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ABSTRACT

Author: Wang, Mingding. PhD
Institution: Purdue University
Degree Received: May 2019
Title: Targeted Delivery of Dasatinib for Accelerated Bone Fracture Healing.
Committee Chair: Philip S. Low

Approximately 6.3 million bone fractures occur annually in the USA, resulting in
considerable morbidity, deterioration in quality of life, loss of productivity and wages, and
sometimes death (e.g. hip fractures). Although anabolic and antiresorptive agents have
been introduced for treatment of osteoporosis, no systemically-administered drug has been
developed to accelerate the fracture healing process. To address this need, we have
undertaken to target a bone anabolic agent selectively to fracture surfaces in order to
concentrate the drug’s healing power directly on the fracture site. We report here that
conjugation of dasatinib to a bone fracture-homing oligopeptide via a releasable linker
reduces fractured femur healing times in mice by ~60% without causing overt off-target
toxicity or remodeling of nontraumatized bones. Thus, achievement of healthy bone
density, normal bone volume, and healthy bone mechanical properties at the fracture site
is realized after only 3-4 weeks in dasatinib-targeted mice, but requires ~8 weeks in PBS-
treated controls. Moreover, optimizations have been implemented to the dosing regimen
and releasing mechanisms of this targeted-dasatinib therapy, which has enabled us to cut
the total doses by half, reduce the risk of premature release in circulation, and still improve
upon the therapeutic efficacy. These efforts might reduce the burden associated with
frequent doses on patients with broken bones and lower potential toxicity brought by drug

degradation in the blood stream. In addition to dasatinib, a few other small molecules have

also been targeted to fracture surfaces and identified as prospective therapeutic agents for
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the acceleration of fracture repair. In conclusion, in this dissertation, we have successfully
targeted dasatinib to bone fracture surfaces, which can significantly accelerate the healing
process at dasatinib concentrations that are known to be safe in oncological applications.
A modular synthetic method has also been developed to allow for easy conversion of a

bone-anabolic warhead into a fracture-targeted version for improved fracture repair.
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CHAPTER 1. INTRODUCTION

1.1 Physiology of Bone
1.1.1 Bone Composition and Organization

Bone is one of the most important and versatile organs in the human body. Beside its
primary function of providing mechanical support and protection, bone also plays essential
roles in mineral homeostasis and hematopoiesis.> Bone is not a dead stick of mineral;
instead, it is a highly dynamic organ undergoing catabolism and anabolism constantly, with
multiple highly-differentiated cell types performing various physiological functions. The
adult bone consists of 50-70% mineral, 20-40% organic matrix, 5-10% water and 1-5%
lipids.2 About 90% of the organic matrix is made up of type | collagen, with the remaining
10% being noncollagenous proteins. During bone formation, collagen is first deposited in
a highly organized manner with heavy cross-linkage, followed by the formation of bone
mineral within the collagen network.! The major mineral component of the bone is
hydroxyapatite (HAp) with a chemical formula of Ca10(POa4)s(OH)2, which is regularly
broken down and freshly deposited.

Macroscopically, bone is organized in two distinct forms: cortical bone and
cancellous bone (Fig. 1.1). Cortical bone is dense and compact, delivering the majority of
structural support and protection; on the other hand, cancellous bone is porous, composing
of small plates and rods of bone (trabecular bone) that take up only 25-30% of its total
tissue volume.! Cortical bone forms most of the shafts and diaphyses of long bones, while
trabecular bone is primarily located in the metaphyses of bone and mineralized fracture
calluses.® Trabecular bone still provides crucial mechanical support, especially in a

fracture callus (see Section 1.2.2). The mechanical properties of cancellous bone is highly
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dependent on the density, interconnectivity, and thickness of trabeculae that it is comprised
of.> A membrane called periosteum covers the outside of the bone, and the hollow cavity
inside the bone (intramedullary cavity) is filled with bone marrow, endowing the bone with

the capacity to influence hematopoietic homeostasis.

Cortical
(hard) bone Trabecular

Periosteum . R T (spongy) bone
(membrane covering bone)

| Articular
cartilage
Blood Marrow \

vessels Epiphyseal plate

Medullary cavity

Fig. 1.1 Structure and Organization of Long Bone.
Diagram originally created by Pbroks13 [CC BY 3.0
(https://creativecommons.org/licenses/by/3.0)] and modified for use.

1.1.2 Cells Involved in Bone Homeostasis

Physiological functions of bone, including its anabolic and catabolic activities,
response to mechanical loading, and mineral homeostasis, rely on bone cells. There are
three major types of bone cells: osteoclasts, osteoblasts, and osteocyte, all of which
contribute to bone metabolism highly specifically. In the attempt to alter the homeostasis
of bone (e.g. to accelerate the rate of fracture healing), understanding and manipulating the
physiological functions of those cells is essential, making them important targets for

therapeutics agents.
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1.1.2.1 Osteoblasts

Being the only cell that synthesizes and deposits newly-formed bone, osteoblasts are
one of the most important bone cells.* Osteoblasts are highly-differentiated, single-
nucleated cells of the mesenchymal lineage that are capable of producing crosslinked
networks of collagen (majorly type 1) and other noncollagenous proteins such as
osteopontin to form a highly organized organic matrix of bone, namely osteoid.!41%
Subsequently, HAp is produced by osteoblasts and deposited into the osteoid to form

mineralized bone tissue.*

Surface of Bone

Calcium and Phosphate Uptake

Waste Acid Removed )
+ % . o Tight +
Ca HF’OZ- Junction

' Gap
+ ¥
Na Y/unction Na

Osteoblasts Synthesize
Collagen and Matrix
Organizing Proteins,

Secrete Phosphate (Matrix

Side) and Remove Acid

(Basolateral Side)

Precipitation of

Hydroxyapatite Mineral from
Calcium and Phosphate
Liberates Acid

Osteocytes in
Mineralized Matrix

Impervious Cement
(Boundary of Osteon)

Fig. 1.2 Depiction of Osteoblasts and Osteocytes.
Diagram originally created by Physio Muse [CC BY-SA 3.0
(https://creativecommons.org/licenses/by-sa/3.0/)] and modified for use.
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Bone morphogenetic proteins (BMPs) and Whnts activate the two major pathways
that promote osteoblast differentiation.® The binding of BMPs to type | and type || BMP
receptors triggers the BMP signaling pathway and activates Smad transcription factors 1,
5, and 8, which would enter the osteoblast nucleus after forming complexes with Smad4.
This complex promotes the transcription of key factors such as RUNX2 and Osx as well
as various osteoblastogenesis genes, which in turn stimulates the proliferation and
differentiation of osteoblasts.”2° The bone-anabolic efficacy of BMPs has drawn forth two
FDA-approved drugs for fracture repair: BMP-2 (Infuse®, Medtronic) and BMP-7 (OP-1°,
Stryker Biotech), both of which are locally- and surgically-applied therapeutics for long
bone fractures.!1-13

The Wnt pathway has been known to play important roles in cell proliferation,
differentiation, and apoptosis in many tissues.!*!® Binding of Wnts to the frizzled (FZD)
family receptors or low-density lipoprotein receptor protein 5/6 (LRP5/6) activates the Wnt
signaling pathway, leading to the accumulation of 3-catenin in the cytoplasm, which would
later translocate into the nucleus. B-catenin stimulates Tcf/LEF-mediated transcription in
the nucleus, which leads to proliferation, differentiation, and survival of osteoblasts.>
Given the central role that Wnt pathway plays in osteoblast function, it is not surprising to
see a plethora of research efforts put into stimulation of the pathway by suppressing the
physiological inhibitory factors of the pathway in order to promote osteoblast
differentiation and activity. Several mechanisms are involved in the inhibition of Wnt
pathway. The intracellular enzyme glycogen synthase kinase 3 (GSK3) phosphorylates (3-
catenin, which serves as a signal for the degradation of B-catenin and prevents its nucleus

translocation, suppressing the activation of Wnt pathway.*8° Thus, many GSK3 inhibitors,
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both known and newly-developed, have been studied for their potential as bone-anabolic
agents?®2°, Meanwhile, several endogenous factors that antagonizes and hinders the
binding between Wnts and FZDs or LRP5/6 have been discovered, such as secreted
frizzled-related proteins (sFRPSs), dickkopf-1 (Dkk-1), Wnt-inhibitory factor-1 (WIF-1),
sclerostin, etc.?® Positive results of enhanced bone formation by inhibition of extracellular
Whnt inhibitors have been reported, utilizing either neutralizing antibodies (Dkk-1 and

sclerostin) or small-molecule inhibitors (sFRP-1).2"-2°

1.1.2.2 Osteoclasts
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Fig. 1.3 Depiction of an Osteoclast.
Diagram originally created by Cellpath [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0/)] and modified for use.
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Osteoclasts are the major cell type involved in bone resorption, the catabolic activity
of bone homeostasis. Osteoclasts are multinucleated cells of the monocyte lineage, which
is formed by the in-situ proliferation and fusion of precursor cells recruited to the bone
surface.®® A mature osteoclast adheres to bone, creates a sealing zone, and forms a
resorptive pit under the cell (Fig. 1.3). Osteoclast-mediated bone resorption begins with the
acidification of the resorptive pit by proton pumps to dissolve the bone mineral, followed
by the secretion of various enzymes (e.g. cathepsin K and matrix metalloproteinases) to
break down the organic matrix of bone.*30:31

The most important pathway to regulate the differentiation and function of
osteoclasts is the RANKL/RANK pathway.®> RANK is a type | transmembrane protein
expressed on the cell surface of osteoclasts, which regulates osteoclast differentiation and
activation.®® RANK ligand, or RANKL, is a type Il membrane protein belonging to the
tumor necrosis factor (TNF) superfamily expressed on osteoblast and osteocyte surface,
and serves as the endogenous ligand for RANK.34 The binding of RANKL to RANK on
the surface of osteoclasts and its precursor cells functions as the signal for
osteoclastogenesis®®. The ability to express RANKL has enabled osteoblasts to initiate and

regulate the activity of osteoclasts, and in turn, bone resorption.%

1.1.2.3 Osteocytes

Osteocytes are terminally-differentiated osteoblasts embedded in the bone matrix
(Fig. 1.2).%" Osteocytes make up more than 90% of bone cells, making them the most
abundant cell type in bone tissue.**® Canaliculi, which are dendritic processes formed by
osteocytes, extend to all directions and form an osteocyte network for communication and

exchange of materials such as proteins (see Fig. 1.1).*3° Osteocytes are important
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regulators of bone homeostasis by secreting factors that influence osteoblast and osteoclast
activity (e.g. OPG, RANKL, sclerostin, etc.).*® Additionally, osteocytes are in charge of
bone’s response to mechanical load; they sense mechanical signals and react by directing
bone modeling to counteract the mechanical load.** Moreover, osteocytes play an
important endocrine role: when unusual changes in plasma hormone levels are detected,

osteocytes would regulate bone formation and resorption in response to those changes.*?

1.1.3 Bone Problems and Pathologies

When one or more processes in bone homeostasis fail, bone pathologies would
develop. Common pathologies arising from altered bone homeostasis include osteoporosis
(more active bone resorption than bone formation*®), Paget’s Disease (bone turnover
malfunction®#), and osteogenesis imperfecta (impaired osteoid production®®). Healthy bone
can also fall victim to mechanical impact or bacterial infection, leading to bone fracture or
osteomyelitis.*®

Among all bone pathologies, osteoporosis and bone fracture are the most common.*’
Since osteoporosis is a major risk factor of bone fracture, the two pathologies are tightly
related.®® In the US, approximately 44 million people have low bone density with 10
million already suffering from osteoporosis, implying that a large proportion of the
population will have increased likelihood for fractures®. Unfortunately, although many
osteoporosis therapies have been developed, there is still a void for an effective, convenient,

and safe bone fracture repair therapy (see Section 1.2.3).
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1.2 Bone Fracture Repair
1.2.1 Types of Bone Fracture

Bone fractures occur when there is a break in the bone.® Differentiated by the
character and cause, bone fractures can be classified as simple fracture, comminuted
fracture, and stress fracture. When bone is broken into two fragments, it is defined as a
simple fracture, while comminuted fracture describes a situation where bone is shattered
into several pieces. Stress fracture is characterized by an accumulation of microdamage

caused by the exposure to continuous and repeated force.>°

1.2.2 Natural Process of Fracture Repair

The process of fracture repair can be divided into four stages: inflammatory response,
soft callus formation, hard callus formation, and bone remodeling (Fig. 1.4).>° The
inflammatory stage occurs immediately following the trauma, and lasts for as long as 7
days. During this stage, a hypoxic hematoma forms around the fracture wound site with an
influx of inflammation-responder cells (e.g. macrophages, leukocytes, etc.).>* These
recruited cells begin to participate in angiogenesis and fibrogenesis, resulting in the
formation of a fibrocartilage callus that bridges the fractured ends of bone, namely the soft
callus.® This stage usually peaks on day 7-10 in rodent models.>® Following that, the soft
callus is gradually replace with cancellous/trabecular bone, bridging the bone ends with a
mineralized bony structure called hard callus, which leads to the progressive restoration of
the mechanical strength of the broken bone.>® During this stage, osteoblasts are highly
active, and osteoblast markers such as alkaline phosphatase (ALP) and type I collagen are
significantly upregulated.®® The peak of this stage is around day 14 in rodent models. The

last stage of fracture repair, bone remodeling, occurs from week 3-4 and may last for
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several months to several years before completion.>® During this stage, trabecular bone in
the fracture callus is gradually remodeled into cortical bone while the callus restores to the
original shape of the bone, although the reshaping might never fully complete.>
Osteoclasts and osteoblasts are both actively involved in the bone remodeling process,
where osteoclasts resorbs the trabecular bone in the fracture callus while osteoblasts build
new cortical bone.> Inhibition of osteoclast activity with antiresorptives (such as
bisphosphonates) during this stage would impair the removal of trabecular bone tissue and

formation of compact bone.*

Hematoma New blood vessels

Healed
fracture

External

Spongy bone Bony callus
trabecula of spongy bone

(a) (b) (€) (d)

Fig. 1.4 The Four Stages of Fracture Repair.
(a) Inflammatory stage; (b) soft callus formation; (c) hard callus formation; (d) bone
remodeling. Diagram adapted from Anatomy and Physiology®® [CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)]

1.2.3 Need for Improvements in the Treatment of Bone Fractures

Bone fracture has long been one of the least desirable ailments for human beings,
and it is causing major problems in the US and around the world. Approximately 6 million
bone fractures occur each year in the USA®, resulting in 3.5 million visits to the emergency

room and 887,679 longer term hospitalizations (data source: National Ambulatory Medical
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Care Survey and the American Academy of Orthopaedic Surgeons). With 61 million older
Americans estimated to suffer from osteoporosis®®, this number of fractures is expected to
increase, especially as the population continues to age. Costs associated with hip fracture
repairs were estimated at $21 billion in 2009°7, and lost wages due to fracture-related
absence from work have added substantially to these costs®®. Morbidities deriving from
loss of motility, pain, anxiety, and depression can also erode a patient’s quality of 1ife>*%°.
Most importantly, many fractures trigger more serious pathologies, with complications
deriving from hip fractures leading to 75,000 deaths/year in the USA®.82. Clearly,
strategies that might accelerate and/or improve bone fracture repair could mitigate many
problems facing an aging and physically active population.

Despite the burdens bone fractures have been and will be laying on the aging
population from all over the world, the current therapeutic solutions for bone fracture has
yet to catch up with the growing demand. Antiresorptive drugs and anabolic drugs are the

two major classes of drugs that are currently available for the expansion of bone mass, each

with its own disadvantages to be used for the improvement of bone fracture repair.

1.2.3.1 Problems with Antiresorptive Drugs

Examples of antiresorptive include various bisphosphonates (alendronate, zoledronic
acid, etc.), estrogen therapy, and RANKL antibody (Denosumab). Those agents increase
bone mass by inhibiting the function of osteoclasts, resulting in a decrease in bone
resorption. Bisphosphonates suppress bone resorption by suppressing osteoclast activity®?,
while estrogen prevents bone loss by disrupting the initiation of osteoclastogenesis and
inducing osteoclast apoptosis®*. RANKL antibody neutralizes RANKL and inhibits the

binding between RANKL and RANK, which hinders the differentiation from
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hematopoietic precursor cells into osteoclasts®®. Since osteoporosis is caused by an
imbalance between bone formation and resorption, those antiresorptive drugs work well
for osteoporosis by inhibition of bone resorption. However, they have not been employed
to accelerate fracture healing since they do not promote the formation of new bone, which
is essential in the process of fracture healing. Additionally, bisphosphonates inhibit
angiogenesis, which together with their resorption-hindering ability, might impede bone
turnover essential for fracture repair®®’. Furthermore, as mentioned about in Section 1.2.2,
inhibition of bone resorption is detrimental to the last stage of fracture healing, which is an

undesirable feature for a drug intended to enhance fracture repair.

1.2.3.2 Problems with Derivatives of Parathyroid Hormone

Problems also exists for a class of parathyroid-hormone-related bone-anabolic agents.
Recombinant human parathyroid hormone 1-34 (Forteo®, Eli Lilly), abaloparatide
(Tymlos®, Radius Health), and parathyroid hormone related protein (PTHrP) can all
activate osteoblasts and thereby induce bone mineralization®®°, but their abilities to
improve fracture repair in human have not proven statistically significant’®, even at
concentrations that promoted hypercalcemia and the consequent pain, nausea, confusion
and fatigue™ "3, In fact, since PTH can induce osteoclastogenesis and may cause either a
net gain or a net loss of bone material depending on the dosing regimen®® 7, there are

reports of conflicting results on Forteo’s ability to improve fracture healing® .

1.2.3.3 Problems with BMPs

BMP-2 and BMP-7 are the only FDA approved anabolic drugs for fractures; however,
they must be applied topically for fractures in which the fracture surface is exposed during

surgery or spinal fusion, severely restricting their use.” Both clinically approved BMPs
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have also been continuously plagued by safety concerns such as vertebral osteolysis and
ectopic bone growth, leading to the withdrawal of BMP-7/OP-1® from the market in
August 2014.76°7

Clearly, a major need exists for a systemically administered drug that will accelerate
fracture repair without promoting turnover of undamaged bones or causing other unwanted
side effects such as hypercalcemia. From our perspective, a bone anabolic agent that would
concentrate at the fracture site, promote osteoblast activity without overt inhibition of bone

resorption, and clear rapidly from unaffected sites should satisfy the above requirements.

1.3 The Role of Src Kinase in Bone Metabolism

In the search for a novel bone-anabolic agent that avoids the above-mentioned
drawbacks, Src inhibition has drawn our attention as a potential strategy that meets our
criteria. Indeed, studies with Src-knockout mouse models have shown that although Src
kinase is ubiquitously expressed in tissuest’, the only major consequence of Src gene
knockout appears to be osteopetrosis (excess formation of bone)®'-2, suggesting that Src
kinase plays a critical role in bone turnover and formation®. However, it was unclear
whether this effect has been a result of promoted bone formation or suppressed bone
resorption. Since the role that Src plays in osteoclastogenesis has been extensively studied
and documented,'#+ the prevailing opinion has been that Src inhibition would merely act
as an antiresorptive .28

Despite the dogma, multiple recently reports have studied and discussed the effect of
Src inhibition on bone-anabolism (see Section 2.1), giving us the initiative to explore the

possibilities of using Src inhibitors as bone-anabolic agents for accelerated fracture repair.
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Dasatinib, a potent Src inhibitor with a safety profile that has stood up to the test with

human patients for over a decade,® is our top candidate.

1.4  Targeted Delivery of Bone-Anabolic Agents to Accelerate Fracture Repair
1.4.1 Leading Drugs to the Right Places: Targeted Drug Delivery

Traditional drug discovery designs drug molecules that interfere with one or more key
processes during disease development. Given that the majority of these processes are not
constrained to diseased tissue, those drug molecules are, in turn, non-specific in terms of
toxicity. Hence, many effective drugs fail due to side effects originating from their
interaction with normal, healthy cells and tissues.® This concern brings into our sight a
new class of drug conjugates that combine a drug payload with a disease-tissue-specific
ligand.®® This new class of targeted drug conjugates would accumulate specifically at the
disease site, release the drug payload, and achieve improved therapeutic efficacy as well
as reduced systemic toxicity.®* Apparently, a therapy to accelerate bone fracture healing
would benefit significantly from targeted drug delivery, which enables concentration of the
bone-anabolic efficacy of the drug and reduction of the potential for systemic toxicity (e.g.
abnormal ectopic bone growth, hypercalcemia, etc.). The key to a successful targeted drug
for bone fracture repair is finding a good targeting ligand with high specificity for a bone

fracture.

1.4.2 Bone-Fracture-Specific Targeting Ligands

To achieve fracture-specific targeting, a HAp-binding moiety should work well since
crystalline HAp is exposed in the case of a fracture, whereas it is fully covered with the

periosteum in healthy bones.®? HAp-specific bone targeting ability has been in existence
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for quite some time: technetium-99m-methylene diphosphonate (**™Tc-MDP) was
developed in the 1970s, and has been widely used in bone scintillation scans for almost
four decades.®*** Besides bisphosphonates, other HAp-targeting moieties such as calcium
phosphate nanomaterials/scaffolds and oligo-acidic peptides are all potential choices as
targeting ligands. However, despite bisphosphonates’ strong HAp binding characteristics,
they cause an imbalance in the fracture repair process by potently inhibiting
osteoclastogenesis,® which is undesirable for a fracture healing drug as discussed before.
Plus, their excessively long half-life in bone®® and teeth®” may increase the risk of side-
effects. Calcium phosphate nanomaterials/scaffolds are similar in composition to bone and
have demonstrated potential as bone-specific delivery systems, but they have been difficult
to be reproducibly synthesized with well-defined morphologies and have therefore not yet
progressed into the clinic.%

A superior strategy for fracture targeting involves targeting moieties consisting of
strings of acidic amino acids, such as aspartic acid and glutamic acid.*® Oligomers of
aspartic acid and glutamic acid are compositionally similar to motifs of bone sialoprotein
(BSP) and proteins in the small integrin-binding ligand, N-linked glycoprotein (SIBLING)
family, which are naturally occurring bone homing peptides with strong affinity for
HAp.%%1%0 Additionally, their peptidic nature allows them to be readily biodegraded
following completion of their targeting function.’®* Consequently, oligomers of aspartic
acid and glutamic acid are burdened by few if any unwanted side effects when used for
fracture targeting. The biodistribution profile of aspartic acid octapeptide, in particular,
was impressive with high uptake in fractured bone, high fractured-to-healthy bone ratio,

and limited uptake in other tissues.'®% As shown in Fig. 1.5, an ?°I-labeled,
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oligoaspartic-acid-targeted small molecule 6BIO would concentrate specifically at the
fracture site of a mouse 24 h post injection, while the free, untargeted version had mostly
been excreted with only small quantities distributed in a scattered fashion in the mouse
body.1% Hexamers, octamers and decamers of oligoaspartic acids have all been reported to
localize efficiently to bone fracture surfaces and clear rapidly from the plasma in vivo, with
increasing targeting ability with increasing length of the peptide.®®1% For those reasons,

aspartic acid decapeptide has been chosen for our fracture-targeting purposes.

Fig. 1.5 SPECT/CT Image of Fracture-Bearing Mice Receiving Free (Left) or Targeted
(Right) Versions of 1%1-6BIO.

The small amount of remaining free 12°1-6BI1O was randomly distributed in the mouse
body, while a considerable quantity of targeted 12°1-6B10 had accumulated at the fracture
site. Images were taken 24 hours after injection of the radiolabeled compounds. Reprinted

(adapted) with permission from [100]. Copyright © 2015, American Chemical Society.
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1.5 Summary of Our Hypothesis

Since osteoblasts play essential roles in both bone formation, regulation of the
activity of osteoblasts is the key to manipulation of the fracture repair process. Given that
Src inhibition could promote the activity and differentiation of osteoblasts in vivo, we
hypothesize that accumulation of a potent Src inhibitor at the fracture site should stimulate
new bone formation, which might in turn facilitate the healing of a fracture. To test our
hypothesis, we would need to first verify the ability of a Src inhibitor to stimulate osteoblast
differentiation and function in vitro. If the inhibitor does facilitate osteoblastogenesis, we
would implement a mouse fracture model and concentrate the inhibitor at the fracture
surface to test its bone fracture healing efficacy. Src inhibitor dasatinib is chosen to be
tested owing to its potency and safety, and a deca-aspartic acid will be used as the fracture-
targeting ligand for specific delivery to the fracture site. Since dasatinib needs to be
released from the targeting moiety to work, the two parts would be joined by a hydrolysable
ester linker.

If a fracture-targeted version of dasatinib should turn out to be a potent bone-anabolic
agent that could facilitate bone fracture repair, this finding may have significant clinical
implications. Complications derived from prolonged immobility could be alleviated, and
patients could be able to return to their normal lives sooner. Moreover, we would also
attempt to reduce the dosing frequency of the targeted drug to further cater to the need of
patients bearing bone fractures. Finally, more bone-anabolic small molecules would be
delivered to bone fracture with the same targeting ligand to examine their ability to

facilitate fracture healing.
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