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ABSTRACT 
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Title: A Benchmark for Evaluating Performance in Visual Inspection of Steel Bridge Members 

and Strategies for Improvement 
Major Professor: Dr. Robert J. Connor 
 

Visual inspection is the primary means of ensuring the safety and functionality of in-service 

bridges in the United States and owners spend considerable resources on such inspections.  While 

the Federal Highway Administration (FHWA) and many state departments of transportation have 

guidelines related to inspector qualification, training, and certification, an inspector’s actual 

capability to identify defects in the field under these guidelines is unknown.  This research aimed 

to address the knowledge gap surrounding visual inspection performance for steel bridges in order 

to support future advances in inspection and design procedures.  Focusing primarily on fatigue 

crack detection, this research also considered the ability of inspectors to accurately and 

consistently estimate section loss in steel bridge members.   

 

Inspection performance was evaluated through a series of simulated bridge inspections performed 

in representative in-situ conditions.  First, this research describes the results from 30 hands-on, 

visual inspections performed on full size bridge specimens with known fatigue cracks.  Probability 

of Detection (POD) curves were fit to the inspection results and the 50% and 90% detection rate 

crack lengths were determined.  The variability in performance was large, and only a small amount 

of the variance could be explained by individual characteristics or environmental conditions.  

Based on the results, recommendations for improved training methods, inspection procedures, and 

equipment were developed.  Above all, establishment of a performance based qualification system 

for bridge inspectors is recommended to confirm that a satisfactory level of performance is 

consistently achieved in the field.   

 

Long term, managing agencies may eschew traditional hands-on bridge inspection methods in 

favor of emerging technologies imagined to provide improved results and fewer logistical 

challenges.  This research investigated the potential for unmanned aircraft system (UAS) 
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assistance during visual inspection of steel bridges.  Using the same specimens as in the hands-on 

inspections, four UAS-assisted field inspections and 19 UAS-assisted desk inspections were 

performed.  A direct comparison was made between performance in the hands-on and UAS-

assisted inspections, as well as between performance in the two types of UAS-assisted inspections.  

Again, significant variability was present in the results suggesting that human factors continue to 

have a substantial influence on inspection performance, regardless of inspection method.   

 

Finally, to expand the findings from the crack detection inspections, the lower chord from a deck 

truss was used to investigate variability in the inspection of severely corroded steel tension 

members.  Five inspectors performed a hands-on inspection of the specimen and four engineers 

calculated the load rating for the same specimen.  Significant variability was observed in how 

inspectors recorded thickness measurements during the inspections and engineers interpreted the 

inspection reports and applied the code requirements.   
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1. INTRODUCTION 

1.1 Motivation 

The National Bridge Inspection Standards (NBIS) were originally conceived in the 1968 Federal-

Aid Highway Act.  The NBIS currently mandates that all structures longer than 20 feet located on 

public roads be inspected every two years by a qualified bridge inspector.  The results of these 

inspections are reported for inclusion in the National Bridge Inventory maintained by the Federal 

Highway Administration [1].  These routine inspections are typically conducted visually from the 

surface of the bridge deck and from the ground beneath the structure.  Following the collapse of 

the Mianus River Bridge in 1983, additional inspection requirements were invoked for bridges 

considered vulnerable to collapse due to their lack of structural redundancy.  These bridges include 

steel tension members whose failure would be expected to result in the partial or complete collapse 

of the bridge and are termed “fracture critical members” [2].  For fracture critical members, the 

inspection must be completed from within an arm’s length of the member.  Therefore, some form 

of aerial access, either through climbing or the use of specialized equipment (e.g., a snooper truck 

or man lift), is required to gain access to the surface to be inspected.  In addition to increasing the 

person hours, equipment, and traffic control required to complete the inspection, this increases the 

risk for both the inspectors and the public.  In 2017, approximately three percent of the 615,000 

bridges subject to the federal inspection requirements were classified as fracture critical [3]. 

 

Hands-on, visual inspections are considered the primary means of ensuring the safety of the 155 

million drivers who travel across these fracture critical bridges each day [3].  Although there is 

little question that these inspections increase public safety, only a small number of studies have 

attempted to quantify the reliability or accuracy of these inspections [4], [5].  And while 23% of 

the respondents to a survey conducted in 2005 indicated that a hands-on fracture-critical inspection 

had identified defects, such as cracks or corrosion, that may have led to catastrophic failure without 

detection, these findings come with a significant price tag [6].  The same study estimated the cost 

of a fracture critical inspection to be approximately 2 to 5 times more than that associated with a 

routine inspection, and for some structures, increases of between 10 and 50 times have been 
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reported [6].  Thus, a large percentage of an agency’s inspection budget may be consumed by a 

relatively small number of bridges. 

 

In recent years, an increased emphasis has been placed on addressing many of the challenges 

associated with visual bridge inspection and identifying opportunities for improving safety and 

reducing cost.  However, the development of new inspection strategies requires, among other 

things, a comprehensive understanding of what defects can and will be reliably detected under the 

current policy.  For example, the introduction of reliability-based inspection intervals in lieu of the 

current, federally-mandated, uniform inspection interval, necessitates an understanding of the 

detectable crack size during in-service inspections [7], [8].   

 

This research examines the performance of bridge inspectors during visual inspection of steel 

bridges, primarily focusing on the ability of inspectors to detect fatigue cracks and estimate section 

loss in steel bridge members.  First, the research assessed inspection performance during traditional, 

hands-on inspections.  Then, the potential for unmanned aircraft system (UAS) assistance during 

visual inspections was investigated.   

 

This research project expands the understanding of visual inspection accuracy and consistency for 

steel bridges.  Specifically, the probability of detection study is believed to be the first of its kind 

specific to steel bridges and will provide a quantitative baseline measure of hands-on inspection 

performance.  Additionally, in recent years, UAS technology for civil infrastructure inspections 

has matured to the point that it is a viable supplement to traditional hands-on inspections of steel 

bridges.  Ultimately, the results of this research may be used to develop improved inspection 

strategies which can provide increased safety for inspection personal and the motoring public along 

with cost-savings for managing agencies. 

1.2 Research Objectives  

The research objectives for this project are as follows: 

 Investigate the ability of bridge inspectors to accurately detect fatigue cracks in steel bridge 

members during hands-on, visual inspection.  Qualitatively and quantitatively measure the 
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effect of inspector characteristics and inspection environment on visual inspection 

performance.  Identify key factors that influence performance.  

 Establish the probability of detection for fatigue cracks in steel bridges using visual 

inspection.  

 Investigate the effectiveness of UAS assistance in visual inspection of steel bridge 

members.  Compare performance during a UAS-assisted bridge inspection to performance 

during a hands-on inspection.  

 Develop recommendations for inspection equipment, training, and procedures to improve 

performance during visual inspection of steel bridge members.  

 Investigate the ability of bridge inspectors to accurately estimate the remaining thickness 

of steel bridge members during hands-on, visual inspection.  

 Investigate the accuracy and consistency of load rating evaluations of corroded steel 

tension members based on visual inspection findings.  

1.3 Development of the National Bridge Inspection Standards 

Over the last half century, significant changes to bridge inspection requirements have been 

implemented at federal, state, and local levels.  Prior to the 1967 collapse of the Silver Bridge in 

Point Pleasant, West Virginia, no federal standards or requirements governed the maintenance of 

in-service bridge structures [2].  This failure of a non-redundant eyebar in the suspension chain 

resulted in 46 fatalities and placed increased emphasis on bridge inspection [9].  In 1968, Congress 

passed the Federal-Aid Highway Act which called for the Secretary of Transportation to develop 

a national bridge inspection standard alongside a program for training bridge inspectors [10, 73 

Stat. 145], and in 1971, the National Bridge Inspection Standards (NBIS) were released.  In 

addition to establishing a national policy for inspection procedure, frequency, and reporting, the 

NBIS outlined the necessary qualifications for inspection personnel and maintenance requirements.  

 

The 1983 collapse of the Mianus River Bridge in Greenwich, Connecticut revealed some lingering 

weaknesses in the NBIS, specifically the lack of guidance regarding the inspection of critical 

elements.  The Mianus River Bridge collapse was caused by the failure of the pin-and-hangar 

assembly.  Despite regular visual inspections, the assembly was allowed to deteriorate and 

eventually a fatigue crack grew to critical size and fractured the hangar [11].  As a result of this 
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failure, the term “fracture critical member (FCM)” was introduced to describe non-load-path-

redundant, steel tension members.  A supplementary inspection manual titled Inspection of 

Fracture Critical Members was released in 1986, and in 1988, the NBIS was revised to include 

special inspection criteria for bridges with FCMs.  As of 2005, the NBIS require routine 

inspections to be performed every 24 months, although this interval may be extended to 48 months 

on a case-by-case basis as approved by the FHWA.  Fracture critical members require an arm’s 

length inspection at intervals not to exceed 24 months [1], [2]. 

1.4 Requirements for Bridge Inspection Team Leaders 

Currently, the NBIS outline five possible ways to qualify as a bridge inspection team leader based 

on a combination of training, education, and experience level [1].  Education and experience 

requirements vary inversely, but in all cases, satisfactory completion of a “comprehensive 

inspection training course” [1, §650.309] is mandated.  Additionally, the NBIS requires “periodic 

bridge inspection refresher training” [1, §650.313] for bridge inspection team leaders.  The FHWA 

has developed a full complement of training courses to satisfy the demands of the NBIS and offers 

these through the National Highway Institute (NHI).  Successful completion of the 80-hour, 

instructor-led course titled Safety Inspection of In-Service Bridges and its prerequisite satisfies the 

requirement for comprehensive inspection training.  The prerequisite consists of a one-week 

instructor led course titled Engineering Concepts for Bridge Inspectors, a 14-hour web based 

training course titled Introduction to Safety Inspection of In-Service Bridges, or a web-based 

assessment.  Similarly, a 3-day, instructor-led course titled Bridge Inspection Refresher Training 

fulfills the continuing education requirement.  The frequency of refresher training is determined 

by each managing agency.  For inspection of bridges with fracture critical members, the FHWA 

offers a 3.5-day, instructor-led course titled Fracture Critical Inspection Techniques for Steel 

Bridges.  While conducted mainly in the classroom, these training courses typically include either 

a field component or a virtual bridge inspection exercise completed on a computer.  

 

Additionally, state or local agencies have the flexibility to supplement the minimum qualifications 

stipulated in the NBIS with additional requirements.  For instance, both the Oregon Department 

of Transportation [12] and Minnesota Department of Transportation [13] require inspectors to pass 

a field proficiency test in addition to satisfying the requirements of the NBIS.  Likewise, the 
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Indiana Department of Transportation [14] requires successful completion of the 2-day instructor-

led course developed at Purdue University and titled Inspecting Steel Bridges for Fatigue. 

1.5 Evaluating Visual Inspection Capability 

The probability of detection (POD) metric was developed in the 1960s to quantitatively describe 

the detection capability of various nondestructive examination (NDE) techniques [15].  The 

introduction of “damage tolerance” into structure and system designs demanded a probabilistic 

description of NDE capability and previous evaluation methods became inadequate.  A damage 

tolerant structure is designed with sufficient redundancy so that it can tolerate significant cracking 

or single member failure to such an extent that this damage would be easily detectable during 

regularly scheduled maintenance and inspection activities [16].  This requires an understanding of 

both the critical flaw size and the detectable flaw size, specifically, the largest flaw that may be 

missed during an inspection.  The majority of the existing research on inspection reliability and 

POD has been performed in the aeronautical and nuclear industries, although the methods can be 

applied to similar industries that rely heavily on NDE for quality control.  

 

In response to the growing popularity of POD studies and a general concern that the data generated 

from these studies could be easily misinterpreted, the United States Department of Defense (DoD) 

released MILK-HDBK-1823A [17] with guidance for measuring NDE system reliability with POD 

statistics.  This handbook is widely cited throughout the world and is applicable to any NDE 

method that produces either a quantitative signal, such as ultrasonic testing, or a binary response, 

such as visual inspection.  It presents a uniform approach for assessing the capability of an NDE 

method by relating the probability of detection (POD) to target size (a).  The ideal inspection 

would be represented by a step function with POD=0 for all defects smaller than the detectable 

defect size and POD=1 for all defects larger than the detectable defect size [17]. 

 

Prior attempts to quantify detection probability considered only the number of defects detected 

divided by the total number of defects present, thereby disregarding the influence of defect size.  

Attempts to rectify this by calculating detection rate per size range reduced the accuracy of the 

calculations because of the corresponding reduction in sample size [17].  Instead, the DoD 
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handbook proposes eight possible underlying mathematical relationships between POD and size 

that can be fit to the test data and used to predict the results of future inspections. 

  

In order to represent binary response data (hit/miss) as a linear function of the defect size, a link 

function is introduced to transform the binary data (0 or 1) to probability data (between 0 and 1).  

In this way, size can be related to the probability of a hit or the probability of a miss.  The DoD 

handbook includes four possible link functions to transform the hit/miss data.  These are the log-

odds function, the inverse normal function, the complementary log-log function, and the log-log 

function.  Table 1.1 shows the definition of each link function and the equation for probability 

derived from each function.  The log-odds, or logistic, function is the most widely used link 

function, although all four functions should be considered in practice [17], [18].   

 

Although it has been customary to assume that probability of detection is a function of the 

logarithm of defect size, this is not necessary, or even the best approach [17], [18].  Both a 

logarithmic and a Cartesian size response should be investigated for each link function.  The model 

which best fits the data can be selected based on deviance, which is defined as two times the 

maximized log-likelihood ratio.  A smaller deviance indicates better agreement between the model 

and the data.  

Table 1.1 Probability of detection link functions  

Link Name Definition Probability 

Log-odds function (logistic) 𝑓 𝑋 𝑔 𝑦 ln
𝑝

1 𝑝
 𝑝

𝑒𝑥𝑝 𝑓 𝑋
1 𝑒𝑥𝑝 𝑓 𝑋

 

Inverse normal function 
(probit) 𝑓 𝑋 𝑔 𝑦 Φ 𝑝  𝑝 1 𝛷 𝑓 𝑋  

Complementary log-log 
function (Weibull) 

𝑓 𝑋 𝑔 𝑦 𝑙𝑛 𝑙𝑛 1 𝑝  𝑝 1 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑓 𝑋  

Log-log Function 𝑓 𝑋 𝑔 𝑦 𝑙𝑛 𝑙𝑛 𝑝  𝑝 𝑒𝑥𝑝 𝑒𝑥𝑝 𝑓 𝑋  

 

Continuing with the logistic function, let 𝑝  𝑃𝑂𝐷 𝑎  and f 𝑋   𝛽   𝛽 𝑎  where a is crack 

length so the probability equation from Table 1.1 can be rewritten as  

𝑃𝑂𝐷 𝑎
exp 𝛽   𝛽 𝑎

1 exp 𝛽   𝛽 𝑎
1. 1  
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The parameters, β0 and β1, have no obvious physical meaning but can be related to a location 

parameter, μ, and scale parameter, σ [18].  The location parameter corresponds to the defect size 

at which POD = 0.5 and the scale parameter corresponds to the inverse of the slope of the curve. 

By reparametrizing f(X) in terms of μ and σ such that 

𝛽   𝛽 𝑎
𝑎 𝜇

𝜎
1. 2  

 

it can be determined that 𝛽  and 𝛽 . 

 

The author of MIL-HDBK-1823A developed accompanying software that utilizes the 

recommended statistical algorithms to produce the probability of detection versus defect size 

curves.  This software, mh1823POD, utilizes the R-programming language and is freely available 

to anyone who requests it [19].  It provides diagnostic plots of each possible model and allows the 

user to specify the link function and size relationship which best fit the data.  The model parameters 

are automatically estimated by the software using an iteratively reweighted least squares technique 

that accounts for the non-uniform variance in the error terms.  Confidence bounds are computed 

by varying the parameters away from the values that provide the maximum likelihood in order to 

generate a family of curves that represent the specified confidence bounds on the maximum 

likelihood curve.  For example, at 95% confidence, the confidence limits are expected to enclose 

the true POD curve in 95 out of 100 similar inspections.  Note that in the case of hit/miss data, 

confidence bounds are not the same as prediction bounds [18].  Since the outcome of a single 

future inspection will be either a hit (1) or a miss (0), it is meaningless to consider a prediction that 

may be between 0 and 1.  Ultimately, the following values typically used to describe NDE system 

capability can be extracted from the POD curves: 

 a50: defect size that has a 50% probability of detection (50% confidence) 

 a90: defect size that has a 90% probability of detection (50% confidence) 

 a90/95: defect size that has a 90% probability of detection (95% confidence) 

1.6 Human Factors in Visual Inspection 

Visual inspection performed by a human inspector is an inherently imperfect and unpredictable 

process.  Individual inspectors have a wide range of physical and mental abilities, differing 
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responses to environmental stimuli, varied experiences and expectations, and fluctuating levels of 

focus and motivation.  Since the 1950s, many industries whose quality control programs rely 

heavily on visual inspection, such as aircraft maintenance or airport baggage screening, have 

dedicated significant funds to research focused on understanding and improving visual inspection 

performance [20].  Due to the subjective nature of the task, the influence of human factors on 

inspection performance is the primary focus of much of the available research.  A small selection 

of the human factors that have been investigated in the literature is discussed below.  They can be 

divided into five categories: task factors, individual factors, environmental factors, organizational 

factors, and social factors [20].  

 

Task factors are related to the physical nature of the inspection task and the structure.  A systematic 

search pattern, area-by-area or defect-by-defect, and an inspector-paced approach have been found 

to improve inspection accuracy [21], [22].  Similarly, inspection accuracy increases as the defect 

rate increases and the number of defect types decreases [23].  Finally, detection rate tends to 

improve with increasing inspection time, although the improvement gradually saturates whereby 

additional time does not provide additional benefits [21], [24].  Breaks should be taken at regular 

intervals to avoid the performance decrement which occurs with sustained time on a vigilance task 

[25].  The rate of false alarms may also increase with time since more indications are likely to be 

found during a longer inspection and inspectors have been observed relaxing their rejection criteria 

as the number of indications increases [26].   

 

Individual factors are related to the characteristics of the individual performing the inspection. 

Across the research, few individual factors have been found to have a consistent influence on 

inspection performance.  A small number of recent studies have found inspection performance to 

decrease with age [27], [28], although prior research does not entirely support this finding [20]. 

When present, age effects are thought to be caused by a decline in visual acuity and cognitive 

processing speed that may or may not be offset by experience.  Research has found that inspection 

accuracy may increase, decrease, or remain constant with experience.  In some cases, more 

experienced inspectors are able to recognize abnormal attributes at a faster speed than novice 

inspectors [29].  Other studies have found no correlation or negative correlation between 

experience and inspection accuracy as inspectors may be overly reliant on knowledge gained from 
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past inspections and may overlook an uncommon defect in an unusual location [30], [31].  Most 

research measured only a small variation in visual acuity within the inspector population, thereby 

making visual acuity a poor predictor of performance, but an effective screening tool [21].  General 

intelligence and personality have not been found to have a significant influence on inspection 

performance, although specific intelligence tests, such as the Embedded Figures Test, have been 

found to correlate with inspection performance in some studies [31], [32].  In general, the research 

suggests that the interaction among the individual factors may be more significant than any single 

factor in understanding inspection performance.  

 

Environmental factors are related to the atmosphere in which the inspection is being performed.  

Following the recommendations of the Illuminating Engineering Society, available research 

recommends lighting levels of 500 to 2000 lux based on the difficulty of the inspection task [24].  

Different defect types may require different lighting types, and in addition to providing adequate 

illumination, it is important to control glare and eliminate hot spots.  Although no research was 

found that specifically focused on the effects of temperature on inspection performance, the 

literature suggests that extreme temperatures (high or low) will negatively affect vigilance 

performance [33].  Finally, several studies suggest that inspection performance is significantly 

worse during overnight shifts.  Inspectors working at night were more likely to miss defects and 

inaccurately estimate defect sizes [34]. 

 

Organizational factors are related to the administrative or managerial organization directing and 

supporting the inspection.  Research frequently cites inspector training as the most cost effective 

and efficient strategy for improving inspection performance.  Past studies have shown that training 

courses should address the physical, procedural, and cognitive aspects of the inspection task [20], 

[22].  Additionally, both feedforward information and feedback have been found to positively 

influence performance due to their informational and motivational properties.  High quality 

information, related to inspection performance or strategy, can improve inspection accuracy and 

efficiency [22], [35].  
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Social factors are related to the social context in which the inspection is being performed.  Research 

has shown that inspectors may relax their rejection policy due to external pressure [36] and 

consultation among inspectors has been found to increase performance [37]. 

1.7 UAS-assisted Bridge Inspection 

The Federal Aviation Authority (FAA) defines an unmanned aircraft system (UAS) as “an 

unmanned aircraft and the equipment necessary for the safe and efficient operation of that aircraft” 

[38].  In the context of this research, UAS is assumed to refer to the UAS platform and its payload, 

the pilot, and the inspector.  UAS technology is rapidly advancing for both recreational and 

commercial use, and in recent years, there has been increasing interest in the use of UAS for civil 

infrastructure applications, including bridge inspection.  Advocates suggest that UAS assistance 

may address many of the logistical challenges confronting traditional bridge inspections, including 

access and traffic control.  Their size, mobility, and ability to carry a wide range of imaging 

systems are oft-cited benefits, while flight restrictions and the short battery life are well known 

drawbacks.  Despite the frequent endorsements, only a small number of studies have investigated 

the inspection capability of these systems.  

 

The Minnesota Department of Transportation launched a three phase study in 2015 to demonstrate 

the effectiveness of UAS assistance for bridge inspections [39], [40], [41].  Conclusions and 

recommendations were generated based on a series of more than 40 field trials.  The first phase 

was completed with a high-end, multi-purpose UAS platform, Phase II used an inspection specific 

aircraft, and the Phase II inspections were performed with a corrosion tolerant vehicle.  The field 

trials considered applications beyond traditional bridge inspection, including 3D modeling and site 

mapping and collecting condition information to support rehabilitation projects.  The findings 

suggest that UAS assistance may offer a cost-effective method for collecting detailed information 

about the bridge condition that might not be recorded during a typical routine inspection.  

Additionally, the reports recommend their use for long span bridges with heavy traffic and difficult 

access conditions.  Although the UAS-assisted inspections were performed concurrent with the 

biennial NBIS inspections, a comparison of the inspection results was not presented. 
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In partnership with the Florida Department of Transportation, researchers at the Florida Institute 

of Technology performed a proof-of-concept study for UAS assistance in high mast light pole and 

bridge inspections [42].  This study included a comprehensive literature review, a detailed 

explanation of the UAS platform selection criteria, and a series of indoor and field trials using the 

selected system.  Selection criteria for the platform included maneuverability, adaptability, 

software compatibility, payload, size, and user controls, while the criteria for the imaging system 

included performance, weight, dimension, price, battery life, ease of use, and software 

compatibility.  Since the potential systems were ranked relative to each other, minimum technical 

requirements were not established.  Findings from the field test suggest that images collected by 

the UAS were of similar or better quality to those collected by inspectors during a routine 

inspection. However, no direct assessment of inspection performance was provided. 

 

In partnership with the Michigan Department of Transportation (MDOT), researchers at Michigan 

Technological University completed a two phase study investigating the use of UAS for a variety 

of civil infrastructure applications, including bridge inspection [43], [44].  During Phase II, five 

UAS platforms were considered, and the strengths and weaknesses of each were identified.  For 

instance, the Bergen hexacopter could be equipped with optical and visual sensors to collect high 

resolution imagery of bridge decks while the DJI Mavic Pro quadcopter was best suited for close-

up inspection of the bridge superstructure due to its collision avoidance sensors.  Five bridge 

inspections were conducted during Phase II and the researchers determined that they were able to 

quickly and accurately collect information on the surface and subsurface condition of the deck that 

compared well to the findings from traditional methods, such as chain dragging and hammer 

sounding.  This comparison was made visually, but no quantitative analysis was presented.  Going 

forward, the research team and MDOT are interested in developing a methodology to 

automatically detect deck defects and assign element level condition ratings without closing lanes.   

 

Researchers at Utah State University launched a study specifically focused on fatigue crack 

detection during UAS-assisted bridge inspections with the support of the Idaho Department of 

Transportation [45].  The researchers started with a series of controlled experiments in the 

laboratory to determine the maximum distance at which a fatigue crack could be detected under 

varying light conditions.  This was not a “blind” test as the researchers knew both that a fatigue 
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crack was present and where it was located within the specimen.  Still, they determined that a 1/2-

inch crack could be detected using the built-in camera on the DJI Mavic Pro at a standoff distance 

of three feet and under normal lighting conditions.  The researchers confirmed that this standoff 

distance could be achieved both in the laboratory and in a confined space underneath a bridge.  

One field inspection was performed at a steel bridge with known fatigue cracks over the Fall River 

in Idaho.  The research team has difficultly flying the UAS in the GPS-denied environment under 

the bridge and over the river because the downward facing visual positioning system could not 

identify any feature points in the moving water.  The inspection team was unable to identify the 

fatigue cracks because they were obscured by previous inspection markings, however they did 

identify corrosion, efflorescence, and concrete cracks.  A final field demonstration was performed 

at the Purdue University’s S-BRITE Center.  The researcher, acting as the inspector, was able to 

identify fatigue cracks in the specimens, but also struggled to differentiate between actual fatigue 

cracks and other surface imperfections.  The researchers concluded that fatigue crack detection 

with a UAS was possible, but many challenges exist.  

 

Researchers from South Dakota State University worked with the United State Department of 

Agriculture and the South Dakota Department of Transportation (SDDOT) to perform a UAS-

assisted inspection of a three span timber bridge near Keystone, South Dakota [46].  Before 

performing the inspection, the researchers considered 13 different UAS platforms, evaluating them 

based on set of metrics including flight time, cost, camera and video resolution, and camera 

location.  Then, the team proceeded through the following five-stage bridge inspection 

methodology: (1) Bridge Information Review, (2) Site Risk Assessment, (3) Drone Pre-Flight Set-

up, (4) Drone-enabled Bridge Inspection, and (5) Damage Identification.  Following the inspection, 

the results from the UAS-assisted inspection report were compared to the findings from the most 

recent SDDOT inspection report and the researchers determined that the same damage was 

reported in each.  Additionally, researchers found the that the 3D model developed using 

photogrammetry software provided a more complete view of the damage as compared to the video 

or still images.  In terms of the UAS platform, the researchers discovered that the DJI Phantom 4 

was able to provide a high quality inspection of the underside of the deck even though the camera 

was mounted underneath the body of the drone. 
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The Oregon Department of Transportation (ODOT) and researchers from Oregon State University 

performed six bridge inspections and three communication tower inspections with UAS assistance 

[47].  These inspections were performed with three different UAS platforms, two multi-purpose 

and one inspection specific.  During the inspections, the team investigated various flight 

parameters including flight mode, flying speed, camera angle and field of view, aircraft standoff 

distance, and weather conditions.  The researchers recommended using sensor-assisted or 

waypoint-assisted flight modes, in lieu of manual control, when possible.  The recommended 

standoff distance varied based on weather conditions, camera capability, and flight mission, but in 

general, the authors recommended a standoff distance of at least 10 feet.  For close range inspection 

missions, the researchers determined that the flying speed should be less than 2 mph to collect 

high-resolution imagery without blur.  For overhead mapping flights with longer standoff distances, 

flying speeds of approximately 10 mph were found to be acceptable.  Instead of identifying a single 

maximum operating wind speed, the researchers recommended identifying a wind-speed threshold 

specific to the aircraft and inspection conditions.  Finally, the researchers concluded that UAS 

could most benefit routine and initial inspections and determined that UAS assistance reduces field 

time by 20% while increasing office time by 30%, on average.  Although ODOT inspectors were 

involved in the field trials, the results from the UAS-assisted inspections were not compared to the 

results from routine inspections.  

 

In 2015, two inspection missions were carried out at the behest of the National Forest Service on 

a timber pedestrian bridge located on the Kenai Peninsula in Alaska [48], [49].  The aircraft used 

in this inspection was a custom built hexacoptor with an adjustable camera mount.  First, a close 

range inspection of the exterior face of each timber truss was performed.  This was intended to 

replicate a traditional routine inspection.  Then, a series of 22 unique flights was completed to 

collect a sufficient number of overlapping digital images to build a 3D model of the structure.  The 

3D model developed from the UAS imagery was compared to a 3D model developed from LIDAR 

data, and the UAS imagery was determined to yield a more complete and detailed model.  A 

quantitative assessment of the accuracy of the close range inspection or the 3D scene 

reconstruction was not provided, and the minimum imaging requirements were not discussed.  The 

development of replicable UAS inspection methods and protocols was listed as a topic for future 

research.  
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2. PRIOR RESEARCH 

A comprehensive review of previous research related to visual inspection performance and 

reliability was performed as part of the current research.  Limited research has been performed 

specific to visual inspection of steel bridges, however, other industries that rely heavily on visual 

inspection for quality control have dedicated significant resources to understanding and improving 

inspection performance, and many of their findings may be relevant to the bridge industry.  

Therefore, visual inspection research from other industries, such as nuclear, aerospace, marine, 

and medical, was reviewed.  

 

The following chapter contains a brief description of the five studies thought to be most significant 

to the current work.  When necessary, references have been provided throughout this document to 

additional work reviewed.  The first summary includes previous research from Purdue University 

that provided the foundation for the current research.  These researchers designed and fabricated 

the Probability of Detection (POD) specimens, developed the POD inspection course, and 

conducted the initial set of 11 inspections.  The second summary includes research that the Federal 

Highway Administration (FHWA) performed evaluating the reliability of routine and in-depth 

inspections of highway bridges.  Next, a study from the Federal Aviation Administration (FAA) 

to benchmark visual inspection performance of aircraft inspectors is summarized.  This is followed 

by a discussion of the best practices developed by the FAA to lessen the variability in inspection 

results caused by human factors.  The final study includes research performed under NCHRP 12-

28(7) to develop practical guidelines for inspectors and engineers tasked with evaluating the effects 

of corrosion on steel bridges members.  Each of these studies offered great value to the current 

research. 

2.1 Whitehead (2015) and Snyder (2015) 

The Probability of Detection study developed at Purdue University aimed to assess the ability of a 

bridge inspector to locate and size fatigue cracks using current inspection procedures and 

techniques [50], [51].  Much of the current research continues the work of Snyder and Whitehead 

who initiated the POD study. 
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A training structure was designed and constructed at Purdue University’s Steel Bridge Research, 

Inspection, Training, and Engineering (S-BRITE) Center to mimic a two span, three girder 

highway bridge.  The structure supports 183 full size bridge specimens with known fatigue cracks. 

Inspectors were asked to complete a typical hands-on inspection of a subset of the specimens, and 

were evaluated based on their ability to correctly identify fatigue cracks.  In addition to 

performance results, background information about each inspector and the environmental 

conditions during the inspection were recorded throughout the research.  

 

This study included three types of common fatigue cracks: out-of-plane distortion induced cracks, 

weld toe cracks, and cracks emanating from rivet holes.  The out-of-plane cracks and the weld toe 

cracks were introduced through cyclic fatigue loading in a controlled laboratory setting.  The out-

of-plane cracks were located in girder specimens (wide flange or plate girders) with welded web 

attachments and the weld toe cracks were located at welded cover plate terminations.  The rivet 

hole cracks were simulated cracks, cut into plates using the electrical discharge machining (EDM) 

process.  These plates were intended to represent any riveted tension member, such as a cover plate 

or truss chord.  In all cases, the exact size, location, and orientation of the cracks was carefully 

measured and recorded to serve as the “answer key” for the inspectors participating in the study.  

All specimens were considered “full size” in that their proportions and geometry were 

representative of a typical highway bridge.  For instance, the plate girders had a 3/8-inch by 36-

inch web and two 1-inch by 12-inch flanges and the W-shapes were W36x135 rolled sections.  To 

represent a greater number of in-service bridges, some of the specimens were painted with a typical 

bridge coating system (excluding the polyurethane top coat) while others were uncoated and 

exposed to a series of wet-dry cycles with a salt water solution until the surface corrosion 

resembled the protective rust patina characteristic of weathering steel.  Based on the suggestion of 

officials at the Indiana Department of Transportation (INDOT), all of the welded cover plate and 

riveted plate specimens were painted since these details are not commonly used in weathering steel 

bridges.  To imitate in-service bridges, all specimens (flawed and unflawed) were subjected to an 

accelerated weathering process.  A combination of salt water, metal shavings, and scratches were 

applied to simulate typical damage and deterioration of the coating.  
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The specimens were suspended 25 feet above the ground.  The painted specimens were installed 

on one span of the training structure and the uncoated specimens on the other span.  Each span 

measured approximately 40 feet in length and the three girder lines were spaced approximately 8 

feet apart.  The plate girder and wide flange specimens were suspended from the frame beams, and 

the welded cover plates were attached to the bottom flanges of the girder specimens.  The riveted 

plates were attached to bottom flange of the girder specimens and to the frame columns.  A timber 

deck and timber framing were installed to mimic actual access and lighting conditions beneath a 

bridge.  

 

Due to time constraints, only a subset of the specimens installed on the training structure were 

included in the inspection scenario.  In total, the inspection course included 70 cracks in 147 

painted specimens and 17 cracks in 16 weathering steel specimens.  Of these, 45 were out-of-plane 

cracks, 23 were weld toe cracks, and 19 were rivet hole cracks.  The ratio of unflawed to flawed 

specimens was 163:87, although it is important to note that many of the specimens included 

numerous possible crack sites making the actual noise ratio much higher.  The crack lengths ranged 

from 1/2 to 5-3/8 inches with 37 cracks between 1-1/12 and 3-1/2 inches in length.  

 

On the day of the inspection, the inspector reported to Bowen Laboratory at 8 AM.  Two visual 

acuity tests were administered and the inspector was asked to sign a confidentiality agreement.  

Additionally, the inspector was given information on the inspection procedures, a list of 

assumptions about the specimens, and a blank inspection form for each specimen.  At the test site, 

the inspector was first instructed to perform a routine inspection from the ground beneath the 

specimens.  Then, the inspector proceeded with the hands-on inspection, first of the weathered 

specimens and then the painted specimens.  The inspector was instructed to record the length and 

location of all cracks on the corresponding inspection form.  If no cracks were found, the inspection 

form was to be completed indicating such.  Throughout the inspection, the manlift was operated 

by a member of the research team to ensure that the specimens were inspected in the same 

predetermined order.  At the conclusion of the hands-on inspection, the inspector completed an 

exit survey providing information about their background and training history.  
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Eleven (11) inspectors from the INDOT participated in the initial round of POD inspections.  The 

results from these inspectors are combined with the results from 19 additional inspectors and 

presented in Chapter 3.  They will not be discussed in detail here.  However, even with a small 

sample size, the inspection results were highly variable with detection rates on the painted 

specimens ranging from 31% to 77%.  The average 50% detection rate crack length (a50) was 1-

1/4 inches and the average 90% detection rate crack length (a90) was 8 inches.  No single variable 

correlated significantly with detection rate.  Moreover, the detection rates on the uncoated steel 

specimens were so low (0% to 39%) that the research team deemed them invalid and they were 

not included in the subsequent inspections.  Recommendations for improving the reliability of 

visual inspection included implementing performance testing for inspector qualification, requiring 

the use of a standard set of tools during hands-on inspections, and developing detail-specific 

inspection procedures. 

2.2 Moore, Phares, Graybeal, Rolander, & Washer (2001) 

In 1998, the FHWA launched a comprehensive study focused on the reliability of routine and in-

depth inspections of highway bridges [5].  The objectives of this study were to provide an overall 

measure of the accuracy and reliability achieved with current inspection standards, understand the 

influence of key factors expected to affect inspection results, and identify differences in inspection 

procedures among the participating state agencies.  This study included 49 inspectors from 25 state 

agencies participating in 10 separate inspection tasks.   

 

Most relevant to the current research project were the findings from Tasks F and H which each 

included the in-depth inspection of a bridge superstructure.  Task F required a partial inspection of 

a 90-foot single span, riveted plate girder bridge.  Overall, the bridge was in fair condition with 

general deterioration of the coating system and localized corrosion of the girders, secondary 

members, and fasteners.  In addition to the global defects, five local defects were identified in the 

bridge structure.  Two (2) of these defects, a missing rivet head and a crack indication at a tack 

weld, were implanted by the research team.  The other defects consisted of localized member 

distortion due to impact in two locations and abnormal rotation at a bearing.  The research team 

expected that these defects would be noted in an in-depth inspection report.  
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Based on proctor observations and self-reports from the inspectors, the majority of the inspectors 

were focused, not rushed, and comfortable during this inspection task.  Despite this, few of the 

inspectors completed a thorough inspection with no more than 90% of the inspectors inspecting 

any single feature.  Additionally, only 48% of the inspectors used a flashlight, despite measured 

lighting levels far below the recommended values, 36% of the inspectors used a tape measure, and 

5% of the inspectors used a magnifying glass. Notably, when asked to describe the geometric 

characteristics of the bridge, only 10% of the inspectors noted the bridge skew.  This is an 

important feature as bridge skew may lead to distortion induced cracking which should be a 

primary focus during an in-depth inspection.  

 

While the majority of the inspectors noted the general paint system failure and corrosion, only 45% 

of the inspectors noted the severe fastener corrosion and section loss.  Additionally, only 50% of 

the inspectors observed the bearing abnormality, 17% noted the impact damage at one or both 

locations, 7% located the crack indication, and 5% identified the missing rivet head.  In this task, 

defect detection was found to correlate with inspection duration, mental focus, flashlight use, and 

inspector-reported structure complexity.  Inspectors that worked more slowly, were more focused, 

used a flashlight, and rated the bridge as more complex tended to note one or more of the local 

defects.  Conversely, inspectors that worked quickly, were less focused, did not use a flashlight, 

and rated the structure as less complex tended to indicate that there were no defects.  

 

Task H required the inspection of a single bay in one span of a four span, welded plate girder 

bridge.  The superstructure contained connection details typical of major highway bridges, 

including longitudinal and transverse stiffeners, bolted and welded flange transitions, and a lateral 

bracing system attached to the girders with gusset plates welded to the web near the bottom flange.  

Overall, the bridge was in good condition, although there were crack indications at the weld toes 

of some of the connection details. 

 

Once again, despite being given adequate time to complete the task, the majority of the inspectors 

did not perform a thorough inspection.  For instance, although the lateral gusset plate connection 

includes a Category E fatigue detail and is a likely location for fatigue crack formation, only 56% 

of the inspectors inspected at least 76% of these connections.  Similarly, only 47% of the inspectors 



37 
 

inspected all locations where the drain pipe was welded to the girder web with a short attachment.  

Despite the presence of poor fatigue details, only 57% of the inspectors indicated that fatigue 

cracking was a possible issue in this type of structure.  Additionally, when asked to describe the 

bridge geometry, only 52% of the inspectors noted that it was continuous.  

 

In total, there were 174 likely crack locations and 7 weld crack indications within the inspection 

limits.  Four (4) of the indications were located at vertical stiffener to girder connections and three 

of the indications were located at the lateral gusset plate to girder connection.  Additionally, the 

drain pipe to girder connection and utility bracket to girder connections were classified as likely 

crack locations, although no indications were present.  Out of 304 observations made at the 

locations with crack indications, only 12 observations correctly identified a crack indication 

(3.9%).  Additionally, out of 7,234 observations made at locations without crack indications, 43 

indications were identified (0.6%).  Finally, only 16% of the inspectors correctly identified at least 

one weld crack indication and only 41% indicated the presence of any weld crack indications 

within the inspection limits.  

 

In this task, crack detection was found to correlate with inspection duration, inspector- and proctor-

reported comfort level, inspector-reported structure complexity and accessibility, observed 

variation in viewing angle and distance to weld, flashlight use, and number of annual bridge 

inspections.  Inspectors that worked more slowly, were more comfortable working at heights, rated 

the bridge as more complex and less accessible, varied their viewing angle, viewed the weld from 

a shorter distance, used a flashlight, and inspected fewer bridges annually tended to note one or 

more of the weld crack indications.  Conversely, inspectors that worked more quickly, were less 

comfortable in the lift, rated the bridge as less complex and more accessible, viewed the weld from 

a constant angle and greater distance, did not use a flashlight, and inspected more bridges annually 

tended to indicate that the bridge contained no weld crack indications.  Additionally, 86% of the 

inspectors that indicated before the inspection that fatigue cracking was a possible issue correctly 

located at least one weld crack indication.  Similarly, although not directly related to the likelihood 

of fatigue crack formation, 71% of the inspectors that noted that the bridge spans were continuous 

on the pre-task questionnaire correctly identified at least one weld crack indication.   
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In summary, the research team concluded that in-depth inspections may not provide additional 

information beyond that noted in a routine inspection.  Additionally, inspectors that found small, 

detailed defects in one task tended to perform similarly on the other tasks, indicating that 

performance does not depend on bridge type.  Final recommendations included improved training 

on bridge behavior to increase the knowledge base of the inspectors and considering the factors 

identified as affecting performance during inspector selection and training.  

2.3 Spencer (1996) 

Recognizing the role of visual inspection in ensuring the safety of the nation’s civil air fleet, the 

FAA tasked its Aging Aircraft Nondestructive Inspection Validation Center (AANC) with 

developing a program to evaluate the reliability of these inspections [52].  The objective was to 

determine the benchmark capability of visual inspection performance in major airline maintenance 

facilitates.  Twelve (12) inspectors from four major airlines performed 10 controlled inspection 

tasks to establish a benchmark measure of visual inspection capability.  Test specimens included 

a retired Boeing 737 aircraft and manufactured components from the AANC Specimen Library.  

A baseline inspection of the Boeing 737 was performed by AANC staff to catalog the locations of 

the existing defects, including cracks, corrosion, and general wear-and-tear.  The presence and size 

of the cracks was verified with eddy-current inspection.  Tasks 501 through 510 required 

inspection of specific regions of the Boeing 737 while Task 701 was completed using fabricated 

lap splice specimens.  The full complement of tasks was expected to represent the conditions an 

inspector would encounter during routine maintenance inspections.  Separate job cards describing 

each task were provided to the inspector.  Information about each inspector and the inspection 

environment were recorded throughout the study.  Additionally, each inspection was video 

recorded.   

 

Inspection results from Task 701 were used to develop POD curves relating inspection 

performance to defect size.  The lap splice specimens included 117 cracks at 382 possible locations.  

The 50% detection rate crack lengths (a50) for the 12 inspectors varied between 0.09 inches and 

0.32 inches while the 90% detection rate crack lengths (a90) ranged from 0.16 inches to 0.91 inches.  

The average a50 was 0.13 inches and the average a90 was 0.26 inches.  For this task, the research 

team attempted to categorize each error as either a search error or a decision error based on a 
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review of the video tape.  On the video, the transition from the search function to decision function 

was indicated by a lengthy pause during which the inspector used a flashlight or repeatedly 

adjusted their viewing angle.  Performance on the search task was consistently poor, with detection 

rates between 44% and 69%, while performance on the decision task was more variable.  Some 

inspectors were perfect, making correct decisions each time they entered the decision step, while 

others made incorrect decisions more than 50% of the time.  From this, the research team 

concluded that all inspectors needed supplemental training on how to perform the search task, 

while only a few inspectors required additional guidance on performing the decision task.  

 

A separate probability of detection analysis was carried out on 48 identified cracks within the 

Boeing 737 aircraft.  These cracks were expected to be located during Tasks 501 through 510.  The 

relationship between probability of detection and length was far less obvious among this set of 

cracks.  The average a50 for this sample of cracks was 4-1/2 inches with 95% confidence bounds 

of 2 and 72 inches.  This far exceeds the average 50% detection rate crack length calculated from 

Task 701.  The research team was not surprised by the difference since Task 701 focused on a 

single defect type in a single detail while the other tasks required inspectors to consider multiple 

defect types in a range of details.  Considering this, the research team recommended that POD 

curves should only be fit to specific tasks and inspections conditions. 

 

Other relevant findings from Tasks 501 through 510 include: 

 The use of a light shaping diffuser did not have a statistically significant effect on crack 

detection.  The diffuser was intended to provide more uniform illumination, thereby 

reducing glare and hot spots.  

 Intimate familiarity with the aircraft model improved performance.  Inspectors with 

extensive previous experience with this model of aircraft were more likely to locate cracks 

in known problem areas.  In a few cases, inspectors did exhibit “tunnel vision” due to their 

expectations, and one inspector missed a clearly visible defect in an adjacent area because 

he was overly focused on an area where he anticipated cracking.  

 More experienced inspectors, as measured by aviation experience not inspection 

experience, performed better.  

 Increased inspection time did not improve crack detection performance.  
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 Performance on one task was not a reliable predictor of performance on another task. 

2.4 Drury and Watson (2002) 

Tasked by the FAA with developing human factors guidance to improve the reliability of visual 

inspection, Drury and Watson used the hierarchal task analysis technique to provide best practices 

for each of the five identified sub-tasks within a visual inspection: initiate, access, search, decision, 

and response [21].  The initiate, access, and response functions are primarily manual.  They require 

a physical action by the inspector to gather the appropriate information and document the findings.  

Conversely, the search and decision functions are primarily cognitive.  These sub-tasks require the 

inspector to interpret, analyze, and categorize visual cues and are both the most critical steps and 

the most error prone.  To be successful in the inspection process, the inspector must be proficient 

in both the search and the decide functions, therefore it is often useful to determine if an 

underperforming inspector requires intervention in the search or the decision task.  Misses can 

result from errors in the decision process or the search process, while false positives result from 

flawed judgements.  A summary of the inspection process and best practices for visual inspection 

are provided in the following paragraphs.  

 

The search function involves examining the inspection surface for possible defects.  This step is 

performed iteratively with the decide step as each possible indication is either accepted as a flaw 

or rejected.  The search process should be designed to improve the visibility of flaws.  Providing 

good access and utilizing the appropriate tools will improve the likelihood of detecting a defect.  

Additionally, inspector comfort can improve task motivation and adequate illumination may make 

flaws more distinguishable from the background.  To ensure a thorough inspection, a search 

strategy, informed by the objective of the inspection, is required.  In research, inspectors trained 

to use a systematic search strategy consistently perform better than inspectors that employed a 

random search strategy.  A systematic search pattern not only ensures that the entire inspection 

surface is inspected, but it helps to eliminate repeat inspections of the same area.  

 

The decision function involves determining if an indication is a recordable flaw.  This step is 

performed iteratively with the search step and search resumes if the indication does not require 

documentation.  Often, the search and decide tasks occur nearly simultaneously and are 
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indistinguishable to an observer; however, at times, there is a clear transition from “searching” to 

“deciding”.  The use of tools or alternate senses may indicate that the inspector has detected an 

indication and is seeking more information to support the decision.  Similar to the search function, 

the decision function should be guided by a decision strategy.  Unlike more advanced NDE 

techniques where a quantitative measure of the signal is used to make decisions, in visual 

inspection each inspector employs their own response criterion to separate noise from signal-plus-

noise.  This strategy should be informed by the payoff matrix which considers the relative cost of 

each decision.  The payoff matrix assumes that there are four possible outcomes for each decision 

and each outcome has an associated probability and an associated cost.  The optimal response 

strategy balances probability and cost considering the acceptable level of risk and available 

resources.  Final decisions are made based on an inspector’s experience, training, and expectations.  

Expectations must be based in reality and experience and training should complement each other. 

Knowledge based reasoning should be used when experience or training are insufficient.  Once 

again, tools should be used to improve the discriminability between flaws and background noise.  

 

In visual inspection, there is a well-documented speed versus accuracy trade-off.  As speed 

increases, accuracy decreases.  This relationship exists in both the search and decision steps, 

although improvements in decision making saturate quickly with decreasing speed.  A thorough 

understanding of the structure or element being inspected can improve accuracy without slowing 

the inspection.  Similarly, focusing on critical areas will reduce inspection time without sacrificing 

accuracy.  Another well documented inspection phenomenon is the decline in performance with 

increasing time on that task, typically referred to as the vigilance decrement.  In research settings, 

detection performance decreased steadily over the first 20 to 30 minutes of the task and then 

remained at the lower level for the remainder of the task.  Although the degree of the decline varied 

across inspection types, it is most severe when defects are infrequent and difficult to detect.  The 

vigilance decrement may affect the search and decision components differently.  A change in 

sensitivity, identified by a decrease in detection rate without a corresponding reduction in false 

alarms, results in a true decline in performance due to an increasing inability to distinguish between 

true cracks and cracklike surface defects.  A change in bias, identified by a decrease in both the 

detection rate and the number of false alarms, indicates an increasing reluctance to locate or record 
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any indication, regardless of its true nature.  To overcome this drop in performance, breaks should 

be taken at regular intervals. 

2.5 Kulicki, Prucz, Sorgenfrei, & Mertz (1990) 

In 1990, the National Cooperative Highway Research Program (NCHRP) released Report 333, 

Guidelines for Evaluating Corrosion Effects in Existing Steel Bridges, to provide practical 

guidelines for inspectors and engineers tasked with evaluating the effects of corrosion on steel 

bridges [53].  The report is divided into four parts, with the first part providing field inspection 

guidelines and the second offering office evaluation guidelines.  Two levels of inspection and 

evaluation are defined.  A Level I evaluation is performed by current inspection staff and is focused 

on quantifying the degree of damage while a Level II evaluation includes corrosion experts and 

objects to identify the corrosion process and methods for controlling or mitigating the damage. 

 

Relevant to this research is the discussion of crevice corrosion in built-up tension members.  

Crevice corrosion is defined as “a form of localized corrosion occurring at confined locations 

where easy access to the outside environment is prevented” [45, p. 8].  It typically occurs in the 

gaps between mating surfaces and is caused by the variation in environment inside and outside the 

crevice.  The gaps between adjoining plates or shapes in built-up members are especially 

vulnerable to the development of crevice corrosion.  Beyond section loss, crevice corrosion can 

cause significant member distortion since the products of the chemical reaction have a greater 

volume than the reactants.  The volume change depends on the exact nature of the reaction, but 

the volume of rust is typically two to four times greater than the steel consumed in the process. 

When this reaction occurs in confined spaces, the build-up of corrosion product can generate 

pressures of up to 10,000 psi which may cause plastic deformation in members and fasteners.  

 

The field inspection guidelines intend to clarify and standardize corrosion inspection procedures. 

These guidelines cover the various types of corrosion, corrosion susceptible bridge details, and 

opportunities to mitigate corrosion damage.  A Level I evaluation may be supported by either a 

cursory or general inspection.  A cursory inspection does not require access to the inspection 

surface or measurements of the section loss.  A general inspection requires hands-on access and a 

few spot measurements of section loss representative of the general and worst case conditions.  A 
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combination of measurement and estimation is used to quantify the extent of corrosion damage.  

A Level II evaluation requires a detailed inspection with hands-on on access to all members and 

precise measurements of remaining thickness.  In both the general and detailed inspections, 

measurements are generally made with calipers or an ultrasonic thickness gauge.   

 

The office evaluation guidelines intend to provide comprehensive and practical advice for 

evaluating the effects of corrosion on the structural capacity of steel bridges.  These guidelines 

include a description of the effects of corrosion on structural capacity, various analysis methods, 

and relevant performance criteria.  Specifically, the guidelines consider the effects of corrosion on 

a member’s strength, stiffness, stability, and resistance to fatigue.  Focusing on tension members, 

the reduction in cross sectional area due to uniform corrosion will increase the stress in the member 

and decrease its stiffness.  Therefore, the member should be evaluated for yielding on the gross 

section, fracture on the net section, and displacement.  Additionally, the slenderness ratio of the 

member should be calculated with the reduced section and compared to the limiting ratio defined 

in Section 6.8.4 of the AASHTO LRFD Bridge Design Specifications [54].  This limit was 

established to prevent excessive sag, vibration, and lateral movement of tension members.  The 

guidelines recommend that in areas of localized corrosion, a tension member should be evaluated 

for yielding on the net section of the remaining member.  In built-up members that rely on lacing 

bars or batten plates for load sharing, deterioration of these secondary elements might reduce their 

ability to redistribute load and increase the slenderness of individual segments.  In truss bridges, 

section loss may cause load redistribution away from the corroded member.  For section losses 

exceeding 20%, the guidelines recommend neglecting the effects of load redistribution on the 

corroded member, but considering the effects on adjacent members.  

 

The negative effects of corrosion on fatigue resistance are due to both the loss of section and the 

introduction of stress concentrations at localized corrosion sites, such as pits.  For corroded 

members that have been blast cleaned and repainted such that no active corrosion sites are present, 

the effects of pits can be accounted for by calculating the stress in the member with the reduced 

section and applying a pitting factor to the resulting Category A fatigue life.  The stress 

concentrations inherent in the lower fatigue categories are assumed to be greater than any 

generated by corrosion.  In structures with active corrosion, subsequent research recognized that 
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fatigue cracks were rarely detected at corrosion notches before significant section loss occurred, 

and determined that the ongoing corrosion process actually blunts potential fatigue initiation sites 

[55].  Therefore, fatigue resistance in these members can be determined based on the remaining 

section thickness.  

 

The report states that the effects of unintended pressure and distortion due to corrosion build-up 

can be neglected in the strength evaluation of tension members, except in the case of severe 

deterioration.  Although the distortion may alter the section properties of the member and introduce 

eccentricities, the overall strength of the member will not be reduced since the performance criteria 

allow for areas of localized yielding and tension members are self-stabilizing.   
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3. HANDS-ON VISUAL INSPECTION 

3.1 Introduction 

Using the probability of detection specimens and inspection procedures developed by Snyder [50] 

and Whitehead [51], 30 bridge inspectors were invited to complete a typical hands-on inspection 

of each specimen.  The intention of this study was not to evaluate the performance of any individual 

inspector, but rather to assess the performance of the group of inspectors in order to understand 

the ability of the average bridge inspector following the current inspection procedures.   

 

The inspectors were evaluated based on their ability to correctly identify fatigue cracks and 

distinguish cracks from less severe surface defects (corrosion, debris, scratches, etc.).  In addition 

to performance results, environmental conditions and inspector attributes were recorded during the 

inspections.  During each inspector’s hands-on inspection, data were collected from the completed 

inspection forms, proctor observations, and pre- and post-inspection evaluations.  

 

The inspection set-up and results are discussed in detail in the following sections.  The methods 

used to evaluate the data will be explained along with findings, recommendations, and conclusions 

regarding visual inspection of steel bridge members.   

3.2 Inspection Scenario 

The test specimens and inspection course are described in detail in Snyder [50] and Whitehead 

[51], and only a brief summary will be provided herein.  

 

The inspection procedures were established to simulate an actual field inspection in a controlled 

testing environment.  Only minor changes to the inspection procedures were made throughout the 

study to allow for a direct comparison of the results.  The first 11 inspectors that participated in 

the study completed three separate inspection tasks: a routine inspection from the ground beneath 

the specimens, a hands-on inspection of the weathered steel specimens, and a hands-on inspection 

of the painted steel specimens.  However, the first two tasks were ultimately eliminated to ensure 
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adequate time for the primary focus of the study, the hands-on inspection of the painted steel 

specimens.   

 

The training structure, shown in Figure 3.1, was designed and constructed at Purdue University’s 

Steel Bridge Research, Inspection, Training, and Engineering (S-BRITE) Center to model a two 

span, three girder highway bridge.  The structure supports 183 full size bridge specimens with 

known fatigue cracks.  Considering the typical spacing of these details on an actual bridge, the test 

frame represents a bridge of approximately 450 to 500 feet.  The specimens are suspended 25 feet 

above the ground and a timber deck and timber framing were installed to mimic typical access and 

lighting conditions.  Due to time constraints, only a subset of the specimens installed on the training 

structure were included in the inspection scenario.  After eliminating the weathering steel 

specimens, the inspection included 72 girder specimens, 16 riveted plate specimens (8 mounted 

overhead and 8 mounted vertically), and 59 welded cover plate specimens.  Each inspector 

inspected the same specimens in the same order.  

 

Figure 3.1 Probability of detection training structure with POD specimens 

 

The test articles for this inspection consisted of 147 bridge specimens fabricated in a controlled 

laboratory setting to ensure that the exact length and location of all 70 fatigue cracks were known.  

As shown in Figure 3.2 and Figure 3.3, three unique types of specimens and cracks were used: 

Girder 
specimens 

Welded cover plate and 
riveted plate specimens 

(overhead)  
Riveted plate 

specimens (vertical)
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plate girder or wide flange sections with out-of-plane distortion induced cracks, welded cover plate 

terminations with weld toe cracks, and riveted plates with rivet hole cracks.  The painted specimens 

were coated with a typical bridge paint system, excluding the polyurethane top coat.  To imitate 

in-service bridges, all specimens (flawed and unflawed) were subjected to an accelerated 

weathering process.  A combination of salt water, metal shavings, and scratches were applied to 

simulate typical damage and deterioration.  Each specimen had one crack, multiple cracks, or no 

cracks.  Although the specimens were fabricated in a controlled laboratory setting, all cracks were 

sized, oriented, and located as they typically are in the field.  A detailed discussion of the 

preparation of the specimens is provided in [50]. 

         
(a)                                             (b)            (c) 

Figure 3.2 Hands-on inspection of the (a) girder, (b) overhead mounted riveted plate, and (c) 
welded cover plate specimens  

   

(a)                                (b)         (c) 

Figure 3.3 Photograph of a typical (a) out-of-plane crack, (b) rivet hole crack, and (c) weld toe 
crack 
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On the day of the inspection, the inspector reported to the test site at approximately 8 AM.  Two 

visual acuity tests, a near visual acuity test and a contrast sensitivity test, were administered and 

the inspector was asked to sign a confidentiality agreement.  The near visual acuity test was 

administered with the Jaeger chart and the contrast sensitivity test was performed with the Pelli-

Robson chart.  Additionally, the inspector was given the inspection procedures, a list of 

assumptions about the specimens, and a blank inspection form for each specimen.  Each form 

included a scaled drawing of the specimen on which the inspector could record the location of any 

detected crack(s).  If no cracks were found, the inspection form was still to be completed indicating 

such.  The inspection procedures and instructions, confidentially agreement, and sample inspection 

forms are provided in Appendix A.  

 

Each inspection was completed individually over approximately 6 hours, depending on the 

inspector’s pace.  Throughout the inspection, a manlift was operated by Purdue research staff to 

ensure that the specimens were inspected in the same predetermined order.  During the inspection, 

the research staff also recorded general observations about the inspection, including notes about 

the weather, the inspection start and end times, tools used, and general impressions of the inspector 

and the inspection strategy.  Temperature and wind speed statistics were recorded by the KLAF 

weather station at the Purdue University Airport, located adjacent to the test site [56].  At the 

conclusion of the exercise, the inspector completed an exit survey providing information about 

their background and training history.  This document is included in Appendix A.   

 

Inspections were conducted outdoors on the campus of Purdue University in West Lafayette, 

Indiana at the S-BRITE Center between October 2014 and December 2016.  Inspections were 

typically performed between the hours of 8 AM and 4 PM and they were performed in any weather 

conditions, with the exception of heavy rain and lightning. 

 

No time restrictions were placed on the inspectors and they were encouraged to use any tools that 

they would normally use during a hands-on inspection.  In order to not bias future inspections, 

inspectors were asked to not use wire brushes or grinders that would leave lasting marks on the 

specimens, but they could lightly clean an area if needed.  Since none of the cracks were entirely 

obscured by dirt or debris, this was not expected to have a significant effect on crack detection.  
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3.3 Inspector Demographics  

Thirty (30) inspectors (27 males and 3 females) with experience in bridge inspection and/or bridge 

design participated.  In order to accurately represent the current bridge inspector population, 

inspectors from a wide range of backgrounds were invited to participate in the study.  This project 

included 16 inspectors from state departments of transportation (DOT), 12 inspectors from private 

engineering and/or inspection firms, and two inspectors from federal agencies.  Participating 

inspectors were based in four states, Indiana (22), Illinois (6), Virginia (1) and California (1), 

although most of the private consultants perform bridge inspections around the country.  Twenty-

six (26) of the 30 inspectors had completed the two-week FWHA/NHI Safety Inspection of In-

Service Bridges training course prior to their participation in the study.  Of the remaining four 

participants, one had 30 years of experience inspecting railroad bridges, one was a Certified Weld 

Inspector and NDT technician with over 25 years of experience, one was a licensed professional 

engineer with a PhD in civil engineering and nearly 20 years of design and research experience 

specific to steel bridges, and one was a junior engineer in the process of completing the bridge 

inspector training and certification requirements.  The average experience of the participating 

inspectors was 10.6 years and the inspectors had completed an average of 10.6 hands-on 

inspections in the 12 months prior to their participation.  Twenty-three (23) of the 30 inspectors 

possessed an engineering license; six were engineering interns (EI), 15 were professional engineers 

(PE), and two were licensed structural engineers (SE).  All 30 inspectors could read the smallest 

paragraph of text on the test card for the Jaeger vision test and 26 of the inspectors recorded a Log 

Contrast Sensitivity of 1.95 on the Pelli-Robson vision test.  Select inspector demographics are 

compiled in Table 3.1.  
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Table 3.1 Inspector demographics for hands-on inspections 

Inspector 
ID 

Employer 
Age 

(years) 

Inspection 
Experience 

(years) 

Professional 
Licensure 

Number of 
Hands-on 
(Routine) 

Inspections 

Log 
Contrast 

Sensitivity 

10EH-10 State DOT 56 30 None 0 (120) 1.95 

11CO-02 State DOT 46 11 None 40 (50) 1.95 

18GA-03 Private Consultant 63 29 PE 4 (20) 1.95 
13CA-09 State DOT 58 20 None 6 (200) 1.95 

09SD-08 Private Consultant 55 28 None 20 (0) 1.95 
20MD-19 State DOT 45 20 PE 6 (100) 1.95 

04MY-41 Private Consultant 40 15 PE 9 (300) 1.95 

09ME-03 Private Consultant 28 6 PE 5 (5) 1.95 

08GS-32 State DOT 30 1.25 EI 5 (35) 1.95 

01VM-02 Private Consultant 30 6 PE 23 (600) 1.95 
12AE-04 State DOT 41 1 PE 1 (40) 1.95 

11LB-22 State DOT 55 8 None 4 (145) 1.65 

10JW-16 State DOT 40 10 PE 9 (200) 1.95 

21RI-01 Private Consultant 33 10 PE 5 (112) 1.95 

08LK-23 Federal Agency 38 0 PE 0 (0) 1.95 

06MA-03 State DOT 56 10 PE 3 (6) 1.8 

21GZ-14 Federal Agency 55 30 None 0 (100) 1.95 
09VK-18 State DOT 25 2.5 None 8 (25) 1.95 

18RT-25 State DOT 53 13 PE 10 (240) 1.95 

06JD-15 State DOT 33 8 EI 20 (163) 2.10 

06TI-56 State DOT 24 0.75 EI 0 (175) 1.95 

27GH-57 Private Consultant 29 3 EI 18 (35) 1.95 
01DS-23 State DOT 28 4 PE 30 (450) 1.95 

24BR-25 State DOT 39 1 PE 25 (45) 1.65 

27PC-37 Private Consultant 24 1.5 EI 0 (20) 1.95 

12LA-04 Private Consultant 45 20 PE 25 (700) 1.95 

11NH-05 Private Consultant 32 10 EI 13 (250) 1.95 

10CA-07 State DOT 42 14 PE 20 (70) 1.95 

26RO-49 Private Consultant 30 5 PE/SE 0 (4) 1.95 

25HQ-08 Private Consultant 33 1 PE/SE 10 (50) 1.95 

3.4 Inspector Response Evaluation 

Upon the completion of the course, each inspector submitted their binder to Purdue research staff.  

The binder submitted by the inspector was compared to the answer key binder which included an 

AutoCAD drawing of each of specimen that stated “NO DEFECT” for the unflawed specimens or 
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included a dimensioned drawing of the crack in its true location for the flawed specimens.  The 

binders were reviewed the same day that the test was completed to improve accuracy in 

interpreting the comments and remarks.  As shown in Figure 3.4, even in this controlled 

environment, the reporting styles varied from inspector to inspector, challenging the research staff 

to evaluate ambiguous notes and comments in a fair and consistent manner.  In this figure, the 

actual crack locations are indicated by the red circles.  

          

Figure 3.4. Standard inspection form for specimen 1GPP1-A with notes from two inspectors  

 

The information provided by the inspector on each specimen form was interpreted and categorized 

using the following definitions:  

 Hit: A hit was assigned if the inspector identified a crack in a region of a specimen with a 

known defect, i.e., true positive.  This was judged leniently, and if a crack was sketched in 

approximately the correct location on the inspection form it was considered a hit, regardless 

of the length measurement provided.  Additionally, if a crack was indicated on the form 

and no dimension was given, a hit was still awarded.  In some cases, inspectors noted 

“possible” or “probable” cracks and expressed the need for follow up inspection.  These 
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were considered hits if they were shown in the vicinity of a known fatigue crack, and were 

otherwise considered false calls.   

 Miss: A miss was assigned for any crack that was not indicated as a crack or possible crack 

by the inspector, i.e. false negative.   

 False Call: A false call was defined as a crack reported in a region of the specimen without 

a known defect, i.e. false positive.  This definition was applied to all indications labelled 

as a “possible” or “probable” crack and any notes requesting follow-up inspection or testing.  

Although typically less consequential than a miss, a false call requires resources to be 

expended inefficiently and undermines the veracity of the process. 

 Detection Rate: The detection rate was defined as the number of hits divided by the total 

number of cracks. 

 False Call Rate: The false call rate was defined as the number of false calls divided by the 

total number of possible crack locations.  Although most research evaluates performance 

based on the false call rate or the probability of a false call, it was not practical in this study 

because the total number of possible crack locations could not be easily quantified.  

 Hit/Call Ratio: The hit/call, or hit-to-call, ratio indicates how often an inspector’s recording 

of a crack was actually a crack.  The hit/call ratio was calculated for each inspector by 

dividing the number of hits by the total number of calls (hits plus false calls).  A higher, or 

better, hit/call ratio indicates that the inspector required fewer calls to record a hit as 

compared to an inspector with a lower, or worse, hit/call ratio.   

3.5 Inspection Results 

Inspector evaluation considered 70 visually detectable cracks with lengths between 1/2 and 5-3/8 

inches in 147 painted specimens.  Two of the overhead mounted riveted plates were removed 

before the final two participants completed their inspections.  For these inspectors (08GS-32 and 

06TI-56), the total number of visually detectable cracks was 68.  The inspectors were award a ‘1’ 

for each hit and a ‘0’ for each missed.  From this, the detection rate could be easily calculated from 

the total number of hits divided by 70 (or 68).  The total number of false positives was tallied and 

recorded for each specimen and then summed over the 147 specimens to determine the total 

number of false positives.  Additionally, the inspection instructions directed the inspectors to 

record the length for each identified crack.  For the hits, the recorded length was compared to the 
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actual length to assess the inspector’s accuracy in measuring or estimating crack length in the field.  

Inspector performance was evaluated for the entire specimen inventory and for each type of 

specimen (girder, welded cover plate, riveted plate) separately.  

 

It is important to note that the findings of this phase likely represent the upper bound on visual 

inspection performance.  The POD inspections were performed in isolation, free from many of the 

distractions (such as looking for other damage or traffic) and time pressures present during a 

typical inspection.  Additionally, unobstructed access to the inspection surface was provided and 

cracks were present at a higher than average rate based on the author’s experience.  Finally, 

although inspectors were encouraged to perform the inspection as they would a typical hands-on 

inspection, they may have been motivated to excel by the presence of the proctor.   
  

3.5.1 Crack Detection and False Calls 

Thirty (30) inspectors completed a hands-on inspection of the painted specimens.  A summary of 

the results is provided in Table 3.2 and the individual result for each inspector is shown in Table 

3.3.  The most successful inspector detected 60 of the 70 possible cracks (86%).  The least 

successful inspector detected 22 of the 70 possible cracks (31%).  On average, the inspectors 

detected 46 cracks (65%), meaning 24 cracks were not located.  The standard deviation of detection 

rate was 14% indicating that the majority of the inspectors detected between 36 and 55 of the 

cracks.  The number of false calls made during the inspections ranged from 14 to 268. The average 

number of false calls was 90 with a standard deviation of 67.  The average time to complete the 

inspection was 248 minutes and the standard deviation was 76 minutes. The fastest inspector 

completed the inspection in under two hours (116 minutes) and the longest inspection lasted over 

seven hours (457 minutes).   

Table 3.2 Summary of results from hands-on inspections 

Specimen Type/Crack Type 

Detection Rate Number of False Calls 

Mean 
(%) 

Standard 
Deviation 

(%) 

Minimum/ 
Maximum 

(%) 
Mean 

Standard 
Deviation 

Minimum/
Maximum 

All Specimens 65 14 31/86 90 67 14/268 

Girder/Out-of-Plane  62 14 18/82 65 54 5/205 

Welded Cover Plate/Weld Toe 74 27 4/96 16 14 0/59 

Riveted Plate/Rivet Hole 59 17 21/95 9 9 0/34 
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Table 3.3 Hands-on inspection results by inspector 

Inspector ID Hits 
Possible 
Cracks 

Detection 
Rate 

False 
Calls 

Hit/Call Ratio 
Total Time 
(minutes) 

10EH-10 26 70 37% 156 14% 175 

11CO-02 50 70 71% 60 45% 279 

18GA-03 33 70 47% 56 37% 309 

13CA-09 22 70 31% 14 61% 224 

09SD-08 49 70 70% 51 49% 457 

20MD-19 45 70 64% 23 66% 236 

04MY-41 41 70 59% 85 33% 327 

09ME-03 53 70 76% 62 46% 226 

08GS-32 47 68 69% 105 31% 269 

01VM-02 55 70 79% 31 64% 296 

12AE-04 46 70 66% 42 52% 179 

11LB-22 47 70 67% 103 31% 224 

10JW-16 50 70 71% 174 22% 320 

21RI-01 58 70 83% 187 24% 368 

08LK-23 59 70 84% 68 46% 279 

06MA-03 53 70 76% 195 21% 241 

21GZ-14 35 70 50% 18 66% 206 

09VK-18 46 70 66% 89 34% 138 

18RT-25 42 70 60% 146 22% 202 

06JD-15 30 70 43% 47 39% 262 

06TI-56 43 68 63% 57 43% 211 

27GH-57 49 70 70% 76 39% 217 

01DS-23 54 70 77% 37 59% 228 

24BR-25 46 70 66% 15 75% 160 

27PC-37 33 70 47% 217 13% 116 

12LA-04 55 70 79% 162 25% 347 

11NH-05 60 70 86% 77 44% 345 

10CA-07 42 70 60% 20 68% 192 

26RO-49 52 70 74% 67 44% 213 

25HQ-08 47 70 67% 268 15% 192 

 

The number of false positives were compared to the number of hits for each inspector and the 

hit/call ratio was calculated.  The highest, or best, hit/call ratio was 75% and the lowest, or worst, 

hit/call ratio was 13%.  The average hit/call ratio was 41%, meaning that one hit was recorded for 

every 2.5 calls.  As illustrated in Figure 3.5 where the inspectors are plotted in order of increasing 

detection rate from left to right, the number of false calls (negative y-axis) is not correlated with 
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the number of hits (positive y-axis).  Therefore, inspectors that made more calls did not necessarily 

locate more cracks.  

 

 

Figure 3.5 Hits and false calls by inspector during the hands-on inspections 

 

The detection rates and number of false calls by specimen and crack type were also examined.  

The course included 28 out-of-plane cracks in the girder specimens, 23 weld toe cracks in the 

welded cover plate specimens, and 19 rivet hole cracks in the riveted plate specimens.  The weld 

toe cracks had the highest average detection rate while the average number of false calls was the 

highest on the girder specimens.  The detection rate by crack type is shown for each inspector in 

Figure 3.6.  

The average detection rates for each specimen type for each inspector were also studied.  Twenty-

three (23) of the 30 inspectors recorded their highest detection rate on the weld toe cracks.  Four 

inspectors recorded their highest detection rate on the rivet hole cracks and three inspectors 

recorded their highest detection rate on the out-of-plane cracks.  

275

250

225

200

175

150

125

100

75

50

25

0

25

50

75

13
C

A
-0

9

10
E

H
-1

0

06
JD

-1
5

18
G

A
-0

3

27
P

C
-3

7

21
G

Z
-1

4

04
M

Y
-4

1

18
R

T
-2

5

10
C

A
-0

7

06
T

I-
56

20
M

D
-1

9

12
A

E
-0

4

09
V

K
-1

8

24
B

R
-2

5

08
G

S
-3

2

11
L

B
-2

2

25
H

Q
-0

8

09
S

D
-0

8

27
G

H
-5

7

11
C

O
-0

2

10
JW

-1
6

26
R

O
-4

9

09
M

E
-0

3

06
M

A
-0

3

01
D

S
-2

3

01
V

M
-0

2

12
L

A
-0

4

21
R

I-
01

08
L

K
-2

3

11
N

H
-0

5

F
al

se
 P

os
it

iv
es

   
   

   
   

   
   

   
   

 H
it

s

Inspector ID

Hits and False Positives by Inspector



 56 

 
 
 
 

 

Figure 3.6 Inspector detection rates by crack type 
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Finally, there was a positive correlation between detection rates of the out-of-plane cracks and the 

weld toe cracks, meaning that performance on one subset of the inspection could be used to predict 

performance on another subset.  However, there was no correlation between detection rates of the 

out-of-place cracks and the rivet hole cracks or between the detection rates of the rivet hole cracks 

and the weld toe cracks.  The relationship between weld toe crack detection rate and out-of-plane 

crack detection rate is shown in Figure 3.7.  

 

Figure 3.7 Weld toe crack detection rate plotted against out-of-plane crack detection rate 

 

One of many challenges in conducting a realistic POD study is ongoing maintenance of the 

specimens [17].  Since the specimens in this study are not regularly exposed to cyclic loading from 

vehicular traffic, the appearance of the cracks may degrade over time.  Rust staining and debris 

accumulation may gradually obscure some of the cracks.  Figure 3.8 shows the detection rate for 

each inspector versus the number of days since the first inspection.  The total length of time 

between the first and last inspection was 762 days.  Although the visibility of some of the cracks 

may have changed over time, the overall difficulty of the inspection seems to have remained 

relatively constant.  Large differences in performance were recorded in inspections that occurred 

on consecutive days, indicating that the variability in results is likely due more to inspector 

characteristics than changes in the conditions of the of the specimens.  Additionally, following the 
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long gap between the 11th and 12th inspections, the conditions of all the specimens were revalidated 

by Purdue research staff. 

 

Figure 3.8. Detection rate plotted against the number of days since the first POD inspection 

 

3.5.2 Crack Sizing  

In addition to recording the location of detected cracks, inspectors were asked to record the length 

of the cracks on their inspection forms.  Some inspectors meticulously measured each crack, others 

eyeballed the length, and most used a combination of the methods.  Due to concerns about time, 

inclement weather, or possibly fatigue, many inspectors gradually stopped recording crack lengths 

as their inspections progressed.  Although this study was focused more on crack detection than 

crack sizing, the relationship between measured crack length and actual crack length was 

investigated.  

 

Figure 3.9 shows the crack length data for the out-of-plane cracks in the girder specimens.  The 

actual length of the crack is shown on the horizontal axis and the vertical axis displays the 

measured length reported by the inspector.  The diagonal 1:1 reference line represents exact 

agreement between the actual length and the measured length.  For the majority of the cracks in 

the girder specimens, the average of the measured lengths plots below the 1:1 line indicating that 
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the inspectors tended to underestimate the crack length.  Since most of these cracks were wrapped 

around the ends of the stiffeners, it was difficult to accurately measure the length and most 

inspectors just approximated the length of each leg.  The average measurement error was -0.38 

inch and the average absolute effort was 0.92 inch.  The average absolute error increased with 

crack length and the percent absolute error remained constant with crack length.  Table 3.4 shows 

the error analysis for the reported length measurement for all the cracks in the girder specimens.  

 

 

Figure 3.9 Measured crack length versus actual crack length for out-of-plane cracks  

 

Figure 3.10 and Figure 3.11 present the crack length data for the welded cover plate and riveted 

plate specimens, respectively.  In contrast to the girder specimens, the average of the measured 

lengths of these cracks is generally above the 1:1 line indicating that the inspectors had a tendency 

to overestimate the length.  For the weld toe cracks, the average measurement effort was 0.51 inch 

and the average absolute error was 0.76 inch.  For the rivet hole cracks, the average measurement 

error was 0.14 inch and the average absolute error was 0.24 inch.  For both crack types, the average 

absolute error increased with crack length and the percent absolute error decreased with crack 

length.  Table 3.4 shows the error analysis for the reported length measurement for all the cracks 

in the welded cover plate and riveted plate specimens.  
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Figure 3.10 Measured crack length versus actual crack length for weld toe cracks  

 

 

Figure 3.11 Measured crack length versus actual crack length for rivet hole cracks  
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Table 3.4 Error analysis for crack length measurements from hands-on inspections 

Statistic 
 

Out-of-Plane Cracks  
(28 cracks) 

Weld Toe Cracks  
(23 cracks) 

Rivet Hole Cracks  
(19 cracks) 

Error  
(actual length  

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Min./Max. (in.) -4.02/8.31 - -2.63/8.94 - -1/1.5 - 

Average (in.) -0.38 0.92 0.51 0.76 0.14 0.24 

St. Dev. (in.) 1.26 0.94 1.20 1.06 0.32 0.25 

Average % -13 29 14 22 16 26 

 

3.5.3 Other Defects 

Within the specimen inventory there were two non-crack defects – a “Hoan-like” detail with 

insufficient web gap between the gusset plate and the transverse stiffener and a missing rivet on a 

vertically mounted riveted plate.  This study was not intended to evaluate an inspector’s ability to 

locate these two defects, but many inspectors did note their presence.  Nine inspectors (30%) 

recorded the “Hoan-like” detail on the inspection form or verbally mentioned it to the proctor.  

These inspectors typically indicated that it was a problematic detail and difficult to inspect.  The 

inspectors who located this defect did not perform significantly better than inspectors who did not 

locate this defect.  Only two inspectors (6%) noted the missing rivet on their inspection forms, 

although more inspectors may have noticed this defect and not recorded it.  The inspectors with 

the highest detection rates (11NH-05 and 08LK-23) were the two inspectors who documented the 

missing rivet.  Notably, this is about the same detection rate as was observed during the FHWA 

study of bridge inspection [5].  

3.6 Crack Length Analysis 

Absent from the hit/miss results presented previously is information about the length of the cracks 

that can be reliably detected.  Two different approaches were taken to investigate the relationship 

between crack length and crack detection.  First, a general sense of the relationship was obtained 

by dividing the number of cracks detected by the total number of cracks inspected within discrete 

crack length ranges.  Then, a probabilistic approach was used to determine the probability of 

detection as a function of crack length.   
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3.6.1 Crack Detection by Crack Length 

Each crack had the potential to be detected 30 times, once by each participant.  One crack was 

detected by all 30 inspectors, while three cracks were not detected by any participants.  The largest 

undetected crack was 3-1/4 inches.  This undetected crack was located along the weld toe of a 

tapered cover plate specimen.  The other two undetected cracks were out-of-plane cracks in the 

girder specimens.  These cracks were both located in the web gap between a longitudinal stiffener 

and a transverse stiffener and they were 3/4 inch and 1-11/32 inches in length.  The smallest crack, 

measuring 1/2 inch, was detected by 23 of the 30 inspectors.  This crack was located at a rivet hole.  

Figure 3.12 shows each crack, sorted by length, and the number of times it was correctly identified 

by an inspector.  Visually, it appears that there was a correlation between crack size and number 

of detections.  Generally, the longer cracks were detected more often than the shorter cracks.  
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Figure 3.12 Number of crack detections by crack  
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The cracks were grouped into 1/2-inch length increments, beginning at 1/2 inch, and the detection 

rate for bin was computed.  The detection rate was determined by summing the number of hits for 

each crack in the increment and dividing by the total number of detection attempts made.  The 

smallest crack size ranges, 1/2 to 1 inch and 1 to 1-1/2 inches, had the lowest detection rate, 46%.  

The largest crack size range, 5 to 5-1/2 inches, had the highest detection rate, 91%.  The detection 

rates for the crack size ranges in between the extremes varied from 56% to 89%.  Figure 3.13 

shows the detection rates for each length increment.  The number of cracks in each bin are shown 

on the right hand vertical axis.  

 

Figure 3.13 Detection rate by crack length 

 

The detection results for each crack type were separated from the total data and examined for a 

relationship between crack length and detection.  As shown in Figure 3.14, the detection rate 

increased with increasing crack length for the out-of-plane cracks.  Although the increase is not 

constant, there is a clear improvement in detection for cracks longer than 2 inches.  Figure 3.9 and 

Figure 3.10 show the relationship between detection rate and crack length for the weld toe cracks 

and the rivet hole cracks, respectively.  Detection rate does not appear to be heavily influenced by 

crack length for these crack types, although the more limited range in crack lengths may have 

restricted the relationship.  

13
12

5
6 6

8

10

5

2
3

0

2

4

6

8

10

12

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 < 1 1 < 1.5 1.5 < 2 2 < 2.5 2.5 < 3 3 < 3.5 3.5 < 4 4 < 4.5 4.5 < 5 5 < 5.5

N
um

be
r 

of
 C

ra
ck

s 
in

 R
an

ge

D
et

ec
tio

n 
R

at
e

Crack Length Range (in.)

Detection Rate by Crack Length



65 
 

 

Figure 3.14 Out-of-plane crack detection rate by crack length 

 

 

Figure 3.15 Weld toe crack detection rate by crack length 
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Figure 3.16 Rivet hole crack detection rate by crack length 

 

3.6.2 Probability of Detection Curves 

The hit/miss results and crack size information were used to generate probability of detection 

(POD) versus crack length (a) curves in accordance with Military Handbook 1823a, 

Nondestructive Evaluation (NDE) System Reliability Assessment [52].  The accompanying 

software, mh1823POD, was used to complete the statistical analysis [19].  POD curves were 

developed for the full specimen inventory and for each specimen type separately.  The best fit was 

provided by the logistic function and the length response was found to be Cartesian, not 

logarithmic, meaning that POD was correlated with a, not log (a).  It must be noted that the POD 

curves developed for the individual specimen types violate two of the recommended guidelines 

for producing valid POD curves due to the reduced number of defects included in each [17], [57].  

First, the recommended minimum number of cracks for hit/miss modelling is 60 and second, the 

crack length range should provide coverage from POD = 3% to POD = 97%.  While the precision 

of the POD(a) function may be reduced by these deficiencies, the variability and shapes of the 

POD curves still offer useful insight into inspector performance.  As such, these curves are 

presented below but with limited discussion specific to the estimated detection rate crack lengths.  
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The POD versus crack length plot for the full specimen inventory is shown in Figure 3.17 and the 

50% and 90% detection rate crack lengths for each inspector are shown in Table 3.5.  The hits are 

plotted at POD = 1 and the misses are plotted at POD = 0.  In total, 2100 observations (30 inspectors 

x 70 cracks) were considered.  Individual POD curves were developed for each inspector, shown 

in gray in the figure, and a single curve was generated based on the results from all 30 inspectors, 

shown in black.  For all inspectors and all specimens, the average 50% detection rate crack length 

(a50) was 1 inch and the average 90% detection rate crack length (a90) was 5-1/2 inches.  Due to 

the variability in inspector performance, the 95% confidence limits could not be applied to a90.  

Inspectors 13CA-09, 06JD-15, and 18GA-03 showed a negative relationship between probability 

of detection and crack length, meaning they were more likely to find shorter cracks than longer 

cracks.  It is unlikely that these inspectors are actually better equipped to find shorter cracks, but 

instead environmental or human factors contributed to them detecting shorter cracks or missing 

longer cracks.  Excluding these three inspectors, the shortest 90% detection rate crack length was 

approximately 2-3/8 inches and the longest 90% detection rate crack length was approximately 

22-1/2 inches.   

Table 3.5 Probability of detection crack sizes considering all cracks  

Inspector 
ID 

50% 
Crack 
Length 

(in.) 

90% 
Crack 
Length 

(in.) 

90% Crack 
Length w/ 

95% 
confidence 

(in.) 

Inspector 
ID 

50% 
Crack 
Length 

(in.) 

90% 
Crack 
Length 

(in.) 

90% Crack 
Length w/ 

95% 
confidence 

(in.) 

10EH-10 3.52 7.67 N/A 06MA-03 0.96 2.81 4.19 

11CO-02 0.94 3.44 5.63 21GZ-14 2.42 22.46 N/A 

18GA-031 2.16 -2.07 N/A 09VK-18 0.95 5.43 N/A 

13CA-091 -1.09 -10.75 N/A 18RT-25 0.58 10.31 N/A 

09SD-08 1.03 3.57 5.85 06JD-151 0.32 -15.62 N/A 

20MD-19 1.56 3.77 N/A 06TI-56 1.43 4.99 N/A 

04MY-41 1.02 9.66 N/A 27GH-57 1.30 3.10 4.42 

09ME-03 1.00 2.71 3.96 01DS-23 -0.39 4.27 N/A 

08GS-32 1.43 3.02 4.16 24BR-25 1.17 4.78 N/A 

01VM-02 0.78 2.63 4.01 27PC-37 2.56 5.11 N/A 

12AE-04 0.99 5.30 N/A 12LA-04 0.44 3.10 5.62 

11LB-22 0.62 5.73 N/A 11NH-05 -0.11 2.36 4.53 

10JW-16 0.76 4.50 N/A 10CA-07 1.82 4.80 N/A 

21RI-01 -0.10 2.84 N/A 26RO-49 1.15 2.54 3.56 

08LK-23 0.17 2.41 4.23 25HQ-08 1.26 4.04 N/A 
1 Probability of detection decreasing with increasing crack length 
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Figure 3.17 Probability of detection curves considering all cracks  

 

After removing the results from the three inspectors whose performance did not conform to the 

assumptions of the POD model (POD increasing with increasing crack length), the average 

probability of detection curve was regenerated and is shown in Figure 3.18.  For the 27 remaining 

inspectors and all the specimens, a50 remained 1 inch, but a90 was reduced to 4-1/2 inches.  Due to 

variability, the 95% confidence limits could still not be applied to a90.  The average POD curve for 

all specimens does not appear asymptotic with POD = 1.0, even for large crack sizes.  This 

indicates that there is a residual probability of missing cracks, even when the length is very long.  

Additionally, the relatively shallow slope of the curve as it transitions from POD = 0 to POD = 1.0 

is due to the large variability in performance and suggests that variables other than crack length 

are affecting the probability of detection.  
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Figure 3.18 Probability of detection curves considering all cracks, excluding inspectors 13CA-
09, 06JD-15, and 18GA-03  

 

An average POD curve, as created for this sample of inspectors, may disguise the strengths and 

weaknesses of each inspector and is likely not a reliable predictor of the performance of a future 

inspector, who could be a “good” or a “bad” inspector.  Instead, the results for each inspector 

should be considered independently to identify effective inspection techniques, promising 

inspector characteristics, and favorable environmental conditions.  The longest 50% detection rate 

crack length, 3-1/2 inches, was calculated for an inspector with 30 years of inspection experience 

that had performed no hands-on inspections in the previous 12 months.  The average temperature 

on the day of the inspection was 33℉ and the proctor recorded that inspector was “very aware he 

was being tested” and explained that he was “only there because he was told to be there”. 

Conversely, the shortest 90% detection rate crack length, 2-3/8 inches, was achieved by an 

inspector with 10 years of inspection experience that had performed 10 to 15 hands-on inspections 

in the previous 12 months. The average temperature on the day of the inspection was 47℉ and the 
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proctor noted that the inspector was “methodical and friendly” and “made a few comments about 

the length of the course”. 

 

The probability of detection at 1-inch increments was calculated for each inspector. Table 3.6 

shows the average probability of detection at each length increment along with the minimum and 

maximum probabilities of detection for the 27 inspectors whose performance can be described as 

a function of crack size.   

Table 3.6 Probability of detection by crack length (all cracks) 

Crack Size (in.) Average  
Standard 
Deviation 

Minimum  Maximum  

0.5 40% 13% 14% 63% 

1 49% 13% 21% 73% 

2 66% 14% 31% 87% 

3 79% 14% 43% 95% 

4 87% 13% 54% 99% 

5-3/8 92% 10% 58% 99.8% 

 

The POD versus crack length plot for the out-of-place cracks in the girder specimens is shown in 

Figure 3.19 and the 50% and 90% detection rate crack lengths for each inspector for the girder 

specimens are shown in Table 3.7.  For this subset, 840 observations (30 inspectors x 28 cracks) 

were considered.  For all inspectors and the girder specimens, the average 50% detection rate crack 

length was 2 inches and the average 90% detection rate crack length was 4 inches.  Due to the 

variability in inspector performance, the 95% confidence limits could not be applied to a90.  The 

shape of the average POD curve for the girder specimens indicates that both the residual 

probability of a miss at large crack sizes and the variability in performance is reduced as compared 

to the full specimen inventory.  Although this model considers only half of the recommended 

number of cracks, the S-shape of the curve and slenderness of the confidence bounds indicate that 

the model is able to predict the POD(a) function with reasonable accuracy.  The shortest 90% 

detection rate crack length was approximately 1-3/4 inches and the longest 90% detection rate 

crack length was approximately 14-3/4 inches.  
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Table 3.7 Probability of detection crack sizes considering only the out-of-plane cracks 

Inspector 
ID 

50% 
Crack 
Length 

(in.) 

90% 
Crack 
Length 

(in.) 

90% Crack 
Length w/ 

95% 
confidence 

(in.) 

Inspector 
ID 

50% 
Crack 
Length 

(in.) 

90% 
Crack 
Length 

(in.) 

90% Crack 
Length w/ 

95% 
confidence 

(in.) 

10EH-10 2.27 3.68 5.76 06MA-03 0.72 2.75 N/A 

11CO-02 2.16 2.78 3.69 21GZ-14 2.25 3.88 N/A 

18GA-03 1.74 14.81 N/A 09VK-18 2.12 5.18 N/A 

13CA-09 3.42 7.10 N/A 18RT-25 1.06 4.24 N/A 

09SD-08 2.00 2.73 3.72 06JD-15 4.69 7.10 N/A 

20MD-19 2.27 3.68 5.58 06TI-56 2.20 4.40 N/A 

04MY-41 1.91 3.50 5.95 27GH-57 1.98 3.03 4.37 

09ME-03 1.78 1.79 1.86 01DS-23 2.21 4.30 N/A 

08GS-32 1.78 3.13 4.98 24BR-25 2.08 3.71 N/A 

01VM-02 1.48 2.53 3.93 27PC-37 2.93 4.68 N/A 

12AE-04 2.12 3.38 5.09 12LA-04 0.85 2.62 N/A 

11LB-22 1.78 3.13 4.98 11NH-05 1.70 2.30 3.22 

10JW-16 1.34 4.50 N/A 10CA-07 3.08 6.29 N/A 

21RI-01 1.59 3.01 5.02 26RO-49 1.78 1.79 1.86 

08LK-23 1.12 2.19 3.75 25HQ-08 1.90 3.58 N/A 
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Figure 3.19 Probability of detection curves considering only the out-of-plane cracks  

 

The POD versus crack length plot for the weld toe cracks in the welded cover plate specimens is 

shown in Figure 3.20.  For this subset, 690 observations (30 inspectors x 23 cracks) were 

considered.  According to this model, even the shortest weld toe crack, 1-7/16 inches long, had a 

50% probability of being detected, but for a 90% chance of being detected, the crack would need 

to be over 10 inches long.  The range of crack lengths and the number of cracks included in the 

welded cover plate specimens is likely not wide enough to accurately predict the true POD curve.  

This is supported by the bar graph presented in Section 3.6.1 which also showed a weak 

relationship between detection rate and crack length within the range of crack lengths considered 

in this study.  The width of the confidence bounds reflects the variability in results and indicates 

the imprecision in the average POD curve.  Although the exact a90 and a50 values may not be 

accurate, the individual curves show that a few inspectors really struggled with these specimens 

while other inspectors were able to identify nearly every crack in the inventory.  Ten of the 

inspectors detected 22 out of the 23 possible cover plate weld toe cracks and therefore have a high 
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probability of detection for all lengths of cracks of this type.  Inspectors 13CA-09, 18RT-25, 

04MY-41, and 25HQ-08 showed a negative relationship between probability of detection and 

crack length.  This was likely due to flawed decision making rather than failure to locate the crack.  

Based on previous experience, some of the inspectors believed the weld toe cracks to be cracks in 

the paint, not fatigue cracks in the base metal.  This was belief was either mentioned to the proctor 

or noted on the inspection form.  In these cases, personal biases or expectations may have had 

more influence on performance than defect size. 

 

Figure 3.20 Probability of detection curves considering only the weld toe cracks 

 

The POD versus crack length plot for the rivet hole cracks in the riveted plate specimens is shown 

in Figure 3.21.  For this subset, 570 observations (30 inspectors x 19 cracks) were considered.  

According to this model, even the shortest rivet hole crack, 1/2 inch long, had a 50% probability 

of being detected, but for a 90% chance of being detected, the crack would need to be over 84 

inches long.  As shown in the detection rate versus crack length bar graph presented in Section 

3.6.1, the range of crack lengths was not wide enough to develop the full POD curve.  Within the 
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1-inch range provided, the probability of detection is nearly constant at approximately POD = 0.6.  

Seventeen of the inspectors had a negative relationship between probability of detection and crack 

length for the riveted hole cracks.  The variability in performance over a very small range of crack 

lengths suggests that performance is being influenced by factors beyond crack length.   

 

Figure 3.21 Probability of detection curves considering only the rivet hole cracks 

3.7 Human and Environmental Factors  

A series of complementary statistical models was applied to the inspection data in order to identify 

key factors that influenced inspection performance.  Performance was described by detection rate 

and the number of false calls.  Environmental conditions, specimen characteristics, and inspector 

attributes were considered in the statistical models.  Descriptive statistics for the independent and 

dependent variables are shown in Table 3.8.   
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Table 3.8 Descriptive statistics for dependent and independent variables 

Variable Description 
Min./Max. 

Values 
Mean of 

Observations 

Standard 
Deviation of 
Observations 

Performance Measures (dependent variables) 

Detection rate (all specimens) 0.31/0.86 0.65 0.14 

False calls (all specimens) 14/268 90 67 

Specimen Characteristics (independent variables) 

Crack length 0.5/5.375 2.42 1.37 
Out-of-plane crack (1 if the crack is an out-of-plane crack, 
0 otherwise) 

- 0.4 1 

Weld toe crack (1 if crack is a weld toe crack, 0 otherwise) - 0.329 1 

Rivet hole crack (1 if crack is at a rivet hole, 0 otherwise) - 0.271 1 

Environmental Conditions (independent variables) 

Average temperature on the day of the inspection (℉) 23/73 45.7 16.1 

Average wind speed on the day of the inspection (mph) 4/16 8.53 2.52 

Maximum wind speed on the day of the inspection (mph) 12/29 18.1 4.53 

Flashlight (1 if used, 0 otherwise) - 0.667 - 

Tape measure (1 if used, 0 otherwise) - 0.6 - 

Inspection mirror (1 if used, 0 otherwise) - 0.067 - 

Magnifier (1 if used, 0 otherwise) - 0.13 - 

Inspector Attributes (independent variables) 

Inspection experience (yrs.) 0/30 10.6 9.33 

Age 24/63 40.2 11.7 

Inspection duration (min.) 116/457 247 75.2 

No. of routine inspections performed in the last 12 months 0/700 142 174 

No. of hands-on inspections performed in last 12 months 0/40 10.6 10.5 
No. of training courses attended (out of 8 listed on exit 
survey) 

0/7 2.93 1.66 

Elapsed time since first inspection (days) 0/762 403 304 

Professional licensure (1 if licensed PE or SE, 0 otherwise) - 0.567 - 
Employer (1 if employed by a private consultant, 0 
otherwise) 

- 0.4 - 

Gender (1 if male, 0 otherwise) - 0.9 - 
Safety Inspection of In-Service Bridges (1 if inspector had 
taken the course, 0 otherwise) 

- 0.867 - 

Fracture Critical Inspection Techniques (1 if inspector had 
taken the course, 0 otherwise) 

- 0.8 - 

Underwater Bridge Inspection (1 if inspector had taken the 
course, 0 otherwise) 

 0.2  

Introduction to Element Level Bridge Inspection (1 if 
inspector had taken the course, 0 otherwise) 

 0.267  
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Initially, a simple univariate regression analysis was used to identify statistically significant 

correlations between inspection performance and the independent variables and the independent 

two-samples t-test was used to determine which independent variables were significant in 

discriminating between higher and lower performing inspectors   Then, a multivariate regression 

analysis was used to predict the influence that multiple variables, considered simultaneously, had 

on inspection performance.  Finally, a binary logit model was used to determine which factors, 

beyond crack length, affected the likelihood of detection for an individual crack.  Unless otherwise 

noted, statistical significance was determined using a two-tailed test with a 95% confidence level 

and goodness of fit was evaluated using the adjusted R-squared (R2) or rho-squared (ρ2) statistics.  

3.7.1 Univariate Regression and Two Samples t-Test 

To determine the influence of the individual and environmental factors on the performance 

measures, a simple linear regression analysis with a single variable was performed.  The univariate 

linear regression model is assumed to take the form 

𝑦 𝛽 𝛽 𝑥 𝜀 3. 1  

 

where the dependent variable yi is a function of the intercept parameter β0, the slope parameter β1 

times the independent variable x1i, and a disturbance term εi [58].  The subscript i corresponds to 

the inspector (i = 1,…,30).  Ordinary least squares estimation is used to predict the parameter 

values.  To understand the significance of the model, a test statistic (t-statistic) is used to determine 

the probability that the slope parameter, β1, is equal to zero and therefore the independent variable 

has no effect on the value of the dependent variable.  For linear regression, the t-statistic is defined 

as the estimate of the coefficient of the independent variable divided by the standard error of the 

estimated coefficient.  It is assumed to have a t distribution with degrees of freedom equal to the 

number of observations minus the number of model parameters (2).  The probability value (p-

value) expressing the probability that the coefficient is equal to zero can be calculated from the t 

distribution table.  A low p-value indicates that the coefficient has a low likelihood of being equal 

to zero and therefore, the independent variable is more likely to be a meaningful predictor of the 

dependent variable.  Table 3.9 shows the p-values for all the combinations of performance 

measures and independent variables.  The p-values less than 5% are shown in bold since this was 

the threshold used to indicate significance in this study.  
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Table 3.9 p-values for the univariate linear regression analyses 

Performance 
Measure 

Independent Variable 

Insp. 
Duration 

Avg. 
Temp. 

Age 
Insp. 
Exp. 

No. of 
Training 
Courses 

Max. 
Wind 
Speed 

Avg. 
Wind 
Speed 

No. of 
Routine 

Insp. 

No. of 
Hands-

On Insp. 

All Specimens 
Detection 

Rate 
0.032 0.047 0.028 0.013 0.018 0.492 0.865 0.361 0.191 

False Calls 0.938 0.563 0.714 0.462 0.367 0.180 0.935 0.923 0.196 

Girder Specimens 
Detection 

Rate 
0.022 0.073 0.955 0.500 0.021 0.222 0.834 0.345 0.674 

False Calls 0.804 0.710 0.615 0.311 0.529 0.082 0.759 0.895 0.261 

Welded Cover Plate Specimens 
Detection 

Rate 
0.379 0.058 0.001 0.001 0.052 0.183 0.901 0.802 0.135 

False Calls 0.637 0.405 0.353 0.430 0.092 0.942 0.350 0.458 0.239 

Riveted Plate Specimens 
Detection 

Rate 
0.004 0.894 0.706 0.845 0.657 0.037 0.263 0.257 0.126 

False Calls 0.350 0.464 0.240 0.497 0.671 0.866 0.351 0.278 0.337 

 

To complement the univariate regression analysis, the independent two-samples t-test was used to 

determine which independent variables were significant in discriminating between higher and 

lower performing inspectors.  It compares the mean and variance of two independent samples to 

determine the likelihood that they were drawn from the same population.  The test assumes normal 

population distributions and is appropriate for sample sizes less than 25 [58].  For the two samples 

t-test, the test statistic, t, and degrees of freedom, df, are calculated from Equations 3.2 and 3.3 

where n1 and n2 are the number of observations (inspectors) within each sample, s1 and s2 are the 

sample variances, and x̅1 and x̅2 are the sample means.  Again, the test statistic is assumed to have 

a t distribution.  The p-value expressing the probability that the two samples were drawn from the 

same population can be calculated from the t distribution table.  A low p-value indicates that there 

is a low likelihood that the difference between the sample means is due to chance alone and the 

samples were likely drawn from different populations.   

𝑡
𝑥 𝑥

𝑠
𝑛

𝑠
𝑛

3. 2
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As shown in Figure 3.22, detection rate increased with increasing temperature, indicating that 

inspector comfort may influence detection rate.  The average daily temperature during the 

inspections ranged from 23℉ to 73℉, with an overall average of 46℉.  The t-test revealed that 

inspectors working on days with an average temperature above 51℉ (M = 0.726, SD = 0.077) 

detected significantly more cracks than inspectors who worked on days with an average 

temperature below 51℉ (M = 0.610, SD = 0.148), t(27) = 2.81, p = 0.009.  It is likely that an upper 

bound limit on temperature exists, but it was not noticed in this study because the average daily 

temperature did not exceed 73℉ during any of the inspections.   

 

Figure 3.22 Detection rate plotted against average temperature  

 

As shown in Figure 3.23, detection rate increased with increasing duration. This trend was 

observed in the total detection rate, as well at the detection of out-of-plane and rivet hole cracks.  

The average time to complete the inspection was 248 minutes, with the fastest inspector 

completing the inspection in under two hours and the longest inspection lasting over seven hours.  
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The t-test suggests that inspectors should spend at least 90 seconds inspecting each specimen, or 

detail, since inspectors who spent more than 3.75 hours completing the inspection (M = 0.708, SD 

= 0.124) performed significantly better than inspectors who spent less than 3.75 hours (M = 0.589, 

SD = 0.127), t(27) = 2.60, p = 0.015.  

 

Figure 3.23 Detection rate plotted against inspection duration  

 

Covariance between air temperature and inspection time was investigated to determine whether 

inspection speed varied significantly with weather conditions.  A positive relationship was 

observed; the inspectors tested on the warmest days tended to spend more time completing the 

inspection.  This suggests that inclement or uncomfortable weather may encourage inspectors to 

increase inspection speed.  The plot of inspection time against air temperature can been found in 

Figure 3.24. 
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Figure 3.24 Inspection duration plotted against average temperature  

 

On the exit survey, inspectors were asked to list the inspection training that they had completed.  

To improve the consistency of the results, the exit survey was revised partway through the study 

to include a list of eight common training courses and asked the inspector to indicate which ones 

they had completed.  The eight courses listed on the revised exit survey were Safety Inspection of 

In-Service Bridges, Bridge Inspection Refresher Training, Engineering Concepts for Bridge 

Inspectors, Underwater Bridge Inspection, Fracture Critical Inspection Techniques for Steel 

Bridges, Inspection and Maintenance of Ancillary Highway Structures, and Introduction to 

Element Level Bridge Inspection from the FHWA/NHI, and Inspecting Steel Bridges for Fatigue 

from the S-BRITE Center/Purdue University.  Although some of the inspectors indicated that they 

completed one or more of these courses multiple times throughout their career, only the first 

attendance was considered in this study.  The average number of courses was three.  None of the 

inspectors had taken all eight classes and three inspectors had not completed any of the training 

courses.  Considering only the eight training courses listed on the exit survey, detection rate 

increased with increasing attendance at these courses as shown in Figure 3.25.  Detection of the 

out-of-plane cracks was also positively correlated with training.  Twenty-three (23) of the 30 

inspectors had completed both the FHWA/NHI Safety Inspection of In-Service Bridges and 

Fracture Critical Inspection Techniques for Steel Bridges courses prior to their participation in 
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this study, so the improvement in detection rate is likely due to the completion of more focused or 

specialized training.  In fact, inspectors who had attended at least three training courses (M = 0.692, 

SD = 0.123) performed significantly better than inspectors who had attended less than three of the 

listed training courses (M = 0.573, SD = 0.135), t(16) = 2.35, p = 0.032.  In addition to the in-depth 

discussion provided in these courses, they may offer a useful review of the basic principles of 

inspection.  By federal law, inspectors are required to complete refresher training periodically [1, 

§650.313].  The majority of the inspectors participating in the study had completed one of these 

trainings within the previous three years, so time since training was not helpful in explaining the 

variability in detection rate.   

 

Figure 3.25 Detection rate plotted against the number of training courses taken by the inspector 

 

As shown in Figure 3.26, the relationship between experience and detection rate was negative 

indicating that inspectors with more experience actually performed worse on this inspection.  The 

average experience of the participants was 10.6 years, with a minimum of 0 years and a maximum 

of 30 years.  There was significant variability in performance, even among inspectors with the 

same length of experience.  For instance, there was a 48% difference in detection rate between two 

inspectors that both had 20 years of inspection experience.  The negative relationship was most 

pronounced in the welded cover plate specimens as shown in Figure 3.27.   
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Although common sense suggests that inspection performance should increase with experience, 

previous research presents a varied relationship between performance and experience [29]–[31].  

It is possible that unmeasured factors such as physical health, expectations, or motivation are 

neutralizing the influence of inspection experience.  For instance, an inspector with 29 years of 

experience explained that even though welded cover plate terminations are fatigue prone details, 

they rarely find fatigue cracks in these locations and instead supposed that the cracklike indications 

were paint flaws.  As a result, this inspector detected only 9% of the fatigue cracks in these 

specimens.  Another similarly experienced inspector made their displeasure in participating known 

to the proctor, spent less than 3 hours on the inspection, and only detected 37% of the cracks.  The 

t-test suggests that inspectors with between 2 years and 14 years of experience (M = 0.706, SD = 

0.106) performed significantly better than inspectors with less than 2 years or more than 14 years 

of experience (M = 0.60, SD = 0.147), t(25) = 2.26, p = 0.033.  This group of inspectors may have 

enough experience to identify likely crack locations and recognize fatigue cracks, but not so much 

experience that they are overly influenced by attitude or personal biases.  

 

Figure 3.26 Detection rate plotted against inspection experience 
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Figure 3.27 Weld toe crack detection rate plotted against inspection experience 
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Figure 3.28 Inspection experience plotted against inspection duration  
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decided that they were only cracks in the paint, not in the base metal.  These decisions were 

primarily based on previous experience with this detail and they were noted on the inspection 

forms and/or discussed with the proctor.   

y = 0.0474x - 1.071
R² = 0.1413

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500

In
sp

ec
ti

on
 E

xp
er

ie
nc

e 
(y

rs
.)

Inspection Duration (min.)

Inspection Experience vs. Inspection Duration



85 
 

 

Figure 3.29 Detection rate plotted against inspector age 

 

 

Figure 3.30 Weld toe crack detection rate plotted against inspector age 
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No single variable showed a statistically significant correlation with the number of false positives. 

As shown in Table 3.9 and Figure 3.31, neither temperature, experience, training, nor duration 

showed more than a very slight trend with the number of false calls made by the inspector.   

 

(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 3.31. The number of false calls plotted against (a) average temperature, (b) inspection 
duration, (c) number of training courses, and (d) inspection experience 
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on inspections performed in the previous 12 months.  Inspectors who had performed more than 12 

hands-on inspections in the previous 12 months (M = 57.6, SD = 42.3) made significantly fewer 

false calls than inspectors who completed 12 or fewer hands-on inspections in the previous 12 

months (M = 106, SD = 72.4), t(27) = 2.33, p = 0.027. 

3.7.2 Multivariate Regression 

To assess the interaction among the human and environmental factors, two multivariate linear 

regression analyses were performed to predict detection rate and the number of false positives.  

These analyses were completed in NLOGIT 6 by Econometric Software, Inc.  In a multivariate 

regression model, the dependent variable Yi is a function of many independent variables and so it 

is most easily expressed in matrix form  

𝒀 𝑿 𝜷 𝜺 3. 4  

 

where the dependent variable Ynx1 is a function of the parameters βpx1 times the independent 

variables Xnxp and disturbance term εnx1 [58].  The subscripts indicate the size of the matrices 

where n is the number of inspectors and p is the number of variables measured during each 

inspection.  Again, ordinary least squares estimation was used to predict the parameter values for 

the multivariate regression model.  Unlike the single variable models, the multivariate models can 

include both categorical and numeric independent variables.  To properly account for categorical 

variables, an indicator, or dummy, variable that takes the value of either 0 or 1 for each entry is 

introduced.  For example, the categorical variable for inspector training was divided into individual 

dummy variables for each training course.  The inclusion of each independent variable in the model 

can be justified using the t-statistic and p-value discussed in Section 3.7.1 for univariate linear 

regression.  

 

The adjusted R2 value was used to assess the goodness of fit of the competing models.  This statistic 

reflects the proportion of the total variance that is explained by the independent variables [58].  

The adjusted R2 value, as compared to the conventional R2 value, considers the number of variables 

in the model and expresses the relative contribution of each variable.  While models with more 

variables will have larger R2 values, they will not necessarily have larger adjusted R2 values.  The 

R2 and adjusted R2 values are calculated using Equations 3.5 and 3.6 when Yi is the actual value 
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of the dependent variable, Ŷi is the predicted value of the dependent variable, Y̅ is the average of 

the actual values of the dependent variable over all the observations, n is the number of 

observations, and k is the number of parameters included in the model [58].  The subscript i 

corresponds to the inspector (i = 1,…,30).  

𝑅  
∑ 𝑌 𝑌
∑ 𝑌 𝑌

3. 5  

 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅 1 1 𝑅
𝑛 1
𝑛 𝑘

3. 6  

 

For a perfect model, the variation of the fitted line around the observations is zero and R2 will be 

one. This indicates that the model is able to explain all the variance in the data.  

 

The multivariate analysis predicting detection rate provided similar results to the univariate 

analysis with detection rate best described by a function considering inspection duration, 

inspection experience, and training.  The results from this analysis are shown in Table 3.10.  Once 

again, the relationships between detection rate and duration and training were positive, while the 

relationship between detection rate and experience was negative.  This model predicts that the 

completion of the FHWA/NHI Underwater Bridge Inspection course will produce an 11% increase 

in detection rate.  As discussed above, the review of inspection principles, even though not directly 

related to fracture critical inspections, may improve crack detection.  Alternatively, higher 

performing inspectors may be selected to attend this training, and so this indicator variable might 

reflect the performance assessment of supervisors or managers.  The exclusion of temperature from 

this model suggest that the relationship between performance and temperature found in the 

univariate analysis may be an indirect relationship through duration.  In other words, favorable 

inspection conditions encouraged inspectors to spend more time performing the inspection and the 

increased time resulted in improved performance.  The adjusted R2 statistic for this model was 

0.622 indicating that the four parameters included in the model were able to explain 62% of the 

variability in the data.  The R2 value for the multivariate model is greater than any of the univariate 

models indicating that the interaction among the variables is better able to predict detection rate 

than any single variable.   
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Table 3.10 Results from multivariate regression analysis predicting detection rate 

Variable Description 
Estimated 
Parameter 

Standard 
Error  

t-statistic P(>|t|) 

Constant 0.460 0.054 8.56 0.0000 

Inspection Duration (min.) 0.001 2.3E-4 4.93 0.0002 

Inspection Experience (yrs.) -0.010 0.002 -5.50 0.0000 
Underwater Bridge Inspection (1 if 
inspector had taken the course, 0 
otherwise) 

0.105 0.039 2.71 0.012 

Number of Observations 30  
Adjusted R2 0.622 

 

As noted previously, no single variable showed more than a very slight relationship with the 

number of false calls.  However, the multivariate linear regression analysis suggests that the 

number of falls calls is best described by a function considering the inspector’s employment sector, 

wind speed, tools used, and training.  As shown in Table 3.11, the model predicts that inspectors 

that work for a private consultant, have completed the FHWA/NHI Introduction to Element Level 

Bridge Inspection course, and are exposed to higher maximum wind speeds, and do not use a tape 

measure will make more false calls.  Conversely, inspectors that work for a public agency, have 

not attended the FHWA/NHI Introduction to Element Level Bridge Inspection course, experience 

lower maximum wind speeds, and use a tape measure will make fewer false calls.  The adjusted 

R2 statistic for this model is 0.373 indicating that 37% of the variability in the data is explained by 

the five parameters in the model.  The reduction in the R2 statistic implies that the number of false 

positives is still more difficult to predict than detection rate even with a multivariate model.  

Table 3.11 Results from the multivariate regression analysis predicting false calls 

Variable Description 
Estimated 
Parameter 

Standard 
Error 

t-statistic P(>|t|) 

Constant -16.2 48.2 -0.34 0.740 
Employed by Private Engineering/ 
Inspection Firm (1 if yes, 0 otherwise) 

77.2 22.5 3.44 0.002 

Used a Tape Measure (1 if yes, 0 
otherwise) 

-65.4 22.1 -2.96 0.007 

Max. Wind Speed (mph) 5.50 2.31 2.38 0.025 
Introduction to Element Level Bridge 
Inspection (1 if inspector had taken the 
course, 0 otherwise) 

57.4 22.7 2.53 0.018 

Number of Observations 30  
Adjusted R2 0.373 
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The relationship between employer and false calls indicates that private consultants and public 

employees (state or federal) may apply different response criteria despite inspecting the exact same 

structure under the exact same instructions.  Inspectors working for a public agency, state or federal, 

averaged 76 false calls while inspectors working for a private engineering or inspection firm made 

112 false calls on average.  Although the difference is not statistically significant, it does indicate 

that the two groups may be applying different response criteria.  Inspectors that worked for a public 

agency were either more willing to make a decision at the risk of missing a crack or these inspectors 

used a more rigorous standard for recording defects.   

 

The correlation between maximum wind speed and the number of false calls suggests that 

environmental conditions also influence the decision making process.  Higher wind speeds may 

distract the inspector, challenging their ability to make accurate decisions.   

 

Somewhat unexpectedly, the model predicts that completion of the Introduction to Element Level 

Bridge Inspection training course will increase the number of false positives. The reason for this 

is unclear.  It may be an artifact of the study because the inspections began only a month after 

element level inspection became mandatory for all bridges on the National Highway System, and 

so only eight of the 30 inspectors had received the training.  Alternatively, it could be that the 

inspection approach utilized in an element level inspection is more detailed and precise, leading 

inspectors to include every indication on their sketch.  

 

The negative relationship between the number of false calls and the use of a tape measure also 

merits further investigation since the tape measure is obviously not a tool expected to improve 

visual acuity or the discriminability of flaws.  Instead, this variable might actually be measuring 

an inspector’s tendency to view the specimen more closely and the willingness to touch the 

inspection surface.  These inspection techniques have been found to improve inspection 

performance in previous studies [5], [21], [52].  In this study, the proctor noted that the inspector 

that made the greatest number of false calls was “not very hands-on” and also that the inspector 

did not use a measuring tape.  It is not known if using a tape measure forces an inspector to touch 

the inspection surface, or if inspectors that have predisposition to do this are also more likely to 

use a measuring tape.  
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3.7.3 Binary Logit Model 

The variability in the POD curves presented in Section 3.6.2 suggests that factors beyond crack 

length affect the probability of detecting an individual crack.  A binary logit model was developed 

to predict the probability of detection for each crack based on the hit/miss results for each inspector, 

the crack characteristics, and the human and environmental factors. 

 

Instead of predicting the performance of an individual inspector, the intent of this analysis is to 

predict the likelihood that an individual crack will be detected by a specific inspector.  This model 

is based on 2096 observations (28 inspectors x 70 cracks, 2 inspectors x 68 cracks).  Each 

observation is recorded as either a hit (1) or miss (0).  Because two discrete outcomes are 

considered, a binary logit model is appropriate [58].  These models are derived by defining a linear 

utility function, Uin, that describes the outcome i for observation n such that 

𝑈 𝜷 𝑿 𝜀 3. 7  

 

where βi is a vector of estimable coefficients for discrete outcome i, Xin is a vector of observable 

characteristics that determine the discrete outcome for observation n, and εin is a random 

disturbance term.  For this single choice situation, the probability that observation n is a hit can be 

written as   

𝑃 ℎ𝑖𝑡 𝑃𝑟𝑜𝑏 𝑈 , 𝑈 , 3. 8  

 

Substituting Equation 3.6 into Equation 3.8 and rearranging, the probability of a hit becomes 

𝑃 ℎ𝑖𝑡 𝑃𝑟𝑜𝑏 𝜀 , 𝜀 , 𝜷 𝑿 , 𝜷 𝑿 , 3. 9  

 

and 

𝑃 ℎ𝑖𝑡 𝐹 𝜷 𝑿 , 𝜷 𝑿 , 3. 10  

 

where F(•) is the cumulative density function of the difference of the disturbance terms. Setting 

the utility function describing a miss to zero and assuming the disturbance terms are extreme value 

Type I distributed, the difference will have a logistic distribution and the binary logit model results:  
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𝑃 ℎ𝑖𝑡
𝐸𝑋𝑃 𝜷 𝑿 ,

1 𝐸𝑋𝑃 𝜷 𝑿 ,
3. 11  

 

However, a couple complications with this set of observations require minor adjustments to the 

probability formulation shown in Equation 3.11.  The first complication is due to the nature of the 

data collected in this study.  In this study, 30 inspectors provided 70 observations on the presence 

or absence of a crack.  Since each inspector generated multiple observations, it is inevitable that 

these observations will share unobserved effects, thus violating the assumption of serial 

independence of the disturbance terms.  The unobserved effects will cause the standard errors of 

the coefficients to be underestimated, thereby inflating the t-statistics. This will increase the 

likelihood of mistakenly rejecting a true null hypothesis [58].  This complication can be addressed 

with a random effects model which includes an individual specific disturbance term, μk, in addition 

to the overall disturbance term.  Modifying Equation 3.6, the linear function describing the utility 

function for outcome i becomes 

𝑈 𝜷 𝑿 𝜀 𝜇 3. 12  

 

where the observation, n has been replaced with the inspector number, k (k = 1,…,30) and the 

crack number, t (t = 1,…,70).  All other terms are as previously defined.  Accounting for random 

effects, the probability that crack t is correctly located by inspector k can be written as  

𝑃 ℎ𝑖𝑡
𝐸𝑋𝑃 𝜷 𝑿 𝜇

1 𝐸𝑋𝑃 𝜷 𝑿 𝜇
3. 13  

 

The second complication arises from the complexity of visual inspection.  As discussed previously, 

visual inspection is a complex and imperfect process involving a variety of human factors.  Since 

many of these human factors cannot be quantified and explicitly captured in statistical models, 

results generated from these models may be biased or erroneous.  Random parameter models were 

developed to consider these unaccounted for factors (typically referred to as unobserved 

heterogeneity) [58].  While random effects consider unobserved effects within an individual 

inspector’s set of observations, random parameters account for the unobserved factors across the 

observations which might influence the likelihood of detection [59].  In this model, random 
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parameters allow the influence of certain explanatory variables to vary across the sample of 

inspectors.  For example, while a standard binary logit model can account for the effect of 

experience on detection, only a random parameters model would consider the influence of 

underlying inspector characteristics, such a patience, confidence, or bias.  These variables are not 

included in the model, but could affect the relationship between experience and probability of 

detection.  Statistically, this possibility is accounted for with the introduction of a mixing 

distribution into the probability equation such that the probability that crack t is correctly located 

by inspector k is 

𝑃 ℎ𝑖𝑡
𝐸𝑋𝑃 𝜷 𝑿 𝜇

1 𝐸𝑋𝑃 𝜷 𝑿 𝜇
𝑓 𝜷|𝝋 𝑑𝜷 3. 14  

 

where f(β|φ) is the density function of β with φ referring to a vector of the mean and variance of 

that density function.  In this mixed logit model, β can now account for inspector specific variations 

of the effect of X on crack detection probability with the density function, f(β|φ), used to determine 

β.  Typically, a normal distribution is assumed for the density function, although other distributions 

are feasible.  Due to the complexity of estimating a different parameter for each observation, a 

simulation based maximum likelihood approach is used.  As recommended by Washington, 

Karlaftis, and Mannering [58], a Halton sequence with 200 draws was used.  In this way, values 

of β are drawn from f(β|φ), the probabilities are computed, and estimated parameters are selected 

to maximize the likelihood function.  Model estimation was completed in NLOGIT 6 by 

Econometric Software, Inc.  

 

The likelihood ratio test was used to confirm that that both random effects and random parameters 

should be included in the final model.  This test compares two competing models and determines 

how many times more likely the results are under one model as compared to the other.  In this case, 

the proposed (unrestricted) model was compared to a reduced (restricted) [58].  The restricted 

model can be a model in which all parameters, except the constants, are set equal to zero or a 

model that considers only random effects or only random parameters.  The likelihood ratio is 

calculated using Equation 3.15  where LL(βRC) is the log-likelihood at convergence of the 

restricted model and LL(βU) is the log-likelihood at convergence of the unrestricted model.   
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𝑋 2 𝐿𝐿 𝛽 𝐿𝐿 𝛽 3. 15  

 

The Χ2 statistic is assumed to have a Χ2 distribution with the degrees of freedom equal to the 

difference in the number of parameters in the two models.  The p-value expressing the probability 

that the unrestricted model provides a superior fit to the restricted model by chance alone can be 

calculated from the Χ2 distribution tables.  A low p-value indicates that there is a low likelihood 

that the coefficients of the independent variables are equal to zero and so these variables are likely 

to be meaningful predictors of the outcome of the observation.   

 

Since this model uses maximum likelihood estimation instead of least squares estimation, the ρ2-

statistic is used to assess goodness of fit of the proposed models [58].  The adjusted ρ2-statistic 

considers the contribution of each explanatory variable and is calculated using Equation 3.16 

where LL(βRC) is the log-likelihood at convergence of the restricted model, LL(βU) is the log-

likelihood at convergence of the unrestricted model, and k is the difference in the number of 

parameters estimated in the two models.   

𝜌 1
𝐿𝐿 𝛽 𝑘

𝐿𝐿 𝛽
3. 16  

 

For a perfect model, the likelihood function is equal to one (all predictions are exactly correct) and 

the log-likelihood function is therefore zero. Thus, a perfect model would have a ρ2 value of one 

indicating that all the variance in the data is explained by the model.   

 

Many combinations of factors were analyzed to determine which traits significantly impacted 

likelihood of detection.  For this population of inspectors, the probability of detection for each 

crack is best described by a function considering crack length, crack type, inspector experience, 

inspection duration, and the elapsed time since the first inspection.  Crack length and experience 

were found to vary across the inspector population, as indicated by the significance of their 

standard deviations.  Specimen type, inspection duration, and time since the first inspection were 

considered fixed across the population.  
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This model includes both random effects due to the repeated observations from a single inspector 

and random parameters to account for the variability in the influence of the independent variables 

across the observations.  Random parameters were included for estimated parameters with a 

standard deviation that was significantly different from zero.  Random effects were accounted for 

by allowing the constant term to vary across the inspectors.  Since this study consists of panel data 

(repeated observations from the same observer), random effects were included even though the 

standard deviation of the constant term was not significantly different from zero.  The results from 

this model are shown in Table 3.12. 

Table 3.12 Results from the binary logit model estimating probability of detection 

Variable 
Estimated 
Parameter 
(St. Dev.) 

Standard 
Error Estimate 

(St. Dev.) 

t-statistic 
(St. Dev.) 

P(>|t|) 
(St. Dev.) 

Constant -0.902 (0.029) 0.170 (0.059) -5.32 (0.50) 0.000 (0.618) 

Crack Length (in.) 0.645 (0.371) 0.054 (0.029) 11.93 (12.91) 0.000 (0.000) 
Out-of-Plane Crack (1 if out-of-plane 
crack, 0 otherwise) 

-0.782 0.085 -9.22 0.000 

Weld Toe Crack (1 if weld toe crack, 
0 otherwise) 

-0.775 0.111 -7.02 0.000 

Inspection Duration (min.) 0.004 0.001 6.09 0.000 

Inspection experience (yrs.) -0.009 (0.021) 0.005 (0.004) -1.89 (4.90) 0.059 (0.000) 
Elapsed time since first inspection 
(days) 

-0.0006 0.0002 -4.22 0.000 

Number of Observations 2096 
Log-likelihood of constant -1310 
Log-likelihood with random effects only -1171 
Log-likelihood at convergence -1136 
Adjusted ρ2 0.126 

 

Marginal effects can be calculated to express how each parameter affects the probability of 

detection.  The marginal effect gives the change in probability of detection for a unit change in the 

independent variable.  The marginal effects for the model parameters can be seen in Table 3.13.  

A larger marginal effect indicates a greater influence on the likelihood of detecting the crack while 

a smaller marginal effect indicates a lesser influence.  For the dummy variables, marginal effects 

are computed as the difference in the estimated probabilities when the variable is changed from 

zero to one, while all the other variables are set equal to their means.  For continuous variables, 

the marginal effects are computed from the partial derivative of the probability equation. In both 

cases, the reported marginal effect represents the average over all the observations. 
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Table 3.13 Marginal effects for the parameters in the binary logit model 

Variable Description 
Avg. Marginal 

Effect (Std. Dev.) 
Crack length (in.) 0.156 (0.087) 

Out-of-Plane Crack (1 if out-of-plane crack, 0 otherwise) -0.159 (0.024) 

Weld Toe Crack (1 if weld toe crack, 0 otherwise) -0.153 (0.031) 

Inspection Duration (min.) 6.41E-4 (2.73E-4) 

Inspection experience (yrs.) -0.002 (0.002) 

Elapsed time since first inspection (days) -1.11E-4(4.72E-5) 

 

In addition to the relationships between performance and environmental conditions and inspector 

attributes, this model provides insight into how the characteristics of the crack may influence the 

probability of detection.  On average, a one-inch increase in crack length resulted in a 15.6% 

increase in probability of detection.  For 96% of the observations, an increase in crack length 

resulted in a higher probability of detection for that crack.  For the remaining 4% of the 

observations, the probability of detection decreased with increasing crack length.  A similar trend 

was reflected in the probability of detection curves discussed in Section 3.6.2. In these cases, the 

failure to detect the crack may have been caused by an error in the decision task, as opposed to the 

search task, as was observed on the welded cover plate specimens.   

 

Supporting the previous finding of a positive correlation between detection rate on the girder 

specimens and the welded cover plate specimens, the binary logit model indicated that both the 

out-of-plane cracks and weld toe cracks were approximately 16% less likely to be detected as 

compared to the rivet hole cracks of the same length.   

 

Cracks were more likely to be located during inspections that lasted longer. This variable was fixed 

across the population and a one-minute increase in inspection time increased the likelihood of 

detecting a crack, regardless of length, by 0.06%. 

 

Similar to the regression models, the binary logit model also revealed a negative relationship 

between probability of detection and inspection experience.  However, this model was able to 

capture the variation in influence across the sample of inspectors.  For 67% of the observations, 

the probability of detecting a crack decreased with experience while, for the remaining 33% of the 
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observations, the likelihood of finding a crack increased with experience.  On average, a one-year 

increase in experience reduced the probability of detecting the crack by 0.2%. 

 

Individual cracks were more likely to be found during the earlier inspections and less likely to be 

found during the later inspections.  This variable is fixed across the population, and the likelihood 

of detecting a specific crack decreased approximately 8% from the first inspection on Day 1 of the 

study to the last inspection on Day 762.  This is not unexpected as specimen maintenance is a well-

documented challenge to POD studies [17].  This trend was not present in the regression analyses 

indicating that for an individual inspector, performance is more heavily influenced by human 

factors than by crack characteristics.  As shown in Figure 3.8, on seven occasions there was more 

than a 10% difference in detection rates between inspections that happened on consecutive days.  

Conversely, there was a 454-day gap between the 11th and 12th inspectors, but the difference in 

detection rates was only 9%.  The effect of human factors on detection rate significantly outweighs 

the influence from the change in the crack appearance, and so it remains valid to directly compare 

the results from all 30 inspectors over the 2+ year study.   

 

For this model, the restricted log-likelihood of constants only (LL(βRC)) is -1310, the unrestricted 

log-likelihood of the proposed model (LL(βU)) is -1136, the number of degrees of freedom (ν) is 

8, and the Χ2 statistic is 346.  This exceeds the critical value of 31.8 and a confidence level of over 

99.99% is achieved.  In other words, the probability that the unrestricted model provides a superior 

fit to the restricted model by chance alone is very small (less than 0.01%).  Similarly, for a model 

that includes only random effects, the restricted log-likelihood (LL(βRC)) is -1171, the unrestricted 

log-likelihood function (LL(βU)) is -1136, the number of degrees of freedom (ν) is 2, and the Χ2 

statistic is 69.  This exceeds the critical value of 18.4 and a confidence level of over 99.99% is 

achieved.  Therefore, it is appropriate to include random parameters in the model.  

3.7.4 Vigilance 

As noted previously, one of the common findings in visual inspection research is the presence of 

a vigilance decrement [25], [21], and so the relationship between performance and time on the task 

was investigated in this study.  Only performance on the girder specimens was considered since 

all 72 specimens were typically inspected without a break.  Additionally, these specimens are 
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arranged in four even rows of 18 specimens making it straightforward to compare performance on 

a row-by-row basis using the independent two-sample t-test. 

 

Figure 3.32 shows the average detection rate, number of false calls, and inspection duration for 

each girder row.  The performance measure is plotted on the left vertical axis and represented by 

the bars while inspection duration is plotted against the right vertical axis and represented by the 

line with markers.  The average detection rate was higher on the first 36 girder specimens (M = 

0.653, SD = 0.148) as compared to the second 36 girder specimens (M = 0.582, SD = 0.151), t(57) 

= 1.85, p = 0.070.  Twenty-three (23) of the 30 inspectors achieved higher detection rates on the 

first two rows as compared to the last two row.  Similarly, a slight “warm-up effect” is noticeable 

in the inspection results as performance on the first row is lower than performance on the second 

or third rows for 24 of the inspectors.  There was no noticeable improvement in the detection rate 

of inspectors that took a break during the girder inspection and those that did not.  One possible 

explanation is that the break schedule was controlled by the inspector throughout the inspection 

rather than being predetermined.  Inspectors may have already been suffering the ill effects of 

prolonged vigilance before they took a break. 

 

Unlike detection rate, there was no standard or predictable change in the number of false calls 

made with increasing time on the task.  The average number of false calls per specimen row 

remained relatively similar at 13, 19, 18, and 15.  Individual inspectors may have adjusted their 

response criterion during the inspection though.  For instance, one inspector gradually increased 

the number of false positives from 2 on the first row of specimens to 18 on the fourth row of 

specimens, while another inspector reduced the number of false calls from 16 to 2 on the same 

girder rows.  For 13 of the inspectors, the difference in the number of false calls between the first 

two rows and the last two rows was greater than nine.  

 

In addition to changes in detection rate and the number of false calls, inspection rate also increased 

with increasing time on the task.  The inspection time for the first two girder rows (M = 86, SD = 

37) was significantly longer than the inspection time the last two girder rows (M = 59, SD = 22), 

t(46) = 3.45, p = 0.001.  A study considering temporal effects on a security inspection task noticed 
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a similar trend and determined that the inspectors gradually decreased their search time, but did 

not adjust their non-search time, as time on the task increased [60].   

 

(a)                                                                           (b) 

Figure 3.32 (a) Detection rate and inspection duration by girder row and (b) false alarms and 
inspection duration by girder row 

 

3.7.5 Tool Use 

No significant correlation was found between crack detection and any single tool that was used.  

This is likely due to the large variety in tools used during the inspections and the lack of 

information collected about these tools and their use.   

 

Although this study did not find significant correlation between flashlight use and inspection 

performance, this should not be interpreted to mean that flashlights are not necessary or ambient 

lighting under a bridge is adequate for visual inspection.  Additional information that was not 

collected during this study, such as the ambient lighting under the bridge during the inspection and 

the specific specimens on which a flashlight was used, is necessary to determine minimum lighting 

levels and if flashlights improve the likelihood of detecting a fatigue crack.  Absent this 

information, a flashlight with a minimum light output of 100 lumens and an adjustable focus is 

recommended for use during all hands-on bridge inspections. 
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3.7.6 Discussion 

Several of the human factors findings enhance current understanding of visual inspection of steel 

bridges and are supported by previous research on the visual inspection process from other 

industries.  

 

First, there is incredible variability in visual inspection results and most of the variables expected 

to correlate with performance are actually weak predictors of performance.  Slight trends were 

found between the performance measures and a few of the individual or environmental factors, 

however no single variable was able to explain much of the variance in the data.  Even when 

considering the interaction among the factors, the predictive power of the models is low.  For every 

trend, there seems to be an exception.  Even though detection rate generally decreased with 

increasing experience, there was an inspector (Inspector A) with 28 years of experience and a 70% 

detection rate.  And while the number of false positives tended to decrease with an increasing 

number of hands-on inspections, there was an inspector (Inspector B) who made 162 false calls 

despite performing 25 hands-on inspections in the previous 12 months.  While these 

inconsistencies seem to suggest that human factors cannot be used to explain inspection 

performance, it is more likely that these quantitative variables simply cannot tell the full story.  For 

instance, the model does not know that Inspector A is a Certified Weld Inspector and Level III 

NDT technician who mainly inspects offshore drill rigs and ships.  Therefore, it is possible that 

he/she has not developed the same expectations or biases as a full time bridge inspector.  Similarly, 

the model cannot account for the unexpected rain storm that delayed Inspector B and may have 

caused him/her to rush through the second half of the inspection.   

 

Second, the current results suggest that different interventions may be necessary to improve the 

search and the decision components of visual inspection.  As discussed previously, missed defects 

can result from search or decision errors while false alarms are the result of decision errors.  

Therefore, by comparing the factors that affect detection rate and false calls, it may be possible to 

determine if these factors are influencing the search function or the decision function.  For instance, 

the absence of a clear relationship between the number of false calls and inspection duration 

suggests that the additional time is more influential in the search task than the decision task.  In 

other words, the additional time may allow an inspector to complete a more thorough examination 
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of the inspection surface, but may not improve the accuracy of the decision making process.  This 

is supported by previous visual inspection research that has found improvements in decision 

making to saturate quickly with increasing time [21].  

 

Third, the significant variability in false calls and the lack of correlation with individual or 

environmental factors imply that decision making may be the more unpredictable aspect of the 

visual inspection process.  Although the large number of false calls may be an artifact of the study, 

they still suggest a high degree of uncertainty within this inspector population.  As noted previously, 

inspectors were not allowed to clean the surface, remove paint, or use enhanced NDT methods to 

confirm their findings.  To compensate, a few inspectors labelled indications as “possible” or 

“probable” cracks and noted the need for NDT on the inspection forms.  Notably, inspectors rarely 

equivocated in their decisions on actual fatigue cracks, but showed more uncertainty about 

cracklike surface flaws.  Reviewing the results for two inspectors that did this most consistently, 

it is interesting to note that actual fatigue cracks were rarely labelled as “possible” cracks, while 

paint scratches or other surface imperfections were often labelled this way.  It seems that these 

inspectors recognized a true fatigue crack when they saw it, but lacked confidence in their decision 

making.  After re-evaluating the results on the girder specimens for these two inspectors 

considering only the indications marked clearly as cracks, the first inspector recorded 3 fewer hits 

but 45 fewer false positives and the inspector’s hit/call ratio increased from 31% to 77%.  Similarly, 

the second inspector recorded 2 fewer hits but 23 fewer false positives and the hit/call ratio 

increased from 25% to 56%.  Once again, it is unknown why so many false positives were recorded, 

but this type of performance feedback may result in measureable improvements in performance.   

 

Fourth, the probability of detection curves generated through this study exhibit significant 

inspector-to-inspector variation.  Either individual inspectors respond differently to crack length, 

or crack length explains very little of the variation in performance.  For three of the inspectors, the 

probability of detection actually decreased with increasing crack length, indicating that the 

influence of crack size is largely overshadowed by inspector or environmental factors.  And for 

other inspectors, the curves are not asymptotic to POD = 1, leaving a nonzero probability of 

missing a crack regardless of length.  Therefore, while other aspects of fracture prevention 

(material toughness, design requirements, fabrication tolerances, etc.) can be used to increase the 
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critical crack size to a length that is easily visible to the naked eye, it may be unrealistic to assume 

that even a very long crack will always be found under the current inspection procedures.   

3.8 Recommendations for Visual Inspection  

Current findings confirm that the visual inspection of a steel bridge is a difficult task and human 

inspectors struggle with this highly subjective assignment.  Potential solutions typically focus on 

one of three areas: inspection equipment and environment, inspector training, and inspection 

procedures.  Recommendations from this study will be similarly categorized.  

3.8.1 Equipment 

A standard set of equipment should be provided to each inspector to improve consistency among 

inspectors.  Standard tools should include, but are not limited to, a flashlight with light output of 

at least 100 lumens and adjustable focus, a wire brush, scraper, and hammer, 5x power and lighted 

10x power magnifying glasses, a telescoping inspection mirror, and an easy to read measuring 

device.  Inspectors should be provided with basic training outlining the proper use for each tool.  

Before beginning the inspection, inspectors should complete an equipment checklist indicating 

that the prescribed tools were available and in working order.  

3.8.2 Training  

Visual inspection research frequently cites inspector training as the most cost effective and 

efficient strategy for improving inspection performance [20].  However, this study revealed that 

the current training program, which relies heavily on classroom lectures, produces highly variable 

results.  Improvements to the training program should be made so that it addresses all aspects of 

the inspection task – procedural, physical, and cognitive.  Proven training systems employ a 

modular approach, include immediate feedback during training, encourage active participation and 

engagement from attendees, allow for self-discovery, clearly define acceptability standards, 

discuss common errors, and address a wide variety of possible defects [20].  A new training course 

and training module developed in accordance with these recommendation is discussed in detail in 

Chapter 4.  
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While federal law mandates periodic bridge inspection refresher training, no specifics are provided 

on the topic or frequency [1, §650.313].  Typically, all inspectors in the state receive identical 

training at a set interval.  While this is helpful in improving consistency across the inspection 

program, it does not address the needs of an individual inspector.  For inspectors requiring remedial 

training, it may be helpful to determine in what function(s) they are deficient so that the appropriate 

training can be provided.  Since the human factors influencing the search and decision functions 

may differ, it follows that that individual inspectors may require different interventions to improve 

inspection performance.  Although it is not possible to identify the exact cause of each error, the 

type and total number of errors provides insight into the relative strengths and weaknesses of the 

inspectors.  For instance, an inspector that misses a large number of cracks, but also makes a low 

number of false calls, likely requires additional training in the search task, while an inspector that 

detects most of the cracks, but also makes a large number of false calls, may need training focused 

on decision making.  Within this group, 18 inspectors were identified as needing additional 

instruction in performing the search task, one inspector should receive training in the decision 

component, and nine inspectors require interventions in both functions.  This was determined by 

comparing an individual’s performance to the overall performance of the group.  Inspectors with 

a detection rate less than one standard deviation above the average (79%) were classified as 

needing search interventions and inspectors with more than the average number of false calls (90) 

were assumed to need decision interventions.  The larger number of inspectors requiring search 

intervention makes sense since a higher standard was applied to detection rate than the number of 

false positives.  This is reasonable given the importance of the search component and the relative 

cost of a miss as compared to a false positive.  This result also agrees with the FAA study on visual 

inspection reliability which found that all 12 participating inspectors needed supplemental training 

on how to perform the search task, while only a few inspectors required additional guidance on 

performing the decision task [52].  Performance testing, as discussed in Sections 3.8.3 and 3.8.4, 

can be used to establish performance thresholds for remedial training and to determine what type 

of training an inspector requires.  

3.8.3 Inspection Procedures 

Detailed procedures for hands-on visual inspection of steel bridge members should be developed.  

These procedures should use the same terminology that is used in inspection training courses and 
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include likely crack locations and the recommended tools and inspection techniques for typical 

bridge details.  Much of the relevant information for steel bridges is compiled in the Fatigue and 

Fracture Library for the Inspection, Evaluation, and Repair of Vehicular Steel Bridges [61].  The 

procedures should be organized into job cards that include a clear description of the task along 

with the information needed to correctly complete the task.  Well designed and appropriately used 

job cards were found to improve performance during the FAA study on inspection reliability [52].  

The most effective job cards included photos or diagrams of the inspection area that matched the 

orientation in the field and clearly showed the likely defect locations and inspection boundaries.   

 

Additional procedural recommendations are offered based on visual inspection research, although 

their effectiveness for hands-on bridge inspection was not explicitly evaluated in this study:  

 Encourage active observation.  Although visual cues are the main source of information 

about the condition of the structure, previous research has found that inspectors can 

improve their performance by touching the surface, listening for rattles or squeaks, and 

smelling leaks or overheating parts.  Even while using only the eyes, inspectors should 

frequently adjust their viewing angle and distance from the inspection surface and use basic 

tools to increase the discriminability of flaws [21], [52].  The correlation between false 

calls and tape measure use observed in this study suggests that inspectors that are close 

enough to the inspection surface to measure the length of the crack, may also be close 

enough to make accurate judgments about detected indications.  Additionally, these 

inspectors may be more willing to use their tactile sense to inform decision making.  Based 

on the results of this study, requiring inspectors to use a tape measure may be one way to 

ensure that they are actively engaged with the inspection surface. 

 Hold regular calibration meetings and refresher training.  Calibration meetings and 

refresher training can help maintain a uniform understanding and application of inspection 

standards among the inspector population.  This will help improve consistency in decision 

making and reduce the variability in inspection results.  These trainings should be specific 

to the managing agency and attended by all inspectors performing inspections under their 

guidance.  These meetings can help to address the difference in decision making observed 

between inspectors employed by public agencies and those employed by private 

consultants.  
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 Provide regular feedback.  The usefulness of the qualitative information gathered in this 

study highlights the need for ongoing communication between inspectors and managers.  

As discussed previously, a more thorough understanding of an inspector's strategy and 

thought process was gathered by simply spending a day observing and talking with them. 

Similar interactions between inspectors and their supervisors would offer supervisors the 

same insights and allow then to provide feedback to improve accuracy and consistency.  

Although it is difficult to provide performance feedback since the true accuracy of an 

inspector’s findings are not known, cognitive feedback has also been found to be effective 

in improving inspection performance [35].  Cognitive feedback may focus on an 

inspector’s strategy, expectations, or assumptions.  For instance, this type of feedback 

could correct an inspector’s misconception about the relative cost of a missed crack and a 

false call.  Without feedback, the same errors in judgment and decision making will be 

unknowingly repeated in the future.  

 Rotate inspectors.  Even with similar experience or training, these results show that 

inspectors have differing abilities to detect cracks.  In fact, only one crack was detected by 

all 30 inspectors and only three cracks were not detected by any of the inspectors.  This 

supports the practice of inspector rotation as a quality control measure intended to reduce 

the likelihood that defects are repeatedly missed [4].  

 Allow adequate time to complete each inspection and encourage inspectors to use the 

allotted time.  Adequate time should be allowed for the inspection so that inspectors do not 

have to rush and are able to take frequent breaks.  These breaks do not need to be non-

working breaks, simply alternating tasks is usually adequate to combat the vigilance 

decrement.  The literature recommends switching tasks or taking a break every 20 to 30 

minutes to maintain the necessary level of attention and focus [20].   

 Establish initial and recurrent performance testing requirements.  The current findings 

confirm previous studies which have determined that it may not be effective to rely on 

inspector demographics for selection or evaluation.  Performance testing in a controlled 

environment should be utilized to confirm that an inspector can correctly apply inspection 

procedures in the field and achieve a satisfactory level of performance.  This is discussed 

in greater detail in Section 3.8.4 below.  
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3.8.4 Performance Testing 

The large variability in the inspection results and the relatively weak predictive value of many of 

the variables expected to correlate with performance suggest a need for performance testing for 

certifying bridge inspectors.  Performance testing has been successfully implemented on a project-

by-project basis to verify the quality and improve the consistency of nondestructive testing during 

steel bridge inspections [62].  In addition to the classroom training and written examination 

currently required under the NBIS, a practical inspection test in a controlled environment should 

be administered.  

 

Effective performance testing for visual inspection should include both a quantitative and a 

qualitative assessment.  Quantitatively, inspectors must be able to achieve a minimum passing 

score to be recommended for certification.  Qualitatively, inspectors must demonstrate a 

reasonable inspection strategy and logical thought process that informs both how they inspect and 

where they inspect.  

 

Currently, no standard performance measures exist for qualifying bridge inspectors for visual 

inspection of steel bridges.  However, the data generated in this study can be used to investigate 

the outcomes from potential policies.  To illustrate, five different hypothetical performance 

standards were identified, and for each performance standard, several passing criteria of varying 

difficulty were considered.  These standards are presented below for discussion only.  Additional 

research is necessary to establish rational performance criteria.  

 

One option is to establish a flat detection rate for passing.  For example, the inspectors would each 

be required to find 70% of the total cracks present on the course.  This option is simple and easy 

to determine if an inspector meets the criterion; however, it does not consider the size or location 

of the cracks or the number of false calls made by the inspector.  Table 3.14 summarizes the 

inspection performance of the passing inspectors for a range of required detection rates.  
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Table 3.14 Summary of results for inspector qualification based on unweighted detection rate  

Required Score 
to Pass 

Pass Rate (No. 
of Inspectors) 

Avg. No. of 
Missed Cracks 

Avg. No. of 
False Calls 

Max. No. 
False Calls 

Largest 
Crack 
Missed 

50% (35 hits) 83% (25) 21 89 268 5-3/8” 

60% (42 hits) 77% (23) 20 92 268 5-7/32” 

70% (49 hits) 43% (13) 16 96 195 4-29/32” 

80% (56 hits) 10% (3) 11 111 187 3-1/4” 

 

A second option is to use a graduated scale for detection rates.  Cracks of greater length must be 

detected at a higher rate than cracks of shorter length or less severity.  For instance, to pass the 

practical exam, an inspector must find 50% of cracks shorter than 1 inch, 65% of cracks with 

lengths between 1 and 3 inches, and 80% of cracks greater than 3 inches long.  This method stresses 

and presumes that inspectors should be better able to find longer cracks more easily than shorter 

cracks.  Although crack length is considered, criticality of the crack is not directly included in the 

test since the location of the crack is not considered.  Also, inspectors are not penalized for false 

calls.  Table 3.15 summarizes the inspection performance of the passing inspectors for a range of 

required detection rates.   

Table 3.15 Summary of results for inspector qualification based on weighted detection rate  

Required Score 
to Pass  

(<1”, 1”-3”, >3”) 

Pass Rate 
(No. of 

Inspectors) 

Avg. No. of 
Missed Cracks 

Avg. No. of 
False Calls 

Max. No. 
False Calls 

Largest 
Crack 
Missed 

40%, 60%, 80% 33% (10) 16 100 195 4-29/32” 

50%, 65%, 80% 20% (6) 13 120 195 3-3/8” 

55%, 70%, 80% 13% (4) 12 124 187 3-3/8” 

65%, 75%, 80% 7% (2) 11 73 77 3-1/4” 

 

A third option is to set the passing criteria based on crack type.  Setting the criteria based on the 

type of crack, and how detrimental the particular crack type is for the structure, promotes a 

reasonable approach to bridge inspection.  For example, load induced cracks grow perpendicular 

to the stress, and can quickly lead to member fracture.  For this crack type, the detection rate for 

passing may be set to be 70%.  For distortion induced cracks that typically grow more slowly and 

pose less risk, a lower detection rate, possibly 50%, may be acceptable.  Table 3.16 summarizes 

the inspection performance of the passing inspectors for a range of required detection rates.   
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Table 3.16 Summary of results for inspector qualification based on crack type detection rate  

Required Score to 
Pass (Distortion 
Induced, Load 

Induced) 

Pass Rate 
(No. of 

Inspectors) 

Avg. No of 
Missed Cracks 

Avg. No. of 
False Calls 

Max. No. 
False Calls 

Largest 
Crack 
Missed 

40%, 60% 33% (10) 17 76 187 4-29/32” 

50%, 70% 13% (4) 12 92 187 3-1/2” 

60%, 80% 7% (2) 11 132 187 3-1/4” 

 

A fourth option is to evaluate inspector performance based on both detection rate and the number 

of false calls.  Large numbers of false positives result in higher costs and can undermine the 

veracity of a bridge inspection program.  The rating could be calculated using Equation 3.17 where 

n is the relative severity of a miss to a false call [63].  For example, a minimum rating of 75% 

could be required with a missed crack considered three times more severe than a false call.  Table 

3.17 summarizes the inspection performance of the passing inspectors for a range of required 

inspector ratings.  

 𝑅𝑎𝑡𝑖𝑛𝑔  
1
2

1  
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑎𝑤𝑠

𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑎𝑤𝑠 
𝑓𝑎𝑙𝑠𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑛 𝑥 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
3. 17  

 

Table 3.17 Summary of results for inspector qualification based on inspector rating 

Required 
Rating to Pass 

Pass Rate 
(No. of 

Inspectors) 

Avg. No. of 
Missed Cracks 

Avg. No. of 
False Calls 

Max. No. 
False Calls 

Largest Crack 
Missed 

75% (n = 4) 60% (18) 19 81 195 4-29/32” 

80% (n = 4) 23% (7) 14 76 187 3-1/2” 

75% (n = 3) 40% (12) 17 70 187 4-29/32” 

80% (n = 3) 7% (4) 13 53 77 3-1/2” 

 

The fifth option is to evaluate inspector performance based on probability of detection by crack 

length.  Under this standard, a shorter POD crack length indicates superior performance.  For 

instance, to pass the exam, an inspector must be able to detect a 4-inch crack 90% of the time with 

95% confidence.  Similar to the weighted detection rate standard, this standard considers crack 

length, but not location. Additionally, inspectors are not penalized for false calls.  Table 3.18 

summarizes the inspection performance of the passing inspectors for a range of required POD 

crack lengths.  
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Table 3.18 Summary of results for inspector qualification based on probability of detection  

Maximum POD 
Crack Length for 

Passing 

Pass Rate 
(No. of 

Inspectors) 

Avg. No of 
Missed 
Cracks 

Avg. No. 
of False 

Calls 

Max. No. 
False 
Calls 

Largest Crack 
Missed  

a90 = 4 in. 43% (13) 17 90 195 4-29/32” 

a90 = 5 in. 63% (19) 19 91 268 5-7/32” 

a90/95 = 4 in. 7% (2) 18 65 67 3-1/4” 

a90/95 = 5 in. 27% (8) 16 85 195 4-29/32” 

3.9 Summary 

A diverse group of 30 inspectors were invited to complete a full day, hands-on inspection of 147 

steel bridge specimens to establish a quantitative measure of visual inspection capability for fatigue 

cracks in steel bridges.  The average detection rate was 65% and the average number of false calls 

was 90.  The average 50% and 90% detection rate crack lengths were 1 inch and 5-1/2 inches, 

respectively.  These lengths are likely larger than expected by most within the bridge inspection 

community, but are consistent with similar probability of detection studies in other industries [52], 

[64].   

 

Inspectors employed widely varying inspection strategies; some adopted a conservative approach 

and categorized all indications as cracks, while others labelled only the most obvious indications 

as crack.  The hit/call ratio varied from 13% to 75% and the number of hits was not correlated with 

the number of false calls.  The study also considered the effect of inspector characteristics and 

environmental conditions on detection rate and the number of false calls.  These performance 

measures were selected as they help describe an inspector’s proficiency in both the search and 

decision components of visual inspection.  

 

The variability in inspection results was substantial, and only a small amount of the variance could 

be described by human factors.  This is not because human factors are insignificant or unimportant, 

but because most human factors are too complex to measure and summarize in a statistical model.  

Still, detection rate was found to be the more predictable performance measure, and it was most 

influenced by inspection time, training, temperature, and experience.  Notably, the relationship 

between detection rate and experience was negative indicating that increased inspection experience 

actually reduced detection capability.  Since a false call results from an error in judgment, the 
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variables found to influence the number of false calls were also assumed to be the variables that 

affect decision making.  These factors include the inspector’s employment sector, measuring tape 

use, wind spend, training, and the number of past inspections.  Additionally, a slight decline in 

detection rate with increasing time on the inspection task was observed, but no consistent change 

in the number of false calls was detected.   

Since the POD curves suggested that factors beyond crack length affect probability of detection, a 

binary logit model was developed to predict crack detection based on crack, human, and 

environmental characteristics.  This model determined that crack detection was influenced crack 

length, the location or type of crack, inspector experience, inspection duration, and the elapsed 

time since the first inspection.  

 

These results confirm that visual inspection of a steel bridge is an inherently difficult task. It is not 

a matter of “trying harder”; modifications to the current training scheme, inspection procedures, 

and inspection equipment are necessary to improve accuracy and consistency.  Performance testing 

should be used to confirm the effectiveness of any changes and to ensure that all inspectors can 

provide the necessary inspection quality. 
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4. INSPECTOR TRAINING 

4.1 Introduction 

Based on the results from the hands-on inspections, it is clear that the current standards for visual 

inspection of steel bridges produce highly variable results.  One possible explanation is insufficient 

training or lack of consistency in training.  The FHWA study on the accuracy and reliability of 

routine bridge inspections recommended improved training on bridge behavior after noting that 

many inspectors could not, or did not, identify basic structural features of the bridge such as span 

type, support condition, or skew [5].  However, focusing on the detection of fatigue cracks in steel 

bridges, the currently available training courses and material seem to provide a strong background 

in where and how fatigue cracking may occur.  All relevant training discusses the mechanics of 

bridge behavior, including tension and compression regions, in-plane and out-of-plane loading, 

and fatigue prone details.  And yet, in reviewing the inspection results, it is clear that many 

inspectors, regardless of training and experience, may not fully understand how and where fatigue 

cracking occurs.  A number of inspectors identified what they believed to be cracks in highly 

unlikely locations or orientations.  For instance, many inspectors identified cracks in the plain web 

section of the girder specimens or parallel to the primary stress in the riveted plates.  Although 

inspectors were regularly reminded to do their best to differentiate between fatigue cracks and 

other crack-like surface defects, some may have adopted an unrealistically conservative inspection 

strategy to limit their misses in the research environment.  Still, these type of errors imply that 

inspectors either do not have a proper understanding of the mechanics of fatigue cracking or are 

unable to apply the theories taught in the classroom in the field.  While the excessive numbers of 

false calls may be partially a construct of the inspection scenario, it does reveal a high level of 

uncertainty among some of the inspectors, and during actual bridge inspections, this uncertainty 

may produce the opposite result – fewer false calls and more missed cracks.  

4.2 Observational Skills Training 

To address the disconnect between training and execution, a new training course focused on the 

cognitive skills used during visual inspection was developed.  Since there is not a practical way to 

apply a standardized step-by-step procedure to visual inspection, this training course objects to 
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improve the application of technical knowledge in the field by teaching inspectors “how to inspect” 

rather than “where to inspect” or “what to inspect”.  The course first divides the inspection process 

into four distinct subtasks (prepare, search, decide, and document) and then identifies the 

observation skills used in each task (perception and recognition, attention, memory, mental 

imaging and mental models, and judgement and decision making).  These are the skills that enable 

an inspector to observe and interpret environmental information, compare it to previous 

experiences and knowledge stored in long-term memory, and use that analysis as the basis for a 

decision.  This course covers both the theory and application of these skills and offers techniques 

for improvement.  Additional details for the training units on each observation skill are provided 

below.  Similar to a course developed for the International Atomic Energy Agency [65], [66], this 

training course is tailored to bridge inspection, although the observation skills are common to all 

visual inspection activities.  The information is delivered through a combination of lecture, class 

discussion, and individual exercises.  The training includes a list of good practices for steel bridge 

inspection based on the recommendations from visual inspection literature and the findings from 

the hands-on inspections.     

 

This training is intended to be a half-day standalone course offered through the S-BRITE Center.  

The course material was submitted to the INDOT through SPR-3820 and is under review by the 

Study Advisory Committee.  The projected delivery date is Fall 2019.  Feedback will be solicited 

from course attendees and attendees will be invited to participate in the probability of detection 

study to evaluate the effectiveness of the training.  

4.2.1 Visual Inspection Process 

The training starts with an introduction to the visual inspection process including a description of 

the prepare, search, decide, and document subtasks.  Focusing primarily on the search and decide 

tasks, the training discusses the findings from literature and the hands-on inspections including the 

utility of a systematic search and decision strategy, the speed versus accuracy trade-off, the 

vigilance decrement, and the influence of human factors on inspection performance.  Specific 

details of the unit on the visual inspection process are provided in Table 4.1.   
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Table 4.1 Description of the visual inspection process unit 

Objective Convey how the inspection process can be broken down into a series of 
subtasks 

Topic(s) 1. Define and describe visual inspection tasks  
2. Research findings and best practices 
3. Introduction to cognitive skills 

Exercise(s) Computer based search and decide activities (see below) 

Sample 
Slide(s) 

 

 
 

 
 

 

Two computer-based exercises were developed to allow an inspector to evaluate and improve their 

search and decision capabilities.  These exercises were built in MathWorks MATLAB but can be 

delivered as standalone applications.  The first exercise is solely a visual search task in which 

alphanumeric targets are identified among similarly shaped distractors.  A similar exercise was 

used by Leach and Morris [31] and Koenig, et al. [67] to study cognitive factors and human 

performance during visual inspection.  This simulation can be used to show how search 

performance varies with pacing (self-paced vs. machine paced), search strategy (systematic vs. 

random), and fault type (single fault vs. multi-fault).  The second exercise is solely a decision task 
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in which the condition of a target image is judged relative to a reference image.  In the first task, 

the user is asked to determine if the target line is wider or narrower than a standard line and in the 

second task, the user is asked to determine if the target image shows more or less surface corrosion 

than the standard image.  A similar  exercise was used by Gramopadhye and Wilson [68] to study 

the effects of feedback on visual inspection performance.  This simulation can be used to show 

how decision performance varies with pacing (self-paced vs. machine paced).  Prototypical screens 

from the search and decision exercises are shown in Figure 4.1 

     

(a)              (b) 

Figure 4.1 Prototypical screens from the (a) search and (b) decision exercises 

4.2.2 Perception and Recognition 

Perception and recognition skills allow an inspector to identify and understand familiar structural 

features or operating conditions [65].  Perception is the entry point for making observations; if 

perceptions are flawed, the response will also be flawed.  Both perceptions and recognition may 

be influenced by personal expectations or experiences.  Specific details of the unit on perception 

and recognition are provided in Table 4.2.  This unit includes an embedded figures exercise which 

challenges the inspector to identify a geometric target among a distracting background.  Similar 

recognition skills are needed to identify a fatigue crack among the rust and debris on the surface 

of a steel bridge member.  
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Table 4.2 Description of the perception and recognition unit 

Objective Convey how perception and recognition work and how these processes can 
enrich or inhibit inspection tasks 

Topic(s) 1. Definitions of perception and recognition 
2. Rules of perception (simplicity, closure, figure-ground) 
3. Illusions (The dress, Muller-Lyer illusion) 
4. Recognition theories (template matching, prototype matching, 

recognition by component) 
Exercise(s) Embedded figures (identify a critical target among a distracting 

background) 
Sample 
Slide(s) 

 

 
 

 
 

 

4.2.3 Attention 

Attention skills enable an inspector to fully inspect all potentially important regions of the 

inspection surface, not just the most central or most obvious [65].  Attention skills are responsible 

for distinguishing between environmental inputs that deserve attention and those that do not.  

Sensory inputs warranting attention during a bridge inspection may be visual, auditory, or tactile.  

Expectations, habituation, and stress can influence attention [65].  For instance, stimuli that are 
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repeated frequently gradually receive less attention and stress induced by physical or mental 

conditions can distract or divert attention.  Specific details of the unit on attention are provided in 

Table 4.3.  This unit involves an attention to detail exercise that challenges the inspector to identify 

the differences between two pictures of the same structure.  Similar attention to detail can be useful 

in detecting small changes in condition, such as a missing rivet or bolt, among repeated bridge 

details.  A selective attention exercise uses a video developed by Simons and Chabris [69] to 

demonstrate how the brain selectively attends to certain stimuli while neglecting other stimuli.  

This highlights the importance of maintaining an open mind about the types and locations of 

possible defects.  

Table 4.3 Description of the attention unit 

Objective Convey how attention works and how it can be limited, especially during 
stressful or demanding situations 

Topic(s) 1. Definition of attention 
2. Types of attention (focused, selective, divided) 

Exercise(s) 1. Attention to detail (identify the differences between two pictures) 
2. The “gorilla” experiment (video demonstrating how the brain selectively 

attends to certain stimuli and completely misses other stimuli) 
Sample 
Slide(s) 

 

 
 

 

4.2.4 Memory 

Memory is the process by which information is stored for later use [65].  Memory skills allow an 

inspector to recall information about the structure, remember to do specific things during the 

inspection, recognize critical structural features and governing operating conditions, accurately 

record measurements, quantity estimates and observations, and remember to follow up on action 

items.  Memory is also necessary for developing a knowledge base about a specific structure or 
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type of structure.  This unit includes a memory training exercise known as dual n-back which has 

been found to improve short-term, or working, memory capacity [70].  This exercise challenges 

the inspector to retain and recall information delivered in different formats, such as auditory and 

visual.  Similar memory skills may be necessary during a bridge inspection when an inspector is 

trying to remember and record both the location and length of a suspected crack.  Specific details 

of the unit on memory are provided in Table 4.4. 

Table 4.4 Description of the memory unit 

Objective Convey how memory works and its limitations; convey the importance of 
memory aids  

Topic(s) 1. Definition of memory  
2. Stages of memory (sensory register, short-term memory, long-term 

memory) 
Exercise(s) Dual n-back (short term memory exercise that requires the user to process 

both auditory and visual information and retain new information without 
replacing older information)  

Sample 
Slide(s) 

 

 
 

 

4.2.5 Mental Images 

Mental imaging is the perception of “remembered” information absent immediate sensory input 

[65].  Since mental images reflect perceptions, they will be flawed if the perceptions were flawed. 

Mental images can be used for remembering and organizing visual information, solving spatial 

problems, and interpreting observations.  Mental images can be manipulated, transformed, or 

rotated to reveal the required information.  Mental images may be useful in understanding and 

recalling how a bridge system responds to load. For instance, the mental images of a pin-type and 

roller-type bearing might help an inspector recall the type of support provided by each.  Specific 
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details of the unit on mental imaging are provided in Table 4.5.  This unit includes a mental rotation 

exercise challenging the inspector to mentally rotate a three-dimensional object to determine if it 

matches the baseline object [71].  Similar mental rotation skills allow bridge inspectors to align 

the drawings and details shown on construction plans with the structures they view in the field.   

Table 4.5 Description of the mental images unit 

Objective Convey what mental images are and how they can be used to organize, 
manipulate, and interpret spatial information during a bridge inspection   

Topic(s) 1. Definition of mental images 
2. Examples of mental images (pinned bearing vs. roller bearing) 

Exercise(s) Mental rotation (rotate 3D shapes until they match) 

Sample 
Slide(s) 

 

 
 

 
 

 

4.2.6 Mental Models 

Mental models are built on mental images, but include cause-and-effect relationships in addition 

to spatial relationships [65].  They are used to understand the purpose and form of the structure, 

explain its function, and predict future changes.  Mental models can be updated based on observed 
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behavior in the field and refined with input from other inspectors and engineers.  A mental model 

of a bridge structure would include both the structural members and their responses to applied 

loads.  This model could be used to identify regions of the bridge that may be susceptible to 

cracking and which require special attention during an inspection.  This unit includes an exercise 

challenging the inspector to use their mental models of a welded cover plate and transverse 

connection plate to explain why the details are susceptible to fatigue cracking, where cracks will 

occur, what the consequences of cracking may be, and possible repairs or retrofits.  Specific details 

of the unit on mental models are provided in Table 4.6.  

Table 4.6 Description of the mental models unit 

Objective Convey what mental models are, how they are related to mental images, and 
how they can be used to answer “what if” questions  

Topic(s) 1. Definition of mental models 
2. How to build mental models and extract information from them 

Exercises Applying mental models (connection plate detail, cover plate detail) 

Sample Slides  
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4.2.7 Judgement and Decision Making 

Judgement and decision making skills allow an inspector to apply logic and reasoning to 

observations to form conclusions about the condition of the structure [65].  In this training course, 

a judgement is defined as a quick evaluation made based on a single cue and a decision is defined 

as a final evaluation made based on a large number of cues from many different sources.  The unit 

covers the fallibility of human judgement including mental shortcuts, or heuristics, which can lead 

to erroneous decisions when misapplied.  For instance, the confirmation heuristic might lead an 

inspector that suspects a crack was caused by fatigue to take note of the cues that support this 

theory, such as the presence of a fatigue prone detail, while ignoring the cues that do not support 

this theory, such as the absence of paint or rust on the crack surface.  Specific details of the 

judgement and decision making unit are provided in Table 4.7.  This unit includes a series of word 

problems based on Bazerman and Moore [72] and Einhorn and Hogarth [73] intended to 

demonstrate how heuristics can cause errors in judgment.  
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Table 4.7 Description of the judgement and decision making unit 

Objective Convey how judgements and decisions are formed and how to avoid making 
common errors or miscalculations  

Topic(s) 1. Definition of judgement and decision making  
2. How to identify and avoid common mistakes in judgement  
3. Problem solving techniques

Exercise(s) Judgment exercise (representativeness heuristic, availability heuristic, 
confirmation heuristic) 

Sample 
Slide(s) 

 

 
 

 
 

4.3 Inspection Tools and Techniques Training 

In speaking with inspectors during the study, it was clear that inspectors had very little exposure 

to actual fatigue cracks.  A number of inspectors remarked that they found more cracks during this 

single day inspection than during their entire career, often spanning multiple decades.  

Consequently, a new training module was developed for inclusion in the Inspecting Steel Bridges 

for Fatigue course offered through Purdue University’s S-BRITE Center and has been delivered 

three times (May 2017, April 2018, and October 2018).  This module includes a brief introduction 

to the physical tools and techniques of visual inspection.  It covers the steps for visual inspection, 
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useful inspection tools, and techniques to distinguish between paint scratches and fatigue cracks 

in steel bridge members.  Additionally, inspectors have the opportunity to apply the training during 

a mock visual inspection of full size bridge specimens with actual fatigue cracks.  Four sample 

slides from this training module are included in Figure 4.2. 

 

Figure 4.2 Select slides from the Inspection Tools and Techniques training module  

4.4 Summary 

The large variability in inspection performance indicates that the current training program 

produces inspectors with differing inspection abilities.  Although the content of the existing 

courses appears to be adequate, it seems that some inspectors are struggling to apply the lessons 

taught in the classroom in the field.  A new training course and a new training module were 

developed to address this deficiency.  These trainings focus on the physical and mental factors of 

visual inspection and aim to teach inspectors “how to inspect” rather than “where to inspect”.  The 

Observational Skills training course divides the visual inspection process down into four distinct 

subtasks and then identifies the cognitive skills used in each task.  Interactive exercises are used 
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to demonstrate and strengthen observation skills.  The Inspection Tools and Techniques training 

module describes the physical aspects of performing a steel bridge inspection, including effective 

use of inspection tools.  Following the training, the inspectors have the opportunity to apply the 

discussed inspection techniques on full size bridge specimens with actual fatigue cracks.   
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5. UAS-ASSISTED VISUAL INSPECTION 

5.1 Introduction 

Recent advances in unmanned aircraft system (UAS) technology have made it a viable tool for 

state departments of transportation operating in a resource limited environment.  Potential 

applications include infrastructure inspection, traffic surveillance, roadway assessment, accident 

reconstruction, and construction site monitoring [74].  For in-service bridge inspections, UAS 

assistance may reduce the need for extensive traffic control and specialized access equipment, 

thereby increasing the safety of both the inspectors and the motoring public.  Additionally, the 

collection of high resolution video and imagery provide robust documentation of the bridge 

condition and allow for advanced analysis in the office.  Before implementing this technology, it 

is critical to understand both its capabilities and limitations and identify the ideal role(s) for UAS 

in bridge inspection.  Working with a team from Utah State University, the use of UAS for 

detecting fatigue cracks in steel bridge members was investigated through a series of real-time 

(field) and offline (desk) inspections.   

 

The field inspections were performed by four certified bridge inspectors viewing live video from 

the UAS in the field and the desk inspections were performed by 19 certified bridge inspectors 

reviewing the recorded videos in their office.  The inspection scenario and procedures followed 

those used during the hands-on inspections as closely as practical so that the results from the UAS 

inspections could be directly compared to the results from the hands-on inspections.  Although 

many different levels of this technology exist, this project utilized an affordable, off-the-shelf UAS, 

such that it could be easily implemented at the state or local level.     

 

The inspection set-up and results are discussed in detail in the following sections.  The methods 

used to evaluate the data will be explained along with findings, recommendations, and conclusions 

regarding UAS-assisted inspection of steel bridge members.   
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5.2 Field Inspection 

A small pool of bridge inspectors was invited to perform a UAS-assisted inspection of the same 

specimens used during the hands-on inspections discussed in Chapter 3.  These inspections 

followed the same general process described for the hands-on inspections.  Inspectors were 

directed to use the same level of care and attention to detail usually exhibited during a hands-on, 

facture critical inspection.  All of the inspectors worked with the same FAA certified pilot and the 

same UAS platform, the Mavic Pro from DJI.  Due to the small sample size, only general 

conclusions can be made regarding the accuracy and consistency of UAS-assisted field inspections 

of steel bridge members.  This program lays the groundwork for future research to develop 

inspection protocols and standards for UAS-assisted bridge inspections.  

5.2.1 Inspection Scenario 

The inspection procedures outlined in Section 3.2 for the hands-on inspections were followed as 

closely as practical for the UAS-assisted field inspections.  The specimens were inspected in the 

field in real-time using a first person view monitor (tablet).  The inspector was able to control the 

angle and exposure of the camera, while the pilot flew the UAS from specimen to specimen.  A 

video of each specimen was recorded for use during the desk inspections.  The specimens were 

inspected in the same predetermined order used during the hands-on inspections.  A proctor from 

Purdue University was onsite throughout the entire inspection to ensure that the proper procedures 

were followed and to record inspection times, flight times, and general observations about the 

inspector and the inspection conditions.  Figure 5.1 shows two inspectors performing the UAS-

assisted field inspection.  
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Figure 5.1 UAS-assisted field inspections of the POD specimens 

 

On the day of the inspection, the inspector reported to the test site at approximately 8 AM.  Before 

beginning the inspection, a brief tutorial was offered to introduce the inspectors to the mechanics 

of performing a bridge inspection using a UAS.  This tutorial, lasting approximately 30 minutes, 

was performed using another bridge specimen with known fatigue cracks at the S-BRITE Center.  

Following the tutorial, a series of three vision tests were administered to measure normal visual 

acuity, near visual acuity, and contrast sensitivity.  The normal visual acuity test was conducted 

with the Snellen eye chart, the near visual acuity test was administered with the Jaeger chart, and 

the contrast sensitivity test was performed with the Pelli-Robson chart.  The test charts were 

mounted on the inspection frame as shown in Figure 5.2.  The vision tests were administered per 

the documented procedures with the UAS hovering at the required standoff distance and the 

inspector verbally reciting the legible letters or words.  

 

Figure 5.2 Vision test charts used during the UAS-assisted field inspections 

Snellen Eye Chart 

Pelli-Robson Eye Chart  

Jaeger Eye Chart 

UAS Platform

Inspector 

Pilot 
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Each inspector was given the inspection procedures, a list of assumptions about the specimens, 

and a blank inspection form for each specimen.  Again, the inspectors were asked to record the 

length and location of any documented crack(s) or indicate that none were found.  The inspections 

were self-paced, although external factors such as wind condition, battery life, and pilot fatigue 

necessitated frequent breaks.   

 

Midway through the inspection day, both the inspector and the pilot were asked to complete a 

quantitative workload assessment administered using the NASA Task Load Index (NASA-TLX) 

application on a smartphone.  Although originally developed for aviation tasks, the NASA-TLX 

has rapidly spread to a variety of industries and activities and become the standard for evaluating 

workload [75], [76].  The workload index is founded on six factors expected to contribute to the 

workload most people experience while performing most tasks.  Three of the factors are related to 

the demands imposed on the subject (mental, physical, and temporal) and three of the factors are 

related to the interaction between the subject and the task (effort, frustration, and performance).  

The final workload index reflects the subject’s perceived workload between 0 (no work) and 100 

(maximum work) based on the relative contribution of each factor.  While no common standard 

exists to categorize workload (e.g. easy, hard, too hard), this index provides a relative comparison 

across subjects performing the same task.    

 

At the conclusion of the exercise, the inspector completed an exit survey providing information 

about their background and training history.  The exit survey also asked for the inspector’s 

assessment of the inspection tutorial and scenario and general impression of the quality of the 

UAS-assisted field inspection.  The inspection documents used during the UAS-assisted field 

inspections are similar to those provided in Appendix A for the hands-on inspection.   

 

The test articles for the UAS-assisted field inspections were the same as those used during the 

hands-on inspections; however, no inspector was able to inspect more than 85 of the 147 specimens 

during their UAS-assisted field inspection.  All specimen types were included, although none of 

the overhead mounted riveted plate specimens were inspected.  The UAS-assisted inspections used 

only the painted specimens.  
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Inspections were conducted outdoors on the campus of Purdue University in West Lafayette, 

Indiana at the S-BRITE Center between 18 December 2017 and 21 December 2017.  The 

inspections were completed from the ground adjacent to and below the probability of detection 

training structure.  Temperature and wind speed statistics were recorded by the KLAF weather 

station at the Purdue University Airport, located adjacent to the test site [56].  

5.2.2 Inspector Demographics 

Four inspectors (3 males and 1 female) with experience in bridge inspection participated in the 

UAS-assisted field inspections.  Two of the inspectors worked for a state department of 

transportation and two worked for a private engineering and inspection firm.  The inspectors 

worked primarily in three states, Indiana (1), Illinois (1), and Idaho (2), although the private 

consultants inspect bridges around the country.  All of the inspectors had completed both the 

FWHA/NHI Safety Inspection of In-Service Bridges course and the Fracture Critical Bridge 

Inspection course prior to their participation in the study.  The average experience of the 

participating inspectors was 11.1 years and the inspectors had completed an average of 15 hands-

on inspections in the 12 months prior to their participation.  Three of the four inspectors possessed 

a professional engineering license and post-secondary degree in civil engineering.  Vision tests 

were administered to three of the four participants.  None of the inspectors recorded normal (20/20) 

vision on the Snellen vision test or read the smallest paragraph of text on the test card for the Jaeger 

vision test.  The average Log Contrast Sensitivity score was 1.6.  Select inspector demographics 

are compiled in Table 5.1. 

 

One inspector participated in both the UAS-assisted field inspection and the hands-on inspection. 

Due to the large number of similarly featured specimens and the passage of time, participation in 

the hands-on inspections was not expected to affect performance in the UAS-assisted field 

inspection.  
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Table 5.1 Inspector demographics for UAS-assisted field inspections 

Inspector 
ID 

Employer 
Age 

(years) 

Inspection 
Experience 

(years) 

Professional 
Licensure 

Number of 
Hands-on 
(Routine) 

Inspections 

Log 
Contrast 

Sensitivity 

20LC-91 Private Consultant 31 7 PE 10 (35) 1.5 

19JK-92 State DOT 50 16 None 15 (340) 1.65 

21UT-98 State DOT 35 5 PE 8 (25) 1.65 

18YW-96 Private Consultant 47 16.5 PE 25 (800) N/A 

 

5.2.3 Inspection Results 

The information provided on each inspection form was interpreted and categorized as outlined in 

Section 3.4.  Since each inspector inspected a different number of specimens, detection rate was 

calculated based on the total number of cracks in the inspected specimens.  The results from the 

UAS-assisted field inspections were compiled and evaluated similar to the hands-on inspection 

results.  Inspector performance was evaluated for the entire specimen inventory and for each type 

of specimen (girder, welded cover plate, riveted plate) separately.  

5.2.3.1 Crack Detection and False Calls 

Four inspectors completed a UAS-assisted field inspection of the painted specimens.  The most 

successful inspector achieved a detection rate of 60% (12 of 20 possible cracks) while the least 

successful inspector recorded a detection rate of 48% (20 of 42 possible cracks).  The average 

detection rate was 54% and the standard deviation of detection rate was 6%.  The number of false 

calls made during the inspections ranged from 26 to 67.  The average number of false calls was 53 

with a standard deviation of 19.  The inspection results for each inspector are presented in Table 

5.2.  Note that the number of specimens inspected, and therefore the total number of possible 

cracks, varies among the inspectors and was lower than during the hands-on inspections.  

Table 5.2. UAS-assisted field inspection results by inspector 

Inspector 
ID 

Number of 
Specimens Inspected 

(Possible Cracks) 
Hits 

Detection 
Rate 

False 
Positives 

Hit/Call 
Ratio 

20LC-91 85 (42) 20 48% 54 27% 

19JK-92 78 (38) 22 58% 26 46% 

21UT-98 52 (20) 12 60% 66 15% 

18YW-96 52 (20) 10 50% 67 13% 
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The number of false positives were compared to the number of hits for each inspector and the 

hit/call ratio was calculated.  The highest, or best, hit/call ratio was 46% and the lowest, or worst, 

hit/call ratio was 13%.  The average hit/call ratio was 25%, meaning that one hit was recorded for 

every 4 calls.  As illustrated in Figure 5.3 where the inspectors are plotted in order of increasing 

number of hits, the number of false calls (negative y-axis) is negatively correlated with the number 

of hits (positive y-axis).  In other words, inspectors that inspected more specimens and detected 

more cracks actually made fewer false calls.   

 

 

Figure 5.3 Hits and false calls by inspector during the UAS-assisted field inspections 

 

The detection rates by crack type were also examined as shown in Figure 5.4.  These inspections 

included between 15 and 24 out-of-plane cracks in the girder specimens, between 5 and 9 weld toe 

cracks in the welded cover plate specimens, and between 0 and 9 rivet hole cracks in the riveted 

plate specimens.  Note that two inspectors, 18YW-96 and 21UT-98, did not inspect the riveted 

plate specimens and so the detection rate for the rivet hole cracks is labelled as “N/A”.  In contrast, 

two inspectors, 18YW-96 and 19JK-92, inspected the welded cover plate specimens but did not 

detect any of the cracks and so their detection rates are labelled as 0%.  The weld toe cracks had 

the lowest average detection rate.  The camera used during these inspections was mounted beneath 

the body of the UAS making it difficult to inspect directly overhead.  By tilting the UAS platform, 
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the inspectors could see the cover plate termination, but it was challenging to get a clear image of 

the weld. 

 

Figure 5.4 Inspector detection rates by crack type 

 

5.2.3.2 Crack Sizing 

Similar to the hands-on inspections, the inspectors participating in the UAS-assisted field 

inspections were asked to record both the length and location of the cracks on their inspection 

forms.  Inspectors were provided with dimensioned drawings of the specimens to provide a 

reference against which to estimate crack length.  Three of the four field inspectors recorded crack 

length estimates on their inspection forms.     

 

Figure 5.5 shows the crack length data for the out-of-plane cracks in the girder specimens.  The 

actual length of the crack is shown on the horizontal axis and the estimated length of the crack 

recorded by the inspector is shown on the vertical axis.  The diagonal 1:1 reference line represents 

exact agreement between the actual length and the estimated length.  For the majority of the cracks, 

the average of the estimated lengths plots below the 1:1 line indicating that the inspectors tended 

to underestimate crack length.  This trend was also observed in the results from the hands-on 
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inspections.  The average measurement error was -0.84 inch and the average absolute error was 

1.02 inches.  The average absolute error increased with crack length and the percent absolute error 

decreased with crack length.  Table 5.3 shows the error analysis for the reported length 

measurement for all the cracks in the girder specimens.  

 

Figure 5.5 Estimated crack length versus actual crack length for out-of-plane cracks  

 

Figure 5.6 and Figure 5.7 present the crack length data for the welded cover plate and riveted plate 

specimens, respectively.  The crack sizing information is limited for these specimens due to the 

small number of inspectors and low detection rates.  For most of the cracks, only one inspector 

provided a length estimate and they tended to overestimate the length of the weld toe cracks and 

underestimate the length of the rivet hole cracks.  For the weld toe cracks, the average measurement 

error was 0.71 inch and the average absolute error was 1.29 inches.  For the rivet hole cracks, the 

average measurement error was -0.1 inch and the average absolute error was 0.15 inch.  Table 5.3 

shows the error analysis for the reported length measurement for all the cracks in the welded cover 

plate and riveted plate specimens.  

 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

E
st

im
at

ed
  C

ra
ck

 L
en

gt
h 

(i
n.

)

Actual Crack Length (in.)

Estimated Crack Length vs. Actual Crack Length for Out-
of- Plane Cracks

Estimated Length Average Measured Length 1:1 Line



133 
 

 

Figure 5.6 Estimated crack length versus actual crack length for weld toe cracks  

 

 

Figure 5.7 Estimated crack length versus actual crack length for rivet hole cracks  
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Table 5.3 Error analysis for crack length estimates from the UAS-assisted field inspections 

Statistic 
 

Out-of-Plane Cracks  
(24 cracks) 

Weld Toe Cracks  
(9 cracks) 

Rivet Hole Cracks  
(9 cracks) 

Error  
(actual length  

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Min./Max. (in.) -2.44/0.78 - -1/4.44 - -0.5/0.19  

Average (in.) -0.84 1.02 0.71 1.29 -0.10 0.15 

St. Dev. (in.) 0.92 0.70 1.96 1.57 0.24 0.21 

Average % -28 36 14 37 -9 14 

 

5.2.3.3 Inspection Duration  

Both the field time and the inspection time were recorded during the UAS-assisted visual 

inspections.  The field time is the total time spent in the field on the day of the inspection, excluding 

the time spent completing the pre-inspection tutorial, vision tests, and the post-inspection 

paperwork.  The inspection time is the length of time the inspector was actually looking at the 

specimens and is approximately equal to the flight time.  The difference between the field time 

and the inspection time represents the time spent changing batteries, waiting for flight conditions 

to improve, chatting, etc. and so the ratio of field time to inspection time (Time Ratio) is essentially 

an expression of efficiency.  As this ratio increase from one, it indicates that less of the field time 

was spent inspecting the specimens.  A summary of the field and inspection times are presented in 

Table 5.4.  The inspection time varied between 125 and 201 minutes while field time varied from 

244 minutes to 375 minutes.  The ratio of field time to inspection time varied from 1.57 to 2.62.  

Since each inspector inspected a different number of specimens, it is also useful to consider 

inspection rate (inspection time divided by number of specimens inspected).  Inspection rate varied 

from 1.71 minutes per specimen to 3.87 minutes per specimen.   

Table 5.4 UAS-assisted field inspection durations by inspector 

Inspector 
ID 

Number of 
Specimens 
Inspected  

Inspection 
Time  
(min.) 

Field Time 
(min.) 

Inspection Rate 
(min./specimen) 

Time Ratio  
(Field Time/  

Inspection Time) 
20LC-91 85 145 244 1.71 1.68 

19JK-92 78 199 375 2.55 1.88 

21UT-98 52 201 315 3.87 1.57 

18YW-96 52 125 328 2.40 2.62 
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5.2.3.4 NASA Task Load Index 

Both the pilot and the inspector completed the NASA-TLX assessment.  The workload scores and 

governing factors are shown in Table 5.5.  The inspectors’ workload scores ranged from 47 to 82 

and frustration was the governing source of workload for three of the four inspectors.  The pilot’s 

workload scores varied between 62 and 72 with mental demand as the governing source of 

workload.  These assessments agree with previous research that found mental demand and 

frustration to be the primary components of workload during vigilance tasks [77].   

Table 5.5 NASA-TLX workload scores for the inspectors and pilot 

Inspector ID 
Inspector Pilot 

Workload 
Score 

Governing Factor 
Workload 

Score 
Governing 

Factor 

20LC-91 47 Mental Demand 62 Mental Demand 

19JK-92 82 Frustration 68 Mental Demand 

21UT-98 73 Frustration 72 Mental Demand 

18YW-96 69 Frustration 66 Mental Demand 

 

5.2.4 Crack Length Analysis 

To investigate the relationship between crack detection and crack length, an abbreviated crack 

length analysis was performed with the results from the UAS-assisted field inspections.  Due to 

the reduced number of cracks and inspectors, probability of detection curves were not developed.  

However, a general understanding of the relationship can be obtained by looking at the detection 

rate versus crack length bar graph.  

 

The cracks were grouped into 1-inch length increments and the detection rate for each bin was 

computed.  The detection rate was determined by summing the number of hits for each crack in 

the increment and dividing by the total number of detection attempts made.  Although there is not 

a continuous increase in detection rate with increasing crack length, there is a clear improvement 

in detection for cracks over 2 inches in length as compared to cracks less than 2 inches in length.  

However, cracks greater than 4 inches were detected at a lower rate (50%) than cracks between 2 

inches and 4 inches long (71%).  Figure 5.8 shows the detection rates for each crack length 

increment.  The number of cracks in each bin are shown on the right hand vertical axis.  
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Figure 5.8 Detection rate by crack length 

 

5.2.5 Human and Environmental Factors 

Due to the limited sample size, an extensive statistical analysis of the human and environmental 

factors affecting inspection performance was not warranted for the UAS-assisted field inspections.  

Additionally, since the UAS is simply a tool used by the inspector during a visual inspection, many 

of the factors discussed in Section 3.7 are expected to similarly influence performance during a 

UAS-assisted inspection.  Only the effects of wind speed were investigated since this was likely 

to have a more pronounced influence on performance during a UAS-assisted inspection as 

compared to a traditional, hands-on inspection.   

 

While weather is an important consideration in any outdoor inspection activity, wind speed and 

direction has been found to be an especially critical factor in UAS-assisted structural inspections 

[42], [47], [78].  In particular, frequent fluctuations in wind speed and direction necessitate an 

increased standoff distance from the inspection surface as the likelihood of a collision increases.  

The average, maximum, and gust wind speeds recorded at the KLAF weather station are shown in 

Table 5.6.  The average wind speed during the inspections ranged from 6 to 9 mph, with sustained 

winds up to 17 mph and gust speeds of 24 mph.   
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Table 5.6 Wind speeds by inspection day 

Inspector ID 
Average Wind 
Speed (mph) 

Maximum Wind 
Speed (mph) 

Gust Wind 
Speed (mph) 

20LC-91 6 14 17 

19JK-92 7 16 20 
21UT-98 8 14 19 

18YW-96 9 17 24 

 

Detection rate, the number of false calls, and the ratio between field time and inspection time 

plotted against wind speed are shown Figure 5.9, Figure 5.10, and Figure 5.11, respectively.  While 

no clear relationship was observed between inspection performance and wind speed, higher wind 

speeds were found to increase the ratio between field time and inspection time.  In other words, 

under higher wind speeds, a reduced percentage of the field time was dedicated to inspection.  This 

relationship was observed in the field during the inspections as increased winds, especially gusting 

winds, caused frequent disruptions because the pilot was unable to comfortably control the UAS 

within adequate proximity to the inspection specimens.   

 

Figure 5.9 Detection rate plotted against wind speed  
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Figure 5.10 False positives plotted against wind speed  

 

 

Figure 5.11 Time ratio (field time/inspection time) plotted against wind speed 
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5.2.6 Comparison to Hands-on Inspection 

Although the sample size is limited, the results presented in Section 5.2.2 suggest a similar level 

of variability in performance observed during the hands-on inspections. Since these inspections 

were performed on consecutive days in similar weather conditions with the same pilot and UAS, 

inspector-to-inspector variation continues to be a significant factor in determining performance.   

 

Table 5.7 provides a brief comparison between the results from the hands-on inspections and the 

UAS-assisted field inspections.  This comparison is limited to the specimens that were inspected 

by all four inspectors during the UAS-assisted field inspections.  For the girder specimens, the 

average performance during the UAS-assisted field inspections compared well with the hands-on 

inspections.  The average detection rate was the same with a slight increase in the number of false 

calls during the UAS-assisted field inspections.  Conversely, performance on the welded cover 

plate specimens was worse during the UAS-assisted field inspections.  As mentioned previously, 

the location of the camera on the UAS made overhead inspection challenging.  The average 

detection rate was lower and the number of false calls was higher during the UAS-assisted field 

inspections causing a reduction in the average hit/call ratio.  The average inspection times were 

slightly longer for the UAS-assisted field inspections as compared to the hands-on inspections, 

although the more noticeable difference was observed in the ratio of field time to inspection time.  

During the hands-on inspections, 147 specimens were inspected during the full day inspection.  In 

comparison, during the full day UAS assisted inspections, no inspector was able to inspect more 

than 85 specimens.  In terms of crack sizing, the average error and average absolute error was 

greater during the UAS-assisted field inspections as compared to the hands-on inspections.  Finally, 

separate from the numeric results, all of the inspectors participating in the UAS assisted inspections 

stated that they thought that “[the UAS assisted] inspection provided worse quality as compared 

to an arm’s length inspection” indicating that the lack of inspector confidence may pose a 

significant challenge to implementation.     
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Table 5.7 Average performance during UAS-assisted field and hands-on inspections 

 

Average from UAS-assisted 
field inspections - 4 inspectors 

(max/min in parentheses) 

Average from hands-on 
inspections - 30 inspectors 
(max/min in parentheses) 

Girder Specimens (36 specimens) 

Hits 10 (11/9) 10 (13/5) 

False Positives 34 (50/10) 31 (94/1) 

Total Cracks 15 15 

Detection Rate (%) 65 (73/60) 65 (87/33) 

Hit/Call Ratio (%) 27 (52/15) 33 (89/5) 

Inspection time (min.) 111 (169/67) 86 (197/41) 

Average Crack Sizing Error -0.98 (0.78/-2.44) -0.63 (7.38/-4.02) 
Average Crack Sizing 

Absolute Error 
1.1 0.93 

Welded Cover Plates Specimens (16 specimens) 

Hits 1 (3/0) 3 (4/0) 

False Positives 13 (19/8) 8 (20/0) 

Total Cracks 5 5 

Detection Rate (%) 20 (60/0) 57 (80/0) 

Hit/Call Ratio (%) 7 (16/0) 40 (100/0) 

Inspection time (min.) 29 (41/19) 20 (32/10) 

Average Crack Sizing Error 0.67 (4.44/-1) 0.4 (8.44/-1.25) 
Average Crack Sizing 

Absolute Error 
1.55 0.72 

 

A visual comparison of detection rate and false positives is provided in Figure 5.12 and Figure 

5.13, respectively.  Although the error bars are wide for the hands-on inspections, there was a 

statistically significant difference in detection rate between the two types of inspection.  The 

average detection rate during the UAS-assisted field inspections was approximately one standard 

deviation below the average detection rate during the hands-on inspections and the two sample t-

test revealed that significantly more cracks were detected during the hands-on inspections (M = 

0.699, SD = 0.139) than during the UAS-assisted field inspections (M = 0.538, SD = 0.048), t(11) 

= 4.62, p = 0.001.  In contrast, there was no statistically significant difference in the number of 

false calls made during the two types of inspection.  Visually, the large overlap in the error bars in 

Figure 5.13 suggests this, and it was confirmed using the two-sample t-test.  
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Figure 5.12 Comparison of average detection rate during the UAS-assisted field and hands-on 
inspections 

 

 

 

Figure 5.13 Comparison of average number of false calls made during the UAS-assisted field 
and hands-on inspections 
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As noted previously, one inspector performed both a UAS-assisted field inspection and a hands-

on inspection.  The results from the two inspections are presented in Table 5.8 along with the 

difference (hands-on inspection minus field inspection) between the two inspections.  This 

comparison is limited to the specimens inspected during the UAS-assisted field inspection.  The 

inspector located seven fewer cracks during the UAS-assisted inspection, but also made 18 fewer 

false calls.  Still, the hit/call ratio during the UAS-assisted field inspection was 4% lower than 

during the hands-on inspection.  Finally, although the inspection rate was faster during the UAS-

assisted inspection, the ratio of field time to inspection time was greater.  During the hands-on 

inspection, the inspector looked at all 147 specimens between 9:06 AM and 4:04 PM, even with a 

31-minute rain delay.  In contrast, during the UAS-assisted inspection, the inspector was only able 

to look at 52 specimens between 9:52 AM and 4:16 PM.  There are a variety of explanations for 

the reduced inspection efficiency, including a longer lunch break and extended conversations with 

the research team, but the nearly constant need to change batteries in the UAS, controller, and 

tablet, difficulties flying in a GPS-denied environment under the timber deck, and frequent winds 

over 10 mph all caused significant delays that were not present during the hands-on inspection.  

Table 5.8 Difference in inspection performance during UAS-assisted field and hands-on 
inspections for a single inspector 

 Field 
Inspection 

Hands-on 
Inspection 

Difference 

Girder Specimens (36 specimens) 

Hits 13 10 3 

False Positives 67 46 21 

Detection Rate (%) 87% 67% 20% 

Hit/Call Ratio (%) 16% 18% -2% 

Inspection time (min.) 173 102 71 

Average Crack Sizing Error -0.60 - - 

Average Crack Sizing Absolute Error 0.71 - - 

Welded Cover Plates Specimens (16 specimens) 

Hits 4 0 4 

False Positives 16 19 -3 

Detection Rate (%) 80% 0% 80% 

Hit/Call Ratio (%) 20% 0% 20% 

Inspection time (min.) 17 23 -6 

Average Crack Sizing Error 0.31 - - 

Average Crack Sizing Absolute Error 0.31 - - 
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5.2.7 Discussion 

Although limited in scale and scope, several of the findings from the UAS-assisted field 

inspections enhance the current understanding of the capabilities and limitations of this technology.   

 

First, advocates often cite reduced inspection time as one of the expected benefits of performing 

civil infrastructure inspections with UAS assistance.  Albeit a very small sample, this set of trials 

contradicts this claim.  As discussed previously, none of the UAS-assisted field inspectors were 

able to inspect all 147 specimens during their full day inspection.  In practice, a hands-on 

inspection would require additional time for the set-up and removal of traffic control and 

deployment of access equipment making the two methods more comparable in duration.  Even so, 

it seems that one, heretofore overlooked, consideration in the planning of UAS inspections is the 

ratio of field time to inspection time.  Although nearly continuous flight was possible due to the 

proximity of a reliable power source and a large store of batteries, the UAS-assisted inspection 

still experienced frequent pauses to change batteries, avoid swirling winds, restore GPS signal, etc.  

Over the four days of inspection, the maximum flight time was 18 minutes but the average flight 

time was about five minutes.  Each interruption required the inspector and pilot to switch their 

focus and they were observed taking many more breaks during the UAS-assisted inspections as 

compared to the hands-on inspections.  Some of these breaks lasted a number of minutes and 

extended long after the wind had settled or the battery had been changed.  While frequent breaks 

are recommended by visual inspection research to combat the vigilance decrement, in some cases, 

this may reduce the time savings expected with UAS assistance.  

 

Second, much of the current research includes only cursory mentions of the pilot’s role within the 

inspection team.  However, a successful in-depth inspection relies heavily on the pilot’s comfort 

flying in close proximity to the structure.  Therefore, it is critical that the pilot is provided with 

adequate tools and resources to successfully complete the flight under minimal stress.  This 

includes training specific to bridge inspection and sufficient practice flying in confined spaces with 

and without GPS assistance.  Additional observations from these field trials highlight the 

importance of understanding both the capabilities and the limitations of the pilot.  Over the course 

of the four days, the pilot grew more comfortable and confident piloting the UAS platform in close 

proximity to the inspection surface.  He verbally expressed this feeling and it was noticeable to the 
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proctor.  The ratio of field time to inspection time decreased each day, from 2.62 on Day 1 to 1.57 

on Day 4, in part due to the pilot’s increasing ability and willingness to fly under challenging 

conditions.  Additionally, the pilot gradually became more familiar with the inspectors’ jargon and 

was able to direct the UAS platform to critical areas with less intervention or direction from the 

inspector.  Even so, this pilot appreciated near constant feedback and dialogue with the inspector 

and expressed frustration while working with less communicative inspectors.  Finally, as UAS 

technology evolves, longer flight times will undoubtedly become possible.  However, for close 

range inspection missions, pilot fatigue may still limit flight times to around 15 minutes.  These 

missions require intense concertation from the pilot and after about 15 to 20 minutes, the pilot 

needed a break to physically and mentally reset.   

 

Third, no published guidance currently exists outlining the minimum system requirements for 

performing visual bridge inspections with the assistance of a UAS.  Instead, each user is forced to 

develop their own set of considerations and criteria for UAS selection.  These considerations may 

include unit size, battery life, navigation capabilities, imaging capabilities and user interface.  

Since none of these factors operate in isolation (e.g., a bigger and better imaging system will 

increase payload weight and reduce flight time), it is important to consider the trade-offs among 

them.  The following discussion addresses the performance of the DJI Mavic Pro under each of 

the five considerations listed.  

(1) Unit Size: The size of the DJI Mavic Pro (14” diagonal without propellers) was satisfactory 

to perform the mission.  The UAS was able to navigate between adjacent girder lines spaced 

at approximately 8 feet on center.    

(2) Battery Life: The battery life of the DJI Mavic Pro was satisfactory to perform the mission.  

Cited as 27 minutes [79], average battery life during the inspections was closer to 18 

minutes.  Additionally, six back-up batteries were on hand to ensure that a fully charged 

battery was always available.  One note, while the battery life of the UAS was sufficient 

and did not cause major disruptions to the schedule, the battery life of the controllers and 

tablets was limited to about four hours and these devices did require charging during each 

full day inspection.  However, battery life was only one of many factors dictating flight 

times during these field trials, and typically it was not the most limiting.  When considering 

flight time, it is important to consider other factors such as wind conditions, UAS stability 



145 
 

and maneuverability around the bridge structure, line-of-sight from the pilot/observer to 

the UAS platform, and pilot stamina.  The short flight times, five minutes on average, 

greatly reduced the efficiency of these inspections.  

(3) Navigation Capabilities: The built-in navigation system in the DJI Mavic Pro was 

minimally acceptable to perform the mission.  Under normal conditions, the Mavic Pro 

relies on GPS and forward and downward facing vision systems to locate itself, hold a 

stable position while hovering, and avoid obstacles [79].  Without GPS, the Mavic uses a 

barometer to maintain vertical position and the forward and downward facing vision 

systems to maintain horizontal position.  Both the forward and downward facing systems 

include two monocular sensors while the downward facing system also includes two 

ultrasonic sensors.  For this in-depth inspection, the obstacle avoidance technology 

included with the forward facing sensors was deactivated to allow for a shorter standoff 

distance, approximately 2 to 3 feet, from the specimens.  This increases the responsibility 

of the pilot to prevent collisions. (Note, one collision did occur during the field trials when 

the propeller struck an overhead bolt, but the pilot was able to safely land the UAS and no 

damage was incurred.)  In the GPS-denied environment underneath the bridge deck, the 

downward facing sensors were generally adequate to maintain a stable position.  At times, 

these sensors were unable to derive enough information from the gravel bed beneath the 

structure and the UAS had to be flown out into the open space to regain control.   

(4) Imaging Capabilities: The imaging capabilities of the DJI Mavic Pro were minimally 

acceptable to perform the mission.  Since the Mavic Pro cannot capture still images and 

videos concurrently, only the video function was used during the field trials.  The built-in 

camera is capable of capturing 3840 x 2160 pixels (4k) video, although this video is only 

streamed live at 1920 x 1080 pixels (1080p) [79].  The camera is mounted on a 3-axis 

gimbal beneath the body of the UAS.  The location of the camera restricted the vertical 

field of view to 120 degrees and made overhead inspection difficult, but not impossible.  

Additionally, the camera could not rotate horizontally, and so the entire UAS platform had 

to be rotated by the pilot to adjust the horizontal field of view.  Since the Mavic Pro includes 

only digital zoom, it was not possible to zoom in more while recording video with 4k 

resolution.  Therefore, a short standoff distance was required to acquire detailed imagery.  

Finally, although the DJI Mavic Pro does not include externally mounted lights to improve 
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illumination, the shutter and ISO speeds can be manually controlled to improve the image 

quality even in poor lighting.  This was generally adequate, although both the pilot and the 

inspector struggled in extreme light conditions (very dark or very bright).   

(5) User Interface: The DJI Mavic Pro’s user interface was satisfactory to perform the mission.  

The pilot used the manufacturer-provided controller and the inspector viewed the live video 

on a 9.7-inch tablet.  Both the pilot and the inspector could control the camera.  The only 

downside was that the controller and the tablet were connected by a USB cord essentially 

tethering the inspector to the pilot.  Additionally, the tablet could not be charged while in 

use since it was plugged into the controller.    

5.3 Desk Inspection  

The videos recorded during the four UAS-assisted field inspections were shared with 19 bridge 

inspectors who then performed inspections from their desks.  Four inspectors reviewed the videos 

from 18 December, six inspectors reviewed the videos from 19 December, 4 inspectors reviewed 

the videos from 20 December, and five inspectors reviewed the videos from 21 December.  The 

videos were assigned to the inspectors randomly.  These inspections followed the same general 

procedures outlined for the hands-on and UAS-assisted visual inspections.  The results from the 

UAS-assisted desk inspections were compared to the results from the hands-on inspections and 

the UAS-assisted field inspections to evaluate the relative quality and practicality of each method.  

5.3.1 Inspection Scenario 

The UAS-assisted desk inspections were completed at the participants’ convenience between April 

2018 and July 2018.  The inspection procedures outlined in Section 3.2 for the hands-on inspection 

were followed as closely as practical for the UAS-assisted desk inspections.  The inspectors were 

provided with the videos from one of the four field inspections, written inspection procedures, 

blank inspection forms, blank vision test worksheets, a confidentiality agreement, dimensioned 

drawings of the specimens, and an exit survey via a shared folder.  Each specimen had at least one 

accompanying video and some specimens had multiple associated videos.  The order of the videos 

followed the order of the inspection forms.  The specimens were inspected from the inspectors’ 

desks using their own hardware (computer and monitor) and software (media player).  The 
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inspectors were allowed, and encouraged, to adjust the playback and display of the video as needed 

to perform a thorough inspection.   

 

A brief conference call was held with each inspector prior to the start of the review to go over the 

inspection procedures and inspection paperwork and answer any questions.  Before reviewing the 

specimen videos, the inspectors were asked to complete the three vision tests using the videos of 

the charts recorded during the field inspections.  All of the inspectors were provided with the same 

vision test videos.  Since the test card used for the near visual acuity test is two-sided, only the side 

with the larger text (paragraph numbers 7 to 11) was visible in the video shared with the desk 

inspectors.   

 

The inspectors were instructed to spend no more than 8 hours performing the inspection to reduce 

the burden on their time and ensure that a reasonable and practical level of effort was committed 

to the inspection.  The inspectors were provided with the same blank inspection forms used during 

the field inspections.  On each form, the inspectors were directed to record the length and location 

of any detected crack(s) or indicate that none were found.  Additionally, the inspectors were asked 

to record the inspection start and end times, rounded to the nearest minute, at the top of each form.  

Dimension drawings of the specimens were provided for their reference in estimating crack length.  

Midway through the inspection, the inspectors were directed to complete the NASA Task Load 

Index worksheets to provide a quantitative assessment of their workload.  After completing the 

inspection, the inspectors were asked to complete a written exit survey to gather information on 

their education, experience, training, etc.  Additionally, the exit survey included questions about 

the hardware and software used during the inspection.  The inspection forms, vision tests forms, 

signed confidentiality agreement, and exit form were returned via e-mail.  All of the documents 

provided to the inspectors are included in Appendix B.  

 

Each set of videos included the same 54 specimens.  Since only two of the four field inspectors 

inspected the riveted plate specimens, the videos of the riveted plate specimens from 20 December 

were shared with the inspectors assigned to review the 18 December videos, and the videos from 

19 December were shared with the inspectors assigned to review the 21 December videos.  Similar 

substitutions were made in a few other instances because of corrupt or missing video files.  The 
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desk inspection included 32 girder specimens with 15 out-of-plane cracks, 14 welded cover plate 

specimens with 5 weld toe cracks, and 8 riveted plate specimens with 9 rivet hole cracks.  

5.3.2 Inspector Demographics 

The videos and inspection information were shared with 33 inspectors; however, only 19 

inspectors (all males) completed the inspection and returned the inspection paperwork.  

Additionally, one of these 19 inspectors did not return the exit survey and so limited information 

on the inspector’s experience and background was available.   

 

Nine of the inspectors worked for a state department of transportation and ten worked for a private 

engineering and inspection firm.  The inspectors worked primarily in eight states, Utah (8), Ohio 

(3), Wyoming (2), Illinois (2), Indiana (1), Nebraska (1), Oregon (1), and Idaho (1), although the 

private consultants inspect bridges around the country.  Seventeen (17) of the 19 inspectors had 

completed both the two-week FWHA/NHI Safety Inspection of In-Service Bridges course and the 

3.5-day FHWA/NHI Fracture Critical Bridge Inspection course prior to their participation in the 

study.  Thirteen (13) of the inspectors were licensed professional engineers and/or licensed 

structural engineers.  The average experience of the participating inspectors was 12 years and the 

inspectors had completed an average of 22 hands-on inspections in the 12 months prior to their 

participation.  The average visual acuity score on the Snellen eye test was 20/25 and the Log 

Contrast Sensitivity scores on the Pelli-Robson vison test ranged from 1.05 to 1.80.  Select 

inspector demographics are compiled in Table 5.9. 

 

Additionally, two inspectors participated in both the UAS-assisted field and desk inspections and 

two inspectors participated in both the hands-on inspection and the UAS-assisted desk inspection.  

Due to the large number of similarly featured specimens and the passage of time, participation in 

the hands-on or UAS-assisted field inspections was not expected to affect performance in the desk 

inspection.  
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Table 5.9 Inspector demographics for UAS-assisted desk inspections 

Inspector 
ID 

Employer 
Age 

(years) 

Inspection 
Experience 

(years) 

Professional 
Licensure 

Number of 
Hands-on 
(Routine) 

Inspections 

Log 
Contrast 

Sensitivity 

18BN-82 Private Consultant 48 18 PE  25 (1000) 1.05 

18RW-82 Private Consultant Not Given Not Given Not Given Not Given 1.5 

18SD-87 Private Consultant 29 5 PE  50 (100) 1.5 

18WJ-84 State DOT 35 5 None 12 (132) 1.8 

19AS-85 State DOT 39 14 None 8 (15) 1.65 

19HG-80 State DOT 65 10 PE  5 (30) 1.65 

19KU-89 State DOT 42 8 None 17 (110) 1.65 

19RT-88 Private Consultant 51 12 PE 15 (300) Not Given 

19SG-83 Private Consultant 57 20 SE, PE 10 (200) 1.65 

19YD-89 Private Consultant 56 34 PE  57 (49) 1.35 

20OD-83 Private Consultant 46 20 PE  80 (60) 1.65 

20RJ-83 Private Consultant 44 21 SE, PE  0 (2) 1.8 

20QH-83 State DOT 43 1 None 6 (130) 1.65 

20YF-86 Private Consultant 30 8 SE, PE  20 (35) 1.65 

21DF-85 State DOT 39 8 PE  25 (50) 1.35 

21JG-81 State DOT 52 10.67 None 22 (500) 1.65 

21EH-80 State DOT 65 7 SE 10 (180) 1.5 

21BN-85 State DOT 36 6 PE  8 (25) 1.65 

21ET-84 Private Consultant 29 4 PE  9 (200) 1.35 

 

5.3.3 Inspection Results 

The information provided by the inspectors on each inspection form was interpreted and 

categorized as outlined in Section 3.4.  Inspector evaluation considered 29 visually detectable 

cracks with lengths between 1/2 and 5-7/32 inches in 54 painted specimens.  The results from the 

UAS-assisted field inspections were compiled and evaluated similar to the hands-on inspection 

results.  Inspector performance was evaluated for the entire specimen inventory and for each type 

of specimen (girder, welded cover plate, riveted plate) separately. 

5.3.3.1 Crack Detection and False Calls 

Nineteen (19) inspectors completed a UAS-assisted deck inspection of the painted specimens.  The 

most successful inspector detected 23 of the 29 possible cracks (79%). The least successful 

inspector detected 6 of the 29 possible cracks (21%).  On average, the inspectors detected 17 cracks 
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(57%), meaning 12 cracks were not located.  The standard deviation of detection rate was 16% 

indicating that the majority of the inspectors detected between 12 and 21 of the cracks.  The number 

of false calls made during the inspections ranged from 9 to 214. The average number of false calls 

was 70 with a standard deviation of 57.  A summary of the results is provided in Table 5.10 and 

the individual result for each inspector is shown in Table 5.11. 

Table 5.10 Summary of results from UAS-assisted desk inspections 

Specimen Type/Crack Type 

Detection Rate Number of False Calls 

Mean 
(%) 

Standard 
Deviation (%) 

Minimum/ 
Maximum 

(%) 
Mean 

Standard 
Deviation 

Minimum/ 
Maximum 

All Specimens 57 16 21/79 70 57 9/214 

Girder/Out-of-Plane 61 14 33/80 52 39 8/154 

Welded Cover Plate/Weld Toe  24 26 0/80 14 13 0/43 

Riveted Plate/Rivet Hole  70 24 11/100 4 7 0/26 

 

Table 5.11 UAS-assisted desk inspection results by inspector 

Inspector 
ID 

Hits 
Possible 
Cracks 

Detection 
Rate 

False 
Calls 

Hit/Call Ratio 

18BN-82 13 29 45% 55 19% 

18RW-82 14 29 48% 79 15% 

18SD-87 6 29 21% 9 40% 

18WJ-84 18 29 62% 92 16% 

19AS-85 20 29 69% 30 40% 

19HG-80 18 29 62% 87 17% 

19KU-89 21 29 72% 145 13% 

19RT-88 9 29 31% 11 45% 

19SG-83 15 29 52% 65 19% 

19YD-89 19 29 66% 35 35% 

20OD-83 17 29 59% 39 30% 

20RJ-83 23 29 79% 51 31% 

20QH-83 14 29 48% 42 25% 

20YF-86 22 29 76% 194 10% 

21DF-85 15 29 52% 83 15% 

21JG-81 13 29 45% 39 25% 

21EH-80 20 29 69% 214 9% 

21BN-85 16 29 55% 21 43% 

21ET-84 23 29 79% 42 35% 
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The number of false positives were compared to the number of hits for each inspection and the 

hit/call ratio was calculated.  The highest, or best, hit/call ratio was 45% and the lowest, or worst, 

hit/call ratio was 9%.  The average hit/call ratio was 25%, meaning that one hit was recorded for 

every 4 calls.  As illustrated in Figure 5.14 where the inspectors are plotted in order of increasing 

number of hits, the number of false calls (negative y-axis) is positively correlated with the number 

of hits (positive y-axis).  In other words, inspectors that detected more cracks also made false calls.   

 

 

Figure 5.14 Hits and false calls by inspector during the UAS-assisted desk inspections 

 

The detection rates and number of false calls by specimen and crack type were also examined.  

The course included 15 out-of-plane cracks in the girder specimens, 5 weld toe cracks in the 

welded cover plate specimens, and 9 rivet hole cracks in the riveted plate specimens.  The detection 

rates by crack type are shown for each inspector in Figure 5.15.  As shown in Table 5.10, the weld 

toe cracks had the lowest average detection rate, 24%, while the average detection rates on the out-

of-plane and rivet hole cracks were 61% and 70% , respectively. As discussed for the field 

inspections, the mounting location of the camera made it difficult to get a clear image of the weld 

because the plates were positioned overhead.  Thirteen (13) of the 19 inspectors recorded their 
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highest detection rate on the rivet hole cracks and four inspectors recorded their highest detection 

rate on the out-of-plane cracks.  One inspector recorded the same maximum detection rate on the 

rivet hole cracks and the out-of-plane cracks and one inspector recorded the same maximum 

detection rate on the out-of-plane cracks and the weld toe cracks.  Seventeen (17) of the 19 

inspectors recorded their lowest detection rate on the weld toe cracks. 
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Figure 5.15 Inspector detection rates by crack type
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Since four different sets of videos were used, inspection performance by video set was 

investigated.  A summary of performance by video date is shown in Table 5.12.  The highest 

average detection rate and number of false calls was recorded among the inspectors that reviewed 

the videos from 20 December while the lowest average detection rate and number of false calls 

was recorded among the inspectors that reviewed the videos from 18 December.  Performance on 

any single day was not significantly different from performance on the other three days.  

Table 5.12 Average UAS-assisted desk inspection performance by video set 

Video Date (no. of 
inspectors that 

reviewed the videos) 

Detection Rate Number of False Calls 

Mean 
(%) 

Standard 
Deviation (%) 

Minimum/ 
Maximum 

(%) 
Mean 

Standard 
Deviation 

Minimum/ 
Maximum 

18 December  
(4 inspectors) 

44 17 21/62 59 37 9/92 

19 December  
(6 inspectors) 

59 15 31/72 62 49 11/145 

20 December  
(4 inspectors) 

66 15 48/79 82 75 39/194 

21 December  
(5 inspectors) 

60 14 45/79 80 78 21/214 

 

5.3.3.2 Crack Sizing 

Similar to the hands-on inspections, the inspectors participating in the UAS-assisted inspections 

were asked to record both the length and location of the cracks on their inspection forms.  

Inspectors were provided with dimensioned drawings of the specimens to provide a reference 

against which to estimate crack length.  Eleven (11) of the 19 field inspectors recorded crack length 

estimates on their inspection forms.  Two of the inspectors that did not estimate crack length 

explained a physical scale mounted on the inspection surface was needed to accurately estimate 

size, while the remaining six inspectors did not provide an explanation.  

 

Figure 5.16 shows the crack length data for the out-of-plane cracks in the girder specimens.  The 

actual length of the crack is shown on the horizontal axis and the estimated length of the crack 

recorded by the inspector is shown on the vertical axis.  The diagonal 1:1 reference line represents 

exact agreement between the actual length and the estimate length.  For the majority of the cracks, 

the average of the estimated lengths plots below the 1:1 line indicating that the inspectors tended 

to underestimate crack length.  This trend was also observed in the results from the hands-on and 
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UAS-assisted desk inspections.  The average measurement error was -1.12 inches and the average 

absolute error was 1.33 inches.  The average absolute error increased with crack length and the 

percent absolute error remained constant with crack length.  Table 5.13 shows the error analysis 

for the reported length measurement for all the cracks in the girder specimens.   

 

Figure 5.16 Estimated crack length versus actual crack length for out-of-plane cracks 

 

Figure 5.17 presents the crack length data for the welded cover plate specimens.  Crack sizing 

information is limited for these cracks due to the limited number of cracks and low detection rates.  

The average estimated crack length was larger than the actual crack length for two of the cracks 

and smaller than the actual crack length for two of the cracks.  The average measurement error 

was -0.36 inch and the average absolute error was 1.28 inches.  Table 5.13 shows the error analysis 

for the reported length measurement for all the cracks in the welded cover plate specimens.   
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Figure 5.17 Estimated crack length versus actual crack length for weld toe cracks  

 

Figure 5.18 presents the crack length data for the rivet holes cracks in the riveted plate specimens.  

Similar to the girder specimens and in contrast to the crack sizing results from the hands-on 

inspections, the average of the estimated lengths of the rivet hole cracks is generally below the 1:1 

line indicating that the inspectors had a tendency to underestimate crack length.  The average 

measurement error was -0.04 inch and the average absolute error was 0.31 inch.  The average 

absolute error increased with crack length and the percent absolute error decreased with crack 

length.  Table 5.13 shows the error analysis for the reported length measurement for all the cracks 

in the riveted plate specimens.   
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Figure 5.18 Estimated crack length versus actual crack length for rivet hole cracks  

 

Table 5.13 Error analysis for crack length estimates from UAS-assisted desk inspections 

Statistic 
 

Out-of-Plane Cracks  
(15 cracks) 

Weld Toe Cracks  
(5 cracks) 

Rivet Hole Cracks  
(9 cracks) 

Error  
(actual length  

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Error  
(actual length 

– meas. length) 

Absolute 
Error 

Min./Max. (in.) -3.22/2.31 - -3.19/3 - -0.75/0.75  

Average (in.) -1.12 1.33 -0.36 1.28 -0.04 0.31 

St. Dev. (in.) 1.06 0.78 1.69 1.13 0.38 0.21 

Average % -35 45 -3 37 -4 35 

 

5.3.3.3 Inspection Duration 

Both the inspection duration and the length of the inspection videos were recorded during these 

inspections.  The average time to complete the inspection was 245 minutes and the standard 

deviation was 88 minutes.  The fastest inspector completed the inspection in just over two hours 

(127 minutes) and the longest inspection lasted just over seven hours (427 minutes).  Since 

inspection time was least partly related to the length of the provided inspection videos, a ratio 

between inspection duration and video length was also calculated for each inspector.  As the ratio 
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increases from one, it indicates that the that the inspector was pausing, slowing down, or re-

watching the videos more frequently.  This ratio varied between 1.28 and 5.32, with an average of 

2.46.  Considering each set of inspection videos separately, the average time ratio increased as the 

length of the inspection videos decreased indicating that longer inspection videos required less 

additional time to complete the desk inspection.  Therefore, this ratio does not provide an exact 

comparison between inspectors that reviewed different videos; but can be used to compare 

inspectors that reviewed the same set of videos.  A summary of the field and inspection times are 

presented in Table 5.14. 

Table 5.14 UAS-assisted desk inspection durations by inspector 

Inspector ID 
Inspection Duration 

(minutes) 
Video Length 

(minutes) 
Inspection Duration/ 

Video Length 
18BN-82 218 

76 

2.86 

18RW-82 140 1.84 

18SD-87 127 1.67 

18WJ-84 405 5.32 

19AS-85 427 

103 

4.14 

19HG-80 249 2.41 

19KU-89 347 3.36 

19RT-88 155 1.50 

19SG-83 249 2.41 

19YD-89 179 1.73 

20OD-83 131 

70 

1.87 

20RJ-83 170 2.43 

20QH-83 312 4.46 

20YF-86 258 3.69 

21DF-85 261 

182 

1.44 

21JG-81 241 1.33 

21EH-80 284 1.56 

21BN-85 263 1.45 

21ET-84 233 1.28 

 

5.3.3.4 NASA Task Load Index 

After completing their review of the girder specimens, the inspectors were directed to complete 

the NASA-TLX worksheets included with their inspection forms.  Eighteen (18) of the 19 

inspectors returned their completed worksheets.  The workload scores and governing factors are 

shown in Table 5.15. The workload scores ranged from 27 to 82 with an average of 61.  Similar to 
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the workload evaluations from the field inspectors, the governing source of workload was 

determined to be mental demand or frustration for 17 of the 18 desk inspectors.  While the 

relationship between performance and workload was investigated in this research, it is important 

to remember than workload is not just a measure of effort, it represents the cost (e.g., fatigue, 

stress, boredom, injury, etc.) incurred on the subject to meet the mission requirements.  Therefore, 

when selecting between two inspectors with equal performance, the inspector with the lower 

workload score may be better suited for the task.  For example, inspectors 19AS-85 and 18SD-87 

both achieved a hit/call ratio of 40%.  However, their workload ratings were 64 and 42, 

respectively. This means that even though the inspectors achieved the same level of performance, 

inspector 19AS-85 did so at a higher personal cost.     

Table 5.15 NASA-TLX workload scores for the UAS-assisted desk inspectors 

Inspector 
ID 

Workload 
Score 

Governing 
Factor 

Inspector 
ID 

Workload 
Score 

Governing 
Factor 

18BN-82 72 Frustration 19YD-89 47 Mental Demand 

18RW-82 82 Frustration 20OD-83 58 Mental Demand 

18SD-87 42 Mental Demand 20RJ-83 59 Frustration 

18WJ-84 58 Mental Demand 20QH-83 67 Mental Demand 

19AS-85 64 Effort 21DF-85 54 Mental Demand 

19HG-80 65 Mental Demand 21JG-81 66 Mental Demand 

19KU-89 63 Mental Demand 21EH-80 27 Frustration 

19RT-88 69 Mental Demand 21BN-85 78 Frustration 

19SG-83 68 Mental Demand 21ET-84 64 Mental Demand 

 

5.3.4 Crack Length Analysis 

To investigate the relationship between detection and crack length, an abbreviated crack length 

analysis was performed on the results from the UAS-assisted desk inspections.  Due to the reduced 

number of cracks and inspectors, probability of detection curves were not developed.  However, a 

general understanding of the relationship between crack length and detection can be obtained by 

looking at the detection rate versus crack length bar graph.  

 

Each crack had the potential to be detected 19 times, once by each participant.  Two cracks were 

detected by all 19 inspectors, while one crack was not detected by any participants.  The two cracks 

that were detected by all the inspectors were over 3 inches in length and located at the bottom of a 
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transverse stiffener.  The undetected crack was 3-1/4 inches long and located along the weld toe 

of a tapered cover plate specimen.  This crack was also not detected during the hands-on 

inspections.  The smallest crack, measuring 1/2 inch, was detected by 7 of the 19 inspectors.  This 

crack was located at a rivet hole.  Figure 5.19 shows each crack, sorted by length, and the number 

of times it was correctly identified by an inspector.  Visually, it appears that there was little 

correlation between crack size and number of detections.   

 

Figure 5.19 Number of crack detections by crack 

 

The cracks were grouped into 1-inch length increments and the detection rate for each bin was 

computed.  The detection rate was determined by summing the number of hits for each crack in 

the increment and dividing by the total number of detection attempts made.  Figure 5.20 shows the 
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detection rates for each length increment.  The bar graph does not show a clear relationship 

between crack detection and crack length.  For instance, cracks between 1 inch and 2 inches in 

length were detected more frequently, 71%, than cracks longer than 4 inches in length, 51%.  The 

shortest crack length range, less than 1 inch, had the lowest detection rate, 42%.  The number of 

cracks in each size range are shown on the right hand vertical axis.  

 

Figure 5.20 Detection rate by crack length  

 

5.3.5 Human and Environmental Factors 

As was done with the results from the hands-on inspections, a series of complementary statistical 

models was applied to the inspection results from the UAS-assisted desk inspections in order to 

identify key factors that influenced inspection performance.  Environmental conditions, specimen 

characteristics, and inspector attributes were considered in the statistical models.  Performance 

was evaluated based on detection rate and the number of false calls.  Descriptive statistics for the 

independent and dependent variables are shown in Table 5.16.    
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Table 5.16 Descriptive statistics for dependent and independent variables 

Variable Description 
Min./Max. 

Values 
Mean of 

Observations 

Standard 
Deviation of 
Observations 

Performance Measures (dependent variables) 

Detection rate (all specimens) 0.21/0.79 0.57 0.16 

False calls (all specimens) 9/214 70 57 

Specimen Characteristics (independent variables) 

Crack length 0.5/5.22 2.17 1.33 

Out-of-plane crack (1 if the crack is an out-of-plane crack, 0 
otherwise) 

- 0.517 - 

Weld toe crack (1 if crack is a weld toe crack, 0 otherwise) - 0.172 - 

Rivet hole crack (1 if crack is at a rivet hole, 0 otherwise) - 0.311 - 

Environmental Conditions (independent variables) 

VLC media player (1 if the inspector used VLC media player to 
review the videos, 0 otherwise) 

- 0.778 - 

Monitor size (diagonal measured in inches) 12/60 22.9 12.9 

Monitor resolution (thousands of pixels) 1049/2304 1629 456 

December 18 (1 if the inspector reviewed the inspection videos 
from 18 December, 0 otherwise) 

- 0.211 - 

December 19 (1 if the inspector reviewed the inspection videos 
from 19 December, 0 otherwise) 

- 0.316 - 

December 20 (1 if the inspector reviewed the inspection videos 
from 20 December, 0 otherwise) 

- 0.211 - 

December 21 (1 if the inspector reviewed the inspection videos 
from 21 December, 0 otherwise) 

- 0.263 - 

Inspector Attributes (independent variables) 

Inspection experience (yrs.) 1/34 11.8 8.15 

Age 29/65 44.8 11.3 

Inspection duration (min.) 127/427 245 85.9 

Normal visual acuity (Snellen eye exam) 3/11 6.63 2.29 

Near visual acuity (Jaeger eye exam) 7/11 8.21 1.51 

Log Contrast Sensitivity (Pelli-Robson eye exam) 1.05/1.8 1.56 0.19 

No. of routine inspections performed in the last 12 months (total) 2/1000 173 240 

No. of routine inspections performed in last 12 months (steel) 0/250 55.4 72.1 

No. of hands-on inspections performed in last 12 months 0/80 21.1 20.9 

No. of training courses attended (out of 8 listed on exit survey) 2/6 3.78 1.22 

NASA-TLX workload score 27/82 61.2 13 

Professional licensure (1 if licensed PE or SE, 0 otherwise) - 0.684 - 

Employer (1 if employed by a private consultant, 0 otherwise) - 0.526 - 

Previous experience with UAS-assisted bridge inspection (1 if 
the inspector had previous experience, 0 otherwise) 

- 0.333 - 

Introduction to Element Level Bridge Inspection (1 if inspector 
had taken the course, 0 otherwise) 

- 0.667 - 
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Initially, a simple univariate analysis was used to identify statistically significant correlations 

between inspection performance and the independent variables and the independent two-samples 

t-test was used to determine which independent variables were significant in discriminating 

between higher and lower performing inspectors.  Then, a binary logit model was used to 

determine which factors, beyond crack length, affected the likelihood of detection for an individual 

crack.  Due to the small sample size, the multivariate regression models were not developed to 

predict detection rate or false calls.  Unless otherwise noted, statistical significance was determined 

using a two-tailed test with a 95% confidence level and goodness of fit was evaluated using the 

adjusted R-squared (R2) or rho-squared (ρ2) statistic.  

5.3.5.1 Univariate Regression and Two Samples t-Test 

The univariate linear regression analysis and independent two-samples t-test were used to 

investigate the influence of the individual and environmental factors on the performance measures.  

The form and function of these models are discussed in Section 3.7.1.  Table 5.17 shows the p-

values for all the combinations of performance measures and independent variables.  Note that 

none of the p-values are less than 5% which was the threshold used to indicate significance in this 

study.  Since not all of the inspectors provided the requested information on the exit survey, the 

number of observations used for each analysis is shown in the rightmost column.  

Table 5.17 p-values for the univariate linear regression analyses 

Independent Variables 
Performance Measures 

Number of 
Observations Detection 

Rate 
False Calls 

Inspection Duration  0.089  0.183  19 

Age  0.913 0.500 18 

Inspection Experience  0.606 0.364 18 

No. of Training Courses 0.771 0.212 18 

No. of Routine Inspections (Steel) 0.131 (0.081) 0.666 (0.559) 18 (15) 

No. of Hands-On Inspections 0.263 0.376 18 

Normal Visual Acuity 0.280 0.447 19 

Near Visual Acuity 0.364 0.738 19 

Log Contrast Sensitivity 0.322 0.722 18 

NASA-TLX Workload Score 0.620 0.065 18 

Monitor Size 0.543 0.526 11 
Monitor Resolution 0.541 0.637 14 
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As shown in Figure 5.21, detection rate increased with increasing false positives.  In other words, 

inspectors that made more calls also found more cracks.  This trend was not observed during the 

hands-on inspections.   

 

Figure 5.21 Detection rate plotted against the number of false calls 

 

As shown in Figure 5.22, detection rate decreased as the number of routine steel bridge inspections 

performed in the previous 12 months increased.  The t-test revealed that inspectors that had 

performed less than 25 routine inspections of steel bridges in the previous 12 months (M = 0.690, 

SD = 0.090) detected significantly more cracks than inspectors who had performed at least 25 

routine inspections of steel bridges in the previous 12 months (M = 0.548, SD = 0.148), t(12) = 

2.31, p = 0.040.  A similar trend was observed between detection rate and the number of hands-on 

inspections performed in the previous 12 months, although this relationship was not statistically 

significant.  The t-test also indicated that inspectors that spent less than 50% of the average work 

week performing inspections (M = 0.659, SD = 0.121) detected significantly more cracks than 

inspectors that spent at least 50% of the average work week performing inspections (M = 0.514, 

SD = 0.165), t(15) = 2.16, p = 0.047.  The FHWA found a similar relationship between detection 

of weld crack indications and the number of annual bridge inspections and supposed that inspectors 

that inspect more bridges per years may be less likely to perform a thorough inspection or less 

familiar with in-depth inspection procedures [5].   
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Figure 5.22 Detection rate plotted against the number of routine steel bridge inspections 
performed in the previous 12 months 

 

Finally, the two sample t-test indicated that previous experience with UAS-assisted bridge 

inspections, NASA-TLX, and normal visual acuity could be considered significant in 

discriminating between inspectors that found more or less cracks.  The six inspectors with previous 

experience with UAS-assisted bridge inspections (M = 0.695, SD = 0.080) detected significantly 

more cracks than those that had no previous experience with UAS-assisted bridge inspections (M 

= 0.520, SD = 0.161), t(15) = 3.08, p = 0.008.  Inspectors with a NASA-TLX workload score below 

65 (M = 0.627, SD = 0.162) detected significantly more cracks than inspectors with a NASA-TLX 

workload score above 65 (M = 0.463, SD = 0.077), t(15) = 2.88, p = 0.011.  Inspectors that were 

able to read the row of letters equivalent to 20/20 vision in the Snellen vision test video (M = 0.667, 

SD = 0.086) detected significantly more cracks than inspectors that were not able to read this line 

of letters in the Snellen vision test video (M = 0.531, SD = 0.167), t(16) = 2.34, p = 0.033.  

 

Similar to the results from the hands-on inspections, no single independent variable showed a 

statistically significant correlation with the number of false positives.  The t-test indicated that the 

only variables that could be considered significant in discriminating between inspectors that made 

more and less false calls were inspection duration and completion of the Introduction to Element 
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Level Bridge Inspection training course.  Inspectors who spent more than 4 hours completing the 

inspection (M = 92, SD = 65.7) made significantly more false calls than inspectors who spent less 

than 4 hours (M = 40.1, SD = 23), t(13) = 2.42, p = 0.031.  Although this trend was not observed 

in the hand-on inspections, it has been documented in previous visual inspection studies [21], [26].  

Inspectors who had completed the Introduction to Element Level Bridge Inspection training course 

(M = 88.1, SD = 64.5) made significantly more false calls as compared to the six inspectors that 

had not completed this training course (M = 32.8, SD = 15.3), t(13) = 2.81, p = 0.015.  A similar 

trend was observed in the hands-on inspections as discussed in Section 3.7.2. 

5.3.5.2 Binary Logit Model 

A binary logit model was used to investigate which factors, beyond crack length, influenced 

probability of detection during the UAS-assisted desk inspections.  Instead of predicting the 

performance of an inspector, this analysis estimates the likelihood that an individual crack will be 

detected.  Since one inspector did not provide adequate background information, this model is 

based on 522 observations (18 inspectors x 29 cracks).  Because two discrete outcomes, hit or miss, 

are possible for each observation, a binary logit model is appropriate.  The form and function of 

this model is discussed in Section 3.7.3.  The standard binary logit model was modified to include 

an individual specific disturbance term to account for the unobserved effects caused by repeated 

observations from the same observer.  Random parameters were also considered in this model, but 

were found to be insignificant based on the standard deviations of the estimated parameters.  

 

Many combinations of factors were analyzed to determine which variables significantly influenced 

the likelihood of detection.  For this population of inspectors, the probability of detection for each 

crack is best described by a function considering crack length, crack type, the number of false calls 

made by the inspector, and whether or not the inspector had previous UAS-assisted bridge 

inspection experience.  All variables were considered fixed across the population, while the 

constant term was allowed to vary to account for random effects.  The results from this model are 

shown in Table 5.18.   
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Table 5.18 Results from the binary logit model estimating probability of detection  

Variable 
Estimated 
Parameter 
(St. Dev.) 

Standard 
Error Estimate 

(St. Dev.) 

t-statistic 
(St. Dev.) 

P(>|t|) 
(St. Dev.) 

Constant -0.570 (0.539) 0.191 (0.115) -2.98 (4.67) 0.003 (0.000) 

Crack Length (in.) 0.828 0.116 7.11 0.000 

Out-of-Plane Crack (1 if out-of-plane 
crack, 0 otherwise) 

-1.50 0.274 -5.49 0.000 

Weld Toe Crack (1 if weld toe crack, 
0 otherwise) 

-3.78 0.377 -10.02 0.000 

Number of False Calls 0.004 0.002 2.48 0.013 

Previous UAS-assisted Bridge 
Inspection Experience (1 if the 
inspectors had previous experience, 0 
otherwise) 

0.587 0.198 2.97 0.003 

Number of Observations 522 
Log-likelihood of constant -369 
Log-likelihood at convergence -269 
Adjusted ρ2 0.256 

 

As was done in Section 3.7.3, the marginal effects, indicating how each parameter affects the 

probability of detection, were derived.  A larger marginal effect indicates a greater influence on 

the likelihood of detecting the crack while a smaller marginal effect indicates a lesser influence.  

The marginal effects for the model parameters are shown in Table 5.19. 

Table 5.19 Marginal effects for the parameters in the binary logit model 

Variable Description 
Avg. Marginal 

Effect (Std. Dev.) 
Crack Length (inches) 0.163 (0.044) 

Out-of-Plane Crack (1 if out-of-plane crack, 0 otherwise) -0.262 (0.095) 

Weld Toe Crack (1 if weld toe crack, 0 otherwise) -0.548 (0.166) 

Number of False Calls 8.84E-4 (2.37E-4) 

Previous UAS-assisted Bridge Inspection Experience (1 if the inspector 
had previous experience, 0 otherwise) 

0.116 (0.029) 

 

Again, the binary logit model gives insight into how crack characteristics, human factors, and 

environmental conditions interact to affect the likelihood that a specific crack will be detected.  In 

contrast to the binary logit model from the hands-on inspections, the influence of crack length was 

fixed across the inspector population in this the model.  On average, a one-inch increase in crack 

length resulted in a 16% increase in probability of detection.  Notably, this is approximately the 

same as the crack length marginal effect calculated from the hands-on inspections in Section 3.7.3. 
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Supporting the previous discussion about the challenges of inspecting overhead with the UAS 

platform used in this study, the binary logit model suggests that the weld toe cracks in the welded 

cover plates were less likely to be detected as compared to the out-of-plane cracks in the girder 

specimens or the rivet hole cracks in the riveted plate specimens.  Compared to the rivet hole 

cracks, this model estimates that out-of-plane and weld toe cracks were 26% and 55% less likely 

to be detected, respectively.   

 

As the univariate linear regression analysis showed, inspectors that made more false calls also 

detected more cracks during the UAS-assisted desk inspections.  The binary logit model supports 

this and predicts that an additional false call increases the likelihood of detecting a crack by 0.08%, 

regardless of crack length.    

 

As was found in the two samples t-test, the binary logit model revealed that individual cracks were 

more likely to be found by inspectors with previous experience with UAS-assisted bridge 

inspection than by inspectors without previous experience.  On average, a crack was 12% more 

likely to be detected by an inspector with previous UAS-assisted bridge inspection experience.  

 

For this model, the restricted log-likelihood of constants only (LL(βRC)) is -368, the unrestricted 

log-likelihood of the proposed model (LL(βU)) is -269, the number of degrees of freedom (ν) is 5, 

and the Χ2 statistic is 199.  This exceeds the critical value of 25.7 and a confidence level of over 

99.99% is achieved.  In other words, the probability that the unrestricted model provides a superior 

fit to the restricted model by chance alone is very small (less than 0.01%).   

5.3.5.3 Computer System 

Due to the nature of the desk inspections, it is important to investigate the effect that the computer 

system (hardware and software) may have on the results.  This is roughly equivalent to considering 

the influence of visual acuity or a magnifying glass during a hands-on inspection.  The inspectors 

were permitted to use any computer system available to them to perform the desk inspection.  

Inspectors were made aware of VLC media player, which is freely available for download and 

allows the user to adjust the picture (zoom, contrast, brightness, etc.) while viewing the video [80], 

however they were not required to use this software.  The exit survey included a series of questions 
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to collect information about the selected system.  No significant correlation was found between 

inspection performance and any single system parameter, however this is likely due to the large 

variety in systems and system settings and the small sample size.  Additionally, many of the 

inspectors did not respond to all the questions on the exit survey, so only partial system information 

was available.  

 

The exit survey included a number of questions regarding the inspector’s computer hardware, 

including screen and video card make and model, monitor size, and display settings (resolution, 

color depth, brightness, scaling, etc.).  Twelve (12) of the 19 inspectors provided the size of their 

primary and/or secondary display.  The display diagonals ranged from a 12-inch laptop screen to 

a 60-inch conference room projection screen.  Although there was no clear relationship between 

display size and inspection performance, the inspector with the smallest reported screen size made 

the fewest number of calls (most missed cracks and least number of false calls).  Fourteen (14) of 

the 19 inspectors provided the resolution of their primary and/or secondary display.  The specified 

display resolutions varied from 1366 x 768 pixels (1049k) to 1920 x 1200 pixels (2304k).  Since 

none of the inspectors used a monitor with 4k resolution, the videos were down sampled to match 

the resolution of the display in all cases.  Although not statistically significant, inspectors using a 

display with a resolution greater that 1440k detected more cracks and made fewer false calls than 

inspectors using a display with a resolution of 1440k or less.   

 

Fourteen (14) of the 19 inspectors used VLC media player, two of the inspectors used Windows 

Media Player, and three inspectors did not specify which media player they used to review the 

videos.  On the exit survey, a number of common playback features were listed and inspectors 

were asked to indicate which of these features they used during their review of the videos and how 

useful these features were from 1 (not very useful) to 5 (very useful).  Table 5.20 shows the number 

of inspectors that used each playback feature and its average usefulness rating for the VLC media 

player and other media player.  All of the inspectors that used the VLC media player used the 

pause, rewind, zoom, and brightness adjustment features.  These feature all had average usefulness 

ratings above 4.  These features could be used to improve the visibility of cracks as shown in 

Figure 5.23.  Among the inspectors that used a media player other than VLC, the ability to zoom, 

rewind, and capture still images were rated as the most useful features.    
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Table 5.20 Usefulness ratings for video playback features 

Feature 

VLC media player Other media player 

Usefulness 
Rating 

Frequency of 
Use (out of 14) 

Usefulness 
Rating 

Frequency of 
Use (out of 4) 

Pause 4.57 14 5 3 

Rewind 4.5 14 5 2 

Fast-forward 3.92 12 3.33 3 

Decrease playback speed 3.56 9 1 1 

Increase playback speed 2.5 8 3 2 

Zoom 4.29 14 3 1 

Brightness Adjustment 4.07 14 - 0 

Contrast Adjustment 4 13 - 0 

Color Adjustment 3.77 13 - 0 

Saturation Adjustment 3.5 12 - 0 

Still Image 3.43 7 5 1 

 

   
(a)                                                                                    (b) 

   
(c)                                                                                    (d) 

Figure 5.23 Still image from a UAS video (a) uncorrected, (b) zoomed in on the crack-prone 
region at the bottom of the transverse stiffener, (c) with brightness adjusted, and (d) zoomed in 

on the crack-prone region with brightness adjusted 
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On the exit survey, all of the inspectors indicated that they were either satisfied or very satisfied 

with the quality of the playback, although a few inspectors specified additional technical 

capabilities that they wished they would have had available during their desk inspection.  Of the 

inspectors that used VLC media player, two inspectors stated that they would have liked easier 

zoom controls, one inspector mentioned smoother fast forward and rewind functions, and one 

suggested the ability to bookmark times and record comments within the video.  Among the 

inspectors that did not use VLC media player, one inspector stated that they would have liked to 

have the ability to zoom and adjust the brightness of the video while it was playing.  Not specific 

to the media player, one inspector commented that touchscreen capability may have made the 

process easier and another mentioned that it would have been helpful to see the flight information 

(elevation, heading, speed, etc.) from the UAS.   

5.3.5.4 Inspector Assessment 

For the majority of the participants in this study, this was their first experience using UAS as a 

tool during visual inspection.  And since these inspectors would be directly affected by the 

integration of UAS into traditional inspection practices, it is critical to gage their interest in and 

support of the new technology.   

 

The exit survey included five questions to elicit feedback on the inspection method and scenario 

and gather recommendations for improving the quality of UAS-assisted desk inspections.  Results 

from the exit survey are presented below in a question-by-question format.  The questions and 

answer choices are repeated exactly as they appeared on the exit survey.  A brief discussion of the 

results follows each question.   

 

Q1.  How did your effort level during this task compare to your effort level during a typical 

bridge inspection? (circle one) 

More effort  Similar effort   Less effort 

 

Q2.  How did your focus level during this task compare to your focus level during a typical 

bridge inspection? (circle one) 

More focused  Similar focus   Less focused 
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Question 1 and Question 2 were included to obtain a sense of the relative effort and focus levels 

required for a UAS-assisted bridge inspection as compared to a typical bridge inspection.  Note 

that the questions were not specific about whether a typical bridge inspection referred to a routine 

inspection or a hand-on inspection, so there may have been some differences in interpretation 

among the respondents.  Eighteen (18) of the 19 inspectors provided a response to these two 

questions, although one inspector circled both “Similar effort” and “Less effort” for Question 1.  

The responses to both questions are summarized in Figure 5.24.  The responses for effort level 

were nearly uniform across the levels with six inspectors indicating that the desk inspection 

required less effort than a typical bridge inspection, five inspectors responding that it required 

similar effort, and seven inspectors stating that it required more effort.  In contrast, the majority of 

the inspectors stated that they had the same focus level during the desk inspection as during a 

typical bridge inspection.  Two inspectors responded that they were less focused during the desk 

inspection and three inspectors indicated that they were more focused.  No correlation was found 

between inspection performance and the responses to these two survey questions.  

   

Figure 5.24 Effort and focus level during UAS-assisted desk inspection compared to traditional 
bridge inspection   
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Q3.  Do you thinking this inspection provided ____________________ quality as compared 

to a UAS inspection performed live in the field? (circle one to fill in the blank) 

Worse  Better  Similar 

Please briefly explain the reason(s) for this selection. 

 

Question 3 was intended to gather information on the inspectors’ assessment of the relative quality 

of the UAS-assisted desk inspection as compared to a UAS-assisted field inspection.  Since many 

of the inspectors had not previously participated in a UAS-assisted field inspection, these 

responses were based primarily on speculation, not first-hand experience.  Sixteen (16) of the 19 

inspectors responded to this question, with one inspector specifically abstaining because he had 

not witnessed a UAS-assisted field inspection.  The responses to this question are summarized in 

Figure 5.25.  The responses were relatively evenly divided among the three choices with five 

inspectors each indicating that they thought the desk inspection provided worse or similar quality 

to a field inspection and six inspectors stating that they thought the desk inspection provided better 

quality.  One of the two inspectors that participated in both the UAS-assisted desk and field 

inspections responded that the desk inspection provided better quality than the field inspection 

while the other inspector felt that the desk inspection provided worse quality.  The inspectors that 

believed the desk inspection provided better quality than a field inspection cited the following 

advantages:  

 Ability to rewind, fast forward, adjust the display, etc.  

 Less time pressure  

 Comfortable inspection environment (not subject to glare, wind, extreme temperature, etc.) 

 Access to larger screens to display the videos 

The inspectors that believed the desk inspection provided worse quality than a field inspection 

cited the following drawbacks: 

 No control over what imagery is captured or how it is captured 

 Lack of perspective, difficult to orient the details and defects 

 Tedious to review all the videos, hard to stay focused and engaged  
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Q4. Do you thinking this inspection provided ____________________ quality as compared 

to an arm’s length inspection? (circle one to fill in the blank) 

Worse  Better  Similar 

Please briefly explain the reason(s) for this selection. 

 

Similar to Question 3, Question 4 was intended to gather information on the inspectors’ assessment 

of the relative quality of the UAS-assisted desk inspection as compared to a hands-on inspection.  

One note, under current federal law, a UAS-assisted inspection cannot legally replace a hands-on 

inspection, but the inspectors’ impressions still provide insight into the relative strengths and 

weaknesses of the two inspection methods.  The responses to this question are summarized in 

Figure 5.25.  Eighteen (18) of the 19 inspectors responded to this survey question with the majority 

indicating that the quality of the UAS-assisted desk inspection was worse than a hands-on 

inspection.  Two inspectors indicated that the quality of the UAS-assisted desk inspection was 

similar to the quality of a hands-on inspection and one inspector responded that the quality of the 

desk inspection was better than a hands-on inspection.  One the two inspectors that participated in 

both the UAS-assisted desk and hands-on inspections responded that the desk inspection provided 

worse quality while the other inspector felt that the desk inspection provided similar quality.  The 

inspectors that believed the desk inspection provided similar or better quality than a hands-on 

inspection cited the following advantages:  

 Able to pay closer attention to detail in the office 

 Does not require traffic control for specialized access equipment 

 Provides permanent record of the inspection  

 Improved access to certain details 

The inspectors that believed the desk inspection provided worse quality than a hands-on inspection 

cited the following drawbacks: 

 Cannot interact with the inspection surface  

 Poor video quality 

 Difficult to make accurate measurements 

 Less control over what areas are inspected 
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Even the inspectors that responded that the UAS-assisted desk inspection provided similar or better 

quality as a hands-on inspection acknowledged that in certain situations a hands-on inspection 

would always be necessary.    

 

Figure 5.25 Quality of a UAS-assisted desk inspection compared to a UAS-assisted field 
inspection and a hands-on inspection  

 

Q5. Do you have any suggestions or recommendations to improve performance during a UAS 

inspection?  

 

Question 5 was an open ended question soliciting recommendations for improving the quality of 

a UAS-assisted desk inspection.  Thirteen (13) of the 19 inspectors provided a response to this 

question.  Some of the inspectors simply included their impression of the inspection, while others 

provided detailed recommendations for improving the process.  The majority of the suggestions 

fell into three broad categories: UAS technology, video context, and inspection mission.  The 

comments are summarized in Table 5.21.  For inspection technology, the inspectors recommended 

using an inspection-specific UAS with better stability and a higher quality camera.  A few 

inspectors noted that providing more context and references points in the videos would eliminate 

confusion in the office and reduce errors during the inspection.  Finally, the general consensus 
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among this group of inspectors was that the UAS used in this study would be most effective during 

a routine inspection, instead of an in-depth inspection.  

Table 5.21 Inspector recommendations for improving UAS-assisted desk inspections 

UAS Technology  Use UAS platform with better stability 
 Use camera with higher resolution and improved zoom capability 
 Collect still images instead of video 
 Use UAS platform that can fly closer to inspection surface 
 Use UAS platform with headlamp and/or flash to illuminate inspection 

surface 
 Use camera mounted on a pole to photograph areas that hard to access 

with the UAS   
Video 
Content/Context 

 Collect imagery at a distance and close up to provide perspective 
 Label key locations on the bridge (i.e. “FB3, Low Sta.”) 
 Place or project scale onto the element being inspected for reference 

Inspection 
Mission 

 Use UAS for routine inspections or as “first pass” before a hands-on 
inspection 

 Use UAS for linear or planar elements (long riveted chords, bridge 
cables, gusset plates, etc.) 

 Use UAS to create 3D models of specific details 
 Use UAS to create inspection record 

 

5.3.6 Comparison to UAS-assisted Field Inspection 

Since the same specimens were used for the desk and field inspections, a direct comparison can be 

made between the two methods.  While the proctor observations and exit survey responses 

captured some of the perceived strengths and weaknesses of each approach, the numeric results 

can be used to quantitatively evaluate the relative accuracy of the inspection strategies.   

 

Table 5.22 provides a brief comparison between the results from UAS-assisted desk and field  

inspections.  The comparison was made over the 54 specimens common between the two 

inspections.  It is important to note that this is not a comparison between a specific field inspector 

and a group of desk inspectors because the provided video files were not all directly linked to a 

single field inspector.  Instead, this is a comparison between the desk inspectors that reviewed the 

video and the field inspector that recorded the video. For instance, since the field inspector on 18 

December did not inspect the riveted plate specimens, the desk inspectors assigned to the 18 

December video set were also given video files from 20 December.  Therefore, the comparison 
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was made between the 18 December desk inspectors and the 20 December field inspector for the 

riveted plate specimens only.  This means that the results presented for the field inspections in this 

section will not exactly match the results presented in Section 5.2.2.   

 

Over all the specimens, the average performance during the UAS-assisted desk inspections 

compared well with the UAS-assisted field inspections.  The average detection rate for the out-of-

plane cracks was slightly higher during the field inspections while the average detection rate for 

the weld toe and rivet hole cracks was slightly higher during the desk inspections.  For all the 

specimens, the average number of false calls was greater during the desk inspections as compared 

to the field inspections.  Combined, these differences resulted in a lower hit/call ratio for the girder 

specimens and a higher hit/call ratio for the welded cover plate and riveted plate specimens during 

the desk inspections.  In terms of crack sizing, no overarching trends were observed as the average 

absolute crack sizing error.  The error was larger for the out-of-plane and rivet hole cracks and 

smaller for the weld toe cracks during the UAS-assisted desk inspections as compared to the field 

inspection.    
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Table 5.22 Average performance during UAS-assisted desk and field inspections 

 

Average from UAS-assisted  
desk inspections - 19 

inspectors (max/min in 
parentheses) 

Average from UAS-assisted field  
inspections - 4 inspectors 
(max/min in parentheses) 

Girder Specimens (32 specimens) 

Hits 9 (12/5) 10 (11/9) 

False Positives 52 (154/8) 33 (51/9) 

Total Cracks 15 15 

Detection Rate (%) 61 (80/33) 65 (73/60) 

Hit/Call Ratio (%) 20 (44/6) 28 (55/15) 

Average Crack Sizing Error -1.12 (2.31/-3.22) -0.84 (0.78/-2.44) 
Average Crack Sizing 

Absolute Error 
1.33 1.02 

Welded Cover Plates Specimens (14 specimens) 

Hits 1 (4/0) 1 (3/0) 

False Positives 14 (43/0) 11 (14/8) 

Total Cracks 5 5 

Detection Rate (%) 24 (80/0) 20 (60/0) 

Hit/Call Ratio (%) 12 (57/0) 8 (20/0) 

Average Crack Sizing Error -0.34 (3/-3.19) 0.67 (4.44/-1) 
Average Crack Sizing 

Absolute Error 
1.21 1.55 

Riveted Plate Specimens (8 specimens) 

Hits 6 (9/1) 6 (6/5) 

False Positives 4 (26/0) 4 (6/2) 

Total Cracks 9 9 

Detection Rate (%) 70 (100/11) 61 (67/56) 

Hit/Call Ratio (%) 74 (100/24) 60 (75/45) 

Average Crack Sizing Error -0.04 (0.75/-0.75) -0.1 (0.19/-0.5) 
Average Crack Sizing 

Absolute Error 
0.31 0.15 

 

A visual comparison of detection rate and false calls is provided in Figure 5.26 and Figure 5.27, 

respectively.  The large overlap between the standard deviation error bars for the two inspection 

methods suggests that there was no significant difference in performance, and this was confirmed 

using the two sample t-test.  
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Figure 5.26 Comparison of average detection rate during the UAS-assisted desk and field 
inspections 

 

 

Figure 5.27 Comparison of average number of false calls made during the UAS-assisted desk 
and field inspections 
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Since two of the field inspectors also performed a desk inspection review of the same videos, a 

direct comparison of their performance was made.  The results from the two inspections are 

presented in Table 5.23 along with the difference (field inspection minus desk inspection) between 

the two inspections.  This comparison is limited to the specimens that were inspected during the 

UAS-assisted field inspection.   

 

Both inspectors made a smaller number of total calls during the desk inspection as compared to 

their field inspection.  Inspector 1 detected four fewer cracks and made 11 fewer false calls for an 

overall reduction in the hit/call ratio during the desk inspection.  Inspector 2 detected three fewer 

cracks and made 43 fewer cracks during the desk inspection.  This resulted in an overall increase 

in the hit/call ratio for Inspector 2.  It is notable that both inspectors made fewer false calls during 

the desk inspection, while the average number of false calls was higher during the desk inspections.  

Inspector 1 did not estimate crack length during either the desk or the field inspections so no 

comparison in accuracy could be made.  Similar to the trend observed between the average absolute 

errors for all the inspectors, Inspector 2 was less accurate in estimating the length of the out-of-

plane cracks and more accurate in estimating the length of the weld toe cracks during the desk 

inspections.  Both inspectors experienced a higher level of workload during the desk inspection as 

compared to the field inspection.   
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Table 5.23 Difference in inspection performance during UAS-assisted desk and field inspections 
for two inspectors 

 

Inspector 1  Inspector 2  

Field 
Inspection 

Desk 
Inspection 

Difference 
Field 

Inspection 
Desk 

Inspection 
Difference 

NASA TLX 66 72 -6 72 78 -6 

Girder Specimens (32 specimens) 

Hits 10 6 4 9 6 3 

False Positives 46 40 6 50 17 33 

Detection Rate (%) 67 40 27 60 40 20 

Hit/Call Ratio (%) 18 13 5 15 26 -11 
Average Crack Sizing 

Error 
- - - -1.2 -2.02 0.81 

Average Crack Sizing 
Absolute Error 

- - - 1.43 2.02 -0.59 

Welded Cover Plates Specimens (14 specimens) 

Hits 0 0 0 3 3 0 

False Positives 19 14 5 13 3 10 

Detection Rate (%) 0 0 0 60 60 0 

Hit/Call Ratio (%) 0 0 0 19 50 -31 
Average Crack Sizing 

Error 
- - - -0.58 0.08 -0.67 

Average Crack Sizing 
Absolute Error 

- - - 0.58 0.21 0.38 

 

5.3.7 Comparison to Hands-on Inspection 

Similar to the comparison made between the UAS-assisted field and field inspections in Section 

5.2.6, a comparison can be made between the 19 UAS-assisted desk inspections and the 30 hands-

on inspections discussed in Chapter 3.  Additionally, the results from the two inspectors that 

performed both the UAS-assisted desk inspection and the hands-on inspection can be compared to 

provide a direct evaluation of the relative accuracy of the inspection strategies.  

 

Table 5.24 provides a brief comparison between the results from UAS-assisted desk inspections 

and the hands-on inspections.  The comparison was made over the 54 specimens common between 

the two inspections.  Since this comparison only includes about one third of the specimens included 

in the hands-on inspections, the results presented in Table 5.24 do not exactly match the results 

presented in Section 3.5.  
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For all specimens, the average performance during the hands-on inspections was superior to the 

average performance during the UAS-assisted desk inspections.  The average detection rate for all 

three cracks types was higher during the hands-on inspections as compared to the desk inspections.  

The greatest difference was observed for the weld toe cracks as their overhead location made 

detection with the UAS platform used during this study challenging.  Similarly, the average 

number of false positives was higher during the desk inspections as compared to the hands-on 

inspections for all three specimen types.  Combined, these changes resulted in a higher average 

hit/call ratio for the hands-on inspections.  In terms of crack sizing, the average absolute crack 

sizing error was larger in the desk inspections than the hands-on inspections for all three crack 

types.    
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Table 5.24 Average performance during UAS-assisted desk and hands-on inspections 

  

Average from UAS-
assisted desk 

inspections - 19 
inspectors (max/min in 

parentheses) 

Average from hands-on 
inspections - 30 inspectors 
(max/min in parentheses) 

Girder Specimens (32 specimens) 

Hits 9 (12/5) 10 (13/5) 

False Positives 52 (154/8) 30 (85/1) 

Total Cracks 15 15 

Detection Rate (%) 61 (80/33) 65 (87/33) 

Hit/Call Ratio (%) 20 (44/6) 34 (89/6) 

Average Crack Sizing Error -1.12 (2.31/-3.22) -0.63 (7.38/-4.02) 

Average Crack Sizing Absolute Error 1.33 0.93 

Welded Cover Plates Specimens (14 specimens) 

Hits 1 (4/0) 3 (4/0) 

False Positives 14 (43/0) 8 (18/0) 

Total Cracks 5 5 

Detection Rate (%) 24 (80/0) 57 (80/0) 

Hit/Call Ratio (%) 12 (57/0) 41 (100/0) 

Average Crack Sizing Error -0.36 (3/-3.19) 0.4 (8.44/-1.25) 

Average Crack Sizing Absolute Error 1.28 0.72 

Riveted Plate Specimens (8 specimens) 

Hits 6 (9/1) 8 (9/3) 

False Positives 4 (26/0) 2 (11/0) 

Total Cracks 9 9 

Detection Rate (%) 70 (100/11) 84 (100/33) 

Hit/Call Ratio (%) 74 (100/24) 86 (100/30) 

Average Crack Sizing Error -0.04 (0.75/-0.75) 0.11 (1.19/-0.75) 

Average Crack Sizing Absolute Error 0.31 0.21 

 

A visual comparison of detection rate and false positives is provided in Figure 5.28 and Figure 

5.29, respectively.  Although the error bars are wide for both inspection methods, there was a 

statistically significant difference in inspector performance during the two types of inspection.  

The average detection rate during the UAS-assisted desk inspections was approximately one 

standard deviation below the average detection rate during the hands-on inspections, and the 

average number of false calls during the UAS-assisted desk inspections was approximately one 

standard deviation greater than the average number of false calls made during the hands-on 
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inspections.  The t-test revealed that significantly more cracks were detected during the hands-on 

inspections (M = 0.699, SD = 0.139) than during the UAS-assisted desk inspections (M = 0.574, 

SD = 0.158), t(34) = 2.83, p = 0.008.  Similarly, the t-test showed that significantly less false calls 

were made during the hands-on inspections (M = 39, SD = 29.9) than during the UAS-assisted 

desk inspections (M = 70.2, SD = 57.4), t(24) = 2.19, p = 0.039.  

 

Figure 5.28 Comparison of average detection rate during the UAS-assisted desk and hands-on 
inspections 
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Figure 5.29 Comparison of average number of false calls made during the UAS-assisted desk  
and hands-on inspections 

 

Since two of the desk inspectors also performed a hands-on inspection, a direct comparison of their 

performance on the same specimens was made.  The results from the two inspections are presented 

in Table 5.25 along with the difference (hands-on inspection minus desk inspection) between the 

two inspections.  This comparison is limited to the specimens that were inspected during the UAS-

assisted desk inspection.   

 

For both inspectors, the hit/call ratio achieved during the hands-on inspection was higher than the 

hit/call ratio achieved during the desk inspections.  Despite this similarity, the inspectors utilized 

seemingly opposite inspection strategies to transition from the traditional hands-on inspection to 

the less familiar desk inspection.  Inspector 1 made fewer overall calls during the desk inspection 

as compared to the hands-on inspection, suggesting a more lenient inspection strategy or change 

in bias.  As a result, Inspector 1 detected 13 fewer cracks but also made 25 fewer false calls during 

the desk inspection.  In contrast, Inspector 2 made more overall calls during the desk inspection as 

compared to the hands-on inspection, suggesting a more conservative inspection strategy or change 

in sensitivity.  As a result, Inspector 2 detected only 1 less crack but recorded 148 more false calls 
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so no comparison in accuracy could be made.  Similar to the trend observed between the average 

absolute errors for all the inspectors, Inspector 2 was less accurate in estimating crack length during 

the desk inspection. 

Table 5.25 Difference in inspection performance during UAS-assisted desk and hands-on 
inspections for two inspectors 

 Inspector 1  Inspector 2  

 

Hands-On 
Inspection 

Desk 
Inspection 

Difference 
Hands-On 
Inspection 

Desk 
Inspection 

Difference 

Girder Specimens (32 specimens) 

Hits 13 6 7 11 11 0 

False Positives 65 40 25 22 130 -108 

Detection Rate (%) 87 40 47 73 73 0 

Hit/Call Ratio (%) 17 13 4 33 8 26 

Average Crack Sizing Error -0.60 - - -0.64 -0.67 0.03 

Average Crack Sizing 
Absolute Error 

0.71 - - 0.69 0.96 -0.27 

Welded Cover Plates Specimens (14 specimens) 

Hits 4 0 4 4 3 1 

False Positives 15 14 1 13 38 -25 

Detection Rate (%) 80 0 80 80 60 20 

Hit/Call Ratio (%) 21 0 21 24 7 16 

Average Crack Sizing Error 0.31 - - 0.50 -0.88 1.38 

Average Crack Sizing 
Absolute Error 

0.31 - - 0.75 1.31 -0.56 

Riveted Plate Specimens (8 specimens) 

Hits 9 7 2 8 8 0 

False Positives 0 1 -1 11 26 -15 

Detection Rate (%) 100 78 22 89 89 0 

Hit/Call Ratio (%) 100 88 13 42 24 19 

Average Crack Sizing Error - - - 0.16 0.35 -0.19 

Average Crack Sizing 
Absolute Error 

- - - 0.23 0.35 -0.12 
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5.3.8 Discussion 

Although limited in scope, a couple findings from the UAS-assisted desk inspections warrant 

further discussion as they could influence UAS implementation within the bridge inspection 

industry.   

 

First, one unexplored topic in visual inspection research is how the shift from field time to office 

time due to UAS assistance may affect current and future bridge inspectors.  A study by the Oregon 

Department of Transportation and Oregon State University found that the use of UAS technology 

during bridge inspections may reduce field time by 20% and increase office time by 30% [47].  

While UAS assistance is not expected or intended to replace bridge inspectors, this technology 

could cause a fundamental shift in an inspector’s work day as more office time and less field time 

is required.  For many bridge inspectors, the physical nature of the job may be part of its appeal, 

and so the transition to a more office-based job may be displeasing.  Additionally, the results from 

the desk inspection showed that the inspectors currently performing the most routine and hands-

on inspections did not detect the most cracks during the desk inspections.  While it is possible that 

these inspectors were more complacent and less thorough because they perform so many 

inspections, this trend was not observed in the results from the hands-on inspections.  

Alternatively, this trend could imply that the current bridge inspector population is not well suited 

for the office-based review.  Future research should consider how the proposed shift in inspection 

technique could affect the bridge inspector population and possible implications for the agencies 

overseeing these inspections.    

 

Second, the results from the desk inspections suggest that inspectors had more difficulty 

distinguishing between true cracks and cracklike surface defects during these inspections as 

compared to the hands-on inspections.  The average hit/call ratio and the hit/call ratios from the 

two inspectors that performed both the hands-on and the desk inspections were lower during the 

desk inspections.  In practice, this means that in order to achieve the same detection rate during a 

UAS-assisted desk inspection as during a hands-on inspection, more false calls will be made.  This 

is noteworthy since it is likely that any UAS-assisted inspection protocols will include the 

requirement to verify the findings with hands-on inspection, at least initially.  Therefore, the high 

number of false calls may reduce the benefits of UAS assistance since substantial hands-on 
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inspection will still be required to separate the true positives from the false positives.  This study 

also found that the number of false positives increased with inspection duration.  Since more 

indications are likely to be found during a longer inspection, it follows that more false calls may 

also be made.  Additionally, inspectors have been found to relax their response criterion as time 

on the task increases [26].  Therefore, a time limit could be recommended or imposed to reduce 

the number of false positives and simulate the temporal pressure experienced during field 

inspections.  However, this may reduce the number of detections along with the number of false 

calls.   

5.4 Recommendations 

The results from the UAS-assisted bridge inspections show a similar level of variability in 

performance as seen in the results from the traditional hands-on inspections.  This suggests that 

human factors continue to have a significant influence on inspection performance, regardless of 

inspection method.  Since many of the recommendations included in Section 3.8 aim to improve 

visual inspection consistency, these would apply to UAS-assisted bridge inspections as well as 

hands-on inspections.  The recommendations in this section focus on the unique aspects of UAS-

assisted inspection.  Again, the recommendations will be divided into three categories: inspection 

equipment and environment, inspector training, and inspection procedures.  

5.4.1 Equipment 

Inspection equipment specific to a UAS-assisted inspection includes the UAS platform and the 

computer system used to review the videos.  Since this study included only a single UAS platform, 

it is not possible to identify minimum system requirements or the features which did and did not 

influence performance.  The performance of the DJI Mavic Pro was qualitatively in Section 5.2.7.  

Although the platform was found to be generally satisfactory, the average performance during the 

UAS-assisted inspections was worse than during the hands-on inspections, indicating that an 

improvement in technology may be necessary.  Based on the quantitative inspection results, the 

qualitative evaluation of the DJI Mavic Pro, and inspector feedback, it is recommended that a 

front-mounted camera equipped with optical zoom be used for in-depth bridge inspections.  This 

will provide a full field of view (straight upward to straight downward) and allow for the collection 

of detailed, high resolution imagery.  It is recommended that the camera system should be able to 
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capture high resolution still images and record video simultaneously, although this capability is 

not widely available at this time.  Additionally, it is recommended that the UAS platform should 

be able to hover in the necessary position with minimal intervention from the pilot.  This was not 

possible during the field trials, and the instability of the UAS platform likely affected both the 

quality and the efficiency of the inspections.  Since stability depends on a variety of factors, such 

as platform weight and power, the onboard navigation system, and environmental conditions, it is 

recommended that the flight crew establish the minimum acceptable operating conditions for the 

specific UAS platform and inspection mission during test flights prior to performing the actual 

inspection.  

5.4.2 Training 

Training specific to the mechanics of performing a UAS-assisted bridge inspection should be 

provided to both the inspector and the pilot.  For pilots, the training should include basic bridge 

terminology, common bridge defects, and critical regions of the bridge.  For inspectors, the training 

should include the basics of UAS technology, the capabilities and limitations of the specific 

platform, and the camera controls (if applicable).  These trainings should include a short classroom 

lecture, flight demonstration, and hands-on practice.  The pilots should be given ample time to 

practice flying close to and beneath a bridge structure.  Limited research has been performed 

specific to training UAS pilots for bridge inspections, although a group of researchers at the Florida 

Institute of Technology determined that between 1.75 and 2.75 hours was required to train a new 

pilot to operate a UAS for a high mast light tower inspection [42].  

 

For desk inspections, additional training should be provided to ensure that inspectors know how 

to properly adjust the display settings (resolution, brightness, etc.) on their screen or monitor and 

operate the features of the media player.  This training should also include both a demonstration 

and a hands-on exercise.  The results from the vision tests suggest that the inspectors possessed 

varying abilities to manipulate the videos to improve the clarity of the image and the correlation 

between normal visual acuity and detection rate implies that the inspectors who were more 

successful in improving the quality of the videos during the vision tests also found more cracks 

during the inspection.   
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5.4.3 Inspection Procedures 

The following procedural recommendations are based on the quantitative results from the UAS-

assisted desk and field inspections, the inspectors’ assessments of the inspection scenario, proctor 

observations, and the literature review.  Although the effectiveness of these recommendations was 

not explicitly evaluated in this study, they represent the best practices available at this time.  Future 

research should continue to evaluate and adjust these recommendations. 

 Collect videos and still images during the inspection.  Both still images and videos should 

be collected during the inspection.  The videos should include both distance and close-

range recordings to provide a frame of reference and context.  At a minimum, still images 

should be captured of suspected defects since these higher resolution images will retain 

their clarity as the image is enlarged.  Alternately, the camera could be programmed to 

automatically capture still images at a predetermined time interval.  This may reduce the 

responsibility of the pilot and/or inspector, but will increase the amount of data collected 

during the inspection.  The UAS platform should allow for both still images and videos to 

be captured concurrently without intervention from the operator.  

 Perform inspection in the field and review results in the office.  The findings from this 

study suggest that for an in-depth inspection, the inspection should be performed in the 

field during the flight(s).  A desk inspection may be performed after the field inspection to 

reduce the number of calls, although the number of true positives is likely to decline along 

with the number of false positives.  Alternative approaches, such as having a dual certified 

pilot/inspector collect the information in the field and review it in the office may be 

effective, however further research is needed to validate this approach.   

 Coordinate inspection equipment with inspection mission and inspection conditions.  

During the inspection planning phase, the inspection mission, equipment, and conditions 

should be identified and coordinated.  The objectives of the inspection will establish the 

necessary UAS capabilities and operating conditions.  The inspection should not be 

performed if the actual environmental conditions differ from the expected conditions 

identified during planning.  Test flights before the inspection may be necessary to establish 

a range of allowable operating conditions for the proposed mission and equipment.   

 Confirm findings from UAS-assisted inspections with hands-on inspection.  A hands-on 

inspection should be performed to verify the findings from the UAS-assisted inspection 
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before planning maintenance or repair activities.  If the number of false positives in practice 

is found to be less than the number of false positives in this study, this requirement could 

be gradually relaxed.  

 Establish initial and recurrent performance testing requirements.  Similar to the 

recommendation made for hands-on inspections, performance testing in a controlled 

environment should be utilized to confirm that, together, the pilot, inspector, and UAS 

platform can achieve a satisfactory level of performance.  Additional research under 

Transportation Pooled Fund (TPF) Study No. 5(387) aims to develop standards, protocols, 

and testing requirements for UAS in a variety of civil engineering applications, including 

bridge inspection.  

5.5 Summary 

Unmanned aircraft systems (UAS) have the potential to dramatically change how bridge 

inspections are performed.  Proponents cite the reduced need for traffic control and access 

equipment as the primary advantages; however, without quantitative data to validate the quality of 

these inspections, decision makers are left with little beyond vendor literature on which to base 

deployment decisions.  In this project, the use of UAS for detecting fatigue cracks in steel bridge 

members was investigated through a series of real-time (field) and offline (desk) inspections.  The 

inspections were performed using the same specimens and inspection procedures as the hands-on 

inspections to allow for a direct comparison of performance.    

 

Four inspectors were invited to perform a UAS-assisted field inspection of the POD specimens at 

the S-BRITE Center.  All inspections were completed with the same pilot operating the same UAS 

platform.  During these inspections, the defection rates ranged from 48% to 60% and the number 

of false calls varied between 26 and 67.  The average detection rate during the UAS-assisted field 

inspections was significantly lower than the average detection rate during the hands-on inspections, 

while there was no significant difference between the number of false calls made during the two 

types of inspection.  The greatest decrease in performance was observed in the detection of weld 

toe cracks in the welded cover plates mounted overhead.  Notably, the UAS-assisted inspections 

were much less efficient as none of the field inspectors inspected all 147 specimens included in 

the hands-on inspections.  Overall, the UAS platform used for these inspections, the DJI Mavic 
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Pro, was found to be marginally acceptable for detecting fatigue cracks in steel bridge members.  

Judged on five considerations, the unit size, battery life, and user interface were found to be 

acceptable, while the navigation and imaging systems and need improvement.  

 

Nineteen (19) inspectors were invited to perform a UAS-assisted desk inspection of the videos 

captured during the four field inspections.  The participants were randomly assigned to four groups 

and provided with a link to download the appropriate set of videos.  During these inspections, the 

average detection rate was 57% and the average number of false calls was 70.  A similar variability 

was seen in the results from these 19 inspectors as was seen in the results from the 30 hands-on 

inspectors.  The hit/call ratio varied from 9% to 45% and the number of hits was correlated with 

the number of false calls.  Again, only a small amount of the variance would be explained by the 

human and environmental factors.  A linear regression analysis and two-sample t-test were used 

to determine that detection rate was influenced by the number of bridge inspections performed in 

the previous 12 months, the percentage of time spent performing bridge inspections, previous 

experience with a UAS-assisted bridge inspection, NASA task load index, and normal visual acuity.  

The number of false calls was found to be correlated with inspection duration and completion of 

the Introduction to Element Level Bridge Inspection training course.  A binary logit model 

predicted that the probability of detection for a specific crack was influenced by crack length, the 

location or type of crack, the number of false positives made by the inspector, and previous 

experience with UAS-assisted bridge inspection.  The average performance during the UAS-

assisted desk inspections was not statistically different from the average performance during the 

field inspections, but it was significantly worse than the average performance during the hands-on 

inspections.  
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6. TRUSS CHORD INSPECTION AND LOAD RATING 

6.1 Introduction 

In order to gain a better understanding of the effects of corrosion and section loss on the structural 

capacity of built-up steel tension members, two segments of the lower truss chord from a deck 

truss approach span were removed from the Winona Bridge in Winona, Minnesota and transported 

to Purdue University for testing.  To complement the findings from the fatigue crack detection 

inspections, these bridge specimens were used to investigate variability in the inspection and 

evaluation of severely corroded steel tension members.  A small round robin inspection and load 

rating study was performed with certified bridge inspectors and practicing load rating engineers.  

This process evaluated two separate, but related, sources of variability within the inspection and 

load rating process.  The variability in each task was controlled such that variability in the load 

ratings was not compounded by variability in the inspection findings.  

 

The inspection and load rating set-up and results are discussed in detail in the following sections.  

The methods used to evaluate the data will be explained along with findings, recommendations, 

and conclusions regarding the visual inspection and load rating of corroded steel bridge members.   

6.2 Inspection 

A small pool of bridge inspectors was invited to perform a detailed inspection of one of the truss 

chords between, but not including, the two gusset plates, as shown in Figure 6.1.  Inspectors were 

directed to use typical inspection procedures to evaluate the condition of the chord and provide the 

necessary thickness measurements to support a load rating calculation.  The inspection was divided 

into three separate tasks to gain insight into the individual inspection strategies employed by the 

inspectors, but also to provide consistent data that could be directly compared to evaluate 

variability.  The variability was evaluated by comparing the inspector measurements to each other 

and to the reference measurements determined by the author.  
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Figure 6.1 Truss chord elevation view (looking from joint L4 to L2) 

 

6.2.1 Description of Specimen 

The specimen used for this inspection was the bottom chord of a deck truss from a bridge 

constructed in 1941 in Winona, Minnesota.  The chord is built up from 2-C15x40 channels with 

3/8-inch cover, or web, plates.  All connections are riveted and the channel sections are connected 

with intermittent 3/8-inch batten plates.  Significant pack rust has formed between the web plates 

and the channels causing severe distortion of the web plates in some locations.  The elevation view 

and cross sections of the specimen are provided in Figure 6.2 and photos of typical corrosion, 

section loss, and pack rust along the chord are shown in Figure 6.3.   

 

Approx. limits of 
inspection 
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Figure 6.2 Elevation and section views of the truss chord 

 

   

Figure 6.3 View of typical corrosion damage resulting in section loss and pack rust 
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6.2.2 Inspection Scenario 

The inspection was intended to represent a typical hands-on inspection of a fracture critical bridge 

member.  Prior to the inspection, all of the inspectors were read the same set of instructions and 

provided with a set of blank inspections forms.  During each inspection, the proctor recorded the 

weather condition, the start and end times for each task, the tools used by the inspector, and general 

firsthand observations of the inspector’s activities.  After the inspection, the inspectors were asked 

to complete a written exit survey to gather information on their education, experience, and training.  

The inspection procedures, inspection forms and exit survey are provided in Appendix C. 

 

The inspection was divided into three separate tasks.  Before beginning each task, the proctor read 

the same set of instructions to the inspector and answered any questions.  Task 1 was the most 

unstructured task.  In this task, the inspectors were asked to identify the critical section for 

measuring section loss within the inspection limits.  The inspectors were allowed to use any tools 

that they brought with them to complete this task and a time limit of 30 minutes was imposed.  

This time limit was intended to encourage the inspectors to approach the task with a practical and 

realistic strategy.  In Task 2, the inspectors were asked to estimate the remaining thickness of the 

truss chord at two specific locations.  The locations were identified on the inspection forms and 

marked on the chord.  The inspectors were allowed to use any tools they brought with them to 

complete the task and no time limit was imposed.  In Task 3, the inspectors were asked to identify 

the critical section for measuring section loss within a 28-inch segment of the chord spanning 

between two adjacent batten plates.  The inspectors did not need to record the remaining thickness 

at this location, but could use any tools they brought with them to complete the task.  No time limit 

was imposed.  The three tasks were designed to yield inspection results that could be compared 

across the inspectors, while also providing a realistic representation of the variability in inspection 

strategies.  

 

The inspections were completed outside at Bowen Laboratory on the campus of Purdue University 

in West Lafayette, Indiana between April 2018 and July 2018.  The inspections were completed 

from the ground adjacent to the truss chord and no specialized access equipment was required.  

The average temperatures on the days of the inspections ranged from 47℉ to 80℉.  Figure 6.4 

shows two of the inspectors taking thickness measurements during their hands-on inspections.   
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Figure 6.4 Inspectors taking thickness measurements of the truss chord 

 

6.2.3 Inspector Demographics 

Five inspectors (4 males and 1 female) participated in the inspection round robin.  Two of the 

inspectors were from federal agencies, one was from a state department of transportation, and two 

worked for a private engineering and inspection firm.  Participating inspectors were based in three 

states, Louisiana (1), Illinois (2) and Minnesota (2), although the private consultants perform 

bridge inspections around the country.  The inspectors ranged in age from 25 to 59 and their 

experience varied from 1 year to 18 years.  The average experience of the group was 7.2 years.  

Four of the five inspectors possessed a post-secondary degree in engineering and were either an 

engineer-in-training or a professional engineer.  Four of the five inspectors had completed the 

FHWA/NHI 2-week course Safety Inspection of In-service Bridges.  Only one inspector had 

received additional training specific to estimating section loss in steel members.  The inspectors 

had performed between 0 and 60 hands-on inspections during the 12 months prior to their 

participation in the study and the percentage of time spent performing inspections ranged from less 

than 1% to 95%.  Select inspector demographics and inspection conditions are summarized in 

Table 6.1.  
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Table 6.1 Inspector demographics and inspection conditions 

 Inspector 1 Inspector 2 Inspector 3 Inspector 4 Inspector 5 
Temperature (°F) 55 55/47 75 80 80 

Weather 
Overcast, light 

rain 
Clear 

Overcast, 
humid 

Hot, humid Hot, humid 

Age 59 29 45 27 25 
Gender Male Female Male Male Male 

Employer 
Federal 
Agency 

Federal 
Agency 

State DOT 
Private 

Consultant 
Private 

Consultant 
Years of Inspection 

Experience 
10 1 18 5 2 

No. of Routine 
Inspections in 

Previous 12 Months 
4 1 80 20 30 

No. of Hands On 
Inspections in 

Previous 12 Months 
4 0 60 4 1 

Professional 
Licensure 

PE FE None FE FE 

Education 
Master's 
Degree 

Bachelor's 
Degree 

Bachelor's 
Degree 

Bachelor's 
Degree 

Bachelor's 
Degree 

 

6.2.4 Inspector Response Evaluation  

Determining the remaining member area based on the inspectors’ recorded thickness 

measurements was not a straightforward task.  In many cases, assumptions about the intentions of 

the inspectors had to be made since the inspectors often just noted measurements on the sketches 

without providing locations or dimensions.  Two of the inspectors explained that common practice 

is to take the measurements in the field and then calculate section loss in their office, so they may 

not be accustomed to making their field notes intelligible to others.  For consistency in this study, 

a numerical approximation similar to the middle Riemann sum method was used to calculate the 

remaining area from the thickness measurements.  Each recorded thickness measurement was 

assumed to be the measurement at the center of a rectangular shaped increment as shown in Figure 

6.5 and the total remaining area of the member was calculated by summing the areas of the 

increments.  As the number of increments increases, the length of the increments gets shorter and 

the sum of the areas eventually approaches the true area of the member.  The number and length 

of the increments was determined based on the number of thickness measurements recorded by 

the inspector; more thickness measurements resulted in shorter increments.  When the exact 

location of the measurements was not provided, they were assumed to be evenly spaced, and when 
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no thickness measurements were provided, the design thickness of the component was used to 

calculate the remaining area.  The rivet holes were ignored during all area calculations.  

 

Figure 6.5 Illustration of the method used to calculate remaining member area from field 
measurements 

 

6.2.5 Inspection Results 

6.2.5.1 Task 1 

In Task 1, the inspectors were asked to identify the most critical section for estimating the 

remaining capacity of the tension chord within the inspection limits.  Four of the five inspectors 

successfully completed Task 1.  The remaining inspector provided thickness measurements along 

the length of the chord, but did not provide enough detail to determine the remaining section at 

any single location.  A summary of the results for this task is shown in Table 6.2.  Based on the 

measurements provided, the remaining area estimates ranged from 32.4 in2 to 35 in2.  Assuming 

an original gross cross section of 34.7 in2 based on the construction plans, the percent “loss” 

estimates range from -6.4% to +0.9%.  

 

The quickest inspector completed Task 1 in 17 minutes and the slowest inspector required 47 

minutes.  Although a time limit of 30 minutes had been set for this task, two inspectors were 

allowed to exceed this to provide useable data.  All of the inspectors used an ultrasonic thickness 

gauge to complete this task.  Four of the five inspectors used a measuring device (folding ruler or 

tape measure) and a camera during this task.  One inspector used digital calipers and another 

inspector used a hammer. 

Actual Plate 
Profile

Idealized Plate 
Profile

Measurement 
Location (Typ.) 

Increment Length 

Increment Width 
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Table 6.2. Summary of Task 1 results 

 Inspector 1 Inspector 2 Inspector 3 Inspector 4 Inspector 5 
Remaining Member Area 

(in2) 
32.4 INCOMPLETE 34.6 33.1 35 

Duration (min.) 47 30 24 39 17 
Location of Critical 
Section (in inches 

measured from Joint L2) 
129 INCOMPLETE 17.25 130 120 

 

Figure 6.6 shows the locations along the chord that the inspectors identified as the most critical 

section for determining remaining capacity.  Three of the four inspectors that successfully 

completed Task 1 identified a critical section within a 10-inch region of the chord.  This region of 

the chord had experienced significant section loss and distortion due to pack rust near the top edge 

of the cover plates as shown in Figure 6.7.  The fourth inspector determined that the critical section 

was beneath the batten plate located closest to joint L2.   

 

Figure 6.6 Critical section locations identified by the inspectors during Task 1 
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Figure 6.7 Truss chord near the critical section identified by three inspectors 

 

One of the largest sources of variability within this task was the location and quantity of thickness 

measurements recorded by the inspectors.  Only two of the five inspectors recorded thickness 

measurements on all four components (two channels and two cover plates) of the built-up chord.  

Inspector 1 provided measurements at approximately 1-inch intervals along the depth of each 

component and Inspector 3 provided measurements at approximately 2-1/2-inch intervals along 

the components.  In contrast, Inspector 4 provided seven thickness measurements along just one 

of the channels and one of the cover plates and Inspector 5 provided three thickness measurements 

along one of the channels and no thickness measurements along either of cover plate.  Since the 

amount of section loss in the chord is relatively small, especially in the channel components, the 

lack of measurements had a limited influence on the remaining area calculations.  However, in 

members with more severe section loss, the difference in measurement frequency may cause 

significant variability in area estimates.   

 

Although not necessary for this task, only two of the five inspectors provided notes or 

measurements related to the distortion in the cover plate.  In the vicinity of the critical sections 

selected by Inspectors 1, 4, and 5, the thickness of the pack rust is more than 1 inch at the top and 

bottom of the member.  For tension members, distortion due to pack rust is typically ignored during 

engineering evaluations since design standards allow for areas of localized yielding and tension 
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members are self-stabilizing.  Therefore, the lack of measurements or notes would likely not affect 

the load rating [53].  However, for compression members, the distortion could pose more 

significant issues and may need to be accounted for by the load rating engineer.  Distortion in the 

cover plates may reduce their effectiveness and lower the overall capacity of the member [53].  In 

this case, the inspector should include more detailed notes, photos, and measurements.  For this 

inspection, the inspectors were not explicitly told that this was tension member, but were told it 

was a fracture critical lower truss chord which implies that it is a tension member.  It is possible 

they understood that the distortion measurements were not needed for the load rating of a tension 

member or it is possible that they were not aware of the importance for any loading type.  In 

general, inspectors should be instructed to err on the side of providing too much information and 

allow the rating engineers to determine what condition information should be included in their 

analysis.  

6.2.5.2 Task 2 

In Task 2, the inspectors were instructed to provide thickness measurements for the truss chord at 

the two locations shown in Figure 6.8.   

    
(a)                                                                                        (b) 

Figure 6.8 Truss chord at (a) Cross Section 1 and (b) Cross Section 2 

 

Following the inspections, reference values were developed by the author after disassembling the 

chord.  Measurements were taken with an ultrasonic thickness gauge at 1/2-inch increments along 

each cover plate and channel and the remaining area was calculated using the middle Riemann 

sum approach discussed in Section 6.2.4.  In total, the reference measurements were taken at a 

Member A 
Member B 

Member A 
Member B 

Cross Section 1 

Cross Section 2 
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minimum of 6 locations along each flange, 28 locations along the channel web, and 31 locations 

along the cover plate.  A summary of member areas estimated from the reference measurements is 

provided in Table 6.3.  The remaining area determined from the thickness measurements was 33.27 

in2 at Cross Section 1 and 33.63 in2 at Cross Section 2.  The disassembled pieces of the truss are 

shown in Figure 6.9.   

Table 6.3 Summary of reference areas 

 Cross Section 1 Cross Section 2 

Member Description 
Member A Areas 

(in2) 
Member B 
Areas (in2)  

Member A 
Areas (in2) 

Member B 
Areas (in2) 

Web  7.70 8.01 8.09 8.05 

Top Flange  1.83 1.83 1.85 1.83 

Bottom Flange 1.81 1.83 1.84 1.83 

Channel (Web + 
Flanges) 

11.33 11.68 11.78 11.71 

Cover Plate  4.99 5.27 5.24 4.90 

Channel + Cover Plate  16.32 16.94 17.02 16.61 

Total Cross Section 33.27 33.63 

 

 

Figure 6.9 Disassembled pieces from Cross Sections 1 and 2 

 

All five inspectors successfully completed Task 2.  A summary of the results for this task is shown 

in Table 6.4.  At Cross Section 1, the remaining area estimates ranged from 33.42 in2 to 35.66 in2.  

At Cross Section 2, the remaining area estimates ranged from 34.16 in2 to 35.70 in2.  Compared to 
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the reference values, all inspectors overestimated the remaining area at both locations as shown in 

Figure 6.10.  The reference area calculated based on the reference measurements is shown on the 

x-axis and the estimated area calculated based on the inspector’s measurements is shown on the y-

axis.  The diagonal 1:1 reference line represents exact agreement between the reference area and 

the estimated area.  All of the estimated areas plot above the 1:1 line indicating that the estimated 

areas exceed the reference area.  The percent error ranged from 0.5% to 7.2% at Cross Section 1 

and from 1.0% to 6.2% at Cross Section 2.   

 

The duration of this task ranged from 5 minutes to 31 minutes.  The average time to complete this 

task was 19 minutes.  The quickest inspector measured the remaining thickness at Cross Section 2 

as part of Task 1, and so they did not repeat that as part of Task 2.  All of the inspectors used an 

ultrasonic thickness gauge to complete this task.  Four of the five inspectors used a measuring 

device (tape measure or folding ruler) during this task and one inspector used a flashlight to during 

this task.  

Table 6.4 Summary of Task 2 results 

 Inspector 1 Inspector 2 Inspector 3 Inspector 4 Inspector 5 Reference 

Cross Section 1 
(in2) 

33.4 34.3 34.6 35.7 35.1 33.3 

Cross Section 2 
(in2) 

34.3 34.9 34.6 35.7 34.0 33.6 

Duration (min.) 29 31 5 19 13 N/A 
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Figure 6.10 Estimated area plotted against reference area for Cross Section 1 and 2 

 

Similar to Task 1, the location and number of thickness measurements varied significantly among 

the inspectors.  Again, Inspector 1 provided measurements at approximately 1-inch intervals along 

the depth of each component and Inspector 3 provided measurements at approximately 2-1/2-inch 

intervals.  Inspector 2 took measurements at approximately 5-inch intervals along the channels and 

2-1/2-inch intervals along the cover plates.  Inspector 4 recorded the thickness of the channels at 

1-1/2-intervals but took only one measurement along the cover plates.  Inspector 5 recorded the 

thickness of the channels and cover plates at a single location.    

 

Considering the chord components separately provides a clearer look at the variability in the 

measurements.  Measurement statistics for the cover plates are provided for Cross Sections 1 and 

2 in Table 6.5 and Table 6.6, respectively.  For each inspector, these tables show the cover plate 

area calculated from the inspector’s measurements, the minimum recorded thickness measurement, 

and the number of recorded thickness measurements.  The variability in remaining area estimates, 

as indicated by the standard deviation, was largest at Cover Plate B in Cross Section 2 where the 

smallest estimate of the remaining area of this member was 4.9 in2 and the largest estimate was 

6.27 in2.  The average of these measurements was 5.4 in2 and the standard deviation was 0.61 in2.  

This cross section was difficult to inspect because it was beneath the batten plate near Joint L2 and 
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this plate had experienced complete section loss near the top edge as shown in Figure 6.11.  

Conversely, the variability in remaining area was smallest at Cover Plate A in Cross Section 2.  

The remaining area estimates ranged from 5.3 in2 to 5.65 in2. with a mean of 0.5 in2 and a standard 

deviation of 0.15 in2.  Although this plate was also obscured by the batten plate, it was in relatively 

good condition and inspectors were able to provide a reasonable estimate of the remaining 

thickness without performing a careful visual inspection.   

Table 6.5 Measurement statistics for the cover plates at Cross Section 1  

 
Inspector 

1 
Inspector 

2 
Inspector 

3 
Inspector 

4 
Inspector 

5 
Reference 

Calculated Area, in2 
 (Plate A/Plate B) 

5.11/4.92 5.1/5.29 5.19/5.36 5.63/5.63 5.58/5.81 4.99/5.27 

Min. Thickness 
Measurement, in. 
(Plate A/Plate B) 

0.04/0.13 0.160/0.265 0.207/0.329 0.375/0.375 0.378/0.394 0.12/0.26 

Number of 
Measurements 

(Plate A/Plate B) 
16/16 6/6 6/6 1/1 1/1 31/32 

 

Table 6.6 Measurements statistics for the cover plates at Cross Section 2 

  
Inspector 

1 
Inspector 

2 
Inspector 

3 
Inspector 

4 
Inspector 

5 
Reference 

Calculated Area, in2 
 (Plate A/Plate B) 

5.36/4.9 5.3/5.4 5.52/4.73 5.63/5.63 5.65/6.27 5.24/4.9 

Min. Thickness 
Measurement, in. 
(Plate A/Plate B) 

0.31/0.16 0.305/0.275 0.329/0 0.375/0.375 0.383/0.425 0.30/0 

Number of 
Measurements 

(Plate A/Plate B) 
16/16 6/5 6/6 1/1 1/1 31/31 
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Figure 6.11 Cover plates at Cross Section 2 

 

Table 6.7 shows the percent error for each cover plate area estimate.  Errors exceeding 5% are 

shown in red.  As expected, the area calculated from the inspector’s measurements approaches the 

reference area as the number of measurements increase.  In general, Inspectors 1, 2, and 3 provided 

sufficient thickness measurements such that the estimated remaining area was within 5% of the 

reference area.  Of note, only one of the five inspectors recorded the depth of the cover plates, 14-

3/4 inches, on the inspection forms.  Although the construction plans call for 15-inch by 3/8-inch 

web plates, the measured depth of these plates in their current condition is between 14-3/4 and 14-

7/8 inches.  If no depth dimension was recorded, the plan dimension was used to calculate the 

remaining area.  

Table 6.7 Percent error for cover plate area estimates  

 Inspector 1 Inspector 2 Inspector 3 Inspector 4 Inspector 5 

Cover Plate A, Cross Section 1 2.4% 2.3% 4.0% 12.8% 11.8% 

Cover Plate B, Cross Section 1 -6.6% 0.3% 1.7% 6.8% 10.3% 

Cover Plate A, Cross Section 2 2.3% 1.1% 5.2% 7.3% 7.8% 

Cover Plate B, Cross Section 2 0.1% 10.2% -3.5% 14.8% 28.0% 

Average Absolute Error 2.8% 3.5% 3.6% 10.4% 14.5% 

 

Cover Plate A Cover Plate B
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Table 6.8 through Table 6.12 present the descriptive statistics for the areas estimated from the 

inspectors’ measurements.  These tables include the reference area, along with the average 

estimated area, the standard deviation and coefficient of variation (COV) of the estimates, the 

minimum and maximum estimated areas, and the number of inspectors that provided thickness 

measurements (n).  In all but one instance, the average estimated area exceeded the reference area.   

Table 6.8 Descriptive statistics for Member A at Cross Section 1 

 
Cover 
Plate 

Channel 
Web 

Channel Top 
Flange 

Channel Bottom 
Flange 

Total 
Channel 

Total 
Member 

Reference Area (in2) 4.99 7.70 1.83 1.81 11.3 16.3 

Average Area (in2) 5.32 8.07 1.91 1.94 11.9 17.3 
Standard Deviation of 

Area (in2) 
0.258 0.225 0.125 0.069 0.158 0.379 

COV 0.049 0.028 0.065 0.035 0.013 0.022 

Minimum Area (in2) 5.10 7.86 1.70 1.83 11.8 16.9 

Maximum Area (in2) 5.63 8.33 2.03 2.03 12.2 17.8 

n 5 5 5 5 5 5 

 

Table 6.9 Descriptive statistics for Member B at Cross Section 1 

 
Cover 
Plate 

Channel 
Web 

Channel Top 
Flange 

Channel Bottom 
Flange 

Total 
Channel 

Total 
Member 

Reference Area (in2) 5.27 8.01 1.83 1.83 11.7 16.9 

Average Area (in2) 5.40 8.10 1.95 1.93 12.0 17.4 
Standard Deviation of 

Area (in2) 
0.341 0.238 0.056 0.087 0.252 0.516 

COV 0.063 0.029 0.029 0.045 0.021 0.030 

Minimum Area (in2) 4.92 7.69 1.87 1.79 11.6 16.5 

Maximum Area (in2) 5.81 8.30 2.03 2.03 12.2 17.8 

n 5 5 5 5 5 5 

 

Table 6.10 Descriptive statistics for Member A at Cross Section 2 

 
Cover 
Plate 

Channel 
Web 

Channel Top 
Flange 

Channel Bottom 
Flange 

Total 
Channel 

Total 
Member 

Reference Area (in2) 5.24 8.09 1.85 1.84 11.8 17.0 

Average Area (in2) 5.49 8.20 1.85 1.85 11.9 17.4 
Standard Deviation of 

Area (in2) 
0.155 0.109 0.264 0.268 0.476 0.436 

COV 0.028 0.013 0.143 0.145 0.040 0.025 

Minimum Area (in2) 5.30 8.07 1.38 1.37 11.1 16.7 

Maximum Area (in2) 5.65 8.31 2.03 2.03 12.2 17.8 

n 5 5 5 5 5 5 
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Table 6.11 Descriptive statistics for Member A at Cross Section 2 

 
Cover 
Plate 

Channel 
Web 

Channel Top 
Flange 

Channel Bottom 
Flange 

Total 
Channel 

Total 
Member 

Reference Area (in2) 4.90 8.05 1.83 1.83 11.7 16.6 

Average Area (in2) 5.38 8.25 1.81 1.84 11.9 17.3 
Standard Deviation of 

Area (in2) 
0.613 0.119 0.352 0.251 0.526 0.422 

COV 0.114 0.014 0.194 0.136 0.044 0.024 

Minimum Area (in2) 4.73 8.12 1.19 1.39 11.0 16.9 

Maximum Area (in2) 6.27 8.40 2.03 1.96 12.2 17.9 

n 5 5 5 5 5 5 

 

Table 6.12 Descriptive statistics for the truss chord at Cross Sections 1 and 2 

 Cross Section 1 Cross Section 2 

Reference Area (in2) 33.3 33.6 

Average Area (in2) 34.6 34.7 
Standard Deviation of 

Area (in2) 
0.842 0.673 

COV 0.024 0.019 

Minimum Area (in2) 33.4 34.0 

Maximum Area (in2) 35.7 35.7 

n 5 5 

 

A one sample t-test was used to determine if the average areas estimated from the inspectors’ 

measurements were statistically different from the reference areas.  The t-statistic, t, can be 

calculated using Equation 6.1: 

𝑡
𝑋 𝜇

𝑠
√𝑛

6. 1  

 

where μ is the reference mean, X̅ is the sample mean, s is the sample standard deviation, and n is 

the sample size [58].  The t-statistic is assumed to have a t distribution with the degrees of freedom 

equal to the number of observations minus one.  The probability value, or p-value, expressing the 

probability that the average area determined based on the inspection results is not different from 

the reference area can calculated from the t distribution table [58].  A low p-value indicates that 

there is a low likelihood that the sample area is equal to the proposed mean.  Table 6.13 shows the 

p-values for member areas at Cross Section 1 and Cross Section 2.  The p-values less than 5% are 
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shown in bold since this was the threshold used to indicate significance.  Based on these results, 

the average area estimated by this population of inspectors was statistically different from the 

reference area for the cover plates at two locations and the channel at one location.  Additionally, 

the average area estimated for the truss chord was statistically different from the reference area at 

both cross sections.   

Table 6.13 p-values for member areas at Cross Sections 1 and 2 

Location 
Cover 
Plate 

Channel 
Web 

Channel Top 
Flange 

Channel Bottom 
Flange 

Total 
Channel 

Total 
Member 

Cross Section 1 0.022 

Member A 0.045 0.021 0.188 0.012 0.001 0.005 
Member B 0.433 0.458 0.010 0.059 0.054 0.132 

Cross Section 2 0.025 

Member A 0.023 0.086 0.987 0.948 0.599 0.131 
Member B 0.151 0.017 0.989 0.909 0.443 0.022 

6.2.5.3 Task 3 

In Task 3, the inspectors were asked to indicate the critical section for measuring section loss 

within the 28-inch region of the chord between Batten Plates C and D shown in Figure 6.12.  The 

inspectors were not required to report any thickness measurements at this location, although they 

could take measurements to identify the section.  A summary of the results for this task is shown 

in Table 6.14.  The duration of this task ranged from 2 minutes to 11 minutes.  All of the inspectors 

used an ultrasonic thickness gauge and a measuring device (folding ruler or tape measure) to 

complete this task. One inspector used a broom during this task. 

 

Figure 6.12 Limits of inspection for Task 3 

Batten 
Plate C 

Member A 

Member B

Batten 
Plate D 



211 
 

Table 6.14 Summary of Task 3 Results 

 
Inspector 

1 
Inspector 

2 
Inspector 

3 
Inspector 

4 
Inspector 

5 
Location of Critical Section 
(in inches measured from 

Batten Plate C) 
15 27 9 6 18.5 

Duration (min.) 10 11 3 6 2 

 

Each inspector identified a different location as the critical section, as shown in Figure 6.13.  One 

inspector rationalized that the rivets appeared to be stretched and there was a gouge in the channel 

web at the location they identified as the critical section.  Another inspector selected the critical 

section based on the amount of distortion at the top of the cover plate.  A third inspector asserted 

that there was not much difference in thickness throughout the inspection region, so they selected 

the midpoint because it would be the worst case for buckling (note that the inspectors were told 

that this was a fracture critical bottom chord, implying that it is a tension member).  The proctor 

observed that the majority of the inspectors only considered the thickness loss and/or distortion 

near the top of the cover plate.  However, since this is fairly consistent through the region, it was 

not a particularly effective or efficient way to identify the section with the most section loss.  

Instead, the inspectors could have considered the thickness along the bottom of the cover plates as 

this varied between 0.28 inch and 0.375 inch:  Since greater distortion generally indicates more 

section loss, this could have been identified without taking thickness measurements.  The author 

determined the critical section to be located 25 inches from Batten Plate D similar to the section 

identified by Inspector 2.  

 

Figure 6.13 Critical section locations identified by the inspectors during Task 3 



212 
 

It is interesting to note that although this task was limited to 28 inches of the chord, the results do 

not reflect increasing agreement among the inspectors as compared to Task 1.  In both tasks, three 

inspectors identified critical sections within a 10-inch region of the member.  This suggests that 

inspectors applied similar broad reasoning to identify the critical region of the specimen, but their 

precise reasoning, used to identify the exact location, differed.  For instance, in Task 1, the 

inspectors identified the critical region based mainly on the degree of section loss and/or distortion 

along the top edge of the web plates.  However, in Task 3, the distortion and section loss was 

relatively uniform, and so this reasoning was less effective.  Instead, inspectors used additional 

considerations, such as the likely failure mechanism or condition of the rivets and channel member, 

to identify the exact location of the critical section.   

6.2.6 Recommendations 

The following recommendations to improve the consistency and quality of visual inspections of 

corroded steel bridge members were developed based on the results from this round robin. 

 Inspectors should receive training specific to corrosion inspection and evaluation.  

Instructions on how to properly calibrate and use an ultrasonic thickness gauge should 

be provided.  Inspectors need improved instructions on what information is required 

by load rating engineers, and how these requirements vary based on bridge and 

member type.   

 Thickness measurement of members with moderate deterioration should be taken at 

intervals not to exceed 3 inches, and no fewer than three measurements (outer edges 

and midpoint) should be recorded.  Additional thickness measurements may be needed 

for critical members or members with more severe deterioration.  Inspectors should 

clearly record the location of each measurement or the distance between 

measurements on their inspection forms.  

 Inspectors should record dimensional measurements for all members to verify 

construction plans.  Nominal (no deterioration) thickness measurements should also 

be recorded for reference.   

 Before recording thickness measurements, inspectors should visually inspect the full 

length of the member.  Inspectors should use typical inspection tools, including a 

flashlight, to perform this inspection.  After the general inspection, they should focus 
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on critical regions of the member and areas that are prone to corrosion and pack rust 

or showing the most signs of deterioration.  

6.3 Load Rating 

A small pool of load rating engineers was invited to load rate the same portion of the truss chord 

that was used in the inspection round robin.  A benchmark set of inspection data was provided to 

ensure that each load rater was working from the same information.  The load raters were asked to 

determine the inventory level load rating factor for the Strength I limit state and the remaining 

fatigue life based on the information provided.  The load raters’ calculations were compared to the 

theoretical load rating determined by the author and to each other to evaluate the variability in 

interpreting inspection findings and applying code requirements.  

6.3.1 Load Rating Scenario 

The load ratings were completed at the participants’ convenience between June 2018 and August 

2018.  The load raters were provided with the same load rating procedure, inspection report, 

construction plans, exit survey, and blank load rating summary sheet via e-mail.  After completing 

the load rating, the load rater was asked to complete a written exit survey to gather information on 

their education, experience, and training.  The load rating report, calculations, and exit form were 

returned via e-mail.  The load rating procedures, inspection report, and exit survey are provided in 

Appendix D.  

 

The evaluation was divided into two separate tasks that could be completed in any order.  In Task 

1, the load raters were asked to calculate the inventory level load rating factor for the Strength I 

limit state in the as-built (undamaged) condition and the as-inspected (damaged) condition.  In 

Task 2, the load raters were asked to calculate the remaining fatigue life in the as-inspected 

condition.  The load rating procedures specified that the load rating was to be completed using the 

load and resistance factor rating method in accordance with the 2nd Edition of the AASHTO 

Manual for Bridge Evaluation (MBE), including the 2016 interim revisions [2].  The load raters 

were allowed to use any other references or computer software available to them.   
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A blank load rating summary report was provided so that all inspectors would record their final 

results in a consistent manner.  Inspectors were asked to show all work necessary to support these 

results, however standardized forms for the calculations were not provided. 

  

The background information provided to the participants consisted of a mock bridge inspection 

report and relevant sheets from the construction plans.  The inspection report was populated with 

information from the National Bridge Inventory and inspection findings based on the results from 

Inspectors 1 and 2 in the inspection round robin.  The inspection report included photos and 

detailed measurements of metalwork losses at three locations along the chord similar to what is 

shown in Figure 6.14.   

   

Figure 6.14 Typical photos and metalwork loss measurements included in the mock inspection 
report 

 

In addition to the construction plans and the inspection report, the following information about the 

bridge was given to the load raters:  

 The bridge was constructed in 1941 in the upper Midwest region of the United States. 

 The member under evaluation is the bottom truss chord in Span 16 between joints L2 and 

L4. 

 The member is fracture critical. 

 PDC = 335 kips, PDW = 0 kips, PLL+IM = 322 kips (design truck with lane load) 

 PLL+IM = 134 kips (fatigue truck) 
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 These loads are unfactored. They include the distribution factor and dynamic load 

allowance. 

 (ADTT)SL = 1500 and it is assumed that (ADTT)SL is constant through the life of the bridge. 

The loads were determined using a 2D SAP2000 model of Span 16, as shown in Figure 6.15.  The 

total dead load was calculated from the construction plans and applied at the top chord joints.  The 

predicted dead load in the member under consideration, L2L4, was 320 kips.  This compared well 

with the design dead load of 335 kips specified on the construction plans.  For consistency, the 

design dead load was used in this exercise.  Influence lines were used to determine the live load 

effects on member L2L4.  The predicted Strength I and Fatigue live loads for HL-93 loading were 

322 kips and 104 kips, respectively.  The fatigue live load was artificially increased to 134 kips 

for this exercise to produce a finite fatigue life.  To validate the model, the live load effects from 

the H-20 loading were determined in accordance with the 1931 AASHO Standard Specifications 

since this was the governing specification at the time of design [81].  The predicted live load was 

150.7 kips and the predicted impact load was 30.1 kips.  These values are nearly identical to the 

design live loads of 150.3 kips and the design impact load of 29.7 kips specified on the construction 

plans.   

 

Figure 6.15 2D SAP model of Span 16  

6.3.2 Engineer Demographics 

Four engineers (3 males and 1 female) participated in this study.  Two of the load raters were from 

federal agencies, one was from a state department of transportation, and one worked for a private 

engineering firm.  Participating engineers were based in three states, Virginia (2), Indiana (1), and 

Minnesota (1), although these engineers may load rate bridges around the country.  The inspectors 

ranged in age from 29 to 56 and their load rating experience varied from 0 years to 10 years.  All 

four load raters were professional engineers with post-secondary degrees in civil engineering.  

Member L2L4 
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Three of the four load raters had completed the FHWA/NHI 4-day course Fundamentals of LRFR 

and Applications of LRFR for Bridge Superstructures.  The engineers had performed between 0 

and 50 load ratings during the 12 months prior to their participation in the study and the percentage 

of work time spent performing load ratings ranged from 0% to 90%.  Three of the four load raters 

had previously load rated a steel truss bridge, although for one of the participants, this was the only 

bridge that they had ever load rated.  In addition to load rating experience, two of the load raters 

also had inspection experience and/or experience designing steel bridges for new construction.  

Select load rater demographics are summarized in Table 6.15. 

Table 6.15 Load rater demographics 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 

Age 40 42 56 29 

Employment Sector 
Federal 
Agency 

Federal 
Agency 

State DOT 
Private 

Consultant 
Years of Load Rating 

Experience 
< 1 10 8 4 

Professional Licensure PE (Civil) PE (Civil) PE (Civil) PE (Civil) 

Education 
Doctor of 

Philosophy  
Master’s 
Degree  

Bachelor’s 
Degree 

Master’s 
Degree 

Number of load ratings in 
previous 12 months 

0 5 30 50 

 

6.3.3 Load Rating Results 

The reference load rating, included in Appendix D, was developed in accordance with the 2nd 

Edition of the MBE and the 7th edition of the AASHTO LRFD Bridge Design Specifications 

(LRFD BDS) [54].  All four participants also used the MBE and the LRFD BDS to complete this 

load rating.  One load rater used the 3rd edition of the MBE instead of the 2nd edition.  Additionally, 

one load rater also referenced a state specific load rating manual and class notes.  Three of the load 

raters used Microsoft Excel to complete the load rating and one used PTC Mathcad.    

 

The load raters were asked to self-report the amount of time they spent on this evaluation.  Three 

of the participants reported that it took them 8 hours or less to complete the evaluation.  One load 

rater reported that the load rating took 50 hours.  This load rater also reported that they used 

SAP2000 to verify the specified loads.  Therefore, it is likely that the load rating portion of the 
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exercise required only a small percentage of the total reported time, although this is not known for 

certain.   

6.3.3.1 Material Strength Assumptions 

The load raters were required to make an assumption regarding the material strength (yield and 

tensile) of the truss chord members since it was not specified on the construction plans.  It was 

expected that the load raters would use the year of construction to determine the minimum 

mechanical properties of the steel.  This information is available from a variety of sources 

including the MBE, the AISC Rehabilitation and Retrofit Guide [82], and withdrawn ASTM 

specifications.  The reference load rating assumed a yield strength of 33 ksi and an ultimate 

strength of 66 ksi based on Table 6A.6.2.1-1 in the MBE for construction between 1936 and 1963.  

(Note, the average yield and tensile strengths of the truss chord member were determined to be 

39.5 ksi and 68 ksi, respectively, through material testing performed as part of a separate study 

[83].) 

 

The material strengths assumed by the load raters are summarized in Table 6.16.  All of the 

participants assumed a yield strength of 33 ksi, while the assumed tensile strength varied between 

52 ksi and 66 ksi.  Only two of the load raters provided a reference to support their assumption 

with one citing the MBE and the other citing the 1939 edition of ASTM A7.  However, the engineer 

that referenced the MBE assumed a tensile strength of 52 ksi which corresponds to construction 

before 1905.  

Table 6.16 Material strength assumptions 

  Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 
Assumed Yield 
Strength (ksi) 

33 33 33 33 33 

Assumed Tensile 
Strength (ksi) 

60 66 60 52 66 

Reference  ASTM A7-39 Not cited Not cited 
MBE Table 
6A.6.2.1‐1 

MBE Table 
6A.6.2.1‐1 

 

6.3.3.2 Gross and Net Section Area Calculations  

Before calculating the load rating factors and the remaining fatigue life, the load raters needed to 

determine the gross section and net section areas of the truss chord.  In the as-built (undamaged) 

condition, this is relatively straightforward and can be calculated from the construction plans and 
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handbook properties.  In the as-inspected (damaged) condition, the load raters were required to 

consider the inspection findings provided in the inspection report to determine the appropriate 

section areas.    

 

The gross and net section areas in the as-built condition are summarized in Table 6.17.  Estimates 

for the gross section area varied from 34.7 in2 to 118.3 in2 and estimates of the net section area 

varied from 27.3 in2 to 33.2 in2.  The reference values were 34.7 in2 and 29.0 in2 for the gross 

section area and the net section area, respectively. 

Table 6.17 As-built gross and net section area estimates 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 
Gross 

Section Area 
(in2) 

34.7 118 34.9 35.3 34.7 

Net Section 
Area (in2) 

28.8 28.7 33.2 27.3 29.0 

 

There is reasonable agreement among the areas calculated by the load raters, with the exception of 

the gross section area reported by Load Rater 2.  The gross section area determined by Load Rater 

2 is more than three times the reference value, but since Load Rater 2 did not provide any 

calculations to support this value, the cause of the discrepancy could not be identified.  The 

following list summarizes some of the other sources of variability in these values. No distinction 

is made between assumptions or inaccuracies which yield a conservative estimate of member area 

and those which lead to an unconservative estimate. 

 Channel Area. Two load raters assumed an area of 11.8 in2 for the C15x40 channel.  This 

is the value given in current steel handbooks, but is slightly larger than the value given in 

steel handbooks at the time of construction.  The other load raters and the reference value 

used an area of 11.7 in2 as specified in the 3rd edition of the AISC Steel Construction 

Manual, originally released in 1937 [84].    

 Number of holes in the net section.  The number of rivet holes through the cross section 

varies along member L2L4, as shown in Figure 6.2.  The majority of the member includes 

four rivets connecting the cover plates to the channel webs.  At the batten plates, there are 

an additional four rivets connecting the batten plates to the channel flanges.  Near the joints, 

there is a section with six holes through the webs, but the partially developed 1/2-inch 
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splice plates compensate for the two additional holes.  In their net section calculations, two 

load raters assumed six holes through the web and four holes through the flange, but they 

did not include the developed portion of the splice plate.  One load rater assumed a single 

hole through each web and no holes through the flange.  The final load rater and the 

reference value calculated the net section based on eight holes through the cross section 

(four holes through the flanges and four holes through the webs).   

 Rivet and hole diameter.  The construction plans specify a 7/8-inch diameter rivet for 

connections in the main truss members.  Still, one load rater assumed the rivet diameter 

was 3/4 inch.  Two load raters and the reference value assumed the hole diameter was 1/16 

inch greater than the rivet diameter.  One load rater assumed the hole diameter matched the 

rivet diameter and another load rater assumed that the hole diameter was 1/8 inch greater 

that the rivet diameter.   

The gross and net section areas in the as-inspected condition are summarized in Table 6.18.  

Estimates for the gross section area varied from 31.2 in2 to 114.9 in2 and estimates of the net 

section area varied from 25.3 in2 to 28.7 in2.  The reference values were 32.5 in2 and 27.9 in2 for 

the gross section area and the net section area, respectively.   

Table 6.18. Summary of as-inspected gross and net section area estimates 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 
Gross Section 

Area (in2) 
32.9 115 31.2 32.3 32.5 

Governing cross 
section used to 
determine gross 

section area 

Cross Section 1 Cross Section 1 Cross Section 1 Cross Section 1 Cross Section 1 

Net Section Area 
(in2) 

27.3 25.3 Not Specified 28.7 27.9 

Governing cross 
section used to 
determine net 
section area 

Cross Section 1 Cross Section 1 Not Specified Cross Section 1 Cross Section 3 

 

Again, there is reasonable agreement among the values determined by the load raters, with the 

exception of the gross section area determined by Load Rater 2.  The error in the as-built 

calculation was carried forward as the losses reported at Cross Section 1 were simply subtracted 

from the as-built gross section area.  All four engineers used Cross Section 1 as the governing 

cross section, and two of the load raters provided calculations at all three locations to support this.  
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The following list summarizes some of the other sources of variability in these values. No 

distinction is made between assumptions or inaccuracies which yield a conservative estimate of 

area and those which lead to an unconservative estimate. 

 Material losses in the cover plate.  The load raters employed different methods to account 

for the material loss and distortion in the cover plates.  One load rater used the simple 

average of the thickness measurements to determine the remaining area, and two load raters 

used a weighted average of the thickness measurements.  The final load rater completely 

neglected the area of the cover plates that had been distorted by pack rust, but did not 

consider the thickness losses along the full depth of the plates.  The reference areas were 

calculated using the middle Riemann sum approach discussed in Section 6.2.4.    

 Material losses in the channel.  The inspection report included thickness measurements for 

Channel B at Cross Section 1.  In all other locations, no losses were reported.  One load 

rater used the average of the thickness measurements to determine the remaining area of 

this channel, and one load rater used a weighted average of the thickness measurements.  

The other two load raters ignored the losses in the channel at Cross Section 1.  The 

reference values accounted for the losses in this channel similar to the cover plates, 

although the losses in this member were very small and likely within the mill tolerance for 

the rolled shape.   

 Number of holes in the net section.  Although all three load raters that estimated the net 

section area in the as-inspected condition assumed that Cross Section 1 was the governing 

cross section, each assumed a different number of holes through the cross section.  Load 

Rater 1 assumed eight holes (four flange, four web), Load Rater 2 assumed ten holes (four 

flange, six web), and Load Rater 4 assumed four holes (zero flange, four web).  The 

reference values were calculated assuming four holes through the cross section (zero flange, 

four web) at Cross Sections 1 and 2 and eight holes through the cross section (four flange, 

four web) at Cross Section 3.  With this assumption, the smallest gross section was 

calculated at Cross Section 1 and the smallest net section was calculated at Cross Section 

3.   

 Rivet and rivet hole diameter. As discussed above for the as-built condition.  
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6.3.3.3 Task 1 

In Task 1, the load raters were asked to determine the member capacity and inventory load rating 

factor for the Strength I limit state in the as-built and as-inspected conditions.  Using their previous 

assumptions about material strength and the calculated gross and net section areas, the load raters 

were able to determine the member’s resistance to yielding and fracture.  All of the load raters 

used the equations given in Section 6.8.2 of the LRFD BDS to determine the tensile resistance of 

the member and the equations from Section 6A.4.2 of the MBE to calculate the member capacity 

and load rating factor.  The member capacity and rating factor results are summarized in Table 

6.19 and Table 6.20 for the as-built and as-inspected conditions, respectively.   

 

In the as-built condition, estimates for member capacity ranged from 923 kips to 1363 kips and 

estimates for the load rating factor varied from 0.9 to 1.68.  The reference capacity was 978 kips 

and the corresponding rating factor was 0.99.  Three of the four load raters determined that the 

capacity was governed by yielding on the gross section.  Load Rater 2, who reported the greatest 

member capacity and highest rating factor, determined that fracture on the net section was the 

governing limit state.  This was due to the previously discussed overestimation in the gross section 

area. 

Table 6.19 Summary of Task 1 results (as-built condition) 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 

Governing limit 
state 

Yielding on 
the gross 
section 

Fracture on the 
net section 

Yielding on 
the gross 
section 

Yielding on 
the gross 
section 

Yielding on 
the gross 
section 

Member Capacity 
(kips) 

923 1363 929 996 978 

Inventory Rating 
Factor 

0.9 1.68 0.9 1.02 0.99 

 

In the as-inspected condition, estimates for member capacity ranged from 732 kips to 1022 kips 

and estimates for the rating factor varied from 0.56 to 1.07.  The reference capacity was 866 kips 

and the corresponding rating factor was 0.79.  Three of the four load raters determined that the 

capacity was governed by yielding on the gross section.  Again, there is reasonable agreement 

among the values determined by the load raters, with the exception Load Rater 2.  The MBE 

incorporates some of the recommendations from NCHRP Report 333 into the commentary for 
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Section 6A.6.5 titled “Effects of Deterioration on Load Rating” [2].  Specific to steel tension 

members that have experienced localized corrosion, the MBE allows that yielding on the reduced 

net section area may be considered the governing limit state for simplicity.  However, this 

conservative approach was not adopted by any of the load raters.  

Table 6.20 Summary of Task 1 results (as-inspected condition) 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 

Governing limit 
state 

Yielding on 
the gross 
section 

Fracture on the 
net section 

Yielding on 
the gross 
section 

Yielding on 
the gross 
section 

Yielding on 
the gross 
section 

Member Capacity 
(kips) 

877 1022 831 732 866 

Inventory Rating 
Factor 

0.81 1.07 0.73 0.56 0.79 

 

In addition to variability caused by the material strength and area estimates discussed above, the 

following list summarizes some of the other sources of variability in these values.  No distinction 

is made between assumptions or inaccuracies which yield a conservative estimate of member 

capacity and those which lead to an unconservative estimate. 

 Assumed value for RP.  The equation for tensile resistance to fracture on the net section in 

the LRFD BDS includes a hole reduction factor, RP, to account for reduced fracture 

resistance in the vicinity of holes that were punched full size [78, Eq. 6.8.2.1-2].  Two of 

the load raters assumed Rp was equal to 0.9, as specified for holes punched full size.  One 

inspector assumed that Rp was equal to 1.0, as specified for holes that are drilled full size 

or sub-punched and reamed.  One inspector did not include this factor in the equation and 

so a value of 1.0 was used by default.  The reference value assumed that Rp was equal to 

1.0 based on a construction plan note which reads, “General reaming will be required as 

per M.H.D [Minnesota Highway Department] Specifications 2407 3E5a”.  

 Assumed values for φC and φS.  The equation for member capacity in the strength limit state 

from the MBE includes a condition state factor, φC, and a system factor, φS [2, Eq. 6A.4.2.1-

2].  These factors are applied along with the strength resistance factor from the LRFD BDS 

to the nominal member capacity.  The condition factor takes a value between 0.85 and 1.0 

and is intended to account for the increased uncertainty in the capacity of deteriorated 

members and the high likelihood of additional deterioration before the next inspection.  
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The system factor also takes a value between 0.85 and 1.0 and is intended to account for 

reduced redundancy in specific superstructure types.  Additionally, the MBE stipulates that 

the product of the condition factor and the system factor (φC x φS) need not be taken as less 

than 0.85 [2, Eq. 6A.4.2.1-3].  The reference member capacity in the as-built condition was 

calculated based on a condition factor of 1.0, specified for members in good condition, and 

a system factor of 0.9, specified for riveted members in two-girder/truss/arch bridges.  The 

reference member capacity in the as-inspected condition was calculated based on a 

condition factor of 0.85, specified for members in poor condition, and a system factor of 

0.9.  Since the product of 0.85 and 0.9 is 0.77, a factor of 0.85 was instead applied to the 

design capacity in the as-inspected condition.  The values assumed by the load raters for 

these factors are shown in Table 6.21.  The only factor that the load raters were in complete 

agreement on was the condition factor in the as-inspected condition.  For all the other 

factors, at least two different values were used by the load raters.  Additionally, two load 

raters did not apply the lower limit to the product of the condition and system factors even 

though it was warranted.  

Table 6.21 Assumed condition and system factors 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 
Condition factor, 

as-built 
0.85 1 0.85 1 1 

System factor, 
as-built 

1 0.9 0.85 0.9 0.9 

Condition factor, 
as-inspected 

0.85 0.85 0.85 0.85 0.85 

System factor, 
as-inspected 

1 0.9 0.85 0.85 0.9 

Lower Limit 
Applied? 

N/A No Yes No Yes 

 

6.3.3.4 Task 2 

In Task 2, the load raters were asked to record the governing fatigue category, the effective stress 

range, and the remaining fatigue life of the member.  This evaluation was only performed for the 

as-inspected condition.  The results for this task are summarized in Table 6.22.  

 

Estimates for the effective stress range varied from 2.9 ksi to 3.7 ksi and the reference value was 

3.6 ksi.  One load rater assumed Category A as the governing fatigue category, two load raters 
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assumed Category C, and one load rater assumed Category D.  The reference value was based on 

Category D.  Finally, three of the four load raters determined that the member had infinite 

remaining fatigue life, while one load rater determined that the remaining fatigue life was just 

under 30 years.  The reference remaining fatigue life was 32 years.   

Table 6.22 Summary of Task 2 results 

 Load Rater 1 Load Rater 2 Load Rater 3 Load Rater 4 Reference 
Governing 

Fatigue Category 
D C A C D 

Effective Stress 
Range (ksi) 

3.7 3.7 2.9 3.5 3.6 

Remaining 
Fatigue Life 

(years) 
29.6 Infinite Infinite Infinite 32 

 

While Fatigue Category A is not appropriate for this member since it applies only to base metal 

with minimal surface roughness, the distinction between Category C and Category D is less clear.  

For design, the LRFD BDS assigns base metal at the net section of non-pretensioned, mechanically 

fastened joints to Category D [78, Table 6.6.1.2.3-1].  For evaluation, the MBE allows riveted 

connections to be considered as Category C details due to the internal redundancy of built-up 

members [2, Sections 7.2.1 and C7.2.1].  In the 2015 revisions to the 2nd edition of the MBE, 

AASHTO included an additional stipulation stating that the increase in fatigue life is not warranted 

for riveted members in “poor physical condition, such as with missing rivets or indications of 

punched holes” [2, Section 7.2.1].  This forces the load rater to make a judgement call between 

Category C and Category D based on the condition of the member.  Although the MBE does not 

mention section loss or damage from pack rust, the member is in poor physical condition and so 

the increase in fatigue life may not be appropriate for this member.  Based on this, the reference 

value assumed that Category D was the governing fatigue category for this member.   

 

In addition to variability caused by the area estimates discussed above, the following list 

summarizes some of the other sources of variability in these values.  No distinction is made 

between assumptions or inaccuracies which yield a conservative estimate of remaining fatigue life 

and those which lead to an unconservative estimate. 

 Assumed value of RR.  The MBE equation for estimating total fatigue life includes a factor 

related to the probability of fatigue crack initiation, RR [2, Eq. 7.2.5.1-1].  The MBE 
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includes four levels at which fatigue life can be estimated: minimum, Evaluation 1, 

Evaluation 2, and mean.  The minimum expected fatigue life, used during design, provides 

the most conservative estimate while mean fatigue life yields the statistically most likely 

fatigue life.  The Evaluation 1 and Evaluation 2 fatigue life estimates will fall between the 

minimum and the mean fatigue life estimates.  The MBE provides only general guidance 

on selecting the appropriate fatigue life for evaluation, leaving the decision largely up to 

the engineer.  In this study, Load Rater 1 reported the minimum fatigue life.  Load Rater 2 

elected to estimate the mean fatigue life, although they later determined the life to be 

infinite.  The other two load raters did not provide any indication of which finite fatigue 

life level they would have used if they had found the member to have finite life.  The 

reference value was calculated using the RR factor for Evaluation 1 fatigue life.  Although 

the chord may possess low toughness, by modem standards, the internal redundancy of the 

built-up member justifies accepting an increased probability of fatigue crack initiation.  

Additionally, the Evaluation 1 fatigue life corresponds to the evaluation life used in 

previous editions of the MBE and is the level most often recommended in state specific 

load rating manuals, if any recommendation is made [85]–[87].  The Ohio Department of 

Transportation recommends calculating the Evaluation 2 fatigue life [88]. 

 Application of Rp and Rs.  The MBE equation for effective stress includes a partial load 

factor, Rs, and a multiple presence factor, Rp [2, Eq. 7.2.2-1].  Additionally, the partial load 

factor is included in the equation for maximum stress range [2, Section 7.2.4].  These 

factors are typically very close to 1.0, and so ignoring or misapplying them has negligible 

or no effect on the results.  A few discrepancies in how these factors were applied were 

noted while reviewing the load raters’ calculations and are noted here for completeness.  

One inspector had a minor typo in the equation for Rp, multiplying by the number of lanes 

instead of dividing.  One load rater included both Rp and Rs in the calculation for maximum 

stress range.  One load rater assumed Rp was equal to 1.0 and two load raters did not include 

Rp or Rs in any of the stress range calculations.   

 Area used to determine live load stress range.  One load rater used the gross section area 

instead of the net section area to determine live load stress range.  The other three load 

raters and the reference value used the net section area to determine live load stress range.   
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 Typographical errors and different interpretations of the provided information.  A number 

of other small errors or misinterpretations of the provided information were noted in the 

Task 2 calculations.  There may have been ambiguity in how the background information 

was presented or conveyed to the participants, although there was no common mistake 

among all the load raters pointing to an obvious omission.  In practice, these calculations 

would be subject to review from a higher level official, and it is likely that these errors 

would have been noticed and corrected.  However, the fatigue life analysis is less 

straightforward than the strength evaluation, both in procedure and communication, and so 

minor mistakes are likely to occur more frequently.  One load rater used a fatigue truck 

load of 135 kips, instead of 134 kips, and another reduced the given fatigue truck load by 

the multiple presence factor for a single lane (1.2) even though this factor was not included 

in the provided load.  One load rater used the 3rd edition of the MBE which has adopted 

the larger load factors for the Fatigue I (0.8) and Fatigue II (1.75) limit states from the 8th 

edition of the LRFD BDS.  One load rater used an area that did not match any of the 

previous calculations to determine the live load stress range.  Another inspector assumed a 

traffic volume growth rate of 2%, even though the load rating procedures stated that the 

load raters were to assume a constant ADTT throughout the life of the bridge.  This resulted 

in an underestimation of the number of cycles that had already been applied to the structure 

and an overestimation of the remaining fatigue life.  

6.3.4 Recommendations 

The following recommendations to improve the quality and consistency of load rating evaluations 

of corroded steel bridge members were developed based on the results from this round robin. 

 Load raters should receive instruction specific to determining the gross section and net 

section areas in the as-inspected condition.  A single method should be used by all load 

raters to ensure that results from one load rater can be compared to the results from another.  

This guidance should clearly state how the thickness measurements are used to determine 

remaining area (average, weighted average, etc.) and whether load raters should assume 

that the thickness measurements may apply anywhere along the member or at a specific 

location.  The method used to calculate member area should inform how the inspectors 

collect and record measurements in the field.   
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 Load raters should be required to clearly document and cite all assumptions.  If questions 

or discrepancies arise in the future, this information will make it easier to validate previous 

evaluation.  Additionally, load raters should be encouraged to include sketches to support 

the area calculations.  Sketches would be especially helpful in identifying where the net 

section area was calculated.  

 State DOT manuals should provide clear guidance on issues not directly specified in the 

MBE, such as how to determine the appropriate fatigue category for riveted members or 

the recommended fatigue life evaluation level.  Similarly, state DOT manuals should 

provide additional direction on addressing localized corrosion considering yielding on 

either the reduced gross section or the reduced net section.  Examples for load rating 

members with moderate deterioration and section loss should be incorporated into the MBE 

or state specific load rating manuals.  

 Load raters should have access to historical standards and specifications, both federal and 

local, and be required to use these when load rating older structures.  Load raters should be 

encouraged to include the relevant pages from the historical documents, including the 

construction plans, in their calculation packages for future reference.   

 The fatigue life evaluation method presented in the MBE is complicated.  Small mistakes 

are common and so fatigue life evaluations should be carefully reviewed by a senior load 

rater.  Load raters should be encouraged to familiarize themselves with the theory behind 

the equations and factors; simply “plugging and chugging” with the code equations may 

lead to mistakes.     

6.4 Summary 

To expand the findings from the visual inspections discussed in Chapter 3 and Chapter 5, a small 

inspection and load rating round robin was conducted using a bridge specimen extracted from a 

steel truss approach span in Winona, Minnesota.  In addition to investigating the inspection 

techniques and variability in findings, this round robin considered the variability in engineering 

evaluations.   

 

Five inspectors from diverse backgrounds were invited to perform a hands-on inspection of a 

portion of the lower truss chord to investigate the variability in thickness measurements recorded 
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during inspections of corroded steel bridge members.  The variability was evaluated by comparing 

the inspectors’ measurements to each other and to the reference measurements determined by the 

author.  In Task 1, three of the five inspectors determined that the critical section was located 

within a 10-inch region of the 28 feet long specimen.  This level of agreement indicates some 

consistency in the methods used by inspectors to identify where the most section loss has occurred 

along a bridge member.  In Task 2, the inspectors provided thickness measurements at two 

predetermined locations.  All five of the inspectors provided thickness measurements that 

overestimated the remaining member area and two of the inspectors did not record a sufficient 

number of measurements to provide a reasonably accurate estimate of the area (less than 5% error).  

In Task 3, all five inspectors identified a different critical section within a reduced region of the 

chord.  Although this task was limited to 28 inches of the chord, the results do not reflect increasing 

agreement among the inspectors as compared to Task 1.  In both tasks, three inspectors identified 

critical sections within a 10-inch region.  Overall, the level of detail in the findings recorded by 

some of the inspectors suggests a general uncertainty about what information is needed from the 

field to support a load rating analysis.  In practice, this uncertainty may result in the need for 

follow-up inspections to gather the necessary information. 

 

Four engineers were invited to load rate the same portion of the truss chord used for the inspection 

round robin to investigate the variability in how inspection reports are interpreted and code 

requirements are applied for corroded steel bridge members.  The variability in the results was 

evaluated by comparing them to each other and to the reference values calculated by the author.  

In Task 1, three of the four inspectors reported a load rating factor within 10% of the reference 

value for the truss chord in the as-built condition.  In the as-inspected condition, two of the load 

raters reported a rating factor within 10% of the reference value.  In Task 2, three of the four load 

raters reported an effective stress range within 5% of the reference value for the truss chord in the 

as-inspected condition.  However, due to variability in determining the governing fatigue category, 

only one of the inspectors determined that the truss chord had a finite fatigue life.  

 

Based on the results from these two studies, a number of recommendations were developed to 

improve the quality and consistency of the inspection and evaluation of corroded steel bridge 

members.  Most critically, both inspectors and load raters should receive training specific to 
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inspecting and evaluating corroded steel bridge members.  This training should provide a single 

method for determining the gross section and net section areas and discuss what information is 

needed from the inspection to support the engineering evaluation    
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7. SUMMARY AND CONCLUSIONS 

This research had the objective of investigating the performance of bridge inspectors during visual 

inspection of steel bridge members and developing a benchmark measure of inspection capability.  

Although visual inspection has been the primary means of inspecting in-service bridges since 

1968, only a small number of studies have attempted to quantify the reliability or accuracy of these 

inspections.  This research aimed to address the knowledge gap surrounding visual inspection 

performance for steel bridges in order to support future advances in inspection and design 

procedures.   

 

This research has shown that (1) there is significant variability in visual inspection performance, 

even in a tightly controlled environment, (2) it is difficult to predict inspection performance based 

on human and environmental factors expected to affect performance, (3) even long cracks (> 4 

inches) may not be reliably detected under current inspection procedures, (4) UAS-assisted 

inspection with a general purpose UAS platform did not provide fatigue crack detection 

comparable to a hands-on inspection, and (5) there is variability in how engineers interpret 

inspection findings and apply code requirements while load rating in-service bridges. 

 

Performance in these inspection tasks was similar in accuracy and consistency to other industrial 

inspection tasks and the results from this research confirm that visual inspection of a steel bridge 

is an inherently difficult task.  It is not a matter of “trying harder”; the current training scheme, 

inspection procedures, and inspection equipment produce highly variable results and modifications 

are needed to improve performance.  Strategies for improvement were developed based on the 

visual inspection literature and the quantitative and qualitative results from this research.  Above 

all, establishment of a performance based qualification system for bridge inspectors is 

recommended to confirm that a satisfactory level of performance is consistently achieved in the 

field.  Additionally, new workshops focused on the physical and mental aspects of visual 

inspection were created to address the disconnect between the theories taught in the classroom and 

their application in the field.  Ultimately, the results from this research may serve as a benchmark 

against which proposed changes to inspection policies or technologies may be evaluated.   
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7.1 Summary of Principal Findings 

The following summary provides the principal findings of this research. 

7.1.1 Summary of Hands-on Inspection Findings 

 Thirty (30) inspectors participated in the hands-on inspections of the POD specimens.  The 

average detection rate for the 70 cracks located on the painted specimens was 65%.  

Detection rates ranged from 31% to 86%.  Univariate analysis between detection rate and 

other factors, such as duration or temperature, revealed slight, but statistically significant, 

correlations.  Detection rate increased with increasing inspection duration, temperature, 

and training, but decreased with increasing experience. 

 The average number of false calls on the 147 painted specimens was 90.  The number of 

false calls ranged from 14 to 268. Univariate analysis between the number of false calls 

and other factors, such as duration or temperature, did not reveal any statistically significant 

correlations.  However, the multivariate analysis revealed that the number of false calls 

was related to the inspector’s employment sector, the maximum wind speed on the day of 

the inspection, the use of a tape measure, and completion of the FWHA Introduction to 

Element Level Bridge Inspection training course.  Inspectors that used a tape measure made 

fewer false calls while inspectors that were employed by a private inspection/engineering 

firm, experienced higher wind speeds, and attended the element level inspection training 

course tended to make more false calls.   

 For the majority of the inspectors, the likelihood of a crack being detected increased with 

crack length.  However, this was not true for three of the inspectors.  

 Probability of detection curves relating crack detection to crack length were generated in 

accordance with Military Handbook 1823a [17].  For all 30 inspectors and the full crack 

inventory, the 50% detection rate crack length was 1 inch and the 90% detection rate crack 

length was 5-1/2 inches.  The data were too scattered to assign a 95% confidence bound. 

 A random parameters binary logit model was used to identify variables beyond crack length 

that affected the probability that a crack would be detected.  The analysis showed that crack 

type and length, inspection experience, inspection duration, and the elapsed time since the 

first hands-on inspection significantly impacted the likelihood of detection for an 

individual crack. 
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7.1.2 Summary of UAS-assisted Inspection Findings 

 Four inspectors participated in the UAS-assisted field inspections of the POD specimens.  

They each inspected between 52 and 85 specimens.  The average detection rate was 54% 

and the average number of false calls was 53.  Based on the results from the 52 specimens 

that all four field inspectors inspected, the average detection rate during the UAS-assisted 

field inspections was found to be significantly lower than the average detection rate during 

the hands-on inspections, while there was no significant difference in the average number 

of false calls made during the two types of inspection.  The greatest difference in 

performance was observed in the inspection of the overhead mounted welded cover plates.  

 Over the four days of field inspection, the average flight time was five minutes and the 

maximum flight time was 18 minutes.  Frequent breaks were required to change batteries, 

avoid gusting winds, restore GPS signal, etc.  Cumulatively, these breaks caused significant 

delays during the UAS-assisted inspections, and none of the field inspectors had enough 

time to inspect all 147 specimens included in the hands-on inspections.  

 Nineteen (19) inspectors participated in the UAS-assisted desk inspections of the POD 

specimens.  The inspectors inspected 54 specimens using videos recorded during the field 

inspections.  The average detection rate was 57% and the average number of false calls 

was 70.  Detection rate varied significantly with the number of false calls.  The average 

performance during the UAS-assisted desk inspections was not statistically different from 

the average performance during the field inspections, but it was significantly worse than 

the average performance during the hands-on inspections.  

7.1.3 Summary of Truss Chord Inspection and Load Rating Findings 

 Five inspectors participated in the hands-on inspection of the truss chord.  There was little 

consistency among the inspectors in the quantity or location of thickness measurements.  

Even at the exact same location along the member, the number of recorded thickness 

readings ranged from 6 to 59.  The difference between the reference area calculated by the 

author and the area estimated from the inspector’s measurements decreased as the number 

of thickness measurements increased.   

 The inspectors identified the location of the critical section with the same level of 

agreement in Task 1, which considered the full length of the specimen, and Task 3, which 
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was limited to 28 inches of the specimen.  In both cases, the majority of the inspectors 

identified a critical section within a 10-inch region of the specimen.  This suggests that the 

inspectors applied similar broad reasoning to identify the critical region, but their precise 

reasoning, used to identify the exact location of the critical section, differed.  

 Four engineers participated in the load rating of the truss chord.  There was little 

consistency among the load raters in the method used to calculate the gross section and net 

section areas.  Three of the load raters used an average thickness (weighted or unweighted) 

to calculate the remaining area of the cover plates, while the fourth load rater ignored the 

thickness measurements and instead discounted the area of the cover plates that was 

distorted due to pack rust.  Additionally, the inspectors applied different levels of 

conservatism in identifying where along the member the critical section occurred.  

Considering the same cross section from the inspection report, each load rater assumed a 

different number of holes when calculating the as-inspected net section area.  

 The load raters demonstrated more uncertainty in determining the remaining fatigue life as 

compared to the strength evaluation.  This uncertainty was reflected by an increase in the 

number of minor errors in the calculations and misinterpretations of the provided 

background information.  Additionally, there were some inconsistencies in the application 

of the code, specifically the identification of the governing fatigue category and appropriate 

fatigue life level.  

7.2 Recommendations for Future Research 

While this research provided important findings and recommendations for visual inspection of 

steel bridge members, additional research is suggested to provide a more complete understanding 

of inspection performance for a variety of defect types and the effectiveness of suggested 

improvements to the current visual inspection procedures.  Six topics for future research are 

proposed: (1) investigate the influence of specific variables on inspection performance, (2) 

investigate visual inspection performance for other defect types, (3) evaluate the influence of the 

Observational Skills training on inspection performance (4) collect additional data on visual 

inspection performance using inspection-specific UAS platforms, (5) establish reliability-based 

performance criteria and inspection intervals, and (6) collect additional data on the load rating of 

in-service steel bridge members.  
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The first research topic will investigate the influence of specific variables on inspection 

performance using smaller, focused test groups.  Specifically, performance during nighttime 

inspections and warm weather inspections would be investigated.  Additionally, in order to better 

understand the meaning of the false positives, a small subset of inspectors would be explicitly 

evaluated based on both their hit percentage and the number of false calls made.  Finally, the 

effectiveness of specific flashlight types and other lesser user tools, such as telescoping inspection 

mirrors, head lamps, and magnifiers, would be investigated.  

 

The second research topic will investigate visual inspection performance for other defect types.  

First, additional fatigue sensitive details, some with and some without fatigue cracks, would be 

included among the existing specimen inventory on the training structure.  Second, the inspection 

course would be expanded to include other defect types, such as impact damage, coating failure, 

and loose or missing fasteners, using other bridge components from the S-BRITE Center.  

Ultimately, an attempt would be made to correlate inspection results on the POD test specimens 

with inspection performance on an actual bridge specimen. 

 

The third research topic will deliver and evaluate the effectiveness of the Observational Skills 

training course.  After delivering the training, the course attendees would be invited to perform a 

hands-on inspection of the POD specimens to assess the effect of the training on performance.  

Participants would include both inspectors that have already performed a hands-on inspection and 

those that have not.  In this way, both overall performance and the change in performance could 

be evaluated.   

 

The fourth research topic will investigate performance during UAS-assisted visual inspections 

using an inspection-specific UAS platform.  Although the UAS platform used during this research 

was minimally acceptable, additional research would explore the improvement in fatigue crack 

detection, if any, using a high-end drone with enhanced navigation and imaging capabilities.   

 

The fifth research topic involves the development of reliability-based inspection performance 

criteria and inspection intervals.  Under the current fracture control plan (FCP), each aspect of 

fracture prevention – material, design, fabrication, and inspection – is governed independently by 
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a separate specification.  Whereas, under the proposed integrated FCP, each aspect of fracture 

prevention would work cooperatively, thereby allowing one component to compensate for another 

to maintain an acceptable resistance to fracture [7].  For instance, low material toughness could be 

mitigated through more rigorous and/or frequent in-service inspections.  The quantitative 

description of in-service inspection capability and reliability offered by the POD curves provides 

the information necessary to link material, design and fabrication requirements to inspection 

method and frequency.  This research would involve identifying the performance metric(s) used 

to evaluate inspector performance, establishing the minimal acceptable level of performance, and 

determining the necessary crack types, quantities, and lengths to verify performance.  The research 

would consider both quantitative and qualitative performance metrics.  This research would also 

evaluate the change in performance after implementing performance testing for bridge inspectors.   

 

The sixth research topic will extend and expand the load rating study.  First, the current study 

would be extended by inviting additional engineers to complete the load rating evaluation 

discussed in Section 6.3.  Then, the study would be expanded to include other members or 

connections in the truss and eventually to include members from other structure types.  This 

research should focus on how engineers account for member deterioration in a load rating since 

none of the examples in the MBE address this issue.   
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APPENDIX B. UAS-ASSISTED DESK INSPECTION DOCUMENTS 
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NASA-TLX Worksheet 
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Vision Test Worksheet 
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APPENDIX C. TRUSS CHORD INSPECTION DOCUMENTS 
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APPENDIX D. TRUSS CHORD LOAD RATING DOCUMENTS 

Load Rating Procedure
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Load Rating Reference Calculations 
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