calibration and 

the possibility of using reductions in canopy expansion rates as a phenotype for field-based HTP 

to help identify new varieties tolerant to moisture stress. Future work could also investigate 

whether larger improvements in accuracy could be achieved with additional calibration years, 

more detailed observations of soil moisture profile, or new ways of imposing constraints with the 

available data.  
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 CONCLUSION 

5.1 Conclusion and Recommendations 

Multilayer UAS image ortho-mosaics (MLMs) are more appropriate than single-layer UAS image 

ortho-mosaics (SLMs) for field-based HTP and other areas of research in which researchers wish 

to observe large numbers of small plots with as much precision and accuracy as possible. This is 

because they preserve replicate observations of plots in their raw format and avoid much of the 

geometric and radiometric distortion present in SLMs. They also make it possible to evaluate and 

enhance the precision and accuracy of UAS observations by correcting row-offset errors and 

applying outlier detection and other statistical analyses to the results. MLMs and SLMs perform 

similarly well when ranking the canopy cover and greenness of soybean plots, but MLMs enable 

higher relative accuracy by restricting analyses to pairs of plots with significantly different 

phenotype values. This capability will help breeders avoid making selections based on phenotype 

values that are statistically indistinguishable. Additionally, GR differentiates soybean plot 

greenness at least as well as hue, both when ranking and comparing pairs of plots. Therefore, 

breeders may want to consider using GR rather than hue as a more efficient metric of greenness 

for field-based HTP. This constitutes strong evidence in favor of hypotheses 1 of this thesis – that 

plot scale observations of canopy cover and color can be obtained from visual UAS imagery with 

enough accuracy, precision, and frequency to detect changes within plots and differences between 

plots during a growing season.  

There were several limitations of the experimental design and data acquisition for testing 

hypothesis 1. First, these results may have been dependent on the flying altitude, as this is known 

to impact both the precision and accuracy of UAS-based observations of canopy cover and color 

(Torrez et al., 2014). Second, these results may have also been dependent on the image 

segmentation algorithm used to calculate canopy cover. Maximum likelihood classification was 

chosen because it was sure to be highly accurate and straightforward to implement but testing 

alternative algorithms may have allowed for a more detailed assessment. 

Overall, the AquaCrop model was more sensitive to moisture stress when it was calibrated with 

UAS observations of canopy cover and reductions in canopy expansion rates than ground-based 

observations and this led to slightly more accurate simulations of canopy cover and yield. Although 
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these results may not be conclusive, they warrant further investigation as to whether UAS 

observations of reductions in canopy expansion rates can pinpoint the timing of the onset of 

moisture stress in field-grown crops and help crop models more realistically simulate the timing 

and severity of moisture stress as well as its impacts on crop growth and yield. This constitutes 

weak evidence in favor of hypotheses 2 and 3 – that visual UAS imagery enables detection of 

reductions in canopy expansion rates and that this can provide additional constraints for calibrating 

AquaCrop to more realistically simulate the timing and severity of moisture stress as well as its 

impacts on crop growth and yield.   

There were also several limitations of the experimental design and data acquisition with regards 

to testing hypotheses 2 and 3. First, it would have been better to have ground reference 

observations of plant stress based on evapotranspiration or water potential measurements, rather 

than solely relying on reductions in canopy expansion rates and visual observations of stunted 

growth and leaf yellowing as stress indicators. Ideally, these ground-reference measurements 

would have focused on quantifying the fraction of field plots that were stressed on each sampling 

date, as this was the specific quantity that was ultimately used to constrain the AquaCrop model. 

Additionally, the differences between the ground and UAS-based models may have been due, in 

part, to the fact that the UAS-based model was calibrated with more numerous observations than 

the ground based model. Although more numerous observations may be considered an inherent 

advantage of UAS over ground-based approaches, it would have been interesting to test whether 

correcting for this imbalance could have influenced the outcome of the study. 

Future work could investigate whether larger improvements in yield prediction accuracy can be 

achieved with additional calibration years, more soil moisture observations throughout the soil 

profile, or new ways of constraining the model using the available data. Future work could also 

investigate whether two-sided hypothesis testing can be used to produce more accurate rankings 

of plots that may be more applicable to plant breeding than pairwise comparisons of plots. Perhaps 

this would involve ranking plots based on the number of plots that have significantly lower 

phenotype values and assigning equal ranks to plots that are statistically indistinguishable. It would 

also be interesting to explore relationships between the relative and absolute accuracy of SLMs 

and MLMs. Additional research covering other phenotypes, crops, growth stages, environments, 

and seasons is also needed before more general recommendations can be made.  
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FIGURES 

 

 

 

Figure 1. Variation of AquaCrop’s stress coefficient for canopy expansion (Ks_exp) between 

upper (a) and lower (b) PAW thresholds. FC and PWP correspond to the field capacity and plant 

wilting point (Raes et al., 2012). 
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Figure 2. Schematic diagram of the AquaCrop model (Raes et al., 2012). 
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Figure 3. An RGB image ortho-mosaic of the field site generated by Pix4Dmapper using 

imagery from one of thirteen flight dates. Analysis focuses on the twenty-one soybean field plots 

outlined in red and labelled alphabetically from a to u. Plot a is magnified in aerial and ground 

images on the right. 
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Figure 4. A single-layer (left) and 20-layer (right) UAS image ortho-mosaic of a portion of the 

field in Figure 2 made from RGB imagery from a single-layer flight date. At the bottom are 

magnified images of the plot outlined in red. The single-layer mosaic yields one image of the 

plot, while the multilayer mosaic yields nineteen replicate images from each frame photo that 

captured the plot.  
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Figure 5. Image time series of reference plot ‘a’ from single-layer layer mosaics (1.5 cm pixel 

width), representative images from multilayer mosaics (1.5 cm pixel width), and ground-based 

nadir-perspective photos (sub-millimeter pixel width). The accuracy of canopy cover 

measurements based on maximum-likelihood classification is illustrated by the canopy edges 

outlined in red. 
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Figure 6. Time series of canopy cover for reference plot ‘a’ based on measurements from single-

layer UAS image ortho-mosaics (SLM), multilayer UAS image ortho-mosaics (MLM), and 

ground reference photos (REF). 
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Figure 7. Time series of canopy pixel hue for reference plot ‘a’ based on measurements from 

single-layer UAS image ortho-mosaics (SLM) and multilayer UAS image ortho-mosaics 

(MLM). 

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60

A
v
er

a
g
e 

C
a
n

o
p

y
 P

ix
el

 H
u

e

Days After Planting

MLM

SLM



74 

 

 

 

 

Figure 8. Agreement of rankings of canopy cover for 21 test plots on 13 flight dates based on 

Single Layer Mosaics (SLMs), Multilayer Mosaics (MLMs), and nadir-view ground reference 

images (REF) according to Cohen’s Kappa statistic (κ) with linear weighting (Watson & Petrie, 

2010). 
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Figure 9. Agreement of rankings of hue for 21 test plots on 13 flight dates from Single Layer 

Mosaics (SLMs), Multilayer Mosaics (MLMs), and nadir-view ground reference images (REF) 

according to Cohen’s Kappa statistic (κ) with linear weighting (Watson & Petrie, 2010). 
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Figure 10. Agreement of rankings of green-to-red ratio (GR) for 21 test plots on 13 flight dates 

from Single Layer Mosaics (SLMs), Multilayer Mosaics (MLMs), and nadir-view ground 

reference images (REF) according to Cohen’s Kappa statistic (κ) with linear weighting (Watson 

& Petrie, 2010). 
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Figure 11. Fraction of 2730 unique pairs of 21 soybean test plots on 13 flight dates for which 

Wilcoxon Rank-Sum tests indicated significantly different median phenotype values as a 

function of the significance level of the two-sided hypothesis test. The plant phenotypes 

observed in this study were canopy cover, hue, and green-to-red ratio (GR). Replicate 

observations of plant phenotypes for each plot from multilayer mosaics were used for these 

pairwise plot comparisons.  
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Figure 12. Fraction of unique pairs of 21 soybean test plots on 13 flight dates that had 

significantly different and correct relative phenotype values (e.g. plot A higher or lower 

phenotype value than plot B) according to nadir-view ground reference images as a function of 

the significance level of the two-sided hypothesis test. The plant phenotypes observed in this 

study were canopy cover, hue, and green-to-red ratio (GR). Wilcoxon Rank-Sum tests were used 

to compare replicate observations of plant phenotypes for pairs of plots from multilayer mosaics. 
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Figure 13. Fraction of 210 unique pairs of 21 test plots on each of 13 flight dates for which 

canopy cover observations from single layer mosaics (SLM) and multilayer mosaics (MLM) had 

the same relative values (e.g. plot A has a higher or lower phenotype value than plot B) as those 

from ground reference images (REF). Median values from MLMs and Wilcoxon Rank-Sum tests 

with a significance level of 0.05 were used for plot comparisons. 
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Figure 14. Fraction of 210 unique pairs of 21 test plots on each of 13 flight dates for which hue 

observations from single layer mosaics (SLM) and multilayer mosaics (MLM) had the same 

relative values (e.g. plot A has a higher or lower phenotype value than plot B as those from 

ground reference images (REF). Median values from MLMs and Wilcoxon Rank-Sum tests with 

a significance level of 0.05 were used for plot comparisons. 
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Figure 15. Fraction of 210 unique pairs of 21 test plots on each of 13 flight dates for which GR 

observations from single layer mosaics (SLM) and multilayer mosaics (MLM) had the same 

relative values (e.g. plot A has a higher or lower phenotype value than plot B) as those from 

ground reference images (REF). Median values from MLMs and Wilcoxon Rank-Sum tests with 

a significance level of 0.05 were used for plot comparisons. 

50%

60%

70%

80%

90%

100%

11 16 21 25 28 32 35 38 43 47 50 53 57

P
a
ir

s 
o
f 

P
lo

ts
 w

it
h

 C
o
rr

ec
t 

R
el

a
ti

v
e 

G
R

Days After Planting

MLM Significantly Different Plot Pairs (Significance Level = 0.05)

MLM

SLM



82 

 

 

 

Figure 16. Map of Purdue University Agronomy Center for Research and Education (ACRE) 

with fields 43 and 62 and the local weather station outlined in red. The area outlined in yellow is 

approximately 200 hectares. 
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Figure 17. Cumulative precipitation in 2014, 2015, 2016, and 2017 measured at ACRE. 
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Figure 18. Timeline of planting and UAS flight dates in 2014, 2015, 2016, and 2017. Planting 

dates are indicated by unfilled points. The tick marks on the x-axis represent 2-week intervals. 
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Figure 19. Observed and simulated soybean canopy cover, biomass, and root length using 

AquaCrop calibrated with UAS and ground-based observations from 2016 at ACRE. 

 

0

20

40

60

80

100

C
a
n

o
p

y
 C

o
v
er

 (
%

)
UAS Observations (Non-Stressed Plots)

UAS Observations (Stressed Plots)

Ground Observations

Ground Model

UAS Model

0

5

10

15

20

B
io

m
a
ss

 (
to

n
/h

a
)

15

35

55

75

23-May 13-Jun 4-Jul 25-Jul 15-Aug 5-Sep 26-Sep

R
o
o
t 

L
en

g
th

 (
cm

)



86 

 

 

 

 

Figure 20. Rainfall and observed and simulated soil water content and moisture stress using 

AquaCrop calibrated with UAS and ground-based observations from 2016 at ACRE. Note that 

the ground-based model did not detect any moisture stress while the UAS-based model detected 

moisture stress consistently with dates when plots exhibited reduced canopy expansion rates. 
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Figure 21. Observed and simulated soybean canopy cover in 2014, 2015, and 2017 at ACRE 

using AquaCrop calibrated with UAS and ground-based observations from 2016. 
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TABLES 

 

 

 

Table 1. Summary of the basic inputs needed to run AquaCrop. 

Input Description 

Air Temperature Daily air temperature. 

Reference 

Evapotranspiration 
Daily reference evapotranspiration calculated based on the Penman-Monteith equation. 

Rainfall Daily rainfall amounts. 

Initial Soil Moisture 

Conditions 
Volumetric water content of the soil at the start of the simulation period. 

Soil drainage properties 
Volumetric water content of the soil at saturation (1), field capacity (2), and permanent wilting point 

(3), as well as saturated hydraulic conductivity of the soil and corresponding drainage coefficient (4).   

Growth Stages The dates when flowering, seed-filling, and maturity occur. 
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Table 2. Summary of observations of outputs that may be used to calibrate AquaCrop. 

Observation Description 

Canopy Cover Periodic observations of canopy cover. 

Biomass Periodic observations of above-ground dry weight. 

Soil Moisture Periodic observations of volumetric water content in the root zone. 

Root Length Periodic observations of the length of the roots in the root zone. 

Yield Observations of crop yield. 

Timing of the Onset of 

Moisture Stress 
Observations of visible indicators of moisture stress (e.g. reductions in canopy expansion rate). 
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Table 3. Frequencies of row-offset errors (offset images/replicate images) for different plots on different flight dates based on visual 

inspection of replicate plot images from multilayer mosaics. 

Plot 
Days after Planting 

11 16 21 25 28 32 35 38 43 47 50 53 57 

A 0 0 0 0 0 0 0 0 0 0 0 0 0 

B 0 0 0 0 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 0 0 0 0 0 0 

D 0 0 0 0 0 0 0 0 0 1/18 1/7 0 0 

E 0 0 0 0 0 0 0 0 0 0 0 0 0 

F 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 4/21 0 0 0 0 0 0 0 

J 0 0 0 0 0 3/25 0 0 0 0 0 0 0 

K 0 0 0 0 0 1/19 0 0 0 0 0 0 0 

L 0 0 0 0 0 0 0 0 0 0 0 0 0 

M 0 0 0 0 0 0 0 0 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 1/13 

P 0 0 0 0 0 0 0 0 0 0 0 0 0 

Q 0 0 0 0 0 0 0 0 0 0 0 0 1/15 

R 0 0 0 0 0 1/22 0 0 0 0 0 0 0 

S 0 0 0 0 0 2/31 0 0 0 0 0 0 0 

T 0 0 0 0 0 6/27 0 0 0 0 0 0 0 

U 0 0 0 0 0 3/25 0 0 0 0 0 0 0 
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Table 4. Rankings of canopy cover for 21 test plots labelled ‘a’ through ‘u’ on 13 flight dates based on ground reference 

measurements (REF), single layer mosaics (SLM), and multilayer mosaics (MLM). 

 

 

 

 

 

REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM

a 15 / 9 11 10 2 8 7 4 7 12 7 13 15 14 10 12 11 8 15 13 9 11 9 6 8 9 5 16 13 12 14 11 4 10 8 9 14 10

b 12 / 18 12 3 19 6 4 7 9 3 10 8 4 6 12 9 7 14 9 5 8 4 4 7 6 5 14 14 16 7 12 7 8 16 17 17 9 9

c 10 / 14 16 5 11 13 5 10 8 6 9 12 5 10 5 7 6 11 6 9 10 6 7 8 7 7 2 8 11 15 13 10 9 9 7 6 15 14

d 1 / 7 9 8 9 16 21 13 14 7 12 16 11 11 19 15 15 16 12 12 17 16 16 16 13 16 20 12 14 14 17 18 7 14 15 5 20 20

e 3 / 13 6 6 15 10 6 15 10 13 13 10 10 9 8 6 8 10 8 11 7 12 12 13 11 10 15 11 7 6 9 14 14 5 4 13 5 5

f 6 / 3 3 2 6 7 8 8 4 4 5 6 8 4 4 5 4 12 3 7 11 8 8 10 5 6 9 10 5 10 10 6 16 7 5 16 6 7

g 9 / 8 7 12 16 11 15 14 13 15 16 14 16 16 16 18 17 17 14 19 19 18 19 21 20 20 21 17 18 20 19 17 20 20 19 20 21 19

h 7 / 1 10 17 1 15 11 12 15 14 14 15 14 13 13 13 14 13 13 15 15 13 15 12 15 13 6 9 8 8 8 5 13 11 6 10 13 6

i 16 / 16 20 21 21 17 17 19 19 17 19 18 20 19 15 20 20 19 20 21 13 21 21 15 19 18 8 19 17 16 16 16 15 13 9 12 12 11

j 8 / 4 5 7 8 9 14 5 11 10 8 3 6 8 9 11 12 7 11 6 12 10 13 14 10 11 10 6 4 4 6 9 6 18 13 18 16 16

k 4 / 6 8 11 12 3 12 11 6 8 4 11 9 5 11 10 10 9 7 10 16 7 10 5 12 14 17 15 15 13 7 15 17 8 14 14 10 15

l 20 / 21 17 15 17 19 13 16 18 16 15 17 12 15 20 16 13 18 16 14 14 14 11 18 14 12 16 13 12 19 5 12 21 15 11 19 18 17

m 13 / 12 13 9 4 5 3 2 5 9 3 5 7 7 6 4 5 5 5 2 5 5 5 11 4 3 12 7 6 11 11 8 10 6 10 11 7 8

n 19 / 10 19 18 18 20 18 18 20 21 20 20 21 21 18 19 18 15 19 18 20 19 18 20 18 19 13 21 21 17 20 19 18 21 21 15 17 18

o 18 / 19 18 20 13 18 19 17 17 19 18 21 19 18 21 21 21 21 21 20 21 20 20 17 21 21 18 18 19 18 18 20 12 19 18 7 19 21

p 21 / 20 21 19 20 21 20 21 21 20 21 19 18 20 17 17 19 20 18 17 18 17 17 19 17 17 19 20 20 21 21 21 19 17 20 21 8 12

q 14 / 15 14 16 14 14 16 20 16 18 17 9 17 17 14 14 16 4 17 16 6 15 14 3 16 15 4 5 10 1 15 13 11 12 16 8 11 13

r 17 / 17 15 13 7 12 9 9 12 11 11 7 13 12 7 8 9 6 10 8 4 9 6 2 9 8 11 4 9 5 4 4 2 2 12 4 3 4

s 5 / 5 2 1 5 1 1 1 1 1 1 1 1 1 2 1 2 3 2 3 3 2 2 4 3 4 3 1 1 2 1 2 3 1 3 1 1 2

t 11 / 11 4 14 10 4 10 6 3 5 6 4 3 3 3 3 1 2 4 4 2 3 3 9 2 2 7 3 3 9 3 3 1 3 1 3 2 1

u 2 / 2 1 4 3 2 2 3 2 2 2 2 2 2 1 2 3 1 1 1 1 1 1 1 1 1 1 2 2 3 2 1 5 4 2 2 4 3

Days After Planting

Plot 3211 16 21 25 28 5735 38 43 47 50 53
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Table 5. Rankings of hue for 21 test plots labelled ‘a’ through ‘u’ on 13 flight dates based on ground reference measurements (REF), 

single layer mosaics (SLM), and multilayer mosaics (MLM). 

 

 

 

 

REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM

a 8 / 18 13 13 9 1 8 4 8 8 12 6 18 11 11 7 9 11 10 11 6 10 10 10 11 13 8 3 8 6 4 12 7 3 6 9 5 7

b 6 / 5 13 4 5 5 3 1 10 5 1 4 1 9 10 6 7 10 15 16 10 11 15 11 4 6 9 13 15 18 8 16 16 18 14 12 13 13

c 1 / 2 16 2 1 12 5 3 11 1 3 2 2 17 5 4 4 8 5 9 5 6 6 9 5 4 15 11 11 4 12 6 6 14 13 13 14 14

d 2 / 1 4 9 10 7 15 11 2 4 20 1 14 4 1 8 3 7 3 1 1 9 2 1 1 1 12 1 1 1 1 1 1 1 1 8 2 1

e 16 / 8 17 7 8 15 19 16 17 6 2 7 15 16 14 11 12 4 14 14 8 16 13 5 13 8 14 17 14 7 11 5 3 8 8 21 18 12

f 7 / 3 5 3 4 16 10 6 18 12 4 13 6 18 19 16 16 17 9 13 17 15 14 12 17 18 10 14 19 13 15 18 9 16 17 20 19 21

g 17 / 16 19 17 3 18 12 15 20 17 13 17 13 15 20 19 20 16 17 20 20 20 20 14 21 21 7 21 21 19 21 21 17 21 19 17 21 19

h 3 / 15 11 20 20 17 1 18 14 18 18 8 11 3 6 9 8 6 13 10 11 14 12 2 12 12 1 4 7 3 5 11 10 9 12 18 12 15

i 14 / 9 14 14 18 14 16 12 4 14 8 12 9 10 13 20 18 2 18 18 14 18 17 7 18 19 16 19 20 11 20 20 5 20 21 19 20 17

j 15 / 10 3 12 6 9 17 9 3 9 6 14 8 1 4 1 2 9 1 2 3 5 5 3 9 3 4 8 3 2 10 7 12 13 4 15 3 8

k 4 / 12 1 11 13 6 11 19 7 3 5 18 5 8 7 5 6 14 12 6 9 8 9 8 7 10 3 12 13 5 9 13 2 12 9 4 17 16

l 20 / 14 8 19 12 10 14 14 9 15 15 9 17 13 3 3 5 1 2 3 2 2 3 6 2 2 5 2 2 8 6 2 4 2 2 6 6 4

m 5 / 20 10 5 11 2 2 5 5 2 10 15 16 7 9 13 14 3 7 7 4 4 7 4 6 9 11 7 4 16 13 10 19 7 5 10 10 9

n 12 / 19 20 18 17 19 9 17 16 19 19 19 20 19 16 17 17 15 19 17 15 17 18 15 16 14 18 10 6 15 14 9 11 4 7 1 4 2

o 19 / 17 21 21 19 20 18 20 19 20 14 10 19 20 18 18 19 20 20 19 18 19 19 17 19 17 21 15 12 12 17 14 20 15 10 5 7 6

p 18 / 21 9 10 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 13 20 20 6 20 18 14 19 19 14 19 20 3 16 20

q 9 / 11 15 6 16 13 6 7 6 16 17 5 10 12 8 14 11 13 6 5 16 12 16 16 10 7 2 5 9 17 3 3 18 5 15 2 1 11

r 10 / 13 7 15 15 3 13 13 1 11 9 3 7 5 2 2 1 12 4 4 7 1 1 19 3 5 13 6 10 10 7 4 13 6 3 7 9 3

s 11 / 7 2 1 2 4 4 2 13 10 7 11 4 6 12 12 10 19 8 8 12 7 4 20 8 11 17 9 5 9 2 8 8 11 11 16 8 5

t 13 / 4 6 16 14 8 20 10 15 13 16 16 12 14 15 15 15 18 11 15 13 3 8 21 14 16 20 18 16 20 16 15 21 17 18 11 11 10

u 21 / 6 18 8 7 11 7 8 12 7 11 20 3 2 17 10 13 5 16 12 19 13 11 18 15 15 19 16 17 21 18 17 15 10 16 14 15 18

43 47 50 53 57Plot 

Days After Planting

11 16 21 25 28 32 35 38

 

9
2

 



 

 

 

 

 

Table 6. Rankings of green-to-red ratio (GR) for 21 test plots labelled ‘a’ through ‘u’ on 13 flight dates based on ground reference 

measurements (REF), single layer mosaics (SLM), and multilayer mosaics (MLM). 

 

 

 

 

 

REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM REF SLM MLM

a 6 / 13 13 13 9 1 8 4 7 8 10 11 18 11 15 7 10 13 8 17 12 12 11 8 16 15 8 5 14 12 8 14 11 4 19 2 7 18

b 4 / 3 13 8 7 3 1 1 12 2 1 7 1 5 11 6 7 10 12 18 8 10 14 4 11 13 10 17 21 19 13 21 17 15 20 3 16 19

c 1 / 1 20 3 1 10 5 5 11 1 4 2 4 17 6 4 8 7 1 3 7 7 7 7 8 4 12 10 11 13 20 17 10 6 11 7 13 15

d 3 / 2 7 9 11 17 15 14 14 5 20 3 17 18 8 17 16 9 17 10 6 16 13 10 4 5 14 9 6 4 12 10 5 13 7 5 6 9

e 10 / 5 16 4 8 15 18 12 16 4 3 10 14 12 14 10 17 6 13 14 13 15 12 15 15 10 16 19 19 9 17 12 8 11 10 20 21 17

f 7 / 4 3 1 3 11 9 6 15 9 2 8 3 8 16 8 11 17 2 5 18 13 4 13 9 11 7 6 10 7 7 6 7 7 3 14 12 12

g 12 / 17 15 17 4 6 10 11 18 13 7 16 9 6 18 15 15 12 5 12 15 18 17 6 18 16 5 15 15 18 14 19 14 20 15 9 20 16

h 2 / 19 2 20 20 9 2 15 6 15 14 1 8 10 3 11 3 4 11 8 3 11 5 2 5 1 3 1 2 5 1 1 3 1 2 4 3 2

i 11 / 12 4 5 18 4 17 13 8 14 8 12 13 14 17 19 18 2 18 15 14 17 18 11 17 19 17 16 16 8 9 18 6 16 14 16 11 8

j 16 / 10 1 11 6 14 13 9 1 10 9 5 7 1 1 5 5 8 4 4 1 4 6 1 13 7 1 7 4 1 6 4 12 8 4 8 2 7

k 8 / 9 5 12 13 8 11 17 3 7 11 14 6 13 4 3 2 14 14 9 5 3 16 5 3 6 6 8 7 2 5 7 1 10 8 19 9 14

l 19 / 14 8 19 12 18 20 18 9 18 17 9 16 15 2 1 6 1 6 2 2 6 3 3 1 2 4 2 1 3 4 2 2 5 1 6 4 3

m 5 / 15 11 10 10 2 3 7 2 6 13 13 15 7 9 13 14 3 15 16 9 8 9 9 10 14 11 12 9 16 15 8 19 14 9 12 17 10

n 9 / 21 17 18 17 19 12 19 19 19 19 18 19 19 19 18 19 19 19 19 19 19 19 18 20 20 20 14 13 17 18 11 15 12 17 10 8 11

o 13 / 20 21 21 19 20 19 20 20 20 18 19 20 20 20 20 20 20 20 20 20 20 20 19 21 21 21 20 12 11 19 13 21 18 16 17 10 13

p 20 / 18 18 16 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 12 19 17 9 21 18 15 21 20 20 21 21 21 18 20

q 14 / 16 19 6 16 12 7 8 4 17 16 6 12 16 5 12 12 11 9 7 11 14 15 14 6 8 2 3 5 14 2 5 9 2 6 1 1 4

r 15 / 11 9 15 15 16 16 16 13 16 12 4 10 4 10 14 9 18 10 11 16 5 2 20 7 12 15 11 8 10 11 9 18 9 12 11 15 6

s 17 / 7 6 2 2 7 4 2 10 11 6 15 2 3 7 9 1 15 3 1 4 2 1 16 2 3 13 4 3 6 3 3 4 3 5 13 5 1

t 18 / 8 14 14 14 13 14 10 17 12 15 17 11 9 12 16 13 16 7 13 10 1 10 21 12 18 18 18 17 20 16 16 16 17 13 18 14 5

u 21 / 6 10 7 5 5 6 3 5 3 5 20 5 2 13 2 4 5 16 6 17 9 8 17 14 9 19 13 20 21 10 15 13 19 18 15 19 21

43 47 50 53 57Plot 
Days After Planting

11 16 21 25 28 32 35 38
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Table 7. List of planting and flight dates during the 2014, 2015, 2016, and 2017 growing seasons. 

Month 
Year 

2014 2015 2016 2017 

May 24th* 23rd* 23rd* 23rd* 

June 5th, 13th, 18th, 25th 9th, 23rd, 28th 3rd, 8th, 13th, 17th, 20th, 24th, 27th, 30th 14th, 22nd 

July 3rd, 17th 1st, 8th, 11th, 15th, 18th, 22nd, 27th, 31st 5th, 9th, 12th, 15th, 19th 14th 

August None 4th None 18th 

*Planting dates 
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Table 8. AquaCrop parameters for non-stressed growth and how they were constrained using ground-based observations from 2016. 

Category Parameters to be Calibrated Constraining Observation 

Soil Drainage 

Volumetric water content at saturation (𝜃𝑠𝑎𝑡) 

Field-Scale Volumetric Water Content 
Volumetric water content at field capacity (𝜃𝐹𝐶) 

Volumetric water content at the permanent wilting point (𝜃𝑃𝑊𝑃) 

Soil drainage coefficient (𝜏) 

Canopy Expansion 

Initial canopy cover (𝐶𝐶0) 

Field-Scale Canopy Cover 
Maximum canopy cover (𝐶𝐶𝑥) 

Canopy growth coefficient (𝐶𝐺𝐶) 

Canopy decline coefficient (𝐶𝐷𝐶) 

Root Extension 

Planting depth (𝑍𝑖𝑛𝑖) 

Field-Scale Root Length 

Maximum root length (𝑍𝑥) 

Time from planting until crop is autotrophic (𝑡0) 

Time from planting until 𝑍𝑥 is reached (𝑡𝑥) 

Shape factor for root extension (𝑛) 

Biomass  Biomass Water Productivity (𝑊𝑃) Field-Scale Above-Ground Biomass 

Yield  Harvest Index (𝐻𝐼) Field-Scale Yield 
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Table 9. AquaCrop model parameters for stressed growth and how they were constrained using ground-based observations from 2016. 

Category Parameters to be Calibrated Constraining Observation 

PAW Thresholds for 

Moisture Stress 

Coefficients 

Upper PAW threshold for reduced canopy expansion (𝑎𝑒𝑥𝑝) 

Field-Scale Canopy Cover 

Lower PAW threshold for reduced canopy expansion (𝑏𝑒𝑥𝑝) 

Upper PAW threshold for stomatal closure (𝑎𝑠𝑡𝑜) 

Upper PAW threshold for accelerated senescence (𝑎𝑠𝑒𝑛) 

Upper PAW threshold for aeration stress (𝑎𝑎𝑒𝑟) 

Shape Parameters for 

Stress Coefficients 

Shape factor for stress coefficient for canopy expansion (𝑓𝑒𝑥𝑝) 

Shape factor for stress coefficient for stomatal closure (𝑓𝑠𝑡𝑜) 

Shape factor for stress coefficient for accelerated senescence (𝑓𝑠𝑒𝑛) 
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Table 10. AquaCrop parameters for non-stressed growth and how they were constrained using UAS-based observations from 2016. 

Category Parameters to be Calibrated Constraining Observation 

Soil Drainage 

Volumetric water content at saturation (𝜃𝑠𝑎𝑡) 

Field-Scale Volumetric Water Content 
Volumetric water content at field capacity (𝜃𝐹𝐶) 

Volumetric water content at the permanent wilting point (𝜃𝑃𝑊𝑃) 

Soil drainage coefficient (𝜏) 

Canopy Expansion 

Initial canopy cover (𝐶𝐶0) 

Field-Scale Canopy Cover Based on 

Non-Stressed Plots 

Maximum canopy cover (𝐶𝐶𝑥) 

Canopy growth coefficient (𝐶𝐺𝐶) 

Canopy decline coefficient (𝐶𝐷𝐶) 

Root Extension 

Planting depth (𝑍𝑖𝑛𝑖) 

Field-Scale Root Length 

Maximum root length (𝑍𝑥) 

Time from planting until crop is autotrophic (𝑡0) 

Time from planting until 𝑍𝑥 is reached (𝑡𝑥) 

Shape factor for root extension (𝑛) 

Biomass  Biomass Water Productivity (𝑊𝑃) Field-Scale Above-Ground Biomass 

Yield  Harvest Index (𝐻𝐼) Field-Scale Yield 
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Table 11. AquaCrop parameters for stressed growth and how they were constrained using UAS-based observations from 2016. 

Category Parameters to be Calibrated Constraining Observation 

PAW Thresholds for 

Moisture Stress 

Upper PAW threshold for reduced canopy expansion (𝑎𝑒𝑥𝑝) 

Field-Scale Canopy Cover and Dates of 

Reductions in Canopy Expansion Rates 

Based on Stressed Plots 

Lower PAW threshold for reduced canopy expansion (𝑏𝑒𝑥𝑝) 

Upper PAW threshold for stomatal closure (𝑎𝑠𝑡𝑜) 

Upper PAW threshold for accelerated senescence (𝑎𝑠𝑒𝑛) 

Upper PAW threshold for aeration stress (𝑎𝑎𝑒𝑟) 

Shape Parameters for 

Stress Coefficients 

Shape factor for stress coefficient for canopy expansion (𝑓𝑒𝑥𝑝) 

Shape factor for stress coefficient for stomatal closure (𝑓𝑠𝑡𝑜) 

Shape factor for stress coefficient for accelerated senescence 

(𝑓𝑠𝑒𝑛) 
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Table 12. Selected AquaCrop model parameter values from ground and UAS-based calibrations with default values for reference. 

Model 
Soil Drainage Canopy Expansion Root Extension Biomass Yield 

𝜽𝒔𝒂𝒕 𝜽𝑭𝑪 𝜽𝑷𝑾𝑷 𝝉 𝑪𝑪𝟎 𝑪𝑪𝒙 𝑪𝑮𝑪 𝑪𝑫𝑪 𝒁𝒊𝒏𝒊 𝒁𝒙 𝒕𝟎 𝒕𝒙 𝒏 𝑾𝑷 𝑯𝑰 

Default 52% 44% 20% 0.5 1.75% 98% 
10.4 %/

d 
2.9 %/d 30 cm 2 m 7 d 92 d 1.5 15 g/m2 40% 

Ground 52% 46% 10% 1.0 2.63% 100% 9.2 %/d 
14.5 %/

d 
22 cm 75 cm 22 d 125 d 1.0 20 g/m2 32% 

UAS 52% 46% 10% 1.0 5.25% 100% 6.9 %/d 
13.8 %/

d 
22 cm 75 cm 22 d 125 d 1.0 20 g/m2 32% 

 
Moisture Stress 

𝒂𝒆𝒙𝒑 𝒃𝒆𝒙𝒑 𝒂𝒔𝒕𝒐 𝒂𝒔𝒆𝒏 𝒂𝒂𝒆𝒓 𝒇𝒆𝒙𝒑 𝒇𝒔𝒕𝒐 𝒇𝒔𝒆𝒏 

Default 0.85 PAW 0.35 PAW 0.40 PAW 0.30 PAW 1.13 PAW 3.0 3.0 3.0 

Ground 0.53 PAW 0.23 PAW 0.52 PAW 0.51 PAW 1.17 PAW 3.0 3.0 3.0 

UAS 0.63 PAW 0.33 PAW 0.62 PAW 0.51 PAW 1.00 PAW 3.0 3.0 3.0 
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Table 13. Calibration metrics of agreement between observed and simulated UAS and ground-based AquaCrop outputs in 2016. 

 

 

 

 

 

 

 

 

Metric 
Canopy Cover (%) Biomass (tons/ha) Volumetric Water Content (%) 

Ground UAS Ground UAS Ground UAS 

r2 1.00 0.99 1.00 1.00 0.68 0.68 

RMSE 2.8 4.0 0.3 0.4 6.5 6.6 

Normalized RMSE 7.2 10.3 13.1 18.5 17.3 17.8 

Nash-Sutcliffe Model Efficiency 0.99 0.97 0.99 0.97 -6.17 -6.57 

Wilmott’s Index of Agreement 1.00 0.99 1.00 0.99 0.58 0.58 
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Table 14. Validation metrics of agreement between observed and simulated UAS and ground-based AquaCrop model canopy cover 

for the 2014, 2015, and 2017 growing seasons. 

 

 

 

 

 

 

 

Metric 

Canopy Cover (%) 

2014 2015 2017 

Ground UAS Ground UAS Ground UAS 

r2 0.99 0.99 0.89 0.91 0.96 0.98 

RMSE 7.0 3.6 36.6 33.6 13.2 10.5 

Normalized RMSE 16.2 8.4 111.9 102.6 32.5 25.7 

Nash-Sutcliffe Model Efficiency 0.89 0.97 -2.63 -2.06 0.88 0.92 

Wilmott’s Index of Agreement 0.98 0.99 0.64 0.65 0.97 0.98 
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Table 15. Observed and simulated soybean yields and yield prediction errors using ground and UAS-based AquaCrop models. 

Year 
No. 

Plots 

Average Observed 

Yield (tons/ha) 

Simulated Yield (tons/ha) Yield Prediction Error* Observed Yield 

Standard Deviation 

(tons/ha) Ground UAS Ground UAS 

2014 151 4.3 6.2 6.1 44% 42% 0.7 

2015 47 4.3 5.6 5.3 30% 23% 0.9 

2016 147 6.1 6.1 6.1 0% 0% 0.9 

2017 11 5.0 5.6 5.4 12% 8% 0.7 

*Yield prediction errors were computed as: 𝐸𝑟𝑟𝑜𝑟 = (𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒) / 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒  
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