
IDENTIFICATION OF STIFFNESS REDUCTIONS USING PARTIAL 

NATURAL FREQUENCY DATA 

by 

Thea Sokheang 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Civil Engineering 

 

Lyles School of Civil Engineering 

West Lafayette, Indiana 

May 2019 

  



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Ayhan Irfanoglu, Chair 

Lyles School of Civil Engineering 

Dr. Arun Prakash  

Lyles School of Civil Engineering 

Dr. Santiago Pujol 

Lyles School of Civil Engineering 

 

 

Approved by: 

Dr. Dulcy M. Abraham 

Head of the Graduate Program 
  



iii 

 

To my parents who give me mass, my educators who give me stiffness, 

 and my wife with whom I share the dynamics of joy. 

 



iv 

 

ACKNOWLEDGMENTS 

I wish to express my sincere gratitude to my advisor and my committee chair, Professor Ayhan 

Irfanoglu for his support throughout my academic years at Purdue. I appreciate his advice, time, 

effort and encouragement that I received for this project.  I also would like to thank my committee 

members, Professor Arun Prakash and Professor Santiago Pujol, for their constructive feedbacks 

on the research.  

 

I am grateful to my teammates for CE 575 class, Jonathan Chi and Shubham Agrawal, for their 

assistance with the experiment. Professor Santiago Pujol, Professor Shirley Dyke and CE 

department provided me with materials, equipment and working space for the experiment. I want 

to thank Mr. Kevin Brower, Mr. Harry Tidrick and Ms. Alana Lund for their help at the Bowen 

Laboratory. I am grateful to Ms. Molly A. Stetler and Ms. Jenny Ricksy for their assistance on the 

administrative procedures.  

 

This is possible due to the Fulbright Scholarship by the US Department of State and Purdue 

University, which provided me with financial support and tuition award for the two-year MSCE 

program. 

 

Last, my wife Taing Siv Huong has sacrificed her productive two years with me at Purdue where 

we share both joy and sorrow. My sisters help us adapt and explore the US. This made an 

unforgettable memory that we have never dreamt of, coming from a developing country, Cambodia.   

 

 



v 

 

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ..................................................................................................................... xiv 

ABSTRACT ............................................................................................................................... xviii 

1. INTRODUCTION ................................................................................................................... 1 

1.1 Background and Previous Research .................................................................................... 1 

1.1.1 Vibration-based Damage Identification Methods and Their Classifications ............... 1 

1.1.2 Methods that Primarily Use Frequency Data ............................................................... 2 

1.1.3 Methods that Primarily Use Modeshapes and their Derivatives ................................. 2 

1.1.4 Methods that Use Optimization Techniques and Partial Frequency Data ................... 3 

1.1.5 Linear Parameterized Inverse Eigenvalue Problem (LiPIEP) ..................................... 4 

1.2 Objectives and Scope of Research ...................................................................................... 5 

2. METHOD FOR CALCULATING STIFFNESSES FROM PARTIAL NATURAL 

FREQUENCY DATA ............................................................................................................. 6 

2.1 Spring-Mass System Idealization ....................................................................................... 6 

2.2 Direct Stiffness Determination of a Spring-mass System from Mass and Frequency Data 7 

2.2.1 Two-Degree-Of-Freedom System ............................................................................... 7 

2.2.2 Three-Degree-of-Freedom System .............................................................................. 8 

2.2.3 Linear Parameterized Inverse Eigenvalue Problem (LiPIEP) Solution by Newton 

Method ......................................................................................................................... 9 

2.3 Implementation of the Method.......................................................................................... 12 

3. NUMERICAL STUDIES ...................................................................................................... 13 

3.1 Introduction ....................................................................................................................... 13 

3.2 Two-Degree-Of-Freedom System .................................................................................... 13 

3.3 Four-Degrees-Of-Freedom System ................................................................................... 14 

3.3.1 The Original System .................................................................................................. 14 

3.3.2 Case of Two Known Frequencies .............................................................................. 14 

3.3.3 Case of Three Known Frequencies ............................................................................ 15 

3.3.4 Case of Four Known-Frequencies ............................................................................. 16 

3.4 Sensitivity of Frequency Changes to Stiffness Changes ................................................... 16 



vi 

 

3.5 Effect of Errors in Frequency Estimates to the Calculated Stiffnesses ............................ 17 

3.6 Considerations in the Application of the Method ............................................................. 18 

4. EXPERIMENTAL STUDIES ............................................................................................... 20 

4.1 Introduction ....................................................................................................................... 20 

4.2 Experimental Programs ..................................................................................................... 20 

4.2.1 Modal Description ..................................................................................................... 20 

4.2.2 Test Setup .................................................................................................................. 20 

4.2.3 Test Procedures .......................................................................................................... 21 

4.2.3.1 Measuring Displacements ..................................................................................... 22 

4.2.3.2 Measuring Mass .................................................................................................... 22 

4.2.3.3 Determining Stiffness from Force and Displacement .......................................... 22 

4.2.3.4 Determining Frequencies from Displacement Signals ......................................... 23 

4.3 Results and Discussions .................................................................................................... 24 

4.3.1 System Identification of the Original Model ............................................................. 24 

4.3.2 Experiment 1: Two Columns Removed from the First Story and Two Modes Known  

  ................................................................................................................................... 24 

4.3.3 Experiment 2: Four Columns Removed from the Third Story and Two Modes 

Known ........................................................................................................................ 25 

4.3.4 Experiment 3: Two Columns Removed from the Third Story and Two Modes 

Known ........................................................................................................................ 25 

4.3.5 Experiment 4: Two Columns Removed from the First Story and the Second Story 

and Three Modes Known ........................................................................................... 26 

4.3.6 Experiment 5: Six Columns Removed from the First Story, Four Columns Removed 

from the Second Stories and Three Modes Known ................................................... 26 

4.3.7 Experiment 6: Two Columns Removed from the Third Story, Four Columns from the 

Fourth Story, and Three Modes Known .................................................................... 27 

4.3.8 Experiment 7: Two Columns Removed from the First Story, Two Columns Removed 

from the Second Story, Two Columns from the Third Story and Four Modes Known

 ................................................................................................................................... 27 



vii 

 

4.3.9 Experiment 8: Two Columns Removed from the First Story, Four Columns 

Removed from the Second Story, Two Columns from the Third Story and Four 

Modes Known ............................................................................................................ 28 

5. APPLICATION TO A BUILDING....................................................................................... 29 

5.1 Introduction ....................................................................................................................... 29 

5.2 Building Description and Damage Progression ................................................................ 29 

5.3 Analysis Procedures .......................................................................................................... 30 

5.3.1 Estimating the Building Frequencies ......................................................................... 30 

5.3.2 Estimating Building Mass and Story Stiffnesses ....................................................... 30 

5.3.3 Estimating the Reduction in the Stiffnesses .............................................................. 31 

5.4 Analysis Results and Discussion ...................................................................................... 31 

6. SUMMARY AND CONCLUSION ...................................................................................... 33 

6.1 Summary ........................................................................................................................... 33 

6.2 Conclusion ........................................................................................................................ 34 

TABLES ....................................................................................................................................... 36 

FIGURES ...................................................................................................................................... 71 

APPENDIX A. TWO-DEGREE-OF-FREEDOM SYSTEM EXAMPLE ................................. 105 

APPENDIX B. MATHCAD ROUTINES FOR 4-DOF SYSTEM ............................................ 108 

APPENDIX C. EQUIPMENT AND CALIBRATION .............................................................. 120 

APPENDIX D. VAN NUYS HOTEL ........................................................................................ 131 

REFERENCES ........................................................................................................................... 148 

 

  



viii 

 

LIST OF TABLES 

Table 3-1 4-DOF (Two known frequencies): Cases of Single Softened Story............................. 36 

Table 3-2 4-DOF (Two known frequencies): Single Softened Story Frequencies ....................... 36 

Table 3-3 4-DOF (Two known frequencies): Relative Frequency Difference ............................. 36 

Table 3-4 4-DOF (Three known frequencies): Cases of Single Softened Story ........................... 36 

Table 3-5 4-DOF (Three known frequencies): Cases of Two Softened Stories ........................... 37 

Table 3-6 4-DOF (Three known frequencies): Single Story Softened Frequencies ..................... 37 

Table 3-7 4-DOF (Three known frequencies): Two Story Softened Frequencies ........................ 37 

Table 3-8 4-DOF (Three known frequencies): Single Story Softened Frequency Difference ..... 37 

Table 3-9 4-DOF (Three known frequencies): Two Stories Softened Frequency Difference ...... 37 

Table 3-10 4-DOF (Three known frequencies): Additional Fourth Frequency Known ............... 38 

Table 3-11 4-DOF (Four known frequencies): Single Softened Story Cases ............................... 38 

Table 3-12 4-DOF (Four known frequencies): Two Softened Stories Cases ............................... 38 

Table 3-13 4-DOF (Four known frequencies): Three Softened Stories Cases ............................. 38 

Table 3-14 4-DOF (Four known frequencies): Four Softened Stories ......................................... 38 

Table 3-15 4-DOF (Four known frequencies): Single Softened Story Cases ............................... 39 

Table 3-16 4-DOF (Four known frequencies): Two Softened Stories Cases ............................... 39 

Table 3-17 4-DOF (Four known frequencies): Three Softened Stories Cases ............................. 39 

Table 3-18 4-DOF (Four known frequencies): Four Softened Stories ......................................... 39 

Table 3-19 4-DOF (Four known frequencies): Single Story % Difference .................................. 40 

Table 3-20 4-DOF (Four known frequencies): Two Stories % Difference .................................. 40 

Table 3-21 4-DOF (Four known frequencies): Three Stories % Difference ................................ 40 

Table 3-22 4-DOF (Four known frequencies): Four Stories % Difference .................................. 40 

Table 3-23 System with Insensitive Frequencies to Stiffness Change ......................................... 41 

Table 3-24 Percent of Noise Introduced to f1 to Produce less than 10% Error in kr1 (kr1 = 50%) 42 

Table 3-25 Percent of Noise Introduced to f1 to Produce less than 10% Error in kr1 (kr1 = 90%) 42 

Table 4-1 Floor Mass…………………………………………………………………………….42 

Table 4-2 Individual Story Stiffnesses from the Individual Story Tests ...................................... 42 

Table 4-3 Relative Stiffness from the Individual Story Tests (Story 1 to Story 3) ...................... 43 

Table 4-4 Relative Stiffness from the Individual Story Tests (Story 4 and Story 5) .................... 43 



ix 

 

Table 4-5 Story Stiffnesses from Quasi-Static Test ...................................................................... 43 

Table 4-6 Stiffness Comparison between Different Tests ............................................................ 43 

Table 4-7 Original System Modal Frequencies ............................................................................ 44 

Table 4-7 Continue ....................................................................................................................... 45 

Table 4-8 Quasi-static and Dynamic Stiffness and Frequency Difference ................................... 45 

Table 4-9 Experiment 1: Vibration Test Modal Frequencies ....................................................... 46 

Table 4-10 Experiment 1: Single Story Softening Cases.............................................................. 46 

Table 4-11 Experiment 1: Single Story Softening Case Frequencies ........................................... 46 

Table 4-12 Experiment 1: Single Story Softening Case Frequency Differences.......................... 46 

Table 4-13 Experiment 2: Vibration Test Modal Frequencies ..................................................... 47 

Table 4-14 Experiment 2: Single Story Softening Cases.............................................................. 47 

Table 4-15 Experiment 2: Single Story Softening Case Frequencies (Mode 1, 2, 3 frequencies  

                   known ) ...................................................................................................................... 47 

Table 4-16 Experiment 2: One Story Softening Case Frequency Differences (Mode 1, 2 

                  frequencies known) ..................................................................................................... 48 

Table 4-17 Experiment 3: Vibration Test Modal Frequencies ..................................................... 48 

Table 4-18 Experiment 3: Single Story Softening Cases.............................................................. 48 

Table 4-19 Experiment 3: Single Story Softening Case Frequencies (Mode 1, 2 frequencies  

                   known) ....................................................................................................................... 48 

Table 4-20 Experiment 3: Single Story Softening Case Frequency Differences (Mode 1, 2 

                  frequencies known) ..................................................................................................... 49 

Table 4-21 Experiment 3: One Story Softening Case Frequencies (Mode 1, 2, 3 frequencies  

                   known) ....................................................................................................................... 49 

Table 4-22 Experiment 3: One Story Softening Case Frequency Differences (Mode 1, 2, 3 

                   frequencies known) .................................................................................................... 49 

Table 4-23 Experiment 4: Vibration Test Modal Frequencies ..................................................... 50 

Table 4-24 Experiment 4: Cases of Softening in a Single Story .................................................. 50 

Table 4-25 Experiment 4: Cases of Softening in Two Stories (1) ................................................ 50 

Table 4-26 Experiment 4: Cases of Softening in Two Stories (2) ................................................ 51 

Table 4-27 Experiment 4: Frequencies – Cases of Softening in a Single Story ........................... 51 

Table 4-28 Experiment 4: Frequencies – Cases of Softening in Two Stories (1) ........................ 51 



x 

 

Table 4-29 Experiment 4: Frequencies – Cases of Softening in Two Stories (2) ........................ 51 

Table 4-30 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in a Single Story ........................................................................................ 51 

Table 4-31 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (1) ...................................................................................... 52 

Table 4-32 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (2) ...................................................................................... 52 

Table 4-33 Experiment 5: Vibration Test Modal Frequencies ..................................................... 52 

Table 4-34 Experiment 5: Cases of Softening in a Single Story .................................................. 53 

Table 4-35 Experiment 5: Cases of Softening in Two Stories (1) ................................................ 53 

Table 4-36 Experiment 5: Cases of Softening in Two Stories (2) ................................................ 53 

Table 4-37 Experiment 5: Frequencies – Cases of Softening in a Single Story ........................... 53 

Table 4-38 Experiment 5: Frequencies – Cases of Softening in Two Stories (1) ........................ 54 

Table 4-39 Experiment 5: Frequencies – Cases of Softening in Two Stories (2) ........................ 54 

Table 4-40 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of     

                  Softening in a Single Story ......................................................................................... 54 

Table 4-41 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (1) ...................................................................................... 54 

Table 4-42 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (2) ...................................................................................... 54 

Table 4-43 Experiment 6: Vibration Test Modal Frequencies ..................................................... 55 

Table 4-44 Experiment 6: Cases of Softening in a Single Story .................................................. 55 

Table 4-45 Experiment 6: Cases of Softening in Two Stories (1) ................................................ 55 

Table 4-46 Experiment 6: Cases of Softening in Two Stories (2) ................................................ 56 

Table 4-47 Experiment 6: Frequencies – Cases of Softening in a Single Story ........................... 56 

Table 4-48 Experiment 6: Frequencies – Cases of Softening in Two Stories (1) Frequencies –  

                   Cases of Softening in Two Stories (1) ....................................................................... 56 

Table 4-49 Experiment 6: Frequencies – Cases of Softening in Two Stories (2) ........................ 56 

Table 4-50 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in a Single Story ........................................................................................ 57 



xi 

 

Table 4-51 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (1) ...................................................................................... 57 

Table 4-52 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (2) ...................................................................................... 57 

Table 4-53 Experiment 7: Vibration Test Modal Frequencies ..................................................... 58 

Table 4-54 Experiment 7: Cases of Softening in a Single Story .................................................. 58 

Table 4-55 Experiment 7: Cases of Softening in Two Stories (1) ................................................ 59 

Table 4-56 Experiment 7: Cases of Softening in Two Stories (2) ................................................ 59 

Table 4-57 Experiment 7: Cases of Softening in Three Stories (1) .............................................. 59 

Table 4-58 Experiment 7: Cases of Softening in Three Stories (2) .............................................. 59 

Table 4-59 Experiment 7: Frequencies – Cases of Softening in Two Stories (1) ........................ 60 

Table 4-60 Experiment 7: Frequencies – Cases of Softening in Two Stories (1) ........................ 60 

Table 4-61 Experiment 7: Frequencies – Cases of Softening in Two Stories (2) ........................ 60 

Table 4-62 Experiment 7: Frequencies – Cases of Softening in Three Stories (1) ...................... 60 

Table 4-63 Experiment 7: Frequencies – Cases of Softening in Three Stories (2) ...................... 61 

Table 4-64 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of  

                  Softening in a Single Story ......................................................................................... 61 

Table 4-65 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of  

                  Softening in Two Stories (1) ....................................................................................... 61 

Table 4-66 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of  

                  Softening in Two Stories (2) ....................................................................................... 61 

Table 4-67 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of | 

                   Softening in Three Stories (1) .................................................................................... 62 

Table 4-68 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Three Stories (2) .................................................................................... 62 

Table 4-69 Experiment 8: Vibration Test Modal Frequencies ..................................................... 62 

Table 4-70 Experiment 8: Cases of Softening in a Single Story .................................................. 63 

Table 4-71 Experiment 8: Cases of Softening in Two Stories (1) ................................................ 63 

Table 4-72 Experiment 8: Cases of Softening in Two Stories (2) ................................................ 63 

Table 4-73 Experiment 8: Cases of Softening in Three Stories (1) .............................................. 63 

Table 4-74 Experiment 8: Cases of Softening in Three Stories (2) .............................................. 64 



xii 

 

Table 4-75 Experiment 8: Frequencies – Cases of Softening in a Single Story ........................... 64 

Table 4-76 Experiment 8: Frequencies – Cases of Softening in Two Stories (1) ........................ 64 

Table 4-77 Experiment 8: Frequencies – Cases of Softening in Two Stories (2) ........................ 64 

Table 4-78 Experiment 8: Frequencies – Cases of Softening in Three Stories (1) ...................... 65 

Table 4-79 Experiment 8: Frequencies – Cases of Softening in Three Stories (2) ...................... 65 

Table 4-80 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of  

                  Softening in a Single Story ......................................................................................... 65 

Table 4-81 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (1) ...................................................................................... 65 

Table 4-82 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Two Stories (2) ...................................................................................... 66 

Table 4-83 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of  

                   Softening in Three Stories (1) .................................................................................... 66 

Table 4-84 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of       

                   Softening in Three Stories (2) .................................................................................... 66 

Table 5-1 Input Level and Damage Progression (Suita et al., 2015)…………………………….67 

Table 5-2 Measured Frequencies vs. SAP2000 Frequencies ........................................................ 67 

Table 5-3 Building Mass and Stiffness (Suita et al., 2015) .......................................................... 68 

Table 5-4 Cases of Softening at One Story (1) ............................................................................. 69 

Table 5-5 Cases of Softening at One Story (2) ............................................................................. 70 

Table 5-6 Cases of Softening at One Story (1) – Relative Frequency Differences ...................... 70 

Table 5-7 Cases of Softening at One Story (1) – Relative Frequency Differences ...................... 70 

 

APPENDIX C Tables: 

Table C-1 Model Elements’ Properties....................................................................................... 124 

Table C-2 Shake Table Specification ......................................................................................... 124 

Table C-3 DAQ System .............................................................................................................. 124 

Table C-4 Load Cell Calibration's Data ...................................................................................... 125 

Table C-5 OptiTrack Camera’s Calibration Data ....................................................................... 125 

 

 



xiii 

 

 

APPENDIX D Tables: 

Table D-1 Structural Elements' Dimension ................................................................................ 137 

Table D-2 Concrete Properties (Blume et al., 1973) .................................................................. 137 

Table D-3 Some Earthquakes Recorded at Van Nuys Building (Trifunac et al., 1999) ............. 137 

Table D-4 Building’s Lumped Weight/Mass (Blume et al., 1973)............................................. 138 

Table D-5 Building's Stiffness .................................................................................................... 138 

Table D-6 Modal Frequencies/Periods ....................................................................................... 138 

Table D-7 Relative Story Stiffness (Frequencies Form Ambient Response) ............................. 139 

Table D-8 Relative Story Stiffness (Frequencies from Lander Earthquake Response) .............. 139 

Table D-9 Larz Model Stiffnesses .............................................................................................. 139 

 

 

  



xiv 

 

LIST OF FIGURES 

Figure 2-1 Spring-Mass System ................................................................................................... 71 

Figure 3-1 2-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies…...…72 

Figure 3-2 2-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies ........... 72 

Figure 3-3 4-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies ........... 73 

Figure 3-4 4-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies ........... 73 

Figure 3-5 4-DOF System: Relative Stiffness (𝑘𝑟3) vs. Relative Change in Frequencies ........... 74 

Figure 3-6 4-DOF System: Relative Stiffness (𝑘𝑟4) vs. Relative Change in Frequencies............ 74 

Figure 3-7 7-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies ........... 75 

Figure 3-8 7-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies ........... 75 

Figure 3-9 7-DOF System: Relative Stiffness (𝑘𝑟3) vs. Relative Change in Frequencies ........... 76 

Figure 3-10 7-DOF System: Relative Stiffness (𝑘𝑟4) vs. Relative Change in Frequencies.......... 76 

Figure 3-11 7-DOF System: Relative Stiffness (𝑘𝑟5) vs.vs Relative Change in Frequencies ...... 77 

Figure 3-12 7-DOF System: Relative Stiffness (𝑘𝑟6) vs. Relative Change in Frequencies ......... 77 

Figure 3-13 7-DOF System: Relative Stiffness (𝑘𝑟7) vs. Relative Change in Frequencies ......... 78 

Figure 3-14 15-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies ....... 78 

Figure 3-15 15-DOF System: Relative Stiffness (𝑘𝑟5) vs. Relative Change in Frequencies ....... 79 

Figure 3-16 15-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies ...... 79 

Figure 3-17 15-DOF System: Relative Stiffness (𝑘𝑟15) vs. Relative Change in Frequencies ...... 80 

Figure 3-18 30-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies ....... 80 

Figure 3-19 30-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies ...... 81 

Figure 3-20 30-DOF System: Relative Stiffness (𝑘𝑟20) vs. Relative Change in Frequencies ...... 81 

Figure 3-21 30-DOF System: Relative Stiffness (𝑘𝑟30) vs. Relative Change in Frequencies ...... 82 

Figure 3-22 50-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies ....... 82 

Figure 3-23 50-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies ...... 83 

Figure 3-24  50-DOF System: Relative Stiffness (𝑘𝑟20) vs. Relative Change in Frequencies ..... 83 

Figure 3-25 50-DOF System: Relative Stiffness (𝑘𝑟30) vs. Relative Change in Frequencies ...... 84 

Figure 3-26 50-DOF System: Relative Stiffness (𝑘𝑟40) vs. Relative Change in Frequencies ...... 84 

Figure 3-27 50-DOF System: Relative Stiffness (𝑘𝑟50) vs. Relative Change in Frequencies ...... 85 

https://d.docs.live.net/8bea4603a56697e6/MS_PURDUE/MS_Research/Word/190418_Thesis.docx#_Toc6420261


xv 

 

Figure 3-28 2-DOF: Noisy 𝑓1
∗ and 𝑘𝑟1 (20%) .............................................................................. 85 

Figure 3-29 2-DOF: Noisy 𝑓1
∗ and % Difference from 𝑘𝑟1 (20%) ............................................... 86 

Figure 3-30 2-DOF: Noisy 𝑓1
∗ and 𝑘𝑟1 (90%) .............................................................................. 86 

Figure 3-31 2-DOF: Noisy 𝑓1
∗ and % Difference from 𝑘𝑟1 (90%) ............................................... 87 

Figure 3-32 Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................................. 87 

Figure 3-33 2-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟2 Cases ............................................................... 88 

Figure 3-34 2-DOF: Noisy 𝑓2
∗ and Different 𝑘𝑟1 Cases ............................................................... 88 

Figure 3-35 2-DOF: Noisy 𝑓2
∗ and Different 𝑘𝑟2 Cases ............................................................... 89 

Figure 3-36 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................... 89 

Figure 3-37 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟2 Cases ............................................................... 90 

Figure 3-38 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟3 Cases ............................................................... 90 

Figure 3-39 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟4 Cases ................................................................ 91 

Figure 3-40 7-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................... 91 

Figure 3-41 15-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................. 92 

Figure 3-42 30-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................. 92 

Figure 3-43 50-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases ............................................................. 93 

Figure 4-1 Five-story Aluminum Model…………………………………………………………94 

Figure 4-2 Column and Plate Connections ................................................................................... 95 

Figure 4-3 Test Setup (View 1) .................................................................................................... 96 

Figure 4-4 Test Setup (View 2) .................................................................................................... 96 

Figure 4-5 Individual Story Stiffness Test Setup (Front View) .................................................... 97 

Figure 4-6 Individual Story Stiffness Test Setup (Top View) ...................................................... 97 

Figure 4-7 Free Vibration Signal for Mode 1 (Story 1) ................................................................ 98 

Figure 4-8 Filtered Free Vibration Signal for Mode 2 (Story 1) .................................................. 98 

Figure 4-9 Filtered Free Vibration Signal for Mode 3 (Story 1) .................................................. 99 

Figure 4-10 Filtered Free Vibration Signal for Mode 4 (Story 1) ................................................ 99 

Figure 4-11 Filtered Free Vibration Signal for Mode 5 (Story 1) .............................................. 100 

Figure 4-12 Experiment 1: Two Columns Removed from the First Story ................................. 100 

Figure 5-1 18-Story Steel Moment Frame Building Plan and Elevation (Suita et al., 2015) …..101 

Figure 5-2 Transfer Function of the Average of the Responses of the Roof for 17cm/s Pseudo  

                  Velocity (Data from Suita et al., 2015) ..................................................................... 102 



xvi 

 

Figure 5-3 Transfer Function of Half Difference of Responses of the Roof for 17cm/s Pseudo  

                  Velocity (Data from Suita et al., 2015) ..................................................................... 102 

Figure 5-4 2D SAP2000 Model .................................................................................................. 103 

Figure 5-5 Transfer Function of the Average of the Responses of the Roof for 17cm/s Pseudo  

                  Velocity (Data from Suita et al., 2015) ..................................................................... 104 

Figure 5-6 Transfer Function of Half Difference of Responses of the Roof for 17cm/s Pseudo  

                  Velocity (Data from Suita et al., 2015) ..................................................................... 104 

 

APPENDIX C Figures: 

Figure C-1 Dial Gage .................................................................................................................. 126 

Figure C-2 Dial Caliper .............................................................................................................. 126 

Figure C-3 Shake Table Control Box ......................................................................................... 127 

Figure C-4 NI 9219 Input Module .............................................................................................. 127 

Figure C-5 NI 9219 Input Module and cDAQ-9171 .................................................................. 128 

Figure C-6 Load Cell .................................................................................................................. 128 

Figure C-7 Load Cell Specification ............................................................................................ 129 

Figure C-8 Load Cell Calibration Graph .................................................................................... 130 

Figure C-9 Cameras’ Calibration Setup ...................................................................................... 130 

 

APPENDIX D Figures: 

Figure D-1 Foundation Plan (Trifunac et al., 1999) ................................................................... 140 

Figure D-2 Typical Floor Plan (Trifunac et al., 1999) ................................................................ 140 

Figure D-3 Typical Transverse Section (Trifunac et al., 1999) .................................................. 141 

Figure D-4 Typical Longitudinal Section (Trifunac et al., 1999) ............................................... 141 

Figure D-5 Frame A Crack Map (Trifunac et al., 1999) ............................................................. 142 

Figure D-6 Frame D Crack Map (Trifunac et al., 1999) ............................................................. 142 

Figure D-7 Fundamental Frequency Variations (Todorovska & Trifunac, 2006) ...................... 143 

Figure D-8 Van Nuys Building's Sensor Locations (CESMD, 2019) ........................................ 143 

Figure D-9 PDI for 1992 Landers Earthquake ............................................................................ 144 

Figure D-10 PDI for 1994 Northridge Earthquake ..................................................................... 144 

Figure D-11 Roof Drift Ratio During 1992 Lander Earthquake ................................................. 144 



xvii 

 

Figure D-12 First Story Drift Ratio During 1994 Northridge Earthquake ................................. 145 

Figure D-13 Second Story Drift Ratio During 1994 Northridge Earthquake ............................. 145 

Figure D-14 Third to Fifth Story Drift Ratio During 1994 Northridge Earthquake ................... 146 

Figure D-15 Fifth to Sixth Story Drift Ratio During 1994 Northridge Earthquake ................... 146 

Figure D-16 Roof Drift Ratio During 1994 Northridge Earthquake .......................................... 147 

Figure D-17 Reductions in Stiffness for Van Nuys Building using Analysis of Wave Travel  

                    Times (Todorovska & Trifunac, 2006) ................................................................... 147 

 

 

  



xviii 

 

ABSTRACT 

Author: Thea, Sokheang. MSCE 

Institution: Purdue University 

Degree Received: May 2019 

Title: Identification of Stiffness Reductions Using Partial Natural Frequency Data 

Committee Chair: Ayhan Irfanoglu 

 

In vibration-based damage detection in structures, often changes in the dynamic properties such as 

natural frequencies, modeshapes, and derivatives of modeshapes are used to identify the damaged 

elements. If only a partial list of natural frequencies is known, optimization methods may need to 

be used to identify the damage. In this research, the algorithm proposed by Podlevskyi & Yaroshko 

(2013) is used to determine the stiffness distribution in shear building models. The lateral load 

resisting elements are presented as a single equivalent spring, and masses are lumped at floor levels. 

The proposed method calculates stiffness values directly, i.e., without optimization, from the 

known partial list of natural frequency data and mass distribution. It is shown that if the number 

of stories with reduced stiffness is smaller than the number of known natural frequencies, the 

stories with reduced stiffnesses can be identified. Numerical studies on building models with two 

stories and four stories are used to illustrate the solution method. Effect of error or noise in given 

natural frequencies on stiffness estimates and, conversely, sensitivity of natural frequencies to 

changes in stiffness are studied using 7-, 15-, 30-, and 50-story numerical models. From the studies, 

it is learnt that as the number of stories increases, the natural frequencies become less sensitive to 

stiffness changes. Additionally, eight laboratory experiments were conducted on a five-story 

aluminum structural model. Ten slender columns were used in each story of the specimen. Damage 

was simulated by removing columns in one, two, or three stories. The method can locate and 

quantify the damage in cases presented in the experimental studies. It is also applied to a 1/3 scaled 

18-story steel moment frame building tested on an earthquake simulator (Suita et al., 2015) to 

identify the reduction in the stiffness due to fractures of beam flanges. Only the first two natural 

frequencies are used to determine the reductions in the stiffness since the third mode of the tower 

is torsional and no reasonable planar spring-mass model can be developed to present all of the 

translational modes.  The method produced possible cases of the softening when the damage was 

assumed to occur at a single story.   
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1. INTRODUCTION 

1.1 Background and Previous Research 

1.1.1 Vibration-based Damage Identification Methods and Their Classifications 

Dynamic properties of a system such as frequencies and modeshapes have been used to determine 

variations in the physical parameters of the system such as its mass and stiffness. To locate cavity 

in a floor or wall, for example, we just knock on them and listen for distinctive response sounds.  

Obviously, the dynamic responses of the system are related to its physical properties. Changes in 

its physical properties result in changes in its response. Researchers have been using differences 

observed in the dynamic responses of a system to determine the changes in its stiffness and mass. 

This characteristic has many applications in damage detection and structural health monitoring.  

 

During the 1970s and early 1980s, researchers, especially in offshore oil industries, began to study 

and investigate the response-based damage identification techniques (Doebling et al., 1998).  

These methods use different dynamic responses and properties to locate and quantify defects. The 

techniques themselves differ. Global methods use the dynamic responses of the structures to locate 

and quantify the damage (Doebling et al., 1998), whereas the local methods such as ultrasound 

and X-ray usually require access to vicinity of the damage which means damage locations are 

known a priori (Kong, Cai, & Hu, 2017). Rytter (1993) classified the techniques into four levels 

of damage identification. Level 1 aims to detect that damage exists. Level 2 aims to detect the 

presence of the damage and its location(s). Level 3 includes Level 2 and quantifies the damage 

severity, and Level 4 includes Level 3 and estimates the remaining useful life of the system.  

 

Early reviews of the methods were given in Salawu (1997) and Doebling et al. (1998), whereas 

more recent reviews can be found in Das et al. (2017) and Kong et al. (2017). In addition, Gomes 

et al. (2018) discusses the application of optimization algorithm and artificial intelligence in the 

field of damage identification. Kong et al. (2017) categorizes the techniques as Time Domain 

Methods, Frequency Domain Methods and Modal Domain Methods depending on the type of data 

used and the analysis procedures. These methods have both advantages and disadvantages. Time 

Domain Methods use the time series of response directly and thus preserve most information 
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including the nonlinearity (Kong, Cai, & Hu, 2017).  Frequency Domain Methods, on the other 

hand, transform the time series into frequency domain and usually focus on the ratio of the output 

signals (acceleration, velocity or displacement) over the input signals (forcing frequencies), which 

are Frequency Response Functions. For Modal Domain Methods where modal properties such as 

natural frequencies or periods, and modeshapes and their derivatives are used to determine the 

system physical properties. The benefits are that the physical properties describe the structure 

directly and are easy to interpret, while the drawbacks are that much information such as time 

series of the signal was lost or abandoned and they are sensitive to environmental noise and 

uncertainty (Kong, Cai, & Hu, 2017). 

1.1.2 Methods that Primarily Use Frequency Data 

Doebling et al. (1998) categorized the methods using frequency shifts to identify damage as either 

a forward problem or an inverse problem. The forward problems employ mathematical models to 

simulate damage and compare the results with the measured frequencies, which means it is a Level 

1 type of detection (Doebling, Farrar, & Prime, 1998). On the other hand, the inverse problems, 

usually Level 2 or 3, compute the damages directly from the frequency changes (Doebling, Farrar, 

& Prime, 1998). One of the early researches on the forward problems that used shifts in frequencies 

to identify defects was conducted by Cawley and Adam in 1979. They were able to locate and 

quantify the damages to an aluminum plate and a carbon-fiber-reinforced plastic plate by using the 

original modeshape data as well as changes in frequencies before and after the damages were 

introduced, along with finite-element models. Nevertheless, they only accounted for a single 

damage location, not multiple locations. Lifshiftz and Rotem (1969) published a journal article on 

the inverse problem to detect damages using frequency changes. Stubbs and Osegueda (1987) 

improved upon the work of Cawley and Adam, and incorporated modeshape data to help determine 

the location of the defects as well the magnitude of the defects (Hassiotis & Jeong, 1995; Doebling, 

Farrar, & Prime, 1998).  

1.1.3 Methods that Primarily Use Modeshapes and their Derivatives  

Modeshape change and its derivatives have also been used detect defects. West (1984) was 

probably the first to use modeshape changes to locate damage by introducing modal assurance 

criteria (MAC) that established the extent of correlation between the modeshapes of a specimen 
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when it was undamaged and damaged (Doebling, Farrar, & Prime, 1998). Slope of modeshape, its 

curvature and higher order derivatives (up to fourth order) prove to be more sensitive to changes 

in the physical properties of the system (Whalen, 2008). Pandey et al. (1991) used the curvature 

of the modeshape to pinpoint the damage location estimated from the changes in the curvature, 

and the severity by the amount of changes occurred. They demonstrated the procedure using finite-

element models of cantilevered and simply supported beams. Zhu et al. (2011) did numerical 

simulations of an eight-story shear building and did an experimental study on a three-story model 

using changes in the fundamental modeshape slope (CFMSS). They were able to assess and locate 

the amount of the damages using an iterative scheme. Roy and Chaudhuri (2013) developed an 

approximate closed-form mathematical solution that relates the fundamental modeshape and its 

derivatives to the damage location. They did not estimate the magnitude of the damage but 

mentioned that mathematical correlation can be made to do so. Roy’s more recent paper (2017) 

also included an experiment conducted on a six-story steel frame using the same method.  

Strain energy methods are among the other techniques that employ modeshape data for damage 

estimation analysis. Stubbs et al. (1995) conducted numerous experiments and field testing on a 

423 feet three-span bridge. They developed a method which uses the modeshape and stiffness 

matrices to locate the damage. Shi et al. (1998) introduced modal strain energy (MSE) method, 

which also used the modeshape data. Modal strain energy change ratio (MSECR), the ratio of the 

absolute difference of damaged MSE and undamaged MSE over the undamaged MSE, was used 

to locate and quantify the damage. Other studies on the modal strain energy include but not limited 

to Cornwell et al. (1999), Alvandi and Cremona (2006), Guan and Karrbhari (2008), and Dawari 

et al. (2015).  

1.1.4 Methods that Use Optimization Techniques and Partial Frequency Data 

Many of the methods described above assume that the frequency data are abundant, and that the 

modeshape information are available. Nonetheless, acquiring reliable and adequate data for 

vibration-based methods can be challenging, and buildings may be instrumented intermittently. 

Obtaining all the dynamic properties is improbable. In some cases, especially when the system is 

not sufficiently instrumented, modeshape data are harder to obtain and appear more susceptible to 

statistical disparity due to environmental noise (Doebling, Farrar, & Goodman, 1997).   
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Hassiotis and Jeong (1995) proposed a method to obtain the reduction in stiffness by using only a 

partial list of natural frequencies. They applied the method to a numerical model of a ten-story 

steel moment frame, and a cantilevered beam laboratory specimen. Their method was successful 

in locating and quantifying the amount of damage at more than one location. Since there are not 

enough input frequencies to solve the equation uniquely, an optimization approach was applied. 

Their optimization approach involves minimizing a cost function which includes a linear 

relationship between changes in stiffness and changes in the eigenvalues, and inequality 

constraints that stiffness coefficients are not allowed to increase, i.e. the elements either remain as 

before or soften. They introduced three criteria for the cost function: least total change in the 

element stiffnesses, minimization of the norm of the change in the global stiffness matrix, and 

minimization of eigenvalue problem residuals. The criteria did not have any physics reasoning 

rather they were mathematical devices to obtain a unique solution. Lee et al. (2004) extended the 

method by adding measured changes in modeshape, and Esfandiari et al. (2013) by introducing 

the modeshape of the original structure into the linear constraint.  

1.1.5 Linear Parameterized Inverse Eigenvalue Problem (LiPIEP) 

Many buildings or structures may be instrumented sparsely and therefore only partial frequency 

data before and after an event may be known, and most probably without any modeshape 

information. For spring-mass systems, if all frequencies and masses are known, the stiffnesses can 

be calculated directly without using optimization methods or linearizing the equations, eliminating 

potential errors. However, in an n-degree of freedom system, if only a partial set of frequencies 

(say, m number of frequencies) are known as opposed to the complete spectrum, i.e. n number of 

frequencies, and no modeshape information is given, it may not be possible to reach a solution 

without some sort of comprises. For example, optimization methods, with their inherent biases, 

may be used. Or, the number of softened stories may be limited to fewer than m. In this case, all 

possible softened cases need to be investigated and the extra frequency or frequencies from the 

known set of frequency can be used to choose the solution which fits the measured frequencies 

best. The problems in which elements of the matrices are calculated from the known eigenvalues 

are called Inverse Eigenvalue Problem (IEP). There are many different types of IEPs depending 

on the properties of the to-be-constituted matrix and the known eigenvalues and eigenvectors. In 
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case of spring-mass systems, which are used to model building structures, the problem is classified 

as Linear Parameterized Inverse Eigenvalue Problem (LiPIEP).  

1.2 Objectives and Scope of Research 

The current research project aims to use the solution to LiPIEP of spring-mass systems to 

determine the reduction in the stiffnesses of a building model using only a partial set of natural 

frequency data. Theoretical and mathematical background are presented in the following chapter. 

Numerical studies and experiments on a five-degree-of-freedom shear building model are made to 

illustrate how the method works. Next, the method will be applied to a building. Finally, it is 

summarized and concluded in the last chapter. 
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2. METHOD FOR CALCULATING STIFFNESSES FROM PARTIAL 

NATURAL FREQUENCY DATA 

2.1 Spring-Mass System Idealization 

Many structural systems may be idealized as spring-mass-damper systems. One example of those 

is the water tank supported by concrete or steel pillars. It can be regarded as a single-degree-of-

freedom system where the lumped mass (water tank) is held by a linear spring (concrete or steel 

pillars). The damper is the energy dissipation device and it should always exist since the system 

always loses energy somehow. Often, the damping is small. In such structures, characteristic 

dynamic properties such as modal periods and modeshapes are estimated using only a spring-mass 

(Figure 2-1). It is not limited to a single degree of freedom. For example, a building is a multiple-

degree-of-freedom system where each floor is considered as a lumped mass connected by columns 

which were thought to be springs.  

 

The multiple-degree-of-freedom-system equation of motion for free vibration without damping is 

𝑴𝒖̈ + 𝑲𝒖 =  𝟎 (2-1) 

where 

𝑴 and 𝑲 are the mass and stiffness matrix. 

𝒖̈ and 𝒖 are the acceleration and displacement. 

Let the solution of the Equation 2-1 be 

𝒖(𝑡) = 𝑞𝑛(𝑡)𝜙𝑛 (2-2) 

𝑞𝑛(𝑡) is the displacement in generalized coordinates for mode n, and a harmonic function of time 

t and natural cyclic frequency 𝜔𝑛. It is given by 

𝑞𝑛(𝑡) = 𝐴𝑛 cos(𝜔𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑛𝑡) (2-3) 

Modeshape n is given by 𝜙𝑛. Substitute Equation 2-3 into Equation 2-2, we obtain 

𝒖(𝑡) = [𝐴𝑛 cos(𝜔𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑛𝑡)]𝜙𝑛 (2-4) 

Taking time derivatives and substitute into Equation 2-1, after simplification it becomes 

[−𝜔𝑛
2𝑴𝜙𝑛 + 𝑲𝜙𝑛]𝑞𝑛(𝑡) =  𝟎 (2-5) 
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The non-trivial solution is given by 

(𝑲 − 𝜔𝑛
2𝑴)𝜙𝑛 = 𝟎 (2-6) 

Equation 2-6  is an eigenvalue problem. If 𝜆𝑛 = 𝜔𝑛
2  is the eigenvalue, 𝜙𝑛  will be the 

corresponding eigenvector. Nontrivial 𝜙𝑛 exists if  

det(𝑲 − 𝜆𝑛𝑴) = 0 (2-7)

Equation 2-7, usually called the ‘characteristic equation’, has n real and positive roots of 𝜆𝑛 since 

M and K are positive symmetric and positive definite if the structure is properly restrained against 

rigid-body motion (Chopra, 2012). 

2.2 Direct Stiffness Determination of a Spring-mass System from Mass and Frequency 

Data 

2.2.1 Two-Degree-Of-Freedom System 

For two-degree-of-freedom system (Figure 2-1), if the coordinates are chosen as the displacements 

of the two lumped masses, the mass matrix and stiffness matrices are 

𝑴 = [
𝑚1 0
0 𝑚2

] (2-8) 

 

𝑲 = [
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] (2-9) 

The characteristic equation for this structure is given by  

𝑑𝑒𝑡 [
𝑘1 + 𝑘2 − 𝜆𝑛𝑚1 −𝑘2

−𝑘2 𝑘2 − 𝜆𝑛𝑚2
] = 0 (2-10) 

Expanding and simplifying Equation 2-10, we obtain 

𝑘1 + (
𝑚1 + 𝑚2

𝑚1
) 𝑘2 −

𝑘1𝑘2

𝜆𝑛𝑚1
= 𝑚2𝜆𝑛 (2-11) 

For mode 1, i.e., fundamental mode, 

𝑘1 + (
𝑚1 + 𝑚2

𝑚1
) 𝑘2 −

𝑘1𝑘2

𝜆1𝑚1
= 𝑚2𝜆1 (2-12) 

For mode 2,  

𝑘1 + (
𝑚1 + 𝑚2

𝑚1
) 𝑘2 −

𝑘1𝑘2

𝜆2𝑚1
= 𝑚2𝜆2 (2-13) 
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Taking the difference of Equation 2-13 and Equation 2-12 and solving for 𝑘1, it gives 

𝑘1 =
𝜆1𝜆2𝑚1𝑚2

𝑘2

(2-14) 

Substituting Equation 2-14 into Equation 2-12, it gives 

(𝑚1 + 𝑚2)𝑘2
2 − 𝑚1𝑚2(𝜆1 + 𝜆2)𝑘2 + 𝑚1𝑚2

2𝜆1𝜆2 = 0 (2-15) 

If masses (𝑚1and 𝑚2) and both natural frequencies (𝜔1and 𝜔2) are known, we can calculate the 

stiffness coefficients directly from Equations 2-14 and 2-15. Since Equation 2-15 is a quadratic 

equation, there will be two pairs of stiffnesses 𝑘1and 𝑘2. It has two real positive roots if and only 

if 

(𝜆2 − 𝜆1)
2 > 4

𝑚1

𝑚2
𝜆1𝜆2 (2-16) 

However, if only one of the cyclic natural frequencies is given, say 𝜔1, we will not be able to find 

the solutions as there will be three unknowns and two equations. In that case, assuming that 𝑘2 is 

given, 𝑘1can be directly determined from Equation 2-14 and the solution will be unique. These 

provide means to calculate the stiffnesses directly from the given frequencies.  

2.2.2 Three-Degree-of-Freedom System 

As illustrated in the section above for two-degree-of-freedom system, stiffness coefficients can be 

calculated directly from known frequencies. Choosing a coordinate system which is based on the 

position of the masses, and following steps similar to those for the two-degree-of-freedom system, 

the mass and stiffness matrices for the three-degree-of-freedom system (Figure 2-1) are 

𝑴 = [
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] (2-17) 

𝑲 = [

𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

] (2-18) 

The characteristic equation will be given by 

𝑑𝑒𝑡 [

𝑘1 + 𝑘2 − 𝜆𝑛𝑚1 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 − 𝜆𝑛𝑚2 −𝑘3

0 −𝑘3 𝑘3 − 𝜆𝑛𝑚1

] = 0 (2-19)

Expanding the expression above for different 𝜆𝑛, n = 1, 2, 3 
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𝑘1 +
𝑚1 + 𝑚2

𝑚2
𝑘2 +

𝑚1(𝑚2 + 𝑚3)

𝑚2𝑚3
𝑘3 −

𝑘1𝑘2

𝜆1𝑚2
−

(𝑚2 + 𝑚3)

𝜆1𝑚2𝑚3
𝑘1𝑘3 −

𝑚1 + 𝑚2 + 𝑚3

𝜆1𝑚2𝑚3
𝑘2𝑘3

+
𝑘1𝑘2𝑘3

𝜆1
2𝑚2𝑚3

= 𝜆1𝑚1 (2-20)

 

𝑘1 +
𝑚1 + 𝑚2

𝑚2
𝑘2 +

𝑚1(𝑚2 + 𝑚3)

𝑚2𝑚3
𝑘3 −

𝑘1𝑘2

𝜆2𝑚2
−

(𝑚2 + 𝑚3)

𝜆2𝑚2𝑚3
𝑘1𝑘3 −

𝑚1 + 𝑚2 + 𝑚3

𝜆2𝑚2𝑚3
𝑘2𝑘3

+
𝑘1𝑘2𝑘3

𝜆2
2𝑚2𝑚3

= 𝜆2𝑚1 (2-21)

 

𝑘1 +
𝑚1 + 𝑚2

𝑚2
𝑘2 +

𝑚1(𝑚2 + 𝑚3)

𝑚2𝑚3
𝑘3 −

𝑘1𝑘2

𝜆3𝑚2
−

(𝑚2 + 𝑚3)

𝜆3𝑚2𝑚3
𝑘1𝑘3 −

𝑚1 + 𝑚2 + 𝑚3

𝜆3𝑚2𝑚3
𝑘2𝑘3

+
𝑘1𝑘2𝑘3

𝜆3
2𝑚2𝑚3

= 𝜆3𝑚1 (2-22)

 

Solving Equations 2-20, 2-21 and 2-22 simultaneously with known masses and frequencies, we 

will find the values for the stiffness coefficients 𝑘1, 𝑘2 and 𝑘3. Similarly, if the number of known 

frequencies is smaller than the number of the degrees of freedom, the equations cannot be solved 

for unique stiffness values. Nonetheless, if some of the stiffness coefficients are known along with 

frequencies and the total of known variables equal to or greater than the degrees of freedom, 

unknown stiffness coefficients can be found.  

2.2.3 Linear Parameterized Inverse Eigenvalue Problem (LiPIEP) Solution by Newton 

Method 

For systems with the degrees of freedom more than three, expanding the characteristic equation 

and solving the simultaneous equations can be formidable. Nevertheless, as there are mathematical 

algorithms to calculate the eigenvalues and eigenvectors from a matrix, there are also methods to 

solve for the original matrix from the known eigenvalues and eigenvectors. Those kinds of 

problems are called Inverse Eigenvalue Problem (IEP). Chu and Golub (2005) classified those 

problems into different categories mostly depending on the initial matrix properties. For a spring-

mass system, if the coordinate system is based on the locations of the masses, the mass matrix 𝑴 

of the system will be a diagonal matrix with the masses as the diagonal entries and the stiffness 

matrix 𝑲 is a tri-band matrix. The eigenvalues and eigenvectors of the system can be calculated 

from the matrix 𝑴−𝟏𝑲. The 𝑴−𝟏𝑲 can be written in a linear combination of other matrices in 

which the stiffness of each degree of freedom is the coefficient or parameter. Due to this 

characteristic property, Chu and Golub (2005) categorized the problem as ‘Linear Parameterized 
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Inverse Eigenvalue Problem (LiPIEP)’. Beigler-Konig (1981) and Kublanovskaya (2003) 

proposed an algorithm that is based on the Newton’s method and iteration scheme. Podlevskyi & 

Yaroshko (2013) suggested two algorithms that use fewer mathematical operations the first of 

which will be used in this study and described below. 

  

Let 𝑨(𝑚, 𝑘) = 𝑴−𝟏𝑲. It can be written as 

𝑨(𝑚, 𝑘) = ∑ 𝑘𝑖𝑨𝒊(𝑚)

𝑛

𝑖=1

(2-23) 

where 

𝑘 =  (𝑘1, 𝑘2, … , 𝑘𝑛)𝑇 is the stiffness vector. 

𝑚 = (𝑚1,𝑚2, … ,𝑚𝑛)𝑇 is the mass vector. 

  𝑛 is the number of the degree of freedom.  

𝑨𝒊(𝑚) are matrices that are function of the mass alone. 

𝑨(𝑚, 𝑘) has the eigenvalues of 𝜆1 = 𝜔1
2, 𝜆2 = 𝜔2

2,…, 𝜆𝑛 = 𝜔𝑛
2. 

Let 𝐹(𝑘) be the characteristic equations, 𝑰 is the identity matrix and masses 𝑚 are given.  𝐹(𝑘) 

can be expressed as 

𝐹(𝑘) =  [
det(𝑨(𝑘) − 𝜆1𝑰)

⋮
det(𝑨(𝑘) − 𝜆𝑛𝑰)

] =  [
𝐹1(𝑘)

⋮
𝐹𝑛(𝑘)

] (2-24) 

Solving 𝐹(𝑘) = 0, stiffness coefficients 𝑘′𝑠 will be obtained. Nevertheless, the equations involve 

finding the determinant of 𝑛x𝑛  matrix and solving 𝑛  nonlinear polynomial equations 

simultaneously. To find the roots, Newton’s iterative process is used which involves finding the 

partial derivatives of 𝐹(𝑘) with respect to 𝑘𝑖. Let  

𝑔𝑖𝑗(𝑘) =
𝜕𝐹𝑖(𝑘)

𝜕𝑘𝑗

(2-25) 

Let 𝑱(𝑘) be the Jacobian matrix of which 𝑔𝑖𝑗’s are the components  

 𝑱(𝑘) = {𝑔𝑖𝑗(𝑘)}
𝑖,𝑗=1

𝑛
(2-26) 

Podlevskyi & Yaroshko (2013) further proposed to use trace theorem (Lancaster, 1966) to 

calculate those derivatives.  
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𝑔𝑖𝑗(𝑘) =
𝜕𝐹𝑖(𝑘)

𝜕𝑘𝑗
= 𝐹𝑖(𝑘) ⋅ 𝑡𝑟 [(𝑨(𝑘) − 𝜆𝑖𝑰)

−1 ⋅
𝜕(𝑨(𝑘) − 𝜆𝑖𝑰)

𝜕𝑘𝑗
]

= 𝐹𝑖(𝑘) ⋅ 𝑡𝑟[(𝑨(𝑘) − 𝜆𝑖𝑰)
−1 ⋅ 𝑨𝒊𝒋] (2-27)

 

where 

𝑨𝒊𝒋 =
𝜕(𝑨(𝑘) − 𝜆𝑖𝑰)

𝜕𝑘𝑗

(2-28) 

The iteration scheme for the Newton’s method will be 

𝑘(𝑝+1) = 𝑘(𝑝) − [𝑱(𝑘(𝑝))]
−1

𝐹(𝑘(𝑝)), 𝑝 = 0,1,2, … (2-29) 

Using the trace theorem above, 𝑱(𝑘) can be written as 

𝑱(𝑘) = 𝑑𝑖𝑎𝑔(𝐹1(𝑘), 𝐹2(𝑘), … , 𝐹𝑛(𝑘)) ⋅ 𝑯(𝑘) (2-30) 

where 

𝐻𝑖𝑗(𝑘) = 𝑡𝑟[(𝑨(𝑘) − 𝜆𝑖𝑰)
−1 ⋅ 𝑨𝒊𝒋] (2-31) 

Equation 2-29 can be then rewritten as 

𝑘(𝑝+1) = 𝑘(𝑝) − [𝑯(𝑘)]−1𝑒, 𝑝 = 0,1,2, … (2-32) 

where 

𝑒 = (1,1,… ,1)𝑇 

Podlevskyi & Yaroshko (2013) suggested the following algorithm to solve the LiPIEP. 

1. Set the initial estimate for 𝑘(0) = (𝑘1
(0)

, 𝑘2
(0)

, … , 𝑘𝑛
(0)

)
𝑇

 

2. Iterate 𝑝 = 0,1,2… until convergence 

a. Determine (𝑨(𝑘(𝑝)) − 𝜆𝑖𝑰), 𝑖 = 1,2, … , 𝑛 

b. Determine (𝑨(𝑘(𝑝)) − 𝜆𝑖𝑰)
−1

, 𝑖 = 1,2, … , 𝑛 

c. Use Equation 2-31 to assemble the matrix 𝑯(𝑘(𝑝))  

d. Determine the next iteration 𝑘(𝑝+1) by solving 𝐻(𝑘(𝑝))(𝑘(𝑝+1) − 𝑘(𝑝)) = −𝑒 

e. Use 𝑘(𝑝+1) for the next iteration of 𝑚. Go to Step 2.a. 

3. End after convergence 

Chu & Golub (2005) proved that there are at most n! solutions in the complex set. Since the 

stiffnesses are real and positive, the number of solutions will be fewer than n!. To illustrate the 

algorithm, an example of a two-degree-of-freedom system will be solved in the Appendix A.  
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2.3 Implementation of the Method 

The presented method of calculating stiffness directly from the frequencies and many methods 

discussed in Chapter 1 assume that the systems can be modelled as spring-mass systems behaving 

linearly under small amplitude excitations, and the damage causes only reductions in the stiffness. 

It is assumed that masses and stiffnesses of the original structures can be estimated. The reductions 

in the stiffnesses are determined by the difference in the stiffnesses between the initial system and 

the softened one.   

 

The preceding sections only discuss how to calculate the stiffnesses from the complete set of 

frequencies. If the number of known frequencies is smaller than the number of the degrees of 

freedom and other information such as the modeshapes cannot be obtained, it is not possible to 

calculate the stiffnesses or the reductions in stiffness values without using some form of 

optimization or making some compromises such as by reserving at least one frequency to help 

select the most likely case.  

 

Suppose that the number of the degrees of freedom is n and the number of known frequencies is 

m with m<n. Based on this information, the number of the characteristic equations obtained is m, 

while the number of stiffness coefficients is the same as the degrees of freedom, i.e., n. It is 

improbable to solve this since there are n unknowns and only m equations unless we assume that 

m-n stiffness coefficients do not change from the original structure and, therefore, are known. Even 

though we can solve for the stiffness coefficient with this approach, finding the correct solution is 

unachievable since the solution is not unique. However, if at least one frequency is reserved for 

independent verification, the most likely solution may be found. This approach allows up to m-1 

stiffness coefficients to change, and the most likely stiffness vectors must produce the frequency 

that is matching the reserved ones. Accordingly, this approach limits the number of the softened 

elements to be smaller than the number of known frequencies, which is a compromise we need to 

make because of limited amount of information. The stiffness coefficient values corresponding to 

softened elements (or stories) must also be real, positive and less than the original stiffness values. 

All the cases that have the number of softened elements smaller than m-1 must also be explored, 

and the ‘correct’ solution is chosen based on the criteria explained above.   
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3. NUMERICAL STUDIES 

3.1 Introduction 

Numerical studies of a two-degree-of-freedom (2-DOF) system and a four-degree-of-freedom 

system (4-DOF) will be discussed to demonstrate the use of partial frequency data and LiPIEP 

solution algorithm to identify the reduction in the stiffness. All the masses used in the numerical 

models are set to unit mass, and the stiffness values are 2500 for 2-DOF system, 2000 for 4-DOF 

system. Additionally, a 7-DOF system (with k=1800), a 15-DOF system (with k=1700), and 30-

DOF and 50-DOF systems (with k=1600) are also considered. The units of the mass and the 

stiffness are consistent. This choice of m and k’s is chosen to make the fundamental period of the 

systems to equal, approximately, to the number of the degree of freedom over ten. The stiffness 

𝑘1 is referred to as story 1 stiffness, 𝑘2 as story 2 stiffness and so on. It is assumed that the building 

can be idealized as shown in Figure 2-1. The reduction in stiffness in a story is called ‘softening’ 

and the corresponding structure is called ‘softened structure.’ How frequencies change with 

variations in stiffness of a single story will be explored throught 2-DOF, 4-DOF, 7-DOF, 15-DOF, 

30-DOF and 50-DOF system examples. The effects of errors in frequency estimates, also called 

noise, will also be explained using the same systems.  

3.2 Two-Degree-Of-Freedom System 

With the stiffnesses (k1=k2=2000) and masses (m1=m2=1) as stated in the previous section, the 

system will have a fundamental period of 𝑇1 = 0.203𝑠 and 𝑇2 = 0.078𝑠. This corresponds to 𝑓1 =

4.918𝐻𝑧 and 𝑓2 = 12.876𝐻𝑧. It should be noted that the use of high number of significant figures, 

even though may not be realistic in an actual measurement, is necessary to avoid numerical errors. 

Effect of inaccuracies in frequency “measurements” will be discussed later in this chapter.  

 

Assume that the natural frequencies of the softened structure are 𝑓1
∗ = 4.243 𝐻𝑧  and 𝑓2

∗ =

11.845 𝐻𝑧. The cyclic frequencies will then be 𝜔1
∗ = 2𝜋𝑓1

∗ = 26.660 𝑟𝑎𝑑/𝑠 and 𝜔1
∗ = 2𝜋𝑓1

∗ =

74.424 𝑟𝑎𝑑/𝑠 , with the eigenvalues 𝜆1
∗ = 𝜔∗

1
2 = 710.732 𝑟𝑎𝑑2/𝑠2  and 𝜆2

∗ = 𝜔∗
2
2 =

5538.981 𝑟𝑎𝑑2/𝑠2. Substitute these values into Equation 2-15, we obtain 

2𝑘∗
2
2 − 6249.712𝑘2

∗ + 3.936 = 0 
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Solving the equation above: 

𝑘2
∗ = [

874.8
2250

] 

Substituting 𝑘2
∗ into Equation 2-14 

𝑘1
∗ = [

4500
1749.6

] 

Hence, there are two pairs of solutions: (𝑘1
∗, 𝑘2

∗) = (4500, 874.8) and (1749.6, 2250). The first pair 

can be easily eliminated since the reduced stiffness in the softened structure 𝑘1
∗ = 4500 cannot be 

higher than the original stiffness 𝑘1 = 2500. Therefore, the reduced stiffnesses are 𝑘1
∗ = 1749.6 

and 𝑘2
∗ = 2250, which are approximately 70% of 𝑘1 and 90% of 𝑘2, respectively. In other words, 

there is 30% reduction in stiffness for 𝑘1 and 10% reduction in 𝑘2.  

 

Nevertheless, if only one  natural frequency of the softened structure (𝑓1
∗ or 𝑓2

∗)  is known, to find 

a unique answer, we need additional information, for example either the stiffness for story 1 or 

the stiffness for story 2 remains the same before and after the event; that is  𝑘1
∗ = 𝑘1 or 𝑘2

∗ = 𝑘2. 

With these, the stiffness can be calculated from the known frequency and stiffness by using either 

Equation 2-12 or Equation 2-13.  

3.3 Four-Degrees-Of-Freedom System 

3.3.1 The Original System 

The system will have the fundamental period of 0.4 second with unit masses and uniform 

stiffnesses of 2000. The four natural frequencies are: 

• 𝑓1 = 2.472 𝐻𝑧 

• 𝑓2 = 7.118 𝐻𝑧 

• 𝑓3 = 10.905 𝐻𝑧 

• 𝑓4 = 13.377 𝐻𝑧  

The Mathcad routines used in this section are given in Appendix B. 

3.3.2 Case of Two Known Frequencies 

Assume that the two given frequencies are 𝑓1
∗ = 2.267 𝐻𝑧  and 𝑓2

∗ = 6.715 𝐻𝑧 . We are to 

determine which story may have reduced stiffness and by how much. In a “damage detection” 
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setting, this could be considered as finding the softened story and the amount of the softening, i.e., 

reduction in stiffness. Since only two frequencies are known, one frequency (𝑓1
∗) will be used to 

determine the amount of the reduction in the stiffness and another frequency (𝑓2
∗) will be used 

select the most likely case. All possible softening scenarios, listed in Table 3-1, are explored where 

the relative stiffness is defined as 𝑘𝑟 =
𝑘∗

𝑘
. The stiffness estimates obtained are then used to 

determine the corresponding frequencies. These frequencies (𝑓𝑐), listed in Table 3-2, are compared 

with the measured (known) frequencies (𝑓1
∗ 𝑎𝑛𝑑 𝑓2

∗) and the case where the frequencies match 

correspond to the softened structure. Table 3-3 shows the relative difference between 𝑓𝑐 and 𝑓∗, 

where Δ𝑓𝑟∗ =
𝑓𝑐−𝑓∗

𝑓∗
. From Table 3-3, case 1 fits the measured frequencies exactly, which 

translates to 30% reduction in the first story stiffness. Again, because only two frequencies are 

known in a 4-DOF system, estimate is limited to a single story.  

3.3.3 Case of Three Known Frequencies 

If three frequencies are provided, the method can be used to determine the cases where the 

softening may be presented in one or, at most, two stories. Let 𝑓1
∗ =  2.192 𝐻𝑧, 𝑓2

∗ = 6.835 𝐻𝑧 

and 𝑓3
∗ = 9.838 𝐻𝑧. All softening cases are explored including the cases where the softening 

happens only at one story. These are shown in Table 3-4 and Table 3-5. The frequencies resulting 

from the calculated stiffnesses for all the considered cases are presented in Table 3-6 and Table 3-

7, and the relative frequency changes are given in Table 3-8 and Table 3-9. One frequency (𝑓1
∗) 

will be used determine the reduced story stiffness for cases where softening occurs in only one 

story. This leaves two frequencies (𝑓2
∗, 𝑓3

∗) which can be used to select the softened story through 

comparison with the calculated frequencies from the stiffnesses. For cases where softening 

happens in two stories, on the other hand, two frequencies (𝑓1
∗, 𝑓2

∗) will be used to quantify the 

softening and one frequency (𝑓3
∗ ) for selecting the most likely case. Other combinations of 

frequencies such as (𝑓2
∗, 𝑓3

∗) and (𝑓1
∗, 𝑓3

∗) can also be used to quantify the softening , and 𝑓1
∗ and 𝑓2

∗ 

to select the correct case. Nevertheless, (𝑓1
∗, 𝑓2

∗) combination and (𝑓3
∗) were used on the rationale 

that the system should satisfy the fundamental frequency and lower modes first. The fundamental 

frequency and lower modes can also be determined more accurately than higher modes.  
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From the tables, Case 6 is the most likely softening scenario; that is 𝑘𝑟2 = 60% and 𝑘𝑟3 = 80%, 

or 40% stiffness reduction in story 2 and 20% in story 3. Also, for Cases 8 and 9 to be possible, 

the resulting stiffness estimates are required to be larger than the original stiffnesses to suit the 

measured frequencies. This is physically unlikely, and it is one of the criteria for case elimination. 

For Case 7, there are no real and positive stiffness 𝑘3
∗ and 𝑘4

∗ to fit the given frequencies. Case 5 

also seems to be a good candidate since the relative change in story 3 frequency Δ𝑓𝑟3
∗ = −0.1%. 

This may be because the mass and stiffness of the system are uniform. If mode 4 frequency is  

known, the solution will converge to the Case 6 as shown in Table 3-10. 

3.3.4 Case of Four Known-Frequencies 

If all four softened structure natural frequencies are known, all cases can be considered. The given 

frequencies are 

• 𝑓1
∗ = 2.233 𝐻𝑧 

• 𝑓2
∗ = 6.634 𝐻𝑧 

• 𝑓3
∗ = 10.256 𝐻𝑧 

• 𝑓4
∗ = 12.666 𝐻𝑧 

All possible scenarios are shown in Table 3-11 through Table 3-14, and the frequencies calculated 

from the stiffnesses in Table 3-15 through  

18. Those frequencies were compared with the given frequencies above and are presented in Table 

3-19 through Table 3-22. From the tables, Case 15 fits the measured frequencies exactly. The result 

indicates that there is 25% reduction in stiffness for story 1 (𝑘𝑟1 = 75%), 15% reduction in 

stiffness for story 2 (𝑘𝑟2 = 85%), 10% reduction in stiffness for story 3 (𝑘𝑟3 = 10%) and 2% 

reduction in stiffness for story 4 (𝑘𝑟4 = 2%). 

3.4 Sensitivity of Frequency Changes to Stiffness Changes 

For 2-DOF system, if the stiffness for story 2 before and after a damaging event remain the same, 

that is 𝑘2 = 𝑘2
∗ , we can study how frequencies change if 𝑘1

∗ varies. Let the relative change in 

frequencies be defined as Δ𝑓𝑟 =
𝑓−𝑓∗

𝑓
. Figure 3-1 shows the relative change in frequencies (Δ𝑓𝑟) 

for both mode 1 and mode 2 versus the relative stiffness 𝑘𝑟1. It indicates that variations in 𝑘1 

produce larger, quadratic changes in mode 1 frequency compared to linear changes in mode 2 
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frequency. Figure 3-2 illustrates the case where 𝑘2 changes (𝑘1
∗ = 𝑘1) result in bigger shifts in 

mode 2 frequencies compared to in mode 1 frequency. In both cases, nevertheless, it takes over 

20% reduction in stiffness to generate over 10% change in frequencies.  

 

Similarly, Figure 3-3 through Figure 3-6 shows how the frequencies change for a 4-DOF system 

when each story stiffness is allowed to vary in turn. For the case where 𝑘2
∗ changes (Figure 3-4), it 

is interesting to note that mode 2 frequency remains constant.  This means that if mode 2 frequency 

is used to determine the stiffness variations, there will be infinitely many answers. This happens 

because all four stiffnesses are the same. Other cases with uniform mass and stiffness up to 20-

DOF system in which stiffness change in a particular story does not lead to changes in some of the 

natural frequencies are shown in Table 3-22. Also, Mode 1 frequency becomes less sensitive to 

changes in stiffness as the reduction in stiffness appears in higher story. 

 

Figure 3-7 to Figure 3-13 presents the cases for 7-DOF system. We can see similar trends as 

observed in the 2-DOF and 4-DOF system. When 𝑘𝑟1 varies, mode 1 frequency is more sensitive 

compared to that of mode 2, mode 2 frequencies are more sensitive than mode 3 frequency and so 

on. Besides, as all the stories are made to have similar stiffnesses, some modal frequencies are 

insensitive to 𝑘𝑟 changes as can be seen in Figure 3-8, Figure 3-9 and Figure 3-11. Figure 3-14 to 

Figure 3-17 illustrate the case for 15-DOF system, Figure 3-18 to Figure 3-21 for 30-DOF system 

and Figure 3-22 to Figure 3-27 for 50-DOF system. Only the first ten modes and selected cases 

are shown. From these figures, as the number of degrees of freedom increases, each mode becomes 

less and less sensitive to a single-story stiffness change. A 50% reduction in the first story stiffness 

for a 50-DOF only lead to less than 2% decrease in mode 1 frequency while for a 4-DOF system 

the drop in the first mode frequency is up to approximately 18%.  

3.5 Effect of Errors in Frequency Estimates to the Calculated Stiffnesses 

For 2-DOF system, let the reduction in stiffness for story 1 be 80% (𝑘𝑟1 = 20%) and 𝑘2 remains 

the same. If 𝑓1
∗  is used to determine 𝑘1

∗  and there is no noise (i.e. no error), the resulting 𝑘𝑟1 

estimate will be exactly 20%. Nonetheless, 𝑓1
∗ obtained from measurements is always not accurate 

and it will affect the calculated 𝑘1
∗  depending on the amount of error. Figure 3-28 shows the 

calculated 𝑘𝑟1 in relation to the error level introduced to 𝑓1
∗, and Figure 3-29 the percent difference 
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from 20%. From the figures, +/-5% error to 𝑓1
∗ will result in approximately 18% and 22% of 𝑘1, 

or roughly 2% deviation from 𝑘𝑟1 = 20%. Nevertheless, if 𝑘𝑟1 = 90% to begin with, 5% error 

will lead up to 10% deviations (Figure 3-30 and Figure 3-31). Figure 3-32 illustrates the effect of 

error in frequency estimate for different cases of 𝑘𝑟1. It appears that the smaller reductions in 

stiffness are more sensitive to error. Figure 3-33 shows the case where 𝑓1
∗ is used to determine 𝑘𝑟2 

assuming 𝑘1
∗ = 𝑘1. From the graph, 𝑘𝑟2 is much more sensitive to error especially when it is on 

the positive side. If 𝑓2
∗  is used to determine 𝑘𝑟1  and 𝑘𝑟2  assuming 𝑘2  and 𝑘1  remain the same 

respectively, the results are the reverse which can be seen in Figure 3-34 and Figure 3-35.  

 

Figure 3-36 to Figure 3-39 shows the same plots for a 4-DOF system. They also follow the same 

trends as the 2-DOF system. The more initial reduction in stiffness the less sensitive it is to the 

error in frequency estimate. The graphs are not symmetric around the zero point and the negative 

parts are less sensitive. The effect of error also increases dramatically as the erroneous 𝑓1
∗ is used 

to determine higher story stiffness especially for the positive error (estimate higher than actual 

frequency). For example, for the case where 𝑘𝑟 = 50%, 2% error to 𝑓1
∗  produces around 4% 

difference from 𝑘𝑟1 = 50% whereas around 30% difference from 𝑘𝑟4 = 50%. Figure 3-40 to 

Figure 3-43 illustrates the similar graphs for 7-DOF, 15-DOF, 30-DOF and 50-DOF system for 

𝑘𝑟1 and error in 𝑓1
∗ cases. As previously noted, as the number of the degree of freedom increases, 

the error becomes more influential.  

3.6 Considerations in the Application of the Method 

The presented sensitivity and insensitivity of the stiffness change to frequency change and vice 

versa are inherent to all damage detection methods that use frequency data to determine the 

stiffness reductions. Errors in the frequency estimates are always present and therefore errors in 

the stiffness calculations are expected.  The proposed method calculates the stiffness directly from 

the given partial list of natural frequencies without using optimization techniques which often 

introduce additional errors to the stiffness estimates. This method presents the use of given limited 

frequency data to assess the reductions in the stiffness in the structures.  

 

Table 3-23 and Table 3-24 show the percentage of noise introduced to f1 to produce less than 10% 

errors in the estimate of kr1 for different structures with uniform mass and stiffness. As can be 
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seen, structures with fewer degrees of freedom and with higher reduction in the stiffness can 

tolerate more error in the estimated frequencies. In this research, because the fundamental and 

lower mode frequencies can be determined from the response data with greater confidence 

compared with higher modes, fundamental and, where possible and necessary, lower mode 

frequencies are used to determine the stiffness reductions, while the higher mode frequencies are 

used to choose the most likely case.  

 

Since all possible cases are to be explored, the amount of computational operations can rise 

dramatically as the number of the degrees of freedom increases. For instance, for a 4-DOF system, 

if all modal frequencies are known, there will be 4 possible cases of softening at one story, 6 cases 

of softening at two stories, 4 cases of softening at three stories and one case of softening at all 

(four) stories. The total cases for the 4-DOF will be 15. For 10-DOF, following the same logic, 

there will be up to 1013 cases. Nonetheless, since not all modal frequencies are known, the 

maximum number of stories with reduced stiffness that can be considered is limited and, as such, 

total number of possible cases investigated is usually smaller than the maximum total if all modal 

frequencies are known.  
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4. EXPERIMENTAL STUDIES 

4.1 Introduction 

An experiment was proposed to determine whether partial set of frequency data could be used to 

determine the reduction in the stiffness in a physical laboratory model using the method described 

in Chapter 2 and illustrated using numerical simulations. A small scale five-story shear building 

model was built out of aluminum. The structure is idealized as a five-DOF spring-mass system. 

The floors of the model is stiff to achieve the shear building assumptions. The damping is also 

small so the undamped natural frequencies are almost the same as the damped ones. Ten columns 

were used to support each floor. To simulate various levels of reduction in stiffness, different 

numbers of columns were removed. A unidirectional earthquake simulator, also known as a shake 

table, was used to feed harmonic signals to the base of the model. The frequencies of the models 

before and after the softening can then be obtained by studying response data. The frequencies are 

then used to determine where and how much reductions in the story stiffnesses occur. 

4.2 Experimental Programs 

4.2.1 Modal Description 

The aluminum model was constructed as shown in Figure 4-1. The floors are made of 0.375 in. 

thick 6 in. x 6 in. plates. They are supported by 7-in. tall columns on two sides of the plates (5 

columns on each side). The columns were clamped and bolted through angles and plates (Figure 

4-2), creating ideally fixed-fixed boundary conditions for the columns. The specified dimensions 

of the aluminum elements and bolts for the models are shown in Table C-1 in Appendix C. Thicker 

plates (0.04 in.) are used for the four corner columns while thinner plates (0.032 in.) for the inner 

columns. Two plates of the same type are bundled together to create the columns for the lower 

three stories; hence, the stiffness for story 1 through story 3 are about twice the stiffness for story 

4 and story 5.  

4.2.2 Test Setup 

The test set up is shown in Figure 4-3 and Figure 4-4. To measure the displacements, two 

OptiTrack cameras were placed perpendicular to the plane of motion of the model. The specimen 
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was attached to the shake table which provided uniaxial motion in the flexible directions of the 

supporting columns. The cameras were able to sample at 250 points per second. Reflective tapes 

were cut into circular shapes and fixed on various locations on the floor plates to track the 

movement as shown in Figure 4-4. To determine the individual story stiffness, the specimen was 

dissembled into its single stories and set up as shown in Figure 4-4 and Figure 4-6. The equipment 

specifications and calibration, and data acquisition system are described in the Appendix C.  

4.2.3 Test Procedures 

The properties of the original system such as mass and stiffness are determined first. The mass can 

be measured directly from components of the model while the stiffness can be calculated from the 

applied force and observed displacement. The frequencies of the original system can also be 

obtained from the displacement signals. The shake table is used to provide harmonic motions at 

the base of the specimen and at excitation frequencies near all five natural frequencies of the 

structure. The model is then let freely vibrate and the natural frequencies are extracted from the 

displacement signals at similar amplitudes by using Fourier Spectra of the displacement signal 

(using Fast Fourier Transform). The frequencies obtained are used to determine the stiffness which 

will be compared with the stiffness obtained from other tests.  

 

To simulate the damage and reduce the stiffness of the system, columns are removed from the 

structure. The change in the mass is assumed to be negligible and ignored. The softened model is 

then shaken to determine the softened structure natural frequencies which will be used to determine 

the amount of reduction in stiffness by comparing the reduced stiffness with the original one. 

Different softening scenarios are explored. As discussed before, the number of frequencies 

obtained should be larger than the number of the softened stories so that the softened case can be 

identified. The columns and floor plates were also labeled so that the removed columns and the 

plates can be placed back at the same locations and orientation as the original system to minimize 

errors. The columns were removed in pairs and in such a way that no torsion is introduced to the 

structure.  
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4.2.3.1 Measuring Displacements 

Two OptiTrack cameras were used to track the motion of the specimen. They were placed at 

different heights and angles facing the model. Reflective tape was cut into circular polygons and 

taped on the following locations on the aluminum tower: 

• Three evenly spaced on every floor plate 

• Two on the shake table 

These are the tracking points for the cameras and shown in Figure 4-4. The sampling frequencies 

of the system was 250 Hz whereas the highest expected frequency measured is around 14 Hz. 

Therefore, aliasing is not be an issue. 

4.2.3.2 Measuring Mass 

The mass of one story was defined with the following parts: 

• Floor plate (1) 

• Angle sections (4) 

• Bar sections (4) 

• Column Plates (10/20) 

• ¼” ⌀ 1” LG bolt and nut (4) 

• ⅛” ⌀ ½” LG bolt, nut, and washer (10) 

Mass of the columns in a given story is assumed to be distributed equally between the floor below 

and the floor above. The top floor mass is lighter than other floors since the two bar sections, bolts, 

nuts and washers are not present. The combined mass of each story is measured by the Ohaus 

SP6000 scale and shown in Table 4-1. 

4.2.3.3 Determining Stiffness from Force and Displacement 

Two types of test were made to determine the story stiffnesses. In the first type, the model was 

disassembled, and each story was tested individually. Lateral load was applied incrementally and 

resulting lateral displacement was recorded. The slope of the force-displacement curve gave the 

stiffness of the story. The second test, on the other hand, was carried out on the full model. The 

load was applied slowly (“quasi-statically”) to avoid generating dynamic forces. The load was 

applied at one floor at a time and the displacements were recorded for every floor. The resulting 
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displacements were used to assemble the flexibility matrix for the whole structure. The stiffness 

can be calculated from the inverse of the flexibility matrix. 

 

For the first test, a crude, but effective, method was devised using a dial gage, load cell, and two 

steel beams. The Federal dial gage was used to measure the displacements while the CALT load 

cell was used to measure the load. The butterfly screw can be turned to push or release the load 

cell, locking the screw in place. The story stiffnesses obtained are summarized in Table 4-2. The 

story stiffnesses were measured again for various column configurations. Two columns were 

removed successively in each case and the story stiffness relative to the original stiffness for the 

lower three stories are listed in Table 4-3 and for the upper two stories in Table 4-4. From the 

tables, removing a pair of columns results in approximately 17% reduction in the story stiffness. 

This number would have been 20% if identical strips were used as column plates. However, as 

mentioned above, thicker strips were used at the four corners of the model. 

 

Using quasi-static loading, five tests were conducted. In each test, the model was loaded three 

times. Since the force and displacements were known, the stiffness can be calculated and averaged 

for all the trials. The results are shown in the Table 4-5. These values differ from those obtained 

from the first test in which individual stories were loaded. This may be because the two models, 

full model and individual stories as single-story specimens do not have the same boundary 

conditions. The variations in stiffness values are less than 15% as shown in Table 4-6. 

4.2.3.4 Determining Frequencies from Displacement Signals 

The model was shaken at near resonance frequency one mode at a time and then let vibrate freely. 

The displacement signals with similar amplitudes were used in all tests. They were decomposed 

to determine what the frequency contents are using the Fast Fourier Transform function in Matlab. 

Several tests were conducted for different softening  scenarios. Even though the frequencies 

obtained from each scenario were similar, they were averaged before being used to determine the 

stiffness values.  
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4.3 Results and Discussions 

4.3.1 System Identification of the Original Model 

A total number of 44 tests were made on the original model to identify all natural frequencies. The 

full results were shown in Table 4-7, and the summary is given below. 

• Mode 1: 2.07 Hz, 0.41% damping ratio 

• Mode 2: 5.23 Hz, 0.28% damping ratio 

• Mode 3: 8.73 Hz, 0.26% damping ratio 

• Mode 4: 10.61 Hz, 0.41% damping ratio 

• Mode 5: 13.98 Hz, 0.82% damping ratio 

The damping ratios for the modes are small and therefore the damped natural frequencies 

determined will be very close the undamped natural frequencies. The free vibration signals to 

determine the damping ratios are shown in Figure 4-7 to Figure 4-11 

 

Using the stiffness determined by the “quasi-static” test and mass obtained earlier, the frequencies 

do not match with frequencies determined by the dynamic test exactly. Using the LiPIEP algorithm 

with the measured frequencies as the input, the stiffness of each story is estimated and shown in 

Table 4-9. The input frequencies also needed to be adjusted so that they are close to the measured 

frequencies and the differences in the stiffness are minimal.  Differences are occurring naturally 

because of the discrete model representation of an actual structure. It shows that the difference 

between the stiffness are within 3% while the differences in frequencies are below 0.7%. The 

stiffness estimates based on dynamic tests, given in Table 4-9, will therefore be used for the 

following tests. 

4.3.2 Experiment 1: Two Columns Removed from the First Story and Two Modes Known 

Two columns were removed from the first story (Figure 4-12). This will result in approximately 

17% reduction in the stiffness. Since two modes are known and the softening is only in one story, 

one frequency (the first mode) can be used to determine the severity of the softening  and the other 

modal frequency (mode 2) to locate which story is the most likely story with the softening. 12 tests 

were conducted to determine the softened frequencies. From those, the two softened frequencies 

are 

• Mode 1: 2.01 Hz 
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• Mode 2: 5.07 Hz 

Results are shown in Table 4-10. Different cases in which the softening can happen in a single 

story are shown in Table 4-11, along with Table 4-12 which shows the frequencies corresponding 

to the softening cases. The relative frequency differences are listed in Table 4-13. From the table, 

it is likely that the softening  happened at the first story with 19% reduction in stiffness, compared 

with the supposed reduction of approximately 17%.  

4.3.3 Experiment 2: Four Columns Removed from the Third Story and Two Modes 

Known 

Similar to the Experiment 1, with two modes known, the location and the amount of the softening 

can be determined. Nine tests were conducted after four columns were removed from the story 3 

and the results are shown in Table 4-14. The first two modal frequencies are 

• Mode 1: 1.93 Hz 

• Mode 2: 5.14 Hz 

There will be a total of five scenarios which are shown in Table 4-15, with the corresponding 

frequencies shown in Table 4-16. The differences between the frequencies are given in Table 4-

17. From the table, the most likely case is Case 3 where the reduction in the stiffness happens at 

story 3 with a relative stiffness of 52.3%. With four columns removed from story 3, the relative 

stiffness should be 49.5%. This represents approximately 3% error.    

4.3.4 Experiment 3: Two Columns Removed from the Third Story and Two Modes 

Known 

A total of 9 tests were conducted and the measured frequencies are 

• Mode 1: 2.03 Hz 

• Mode 2: 5.12 Hz 

The full test results are shown in Table 4-18. A process similar to Experiment 1 and Experiment 2 

is followed, and all cases are shown in Table 4-19. Table 4-20 and Table 4-21 show the frequencies 

and relative changes, respectively. From the results, it appears that Case 2 (i.e., softening in second 

story) is the softening scenario. However, this was not the case, which may be due to noise in 

measurements. If mode 3 is also known, the frequencies and relative differences are presented in 

Table 4-22 and Table 4-23. From that Case 3 seems more likely with the relative stiffness of 
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approximately 77%, or 23% reduction in stiffness. The supposed reduction should be around 17%, 

nonetheless.  

4.3.5 Experiment 4: Two Columns Removed from the First Story and the Second Story 

and Three Modes Known 

For the Experiment 4, two softened stories were simulated by removing two columns from the first 

story and two from the second story. Since now three frequencies are known, it is assumed that 

the softening can happen in two stories or in a single story. The number of possible cases is 15. 

Twelve tests were conducted and shown in Table 4-24. The results are 

• Mode 1: 1.95 Hz 

• Mode 2: 5.06 Hz 

• Mode 3: 8.59 Hz 

All of the softening scenarios are shown in Table 4-25 to Table 4-27 with the corresponding 

frequencies given in Table 4-28 to Table 4-30. There are cases that are blank, which means there 

was no solution that meets the criteria or that at least one of the stiffness coefficients increases 

compared to the corresponding original stiffness value. These cases can be eliminated. The 

comparisons with the measured frequencies are shown in Table 4-31 to Table 4-33. From the tables, 

the most likely case was scenario 6 with the relative stiffness of 90.2% and 70.2% for the story 1 

and story 2 respectively. The value, nonetheless, should be 82.6% for both stories.  

4.3.6 Experiment 5: Six Columns Removed from the First Story, Four Columns Removed 

from the Second Stories and Three Modes Known 

For Experiment 5, six columns were removed from the first story and four columns were removed 

from the second story. A total of 11 tests were conducted and the measured frequencies are  

• Mode 1: 1.69 Hz 

• Mode 2: 4.62 Hz 

• Mode 3: 8.06 Hz 

The full test results are shown in Table 4-34. All possible scenarios are shown in Table 4-34,  Table 

4-36 and Table 4-37. The corresponding natural frequencies and relative differences are listed in 

Table 4-38 to Table 4-43. From these results, the most likely scenario is Case 6 which is true in 

this experiment. The stiffnesses are 44.7% of original k1 and 70.2% of original k2, compared to 

51.7% and 67.8%.  
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4.3.7 Experiment 6: Two Columns Removed from the Third Story, Four Columns from 

the Fourth Story, and Three Modes Known 

This experiment simulated two-story softening in upper stories, story 3 and story 4. 12 tests were 

conducted to determine the softened structure natural frequencies. From those, the first two natural 

frequencies are 

• Mode 1: 1.95 Hz 

• Mode 2: 4.79 Hz 

• Mode 3: 8.45 Hz 

The full test results are shown in Table 4-44. Table 4-45 to Table 4-47 shows all softening cases 

with the corresponding frequencies given in Table 4-48 to Table 4-50. The relative frequency 

differences ae shown in Table 4-51 to Table 4-53. The most likely scenario is Case 8, which is the 

actual setting. The stiffnesses are 82.1% of original k1 and 67% of original k2, compared to 83.2.7% 

and 67.7%. 

4.3.8 Experiment 7: Two Columns Removed from the First Story, Two Columns 

Removed from the Second Story, Two Columns from the Third Story and Four 

Modes Known 

Three softened stories case was simulated in this experiment and therefore at least four known 

measured frequencies are necessary. 23 tests were conducted and shown in Table 4-54. The 

measured frequencies are 

• Mode 1: 1.91 Hz 

• Mode 2: 5.05 Hz 

• Mode 3: 8.29 Hz 

• Mode 4: 10.1 Hz 

Since four modes are known, the cases where softening happened in at most three stories can be 

explored and the fourth mode can be used to locate the softening. The total number of cases is 25. 

All the considered cases were shown in Table 4-55 to Table 4-59 with the corresponding 

frequencies in Table 4-60 to Table 4-64. Those frequencies were compared with the measured 

frequencies and shown in Table 4-65 to Table 4-69. From that, the mostly likely case is Case 16 

which indicates that the lower three stories have reductions in stiffness, which is indeed the actual 

setting. The relative stiffnesses are estimated to be 90.5%, 72.9% and 73.9% for story 1, story 2 

and story 3, respectively. The value should be 82.6% for all those three stories.  
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4.3.9 Experiment 8: Two Columns Removed from the First Story, Four Columns 

Removed from the Second Story, Two Columns from the Third Story and Four 

Modes Known 

This experiment is similar to the Experiment 7. Two additional columns were removed from the 

second story. A total of 14 tests were conducted and the measured frequencies are:  

• Mode 1: 1.88 Hz 

• Mode 2: 5.01 Hz 

• Mode 3: 8.34 Hz 

• Mode 4: 10.19 Hz 

The full test results are shown in Table 4-70. All cases were shown in Table 4-71 to Table 4-75 

with the accompanying frequencies in Table 4-76 to Table 4-80. The comparisons of the 

frequencies are presented in Table 4-81 to Table 4-85. From the tables, the most likely scenario is 

Case 16, which is true. The stiffnesses are 87.2% of original k1 and 64.6% of original k2 and 80.7% 

of original k3, compared to 83.2.7%, 67.7% and 83.2.7% respectively. 
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5. APPLICATION TO A BUILDING 

5.1 Introduction 

Suita et al. (2015) tested a 1/3-scale 18-story steel moment frame building on E-Defense 

earthquake simulator. The building was subjected to several ground motions, with increasing 

intensity, along one of its principal axes. The scaled motion intensity was represented by the value 

of the nearly constant pseudo response velocity obtained for 5% viscous damping ratio. The 

excitations increased from small amplitude to the design level and then further to cause collapse 

of the building. The damage to the building starts with cracks at welded connections of the beam 

ends and fracturing at their flanges at lower stories. The data given by Suita et al. (2015) are used 

to determine the reductions in the stiffness using the natural frequency data before and after the 

first observable damage occurred. The building is modeled as a planar, multiple-degree-of-

freedom spring-mass system.  

5.2 Building Description and Damage Progression 

The plan and elevation views of the building, along with information about its structural elements, 

are shown in Figure 5-1. The typical floor is 5m by 6m with 5cm-thick concrete slab supported by 

four steel beams.  Along the Y-axis, there are two 3-bay steel frames each of which consists of 

four 200mm x 200mm square-hollow-section columns. The base input motion was only in the Y-

direction. Table 5-1 lists the input motion level as well the progression of damage in the structure. 

As can be seen, cracks to the welded connections started to appear at the beam ends at 2nd to 5ft 

floors when the pseudo response velocity was increased to 180 cm/s.  The first observed fractures 

at the beam flanges occurred at the 2nd floor with the pseudo response velocity of 220 cm/s. The 

collapse of the building happened when the pseudo velocity response reached 420cm/s. The natural 

frequencies before and after the first fractures (at 220cm/s) were determined to identify the 

reduction in the stiffness that happened during the event. 
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5.3 Analysis Procedures 

5.3.1 Estimating the Building Frequencies 

The natural frequencies before the fractures occurred were determined by producing the transfer 

function of the response of the roof to ground input motion along the Y-direction at pseudo velocity 

response of 17cm/s. At this velocity, the building was undamaged and expected to remain linear. 

The frequencies obtained are taken to represent the natural frequencies of the original system. 

There were two accelerometers placed at the opposite corners of the building (Suita et al., 2015). 

The average acceleration recorded by these two accelerometers is used as the input. The resulting 

transfer function for translational motion are given in Figure 5-2 with 0.88Hz, 2.69Hz, 4.88Hz, 

and 7.03Hz identified as the natural frequencies for mode 1, mode 2, mode 3 and mode 4. 

Additionally, half of the difference of the accelerations recorded at the two opposite corners of the 

building are used to produce the transfer function associated with torsional motion (Figure 5-3). 

There torsional mode frequencies are found to be at 3.96Hz and 6.79Hz.  A planar SAP2000 (CSI, 

2019) computer model (Figure 5-4) was also built to compare the translational frequencies.  Both 

sets of frequencies appear to agree well (Table 5-2). Similar procedures were followed for the 

response observed during the shaking at 220cm/s pseudo-velocity intensity. However, to limit 

nonlinearities in the transfer function estimate, only the last 80 seconds of the motion observed 

during the 220cm/s pseudo-velocity intensity input motion were considered. From Figure 5-5 and 

Figure 5-6, the first four translational frequencies are identified at 0.83Hz, 2.54Hz, 4.59Hz and 

6.69Hz. 

 

5.3.2 Estimating Building Mass and Story Stiffnesses 

A spring-mass model, representing the behavior of the frames in the direction of the base excitation, 

is constructed. The building lumped mass can be estimated from the structural elements and is 

given in Table 5-3. The story stiffnesses can be calculated by combining the lateral stiffness of the 

individual columns or from the SAP2000 (CSI, 2019) computer model by finding the ratios of the 

story shears and story drifts. Using these stiffness values in the spring-mass model, however, do 

not produce natural frequencies matching all of the measured frequencies for the translational 

modes in the direction of the base excitation. This is because the building is three dimensional and 

has torsional response besides its translational response. If the stiffness values of the spring-mass 
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system representing the planar frame and translational response only are adjusted to produce the 

exact measured translational mode frequencies, they will lead to unreasonable stiffness distribution 

in the model. For this study, only the first two translational mode frequencies, along the same 

direction of the base excitation, were matched since the third mode of the building is a torsional 

one. The resulting stiffness distributions are shown in Table 5-3. To determine the reductions in 

stiffness in the building, only the first two translational frequencies are used.  

5.3.3 Estimating the Reduction in the Stiffnesses 

Since only two frequencies are used to determine reductions in the stiffness, there are only 16 

possible cases of story softening. As fractures at the beam flanges were observed at 2nd floor, it is 

expected that the reductions in the stiffness should happen at the first and second stories. If the 

flange fractures changed all column boundary conditions from fixed-fixed to fixed-pinned in a 

story, the reduction in the lateral stiffness of columns in that story should be 50%, i.e. from 12IE/L3 

to 6EI/L3 for each column.  

5.4 Analysis Results and Discussion 

Table 5-4 and Table 5-5 show the relative stiffness when the softening is assumed to happen at a 

single story. Table 5-6 and Table 5-7 show the relative natural frequency differences. From the 

overall trend, it appears that the softening is more likely to occur at lower stories than in the upper 

ones. If cases with no more than 2% difference between the observed and estimated natural 

frequencies are considered, the likely cases are Case 1, Case 2, Case 3 and Case 10 where the 

softening happens at story 1, story 2, story 3 and story 10, respectively. The reductions in the 

stiffnesses are 60% for story 1, 62% for story 2, 72% for story 3 and 65% for story 10 for those 

four likely cases. The cases that are closest to the measured frequencies are Case 2 (softening at 

story 2) and Case 10 (softening at story 10). If there was no other information, it would not be 

possible to pinpoint a unique case. However, this information may be useful as it also indicates a 

few likely locations to focus on during possible inspection. The challenge of applying the method 

to this building includes the fact that 1) the stiffness distribution of the building cannot represent 

all the measured translational modes as the building is three dimensional and has torsional modes, 

and 2) in a system with large number of degrees of freedom like this structure, small variations in 
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natural frequencies can lead to large changes in stiffness (Table 3-24 and 3-25).  The application 

of the method to a 7-story RC building is shown in Appendix D.   
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6. SUMMARY AND CONCLUSION 

6.1 Summary 

Vibration-based structural monitoring methods use changes in dynamic properties of the system, 

such as changes in its natural frequencies and modeshapes, to detect the presence, location, and 

extent of damage in the structure. Because of limited instrumentation, not all natural frequencies 

and modeshapes can be obtained from dynamic response data. Modeshapes are harder to obtain 

when the instrument locations are spread sparsely over the building. Often, only a partial list of 

natural frequencies can be observed. Cheng (2017) developed a response-phase-difference-based 

technique to identify multiple natural frequencies of a building even if limited response data are 

available. If a partial list of natural frequencies is used to monitor changes in the structural system 

of a building, compromise needs to be made to discover and measure the locations and extent of 

softening in structural elements. Hassiotis and Jeong (1995) proposed a method to use an 

incomplete list of natural frequencies to determine the reduction in stiffness by using optimization 

method. In this research, the algorithm to solve Linear Parameterized Inverse Eigenvalue Problem 

provided by Podlevskyi & Yaroshko (2013) was adopted to determine the stiffness configuration 

of a structure directly, i.e., without optimization, where discrete spring-mass dynamic models may 

be used to represent the building.  

 

The method was applied to 2-DOF and 4-DOF numerical models with various softened spring 

cases. The computed reduced stiffnesses were used to determine the corresponding natural 

frequencies. The case which produces the closest frequencies to the given frequencies is the most 

likely case. In these numerical model studies, the presented method can locate and quantify the 

reductions in the stiffness values correctly. Sensitivity of changes in natural frequency to changes 

in stiffness are also studied. For the case where the softening happens only in a single story, it 

appears that natural frequencies become less and less sensitive to the stiffness change as the 

number of the degrees of freedom increases, while the noise effects become more and more 

prominent. This means that the measured natural frequencies need to be accurate to produce correct 

stiffness especially for higher degree of freedom systems. In the case where the discretized 
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structural model has uniform mass and uniform stiffness throughout, stiffness changes in some of 

the springs, representing story structural elements collectively, do not always lead to changes in 

the frequencies in some of the natural modes (Table 3-23).  

 

To test the technique, eight experiments were conducted on a small scale five-story aluminum 

laboratory model. The model was composed of 7 in. x 7 in. x 0.375 in. plates supported by 10 

columns in each story. A small-scale earthquake simulator (“shake table”) was used to provide 

harmonic excitation at the base of the model. Displacement responses of the specimen were 

recorded by two OptiTrack cameras. The acquired signals were examined to determine the natural 

frequencies of the model using Fast Fourier Transform. To simulate reduction in stiffness, various 

combinations of columns were removed from the model. The natural frequencies before and after 

removal of columns were obtained and used to determine the reductions in the stiffness of the 

structure. Cases where damage was introduced in up to three stories were studied. The proposed 

method can locate and quantify the extent of damage in the studied cases. 

 

The method was also applied to study a 1/3 scaled 18-story moment resisting frame to identify the 

reduction in the stiffness due to the fractures at the beam flanges at the 2nd floor. The building was 

subjected to ground motions with increased intensity until collapse. The natural frequencies before 

and after the fractures occurred were identified. Only the first two translational modal frequencies 

are used to determine the reductions in the stiffness since the third mode of the tower is torsional 

and no reasonable stiffness distribution can represent all of the measured translational modes.  The 

method produces possible cases of the softening assumed to occur at a single story.  

6.2 Conclusion 

The proposed method can identify reductions in the stiffness of spring-mass systems using only 

partial natural frequency data, as illustrated with the presented numerical and experimental studies. 

If the number of known frequencies is larger than the number of the softened stories, the method 

offers a set of stiffness configurations. In some cases of structures with uniform stiffness and mass, 

certain modes could be insensitive to variations in stiffness at particular locations (Table 3-23). If 

those modes are used to determine the reductions in the stiffness at those particular locations, many 

possible solutions might be found. Nonetheless, this can be mitigated by using modes that are 
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sensitive to stiffness changes at those positions instead. The method can also be applied to 

buildings. Nonetheless, the challenges include 1) the presence of torsional modes which cannot be 

captured by a spring-mass model representing in-plane response of frame and 2) the measured 

frequencies might be influenced by soil-structure interaction or nonlinearities in the response of 

the buildings.  
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TABLES 

 

 

Table 3-1 4-DOF (Two known frequencies): Cases of Single Softened Story 

Case 1 2 3 4 

kr1 70% 100% 100% 100% 

kr2 100% 64% 100% 100% 

kr3 100% 100% 51% 100% 

kr4 100% 100% 100% 25% 

 

Table 3-2 4-DOF (Two known frequencies): Single Softened Story Frequencies 

Case 1 2 3 4 

f1
c (Hz) 2.267 2.267 2.267 2.267 

f2
c
 (Hz) 6.716 7.118 6.235 4.801 

f3
c (Hz) 10.614 9.985 10.651 9.196 

f4
c
 (Hz) 13.286 12.761 12.132 12.890 

 

Table 3-3 4-DOF (Two known frequencies): Relative Frequency Difference 

Case 1 2 3 4 

Δfr1
*  0.0% 0.0% 0.0% 0.0% 

Δfr2
*  0.0% 6.0% -7.2% -28.5% 

 

Table 3-4 4-DOF (Three known frequencies): Cases of Single Softened Story 

Case 1 2 3 4 

kr1 62% 100% 100% 100% 

kr2 100% 56% 100% 100% 

kr3 100% 100% 42% 100% 

kr4 100% 100% 100% 20% 
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Table 3-5 4-DOF (Three known frequencies): Cases of Two Softened Stories 

Case 5 6 7 8 9 10 

kr1 79% 100% 100% 61% 59% 100% 

kr2 68% 60% 100% 100% 100% 57% 

kr3 100% 80% - 100% 128% 100% 

kr4 100% 100% - 139% 100% 81% 

 

Table 3-6 4-DOF (Three known frequencies): Single Story Softened Frequencies 

Case 1 2 3 4 

f1
c (Hz) 2.192 2.192 2.192 2.192 

f2
c
 Hz) 6.592 7.118 5.996 4.458 

f3
c (Hz) 10.541 9.681 10.572 9.116 

f4
c
 (Hz) 13.266 12.665 11.973 12.875 

 

Table 3-7 4-DOF (Three known frequencies): Two Story Softened Frequencies 

Case 5 6 7 8 9 10 

f1
c (Hz) 2.192 2.192 - 2.192 2.192 2.192 

f2
c
 (Hz) 6.835 6.835 - 6.835 6.834 6.835 

f3
c (Hz) 9.832 9.839 - 11.266 10.532 9.47 

f4
c
 (Hz) 12.789 12.062 - 14.012 14.121 12.264 

 

Table 3-8 4-DOF (Three known frequencies): Single Story Softened Frequency Difference 

Case 1 2 3 4 

Δfr1
* (%) 0.0% 0.0% 0.0% 0.0% 

Δfr2
* (%) -3.6% 4.1% -12.3% -34.8% 

Δfr3
* (%) 7.1% -1.6% 7.5% -7.3% 

 

Table 3-9 4-DOF (Three known frequencies): Two Stories Softened Frequency Difference 

Case 5 6 7 8 9 10 

Δfr1
* (%) 0.0% 0.0% - 0.0% 0.0% 0.0% 

Δfr2
* (%) 0.0% 0.0% - 0.0% 0.0% 0.0% 

Δfr3
* (%) -0.1% 0.0% - 14.5% 7.1% -3.7% 
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Table 3-10 4-DOF (Three known frequencies): Additional Fourth Frequency Known 

Case 11 

kr1 100% 

kr2 60% 

kr3 80% 

kr4 100% 

 

Table 3-11 4-DOF (Four known frequencies): Single Softened Story Cases 

Case 1 2 3 4 

kr1 66% 100% 100% 100% 

kr2 100% 60% 100% 100% 

kr3 100% 100% 46% 100% 

kr4 100% 100% 100% 23% 

 

Table 3-12 4-DOF (Four known frequencies): Two Softened Stories Cases 

Case 5 6 7 8 9 10 

kr1 64% 100% 100% 66% 67% 100% 

kr2 106% 71% 100% 100% 100% 62% 

kr3 100% 69% - 100% 98% 100% 

kr4 100% 100% - 98% 100% 72% 

 

Table 3-13 4-DOF (Four known frequencies): Three Softened Stories Cases 

Case 11 12 13 14 

kr1 78% 65% 70% 100% 

kr2 83% 100% 91% 71% 

kr3 86% 117% 100% 68% 

kr4 100% 86% 93% 104% 
 

Table 3-14 4-DOF (Four known frequencies): Four Softened Stories 

Case 15 

kr1 75% 

kr2 85% 

kr3 90% 

kr4 98% 
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Table 3-15 4-DOF (Four known frequencies): Single Softened Story Cases 

Case 1 2 3 4 

f1
c (Hz) 2.233 2.233 2.233 2.233 

f2
c
 (Hz) 6.658 7.118 6.121 4.628 

f3
c (Hz) 10.579 9.842 10.613 9.154 

f4
c (Hz) 13.277 12.713 12.051 12.882 

 

Table 3-16 4-DOF (Four known frequencies): Two Softened Stories Cases 

Case 5 6 7 8 9 10 

f1
c (Hz) 2.233 2.233 - 2.233 2.233 2.233 

f2
c (Hz) 6.634 6.634 - 6.634 6.634 6.634 

f3
c (Hz) 10.693 10.185 - 10.519 10.58 9.486 

f4
c (Hz) 13.402 11.850 - 13.243 13.206 12.188 

 

 

Table 3-17 4-DOF (Four known frequencies): Three Softened Stories Cases 

Case 11 12 13 14 

f1
c (Hz) 2.233 2.233 2.233 2.233 

f2
c
 (Hz) 6.634 6.634 6.634 6.634 

f3
c (Hz) 10.256 10.256 10.256 10.256 

f4
c (Hz) 12.540 13.621 13.016 11.910 

 

Table 3-18 4-DOF (Four known frequencies): Four Softened Stories 

Case 15 

f1
c (Hz) 2.233 

f2
c (Hz) 6.634 

f3
c (Hz) 10.256 

f4
c (Hz) 12.666 
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Table 3-19 4-DOF (Four known frequencies): Single Story % Difference 

Case 1 2 3 4 

Δfr1
* (%) 0.0% 0.0% 0.0% 0.0% 

Δfr2
* (%) 0.4% 7.3% -7.7% -30.2% 

Δfr3
* (%) 3.1% -4.0% 3.5% -10.7% 

Δfr4
* (%) 4.8% 0.4% -4.9% 1.7% 

 

Table 3-20 4-DOF (Four known frequencies): Two Stories % Difference 

Case 5 6 7 8 9 10 

Δfr1
* (%) 0.0% 0.0% - 0.0% 0.0% 0.0% 

Δfr2
* (%) 0.0% 0.0% - 0.0% 0.0% 0.0% 

Δfr3
* (%) 4.3% -0.7% - 2.6% 3.2% -7.5% 

Δfr4
* (%) 5.8% -6.4% - 4.6% 4.3% -3.8% 

 

Table 3-21 4-DOF (Four known frequencies): Three Stories % Difference 

Case 11 12 13 14 

Δfr1
* (%) 0.0% 0.0% 0.0% 0.0% 

Δfr2
* (%) 0.0% 0.0% 0.0% 0.0% 

Δfr3
* (%) 0.0% 0.0% 0.0% 0.0% 

Δfr4
* (%) -1.0% 7.5% 2.8% -6.0% 

 

Table 3-22 4-DOF (Four known frequencies): Four Stories % Difference 

Case 15 

Δfr1
* (%) 0.0% 

Δfr2
* (%) 0.0% 

Δfr3
* (%) 0.0% 

Δfr4
* (%) 0.0% 
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Table 3-23 System with Insensitive Frequencies to Stiffness Change 

DOF 

Story at which stiffness 

variation does not lead to 

change in natural frequency of 

one or more modes 

Mode with frequency 

not changing   

4 2 2 

7 

5 3 

3 2,5 

2 3 

10 

8 4 

5 4 

4 2,5,8 

2 4 

12 
8 3,8 

3 3,8 

13 

11 5 

8 5 

5 2,5,11 

2 5 

16 

14 6 

11 6 

8 6 

6 2,5,8,11,14 

5 6 

2 6 

17 

13 4,11 

11 3,8,13 

8 4,11 

4 3,8,13 

3 4,11 

19 

17 7 

14 7 

11 7 

8 7 

7 2,5,8,11,14,17 

5 7 

2 7 

 

 



42 

 

 

 

 

Table 3-24 Percent of Noise Introduced to f1 to Produce less than 10% Error in kr1 (kr1 = 50%) 

% Noise Introduced to f1 

2-DOF 4-DOF 7-DOF 15-DOF 30-DOF 50-DOF 

-9% to 8% -7% to 6% -5% to 4% -3% to 2% -2% to 1% -1% to 1% 

 

Table 3-25 Percent of Noise Introduced to f1 to Produce less than 10% Error in kr1 (kr1 = 90%) 

% Noise Introduced to f1 

2-DOF 4-DOF 7-DOF 15-DOF 30-DOF 50-DOF 

-5% to 4% -3% to 2% -2% to 1% -1% to 1% -0.5% to 0.3% -0.3% to -0.1%  

 

Table 4-1 Floor Mass 

 Mass (g) 

Story 1 2 3 4 5 

Floor Plate 1009.2 1006.0 1007.8 1002.6 931.3 

Columns 74.9 74.8 75.0 37.5 37.4 

Total 1084.1 1080.9 1064.1 1040.1 950.0 

 

Table 4-2 Individual Story Stiffnesses from the Individual Story Tests 

Story Stiffness 
Stiffness 

N/m 

k1 2703.6 

k2 2325.4 

k3 2753.2 

k4 1347.5 

k5 1313.7 
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Table 4-3 Relative Stiffness from the Individual Story Tests (Story 1 to Story 3) 

Number Columns 
Stiffness 

Relative Stiffness, kr 
N/m 

10 Columns 1347.5 100.0% 

8 Columns 1112.6 82.6% 

6 Columns 911.8 67.7% 

4 Columns 666.4 49.5% 

 

Table 4-4 Relative Stiffness from the Individual Story Tests (Story 4 and Story 5) 

Number 

Columns 

Stiffness 
Relative Stiffness, kr 

N/m 

10 Columns 2703.6 100.0% 

8 Columns 2249.7 83.2% 

6 Columns 1832.5 67.8% 

4 Columns 1398.3 51.7% 

 

Table 4-5 Story Stiffnesses from Quasi-Static Test 

 Story Stiffness 

Test 

Number 

k1 k2 k3 k4 k5 

N/m N/m N/m N/m N/m 

Test 1 2348.4         

Test 2 2362.6 2414.3       

Test 3 2398.9 2461.5 2497.9     

Test 4 2372.3 2396.5 2455.0 1205.8   

Test 5 2374.8 2444.1 2363.0 1215.8 1271.6 

Average 2371.4 2429.1 2438.6 1210.8 1271.6 

 

Table 4-6 Stiffness Comparison between Different Tests 

Story 

Stiffness 

Individual Story 

Stiffness 

Quasi-static Story 

Stiffness 
% 

Difference 
N/m N/m 

k1 2703.6 2371.4 -14.0% 

k2 2325.4 2429.1 4.3% 

k3 2753.2 2438.6 -12.9% 

k4 1347.5 1210.8 -11.3% 

k5 1313.7 1271.6 -3.3% 



44 

 

 

 

 

Table 4-7 Original System Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Hz Hz Hz Hz Hz 

Mode 1 

Test 1 2.06     

Test 2 2.06     

Test 3 2.06     

Test 4 2.06     

Mode 2 

Test 1 2.06 5.20    

Test 2 2.06 5.20    

Test 3 2.06 5.20    

Test 4 2.06 5.20    

Test 5 2.06 5.20    

Test 6 2.06 5.20    

Mode 3 

Test 1 2.07 5.25 8.72   

Test 2 2.07 5.25 8.71   

Test 3 2.07 5.23 8.72   

Test 4 2.07 5.25 8.71   

Test 5 2.06 5.25 8.71   

Test 6 2.07 5.22 8.72   

Test 7 2.06 5.23 8.72   

Mode 4 

Test 1 2.07 5.21 8.72 10.57  

Test 2 2.07 5.21 8.72 10.57  

Test 3 2.07 5.22 8.72 10.56  

Test 4 2.07 5.23 8.72 10.57  

Test 5 2.07 5.23 8.73 10.56  

Test 6 2.07 5.23 8.73 10.56  

Test 7 2.07 5.24 8.72 10.57  

Test 8 2.06 5.22 8.71 10.57  

Test 9 2.07 5.24 8.72 10.55  

Test 10 2.07 5.24 8.73 10.57  

Test 11 2.07 5.23 8.73 10.58  
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Table 4-8 Continue 

Mode 5 

Test 1 2.14 5.26 8.74 10.64 14 

Test 2 2.12 5.27 8.74 10.64 13.97 

Test 3 2.01 5.22 8.73 10.63 13.98 

Test 4 2.07 5.27 8.75 10.65 13.99 

Test 5 2.08 5.26 8.75 10.63 13.99 

Test 6 2.10 5.26 8.74 10.64 13.97 

Test 7 2.06 5.25 8.75 10.64 13.97 

Test 8 2.09 5.24 8.74 10.64 13.99 

Test 9 2.07 5.23 8.73 10.64 13.96 

Test 10 2.03 5.21 8.73 10.63 13.99 

Test 11 2.05 5.21 8.73 10.64 13.99 

Test 12 2.11 5.25 8.77 10.64 13.97 

Test 13 2.03 5.22 8.76 10.64 13.98 

Test 14 2.09 5.25 8.75 10.65 14 

Test 15 2.04 5.23 8.75 10.66 13.99 

Test 16 2.12 5.27 8.77 10.62 13.98 

Average = 2.07 5.23 8.73 10.61 13.98 

 

 

Table 4-9 Quasi-static and Dynamic Stiffness and Frequency Difference 

Stiffness 

Quasi-static Dynamic Measured 

Frequencies 

Difference 

Stiffness Frequency Stiffness Frequency Stiffness Frequency 

N/m Hz N/m Hz Hz % 
Quasi 

(%) 

Dynamic 

(%) 

k1 2371.4 2.07 2377.3 2.09 2.07 0.2% 0.0% -0.7% 

k2 2429.1 5.19 2506.9 5.20 5.23 3.2% -0.8% 0.7% 

k3 2438.6 8.67 2506.5 8.72 8.73 2.8% -0.7% 0.1% 

k4 1210.8 10.54 1207.0 10.60 10.61 -0.3% -0.7% 0.1% 

k5 1271.6 13.79 1281.1 13.97 13.98 0.7% -1.4% 0.1% 
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Table 4-10 Experiment 1: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 

(Hz) (Hz) (Hz) 

Mode 1 

Test 1 2.00     

Test 2 2.00     

Test 3 2.00     

Mode 2 

Test 1 2.00 5.05   

Test 2 2.00 5.05   

Test 3 2.00 5.05   

Test 4 2.00 5.04   

Mode 3 

Test 1 2.01 5.08 8.66 

Test 2 2.02 5.09 8.64 

Test 3 2.01 5.08 8.64 

Test 4 2.02 5.11 8.66 

Test 5 2.02 5.08 8.66 

Average = 2.01 5.07 8.65 

 

Table 4-11 Experiment 1: Single Story Softening Cases 

Case 1 2 3 4 5 

kr1 81.0% 100% 100% 100% 100% 

kr2 100% 77.0% 100% 100% 100% 

kr3 100% 100% 70.4% 100% 100% 

kr4 100% 100% 100% 73.5% 100% 

kr5 100% 100% 100% 100% 42.6% 

 

Table 4-12 Experiment 1: Single Story Softening Case Frequencies 

Case 1 2 3 4 5 

f1
c (Hz) 2.01 2.01 2.01 2.01 2.01 

f2
c (Hz) 5.03 5.14 5.18 4.88 4.37 

 

Table 4-13 Experiment 1: Single Story Softening Case Frequency Differences 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -0.8% 1.4% 2.2% -3.7% -13.8% 
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Table 4-14 Experiment 2: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 

(Hz) (Hz) 

Mode 1 

Test 1 1.93   

Test 2 1.93   

Test 3 1.93   

Test 4 1.92   

Test 5 1.92   

Test 6 1.92   

Mode 2 

Test 1   5.13 

Test 2   5.14 

Test 3   5.14 

Average = 1.93 5.14 

 

Table 4-15 Experiment 2: Single Story Softening Cases 

Case 1 2 3 4 5 

kr1 66.0% 100% 100% 100% 100% 

kr2 100% 60.6% 100% 100% 100% 

kr3 100% 100% 52.3% 100% 100% 

kr4 100% 100% 100% 56.5% 100% 

kr5 100% 100% 100% 100% 27.2% 

 

Table 4-16 Experiment 2: Single Story Softening Case Frequencies (Mode 1, 2, 3 frequencies 

known ) 

Case 1 2 3 4 5 

f1
c(Hz) 1.93 1.93 1.93 1.93 1.93 

f2
c (Hz) 4.88 5.09 5.17 4.62 3.83 

f3
c (Hz) 8.49 8.66 7.87 8.52 6.81 
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Table 4-17 Experiment 2: One Story Softening Case Frequency Differences (Mode 1, 2 

frequencies known) 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -5.1% -1.0% 0.6% -10.1% -25.5% 

 

Table 4-18 Experiment 3: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 

Hz Hz Hz 

Mode 1 

Test 1 2.02     

Test 2 2.02     

Test 3 2.02     

Mode 2 

Test 1 2.03 5.12   

Test 2 2.03 5.12   

Test 3 2.04 5.13   

Mode 3 

Test 1 2.03 5.13 8.42 

Test 2 2.03 5.12 8.42 

Test 3 2.03 5.12 8.42 

Average = 2.03 5.12 8.42 

 

Table 4-19 Experiment 3: Single Story Softening Cases 

Case 1 2 3 4 5 

kr1 85.0% 100% 100% 100% 100% 

kr2 100% 82.3% 100% 100% 100% 

kr3 100% 100% 76.7% 100% 100% 

kr4 100% 100% 100% 79.2% 100% 

kr5 100% 100% 100% 100% 42.6% 

 

Table 4-20 Experiment 3: Single Story Softening Case Frequencies (Mode 1, 2 frequencies 

known) 

Case 1 2 3 4 5 

f1
c(Hz) 2.03 2.03 2.03 2.03 2.03 

f2
c (Hz) 5.08 5.16 5.19 4.96 4.56 
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Table 4-21 Experiment 3: Single Story Softening Case Frequency Differences (Mode 1, 2 

frequencies known) 

Case 1 2 3 4 5 

Δfr1* 0% 0% 0% 0% 0% 

Δfr2*  -0.8% 0.7% 1.3% -3.2% -11.0% 

 

Table 4-22 Experiment 3: One Story Softening Case Frequencies (Mode 1, 2, 3 frequencies 

known) 

Case 1 2 3 4 5 

f1
c(Hz) 2.03 2.03 2.03 2.03 2.03 

f2
c (Hz) 5.08 5.16 5.19 4.96 4.56 

f3
c (Hz) 8.63 8.7 8.44 8.64 7.34 

 

Table 4-23 Experiment 3: One Story Softening Case Frequency Differences (Mode 1, 2, 3 

frequencies known) 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
*  -0.8% 0.7% 1.3% -3.2% -11.0% 

Δfr3
*  2.5% 3.3% 0.2% 2.6% -12.8% 
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Table 4-24 Experiment 4: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 

Hz Hz Hz 

Mode 1 

Test 1 1.95     

Test 2 1.94     

Test 3 1.94     

Test 4 1.95     

Mode 2 

Test 1 1.96 5.07   

Test 2 1.95 5.05   

Test 3 1.95 5.04   

Test 4   5.05   

Mode 3 

Test 1 1.97 5.08 8.62 

Test 2 1.95 5.06 8.58 

Test 3 1.96 5.07 8.58 

Test 4 1.95 5.06 8.58 

Average = 1.95 5.06 8.59 

 

Table 4-25 Experiment 4: Cases of Softening in a Single Story 

Case 1 2 3 4 5 

kr1 69.3% 100% 100% 100% 100% 

kr2 100% 64.2% 100% 100% 100% 

kr3 100% 100% 56.1% 100% 100% 

kr4 100% 100% 100% 60.1% 100% 

kr5 100% 100% 100% 100% 29.9% 

 

Table 4-26 Experiment 4: Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

kr1 90.2% 100% 100% 100% 67.3% 

kr2 70.2% - 100% 100% 100% 

kr3 100% - 61.1% 100% 100% 

kr4 100% 100% 88.5% - 100% 

kr5 100% 100% 100% - 143.8% 
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Table 4-27 Experiment 4: Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

kr1 86.4% 65.0% 100% 100% 100% 

kr2 100% 100% 65.6% 68.3% 100% 

kr3 65.9% 100% 100% 100% 57.8% 

kr4 100% 120.5% 95.7% 100% 100% 

kr5 100% 100% 100% 93.6% 83.8% 

 

Table 4-28 Experiment 4: Frequencies – Cases of Softening in a Single Story 

Case 1 2 3 4 5 

f1
c(Hz) 1.95 1.95 1.95 1.95 1.95 

f2
c (Hz) 4.92 5.10 5.17 4.68 3.94 

f3
c (Hz) 8.51 8.67 7.98 8.55 6.87 

 

Table 4-29 Experiment 4: Frequencies – Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

f1
c(Hz) 1.95 - 1.95 - 1.95 

f2
c (Hz) 5.06 - 5.06 - 5.06 

f3
c (Hz) 8.60 - 8.12 - 9.21 

 

Table 4-30 Experiment 4: Frequencies – Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

f1
c(Hz) 1.95 1.95 1.95 1.95 1.95 

f2
c (Hz) 5.06 5.06 5.06 5.06 5.06 

f3
c (Hz) 8.13 8.50 8.66 8.52 7.72 

 

Table 4-31 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of 

Softening in a Single Story 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -2.8% 0.8% 2.2% -7.5% -22.1% 

Δfr3
* -0.9% 0.9% -7.1% -0.5% -20.0% 
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Table 4-32 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (1) 

Case 6 7 8 9 10 

Δfr1
* 0% - 0% - 0% 

Δfr2
* 0% - 0% - 0% 

Δfr3
* 0.1% - -5.5% - 7.2% 

 

Table 4-33 Experiment 4: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (2) 

Case 11 12 13 14 15 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* 0% 0% 0% 0% 0% 

Δfr3
* -5.4% -1.0% 0.8% -0.8% -10.1% 

 

Table 4-34 Experiment 5: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 

Hz Hz Hz 

Mode 1 

Test 1 1.67     

Test 2 1.69     

Test 3 1.69     

Test 4 1.69     

Test 5 1.70     

Mode 2 

Test 1 1.69 4.63   

Test 2 1.68 4.60   

Test 3 1.69 4.59   

Mode 3 

Test 1 1.69 4.63 8.05 

Test 2 1.69 4.63 8.05 

Test 3 1.69 4.63 8.07 

Average = 1.69 4.62 8.06 
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Table 4-35 Experiment 5: Cases of Softening in a Single Story 

Case 1 2 3 4 5 

kr1 39.0% 100% 100% 100% 100% 

kr2 100% 33.6% 100% 100% 100% 

kr3 100% 100% 26.6% 100% 100% 

kr4 100% 100% 100% 30.9% 100% 

kr5 100% 100% 100% 100% 13.1% 

 

Table 4-36 Experiment 5: Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

kr1 44.7% 100% 100% 100% 39.0% 

kr2 70.2% - 100% 100% 100% 

kr3 100% - 34.4% 100% 100% 

kr4 100% 100% 56.6% - 100% 

kr5 100% 100% 100% - 120.1% 

 

Table 4-37 Experiment 5: Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

kr1 58.1% 38.7% 100% 100% 100% 

kr2 100% 100% 36.3% 72.1% 100% 

kr3 38.4% 100% 100% 100% 28.4% 

kr4 100% 108% 75.3% 100% 100% 

kr5 100% 100% 100% 66.6% 52.4% 

 

Table 4-38 Experiment 5: Frequencies – Cases of Softening in a Single Story 

Case 1 2 3 4 5 

f1
c(Hz) 1.69 1.69 1.69 1.69 1.69 

f2
c (Hz) 4.55 4.94 5.11 4.11 3.15 

f3
c (Hz) 8.25 8.47 6.84 8.35 6.57 
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Table 4-39 Experiment 5: Frequencies – Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

f1
c(Hz) 1.69 - 1.69 - 1.69 

f2
c (Hz) 4.62 - 4.62 - 4.62 

f3
c (Hz) 8.03 - 7.05 - 8.60 

 

Table 4-40 Experiment 5: Frequencies – Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

f1
c(Hz) 1.69 1.69 1.69 1.69 1.69 

f2
c (Hz) 4.62 4.62 4.62 4.62 4.62 

f3
c (Hz) 7.09 8.25 8.48 7.79 6.21 

 

Table 4-41 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of 

Softening in a Single Story 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -1.5% 7.0% 10.6% -11.0% -31.8% 

Δfr3
* 2.4% 5.1% -15.1% 3.6% -18.5% 

 

Table 4-42 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (1) 

Case 6 7 8 9 10 

Δfr1
* 0% - 0% - 0% 

Δfr2
* 0% - 0% - 0% 

Δfr3
* -0.3% - -12.5% - 6.7% 

 

Table 4-43 Experiment 5: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (2) 

Case 11 12 13 14 15 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* 0% 0% 0% 0% 0% 

Δfr3
* -12.0% 2.4% 5.3% -3.3% -22.9% 
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Table 4-44 Experiment 6: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 

Hz Hz Hz 

Mode 1 

Test 1 1.94     

Test 2 1.95     

Test 3 1.95     

Mode 2 

Test 1 1.96 4.79   

Test 2 1.96 4.79   

Test 3 1.96 4.79   

Test 4 1.97 4.80   

Mode 3 

Test 2 1.95 4.78 8.45 

Test 3 1.94 4.8 8.45 

Test 4 1.91 4.79 8.46 

Test 5 1.95 4.75 8.45 

Average = 1.95 4.79 8.45 

 

Table 4-45 Experiment 6: Cases of Softening in a Single Story 

Case 1 2 3 4 5 

kr1 69.3% 100% 100% 100% 100% 

kr2 100% 64.2% 100% 100% 100% 

kr3 100% 100% 56.1% 100% 100% 

kr4 100% 100% 100% 60.1% 100% 

kr5 100% 100% 100% 100% 29.9% 

 

Table 4-46 Experiment 6: Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

kr1 46.9% 100% 100% 100% 71.1% 

kr2 174% - 100% 100% 100% 

kr3 100% - 82.1% 100% 100% 

kr4 100% 100% 67% - 100% 

kr5 100% 100% 100% - 79.3% 
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Table 4-47 Experiment 6: Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

kr1 - 76.0% 100% 100% 100% 

kr2 100% 100% 81.6% 72% 100% 

kr3 - 100% 100% 100% 62% 

kr4 100% 83% 71% 100% 100% 

kr5 100% 100% 100% 67% 61% 

 

Table 4-48 Experiment 6: Frequencies – Cases of Softening in a Single Story 

Case 1 2 3 4 5 

f1
c(Hz) 1.95 1.95 1.95 1.95 1.95 

f2
c (Hz) 4.92 5.10 5.17 4.68 3.94 

f3
c (Hz) 8.51 8.67 7.98 8.55 6.87 

 

Table 4-49 Experiment 6: Frequencies – Cases of Softening in Two Stories (1) Frequencies – 

Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

f1
c(Hz) 1.95 - 1.95 - 1.95 

f2
c (Hz) 4.79 - 4.79 - 4.79 

f3
c (Hz) 8.55 - 8.46 - 7.99 

 

Table 4-50 Experiment 6: Frequencies – Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

f1
c (Hz) - 1.95 1.95 1.95 1.95 

f2
c (Hz) - 4.79 4.79 4.79 4.79 

f3
c (Hz) - 8.53 8.59 7.80 7.29 
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Table 4-51 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of 

Softening in a Single Story 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* 2.7% 6.5% 7.9% -2.3% -17.7% 

Δfr3
* 0.7% 2.6% -5.6% 1.2% -18.7% 

 

Table 4-52 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (1) 

Case 6 7 8 9 10 

Δfr1
* 0% - 0% - 0% 

Δfr2
* 0% - 0% - 0% 

Δfr3
* 1.2% - 0.1% - -5.5% 

 

Table 4-53 Experiment 6: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (2) 

Case 11 12 13 14 15 

Δfr1
* - 0% 0% 0% 0% 

Δfr2
* - 0% 0% 0% 0% 

Δfr3
* - 0.9% 1.6% -7.7% -13.8% 
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Table 4-54 Experiment 7: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 Mode 4 

Hz Hz Hz Hz 

Mode 1 

Test 1 1.91       

Test 2 1.91       

Test 3 1.91       

Test 4 1.91       

Test 5 1.92       

Mode 2 

Test 1 1.92 5.04     

Test 2 1.91 5.03     

Test 3 1.92 5.03     

Test 4 1.92 5.04     

Test 5 1.92 5.04     

Mode 3 

Test 1 1.92 5.05 8.36   

Test 2 1.92 5.05 8.36   

Test 3 1.91 5.06 8.36   

Test 4 1.91 5.05 8.36   

Test 5 1.92 5.04 8.36   

Mode 4 

Test 1 1.91 5.05 8.29 10.12 

Test 2 1.91 5.05 8.26 10.11 

Test 3 1.91 5.05 8.27 10.11 

Test 4 1.91 5.06 8.22 10.11 

Test 5 1.90 5.03 8.29 10.10 

Test 6 1.91 5.05 8.20 10.11 

Test 7 1.91 5.06 8.28 10.11 

Test 8 1.91 5.05 8.22 10.11 

Average = 1.91 5.05 8.29 10.11 

 

Table 4-55 Experiment 7: Cases of Softening in a Single Story 

Case 1 2 3 4 5 

kr1 62.9% 100% 100% 100% 100% 

kr2 100% 57.4% 100% 100% 100% 

kr3 100% 100% 49.0% 100% 100% 

kr4 100% 100% 100% 53.3% 100% 

kr5 100% 100% 100% 100% 25.0% 
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Table 4-56 Experiment 7: Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

kr1 93.1% - 100% - 60.7% 

kr2 60.5% - 100% - 100% 

kr3 100% - 52.9% - 100% 

kr4 100% - 88.0% - 100% 

kr5 100% - 100% - 182.0% 

 

Table 4-57 Experiment 7: Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

kr1 86.7% 58.5% 100% 100% 100% 

kr2 100% 100% 58.0% 57.6% 100% 

kr3 55.9% 100% 100% 100% 50.3% 

kr4 100% 128.7% 97.4% 100% 100% 

kr5 100% 100% 100% 96.0% 83.1% 

 

Table 4-58 Experiment 7: Cases of Softening in Three Stories (1) 

Case 16 17 18 19 20 

kr1 90.5% 100% 100% 57.9% - 

kr2 72.9% 71.8% 100% 100% - 

kr3 73.9% 69.5% 55.1% 100% 100% 

kr4 100% 94.4% 79.2% 138.3% 100% 

kr5 100% 100% 133.3% 93% - 

 

Table 4-59 Experiment 7: Cases of Softening in Three Stories (2) 

Case 21 22 23 24 25 

kr1 61.6% - 100% 100% 77.3% 

kr2 100% - 55.6% 65.2% 100% 

kr3 86.1% 100% 100% 77.7% 62.7% 

kr4 127.3% - 114.7% 100% 100% 

kr5 100% 100% 82.2% 93.6% 121.2% 
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Table 4-60 Experiment 7: Frequencies – Cases of Softening in Two Stories (1) 

Case 1 2 3 4 5 

f1
c(Hz) 1.91 1.91 1.91 1.91 1.91 

f2
c (Hz) 4.85 5.08 5.16 4.56 3.74 

f3
c (Hz) 8.46 8.65 7.77 8.50 6.77 

f4
c (Hz) 10.26 9.92 9.96 9.94 10.37 

 

Table 4-61 Experiment 7: Frequencies – Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

f1
c(Hz) 1.91 - 1.91 - 1.91 

f2
c (Hz) 5.05 - 5.05 - 5.05 

f3
c (Hz) 8.59 - 7.89 - 9.35 

f4
c (Hz) 9.9 - 9.73 - 11.8 

 

Table 4-62 Experiment 7: Frequencies – Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

f1
c(Hz) 1.91 1.91 1.91 1.91 1.91 

f2
c (Hz) 5.05 5.05 5.05 5.05 5.05 

f3
c (Hz) 7.88 8.44 8.65 8.56 7.52 

f4
c (Hz) 10.01 10.73 9.9 9.89 9.71 

 

Table 4-63 Experiment 7: Frequencies – Cases of Softening in Three Stories (1) 

Case 16 17 18 19 20 

f1
c(Hz) 1.91 1.91 1.91 1.91 - 

f2
c (Hz) 5.05 5.05 5.05 5.05 - 

f3
c (Hz) 8.29 8.29 8.29 8.29 - 

f4
c (Hz) 10.02 9.95 10.33 10.81 - 
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Table 4-64 Experiment 7: Frequencies – Cases of Softening in Three Stories (2) 

Case 21 22 23 24 25 

f1
c(Hz) 1.91 - 1.91 1.91 1.91 

f2
c (Hz) 5.05 - 5.05 5.05 5.05 

f3
c (Hz) 8.29 - 8.29 8.29 8.29 

f4
c (Hz) 10.68 - 9.89 9.95 10.44 

 

Table 4-65 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of 

Softening in a Single Story 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -3.2% 1.3% 2.9% -9.0% -25.4% 

Δfr3
* 1.5% 3.7% -6.8% 1.9% -18.8% 

Δfr4
* 0.7% -2.6% -2.3% -2.5% 1.8% 

 

Table 4-66 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (1) 

Case 6 7 8 9 10 

Δfr1
* 0% - 0% - 0% 

Δfr2
* 0% - 0% - 0% 

Δfr3
* 3.0% - -5.4% - 12.1% 

Δfr4
* -2.8% - -4.5% - 15.8% 

 

Table 4-67 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (2) 

Case 11 12 13 14 15 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* 0% 0% 0% 0% 0% 

Δfr3
* -5.5% 1.2% 3.7% 2.7% -9.8% 

Δfr4
* -1.8% 5.3% -2.8% -2.9% -4.7% 

 



62 

 

Table 4-68 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Three Stories (1) 

Cases 16 17 18 19 20 

Δfr1
* 0% 0% - 0% - 

Δfr2
* 0% 0% - 0% - 

Δfr3
* 0% 0% - 0% - 

Δfr4
* -0.9% -2.4% - 6.1% - 

 

Table 4-69 Experiment 7: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Three Stories (2) 

Cases 21 22 23 24 25 

Δfr1
* 0% - 0% 0% 0% 

Δfr2
* 0% - 0% 0% 0% 

Δfr3
* 0% - 0% 0% 0% 

Δfr4
* 4.8% - -2.9% -2.4% 2.5% 

 

Table 4-70 Experiment 8: Vibration Test Modal Frequencies 

Test Series 
Mode 1 Mode 2 Mode 3 Mode 4 

Hz Hz Hz Hz 

Mode 1 

Test 1 1.89       

Test 2 1.87       

Test 3 1.89       

Mode 2 

Test 1 1.88 5.00     

Test 2 1.88 5.00     

Test 3 1.88 5.00     

Mode 3 

Test 1 1.88 5.01 8.32   

Test 2 1.88 5.02 8.32   

Test 3 1.88 5.02 8.32   

Test 4 1.88 5.01 8.33   

Mode 4 

Test 1 1.89 5.02 8.35 10.18 

Test 2 1.89 5.00 8.34 10.18 

Test 3 1.89 5.03 8.36 10.19 

Test 4 1.89 5.03 8.36 10.21 

Average = 1.88 5.01 8.34 10.19 
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Table 4-71 Experiment 8: Cases of Softening in a Single Story 

Case 1 2 3 4 5 

kr1 58.7% 100% 100% 100% 100% 

kr2 100% 53.0% 100% 100% 100% 

kr3 100% 100% 44.6% 100% 100% 

kr4 100% 100% 100% 49.0% 100% 

kr5 100% 100% 100% 100% 22.3% 

 

Table 4-72 Experiment 8: Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

kr1 87.7% 100% 100% 100% 56.7% 

kr2 58.2% - 100% 100% 100% 

kr3 100% - 49.0% 100% 100% 

kr4 100% 100% 84.6% - 100% 

kr5 100% 100% 100% - 190.6% 

 

Table 4-73 Experiment 8: Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

kr1 83.4% 54.9% 100% 100% 100% 

kr2 100% 100% 53.9% 56.2% 100% 

kr3 52.1% 100% 100% 100% 46.0% 

kr4 100% 129.2% 95.5% 100% 100% 

kr5 100% 100% 100% 93.1% 79.0% 

 

Table 4-74 Experiment 8: Cases of Softening in Three Stories (1) 

Case 16 17 18 19 20 

kr1 87.2% 100% 100% 54.7% - 

kr2 64.6% 63% 100% 100% - 

kr3 80.7% 73% - 100% 100% 

kr4 100% 93.4% - 132.9% 100% 

kr5 100% 100% - 97% - 
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Table 4-75 Experiment 8: Cases of Softening in Three Stories (2) 

Case 21 22 23 24 25 

kr1 55.9% - 100% 100% 71.0% 

kr2 100% - 52.5% 56.9% 100% 

kr3 53.0% 100% 100% 85.5% 61.7% 

kr4 129.1% - 106.6% 100% 100% 

kr5 100% 100% 86.0% 92.1% 135.1% 

 

Table 4-76 Experiment 8: Frequencies – Cases of Softening in a Single Story 

Case 1 2 3 4 5 

f1
c(Hz) 1.88 1.88 1.88 1.88 1.88 

f2
c (Hz) 4.80 5.06 5.16 4.48 3.61 

f3
c (Hz) 8.43 8.63 7.61 8.48 6.72 

f4
c (Hz) 10.23 9.81 9.92 9.89 10.36 

 

Table 4-77 Experiment 8: Frequencies – Cases of Softening in Two Stories (1) 

Case 6 7 8 9 10 

f1
c(Hz) 1.88 1.88 1.88 1.88 1.88 

f2
c (Hz) 5.01 5.01 5.01 5.01 5.01 

f3
c (Hz) 8.53 - 7.76 - 9.33 

f4
c (Hz) 9.78 - 9.61 - 11.99 

 

Table 4-78 Experiment 8: Frequencies – Cases of Softening in Two Stories (2) 

Case 11 12 13 14 15 

f1
c(Hz) 1.88357 1.88 1.88 1.88 1.88 

f2
c (Hz) 5.01273 5.01 5.01 5.01 5.01 

f3
c (Hz) 7.74 8.41 8.63 8.48 7.31 

f4
c (Hz) 9.96 10.71 9.79 9.76 9.58 
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Table 4-79 Experiment 8: Frequencies – Cases of Softening in Three Stories (1) 

Case 16 17 18 19 20 

f1
c(Hz) 1.88 1.88 - 1.88 - 

f2
c (Hz) 5.01 5.01 - 5.01 - 

f3
c (Hz) 8.34 8.34 - 8.34 - 

f4
c (Hz) 9.89 9.87 - 10.74 - 

 

Table 4-80 Experiment 8: Frequencies – Cases of Softening in Three Stories (2) 

Case 21 22 23 24 25 

f1
c(Hz) 1.88 - 1.88 1.88 1.88 

f2
c (Hz) 5.01 - 5.01 5.01 5.01 

f3
c (Hz) 8.34 - 8.34 8.34 8.34 

f4
c (Hz) 10.70 - 9.75 9.81 10.72 

 

Table 4-81 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of 

Softening in a Single Story 

Case 1 2 3 4 5 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* -4.2% 0.9% 2.9% -10.6% -28.0% 

Δfr3
* 1.1% 3.5% -8.7% 1.7% -19.4% 

Δfr4
* 0.4% -3.7% -2.6% -2.9% 1.7% 

 

Table 4-82 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (1) 

Case 6 7 8 9 10 

Δfr1
* 0% - 0% - 0% 

Δfr2
* 0% - 0% - 0% 

Δfr3
* 2.3% - -6.9% - 11.9% 

Δfr4
* -4.0% - -5.7% - 17.7% 
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Table 4-83 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Two Stories (2) 

Case 11 12 13 14 15 

Δfr1
* 0% 0% 0% 0% 0% 

Δfr2
* 0% 0% 0% 0% 0% 

Δfr3
* -7.2% 0.9% 3.5% 1.7% -12.3% 

Δfr4
* -2.3% 5.1% -3.9% -4.2% -6.0% 

 

Table 4-84 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Three Stories (1) 

Cases 16 17 18 19 20 

Δfr1
* 0% 0% - 0% - 

Δfr2
* 0% 0% - 0% - 

Δfr3
* 0% 0% - 0% - 

Δfr4
* -2.9% -3.1% - 5.4% - 

 

Table 4-85 Experiment 8: Difference in Estimated and Measured Frequencies – Cases of 

Softening in Three Stories (2) 

Cases 21 22 23 24 25 

Δfr1
* 0% - 0% 0% 0% 

Δfr2
* 0% - 0% 0% 0% 

Δfr3
* 0% - 0% 0% 0% 

Δfr4
* 5.0% - -4.3%  -3.7% 5.2% 
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Table 5-1 Input Level and Damage Progression (Suita et al., 2015) 

 

 

 

Table 5-2 Measured Frequencies vs. SAP2000 Frequencies 

Mode 

Measured 
Frequencies 

SAP2000 
Frequencies 

Percent 
Difference 

(Hz) (Hz) % 

1 0.879 0.88 0% 

2 2.686 2.767 3% 

3 4.883 5.121 5% 

4 7.030 7.446 6% 

5 9.229 9.791 6% 

6 11.572 12.098 5% 
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Table 5-3 Building Mass and Stiffness (Suita et al., 2015) 

Story  
Mass 

(kg) 

Stiffness 

(N/m) 

1 21210 1.15E+08 

2 21210 1.28E+08 

3 21210 1.14E+08 

4 21210 9.93E+07 

5 21210 8.66E+07 

6 21210 7.66E+07 

7 21210 7.04E+07 

8 21210 6.86E+07 

9 21210 7.04E+07 

10 21210 7.56E+07 

11 21210 8.29E+07 

12 21010 8.99E+07 

13 21010 9.39E+07 

14 21010 8.93E+07 

15 21010 8.62E+07 

16 21010 8.04E+07 

17 21010 7.41E+07 

18 20600 7.24E+07 
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Table 5-4 Cases of Softening at One Story (1) 

Case 1 2 3 4 5 6 7 8 9 

kr1 40% 100% 100% 100% 100% 100% 100% 100% 100% 

kr2 100% 38% 100% 100% 100% 100% 100% 100% 100% 

kr3 100% 100% 28% 100% 100% 100% 100% 100% 100% 

kr4 100% 100% 100% 42% 100% 100% 100% 100% 100% 

kr5 100% 100% 100% 100% 44% 100% 100% 100% 100% 

kr6 100% 100% 100% 100% 100% 46% 100% 100% 100% 

kr7 100% 100% 100% 100% 100% 100% 46% 100% 100% 

kr8 100% 100% 100% 100% 100% 100% 100% 44% 100% 

kr9 100% 100% 100% 100% 100% 100% 100% 100% 40% 

kr10 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr11 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr12 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr13 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr14 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr15 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr16 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr17 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr18 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 5-5 Cases of Softening at One Story (2) 

Case 10 11 12 13 14 15 16 17 18 

kr1 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr2 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr3 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr4 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr5 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr6 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr7 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr8 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr9 100% 100% 100% 100% 100% 100% 100% 100% 100% 

kr10 35% 100% 100% 100% 100% 100% 100% 100% 100% 

kr11 100% 29% 100% 100% 100% 100% 100% 100% 100% 

kr12 100% 100% 23% 100% 100% 100% 100% 100% 100% 

kr13 100% 100% 100% 18% 100% 100% 100% 100% 100% 

kr14 100% 100% 100% 100% 15% 100% 100% 100% 100% 

kr15 100% 100% 100% 100% 100% 11% 100% 100% 100% 

kr16 100% 100% 100% 100% 100% 100% 7% 100% 100% 

kr17 100% 100% 100% 100% 100% 100% 100% 4% 100% 

kr18 100% 100% 100% 100% 100% 100% 100% 100% 1% 

 

Table 5-6 Cases of Softening at One Story (1) – Relative Frequency Differences  

Case 1 2 3 4 5 6 7 8 9 

Δfr1
* 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Δfr2
* -1.3% -0.4% 0.7% 2.1% 3.6% 5.0% 5.8% 5.3% 3.5% 

 

Table 5-7 Cases of Softening at One Story (1) – Relative Frequency Differences 

Case 10 11 12 13 14 15 16 17 18 

Δfr1
* 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Δfr2
* 0.4% -3.5% -7.7% -12.3% -17.4% -23.3% -30.3% -39.0% -50.5% 
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Figure 2-1 Spring-Mass System: 

Single DOF, Two DOF, and Three DOF System 
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Figure 3-1 2-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies 

 

 

Figure 3-2 2-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies 
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Figure 3-3 4-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies  

 

 

Figure 3-4 4-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies 
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Figure 3-5 4-DOF System: Relative Stiffness (𝑘𝑟3) vs. Relative Change in Frequencies 

 

 

Figure 3-6 4-DOF System: Relative Stiffness (𝑘𝑟4) vs. Relative Change in Frequencies 
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Figure 3-7 7-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies 

 

Figure 3-8 7-DOF System: Relative Stiffness (𝑘𝑟2) vs. Relative Change in Frequencies 
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Figure 3-9 7-DOF System: Relative Stiffness (𝑘𝑟3) vs. Relative Change in Frequencies 

 

Figure 3-10 7-DOF System: Relative Stiffness (𝑘𝑟4) vs. Relative Change in Frequencies 
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Figure 3-11 7-DOF System: Relative Stiffness (𝑘𝑟5) vs.vs Relative Change in Frequencies 

 

Figure 3-12 7-DOF System: Relative Stiffness (𝑘𝑟6) vs. Relative Change in Frequencies 
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Figure 3-13 7-DOF System: Relative Stiffness (𝑘𝑟7) vs. Relative Change in Frequencies 

 

Figure 3-14 15-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies 
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Figure 3-15 15-DOF System: Relative Stiffness (𝑘𝑟5) vs. Relative Change in Frequencies 

 

Figure 3-16 15-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies 
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Figure 3-17 15-DOF System: Relative Stiffness (𝑘𝑟15) vs. Relative Change in Frequencies 

 

Figure 3-18 30-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies 
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Figure 3-19 30-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies 

 

Figure 3-20 30-DOF System: Relative Stiffness (𝑘𝑟20) vs. Relative Change in Frequencies 
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Figure 3-21 30-DOF System: Relative Stiffness (𝑘𝑟30) vs. Relative Change in Frequencies 

 

Figure 3-22 50-DOF System: Relative Stiffness (𝑘𝑟1) vs. Relative Change in Frequencies 
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Figure 3-23 50-DOF System: Relative Stiffness (𝑘𝑟10) vs. Relative Change in Frequencies 

 

Figure 3-24  50-DOF System: Relative Stiffness (𝑘𝑟20) vs. Relative Change in Frequencies 
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Figure 3-25 50-DOF System: Relative Stiffness (𝑘𝑟30) vs. Relative Change in Frequencies 

 

Figure 3-26 50-DOF System: Relative Stiffness (𝑘𝑟40) vs. Relative Change in Frequencies 
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Figure 3-27 50-DOF System: Relative Stiffness (𝑘𝑟50) vs. Relative Change in Frequencies 

 

Figure 3-28 2-DOF: Noisy 𝑓1
∗ and 𝑘𝑟1 (20%) 
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Figure 3-29 2-DOF: Noisy 𝑓1
∗ and % Difference from 𝑘𝑟1 (20%) 

 

 

Figure 3-30 2-DOF: Noisy 𝑓1
∗ and 𝑘𝑟1 (90%) 
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Figure 3-31 2-DOF: Noisy 𝑓1
∗ and % Difference from 𝑘𝑟1 (90%) 

 

 

Figure 3-32 Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 
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Figure 3-33 2-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟2 Cases 

 

 

Figure 3-34 2-DOF: Noisy 𝑓2
∗ and Different 𝑘𝑟1 Cases 
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Figure 3-35 2-DOF: Noisy 𝑓2
∗ and Different 𝑘𝑟2 Cases 

 

 

Figure 3-36 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 

 



90 

 

 

 

 

Figure 3-37 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟2 Cases 

 

 

Figure 3-38 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟3 Cases 
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Figure 3-39 4-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟4 Cases 

 

 

Figure 3-40 7-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 
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Figure 3-41 15-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 

 

 

Figure 3-42 30-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 
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Figure 3-43 50-DOF: Noisy 𝑓1
∗ and Different 𝑘𝑟1 Cases 
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Figure 4-1 Five-story Aluminum Model 
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Figure 4-2 Column and Plate Connections 

 

 

 



96 

 

 

Figure 4-3 Test Setup (View 1) 

 

 

Figure 4-4 Test Setup (View 2) 
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Figure 4-5 Individual Story Stiffness Test Setup (Front View) 

 

 

Figure 4-6 Individual Story Stiffness Test Setup (Top View) 
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Figure 4-7 Free Vibration Signal for Mode 1 (Story 1) 

 

 

Figure 4-8 Filtered Free Vibration Signal for Mode 2 (Story 1) 
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Figure 4-9 Filtered Free Vibration Signal for Mode 3 (Story 1) 

 

 

Figure 4-10 Filtered Free Vibration Signal for Mode 4 (Story 1) 
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Figure 4-11 Filtered Free Vibration Signal for Mode 5 (Story 1) 

 

 

Figure 4-12 Experiment 1: Two Columns Removed from the First Story 
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Figure 5-1 18-Story Steel Moment Frame Building Plan and Elevation (Suita et al., 2015) 
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Figure 5-2 Transfer Function of the Average of the Responses of the Roof for 17cm/s Pseudo 

Velocity (Data from Suita et al., 2015) 

 

 

Figure 5-3 Transfer Function of Half Difference of Responses of the Roof for 17cm/s Pseudo 

Velocity (Data from Suita et al., 2015) 
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Figure 5-4 2D SAP2000 Model 
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Figure 5-5 Transfer Function of the Average of the Responses of the Roof for 17cm/s Pseudo 

Velocity (Data from Suita et al., 2015) 

 

 

Figure 5-6 Transfer Function of Half Difference of Responses of the Roof for 17cm/s Pseudo 

Velocity (Data from Suita et al., 2015) 
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APPENDIX A. TWO-DEGREE-OF-FREEDOM SYSTEM EXAMPLE 

For a two-degree-of-freedom system, it can be written as a linear combination of other matrices 

which have the coefficients as the stiffnesses.   

𝑨(𝑚, 𝑘) = 𝑴−𝟏𝑲 = 

[
 
 
 
𝑘1

𝑚1
+

𝑘2

𝑚1
−

𝑘2

𝑚2

−
𝑘2

𝑚1

𝑘2

𝑚2 ]
 
 
 

= 𝑘1 [

1

𝑚1
0

0 0

] + 𝑘2

[
 
 
 

1

𝑚1
−

1

𝑚2

−
1

𝑚1

1

𝑚2 ]
 
 
 

 

Since masses are known, the parameters that need to be solved for are 𝑘1 and 𝑘2. 

Let 𝑚1 = 𝑚2 = 1kg, and the given frequencies are 𝜔1 = 8.445 rad/s and 𝜔2 = 21.182 rad/s. 

Therefore, 𝜆1 = 𝜔1
2 = 71.318 rad2/s2 and 𝜆2 = 𝜔2

2 = 448.677 𝑟𝑎𝑑2/𝑠2.  

 

Step 1: Assign the initial value for stiffnesses 

 

Let 𝑘(0) = [
200
200

]N/m 

 

Step 2a: Determine (𝑨(𝑘(𝑝)) − 𝜆𝑖𝑰) 

𝑨(𝑘(0)) = 𝑴−𝟏𝑲 =

[
 
 
 

1

𝑚1
0

0
1

𝑚2]
 
 
 

[
𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] =

[
 
 
 
𝑘1

𝑚1
+

𝑘2

𝑚1
−

𝑘2

𝑚2

−
𝑘2

𝑚1

𝑘2

𝑚2 ]
 
 
 

= [
400 −200

−200 200
] 

𝑨(𝑘(0)) − 𝜆1𝑰 =

[
 
 
 
𝑘1

𝑚1
+

𝑘2

𝑚1
− 𝜆1 −

𝑘2

𝑚2

−
𝑘2

𝑚1

𝑘2

𝑚2
− 𝜆1]

 
 
 

= [
328.682 −200
−200 128.682

] 

𝑨(𝑘(0)) − 𝜆2𝑰 =

[
 
 
 
𝑘1

𝑚1
+

𝑘2

𝑚1
− 𝜆2 −

𝑘2

𝑚2

−
𝑘2

𝑚1

𝑘2

𝑚2
− 𝜆2]

 
 
 

= [
−48.677 −200
−200 −248.677

] 
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Step 2b: Determine (𝑨(𝑘(𝑝)) − 𝜆𝑖𝑰)
−1

 

(𝑨(𝑘(0)) − 𝜆1𝑰)
−1

= [
328.682 −200
−200 128.682

]
−1

= [
0.056 0.087
0.087 0.143

] 

(𝑨(𝑘(0)) − 𝜆2𝑰)
−1

= [
−48.677 −200
−200 −248.677

]
−1

= [
0.009 −0.007

−0.007 0.002
] 

 

Step 2c: Assemble the matrix 𝑯(𝑘(𝑝)) 

Determine 𝑨𝒊𝒋 

𝑨𝟏𝟏 =
𝜕(𝑨(𝑘) − 𝜆1𝑰)

𝜕𝑘1
= [

1

𝑚1
0

0 0

] = [
1 0
0 0

] 

𝑨𝟏𝟐 =
𝜕(𝑨(𝑘) − 𝜆1𝑰)

𝜕𝑘2
=

[
 
 
 

1

𝑚1
−

1

𝑚2
 

−
1

𝑚1

1

𝑚2 ]
 
 
 

= [
1 −1

−1 1
] 

𝑨𝟐𝟏 =
𝜕(𝑨(𝑘) − 𝜆2𝑰)

𝜕𝑘1
= [

1

𝑚1
0 

0 0

] = [
1 0
0 0

] 

𝑨𝟐𝟐 =
𝜕(𝑨(𝑘) − 𝜆2𝑰)

𝜕𝑘2
=

[
 
 
 

1

𝑚1
−

1

𝑚2
 

−
1

𝑚1

1

𝑚2 ]
 
 
 

= [
1 −1

−1 1
] 

Determine 𝐻𝑖𝑗
(0)

 

𝐻11
(0)

= 𝑡𝑟 [(𝑨(𝑘(0)) − 𝜆1𝑰)
−1

⋅ 𝑨𝟏𝟏] = 𝑡𝑟 {[
0.056 0.087
0.087 0.143

] [
1 0
0 0

]} = 𝑡𝑟 [
−0.02 0
−0.048 0

]

= 0.056 

𝐻12
(0)

= 𝑡𝑟 [(𝑨(𝑘(0)) − 𝜆1𝑰)
−1

⋅ 𝑨𝟏𝟐] = 𝑡𝑟 {[
0.056 0.087
0.087 0.143

] [
1 −1

−1 1
]}

= 𝑡𝑟 [
0.028 −0.028

−0.044 −0.044
] = 0.025 

𝐻21
(0)

= 𝑡𝑟 [(𝑨(𝑘(0)) − 𝜆2𝑰)
−1

⋅ 𝑨𝟐𝟏] = 𝑡𝑟 {[
0.009 −0.007

−0.007 0.002
] [

1 0
0 0

]}

= 𝑡𝑟 [
−0.02 0
0.008 0

] = 0.009 
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𝐻22
(0)

= 𝑡𝑟 [(𝑨(𝑘(0)) − 𝜆2𝑰)
−1

⋅ 𝑨𝟐𝟐] = 𝑡𝑟 {[
0.009 −0.007

−0.007 0.002
] [

1 −1
−1 1

]}

= 𝑡𝑟 [
−0.028 0.028
0.016 −0.016

] = 0.025 

Construct 𝑯(𝑘(𝑝))  

𝑯(0) = [
𝐻11

(0)
𝐻12

(0)

𝐻21
(0)

𝐻22
(0)

] = [
0.056 0.025
0.009 0.025

] 

 

Step 2d: Determine the next iteration 𝑘(𝑝+1) 

𝑘(1) = 𝑘(0) − [𝑯(0)]
−1

[
1
1
] = [

200
200

] − [
0.056 0.025
0.009 0.025

]
−1

[
1
1
] = [

199.99
160

] 

Step 2e/3: 

For the first iteration, 𝑘 = [
200
160

] N/m which also happens to be one of the solutions of the 

problem. Nonetheless, if the solution has not converged, 𝑘(1) can be used for another iteration by 

repeating the steps above. Another pair of solution which also produces the same frequency 

response is 𝑘 = [
320
100

]N/m. This solution can be found by choosing different initial 

approximation.  
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APPENDIX B. MATHCAD ROUTINES FOR 4-DOF SYSTEM 

B.1 Four Known Frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If all the masses and frequencies are known, all four stiffnesses can be calculated 
directly. 

Mass: Frequencies: Angular Frequencies: Eigenvalues: 

    

    

    

    

Step 1: Initial Estimates for Stiffnesses 

    

 In vector form 

Step 2a:  

 

 

m1 1= f1 2.233= 1 2 f1= 1 1
2

196.851==

m2 1= f2 6.634= 2 2 f2= 2 2
2

1.737 10
3

==

m3 1= f3 10.256= 3 2 f3= 3 3
2

4.153 10
3

==

m4 1= f4 12.666= 4 2 f4= 4 4
2

6.333 10
3

==

k1 2000= k2 2000= k3 2000= k4 2000=

Km

k1

k2

k3

k4

















=

i 1 4=

Bi

k1 k2+

m1

 i−

k2

m1

−

0

0

k2

m2

−

k2 k3+

m2

 i−

k3

m2

−

0

0

k3

m3

−

k3 k4+

m3

 i−

k4

m3

−

0

0

k4

m4

−

k4

m4

 i−































=
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Step 2b:  

 

Step 2c:  

Take partial derivative of Bi with respect to k1 

 

Take partial derivative of Bi with respect to k2 

 

Take partial derivative of Bi with respect to k3 

 

Take partial derivative of Bi with respect to k4 

 

 

 

 

IBi Bi( ) 1−
=

dBi 1 

1

m1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



















=

dBi 2 

1

m1

1−

m1

0

0

1−

m2

1

m2

0

0

0

0

0

0

0

0

0

0





















=

dBi 3 

0

0

0

0

0

1

m2

1−

m2

0

0

1−

m3

1

m3

0

0

0

0

0





















=

dBi 4 

0

0

0

0

0

0

0

0

0

0

1

m3

1−

m3

0

0

1−

m4

1

m4





















=

j 1 4=

nHi j IBi dBi j =
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Hmi j 

1

4

k

nHi j ( )
k k 

=

=

 
 
 

 
 
Step 2d:  
 

 

 

New stiffness vector 

 

Next Iteration:  
 

           

 

 

 
The new stiffness vector above can be used to iterate for new solution following the same steps until 
convergence. 
 
 
 
 

dk Hm
1−

−

1

1

1

1

















171.523−

323.607−

333.359−

47.133−















==

Km Km dk+

1.828 10
3



1.676 10
3



1.667 10
3



1.953 10
3





















==

k1 Km1= k2 Km2= k3 Km3= k4 Km4=

Km

k1

k2

k3

k4

















=

Hm

1.479 10
3−



1.415 10
3−



6.902 10
4−



9.718− 10
5−



1.251 10
3−



4.587 10
4−



1.838 10
3−



1.127 10
3−



9.328 10
4−



1.582 10
3−



5.875 10
4−



1.928 10
3−



6.456 10
4−



1.729 10
3−



1.933 10
3−



1.923 10
4−





















=
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B.2 Three Known Frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since only 3 frequencies are known, 1 stiffness is assumed known. The three known 
frequencies and  masses are used to determine what the other three stiffness are.  

Mass: Frequencies: Stiffnesses: 

   

 
 

 

 

 

Angular Frequencies: 

 

 

 

Eigenvalues: 

 

 

 

Step 1: Initial Estimates for Stiffness and Eigenvalues 

    

 
In vector form 

m1 1= f1 2.233= k4 2000=

f2 6.634=
m2 1=

f3 10.256=

m3 1=

m4 1=

1 2 f1=

2 2 f2=

3 2  f3=

1 1
2

196.851==

2 2
2

1.737 10
3

==

3 3
2

4.153 10
3

==

k1 2000= k2 2000= k3 2000= 4 8 10
3

=

Km

k1

k2

k3

4

















=
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Step 2a:  

 

 

Step 2b:  

 

Step 2c:  

Take partial derivative of Bi with respect to k1 

This matrix will be different depending what the assumed unknown stiffness 
are. In this case, k1 k2 and k3 are assumed unknown.  

 

Take partial derivative of Bi with respect to k2 

 

i 1 4=

Bi

k1 k2+

m1

 i−

k2

m1

−

0

0

k2

m2

−

k2 k3+

m2

 i−

k3

m2

−

0

0

k3

m3

−

k3 k4+

m3

 i−

k4

m3

−

0

0

k4

m4

−

k4

m4

 i−































=

IBi Bi( ) 1−
=

dBi 1 

1

m1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



















=

dBi 2 

1

m1

1−

m1

0

0

1−

m2

1

m2

0

0

0

0

0

0

0

0

0

0





















=
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Take partial derivative of Bi with respect to k3 

 

Take partial derivative of Bi with with respect to λ 4 

  

 

 

 

 

 

 

dBi 3 

0

0

0

0

0

1

m2

1−

m2

0

0

1−

m3

1

m3

0

0

0

0

0





















=

dBi 4 

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0















= dB4 4 

1−

0

0

0

0

1−

0

0

0

0

1−

0

0

0

0

1−















=

j 1 4=

nHi j IBi dBi j =

Hmi j 

1

4

k

nHi j ( )
k k 

=

=

Hm

1.479 10
3−



1.415 10
3−



6.902 10
4−



3.889− 10
4−



1.251 10
3−



4.587 10
4−



1.838 10
3−



1.5− 10
3−



9.328 10
4−



1.582 10
3−



5.875 10
4−



1.722− 10
3−



0

0

0

1.667 10
3−





















=

dk Hm
1−

−

1

1

1

1

















73.98−

369.724−

458.769−

1.424− 10
3

















==

Km Km dk+

1.926 10
3



1.63 10
3



1.541 10
3



6.576 10
3





















==
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Next Iteration:  

    

 

The new stiffness and eigenvalue vector above can be used to iterate for new solution following the 
same steps until convergence.  

k1 Km1= k2 Km2= k3 Km3= 4 Km4=

Km

k1

k2

k3

4

















=
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B.3 Two Known Frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since only 2 frequencies are known, 2 stiffnesses are assumed known. The two known 
frequencies and  masses are used to determine what the other two stiffness are.  

Mass: Frequencies: Stiffnesses: 

 
  

 
 

 
Eigenvalues: 

Angular Frequencies: 

   

 
  

Step 1: Initial Estimates for Stiffness and Eigenvalues 

    

 In vector form 

Step 2a:  

 

 

k3 2000=
m1 1= f1 2.233=

k4 2000=
f2 6.634=

m2 1=

m3 1= 1 2  f1= 
1

1
2

196.851==

2 2  f2=
m4 1= 

2
2

2
1.737 10

3
==

k1 2000= k2 2000= 
3

4 10
3

= 
4

8 10
3

=

Km

k1

k2


3


4

















=

i 1 4=

B
i

k1 k2+

m1


i

−

k2

m1

−

0

0

k2

m2

−

k2 k3+

m2


i

−

k3

m2

−

0

0

k3

m3

−

k3 k4+

m3


i

−

k4

m3

−

0

0

k4

m4

−

k4

m4
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Step 2b:  

 

Step 2c:  

Take partial derivative of Bi with respect to k1 

This matrix will be different depending what the assumed unknown stiffness 
are. In this case, k1 and  k2 are assumed unknown.  

 

Take partial derivative of Bi with respect to k2 

This matrix will be different depending what the assumed unknown stiffness 
are. In this case, k1 and  k2 are assumed unknown.  

 

Take partial derivative of Bi with with respect to λ 3 

  

Take partial derivative of Bi with with respect to λ 4 
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Next Iteration:  

    

 

The new stiffness and eigenvalue vector above can be used to iterate for new solution following the 
same steps until convergence.  
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B.4 One Known Frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since only 1 frequency is known, 3 stiffnesses are assumed known. The one known 
frequency and masses are used to determine what the missing stiffness is.  

Mass: Frequencies: Stiffnesses: 

   

 Angular Frequencies:  

 
  

 Eigenvalues:  

Step 1: Initial Estimates for Stiffness and Eigenvalues 

    

 In vector form 

Step 2a:  
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Step 2c:  

Take partial derivative of Bi with respect to k1 

This matrix will be different depending what the assumed unknown stiffness 
is. In this case, k1 is assumed unknown.  

 

Take partial derivative of Bi with with respect to λ 2 

  

Take partial derivative of Bi with with respect to λ 3 

  

Take partial derivative of Bi with with respect to λ 4 
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APPENDIX C. EQUIPMENT AND CALIBRATION 

C.1 Equipment List 

 

C.1.1 Length and Displacement 

 

• Full Jeweled Miracle Movement Dial Gage (Figure C-1) 

o Manufacturer: Federal 

o Precision: 0.001 in 

o Full scale Value: 1 in 

• OptiTrack’s Cameras 

Two OptiTrack’s Prime 41 cameras were used. Each camera frame rate can be 

adjusted between 30 frames per second to 180 frames per seconds. The experiment 

setup, nevertheless, allowed the displacement data to be taken at 250 Hz with 0.001 

mm precision. Detailed specifications can be found on the manufacturer’s website.  

Motive 2.1 by OptiTrack software was used to operate and acquire the data from 

cameras. The systems were manufactured by NaturalPoint, Inc. 

• Trimos LVDT 

o Manufacturer: Fowler High  

o Type: V1004+ 

o Serial number: 10473/A 

o Precision: 0.001 mm 

• Dial Caliper (Figure C-2) 

o Manufacturer: Pittsburgh 

o Precision: 0.0005 in 

o Full scale value: 6 in 

 

C.1.2 Force 

 

• S-Type Load Cell (Figure C-6 and Figure C-7 respectively) 

o Manufacturer: CALT, China 
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o Model: DYLY-103 

o Serial number: 20180321 

o Output: 2.0 mV/V 

o Full Scale Value: 5 kg 

 

C.1.2 Mass 

 

• Ohaus SP6000 Scale 

o Manufacturer: Ohaus 

o Model: SP6000  

o Precision: 0.1 g 

o Full Scale Value: 6000 g 

 

C.1.2 Seismic Simulator 

 

• Table Top Earthquake System 

o Manufacturer: MTS 

o Frequency Range: 0.1 - 20 Hz 

o Acceleration: ±1 g (with 25 lb specimen) 

The shake table was manufactured by MTS and controlled by a console called Table Top 

Earthquake System (Figure C-3). The console allows for sinusoidal or preloaded earthquake inputs. 

For a sinusoidal input, the frequency can be adjusted to a precision of 0.01 Hz. The amplitude can 

be controlled from 0% to 100% of ±3.2 inches for both sinusoidal and earthquake inputs. The 

specification of the model was shown in Table C-2.  

 

C.2  Data Acquisition System 

 

The load cell was connected to NI (National Instruments) 9219 Input Module, which in turn 

connected to cDAQ-9171. The details for both devices are shown in Table C-3, while the photos 

in Figure C-4 and Figure C-5. Full Wheatstone Bridge for the load cell with the internal excitation 

voltage of 2.5V provided by NI 9219. NI DAQExpress 3.0 Software was used obtain the output 

voltage, which translates to force by using the sensitivity from the calibration. 



122 

 

 

For the displacement, Motive 2.1 by OptiTrack software was used. The data were exported to CVS 

(Comma Separated Value) files for further processing. Other measured data were obtained 

manually with the either writing down the values or type in the spreadsheet. 

 

C.3  Calibration 

 

C.3.1 Load Cell Calibration 

 

Before using the load cell in the experiment, it needs to be calibrated to determine its sensitivity 

and accuracy. Sensitivity of a sensor is the relationship between the output of the sensor, usually 

voltage, to the input of the sensor such as force, displacement, temperature, etc. Accuracy is the 

ratio of the maximum error to the maximum input value. 

 

To calibrate the load cell, a static compressive or tensile force must be applied to the load cell. The 

voltage output is then recorded. The applied loads along with the corresponding voltage were 

shown in Table C-4 with the graph shown in Figure C-7. From the calibration data, the sensitivity 

was determined to be -0.0163 mV/V/N with an accuracy of 0.21%. 

 

 

C.3.2 System Calibration 

 

OptiTrack requires at least two cameras for triangulation. Prior to testing, the cameras must be first 

calibrated. The measured displacements also must be compared to another accurate displacement 

sensor to check whether the data from the cameras are acceptable to use.  

 

To calibrate the cameras, the Trimos LVDT with 0.001mm precision was used. It measures vertical 

displacements, by moving the lever up and down on the side of the LVDT. A small circle was cut 

from a reflective tape and placed on the lever such that when it moves, the camera will be able to 

track it. Before the calibration, the camera lenses and exposure are adjusted such that only the 

reflective surfaces are visible to the camera. The calibration set up can be seen in Figure C-9. 
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Camera calibration is a two-step process. First, the two cameras were calibrated using the 

calibration wand provided by OptiTrack. The calibration wand features three reflective spheres set 

at a precise distance of 500 mm and 250 mm. The wand was slowly and methodically waved 

throughout the field of view. The second step defines the ground plane. An L-shaped wand with 

three reflective surfaces is laid down on the ground surface that defines the capture space. Once it 

is defined and calibrated, the cameras can triangulate where the reflective surface is relative to 

both cameras and calculate an average error. After the calibration process, the mean error was 

calculated to be 0.0370 mm. 

 

Once the cameras have been calibrated, the accuracy of the OptiTrack measurements can be 

determined with the Trimos LVDT. The lever on the LVDT was moved up and down while the 

cameras followed the position of the reflective circle. The results are shown in Table C-5. The 

prescribed displacements are the displacements by the LVDT. Measured displacement refers to 

the displacements measured by the OptiTrack’s cameras. The relative error was calculated at each 

displacement step. From the table, the maximum error was 0.101 mm while the average absolute 

error was 0.037 mm. This value is the same as the one given by the Motive software.  
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Table C-1 Model Elements’ Properties 

Element Materials Dimensions (in) 

Thick Column 

Plate 
6061 Aluminum Sheet (6061ASHT040) 0.375(W)x7(L)x0.04(T) 

Thin Column 

Plate 
6061 Aluminum Sheet (6061ASHT032) 0.375(W) x7(L)x0.032(T) 

Floor Plate 6061 Aluminum Plate (6061ASH375) 6(W)x6 (L)x.375(T) 

Connection Angle 
6061 Aluminum Structural Angle Equal 

Leg 

6(L)x3/4(W1) x3/4 (W2) 

x1/8(T) 

Connection Bar 6061 Aluminum Flat Bar 6(L)x 3/4(W)x1/8 (T) 

¼ in. Dia. Bolt 

with Nuts 
Steel 1 in. Long 

1/8 in. Dia. Bolt 

with Nuts and 

Washers 

Steel ½ in. Long 

 

Table C-2 Shake Table Specification 

Table Dimensions  13 in x 17 in (1/4 -20UNC mounting holes on 2 in x 2 in grid)  

Design payload  5-15 lbmm 

Maximum Payload  25 lbm  

Frequency Range  0.1 - 20 Hz  

Displacement  +/- 3.2 inches  

Velocity  +/- 20 inches/second  

Acceleration  +1- 1.0g (with 25 lbm specimen)  

Total weight of 

system  
<60 lb 

Overall dimensions  14 in (w) x 36 in (L) x 4 in (H)  

 

Table C-3 DAQ System 

Device  cDAQ-9171  NI 9219  

Manufacturer  
National 

Instruments  

National 

Instruments  

Serial Number  1631A58  162C1313  
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Table C-4 Load Cell Calibration's Data 

Excitation Voltage = 2.5V    

      

Load Force  Voltage 
Zeroed 

Voltage  

Calculated 

Force 

Calculated 

Error 

Kg  N mV mV N N 

0.00 0.00 -0.0350 0.0000 0 0.00 

0.20 1.91 -0.1090 -0.0740 1.81 -0.10 

0.77 7.56 -0.3390 -0.3040 7.46 -0.10 

1.60 15.73 -0.6730 -0.6380 15.65 -0.08 

2.18 21.34 -0.9030 -0.8680 21.29 -0.06 

3.56 34.93 -1.4575 -1.4225 34.89 -0.05 

4.38 42.96 -1.7835 -1.7485 42.88 -0.08 

4.84 47.46 -1.9680 -1.9330 47.40 -0.06 

      

  Sensitivity = -0.0408 mV/N  

   -0.0163 mV/V/N  

  Max Error = 0.10 N  

  Accuracy = 0.21%   
 

Table C-5 OptiTrack Camera’s Calibration Data 

Prescribed 

Displacement 

Measured 

Displacement 
Error 

(mm) (mm) (mm) 

0.000 0.005 0.005 

12.295 12.342 0.047 

22.430 22.420 -0.010 

31.363 31.390 0.027 

40.689 40.621 -0.068 

52.090 51.989 -0.101 

34.641 34.586 -0.055 

20.916 20.941 0.025 

8.402 8.400 -0.002 

-1.153 -1.120 0.033 

Average Absolute Error = 0.037 
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Figure C-1 Dial Gage 

 

 

Figure C-2 Dial Caliper 
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Figure C-3 Shake Table Control Box 

 

 

Figure C-4 NI 9219 Input Module 
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Figure C-5 NI 9219 Input Module and cDAQ-9171 

 

 

Figure C-6 Load Cell 
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Figure C-7 Load Cell Specification 
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Figure C-8 Load Cell Calibration Graph 

 

 

Figure C-9 Cameras’ Calibration Setup 
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APPENDIX D. VAN NUYS HOTEL 

The test structure is a 7-story reinforced concrete moment frame building located in Van Nuys, 

California. The building sustained severe damage during the 1994 Northridge earthquake. The 

intent is to determine the location and level of reductions in the story stiffnesses due to the 

Northridge earthquake. The structural system of the building is relatively simple, as describe below. 

The building was instrumented with 16 accelerometers. In the current application, the building is 

assumed to be a fixed-base spring-mass system with linear behavior and small amount of 

equivalent viscous damping.  

 

D.1 Building Description 

 

The building was constructed in 1966 and served as a hotel (Blume et al., 1973). The structural 

system of the building consists of flat slabs with perimeter beams supported by columns. Each 

column sits on two to four piles and the pile caps are tied together with ground beams (Figure D-

1). The soil underneath is alluvium composing of mostly fine sandy silts and silty fine sands 

(Blume et al., 1973). Perimeter column-beam frames and interior column-slab frames provide 

lateral stiffness in each direction even though the exterior ones were stiffer. The typical building 

plan is symmetric, comprising of eight 18’9” bays on the east-west direction and two 20’1” outer 

bays, and one 20’10’’ middle bay on the north-south direction. The typical floor plan is shown in 

Figure D-2, Figure D-3 and Figure D-4 show the typical transverse and longitudinal section of the 

building. From the figures, the first story height is 13’6’’ and roof is 8’8’’, while the rest is 8’8.5’’. 

The dimensions of the structural elements are given in Table D-1. Properties of concrete used in 

the building are shown in Table D-2.  

 

Gypsum wallboards were used in the interior partitions, while one-inch thick cement plasters were 

used at the exterior ends, and at the stairs and elevators. At the north side of the building on grid 

line D between the ground floor and second floor, there are also four full bays of masonry walls 

with 1-inch expansion joints to isolate from the columns, and 0.5-inch of the same joints to separate 

from the second floor’s beams (Blume et al., 1973). As mentioned earlier, the lateral loads were 
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resisted by concrete frames; nonetheless, the nonstructural walls might also contribute to the lateral 

stiffness.  

 

D.2 Earthquakes and Damages to the Building 

 

Since its construction, the building has undergone several earthquakes. Some of the events are 

shown in Table D-3. The two major earthquakes the building experienced are the magnitude 6.6 

1971 San Fernando earthquake and magnitude 6.5 1994 Northridge earthquake. The San Fernando 

earthquake caused inconsequential structural damage at north-east corner beam-column 

connection (Blume et al, 1973). This was repaired later by epoxy grouting. The nonstructural 

damage was substantial.  

 

Before the 1994 Northridge earthquake, there were a series of smaller earthquakes none of which 

caused noticeable defects. The Northridge earthquake, however, caused heavy structural damage 

in the building, especially in the east-west (plan longitudinal) direction. Trifunac et al. (1999) 

surveyed the damage and reported substantial structural damage to the exterior frames in the east-

west direction. Figure D-5  and Figure D-6 show the crack maps on the exterior frame A and frame 

D. In frame A, there were major cracks up to 5cm wide in five of the beam-column connections at 

the fifth floor. Trifunac et al. were not able to observe any damage in the first story due to 

obstructions.  In frame D, on the first story, there were cracks in captive columns. Cracks in the 

masonry walls were also observed. Additionally, there were cracks in beam-column joints at the 

second floor to the fifth floor along gridline 5, 7 and 8. Cracks through columns were also observed 

on gridline 1 between the fourth floor and third floor, and gridline 9 between the third floor and 

second floor. They also noticed there were no observable cracks to the interior frames and no 

damage on the floor slabs except for minor cracks around the central columns on the 5th and 6th 

floor. It is interesting to note that story 6 and story 7 appeared to have suffered no or little damage.  

 

D.3 Analysis Procedure 

 

The building is to be idealized as a spring-mass system. Therefore, the initial masses and 

stiffnesses are estimated using data obtained prior to the 1994 Northridge earthquake.  The 
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approximations of the natural frequencies of the building before the earthquake will help calibrate 

the obtained stiffnesses, while the frequencies obtained after the earthquake will help determine 

what the reductions in the story stiffnesses are. This will be done on the east-west direction where 

the damage occurred. 

 

D.3.1 Estimating the Building Frequencies 

 

Todorovska & Trifunac (2006) tracked the fundamental frequency changes (Figure D-7) of the 

Van Nuys building. f1 is the fixed-base fundamental frequency of the building and fsys is the 

fundamental frequency of soil-structure system. fsys was determined by the response of the building 

while f1 by the analysis of the shear wave travel times. It was mentioned that using the fsys to 

determine the reduction in the stiffness of the builing may not be accurate.  

 

Nonetheless, there were also ambient frequency tests conducted on the building. The frequencies 

from the ambient tests may present less interaction from the soil. Mulhern and Maley (1973) did 

an ambient vibration test on the building after the San Fernando earthquake and after the building 

had been repaired. The fundamental frequency after the earthquake was 1.39Hz and after the repair 

it rose to 1.56 Hz on the east-west direction. The 1.56Hz frequency will be then assumed to be the 

fundamental frequency before Northridge earthquake. Ivanovic et al. (1999) did the ambient 

vibration 2.5 weeks after the Northridge earthquake and the frequencies on the EW direction of 

the buildings were 1.0Hz, 3.5Hz, 5.7Hz and 8.1Hz. 

 

The building was instrumented with a total of 16 accelerometers. Accelerometers were placed at 

the ground floor, second floor, third floor, sixth floor and roof. The locations of the sensors are 

shown in Figure D-8. For the comparison, the frequencies determined directly from the building 

earthquake responses are also obtained and used to determine the reductions in the stiffnesses. To 

determine the frequencies of the building before the Northridge earthquake, the response records 

obtained during the 1992 Landers earthquake were used. The 1992 Landers earthquake produced 

a maximum of 0.15% roof drift ratio. The Phase Difference Index method of Cheng (2017) was 

used to estimate the natural frequencies of the building. The phase difference between the ground 

floor and roof responses are used to estimate the frequencies. The fundamental frequency is 
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estimated to be 0.9 Hz (fundamental period of 1.1s) (Figure D-9). Similarly, to determine the 

frequencies after the strong motion of 1994 Northridge event, the last 20 seconds of the ground 

floor and roof signal were used as the inputs for PDI. The maximum roof drift ratio was 0.14% 

during the last 20 seconds of the Northridge earthquake. The method provided estimates of the 

first four natural frequencies: 0.5Hz, 1.85Hz, 3.3Hz and 4.8Hz (Figure D-10).  

 

D.3.2 Estimating the Building Mass and Story Stiffness 

 

The mass can be lumped and estimated from the structural elements. Blume et al. (1973) did a 

study on the building for the San Fernando earthquake and the weights they used are given in Table 

D-4. For the story stiffnesses, because the building is composed of symmetric concrete frames, 

estimates can be obtained using the expression and correction factors given by Schultz (1992). The 

stiffnesses obtained are shown in Table D-5. With these two sets of information, the natural periods 

and frequencies of the building can be determined (Table D-6). The fundamental period is 1.12s 

with the corresponding frequency of 0.89Hz. This value is similar to the one obtained earlier using 

the response to the 1992 Landers earthquake. Schultz’s expression should give the stiffnesses 

immediately after the construction and, as such, seems to underestimate the stiffnesses since 1.12s 

fundamental period is high for a 7-story building. The stiffness values obtained using Schultz’s 

approach are scaled, using the same factor, so that the fundamental frequency is 0.9Hz as estimated 

from the 1992 Landers earthquake response using Cheng’s (2017) approach, and 1.56Hz as given 

by the ambient fundamental frequency after the San Fernando earthquake. The result story 

stiffnesses are used in the baseline (pre-damage) model of the building (Table D-5).  

 

D.3.3 Estimating the Reductions in the Stiffness 

 

From the survey of Trifunac et al. (1999), the building appeared to have sustained damage in the 

first story through the fourth story. The top three stories (fifth, sixth and seventh stories) appeared 

undamaged even though there might be minor cracks on the fifth floor. It is then expected that the 

stiffnesses of the first 4 stories reduced due to the Northridge earthquake. Cases of four softened 

stories will be explored. If the damage in story 5, story 6, story 7 are small, the explored scenarios 

should be the most likely case.  
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D.4 Analysis Results and Discussion 

D.4.1 Story Drift Ratio 

 

Figure D-12 to Figure D-15 show story drift ratios for the 1994 Northridge earthquake. As there 

were no accelerometers on the fourth, fifth and seventh floors, the story drift ratios were calculated 

using displacement between those floors with available data and the total height between those 

floors. As can be seen from the plots, the maximum drift ratio for the first story was around 1%, 

the second story was just under 2%, third to fifth story just under 1.5% and sixth to seventh floor 

just under 0.6%. The 1% drift in the first story caused cracking in the captive columns at the story.  

 

D.4.1 Stiffness Reductions 

 

Table D-7 and Table D-8 shows relative stiffnesses for cases with four stories damaged based on 

the four frequencies obtained from 1) the ambient responses and 2) the Landers earthquake 

responses. In both cases, the fifth, sixth and seventh stories are assumed to remain unchanged. 

Cases where there are no solutions or infeasible solutions (e.g. increase in stiffness) are not shown. 

From Table D-7 which is for the ambient response, the relative stiffness for story 1 is 30%, 34% 

for story 2, 54% for story 3, 88% for story 4, and 100% for the rest. For the Landers earthquake 

responses, Table D-8, the relative stiffness for story 1 is 18%, 44% for story 2, 49% for story 3, 

74% for story 4, and 100% for the rest. The two sets of values (based on the ambient response and 

the Landers earthquake response) do not agree because they start from different initial stiffness 

configurations. The numbers are not intended to be taken in absolute sense since many 

uncertainties and assumptions were made. The difficulties include the fact that the building was 

assumed to be a fixed-base linear spring-mass system without soil-structure interactions. The 

errors in the determination of the modal parameters, such as initial mass and stiffness, and the 

measured frequencies might also be a challenge.  

 

A LARZ model (Lepage, 1997) was used to estimate the reductions in the story stiffnesses 

assuming that the structural elements are ductile. The response for the first 2.5 seconds and the last 

5 seconds of the Northridge earthquake was used to determine the stiffness distributions. In 

calculating the stiffness values, story shear and story drifts, when the drifts are greater than 0.001in, 
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are used. The results are shown in Table D-9. From that table, the numerical simulation estimates 

that the story stiffness reductions are large and spread throughout the structure, including the sixth 

and seventh stories. This was different from what was observed at the building because the building 

suffered from brittle failures. Todorovska and Trifunac (2006) used wave travel times via impulse 

response function to estimate the reduction in stiffness. They suggest that the reductions were 

around 60% for the first story and around 30% to 40% for all other stories (Figure D-17).   
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Table D-1 Structural Elements' Dimension 

Floor 

Slab 

Thickness 

Column Perimeter Beam 

Exterior Interior EW Direction NS Direction 

(in) W(in) x D(in) W(in) x D(in) W (in) x D (in) W (in) x D (in) 

1 4 14x20 18x18     

2 10 14x21 18x19 16x30 14x30 

3 8.5 14x22 18x20 16x22.5 14x22.5 

4 8.5 14x23 18x21 16x22.5 14x22.5 

5 8.5 14x24 18x22 16x22.5 14x22.5 

6 8.5 14x25 18x23 16x22.5 14x22.5 

7 8.5 14x26 18x24 16x22.5 14x22.5 

Roof 8     16x22 14x22 

 

Table D-2 Concrete Properties (Blume et al., 1973) 

 

Compressive Strength, 

f'c 

Young's Modulus, 

E 

Location psi psi 

Columns, 1st to 2nd floor 5000 4.2x106 

Columns, 2nd to 3rd floor 4000 3.7x106 

Beams and slabs, 2nd floor 4000 3.7x106 

All other concrete, 3rd floor to roof 3000 3.2x106 

Concrete Density = 150pcf 

 

Table D-3 Some Earthquakes Recorded at Van Nuys Building (Trifunac et al., 1999) 

No. Earthquake Date M R (km) 

1 San Fernando 2/9/1971 6.6 22 

2 Whittier Narrows 10/1/1987 5.9 41 

3 Whitter-Narrows Aftershock 10/4/1987 5.3 38 

4 Pasadena 10/3/1988 4.9 32 

5 Montebello 6/12/1989 4.1 34 

6 Malibu 01/19//1989 5 36 

7 Sierra Madre 6/28/1991 5.8 44 

8 Landers 6/28/1992 7.5 186 

9 Big Bear 6/28/1992 6.5 149 

10 Northridge 1/17/1994 6.5 1.5 

11 Northridge Aftershock 3/20/1994 5.2 1.2 

12 Northridge Aftershock 12/6/1994 4.5 10.8 
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Table D-4 Building’s Lumped Weight/Mass (Blume et al., 1973) 

Floor 
Weight Mass 

(kip) (kg) 

1    

2 1830 8.30E+05 

3 1460 6.62E+05 

4 1460 6.62E+05 

5 1460 6.62E+05 

6 1460 6.62E+05 

7 1460 6.62E+05 

Roof 1410 6.40E+05 

 

Table D-5 Building's Stiffness 

Story 

Stiffness from 

Schultz's 

Scaled Stiffness 

 (Ambient Frequency) 

Scaled Stiffness  

(Lander Frequency) 

kip/in N/m kip/in N/m kip/in N/m 

1 2012.1 3.52E+08 6156.8 1.08E+09 2072.3 3.63E+08 

2 3994.6 7.00E+08 12223.0 2.14E+09 4114.2 7.21E+08 

3 2772.1 4.86E+08 8482.5 1.49E+09 2855.1 5.00E+08 

4 2772.1 4.86E+08 8482.5 1.49E+09 2855.1 5.00E+08 

5 2772.1 4.86E+08 8482.5 1.49E+09 2855.1 5.00E+08 

6 2773.8 4.86E+08 8487.6 1.49E+09 2856.9 5.00E+08 

7 2697.6 4.72E+08 8255.0 1.45E+09 2778.6 4.87E+08 

 

Table D-6 Modal Frequencies/Periods 

Mode 
Frequencies Period 

(Hz) (sec) 

1 0.89 1.12 

2 2.53 0.39 

3 4.08 0.25 

4 5.64 0.18 

5 7.03 0.14 

6 8.06 0.12 

7 8.61 0.12 
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Table D-7 Relative Story Stiffness (Frequencies Form Ambient Response) 

Cases 1 

kr1  30% 

kr2 34% 

kr3 54% 

kr4 88% 

kr5 100% 

kr6 100% 

kr7 100% 

 

Table D-8 Relative Story Stiffness (Frequencies from Lander Earthquake Response) 

Cases 1 

kr1  18% 

kr2 44% 

kr3 49% 

kr4 74% 

kr5 100% 

kr6 100% 

kr7 100% 

 

Table D-9 Larz Model Stiffnesses 

Story Stiffness Before EQ 

kip/in 

Stiffness After EQ 

kip/in 

Relative 

Stiffness 

1 3600 460 13% 

2 5800 1050 18% 

3 5000 970 19% 

4 4900 910 19% 

5 4800 920 19% 

6 4800 860 18% 

7 5200 960 18% 
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Figure D-1 Foundation Plan (Trifunac et al., 1999) 

 

Figure D-2 Typical Floor Plan (Trifunac et al., 1999) 
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Figure D-3 Typical Transverse Section (Trifunac et al., 1999) 

 

Figure D-4 Typical Longitudinal Section (Trifunac et al., 1999) 
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Figure D-5 Frame A Crack Map (Trifunac et al., 1999) 

 

Figure D-6 Frame D Crack Map (Trifunac et al., 1999) 
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Figure D-7 Fundamental Frequency Variations (Todorovska & Trifunac, 2006) 

 

Figure D-8 Van Nuys Building's Sensor Locations (CESMD, 2019) 
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Figure D-9 PDI for 1992 Landers Earthquake 

 

Figure D-10 PDI for 1994 Northridge Earthquake 

 

 

Figure D-11 Roof Drift Ratio During 1992 Lander Earthquake 
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Figure D-12 First Story Drift Ratio During 1994 Northridge Earthquake 

 

 

Figure D-13 Second Story Drift Ratio During 1994 Northridge Earthquake 
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Figure D-14 Third to Fifth Story Drift Ratio During 1994 Northridge Earthquake 

 

 

Figure D-15 Fifth to Sixth Story Drift Ratio During 1994 Northridge Earthquake 
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Figure D-16 Roof Drift Ratio During 1994 Northridge Earthquake 

 

 

Figure D-17 Reductions in Stiffness for Van Nuys Building using Analysis of Wave Travel 

Times (Todorovska & Trifunac, 2006) 
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