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ABSTRACT

Yan, Bin Ph.D., Purdue University, May 2019. Numerical Study of the Fractional
Quantum Hall Effect: a Few-Body Perspective. Major Professor: Chris H. Greene.

When confined to a finite, two-dimensional area and exposed to a strong magnetic

field, electrons exhibit a complicated, highly correlated quantum behavior known as

the quantum Hall effect. This dissertation consists of finite size numerical investiga-

tions of this effect. One line of study develops treatment of the fractional quantum

Hall effect using the hyperspherical method, in conjunction with applications to the

few-body quantum Hall systems, e.g., highly-controlled atomic systems. Another line

of research fully utilizes the developed numerical techniques to study on the platform

of finite size fractional quantum Hall states the bulk-edge correspondence principle,

which is universal for phases in topological orders. It has been demonstrated that

the eigenstates associated with the entanglement spectrum reveal more information

about the ground state than the spectrum alone.
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1. INTRODUCTION

Electrons in two-dimensions exhibit very interesting behaviors. In strong magnetic

fields, electrons condense into phases that contain fractionally charged quasi-particles

[1,2] obeying fractional statistics. These new phases are known as the quantum Hall

effect [3–5], which cannot be classified within Landau’s symmetry breaking picture. In

typical experiments on two-dimensional electron systems, the Hall resistance and the

magnetoresistance are shown to have quantized values at integer and certain fractional

filling factors. Extensive headway has been made in developing a theoretical picture

of this effect [6–16], but it still remains far from being completely understood.

In recent years, there has been significant interest and progress in reproducing and

studying the quantum Hall effect and its bosonic analog in highly-controlled atomic

systems. Among those developments, recent theoretical work [17] tackled the quan-

tum Hall problem from a completely different viewpoint by using the hyperspherical

adiabatic technique [18–20] developed originally for atomic systems [21–23]. On one

hand, it brought new insight into the field of quantum Hall physics. On the other

hand, it introduced theoretical toolkits that are more suitable for the study of quan-

tum Hall effect in few-body systems, such as electrons in quantum dots and cold

atoms in rotational traps [24–28].

In one line of studies in this dissertation, we continue pursuing in this direction.

Numerical techniques are developed to back up the previous hyperspherical approach

and push our capacity to numerically probe a larger number of particles. The hy-

perspherical method is then applied to study the collective excitations in few-body

fractional quantum Hall systems. Novel excitations called the hyperradial breathing

modes are predicted.

The fractional quantum Hall system is one of the cornerstones in modern con-

densed matter physics. It is the first experimentally measured and theoretically
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Fig. 1.1. Fig. 1 from Ref. [4]. Hall resistance Rxy = Vy/Ix and
magnetoresistance Rxx = Vx/Ix versus the magnetic field.

recognized system that shows non-trivial topological orders, which go beyond the

conventional Landau symmetry breaking classifications of the phases of matter. An-

other line of research of this dissertation studies the principle called the bulk-edge

correspondence, which is a universal principle for states having a topological order.

We perform the first finite system numerical calculation using the platform of frac-

tional quantum Hall states to verify this principle.

The dissertation is organized as follows. Chapter 2 reviews the basic Landau level

physics: the localized single particle orbitals in two dimensions with the perpendic-

ular magnetic field; the Landau level index, angular momentum quantum numbers;

as well as the degenerate single-particle and many-body Hilbert spaces. The concept
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of exceptional degeneracy shows deep connections between the fractional quantum

Hall states and the relative degeneracy of the underlying non-interacting many-body

Hilbert space. We also derive the correspondence between the fermion and boson

Hilbert spaces. Basics for the fractional quantum Hall ground states and quasi-hole

(particle) excitations are also reviewed. Chapter 3 introduces the hyperspherical rep-

resentation of the many-electron basis functions, with which the fractional quantum

Hall problem was solved. A technique that connects the hyperspherical method and

the conventional slate-determinant approach is also presented. An application of the

hyperspherical method to study the collective excitation of the fractional quantum

Hall system is developed. Chapter 4 discusses the bulk-edge correspondence in frac-

tional quantum Hall states. A historical line of the developments for the search of

“order parameters” for the topological phases is reviewed, which leads to the principle

called the bulk-edge correspondence. A finite size numerical study that confirms this

principle is presented. Chapter 5 summaries this dissertation and discusses future

directions.
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2. BASICS

2.1 Landau Levels

The Hamiltonian for a non-relativistic electron with mass me in two dimensions

in a perpendicular magnetic field is given by

H =
1

2me

(−ih̄∇+ eA)2 (2.1)

in SI unit, where the electron charge is defined as −e. A is the vector potential of

the uniform magnetic field, Bẑ = ∇×A. The eigenstate and eigenvalue problem of

the above Hamiltonian can be solved under a special choice of gauge, the symmetric

gauge,

A =
B× r

2
=

B

2
(−y, x, 0), (2.2)

which preserves the rotational symmetry of the system.

With this choice of A, the Hamiltonian can be written in Cartesian coordinates

as

H = − h̄2

2me

∇2 +
e2B2

8me

(x2 + y2) +
eB

2me

Lz, (2.3)

where Lz = −ıh̄(x∂y − y∂x) is the z-component of the angular momentum operator.

In the magnetic length scale where length is expressed in the units of lB,

lB =

√
h̄

meωc
, (2.4)

the Hamiltonian is further reduced to the following form in polar coordinates:

H = −1

2

{
1

r
∂rr∂r −

L2
z

h̄2r2

}
+

1

8
r2 +

1

2h̄
Lz. (2.5)

The single particle eigenstate in this gauge in the magnetic length scale can be

written as:

ψmn (r, φ) =

√
n!

2|m|+1π(n+ |m|)!
eimφr|m|e−r

2/4L|m|n (r2/2), (2.6)
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with energy and angular momentum

E = h̄ωc(n+
m+ |m|

2
+

1

2
), n = 0, 1, 2, ...,+∞,

Lz = mh̄, m =∞, ..., 0,−1,−2, ...−∞.
(2.7)

Here L
|M |
n is the associated Laguerre polynomial. The energy levels separated by

h̄ωc = h̄ eB
mbc

are called Landau levels. ωc ≡ eB/me is the cyclotron frequency. n and

m are the radial quantum number and the rotational quantum number about the

z-axis, respectively.

It is more convenient to use the Landau level label ε instead of the radial quantum

number n; these are related by

ε = n+
m+ |m|

2
. (2.8)

States with the same Landau level label ε all share the same energy in unit of h̄ωc,

E(1) = ε+
1

2
. (2.9)

The Landau level spacing is proportional to the strength of the magnetic field. In

the limit of an infinite magnetic field, or equivalently the zero mass limit, the kinetic

energy dominates the interaction energy scale between particles. One can restrict the

problem to the lowest Landau level. In a typical quantum Hall experiment in GaAs,

the ground state gap under Coulomb interaction is smaller than the cyclotron energy

by one order of magnitude. Theoretical studies ignoring Landau level mixing have

correctly predicted most of the universal features of the quantum Hall effect. In the

following, unless specified in certain problems, we will restrict the discussion to the

spin-polarized particles in the lowest Landau level.

In the lowest Landau level, the only free quantum number of the single-particle

states is the angular momentum quantum number m. Wave function Eq. (2.6) is

then reduced to

ψm(r, φ) =

√
1

2|m|+1π|m|!
eimφr|m|e−r

2/4

∝z|m|e−zz̄/4,

(2.10)
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which has a beautiful feature as an analytic function, multiplying an overall Gaussian

factor, in the two dimensional complex coordinate z = x − iy. Fig. 2.1 and Fig.

2.3. show the plots of the wave function Eq. (2.10) for different values of m. Those

single particle orbitals are localized in ring shapes with widths on the order of a few

magnetic lengths.

2 4 6 8 10

r

lB

0.1

0.2

0.3

0.4

ψ

m=1

m=10

m=3

m = 0

m = -10

m = -3

Fig. 2.1. The single particle wave functions in the lowest Landau level
at φ=0 for m=0, -3, -10, in the magnetic length scale.
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It is convenient to express the single-particle states in bra-ket notation, |ε,m〉. The

well-known ladder operators cause transitions among the single-particle states [29].

The effect of the operators on the kets is summarized below:

b |ε,m〉 =

 +1, m < 0

−1, m ≥ 0

 √ε−m |ε,m+ 1〉

b† |ε,m〉 =

 +1, m ≤ 0

−1, m > 0

 √ε−m+ 1 |ε,m− 1〉

a |ε,m〉 =

 +1, m > 0

−1, m ≤ 0

 √ε |ε− 1,m− 1〉

a† |ε,m〉 =

 +1, m ≥ 0

−1, m < 0

 √ε+ 1 |ε+ 1,m+ 1〉

ab |ε,m〉 = −
√
ε
√
ε−m |ε− 1,m〉

a†b† |ε,m〉 = −
√
ε+ 1

√
ε+ 1−m |ε+ 1,m〉

(2.11)

The lowest rung of each ladder obeys

b |ε, ε〉 = 0

a |0,m〉 = 0.
(2.12)

Figure 2.2 depicts the single-particle states, arranged according to m along the

horizontal and Landau level ε along the vertical. Red lines indicate states that are

neighbors according to the b and b† operators. The b operators raise the m quantum

number up to the maximum value where m is equal to the Landau level, e.g. for

the lowest level mmax = 0. Blue lines indicate states that are neighbors according to

the a and a† operators. The a operators lower the Landau level to a minimum value

of ε = 0, while simultaneously modifying the m quantum number by one unit each

time a or a† is applied. Green lines indicate states that are neighbors according to

the ab and a†b† operators. These combined operators raise or lower the Landau level

while preserving the m quantum number. In Chapter 3, these convention and rules of

ladder operators will be used to derive transformations between two representations

of the many electron basis functions.
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Fig. 2.2. Fig. 1 from Ref. [30]. Diagram describing the Landau levels
and how the ladder operators move among the states |ε,m〉, where ε
is the Landau level and m is the 2-D angular momentum quantum
number.
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2.2 Degenerate Spaces

We first discuss the degenerate single particle Hilbert space, and then construct

the many-body Hilbert space with the direct product of single-particle spaces. De-

generacy of the system can be traced from two different directions: 1) The physical

system is confined to a finite area, and 2) the system has no sharp boundaries. The

former case is most suitable for the conventional condensed matter systems, where

the electrons are restricted to a finite macroscopic area, e.g., the two-dimensional

GaAs system. The latter case is the best platform for the study of few-body systems,

for instance, electrons in quantum dots or cold atoms in rotational traps.

2.2.1 Single Particle Space

For the case of finite area restriction, we discuss the degeneracy of the system in

the thermodynamic limit, namely, where the size of the area is much larger than the

magnetic length. To preserve the rotational symmetry, we use the symmetric gauge

and assume that the system has a disk geometry with radius R. In the thermodynamic

limit, the degeneracy of the single particle space has a topological nature and does not

rely on the particular shape of the boundaries. In the disk geometry, the allowed single

particle orbitals are those that appear mostly within the radius R. By “mostly” we

mean that the peak values of the single particle wave functions are less than the radius

of the disk. Away from the peak, the single particle wave functions damp very quickly

over the distance scale of magnetic length, thus, only a few single particle orbitals

near the boundary are modified by the boundary potential. The total degeneracy, in

the thermodynamic limit, is thus barely affected. The rigorous proof of the counting

of degeneracy can be found elsewhere [31].

Simple calculation demonstrates that the peak values of the single particle orbitals

appears at

r2
peak = (2|m|+ 1)

h̄c

eB
. (2.13)
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Fig. 2.3. The magnitudes of the single particle wavefunctions for
m = 0,−3,−10, in the magnetic length scale. In the lowest Landau
level, single particle orbitals have ring-like shapes with widths on the
order of the magnetic length scale.

The number of single particle states that exist within the disk area, in the limit of

|m| � 1, is given by solving rpeak = R, that is,

Nφ =2R2 eB

h̄c

=
Φ

Φ0

,
(2.14)

where Φ = πR2B is the total magnetic flux going through the system, and Φ0 = hc
e

is defined as the magnetic flux quanta. Thus, the number of allowed single particle

states within a given area is equal to the number of magnetic flux quanta within that

area.

The integer quantum Hall effect happens when all the allowed single particle states

in some given number of Landau levels are occupied, in other words, the ratio of the

number of electrons and the number of flux quanta, ν = Ne/Nφ, equals an integer.

To explain the fractional quantum Hall effect, where ν is a fractional number, one

has to include the interactions between particles. When interaction is considered, a

gapped ground state is then selected from the degenerate many-body Hilbert space.
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Calculations of the spectrum and the properties of low-lying states of the fractional

quantum Hall problem will be discussed in the following chapters.

2.2.2 Many-Body Space

The many-body Fock space can be constructed as the direct product of the allowed

single particle spaces.

For systems without confining potentials, or few-body systems where the boundary

effect is crucial even for the bulk state, one cannot truncate the single-particle Hilbert

space by cutting the real space with hard wall boundaries as described in the last

section. The many-body interaction problem should then be solved within the many-

body Hilbert space constructed from all the single-particle states. However, when

considering a many-particle problem, since the centripetal nature of a typical realistic

two body interaction, e.g., Coulomb interaction between electrons or P-wave contact

interaction in cold atoms, the total angular momentum (Mtot =
∑

imi) of a given

number of particles is still a good quantum number. One can thus focus on the

Hilbert subspace HM which has a fixed total angular momentum M . Furthermore,

the statistics of the particle under consideration requires the total many-body wave

functions to be symmetric (for bosons) or anti-symmetric (for fermions). HM can

then be decomposed into the direct sum of three orthogonal subspaces:

HM = Hs
M

⊕
Ha
M

⊕
Hu
M , (2.15)

whereHs
M ,Ha

M ,Hu
M are the sub-spaces (subset forHu

M) of symmetric, anti-symmetric

and asymmetric functions, respectively.

In some cases it is more convenient to further separate out the center-of-mass

motion and define the fixed relative angular momentum subspace {Mrel} as a sub-

space of {Mtot}, in which all basis functions have vanishing center-of-mass angular

momentum. In the following section describing the hyperspherical approach, we also

define another quantum number, K, exact for the non-interacting systems and still

an approximately good quantum number in the presence of interactions, which labels
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the eigenvalue of the grand angular momentum operator K̂2. The resulting subspace

with fixed values of K and M is then called the {K,M} manifold.

Basis Functions— There are many choices of the many-body wave function basis.

Two commonly used sets of basis functions for the spaces Hs
M and Ha

M are boson

permanents and fermion Slater determinants. A formal definition of these basis func-

tions is given in Appendix A. In the next chapter, we also introduce a set of basis

functions in collective coordinates of the many-particle system, namely, the hyper-

spherical functions. A transformation between the conventional Slate determinants

and the hyperspherical basis functions is also given.

Boson-Fermion Mapping— The Hilbert space of N bosons with total angular

momentum M is isomorphic to the Hilbert space of N fermions with total angular

momentum M + N(N−1)
2

, which we denote as

Hs
M
∼= Ha

M+
N(N−1)

2

. (2.16)

This can be shown [32] to derive from the simple fact that for each symmetric polyno-

mial P (zi) of N variables of total order M , there exists an antisymmetric polynomial

P ′(zi) =
∏

i<j(zi − zj)P (zi) of order M + N(N−1)
2

, where
∏

i<j(zi − zj) is the Vander-

monde polynomial [33]. Thus, the mapping from the Hilbert space of N bosons to

the Hilbert space of N fermions can be defined as a multiplication of a Vandermonde

polynomial equipped with a proper normalization factor:

F : ψ({zi}) ∈ Hs
M → N

N∏
i<j

(zi − zj)ψ({zi}) ∈ Ha

M+
N(N−1)

2

. (2.17)

Here, ψ is a normalized N -body symmetric wave function. N is a normalization

factor that makes the resulting N -body fermionic wave function normalized. Given

a set of many-body basis functions in the Hilbert space Hs
M ( or Ha

M ), turning on

the interaction between particles breaks the degeneracy of the system. A natural

question to ask is that, is the fractional quantum Hall ground state or the quasi-hole

state in Ha
M , mapped to a ground state or quasi-hole like state in the corresponding

fermionic state in Hs

M−N(N−1)
2

? This is a highly non-trivial problem. Due to different
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statistics of boson and fermion, projected interactions in the two different spaces

take completely different forms. There is no simple reason to say that the dynamics

of bosons and fermions in their corresponding spaces should be linked in this way.

To answer this question, we develop the representation of the mapping F , which is

derived in Appendix A.

Exceptional Degeneracy— In this section, we compute the degeneracy da(N,M)

of the Hilbert space Ha
M for the given N particles. The trend of degeneracy d(N,M)

as a function of M is shown [17] to have a positive correlation with the ground state

energy gaps for a small number of particles. That is, for filling factors where there is a

large ground state energy gap, which is usually an indication of a fractional quantum

Hall state, the underlying degenerate space without interaction also shows a relatively

larger degeneracy than the neighborhood spaces. This relation was understood from a

perturbation theory picture [17], that is, in a set of functions, turning on interactions

will typically act to lower the energy of the ground state relative to all the higher-

energy states. This effect is strengthened by the presence of additional degeneracy in

the system. As a result, it is predicted [17] that manifolds with exceptionally high

degeneracy are likely to also produce identifiable fractional quantum Hall states.

The degeneracy of space Hs
M is given by Eq. (25) of [34]

ds(N,M) = pN(M)− pN−1(M), (2.18)

where pN(M) is the number of partitions of the integer M into parts no longer than

N . pN(M) can be calculated using a generating function [35]

ZN(x) =
N∏
j=1

1

1− xj
=

∞∑
M=1

xMpN(M). (2.19)

The above two equations, combined with the fact that there is an exact mapping

between Hs
M and Ha

M+
N(N−1)

2

, the degeneracy da(N,M) of the fermion space Ha
Mcan

be calculated by the following generating function [17]:

GN(x) = xN(N−1)

N∏
j=2

1

1− xj
=

∞∑
M=0

xMda(N,M). (2.20)
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The degeneracy given by the above equations has been verified [17] to match exactly to

brute force calculations for many values of N and M . Fig. 2.4 shows the degeneracy

da(4,M) for the four-particle system as a function of M . It can be seen that the

general trend as |M | increases is that the total degeneracy oscillates about an overall

polynomial growth.

In order to extract the small variations of the degeneracy on top of the overall

polynomial growth, we apply the method as described in Ref. [17] of deriving two

polynomial functions that envelop the degeneracies and then compare the relative

heights above the lower envelope. The upper and lower envelop functions are defined

by extracting the polynomial part of da(N,M) giving by Eq. (2.20), and then forcing

the polynomial going throw the integer quantum Hall point at |M | = N(N−1)
2

and

zero degeneracy value at |M | = N(N−1)
2

+ 1. As depicted in Fig. 2.4, the solid and

dashed lines show the upper and lower envelope functions, respectively. As a concrete

example, consider the four particle case. The exact solution of the degeneracy is giving

by Eq. (56) of [17]:

da(4,M) =
1

48
M2 +

(−1)|M | − 1

16
|M |

+
1

288
[−27(−1)|M | − 1 + 36 sin(

π|M |
2

)− 36 cos(
π|M |

2
) + 64 cos(

2π|M |
3

).

(2.21)

The upper and lower envelop polynomial satisfying the above requirement are [17]:

daupp(4,M) =
1

48
M2 +

1

4
,

dalow(4,M) =
1

48
M2 − M

8
− 7

48
.

(2.22)

More detailed calculation can be found in Ref. [17]. From the upper and lower enve-

lope functions, the relative degeneracy darel(N,M) is defined by Eq. (59) of [17]:

darel(N,M) =
da(N,M)− dalow(N,M)

daupp(N,M)− da(N,M)
, (2.23)

which is, the relative height of da(N,M) above the lower envelope, with respect to

the separation between the two envelope functions.
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Fig. 2.4. Fig. 8 from Ref. [17]. Total degeneracy of anti-symmetric
states for the four-body system in the lowest Landau level as a func-
tion of |M |. Solid and dashed lines show upper and lower envelope
functions, respectively, while the points show the number of degener-
ate anti-symmetric states in that manifold for each value of |M |

Fig. 2.5 shows the relative degeneracy darel(6,M) of the six-body system as calcu-

lated from Eq. (2.23) as a function of M . The squares mark the degeneracies of the

integer quantum Hall and Laughlin states. The triangles identify the degeneracies of

Jain states of two filled composite fermion Landau levels. Circles show the remaining

unidentified states.
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Fig. 2.5. Fig. 10 from Ref. [17]. Relative degeneracies for the six-
body system are shown as a function of |M |. Squares show the integer
quantum Hall effect and the Laughlin ν = 1/3,1/5, . . . states,
triangles show the Jain states of two filled composite Landau levels,
and circles show the remaining unidentified states.

2.3 Fractional Quantum Hall States

2.3.1 Ground States at Fractional Filling Factors

At certain strength of the magnetic field, the Hall conductance exhibits plateaus

regimes. This happens when the filling factor, i.e., the ratio between the number of

electrons and the number of magnetic flux quanta equals certain fractional numbers.

At these filling fractions the electrons condense into a ground state with non-trivial

topological orders. The system is incompressible, i.e., there is a finite gap for the bulk

excitations. However, there exist gapless excitations on the edge. Bulk excitations
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are also well described by fractionally charged quasi-particles, with novel exchange

symmetry. These particles are classified as (non-)Abelian anyons with fractional

statistics.

Studies of the quantum Hall ground states at fractional filling factors fall into two

categories: The low energy effective (topological) field theory, and the wavefunction

approach. The latter include model wavefunctions, e.g., Laughlin’s wavefunction,

Haldane and Halperin hierarchy, Jain’s sequences, and finite size numerical simula-

tions. This work will focus on the wavefunction perspective.

To illustrate the basic ideas, take for example the simplest case of filling factors

ν = 1/m, where for fermions (bosons) m is an odd (even) integer. Laughlin’s famous

wavefunction for the ground state at these filling factors is

N
N∏
i<j

(zi − zj)m
∏
i

e−
|zi|

2

4 (2.24)

in the magnetic length scale. Here N is a normalization constant, and z = x − iy

is the two-dimensional complex coordinate for particles. It can be seen that for

N particles, the highest order of the monomials for any particle is m(N − 1), which,

according to the single particle basis functions in the lowest Landau level, corresponds

to the outermost orbit, the one with the largest angular momentum magnitude equal

to m(N − 1). Thus, the system has m(N − 1) + 1 magnetic flux quanta, which

corresponds to a filling factor ν = N/(m(N − 1) + 1) ≈ 1/m for large N .

The Laughlin state is verified by carrying out numerically exact diagonalizations.

Fig. 2.6 shows an example for the the spectrum of the quantum Hall Hamiltonian with

Coulomb interactions. The Laughlin ν = 1/3 state is identified with a relatively larger

gap separating the energy from the rest of the spectrum. For few-body calculations,

the Laughlin state has an overlap with the realistic ground state for that corresponding

value of M which is close to unity. However, it is known that this high degree of

overlap is not preserved in the thermodynamic limit. Nevertheless, the Laughlin

state captures many of the crucial features of the fractional quantum Hall states.
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2.3.2 Edge Modes

When the total angular momentum of the system is slightly away from the critical

total angular momentum, which corresponds to a particular fractional quantum Hall

state, the state of the system is described by the gapless edge excitations on top of the

fractional quantum Hall state. Take for instance the edge excitations near ν = 1/m,

the edge excitations can be modeled by the following (unnormalized) wavefunction,

Ψedge =
∏
i

sni
∏
i<j

(zi − zj)1/ν
∏
i

e−
|zi|

2

4 , (2.25)

where sn =
∑

i z
n
i is the power sum symmetric polynomial. These edge modes are

indistinguishable from the Laughlin ground states in the bulk, but exhibit extra

structures on the edge. Chapter 4 will further explore and utilize these model edge

excitations to study the bulk-edge correspondence principle in the fractional quantum

Hall states.

2.3.3 Bulk Excitations and Anyons

When the radio of the number of electrons to the number of magnetic flux quanta

is away from the filling fractions where there exist fractional quantum Hall states, e.g.,

the magnetic field is slight tuned away from the critical values such that the number

of magnetic flux is increased (decreased), the system condenses into states which

are described by excitations of quasi-holes (quasi-particles) on top of the fractional

quantum Hall state.

For instance, the following (unnormalized) wavefunction describes a quasi-hole

excited from the Laughlin wavefunction at filling factor ν = 1/m:

∏
i

zi

N∏
i<j

(zi − zj)m
∏
i

e−
|zi|

2

4 . (2.26)

In this case the total angular momentum is increased by |∆M | = N , and the total

number of flux quanta is increased by one. This corresponds to a quasi-hole excitation

at the center of the system (z = 0). This excitation possesses a fractional charge e/m.
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Fig. 2.6. Spectrum of eight electrons in the disk geometry under
Coulomb interaction with total angular momentum |M | from 68 to
84. The Laughlin 1/3 state and two filling factor in Jain’s sequence
have been identified.

The fractional quantum Hall ground states are expected to have a uniform single

particle density,

ρ =
N∑
i=1

δ(~r − ~ri), (2.27)

which preserves the translational and rotational symmetry of the Hamiltonian. Single

particle profiles also help to identify quasi-particle structures of the excited states.

In Fig. 2.7, we plot the single particle density of the six-electron 1/3 Laughlin state,

as well as the one with a single quasi-hole excitation. The non-uniform density is

explained as the strong edge effect in the finite size few-body system. We thus subtract

the non-uniform background from the quasi-hole density, such that the edge effect is
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eliminated. The resulting density profile (dotted red line in Fig. 2.7) shows a clear

hole-structure, which carries approximate 1/3 positive charge.
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Fig. 2.7. The ground state single particle density profiles for six
electrons. Blue line is the ground state density at |M |=45, which
is the ν = 1/3 Laughlin state. Blue dashed line is the ground
state at |M |=51, which corresponds to a one-quasi-hole excitation.
Red dotted line is the density line-shape of the quasi-hole state sub-
tracted with the Laughlin ground state. Integration of the ”hole re-
gion”(within around r=2) shows a total density 1/3, which is identified
as the 1/3 positively charged quasi-hole.
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3. HYPERSPHERICAL REPRESENTATION

As has been outlined in the previous chapter, the fractional quantum Hall effect has

been tackled in various approaches, including the low energy effective topological field

theories, model wavefunctions, as well as exact numerical diagonalizations. Different

approaches have their own advantages and capture certain aspects of the problem.

On the other hand, in the past decade, continued interest in reproducing and

studying the fermionic quantum Hall effect and its bosonic analog in highly-controlled

atomic systems also demands innovative and unconventional methods of studying the

few-body quantum Hall effect. This motivated a more recent line of attack [17], which

developed a novel approach to the quantum Hall problem was presented that is based

on the adiabatic hyperspherical representation [18–20], which originated in and has

been extensively used in the context of few-body physics [20–23]. In contrast to

the conventional techniques which use the single particle representations, such as the

Slater determinant construction of the many body wavefunction, this approach inher-

ently uses collective coordinates. Thus the hyperspherical method not only provides

complementary advantages and alternative qualitative pictures compared to previous

methods, it is also more suitable for the discussion of few-body systems (i.e., cold

atoms in rotating traps [24–28], electrons in a quantum dot [36–49]). Other recent

studies have successfully applied the hyperspherical method to the study of the two-

dimensional three-boson problems [50] in the presence of a perpendicular magnetic

field, and to the study of inter-Landau level collective excitations [51].
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3.1 Hyperspherical Forms

3.1.1 Relative Hamiltonian

In contrast to the conventional approach, where the many-body states are con-

structed using a single particle basis, the hyperspherical method treats the many-

body Hamiltonian collectively, namely, the many-body basis functions are solved

directly from the Schrödinger equation. To achieve this, we first separate the N-body

noninteracting Hamiltonian HN into center-of-mass (HCM) and relative (Hrel) com-

ponents. The center-of-mass behaves like an independent single particle, while the

non-interacting relative Hamiltonian takes the form of

Hrel =− 1

2µ

Nrel∑
j=1

∇2
j +

µ

8

Nrel∑
j=1

(x2
j + y2

j ) +
1

2h̄

Nrel∑
j=1

Lrel
zj
, (3.1)

where xj and yj are the Cartesian components of Nrel = N −1 relative Jacobi vectors

ρj, and µ is a dimensionless mass scaling factor [52,53],

µ =

(
1

N

)1/Nrel

. (3.2)

The definition of Jacobi vectors in terms of single particle coordinates is somewhat

arbitrary. (As an example of the transformation, see Sec. III in Ref. [17])

3.1.2 Coordinate Transformation

The hyperspherical coordinates are a high dimension analogue of the three-dimensional

spherical coordinates. The overall size of the system is characterized by a single scalar

coordinate, the hyperradius R, which is defined as

R2 =

Nrel∑
j=1

ρ2
j . (3.3)

The remaining degrees of freedom, which represent the geometry of the system, are

encoded in a set of coordinates, the hyperangles Ω. The definition of the hyperangles

has some arbitrariness, and there are many different schemes in the literature [54–
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56]. The major focus of this paper does not depend on the specific definition of the

hyperangles. To see a concrete example of this transformation, refer to Sec. IV.A in

Ref [17].

3.1.3 Grand Angular Momentum

Under the transformation to hyperspherical coordinates, the relative non-interacting

Hamiltonian, Eq. (3.1), transforms to

Hrel = − 1

2µ
∇2

R,Ω +
µ

8
R2 +

1

2h̄
Lrel,tot
z . (3.4)

Here Lrel,tot
z is the z-component of the total relative angular momentum. The Lapla-

cian operator in hyperspherical coordinates is given by

∇2
R,Ω =

1

R2Nrel−1
∂RR

2Nrel−1∂R −
K̂2

R2
. (3.5)

K̂ is called the grand angular momentum operator [55], whose eigenfunctions are

represented by the orthonormal hyperspherical harmonics Φ
(M)
Ku (Ω), where

K̂2Φ
(M)
Ku (Ω) = K(K + 2Nrel − 2)Φ

(M)
Ku (Ω). (3.6)

Here, the subscript u labels different degenerate eigenfunctions with the same K and

M . M is the quantum number of the total relative angular momentum, which is a

good quantum number for any central two-body potential. The hyperspherical har-

monics Φ
(M)
Ku (Ω) are the simultaneous eigenstates of K̂2 and Lrel,tot

z under constraint

|M | ≤ K.

For the non-interacting case, the hyperspherical harmonics Φ
(M)
Ku (Ω) are exact

analytical solutions, labeled by the index u for given good quantum number K for the

grand angular momentum and M for the total angular momentum. The detailed form

of the solutions depends on the choice of hyperspherical coordinate transformation

described in the previous section. Ref. [17] presents a semicanonical coupling scheme

for the coordinate transformation and the corresponding hyperspherical harmonics

expressions.
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However, the hyperspherical harmonics Φ
(M)
Ku (Ω) are in general non-symmetrized,

i.e., not admitting any symmetry under particle exchanges. The intrinsic statistics

of electrons demands that the total wavefunctions must be anti-symmetric respect to

exchanges of any two particle coordinates. The hyperradial part (as a function of the

hyperradius R) is by definition symmetric. The hyperspherical harmonics thus need to

be anti-symmetrized before serving as basis functions. Ref. [17] developed a procedure

to anti-symmetrize the hyperspherical harmonics, by find proper linear combinations

of the un-symmetrized harmonics Φ
(M)
Ku (Ω) within a space of fixed quantum number

K and M . The anti-symmetrized hyperspherical harmonics are labeled by a new

index a as Φ
(M)
Ka (Ω).

The full eigensolutions of the non-interacting relative Hamiltonian (3.4) are sepa-

rable into anti-symmetrized hyperspherical harmonics Φ
(M)
Ka (Ω) and hyperradial func-

tions F
(M)
nRK

(R),

Ψ(R,Ω) = R−Nrel+1/2F
(M)
nRK

(R)Φ
(M)
Ka (Ω). (3.7)

The hyperradial functions F
(M)
nRK

(R) satisfy a one-dimensional differential equation,

the scaled Schrodinger equation:{
− 1

2µ

d2

dR2
+ U

(M)
K (R)− E

}
F

(M)
nRK

(R) = 0, (3.8)

where the hyperradial potentials U
(M)
K (R) are given by

U
(M)
K (R) = (3.9)

(K +Nrel − 1/2)(K +Nrel − 3/2)

2µR2
+
µ

8
R2 +

1

2
M.

Under this potential, the hyperradial functions also admit exact analytical solutions:

F
(M)
nRK

(R) = N e−
µR2

4 LK+Nrel−1
nR

(
µR2

2
)RK+Nrel−1/2, (3.10)

where L is the associate Laguerre polynomial and nR = 0, 1, 2, ... is the hyperradial

quantum number. The normalization constant is given by

N =

√
nR!µK+Nrel

Γ(nR +K +Nrel)2K+Nrel−1
. (3.11)
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The many-body states Eq. (3.7) then serve as the basis for the study of inter-

acting problems. In practice, an adiabatic approximation that initially treats the

hyperradius R as a parameter is adopted, in other words, the fixed R Hamiltonian is

diagonalized at a fixed hyperradius in the space of hyperspherical harmonics.

We note the following remarks. 1) The forms of the hyperspherical harmonics

Φ
(M)
Ku (Ω) depend on the coordinate transformation scheme. They are simple func-

tions to express in hyperspherical coordinates, but become cumbersome to use as

the computational basis when re-expressed in particle Cartesian coordinates. 2) The

grand angular momentum quantum number K (K = 0, 1, 2, . . .) is a good quantum

number in the noninteracting limit, and it has been demonstrated to be an approxi-

mately good quantum number even in the presence of Coulomb interactions. 3) There

are (2Nrel−2+2K)(2Nrel−3+K)!/(K!(2Nrel−2)!) linearly independent hyperspher-

ical harmonics in a given K manifold. However, these basis functions generally do

not possess the proper symmetry under particle permutation. Thus a process of

finding all linear combinations that have the desired symmetric must be performed,

which makes the use of the hyperspherical basis functions even more challenging. The

next section develops a method to minimize the above difficulties, by implementing

a representation of the anti-symmetrized hyperspherical harmonics in terms of Slater

determinants of single particle basis functions (See also Refs. [56–60]).

3.2 Hyperspherical-Slater Determinant Transformation

The hyperspherical approach discussed in the previous sections in this chapter

tackles the quantum Hall problem from a collective perspective. Through a coor-

dinate transformation, this method solves the many-body Schrödinger equation di-

rectly in terms of hyperspherical harmonics. This point of view highlights many

key properties of the system which do not emerge naturally from the independent

particle framework. However, a drawback of the hyperspherical method is that the

hyperspherical harmonics do not a priori possess any intrinsic particle permutation
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symmetry, while the many-fermion wavefunctions are required to be antisymmetric

under particle exchange. As a consequence, an anti-symmetrization process should

normally be performed in order to generate basis functions with the proper exchange

symmetry [17, 61–64]. (The many-boson problem also poses a similar drawback

with symmetrization. An alternative method sometimes used to attack this (anti-

)symmetrization problem is via postsymmetrization [22], which we do not pursue

here, because we prefer to work with far smaller pre-symmetrized basis sets.) This

(anti-)symmetrization step is the main bottleneck limiting the computational power

of the hyperspherical method. In order to solve this problem, we implement here a

basis of Slater determinants (permanents) which can overcome this difficulty because

they are explicitly antisymmetrized (symmetrized). We establish here the reduction

of the conventional Slater determinant basis functions to the many-body hyperspher-

ical basis function spaces [30]. A similar technique has previously been implemented

in some nuclear physics calculations [57–60].

3.2.1 Enumerating the Slater Determinants of a {K,Mtot} Manifold

The first task is to find all possible Slater determinants that can form part of a

given {K,Mtot} manifold with the center of mass included. Here, Mtot is the total

projection quantum number, Mtot =
∑N

j=1 mj, and K is the grand angular momentum

quantum number. K, as was shown in a previous study [17], is an approximately good

quantum number in the many-body quantum Hall problem. In fact, K is equal to

the order of the harmonic polynomial of the many-body wave function in a fixed

{K,Mtot} manifold. Producing the list of N -particle Slater determinants that span a

given fixed {K,Mtot} manifold is equivalent to finding the complete list of sets of N

single-particle orbitals that obey a short list of restrictions:

1. All N single particle orbitals selected for a given Slater determinant must be

allowed:
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• The maximum order of the polynomial part of any single particle orbital,

given by ki = 2εi −mi for the ith orbital must be greater than or equal to

zero, 2εi −mi ≥ 0

• The radial quantum number, ni, for the ith orbital must be non-negative,

ni ≥ 0. This restricts the selection of εi = ni + (mi + |mi|)/2,

2. The total angular momentum Mtot is the sum of the single-particle mi values,

Mtot =
N∑
i=1

mi. (3.12)

3. The total grand angular momentum, K, is equal to the total order of the N-

particle harmonic polynomial of the product of the selected N single-particle

orbitals. This is determined by the rule

K =
N∑
i=1

(2εi −mi). (3.13)

The total orders of the single particle polynomials are represented graphically

in Fig. C.1.

4. For fermions, the orbitals must all be different in order to satisfy the Pauli

exclusion principle.

Each set of N single-particle orbitals that satisfies this list of rules defines a single

Slater determinant in the desired {K,Mtot} manifold. The complete set of all Slater

determinants that satisfy these rules spans the entire {K,Mtot} manifold basis, and

each totally hyperspherical function in that {K,Mtot} manifold that is antisymmetric

with respect to particle-interchange can be expressed as a linear combination of these

Slater determinants.

This Slater determinant list can be found directly by testing all single-particle

orbital sets that satisfy this list of rules, although the procedure is somewhat tedious

to carry out by hand and requires significant testing. An alternative streamlined and

more systematic method of finding the complete set of Slater determinants of a fixed
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{K,Mtot} manifold using integer partitions and contingency tables is described in

Appendix C.

3.2.2 Operator Diagonalizations

If the functional space is reduced to states in which the center of mass is in

its absolute ground state, then that also implies that KCM = 0. Thus, finding the

eigenvalues of Ktot for the set of center-of-mass-reduced states is effectively equivalent

to the problem of finding the eigenvalues of Krel.

The relevant operators for this work are

LCM =
h̄

N

N∑
j=1

(
a†a− b†b

)
j

+
h̄

2N

N∑
j=1

N∑
k 6=j

[
a†kaj + a†jak −

(
b†kbj + b†jbk

)]
, (3.14)

HCM =
1

2
+

1

N

N∑
j=1

a†jaj +
1

2N

N∑
j=1

N∑
k 6=j

(
a†kaj + a†jak

)
, (3.15)

and

K̂2 =
N∑
j=1

([
a†a− b†b

]2
j

+ (2N − 2)
[
a†a+ b†b

]
j

)
+
∑
j

∑
k 6=j

([
a†a+ b†b

]
j

[
a†a+ b†b

]
k
− 2

(
a†jb
†
jakbk + ajbja

†
kb
†
k

))
. (3.16)

The detailed derivations of these operator expressions are given in Appendix D.

In practice, for a given set of Slater determinant basis functions, the LCM operator

is diagonalized and the eigenvectors corresponding to 0 eigenvalue are selected. Next,

the HCM operator is diagonalized in the basis of LCM = 0 states and the eigenvectors

with corresponding 1/2 eigenvalues are selected. Lastly, if necessary, the K̂2 operator

is diagonalized in the basis of LCM = 0, ECM = 1/2, and the eigenvectors with

corresponding K(K + 2N − 2) eigenvalues (the minimum eigenvalues) are selected.

In the lowest Landau level, there are zero Landau level excitations and all states

having LCM = 0 turn out to have the smallest possible value of K(K + 2N − 2),

which are the eigenvalues of the K̂2 operator. Thus only the LCM operator needs to

be diagonalized.
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3.2.3 Coulomb Matrix Elements at a Fixed Hyperradius

We assume we have basis functions Ψ(r1, r2, . . .) in the independent particle Slater

determinant representation with LCM = 0, ECM = 1/2, and fixed M . We may also

sometimes need matrix elements between basis functions having different values of

K. Matrix elements at a fixed hyperradius R can be computed by equating the

integral over all Cartesian coordinates with the integral over the center of mass and

the relative function expressed in hyperspherical coordinates.

Our starting point is∫
Ψ∗K′(r1, r2, . . .)V (r12)ΨK(r1, r2, . . .)dr1dr2 . . .

=

∫
|Ψ(RCM)|2dRCM

∫
Ψ∗K′(R; Ω)V (R; Ω)ΨK(R; Ω)R2N−1dRdΩ (3.17)

where it is assumed that for every basis function the center of mass is in its absolute

ground state and can be separated off. The basis functions are labeled by the K

quantum number. The left-hand-side of Eq. (3.17) is assumed to be known from

standard Slater determinant basis methods and we label it I. The center of mass

integral on the right-hand-side of Eq. (3.17) is unity. Moreover, the hyperradial and

hyperangular parts of the basis functions are known. This leaves

I =

∫
Ψ∗K′(R; Ω)V (R; Ω)ΨK(R; Ω)R2N−1dRdΩ

=

∫
Φ∗K′(Ω)

(∫
N ∗e−

µ
4
R2

RK′V (R; Ω)N e−
µ
4
R2

RKR2N−1dR

)
ΦK(Ω)dΩ (3.18)

where N is the normalization of the hyperradial wave function. In the case of power

law potentials, the hyperradial dependence of the interaction potential V is separa-

ble, V (R; Ω) = RpV (Ω). Thus the hyperradial integral can be factored from the

hyperangular integral, which leaves

I

〈K ′|Rp|K〉
=

∫
Φ∗K′(Ω)V (Ω)ΦK(Ω)dΩ (3.19)

where 〈K ′|Rp|K〉 is the hyperradial matrix element,

〈K ′|Rp|K〉 =

(
2

µ

)p/2
Γ ([K +K ′ + 2N + p]/2)√

Γ (K +N) Γ (K ′ +N)
. (3.20)
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3.2.4 Two-Body Matrix Elements of the Coulomb Potential

According to the Slater-Condon rules, the matrix elements of any two-body oper-

ators Ô in the basis of N-body Slater determinants |ε1,m1〉|ε2,m2〉...|εN ,mN〉 can be

expressed as a sum in terms of two-body matrix elements

〈ε1,m1|〈ε2,m2|Ô12|ε1′,m1′〉|ε2′,m2′〉, (3.21)

where the number 1 and 2 label the two particles. In the case of Coulomb interactions,

or a general class of interactions where the potential depends only on the inter-particle

distance r, it is more convenient to compute the two-body matrix element in terms

of center-of-mass and relative coordinates,

〈N,M |〈n,m|Ô(r)|N ′,M ′〉|n′,m′〉 = δN,N ′δM,M ′〈n,m|Ô(r)|n′,m′〉, (3.22)

where we use |N,M〉(|n,m〉) to label the center-of-mass(relative) coordinate state.

The only non-vanishing transformation coefficients are these between bases that

satisfy the condition

i+ j = N

k + l = N −M

ε1 + ε2 = N + n

m1 +m2 = M +m,

(3.23)

which is given by

< ε1m1ε2m2|NMnm >

=CA1A2

AcAr

ε1∑
i=0

ε2∑
j=0

ε1−m1∑
k=0

ε2−m2∑
l=0

(−1)2ε2−m2−j−lCi
ε1
Cj
ε2
Ck
ε1−m1

C l
ε2−m2

,
(3.24)

where C = (1/
√

2)2ε1+2ε2−m1−m2 and

A =
(−1)min{n,n−m}√

n!(n−m)!
, (3.25)

the subscripts of which are labels of the corresponding particle. Derivation of the

above transformation can be find in Appendix B.
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3.2.5 Examples

As a concrete example of implementing the procedure described above, a four-

electron system is studied in this section. The table below lists the number of Slater

determinants at various values of Ks. The total angular momentum M is fixed to be

−10.

K 10 12 14

D1 5 41 144

D2 2 7 12

D1 is the number of Slater determinants that may be part of the {K,M} manifold

before diagonalizing Hcm, Lcm and K2 operators (the process in Section 3.2.1). D2

is the number of Slater determinants after selecting the correct eigenvalue of K and

choosing the linear combinations that have the values LCM = 0 and HCM = 1/2 in

the center-of-mass motion (the process in Section 3.2.2 is performed).

For instance, there are 5 Slater determinant at K = 10:

|ψ1〉 = |0, 0〉|0,−1〉|0,−4〉|0,−5〉,

|ψ2〉 = |0, 0〉|0,−2〉|0,−3〉|0,−5〉,

|ψ3〉 = |0,−1〉|0,−2〉|0,−3〉|0,−4〉,

|ψ4〉 = |0, 0〉|0,−1〉|0,−2〉|0,−7〉,

|ψ5〉 = |0, 0〉|0,−1〉|0,−3〉|0,−6〉.

(3.26)

The basis functions with Lcm = 0, Hcm = 1/2 and K = 10 are the linear combina-

tions of the above five Slater determinants,

|Ψ1〉 = 0.6727|ψ1〉 − 0.2212|ψ2〉+ 0.4946|ψ3〉+ 0.2760|ψ4〉 − 0.4216|ψ5〉,

|Ψ2〉 = −0.2805|ψ1〉 − 0.3335|ψ2〉+ 0.7458|ψ3〉 − 0.2760|ψ4〉+ 0.4216|ψ5〉.
(3.27)

The next step is to diagonalize the Coulomb interaction at fixed hyperradius, that

is, the hyperradius is treated as an adiabatic parameter (as described is Section 3.2.3).

The hyperradius potential curves are plotted in Fig. 3.1.
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Fig. 3.1. Fig. 2 from Ref. [30]. Hyperradial potential curves for a
four-electron system. The blue lines (lower branch) are hyperradial
potentials for K = −M = 10, which correspond to the lowest Landau
level. The red lines (upper branch) correspond to K = −M + 2 =
12. The energy gap between separate clusters is approximately equal
to the cyclotron excitation, while the smaller splittings within each
branch are due to Coulomb interactions. The relative strength of the
Coulomb interaction, κ = e2

4πελ0
1
h̄ωc

, is set to be 1, which is the typical
order for experiments in gallium arsenide.
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Fig. 3.2. Fig. 3 from Ref. [30]. The ground state energies of 8 particles
in the lowest Landau level (K = |M |) at variousK values as a function
of the magnetic field, using experimental parameters matching a cold
gallium arsenide system [65]. The magnetic field dependent zero-
point energy has been subtracted for scale. The curves correspond
to various K values ranging from K = 28 (filling factor ν = 1) to
K = 84 (ν = 1/3). Curves for quantum Hall states at ν = 1, 2/3, 2/5
and 1/3 are marked as red lines from left to right respectively.

Fig. 3.2 shows an example of the calculation of a 8-particle system in the lowest

Landau level (K = |M |). In the absence of coupling between different K manifolds,

the ground state energies are calculated by first diagonalizing the Coulomb interaction

within a hyperangular {K,M} manifold then solving the hyperradial Schrödinger’s

equation numerically with a restricted maximum hyperradius.

3.3 Novel Excitations

In condensed matter and atomic physics alike, particle interactions can give rise

to collective behaviors in many-body systems with dramatic and often unexpected

properties [4, 66–68]. In no system are collective behaviors more central than in the

fractional quantum Hall system, where the properties of low-energy quasi-particle ex-

citations continue to drive new theoretical and experimental discoveries [5,6,10,69,70].



34

For example, among such low-energy excitations, one type of density oscillations

known as the magnetoroton was described quite early in the description of the frac-

tional quantum Hall effect [71,72]. However, collective excitations at higher energies,

near the cyclotron frequency ωc = eB/m, are considerably less well explored: while

the the center-of-mass excitation, which is indistinguishable in frequency from the sin-

gle particle excitation frequency ωc by Kohn’s theorem [73], is clearly predicted by the-

ory, experiments in capacitance spectroscopy [74], optical emission spectroscopy [75],

and high-intensity pulsed terahertz spectroscopy [76] have detected behaviors that

defy the simple single-particle or Kohn’s theorem predictions, indicating that the cy-

clotron frequency excitation regime exhibits interesting new physics. A variety of nu-

merical treatments have been used to characterize quantum Hall systems [8,44,77–79],

but isolating any specific excitation in the cyclotron energy regime from many of these

models is daunting since the excitation spectrum is highly complicated.

However, the hypershperical approach discussed in this chapter is particularly

suitable for probing this type of excitations. Recasting the quantum Hall problem

in the adiabatic hyperspherical representation [44, 79] highlights the existence of a

unique type of vibrational mode [17] that may be directly measurable. This section

implements the hyperspherical method and the numerical techniques developed in the

previous sections to examine the origin and properties of a particular type of vibra-

tional excitation observable in quantum Hall systems, which we call the hyperradial

breathing mode. We will also discuss possible schemes for its measurement in exper-

iments in both condensed matter and cold atom systems. The many-body quantum

Hall Hamiltonian for N electrons confined to two-dimensions in a strong, perpendic-

ular magnetic field in the symmetric gauge also describes a rotating two-dimensional

gas of neutral atoms in a harmonic trap (or even non-rotating, see below), except for

the form of the interactions [56]. This makes the latter an ideal system for comparing

the effect of different interactions on the collective behaviors of the system.
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3.3.1 Interacting Hyperspherical Forms

In the symmetric gauge, the relative coordinate interacting Hamiltonian can be

rewritten in hyperspherical coordinates as

Hrel =− 1

2µ
∇2

R,Ω +
µ

8
R2 +

1

2
Lrel
z + κC(Ω)V (R), (3.28)

where ∇2
R,Ω is the Laplacian in hyperspherical coordinates [55], µ = N−1/Nrel is a

dimensionless mass scaling factor, and C(Ω) is the hyperangular part of the interac-

tions. κ is a dimensionless parameter that determines the interaction strength.

The last term in Eq. (3.28) represents the interactions in terms of the hyper-

spherical coordinates, with the lengths scaled by lB for the system in question. For

the condensed matter system, the interactions are simply Coulomb repulsive, but in

two-dimensional cold atom systems, a variety of interactions can be implemented by

different experimental choices.

The form of the hyperangular term C(Ω) depends on the form of the interactions

and on the specific choices of Jacobi vectors and hyperspherical coordinates transfor-

mations, and V (R) takes the simple forms 1/R for Coulomb interactions or 1/R3 for

polarized dipole-dipole interactions.

As has been discussed in the previous sections in this chapter, in the absence

of interactions, the quantum Hall Hamiltonian is exactly separable into a hyperra-

dial and a hyperangular Hamiltonian. The solutions are products of hyperradial

functions times hyperangular functions known as the hyperspherical harmonics from

K-harmonic theory [80],

Ψ(R,Ω) = R−Nrel+1/2F
(M)
nR,K

(R)Φ
(M)
K,a (Ω). (3.29)

However, in present of interaction, such a separate solution is no longer strictly cor-

rect. Instead, the hyperangular channel functions parametrically depend on R:

Ψ(R,Ω) = R−Nrel+1/2
∑
χ

F
(M)
Eχ (R)Φ(M)

χ (R,Ω), (3.30)
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where the channel functions, Φ
(M)
χ (R,Ω), labeled by χ, are orthonormal to each other

for any given fixed hyperradius:∫
dΩΦ(M)∗

χ (R,Ω)Φ
(M)
χ′ (R,Ω) = δχχ′ . (3.31)

Treating the hyperradius R as an adiabatic parameter, the adiabatic Hamiltonian can

be written as

Had =
1

2µR2
{K̂2 + (Nrel − 1/2)(Nrel − 3/2)}+

µ

8
R2 +

1

2
M + κ

C(Ω)

R
, (3.32)

which is diagonalized for each fixed value of the hyperradius.

The procedure to diagonalized the adiabatic Hamiltonian and obtain the eigen-

states is the following. First expand the channel functions Φ
(M)
χ (R,Ω) at a fixed

hyperradius in terms of the anti-symmetrized hyperspherical harmonics,

Φ(M)
χ (R,Ω) =

∑
Ka

cKa(R)Φ
(M)
Ka (Ω). (3.33)

The matrix elements of the adiabatic Hamiltonian Had under this expansion are

〈Had〉 = U
(M)
K (R)δKK′δaa′ + κ

〈K ′a′|C(Ω)|Ka〉
R

, (3.34)

where the integrals indicated by the brackets are performed only over the hyperan-

gles. The a’s label the anti-symmetrized hyperspherical harmonics within a given K

manifold.

The eigenenergy of the above adiabatic Hamiltonian matrix determine a set of

adiabatic potentials U
(M)
χ (R) through

HadΦ
(M)
χ (R,Ω) = U (M)

χ (R)Φ(M)
χ (R,Ω). (3.35)

Typical inter-particle interactions, such as the interactions which only depends

on the relative distance between particles, do not break the degeneracy of the M

manifold, i.e., M remains as a good quantum number. However, interactions do in-

duce coupling between different K manifolds. In fact, it has been shown [17] to be

a good approximation to neglect the coupling between different K manifolds and to
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apply degenerate perturbation theory. The adiabatic Hamiltonian is then diagonal-

ized within each K manifold, with restricted matrix elements 〈Ka′|C(Ω)|Ka〉. The

resulting eigenvalues C(M)Kγ then determine a set of adiabatic potentials:

U (R)
χ (R) ≈ δKK′(U

(M)
K (R) + κ

C(M)Kγ
R

). (3.36)

These potential curves enter the scaled Schrodinger equations which are to be

solved, yielding the final ground state as well as the excitations.

3.3.2 Collective Excitations

We restrict our investigation to clusters of electric or magnetic dipoles aligned with

the axis of rotation interacting purely via repulsive dipole-dipole interactions [51],

which are among the class of interactions that can drive the formation of quantum

Hall liquids [81–83]. Then the term κ in the interacting Hamiltonian Eq. (3.28)

is the ratio of the interaction energy to the Landau-level separation: for Coulomb

interactions, κ = e2/(4πελ0h̄ωc); for dipole-dipole interactions, κ = cdd/(4πλ
3
0h̄ω),

where cdd = µ0µ
2
mag for polarized magnetic dipoles with magnetic moment µmag, and

cdd = d2/ε0 for polarized electric dipoles with dipole moment d. The form of the

hyperangular term C(Ω) depends on the form of the interactions and on the specific

choices of Jacobi vectors and hyperspherical coordinates, and V (R) takes the simple

forms 1/R for Coulomb interactions or 1/R3 for polarized dipole-dipole interactions.

Implementing the procedure developed in the previous section, excitations in the

hyperradial dimension can be extracted. These represent collective density excitations

of the finite system, which we call the hyperradial breathing mode.

As a simple example, Fig. 3.3 shows the hyperradial curves and energies for the

four-particle integer quantum Hall state (M = 6, K = 6, and nR = 0) in GaAs and

all excited states with M = 6 that are approximately h̄ωc higher in energy. We are

interested in the lowest energy hyperradial excitation, the transition from nR = 0 to

nR = 1 with energy (E1E0) for any given set of hyperangular quantum numbers, as

is highlighted with the vertical (red) arrow in Fig. 3.3. It is a density excitation,
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Fig. 3.3. Fig. 1 from Ref. [51]. Hyperradial potential curves and the
hyperradial bound states for the four particle, ν = 1 system. The
ground state for ν = 1 has hyperangular quantum numbers K =
6,M = −6 and nR = 0, and is totally isolated. The hyperradial
excitation takes the system from the nR = 0 state with energy E0

to the first hyperradially excited state with nR = 1 and energy E1.
The E0 plus the cyclotron energy is shown as a (blue) dashed line
for contrast. Other excited potential curves and their ground state
energies with the same M with are shown in pale grey.
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but unlike the magnetoroton, it is not a low-energy excitation within a Landau level,

and it includes physics beyond the single mode approximation of a simple oscillator

model [71, 72, 84]. Using more exact numerical techniques here constitutes including

some level of Landau-level mixing in our approximation; our previous studies give

bounds to the hyperangular contribution to Landau-level mixing, and indicate that

hyperangular Landau-level mixing, or coupling between K manifolds, is weak for

lowest Landau-level ground states and modest values of κ.

Figure 3.4 gives the energy separation between the ground state and the first

hyperradial excited state for several important lowest Landau-level filling factors in

the GaAs system (top) and the cold atom system (bottom) as a function of (left) and

the number of particles (right). For Fig. 3.4(b), the values of κ used for each filling

factor are taken from the experimental results of [85]. Since cold atom systems are

hypothetically more tunable and currently lack an experimental paradigm, κ was set

to 1 for all filling factors of the dipole-dipole interaction calculations shown in Fig.

3.4(d). We note that the hyperradial excitation energy E1E0 for Coulomb repulsion is

smaller than h̄ωc for all tested systems, while the opposite is true for the dipole-dipole

interacting system. In general, the vibrational mode excitation energy detuning from

h̄ωc in both cases is largest when is large and when the filling factor is smallest,

although this trend does not hold universally for Coulomb interactions, as there are

a few exceptions [which are difficult to see in the scales of Fig. 3.4(b)]. Increasing

the number of particles weakens the detuning in both cases as well, and this trend

is stronger in the dipole-dipole interacting system, as can be seen in Fig. 3.5, which

compares the two systems at filling factor ν = 1/3 on equivalent scales.

We have not yet found a simple interpretation for the nonmonotonic N dependence

of the energy shifts, but it is likely due to finite size effects. In the composite fermion

(CF) picture, a N-electron Laughlin ground state consists of the N transformed CFs

totally filling the lowest CF Landau levels (known in the CF picture as Lambda

levels). The N -electron Jain states, in contrast, consist of N/2 − 1 CFs filling the

lowest CF lambda level and N/2 + 1 CFs filling the second lambda level. As can
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Fig. 3.4. Fig. 2 from Ref. [51]. (a) The hyperradial vibrational (HRV)
mode excitation energies for Coulomb interactions as a function of κ
for N = 4, ..., 9 particles at ν = 1 filling factor. From the lowest
curve (red) with N = 4, the number of particles increases to N = 9
for the uppermost (black) curve. (b) The HRV energies for Coulomb
interactions versus particle number for various filling factors [ν =
1 (red crosses), ν = 2/3 (green squares), = 2/5 (blue triangles),
and ν = 1/3 (black circles)]. The values of κ are calculated from
corresponding experimental magnetic fields in Tesla from [85]: ν = 1
corresponds to 9T, ν = 2/3 to 14T , ν = 2/5 to 25T, and ν = 1/3 to
29T . (c) The HRV excitation energies for dipole-dipole interactions
as a function of κ. In this case the number of particles decreases from
N = 4 downward to N = 9 on the plot. (d) The HRV energies for
dipole-dipole interactions at κ = 1. The filling factors are labeled
as in (b). For Coulomb interactions, the κ = e2/(4πλ0h̄ωc), and for
dipole-dipole interactions, κ = cdd/(4πλ

3
0h̄ωc), where cdd is µ0µ

2
mag for

polarized magnetic dipoles or d2/ε0 for polarized electric dipoles.
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Fig. 3.5. Fig. 3 from Ref. [51]. The hyperradial vibrational modes
versus κ for the ν = 1/3 filling state for both (a) Coulomb, and
(b) dipole-dipole interactions shown on the same scales relative to
h̄ωc. The detuning for the dipole-dipole interacting system exhibits
stronger N dependence.

be seen from this picture, increasing the number of particles for a Laughlin system

increases the Hilbert space size of a single lambda level at twice the rate as increasing

the number of particles for a Jain system. As a result, the largest Jain systems we ran

numerically are more affected by finite size effects than the largest Laughlin systems

we ran. Access to more significant computing resources would allow the exploration

of more structurally complicated few-body quantum Hall states in the lowest Landau

level requiring more particles (e.g., the 4/11 state [86, 87]), which could establish

whether the nonmonotonicity is uniquely due to few-body behaviors.

Experimentally, this hyperradial breathing mode cannot be excited through purely

optical means because the laser field only operates on the center of mass for equal-

mass, equal-charge particles, and should not induce transitions of the internal degrees

of freedom of the system without additional terms in the Hamiltonian involving sig-

nificant coupling between the center of mass and relative degrees of freedom (which

we neglect in this work, but could include localized anisotropic features of the back-
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ground, e.g., impurities or lattice defects). However, the transition could be induced

by a time-dependent perturbation to the radial harmonic confinement of the form

V ′(t) = a cosω0t

N∑
i=1

r2
i = a cosω0t

(
1

N
r2
cm + µR2

)
, (3.37)

where a is the strength of the weak potential, ri are the single-particle coordinates,

and ω0 is the hyperradial transition frequency. From the form of Eq. (3.37), it is clear

that such a potential can perturbatively excite the center of mass or the hyperradial

degrees of freedom, but the hyperradial excitation can be spectroscopically selected by

the choice of frequency. For a two-dimensional electron gas, this oscillating potential

could be achieved by weakly oscillating the perpendicular magnetic field at high

frequencies, although the terahertz frequencies required for typical samples will be

experimentally challenging to achieve, and detection will also prove difficult.

Measuring the hyperradial breathing modes should be more feasible in trapped

cold atom or cold molecule systems interacting via repulsive dipole-dipole interac-

tions, where the harmonic perturbation of Eq. (3.37) can be produced by flexing the

trapping potential in a time-dependent manner. Collective modes have been previ-

ously observed directly in Bose-Einstein condensates [88] and degenerate Fermi gases,

including in two dimensions [89], using trap-oscillating techniques in the absence of

internal rotation as a tool to evaluate various internal properties of the gas.

Construction of a cold atom or cold molecule quantum Hall gas remains a signifi-

cant experimental challenge, but the cold atom systems present a dramatic range of

tunability which could be ideal for probing these vibrational modes. Using, for exam-

ple, the magnetic dipole interactions of 161Dy [90] and assuming a ν = 1 filling factor,

dipole trap with a planar trapping frequency of ω = 30 kHz has κ of only 2.6× 10−3,

and a detuning of only ≈ 22 Hz, but a much tighter trap could enhance the detun-

ing, since varies with the square root of ωc. Substituting magnetic dipolar atoms

with cold electric-dipolar bialkali molecules, which have intrinsic dipole moments of

around 1 D, can also dramatically enhance the effect. For example, fermionic LiRb

has an intrinsic dipole moment of around 4.1 D [91], so in a 15 kHz trap, κ = 1.5
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and the detuning for the N = 4, M = 6 integer quantum Hall state is around 2 kHz.

The greatest challenge in this experimental system will be the measurement of the

energy, but there are several methods that might prove effective. For an array of

quantum Hall droplets, photoassociation measurements in the spirit of [92, 93] may

be sensitive enough to measure the few-body excitation energies. Alternately, it may

be feasible to directly measure the total absorption of the perturbative light by the

many droplets. If instead the successful quantum Hall experiment consists of a single

droplet of only a few particles in a deep-well, optical tweezer, the excitation energy

might be measured by Coulomb explosion imaging [94] or by a sensitive trap loss [95].

While most discussions of the quantum Hall effect for ultracold atoms have envi-

sioned rotating traps, it should be pointed out that the spectra predicted here can be

observed also for a nonrotating isotropic two-dimensional (2D) trap. This is because

the difference in the Hamiltonian between a rotating versus a nonrotating trap is

simply the presence of the constant term 1
2
Lrelz in Eq. (3.28), which is present only

for a rotated trap in the rotating frame. But since Lrelz is a conserved quantity for

this system, the energy levels should be observable if the appropriate relative angular

momentum modes are created for the number of atoms or molecules in the trap. For

example, in a nonrotating 2D trap containing four identical, spin-polarized fermionic

atoms, the Laughlin 1/3 state is the lowest energy eigenstate having relative angular

momentum |M | = 18, and the breathing mode frequency predicted using the adia-

batic hyperspherical approximation should be accurate. It is therefore an observable

excitation in the Hilbert space even though it is not the M value of the ground state

of the system as a whole.

To conclude this section, using the hyperspherical method we have established

the existence of a hyperradial breathing mode in the quantum Hall system. This

breathing mode energy is affected by the particle count, the strength and type of the

interaction, and the filling factor. Although experimental realizations of this mea-

surement face significant challenges, the modes should be experimentally excitable

and measurable. For few-body systems, the presence of disorder will specifically af-
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fect excitations located near the disorder center. Our model does not yet account

for the possible effects of disorder, but it will likely enable coupling between different

hyperangular states, including between states within different K manifolds because

the disorder will likely break the rotational symmetry input in our model. Disor-

der in the atomic traps is unlikely to be a problem, but trap anharmonicity could

similarly allow nonhyperradial excitations. We are unable to predict the strength of

these effects in our model at this time. As a final speculation, we suggest that, while

exciting in its own right as a new collective excitation in the system, this particular

measurement could also be useful in establishing direct measurements of the effects

of Landau-level mixing. Landau-level mixing refers to deviations from the idealized

single-Landau-level approximation due to coupling between different Landau levels.

While Landau-level mixing has been estimated through various methods [96–99], the

effect is challenging to measure experimentally. In measuring the hyperradial ex-

citation, deviations from the ideal hyperradial vibrational mode energies should be

attributed to hyperangular coupling between Landau levels. Such a direct measure-

ment of Landau-level mixing in the hyperangular picture would provide a test for

these previous models of interlevel coupling effects in the quantum Hall system.
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4. BULK-EDGE CORRESPONDENCE

The chapter temporarily moves away from the hyperspherical approach for solving

the quantum Hall Hamiltonian problem. Instead of searching for the ground state

and the excitations, the focus will be shifted to the properties of a given ground state,

either the ideal model wavefunctions or the ground state of the realistic interactions.

In particular, we will study the “bulk-edge correspondence” of the fractional quantum

Hall ground states, which is a manifestation of the topological nature of the fractional

quantum Hall effect.

Precisely speaking, we substantiate a complete picture of the bulk-edge correspon-

dence conjecture [100]. By studying the eigenstates in the entanglement spectrum for

both the ideal and realistic Coulomb ground states of the fractional quantum Hall

system, it is verified that the eigenstates in the universal part of the entanglement

spectrum purely lie in the Hilbert space of the edge excitations projected onto the

physical Hilbert space of the subsystem itself. Hence, not only are the eigenlevels in

the entanglement spectrum in one-to-one correspondence with the eigenenergies of

an effective dynamical edge Hamiltonian, but all the eigenstates are confirmed to be

the actual (projected) edge excitations of the subsystem. This result also reveals the

possibility of extracting the full information of the edge excitations from the state

of the subsystem reduced from a geometric cut of the pure ground state of the total

system in topological phases.

We will first introduce the principle of “bulk-edge correspondence” and related

concepts following the historical line of development in the field, and then present a

detailed numerical study of this effect.
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4.1 Topological Order

Landau symmetry breaking theory has been believed for a long time to describe all

possible orders in materials. However, since the late 1980s, it was realized that there

exist phases that do not fit into the classification of Landau symmetry breaking theory.

The first theoretical example was the chiral spin state [101, 102], which was initially

proposed to explain the high temperature superconductor [103]. This particular order

of phase was named the “topological order” [104], motivated by the fact that the low

energy excitations of the chiral spin liquid can be effectively described by a topological

field theory [105]. It was later indicated by experiments that chiral spin states do not

describe high temperature superconductors. However, the theory of topological order

has been proven to be the correct theory for the quantum Hall states. Similar to the

chiral spin states, quantum Hall states at different filling factors process the same

symmetry, while the transition between them is impossible without encountering a

phase transition point, typically indicated by a singularity of a physical quantity.

Despite the theoretical importance, states with topological orders exhibit many

interesting properties that allow for novel applications. For instance, the fractional

statistics or the non-abalian statistics of quasi-particle excitations of a topologically

ordered state can be used to realize topological fault-tolerant quantum computing

[106–108], which is immune to decoherence induced by local perturbations; perfect

conducting edge states also have potential device applications.

It is thus important to have a complete classification of topological orders. It is

even more desirable to have a “order parameter” in analog to the Landau symmetry

breaking theory. There are various ways to achieve this goal. For instance, at the

early stage of the studies of the topological order, it was realized that the ground

state degeneracy [109] is closely related to the topology of the manifold on which the

system lives. Another prominent approach is to look at the entanglement present in

the ground state of the system. This perspective is mostly motivated by the study

of quantum information in the past decades. It is argued that ground states with
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topological order usually exhibit “long-range entanglement” [110], which can not be

destroyed by local operations, e.g., robust against local perturbations or preserved un-

der entanglement re-normalization. In contrast, topologically trivial states, including

topological insulators [111], only admit short-ranged entanglement.

The next section elaborates more about the entanglement aspect of the topological

order.

4.2 Entanglement Entropy and Entanglement Spectrum

Bipartite entanglement of a pure quantum state can be uniquely characterized

[112] by the entanglement entropy. For a quantum state (density matrix) ρAB on a

composed Hilbert space HAB = HA ⊗ HB, where A and B label two subsystems,

the entanglement entropy is defined as the von Neumann entropy of one subsystem

reduced density matix:

SA = − tr(ρA ln ρA), (4.1)

where

ρA = trB ρAB (4.2)

is the state (reduced density matrix) for subsystem A. For pure joint quantum state

ρAB = |ψAB〉〈ψAB|, this quantity captures the entanglement between two of the sub-

systems, and is independent of the choice of the subsystem for computing von Neu-

mann entropy, i.e., SA = SB.

For a many-body ground state, the two subsystems are usefully chosen as two

systems with distinct spatial degree of freedom, i.e., partition of the total system in

real space. Other partitions such as partitions in momentum space are also considered.

In the real space partition scenario, typical states in the Hilbert space, e.g., ran-

domly chosen states, exhibit volume law scaling, i.e., the entanglement entropy of a

subsystem is proportional to the volume of the subsystem itself. However, the ground

state does not behave “typically”, in the sense that its entanglement entropy scales
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linearly with the size of the boundary of the subsystem – the “area law”, which is a

universal property of many-body systems.

In a state with topological order, besides the usual “area law” scaling, there

emerges another sub-leading term:

S = αL− γ + ... (4.3)

Here L is the area of the boundary between two subsystems; γ is a constant that

is independent of the partition, namely, it is a global feature of entanglement in the

ground state. γ is called the topological entanglement entropy and has become a

widely recognized signature for topological orders. When the low energy physics of

the system is described by a topological quantum field theory, γ is connected to the

total quantum dimension D of the system, given by

γ = lnD. (4.4)

In the context of fractional quantum Hall states, the topological entanglement entropy

is related to the filling factor ν:

γ = −1

2
ln ν. (4.5)

For the fermionic Laughlin state on the sphere geometry, the topological entan-

glement entropy has been computed numerically [113] and shown to match the theo-

retical prediction in Eq. (4.5). However, the calculations are performed for electrons

on a sphere geometry, i.e., electrons are confined on a finite size sphere instead of on

a two dimensional plane. In this case on the sphere geometry [113] the area law, i.e.,

the linear scaling to the subsystem boundary has not been observed.

In the inset of Fig. 2.6, a numerical simulation on the disk geometry (confined

two-dimensional plane as a disk) for the entanglement entropy at various subsystem

sizes has been shown. A clear linear scaling exists, up to the point when the subsystem

size is half of the total system size, where the edge of the total system starts to affect

the scaling law. However, in contrast to the slope of the linear fitting, the extracted

sub-leading term, −γ, is very sensitive to the number of points used in the fitting:
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fitting of the first 14 points gives γ = 1.040, while fitting of the first 3 points gives

γ = 0.473 (The theoretical value is 0.549). This implies that the numerical topological

entanglement entropy extracted from the data of a finite number of particles is still

unreliable, despite the fact that the linear scaling is evident.

In practice, the entanglement entropy can be computed by performing a singular

value decomposition (SVD) of the ground state:

|Ψ〉 =
∑
i

e−ξi/2|Ψ〉Ai ⊗ |Ψ〉Bi . (4.6)

(The detailed procedure for performing the decomposition and the algorithms for im-

plementing this decomposition to compute the entanglement spectrum of a fractional

quantum Hall state will be given in Appendix E.) In fact the von Neumann entropy

equals the classical Shannon entropy computed using the probabilities that appear in

the SVD:

S = −
∑
i

e−ξi log e−ξi

=
∑
i

e−ξiξi.
(4.7)

In a recent work [114], Li and Haldane took one step forward. They argued that

instead of computing the entropy associated with the SVD, which is just a single

number, one can gain more information by looking at the whole spectrum of the

probability, or alternatively the spectrum of ξ’s in the SVD. Since the reduced density

matrix of subsystem A, according to the SVD in Eq. (4.6), can be written as

ρA =
∑
i

e−ξ|Ψ〉Ai 〈Ψ|Ai . (4.8)

It is recognized that ξi can be viewed as nothing else but the eigenvalues of an effective

Hamiltonian H̃A of the form:

ρA ≡ e−H̃A , (4.9)

a Gibbs ensemble at temperature β = 1. Here we use the tilde symbol to indicate

that the effective Hamiltonian is distinct from the real Hamiltonian of the subsystem

A. The spectrum of the effective Hamiltonian, denoted the set of quasi-energies ξi,

are named the entanglement spectrum.
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However, though not a real Hamiltonian, H̃A was shown to be intimately related to

the edge physics of the subsystem. Take as an example the ideal fractional quantum

Hall states (model wavefunctions such as the Laughlin wavefunction at 1/3 filling),

which is also the case considered in the original work of Li and Haldane. In this

case, the particle number and the total angular momentum are still good quantum

numbers. Namely, the eigenstates appearing in the reduced density matrix, Eq. (4.8)

are also eigenstates of the particle number operator and the total angular momentum

operator for the subsystem A. We can then plot the spectrum separately for sectors

with different particle number and angular momentum. Interestingly enough, the

number of energy levels in the entanglement spectrum for each angular momentum

sector has been demonstrated [114] to equal the number of edge excitations (edge

states) with the corresponding angular momentum of a quantum Hall ground state

at the same filling fraction. This counting structure of the entanglement spectrum

is thus connected with the bulk of the system (reduced density matrix in the bulk

computed from the ground state of the total system) and the edge physics (number

of edge modes).

The counting structure of the entanglement spectrum also exhibits universality:

When computed for the realistic numerically computed ground state for a fixed par-

ticle number and angular momentum instead of the ideal model wavefunctions, e.g.,

ground state of the quantum Hall system of electrons under Coulomb interaction, the

entanglement spectrum splits into two parts: one universal part that has the same

counting structure and similar distribution as the entanglement spectrum for the ideal

model wavefunctions, one generic part that has much higher quasi-energies than the

universal part.

The generic part and the universal part of the entanglement spectrum are sep-

arated by a gap which remains finite in the thermodynamic limit. This is a rather

interesting effect. In contrast, it has been known that the difference between the

ideal and realistic ground state wavefunctions, gauged in terms of their overlaps, is
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not preserved in the thermodynamic limit. The statement holds, even though the

model wavefunctions have very high overlaps with realistic ones for few particles.

4.3 Bulk-Edge Correspondence

Both the entanglement entropy and the counting structure of the entanglement

spectrum can be naturally interpreted if a relation between the bulk and the physical

edge of the subsystem is established. This relation, termed the bulk-edge correspon-

dence [115–117], states that the entanglement Hamiltonian corresponds to an effective

dynamical local Hamiltonian acting on a 1-D edge, which represents the boundary of

the system.

At first glance, this may seem to be an empty statement. As has been discussed

in the previous sections, the entanglement spectrum is the spectrum of an effective

Hamiltonian given by Eq. (4.9). In principle one can always cook up an operator

acting on a 1-D degree of freedom, whose matrix representation matches precisely

this effective Hamiltonian, and call this operator the effective Hamiltonian for a 1-D

system. However, one crucial feature that has to be fulfilled is the local structure:

Such an effective 1-D Hamiltonian must be “local” in regard to the degree of freedoms

it is acting on. In Ref. [117], an effective edge Hamiltonian that respects both locality

and conformal symmetry has been constructed to model the entanglement spectrum

of the Laughlin state at 1/3 filling. It has been shown that the entanglement spectrum

of the 6-particle sector of the 12-particle total system can be fitted very well to such

an effective edge Hamiltonian up to only the the second order (only 3 free fitting

parameters involved).

The bulk-edge correspondence, originally sketched in the early work of entangle-

ment entropy [118], has been extensively studied in various fields [119–124]. This cor-

respondence emerged in part from general arguments based purely on the topological

properties of the system and on the standard renormalization-group method [115],

in part from observations of geometric aspects and the Lorentz invariance of the
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emergent effective theory [116], and in part through study of model wavefunctions

specific to the quantum Hall system constructed from conformal blocks [117]. These

arguments are only valid provided certain assumptions hold in the thermodynamic

limit.

In the present work, we argue that a complete picture of the bulk-edge correspon-

dence should consist of two pieces. One is that the eigenvalues ξi are in one to one

correspondence with the eigenvalues of an effective edge Hamiltonian. The other is

that the universal eigenstates |ΨA
i 〉 that appear in the bulk density matrix (See Fig.

4.1 for an illustration of the universal levels) are all real edge states of the subsystem.

To be precise, the universal levels are those appearing in the entanglement spectrum

of the ideal model wavefunctions, as well as the part of the spectrum having similar

structures for the case of generic interactions. By comparing the entanglement spec-

trum eigenstates with the actual edge excitations, we are able to identify the universal

branch of the spectrum (See Fig. 4.1 for an example). For the first part of the bulk-

edge correspondence in the quantum Hall system, the only direct numerical evidence

was provided in Ref. [117], where the spectrum of a perturbative local Hamiltonian

of an edge system described by a conformal field theory was computed and shown

to match quite well the entanglement spectrum obtained for a real space partition of

the total system.

Since an effective edge theory usually describes the degrees of freedom that are

distinct from those in the original bulk system, direct comparison of their eigenstates

is much harder than comparing their eigenenergies. Thus, typical studies of the en-

tanglement spectrum usually focus on the counting structure of the eigenlevels. In

the present work, by analyzing the detailed information of the entanglement spec-

trum eigenstates, we complete the verification of the missing piece of the bulk-edge

correspondence for both the model wavefunction and the realistic ground state of

Coulomb interactions. The system studied here consists of a few spinless fermions in

the lowest Landau level on a two-dimensional disk. In this work, system partitions

are restricted to the subsets of the single particle magnetic orbitals in the symmetric



53

_ __ __ __ _


+
+
+
++

++
++
++
++
++
+++
++++++

+
+
+
+
+
+

1 2 3 4 5

1
2
3
4
5

nA

S

45 50 55 60 65 70 75 80

5

10

15

20

25

|M|

ξ

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
____



__



__



____



______



__________



______
________


____
____
________________


______
__________________


______________________________
__


______________________________________
__


__



______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
__

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
__
__

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
__
__

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________
__

______________________________________________________________________________________________________________________________________________________________________________________________
__

__________________________________________________________________
__________________________________________________________________________________
____________

____
______
____________________________________________________________________________________________________________
__________
______

______
________________
__
__________________________________________________________________________
______
__
____

__
__
__
________
__________________________________________________________________
________
__

__

__
__
__
____
______
__________________________________________
________
__

__

__

__
__
__________________________________
__________
________

__

__

______
____________________________
______

__

__

____
____________
__________
______
__

__

__
__
______
________
____
__

__
__
____
______
______

__

__
__
____
____
__

__
__
____
__

__
__
__

__
__ __ __

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
____________

______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
________
__
________

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
____
__
______

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
____

____

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
__________________

__

__

________________________________________________________________________________________________________________________________________________________________________________________________________________________________
____________
______________

__

__________________________________________________________________________________________________________________________________________________________________________________________
__________
__
________

____________________________________________________________________________________________________________________________________________________________
____
__
__
____

____________________________________________________________________________________________________________________
______
____

__

____

________________________________________________________________________
__________________________
__

__

__

____________________________________________________________________
____
__

__

______________________________________
________
____
______
__

__

0

0.2

0.4

0.6

0.8

1.

40 50 60 70 80

5

10

15

20

25

30

|M|

ξ

Fig. 4.1. Fig. 1 from Ref. [100]. Entanglement spectrum of the 17-
orbital subsystem at the 6-particle sector. The total system of 12
particles in 34 total orbitals is prepared in (Upper) the ideal Laughlin
state and (Lower) the realistic Coulomb interaction ground state. The
color of the pseudo-energy levels indicate the overlaps between the
corresponding entanglement spectrum eigenstates and the edge states
of the subsystem. Inset: Entanglement entropy v.s. the square root
of the number of orbitals (nA) in subsystem A, which is proportional
to the length of the boundary. The blue dashed line is our fit to the
first 17 points, which are in the linear region away from the edge of
the total system.
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gauge (with unnormalized analytic wavefunction z|m|e−|z|
2/4, where z = x− iy is the

two dimensional complex coordinate and m = 0,−1,−2, ... is the angular momentum

quantum number). In principle, the orbital cut is a partition in momentum space and

is fundamentally nonlocal. However, in the lowest Landau level, these single particle

orbitals have localized ring shapes with narrow width in the order of the magnetic

length. Thus in many cases the orbital partition mimics approximately the real space

partition and provides valuable information about the system.

It is also worthwhile to mention that another commonly used scheme, based on

a cut of particle number [113, 125, 126], has usually been adopted for the study of

quasi-hole excitations. In some particular model states, the level counting in the

orbital entanglement spectrum and the one in the particle entanglement spectrum,

which correspond to quasi-hole excitations in the bulk, were shown [127] to be ulti-

mately connected. This relation, also termed “bulk-edge correspondence”, is not to

be confused with the one we are considering in the present work.

In the subsystem, the particle number and total angular momentum are still good

quantum numbers; Thus, the reduced density matrix of a subsystem contains distinct

sectors which do not couple with each other. As an illustration, Fig. 4.1 compares the

standard entanglement spectrum for the ideal Laughlin state with that of the realistic

Coulomb ground state of 12 particles in the lowest Landau level. For entanglement

spectra of the quantum Hall states in other geometry and partition schemes, see also

Refs. [125,126,128–131]. The subsystem studied in this work involves the inner most

N/2-orbitals (with N the even number of total orbitals), which is the largest system

that is sufficiently far away from the edge of the total system, in the sense that it is

still in the linear region of the entanglement entropy (See the inset in Fig. 4.1). In this

region, edge effects are supposed to be removed as much as possible. By analyzing

the fraction of each eigenstate that resides in the Hilbert space of edge modes (by the

procedure explained in the following), we are able to identify all the universal levels

apart from the generic levels in the case of Coulomb interactions. It is observed that

the universal and generic parts barely mix with each other, although at larger angular
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momenta they start to mix, in contrast to the low angular momenta, where there is

a finite gap between them.

4.3.1 Model Edge States

To prove the bulk-edge correspondence, on the “edge” part, we use the well-known

series of model wavefunctions [132] for the (neutral) edge excitations of the Laughlin

ground state. These analytic model wavefunctions are generated by the power sum

symmetric polynomials sn =
∑

i z
n
i , n = 1, 2, 3.... To build an edge mode with angular

momentum ∆M (this is the additional angular momentum carried by the edge mode

beyond the ground state angular momentum), one generates an integer partition

|∆M | =
∑

i ni, where ni are positive integers. The corresponding (unnormalized)

edge state is constructed as the product of the Laughlin wavefunction and a symmetric

polynomial:

Ψedge =
∏
i

sni
∏
i<j

(zi − zj)1/ν
∏
i

e−
|zi|

2

4 , (4.10)

where ν is the filling factor. In general 1/ν takes arbitrary odd integer values, while

in the following numerical study we focus on ν = 1/3 only. For a given ∆M , the

number of different modes is thus the number of integer partitions of |∆M |. These

states are the only zero energy states for the case of the Haldane V1 pseudo-potential

in the lowest Landau level, and they describe the gapless edge excitations of the

Laughlin ground state. In the thermodynamic limit, the Hilbert space of the edge

modes generated by the order-n power sum polynomials is identical to that generated

by the U(1) Kac-Moody algebra [132–134] in a macroscopic theory of the edge physics.

However, for finite size systems, when the orders of the symmetric polynomials become

larger than the number of particles, these states are no longer linearly independent.

In fact, the number of linearly independent symmetric polynomials of order n is the

number of partitions of n into at most N parts, where N is the number of particles

and the number of variables in the polynomial. Denote this restricted partition as

P (n,N). For each such integer partition n =
∑N

i ni, one alternative way to construct
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the edge state is to use the corresponding order-n monomial symmetric polynomial

sn =
∑

p(
∏

i z
ni
i ), where the summation is taken over all permutations of z′is such

that the polynomial is symmetrized. The leads to a correction of the number of edge

modes for finite size systems compared with the macroscopic theory for systems in

the thermodynamical limit.

Another finite size effect arises when comparing the edge modes with the eigen-

states in the entanglement spectrum. That is, the ideal edge modes might involve

single particle orbitals that are outside the region of the subsystem under consid-

eration. These additional degrees of freedom need to be traced out in formatting

the appropriate Hilbert space of the subsystem [117]. Precisely speaking, the Fock

space spanned by the free edge states are projected onto a subspace involving only

orbitals that are resident in the subsystem. This inevitable projection procedure was

also discussed in Ref. [117] for the case the real space partitions. In this manner, the

projections of the original linearly independent edge modes might become linearly de-

pendent, such that the projected Fock space could have a smaller dimension than the

original Fock space of the free edge states. For illustration, Table 4.1 lists the number

of free edge modes, the number of independent projected edge modes, and the num-

ber of observed energy levels in the entanglement spectrum for the 5- and 4-particle

sectors. The observed level counting in the primary 5-particle sector of the entangle-

ment spectrum matches precisely the reduced dimension of edge modes Hilbert space

at every angular momentum sector. In the large particle number limit, the restricted

integer partition reduces to the regular integer partition. This is in agreement with

the original conjecture for the counting structure of the entanglement spectrum in

Ref. [135].

To prove that the universal part of the entanglement spectrum is indeed spanned

by the edge modes, we compute the probability for each eigenstate in the entangle-

ment spectrum to reside in this space. For a given eigenstate ψ of the entanglement

spectrum, the projection probability is defined as
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Fig. 4.2. Fig. 2 from Ref. [100]. The projection probabilities for the
whole entanglement spectrum of the 5-particle sector (left) and the
4-particle sector (right) for the case of Coulomb ground state. The
cases of both ideal edge states (upper) and realistic edge states of
Coulomb interaction are examined.



58

Fig. 4.3. Fig. 3 from Ref. [100]. Typical patterns for the projection
probabilities. Red squares represent the probabilities for 5 particles
at ∆M = 6 (|M | = 36). Blue dots correspond to the 4-particle sector
at ∆M = 8 (|M | = 26). Projection probabilities are computed using
(a) the model edge states for the Laughlin case and (b) the real edge
states for Coulomb interactions.
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Table 4.1.

Table I from Ref. [100]. The number of edge modes at various angular
momentum ∆M in the 14-orbital subsystem. The total system has
10 particles occupying 28 orbitals. Upper and lower tables correspond
to five and four particles, respectively. P is the number of free edge
modes, i.e., the number of restricted integer partitions. Dp represents
the dimension of the Hilbert space of projected edge modes; Dm labels
the observed multiplicity of levels in the entanglement spectrum.

|∆M | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

P (|∆M |, 5) 1 1 2 3 5 7 10 13 18 23 30 37 47 57 70 84 ...

Dp 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 ...

Dm 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 ...

|∆M | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

P (|∆M |, 4) 1 1 2 3 5 6 9 11 15 18 23 27 34 39 47 54 ...

Dp 1 1 2 3 5 6 9 11 14 16 19 20 23 23 24 23 ...

Dm 1 1 2 3 4 5 7 7 8 8 8 7 7 5 4 3 ...

Pr(ψ) = |P̂ψ|2, (4.11)

where P̂ is the projection operator to the Hilbert space of projected edge modes.

4.3.2 Numerical Results

We are able to compute the entanglement spectrum for both ideal Laughlin state

and Coulomb ground state, and the corresponding projection probability defined in

previous section, for up to 12-particles using exat diagonalization within the lowest

Landau level. The data are presented in Fig. 1, which confirms that the eigenstates

in the universal entanglement spectrum clearly stand out with a near unity overlap
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with subsystem edge modes. In the following we illustrate more details with the

10-particle system.

For the ideal Laughlin wavefunction, it is confirmed that all the eigenstates in the

entanglement spectrum have unity projection probabilities in the Hilbert space of the

projected edge states.

For the case of Coulomb ground state, both the ideal edge states and the real edge

modes of the subsystem are used to analyze the projection probability Eq. (4.11).

The real edge modes are computed from the Coulomb interaction at the corresponding

angular momenta with open boundary condition (without performing single particle

orbital cut). In the thermodynamic limit, they are supposed to be low-lying modes

describing the gapless edge excitations. However, in few-body calculations, there are

usually no clear gaps in the spectrum separating the edge modes and the bulk excita-

tions. In this case, we identify each edge state with the aid of high (∼0.97) projection

probabilities onto the Hilbert space of the ideal edge wavefunctions Eq. (4.10). These

probabilities scale with the system size in the same way as the overlap between the

Laughlin model state and the Coulomb ground state. It is known that the latter

overlap does not survive in the thermodynamic limit. However, this is not a problem

in this case since the edge states would stand out as gapless modes in the spectrum.

For the purpose of the few-body calculations in the present work, high overlaps allow

us to singles out the right number of edge states, while all other eigenstates of the

Coulomb Hamiltonian have sufficiently small projection probabilities (∼ 0.01) onto

the Hilbert space of the model edge states.

Fig. 4.2 and Fig. 4.3 show the projection probability patterns. Both the primary

5-particle sector and the sector with particle number offset (4-particle sector in this

case) show clear high probability plateaus for the universal levels in the entanglement

spectrum. In the 4-particle sector, since the number of universal levels is smaller

than the dimension of the projected edge modes (as was shown in Table 4.1), the

generic levels also have fluctuating non-zero probabilities, in contrast to 5-particle
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sector, where all the generic levels have nearly zero projection probabilities. They are

nevertheless clearly separated from the universal part.

In the primary sector, since all universal eigenstates in the entanglement spectrum

have nearly identity probabilities in the corresponding Hilbert space of projected

edge modes, it is concluded that the information of all edge excitations is hidden

in the pure ground state of the total system, which can be extracted from the bulk

state of the subsystem. This can be viewed as a complementary effect to a similar

result in Ref. [126], where it is observed that the primary sector of the entanglement

spectrum under particle partition spans the entire space of quasi-hole excitations of

the subsystem.

To further firm up the evidence of the bulk-edge correspondence, we present in

Fig. 4.4 the actual energy spectrum of 5 particles under Haldane V1 interaction with

and without boundary conditions. The degenerate zero-energy states for the latter

are model edge states. If we did not use the mechanism of projecting the edge states

of the subsystem with open boundaries, the nondegenerate low-lying states of the

subsystem alone would have been inadequate to explain all the observed universal

levels in the entanglement spectrum (Fig. 4.1).

To conclude this section, we have shown that the universal part of the subsystem

reduced density matrix, by orbital partition, of the fractional quantum Hall state

lies in the Hilbert space of edge modes of the subsystem itself, hence completing

the picture of the bulk-edge correspondence conjecture. This result also reveals the

possibility of extracting edge excitations from the state of the subsystem reduced by

geometric cut of the pure ground state of the total system in topological phases. In

the future, it will be informative to apply this method to other systems in topological

phases.
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Fig. 4.4. Fig. 4 from Ref. [100]. The spectrum of 5 particles under
the Haldane V1 pseudo-potential with an open boundary condition
(red levels) and with the same boundary condition as the 14-orbital
subsystem (blue levels). The blue levels are shifted slightly to the
right from their corresponding angular momenta. For the case of
an open boundary condition, the degeneracies of the ground states
are 1, 1, 2, 3, 5, 7, which are identical to the number of the ideal edge
states.
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5. SUMMARY AND OUTLOOK

To summarize, two achievements have been made in this dissertation. On the one

hand, numerical techniques have been developed to fully utilize the framework of the

hyperspherical approach to the fractional quantum Hall effect. The hyperspherical

method is well developed and widely appreciated in the studies of few-body phe-

nomena. Adopting this method to the context of the fractional quantum Hall effect

provides an alternative perspective, which has advantages complementary to previous

conventional treatments. It is in particular suitable to study the few-body collective

behaviors of the fractional quantum Hall excitations, as has been demonstrated in

the prediction of the collective hyperradial breathing mode. This unique type of vi-

brational mode might be directly measurable in the near future. The hyperspherical

method has not seen widespread use in condensed matter physics, however, with the

continued interest in realizing the fractional quantum Hall effect in the few-body

community and the rapidly developing experimental techniques in highly controlled

atomic systems, we expect to witness active applications of this method.

On the other hand, we have studied the principle of bulk-edge correspondence in

the finite size quantum Hall states. This principle is universal for matter phases with

topological orders. It offers a unified explanation for the topological entanglement

entropy and the structure of the entanglement spectrum, e.g., the spectrum gener-

ated by the reduced density matrix of a subsystem in the bulk. Previous studies

on the bulk-edge correspondence focused only on the energy level distributions of

the entanglement spectrum. As has been demonstrated in this work, the eigenstates

associated with the entanglement spectrum reveal more information for the state of

entire system under consideration. This method could be directly applied to other

systems with topological orders. It also provides a way to extract the edge modes

purely from the bulk state induced from the global ground state wavefunction. This
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is especially useful when the edge excitations are hard to compute directly. The dis-

cussion of the state of the reduced density matrix of the bulk subsystem also brings

up many interesting directions to explore. For instance, once the connection between

the state of the reduced bulk system and an effective edge system has been made,

it might be possible to define an effective bulk temperature, even though the global

ground state is in absolutely zero.
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A. BOSON-FERMION CORRESPONDENCE

Representation of (Anti-)Symmetric Polynomials

Denote λ and µ the partition of an integer M , e.g., λ = {n1, ., ni, ., nN}, where

n1 ≤ ... ≤ ni ≤ ... ≤ nN are N non-negative integers summing up to M. For each

partition there associates a unique Slater determinant and a monomial symmetric

polynomial, which are defined respectively as

mλ = Ŝ
M∏
i=1

znii dλ = Â
M∏
i=1

znii , (A.1)

where Ŝ and Â are symmetrization and anti-symmetrization operators. For a given

set of all partitions {λ} of integer M with a fixed length N , mλ and dλ form a

complete basis for the symmetric and anti-symmetric polynomials of N variables and

total order M , respectively. Beside the monomial symmetric functions, we introduce

here another basis for the symmetric polynomials of order M , the Schur functions,

which is defined from a given partition λ as

sλ =
dλ̄∏

zi>zj
(zi − zj)

, (A.2)

where λ̄ is a partition that generated from λ:

λ̄ = {n1, n2 − 1, n3 − 2, ..., ni − (i− 1), ..., nN − (N − 1)}. (A.3)

It can be checked that sλ has the correct order of M . The transformation between the

basis of Schur functions and the monomial symmetric polynomials is an important

subject in the field of representation theory. There is a well know quantity, the Kostka

number, Kλµ, that relates the two basis:

sλ =
∑
µ

Kλµmµ. (A.4)
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We quote here a formula for the inverse Kostka number K−1
λµ which is the coefficient

of the inverse transformation

mλ =
∑
µ

K−1
λµ sµ. (A.5)

K−1
λµ is recurrently given by

K−1
λµ =

∑
1≤j≤d and rj=µi+i−1

(−1)i−1K−1
λ[j],{µ1−1,...,µi−1−1,µi+1,...,µl}. (A.6)

Here, we assume that µ has no zero elements. d is the number of groups of identical

numbers in the partition λ. λ[j] refers as a new partition that is generated by removing

a number rj from the j-th group of identical numbers in λ. For instance, if λ =

{1, 1, 3, 3, 3, 4, 6}, then d = 4 and λ[2] = {1, 1, 3, 3, 4, 6}.

Mapping of Boson and Fermion Wave Functions

Equipped with a normalization factor and an exponential Gaussian factor(which

are usually ignored), each of the above polynomial corresponds to a N body bosonic

or fermionic wave function in the lowest Landau level with total angular momentum

M :

φBλ = NB
λ mλφ

F
λ = NF

λ dλ, (A.7)

where N is the normalization factor which has known analytic forms. The indexes F

and B labels fermion and boson respectively. Schur functions in Eq.A.2 can also be

used as the many-body basis functions. However, there are two defects of using Schur

functions: 1) the analytic normalization factors can not be trivially found; 2) they

are not orthogonal under the normal definition of inner product between quantum

mechanical wave functions. The mapping introduced in Chapter 2 generally maps

each φBλ into a linear combination of φFλ in the corresponding fermionic Hilbert space.

To find out the transformation coefficients, we note the fact that φBλ can be expanded

into Schur functions with the help of Kostka numbers. Each Schur function would

be mapped to a single functions φFλ , which is apparently seen from the definition Eq.

(A.2). This process is as following.
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Assume a generic normalized N boson wave function

ΨB =
∑
i

cBi φ
B
i , (A.8)

which can be written in terms of monomial symmetric functions and farther be

expanded into Schur functions:

ΨB =
∑
i

cBi N
B
i m

i

=
∑
i,j

cBi N
B
i K̂

−1
ij sj.

(A.9)

The resulting N fermion wave function mapped from the above bosonic wave

function is

ΨF = A
∏
zi>zj

(zi − zj)
∑
i,j

cBi N
B
i K̂

−1
ij sj, (A.10)

where A is an overall normalization of the wave function ΨF . Using Eq. A.2, the

Schur function together with the Vandermonde factor are farther transformed into

Slater determinant:

ΨF = A
∑
i,j

cBi N
B
i K̂

−1
ij

1

NF
j

φFj . (A.11)

We now get the mapped fermionic wave function which has expanding coefficients

cFj = A
∑
i,j

cBi N
B
i K̂

−1
ij /N

F
j . (A.12)
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B. TWO-BODY MATRIX ELEMENTS OF THE

COULOMB POTENTIAL

In this section we derive the formula for the Coulomb potential matrix elements in the

basis of two-body state. The derivations are carried out generally, involving particles

in any Landau levels.

Notations

The single particle state can be written as:

ψmn (r, φ) =

√
n!

2|m|+1π(n+ |m|)!
eimφr|m|e−r

2/4L|m|n (r2/2) (B.1)

with energy and angular momentum

E = h̄ωc(n+
m+ |m|

2
+

1

2
), n = 0, 1, 2, ...,+∞

Lz = mh̄ m = n, n− 1, ..., 0,−1,−2, ...−∞
(B.2)

Denote |n,m > as the single particle state(here n has a different meaning as in

Eq. B.1) on the n’th Landau level, with energy h̄ωc(n + 1
2
) and angular momentum

quantum number m. Under this convention, |n,m > takes the form of Eq. B.1 with

effective nodal quantum number

neff = n− m+ |m|
2

. (B.3)
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Define the following Ladder operators:

â† = −i
√

1

2
(2∂ − 1

2
z̄)

â = −i
√

1

2
(2∂̄ +

1

2
z)

b̂† =

√
1

2
(−2∂̄ +

1

2
z)

b̂ =

√
1

2
(2∂ +

1

2
z̄)

(B.4)

then the state |n,m > can be generated with raising operators from the vacuum state

|0 >:

|n,m >= Aâ†b̂†n−m|0 >, (B.5)

or be eliminated using lowering operators:

Aâb̂n−m|n,m >= |0 >, (B.6)

where A is the normalization factor

A =
(−1)min{n,n−m}√

n!(n−m)!
, (B.7)

and

min{n, n−m} = n− m+ |m|
2

. (B.8)

Transformation of Basis

Denote |n1m1n2m2 > as a two body state where the first particle is in state

|n1m1 > and the second in state |n2m2 >. Another useful two-body basis is the

center of mass(CM) and relative coordinate basis |NMnm >, which means that

the CM motion is in the state |NM > and the relative coordinate motion is in state

|nm >. Next we derive the transformation coefficients between these two basis. Using

Eq.B.6, |n1m1n2m2 > can be written as

< n1m1n2m2| =< 0|A1A2â
n1
1 b̂

n1−m1
1 ân2

2 b̂
n2−m2
2 . (B.9)
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Expand the single particle basis Ladder operators with CM-relative coordinate basis

operators as

ân1
1 b̂

n1−m1
1 ân2

2 b̂
n2−m2
2

=C(âc + âr)
n1(b̂c + b̂r)

n1−m1(âc − âr)n2(b̂c − b̂r)n2−m2

=C
n1∑
i=0

n2∑
j=0

n1−m1∑
k=0

n2−m2∑
l=0

(−1)2n2−m2−j−l

× Ci
n1
Cj
n2
Ck
n1−m1

C l
n2−m2

âi+jc ân1+n2−i−j
r b̂k+l

c b̂n1+n2−m1−m2−k−l
r

(B.10)

where C = (1/
√

2)2n1+2n2−m1−m2 . In doing the inner product between the two basis,

the only survived terms in the above summation are those that satisfy

i+ j = N

k + l = N −M

n1 + n2 = N + n

m1 +m2 = M +m,

(B.11)

leaving the final transformation coefficient as

< n1m1n2m2|NMnm >

=CA1A2

AcAr

n1∑
i=0

n2∑
j=0

n1−m1∑
k=0

n2−m2∑
l=0

(−1)2n2−m2−j−lCi
n1
Cj
n2
Ck
n1−m1

C l
n2−m2

,
(B.12)

where factor As are given by Eq. B.7.

Coulomb Pseudo-Potential

In the following we derive the analytic formula for the Coulomb potential matrix el-

ement in the basis of two-body CM-relative coordinate basis, < NMnm|V̂ |N ′M ′n′m′ >

. In the lowest Landau level, this term has the form of δN,N ′δM,M ′δn,n′δm,m′V (m) ,

where V (m) is know as the Haldane pseudo-potential. Generally, including higher

Landau levels, the two-body Coulomb matrix elements read
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< ψMN (R,Φ), ψmn (r, φ)| 1√
2r
|ψM ′N ′ (R,Φ)ψm

′

n′ (r, φ) >

=NN ′
√

2πδm,m′δN,N ′δM,M ′

∫ ∞
0

dr r2|m|e−r
2/2L|m|n (

r2

2
)L
|m|
n′ (

r2

2
),

(B.13)

where N is the normalization factor of the single particle wave function, Lmn (x) is the

generalized Laguerre polynomial. Note that in the above equation, N and n are nodal

quantum numbers given by Eq. B.1, instead of Landau level indexes. To perform the

calculation numerically, we farther reduce the above integration to∫ ∞
0

dr r2|m|e−r
2/2L|m|n (

r2

2
)L
|m|
n′ (

r2

2
)

=

∫ ∞
0

dr r2|m|e−r
2/2

n∑
i=0

(−1)iCn−i
n+|m|

(r2/2)i

i!

n′∑
j=0

(−1)jCn′−j
n′+|m|

(r2/2)j

j!

=
n∑
i=0

n′∑
j=0

(−1/2)i+jCn−i
n+|m|C

n′−j
n′+|m|

i!j!

∫ ∞
0

dr e−r
2/2r2|m|+2i+2j

=
n∑
i=0

n′∑
j=0

(−1/2)i+jCn−i
n+|m|C

n′−j
n′+|m|

i!j!
(2|m|+ 2i+ 2j − 1)!!.

(B.14)
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C. ENUMERATION OF SLATER DETERMINANTS OF A

FIXED {K,MTOT} MANIFOLD

As stated earlier, listing the complete set of N -particle Slater determinants spanning

a fixed {K,Mtot} manifold is equivalent to finding the complete list of sets of single-

particle orbitals that satisfy the rules listed in Section 3.2.1. Because N , K, Mtot, and

all of the single-particle orbital quantum numbers are integers, we can use techniques

from number theory to find the allowed sets of single-particle orbitals. One efficient

method for finding the Slater determinants is to find the integer partitions on K and

on the number of total excitations in the desired system, and use those partitions to

construct contingency tables.

We start by noting that the grand angular momentum K is the total order of the

harmonic polynomial part of the final, N -particle Slater determinants.

Since K is the order of the polynomial we seek, we must include all Slater de-

terminants in which the polynomial orders of the individual orbitals sum up to K.

The order of the polynomial of the single-particle orbital |ε,m〉 is 2ε −m, thus the

restriction is

K =
N∑
j=1

(2εj −mj) = 2nε −Mtot. (C.1)

Here, nε is the total number of Landau level excitations. This restriction is equivalent

to finding the integer partitions of K of length less than or equal to N , where the

partition of an integer A of length B is simply the list of all possible (ordered) sets

of integers that sum up to A with exactly B elements in each ordered set.

For example, for a three particle system and K = 4, the allowed partitions are

[4, 0, 0], [3, 1, 0], [2, 2, 0], and [2, 1, 1]. For this system, there are 4 different ways to

divide the total polynomial order, K, among the 3 single-particle orbitals without

any reference to the information about the specific orbitals chosen.
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Fig. C.1. Diagram describing the ordering of the single-particle or-
bitals |ε,m〉 by Landau level and order of the polynomial.
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Figure C.1 shows how the single-particle orbitals are arranged by the order of their

polynomial part and Landau level. Notice that the integer partitions of K can be

recast into an alternate notation which identifies the number of orbitals to pick from

each row of Fig. C.1. Taking partition [4, 0, 0], for example, it is recast to {2, 0, 0, 0, 1},

which means we can pick two orbitals of order 0, no orbitals of order 1, no orbitals of

order 2, no orbitals of order 3, and one orbital of order 4. The rest of the partitions

in this example become {1, 1, 0, 1}, {1, 0, 2}, and {0, 2, 1}, respectively.

The second observation is that there is only one orbital with order 0 polynomial

(|0, 0〉), only two orbitals of order 1 (|0,−1〉 and |1, 1〉), three orbitals of order 2

(|0,−2〉, |1, 0〉, and |2, 2〉), and so on. This presents an additional restriction; namely,

in this example the {2, 0, 0, 0, 1} set of column choices is not allowed because one can

not take two unique orbitals from the 0th-order set of orbitals.

We perform a similar partitioning and restriction by fixing M . This can be done

by brute force to enumerate every possibility given the restrictions on K, but this is

inefficient. Alternatively, the restriction on M can be restated as a restriction on the

number of Landau level excitations nε. Looking back at Eq. (C.1), the total number

of Landau level excitations is equal to nε = (K + Mtot)/2. Dividing the number

of excitations among the different Landau levels is again equivalent to finding the

integer partitions, this time of nε, restricted by the number of particles. Continuing

the example for N = 3 and K = 4, if Mtot = 0, then this implies that nε = 2 and its

integer partitions are [2, 0, 0] and [1, 1, 0]. Recasting these in terms of the number of

orbitals to pick from each column of Fig. C.1, yields {2, 0, 1} and {1, 2}, respectively.

Combining the results, from the restrictions on K we have all possible lists of the

number of orbitals to choose from each row of Figure C.1, and from the restrictions

on nε we have all possible lists of the number of orbitals to choose from each column

of Figure C.1. Said differently, the number of Slater determinants that contribute to

the subspace of fixed M and K is equivalent to counting all possible triangular binary

rectangular contingency tables with specified margins.
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The row margins, that is, the restricted sums over row elements, are given by the

set of numbers that count how many times a given number appears in the integer par-

titions of K. The column margins, that is, the restricted sums over column elements,

are given by the set of numbers that count how many times a given number appears

in the integer partitions of nε. Both integer partitions are restricted to have no more

than N parts. There are known algorithms to efficiently enumerate the possibilities,

but the problem scales polynomially with K and nε.

Continuing the example, there are six possible contingency matrices:

2 0 1

1 . 0 0

1 . . 0

0 . . .

1 . . .

1 2

1 . 0

1 . .

0 . .

1 . .

2 0 1

1 . 0 0

0 . . 0

2 . . .

(C.2)

1 2

1 . 0

0 . .

2 . .

2 0 1

0 . 0 0

2 . . 0

1 . . .

1 2

0 . 0

2 . .

1 . .

. (C.3)

The row and column restrictions are indicated to the left of and above the matrices,

respectively. The upper triangle of each is made up of zeros as there are no orbitals

to pick from in these locations. Dots indicate elements that are unknown within

the matrix (not including trivial zero rows or zero columns). By inspection, it is

straightforward to enumerate all possible matrices, namely

2 0 1

1 1 0 0

1 1 0 0

0 0 0 0

1 0 0 1

1 2

1 1 0

1 0 1

0 0 0

1 0 1

2 0 1

1 1 0 0

0 0 0 0

2 1 0 1

1 2

0 0 0

2 1 1

1 0 1

(C.4)
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which translate to the Slater determinants |0, 0〉|0,−1〉|2, 1〉, |0, 0〉|1, 1〉|1,−1〉, |0, 0〉|0,−2〉|2, 2〉,

and |0,−1〉|1, 1〉|1, 0〉, respectively. It is observable that by restricting nε, all of these

Slater determinants do in fact have Mtot = 0, as was desired. In practice, we enumer-

ate the possible configurations of a single contingency matrix by starting with the

first column. For the first column there are
(
N
c1

)
possible 0-1 column vectors, where

c1 is the first column restriction. Choosing one of the allowed 0-1 column vectors,

the resulting counting problem is identical to the previous step, though with a new

matrix of one less column and new row restrictions.



86

D. CENTER-OF-MASS OPERATORS

Expressed in terms of the ladder operators, the single-particle coordinates are

x =
1

21/2

(
a+ a† + b+ b†

)
y =

ı

21/2

(
a− a† − b+ b†

)
(D.1)

∂

∂x
=

1

23/2

(
a− a† + b− b†

) ∂

∂y
=
−ı
23/2

(
−a− a† + b+ b†

)
. (D.2)

The center of mass coordinates and its partial derivatives, expressed in the single-

particle coordinates, are

xCM =
1

N

N∑
j=1

xj yCM =
1

N

N∑
j=1

yj (D.3)

∂

∂xCM
=

N∑
j=1

∂

∂xj

∂

∂yCM
=

N∑
j=1

∂

∂yj
. (D.4)

In the following, it is also useful to use the commutator relations, which are

[
a, a†

]
= 1 (D.5)[

b, b†
]

= 1 (D.6)

[a, b] =
[
a†, b†

]
=
[
a†, b

]
=
[
a, b†

]
= 0. (D.7)
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Angular Momentum

The angular momentum of the center of mass becomes

LCM = −ıh̄
(
xCM

∂

∂yCM
− yCM

∂

∂xCM

)
= − ıh̄

N

N∑
j=1

N∑
k=1

(
xj

∂

∂yk
− yj

∂

∂xk

)

= − h̄

4N

N∑
j=1

N∑
k=1

[(
aj + a†j + bj + b†j

)(
−ak − a†k + bk + b†k

)
+
(
aj − a†j − bj + b†j

)(
ak − a†k + bk − b†k

)]
= − h̄

2N

N∑
j=1

N∑
k=1

[
ajbk − bjak + a†jb

†
k − b

†
ja
†
k − aja

†
k − a

†
jak + bjb

†
k + b†jbk

]
= − h̄

2N

N∑
j=1

N∑
k=1

[
−aja†k − a

†
jak + bjb

†
k + b†jbk

]
. (D.8)

It can be seen that the ab terms cancel (a and b commute) when summing over all

indices.

Center of Mass Hamiltonian

We wish to transform the center of mass Hamiltonian HCM in terms of the raising

and lowering operators of the quantum Hall problem. In cyclotron units and assuming

equal mass particles, the center of mass Hamiltonian is

HCM = − 1

2N

(
∂2

∂x2
CM

+
∂2

∂y2
CM

)
+
N

8

(
x2
CM + y2

CM

)
+

1

2h̄
LCM (D.9)
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The x2
CM + y2

CM term yields

x2
CM + y2

CM =
1

N2

N∑
j=1

N∑
k=1

(xjxk + yjyk)

=
1

2N2

N∑
j=1

N∑
k=1

[(
aj + a†j + bj + b†j

)(
ak + a†k + bk + b†k

)
−
(
aj − a†j − bj + b†j

)(
ak − a†k − bk + b†k

)]
=

1

N2

N∑
j=1

N∑
k=1

[
ajbk + bjak + a†jb

†
k + b†ja

†
k + aja

†
k + a†jak + bjb

†
k + b†jbk

]
(D.10)

The ∂2

∂x2CM
+ ∂2

∂y2CM
terms become

∂2

∂x2
CM

+
∂2

∂y2
CM

=
N∑
j=1

N∑
k=1

(
∂

∂xj

∂

∂xk
+

∂

∂yj

∂

∂yk

)

=
1

8

N∑
j=1

N∑
k=1

[(
aj − a†j + bj − b†j

)(
ak − a†k + bk − b†k

)
−
(
−aj − a†j + bj + b†j

)(
−ak − a†k + bk + b†k

)]
=

1

4

N∑
j=1

N∑
k=1

(
ajbk + bjak + a†jb

†
k + b†ja

†
k − aja

†
k − a

†
jak − bjb

†
k − b

†
jbk

)
(D.11)

Combining Eq. (D.8), Eq. (D.10), and Eq. (D.11) as in the center of mass Hamiltonian,

Eq. (D.9), yields

HCM =
1

2N

N∑
j=1

N∑
k=1

(
aja
†
k + a†jak

)
(D.12)



89

Hyperangular Operator

The squared grand angular momentum operator K̂2 in 2-D takes the form [?]

K̂2 =−R2∇2 +
N∑
j=1

N∑
k=1

(
xjxk

∂

∂xj

∂

∂xk
+ xjyk

∂

∂xj

∂

∂yk
+ yjxk

∂

∂yj

∂

∂xk
+ yjyk

∂

∂yj

∂

∂yk

)

+ (2N − 1)
N∑
j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
(D.13)

where R is the hyperadius and ∇2 is the Laplacian operator. Expanding out these

terms yields

K̂2 =
N∑
j=1

N∑
k=1

(
xjxk

∂

∂xj

∂

∂xk
+ xjyk

∂

∂xj

∂

∂yk
+ yjxk

∂

∂yj

∂

∂xk
+ yjyk

∂

∂yj

∂

∂yk

)

−
N∑
j=1

N∑
k=1

(
x2
j + y2

j

)( ∂2

∂x2
k

+
∂2

∂y2
k

)
+ (2N − 1)

N∑
j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
. (D.14)

Diagonal Terms

For ease of computation, we break up our calculation of K̂2 into its diagonal

(j = k) and off-diagonal (j 6= k) parts. There are two contributions to the diagonal

terms; the j = k terms of the double sum and the single summation of Eq. (D.14).

First, leaving off the j label for convenience, the double sum becomes

1

4

∑
j=k

(
aaa†a† + aa†aa† + a†aa†a+ a†a†aa+ bbb†b† + bb†bb† + b†bb†b+ b†b†bb

− 2
[
aa†bb† + aa†b†b+ a†abb† + a†ab†b

]
+ a†bb†b† − a†b†b†b+ a†aab− aaa†b− abbb† + ab†bb+ aa†a†b† − a†a†ab†

)
.

(D.15)

Applying the commutator rules Eqs. (D.5) and (D.6) to put as many of the terms

into number operator form (e.g. a†a) as possible, after much algebra yields∑
j=k

(
1 + a†aa†a+ b†bb†b− 2a†ab†b+ a†b† − ab

)
. (D.16)
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Second, the single summation of Eq. (D.14) becomes

(2N − 1)
N∑
j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
= (2N − 1)

N∑
j=1

(
−1 + ab− a†b†

)
(D.17)

Combining Eqs. (D.16) and (D.17) yields

−2N(N − 1) +
N∑
j=1

([
a†jaj − b

†
jbj

]2

+ 2(N − 1)
[
ajbj − a†jb

†
j

])
(D.18)

where additional factors ofN have come from pulling out the 1’s from the summations.

Off-Diagonal Terms

The off-diagonal parts of the K̂2 operator come from the double summation, where

it is assumed that j 6= k. There are a total of N(N − 1) terms in this summation. In

ladder operator form, putting all j indices to the left and all k indices to the right,

the off-diagonal part is

1

2

∑
j

∑
k 6=j

([aa† + 2a†b† + bb†]j[aa
† − 2ab+ bb†]k

+ [a†a+ 2ab+ b†b]j[a
†a− 2a†b† + b†b]k)

(D.19)

where we use a compact notation where a subscript on the parenthesis implies all

elements within the parenthesis have that label. Applying the commutator rules

Eqs. (D.5) and (D.6) yields

1

2

∑
j

∑
k 6=j

(
4 + 2[a†a− 2ab+ b†b]k + 2[a†a+ 2a†b† + b†b]j

+ [a†a+ 2a†b† + b†b]j[a
†a− 2ab+ b†b]k

+ [a†a+ 2ab+ b†b]j[a
†a− 2a†b† + b†b]k

)
.

Expanding and simplifying yields

2N(N − 1) + 2(N − 1)
N∑
j=1

(
a†jaj + b†jbj − ajbj + a†jb

†
j

)
+
∑
j

∑
k 6=j

([
a†a+ b†b

]
j

[
a†a+ b†b

]
k
− 2

(
a†jb
†
jakbk + ajbja

†
kb
†
k

))
. (D.20)
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Full K̂2 Operator

Combining Eqs. (D.18) and (D.20) yields

K̂2 =
N∑
j=1

([
a†a− b†b

]2
j

+ (2N − 2)
[
a†a+ b†b

]
j

)
+
∑
j

∑
k 6=j

([
a†a+ b†b

]
j

[
a†a+ b†b

]
k
− 2

(
a†jb
†
jakbk + ajbja

†
kb
†
k

))
. (D.21)

Note that only the last term can lead to coupling between Slater determinants.
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E. ALGORITHMS FOR COMPUTING ENTANGLEMENT

SPECTRUM

Given two Hilbert spaces HA and HB with complete sets of basis {|i〉A} and {|j〉B},

respectively. Any pure quantum state on the composed system HA ⊗ HB can be

written as

|Ψ〉AB =
∑
i,j

cij|i〉A|j〉B. (E.1)

The task is to find the reduced density matrices for the subsystems, and then compute

the eigenvalues (entanglement spectrum) and the associated eigenstates.

Method I : The reduced density matrix for subsystem A can be computed directly

by performing a partial trace over the subsystems B:

ρA ≡ trB |Ψ〉AB〈Ψ|AB

=
∑
m

〈m|B
(∑

i,j

∑
k,l

cijc
∗
kl|i〉A|j〉B〈k|A〈l|B

)
|m〉B

=
∑
i,k

(∑
m

cimc
∗
km

)
|i〉A〈k|A

(E.2)

Thus, represented in the basis of {|i〉A}, the reduced density matrix of subsystem A

has matrix elements

ρAi,j =
∑
m

cimc
∗
jm. (E.3)

Once the reduced density matrix is known, it can be further diagonalized to compute

the entropy,

SA ≡ − tr ρA ln ρA

= −
∑
i

λi lnλi,
(E.4)
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where λi’s are the eigenvalues of ρA.

Method II : The total wavefunction admits a Schmidt decomposition:

|Ψ〉AB =
∑
i,j

cij|i〉A|j〉B

=
∑
i

√
λi|Ψi〉A|Ψi〉B.

(E.5)

Here |Ψi〉A(B) are orthonormal wavefunctions for subsystem A(B). It can be seen that

λi’s are automatically the eigenvalues for ρA(B), since ρA(B) in the diagonal form is

ρA(B) =
∑
i

λi|Ψi〉A(B)〈Ψi|A(B). (E.6)

λi’s as well as the wavefunctions |Ψi〉A(B)’s appearing in the Schmidt decomposition

can be computed using the singular value decomposition of the coefficience matrix

cij:

cij = UΛV ∗. (E.7)

Here Λ is diagonal, U and V are unitary matrices. Since

cij =
∑
k

UikΛkkVkj, (E.8)

the Schmidt decomposition can be written as

|Ψ〉AB =
∑
i,j

cij|i〉A|j〉B

=
∑
ij

∑
k

UikΛkkV
∗
kj|i〉A|j〉B

=
∑
k

Λkk

(∑
i

Uik|i〉A
)
⊗

(∑
j

V ∗
kj|j〉B

)
.

(E.9)

It is recognized that Schmidt decomposition is connected to the sigular value decom-

position of the coeffcient matrix cij through

λk = Λkk,

|Ψk〉A =
∑
i

Uik|i〉A,

|Ψk〉B =
∑
j

V ∗
kj|j〉B.

(E.10)
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Example : Suppose the total system is a chain of four sites. Each site has either

0 or 1 electron. For instance, |0100〉 is a basis state (Fock basis in the second quan-

tized form) for the total system, which means that there is only an electron on the

second site.

Consider the total wavefunction

|ΨAB〉 = a1|0101〉+ a2|0011〉+ a3|1100〉+ a4|1010〉. (E.11)

Subsystem A (B) is chosen as the first (last) two site.

Define the basis for system A as |1〉A = |00〉, |2〉A = |01〉, |3〉A = |10〉, |4〉A = |11〉.

The basis for system B can be labeled in the same way. The total wavefunction,

recast into to form of Eq. (E.1), is

|ΨAB〉 = c22|2〉A|2〉B + c14|1〉A|4〉B + c41|4〉A|1〉B + c33|3〉A|3〉B, (E.12)

where c22 = a1, c14 = a2, c41 = a3, c33 = a4.

Algorithms : The entanglement spectrum and the associated eigenstates for a quan-

tum Hall ground state can be computed by implementing the methods described

above. The crucial step is to find the coefficient matrix cij.

The fractional quantum Hall ground state is computed by exact diagonalization

in the Fock basis. The target ground state is represented as a linear combination of

the Fock basis {|k〉}:

|Ψg〉 =
∑
k

ak|k〉. (E.13)

Each basis is a particular particle occupation, e.g., |00100...1001001〉, which is a prod-

uct of the basis of the two subsystems, i.e., |00100...〉A ⊗ |...1001001〉B. If |00100...〉A

and |...1001001〉B are the i-th and j-th basis for the two subsystems, respectively,

Then the coefficient of this particular basis |00100...1001001〉 contributes to the cor-

responding coefficient matrix element cij.
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However, the subsystems have a large number of basis functions, while the total

ground state only involves a small portion of the large basis set. It is inefficient

to store the entire subsystem basis set. Instead, the involved subsystem basis are

read out through the target ground state. This can be done through the following

algorithm:

Step 1: Create a space to store the subsystem basis set.

Step 2: Read in the first basis and the corresponding coefficient from the target ground

state. Extract the subsystem basis functions in this basis function for the total

system.

Step 3: Compare the extracted subsystem basis with the subsystem basis set. If this

subsystem basis function exists in the subsystem basis set, read out its index.

If this subsystem basis function does not exist in the basis set, add it to the

basis set and create a new index for it. The index is then used to identify the

corresponding coefficient matrix element cij.

Step 4: Move to the next basis in the target ground state and repeat Step 3.

In the above algorithm, each Fock basis is assigned a unique real number. The basis

set is stored as an array of these real numbers. To implement fast search for a given

element, the array is sorted using Quicksort algorithm.
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