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ABSTRACT

Patil, Ameya S. M.S.M.E., Purdue University, May 2019. Analysis of Process Induced
Shape Deformations and Residual Stresses in Composite Parts during Cure. Major
Professor: Hamid Dalir.

Process induced dimensional changes in composite parts has been the topic of

interest for many researchers. The residual stresses that are induced in composite

laminates during curing process while the laminate is in contact with the process

tool often lead to dimensional variations such as spring-in of angles and warpage of

flat panels. The traditional trial-and-error approach can work for simple geometries,

but composite parts with complex shapes require more sophisticated models. When

composite laminates are subjected to thermal stresses, such as the heating and cooling

processes during curing, they can become distorted as the in-plane and the through-

thickness coefficients of thermal expansion are different, as well as chemical shrinkage

of the resin, usually cause spring-in. Deformed components can cause problems during

assembly, which significantly increases production costs and affects performance. This

thesis focuses on predicting these shape deformations using software simulation of

composite manufacturing and curing. Various factors such as resin shrinkage, degrees

of cure, difference between through thickness coefficient of thermal expansion of the

composite laminate are taken into the consideration. A cure kinetic model is presented

which illustrates the matrix behavior during cure. The results obtained using the

software then were compared with the experimental values of spring-in from the

available literature. The accuracy of ACCS package was validated in this study.

Analyzing the effects of various parameters of it was estimated that 3D part simulation

is an effective and cost and time saving method to predict final shape of the composite

part.
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1. INTRODUCTION

1.1 Motivation and Scope

The necessity of lightweight design in aerospace and motorsports industry has in-

creased the demand of carbon fiber reinforced plastics composite materials. Over the

years composite material manufacturing has been growing progressively. Currently,

manufacturing induced deformations are still a challenge for the manufacturers, as

those unwanted distortions from the nominal shape lead to increased scrap rates

and/or additional difficulties within the assembly process. A connection of deformed

parts can lead to a massive increase of the part’s internal residual stress level which

deteriorate the part’s performance.

For small composite parts process induced distortions are not as critical as they are

for the larger and complex composite parts. Presently, tool designers rely on their

own experience to account for process-induced deformations, often applying a trial-

and-error approach to the problem. While this can give reasonably decent results

for parts with comparatively modest geometry, composite parts with complex shapes

require sophisticated models to capture the interactions between different geometrical

features. The most common problem found, using a standard factor of approximation,

is that the spring-in varies due to various parameters. Therefore, standard approxi-

mation may not be an effective technique every time.

The need of having a reliable approach for predicting these process induced shape

distortions has driven researchers to develop new methods. As composite materials

are anisotropic in nature, the study of directional properties becomes important while

predicting the final material properties. The fiber and matrix behavior during the

manufacturing needs a focused study for predicting the final shape of any composite

laminate. Analysis of the composite curing process is essential for obtaining the ac-



2

curate results for predicting the final shape of the composite part. Many analytical

methods already exist for calculating the final material properties of the compos-

ite materials. Using Classical Laminate Theory (CLT) through thickness coefficient

of thermal expansion can be obtained. Different analytical expressions have been

proposed previously to estimate the dimensional changes in the laminate. However,

using the same expressions may not work every time as those expressions are devel-

oped based on a generalized approximation of the various factors affecting the shape

distortions. Simulating the entire curing process can be an effective method for pre-

dicting the final shape of the composite part. Software results help estimating a more

accurate final shape of the composite part which can be used later to compensate

during tool design.

1.2 Residual Stresses

Residual stresses that are unavoidably generated in composites while manufactur-

ing, subsequently distort the cured parts to account for these residual stresses. These

stresses get built up on fiber-matrix, lamina-laminate, and structural levels. Genera-

tion of residual stresses can be attributed to several mechanisms. Inherent anisotropy

of composite materials being the prominent one. The coefficient of thermal expansion

(CTE) is different in different directions for composite materials. Previous experi-

mental studies show that the coefficient of thermal expansion in resin-dominated

directions is much higher than in fiber-dominated directions. The dimensional in-

stability caused due to this difference results in generation of residual stresses. The

contraction of any unidirectional ply in transverse direction and through-thickness

direction is more than in the longitudinal direction. When cooled, residual stresses

are generated in the part which are balanced by the tool when the part is in contact

with the tool. The part gets distorted to its equilibrium state to balance the internal

residual stresses when the tool is removed.

Resin cure shrinkage is equally significant in generation of residual stresses. For
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polymeric composites, the resin shrinks when polymerization takes place causing a

volume change. Shrinkage is more evident in resin dominated directions of the mate-

rial. When the resin is heated during cure the resin undergoes cross-linking reactions

that lead to an increase of material density and reduction in volume. The two main

notable transitions during the curing process of a thermosetting resin are Gelation

and Vitrification. Gelation is the process of formation of a 3-D infinite network of

polymer chains which is an irreversible process. Vitrification occurs once the glass

transition temperature reaches the curing temperature and the resin transforms from

the rubbery to the glassy, solid state. The induced stresses which develop throughout

cure due to CTE mismatch and resin shrinkage are capable of causing distortion and

premature cracking of the composite laminates.

Cure shrinkage effect is a combined effect of cure volume change, resin flow and com-

paction. The residual stresses at the micro-mechanical level (fiber-resin) as well as

at the macro-mechanical level (lamina-laminate) are generated due to cure shrinkage

effects. Residual stresses at the fiber-matrix level are often not considered explic-

itly in the design of composites; frequently they are absorbed as hidden knock-down

factors on the strength properties of the material. However, they can generate mi-

crocracks and delamination in composites. Residual stresses on the lamina-laminate

and structural levels are often calculated using laminate plate theory or finite element

analysis. Residual stresses at lamina-laminate level are responsible for part distor-

tion. Intrinsic sources generate residual stress at the constituent level and the effect

is integrated up through the length’s scales. Extrinsic sources are responsible for gen-

eration of stresses at the boundaries of the structure and the effect is migrated down

through the length’s scales. It is seen that intrinsic sources have the major effect on

fiber-matrix level stresses while extrinsic sources have severe effect on the structural

level stresses. Reduction in strength and shape distortions are the prime effects of

residual stress. Strength of the component is affected by stresses at the fiber-matrix,

lamina-laminate and structural levels, whereas dimensional fidelity is affected by only

lamina-laminate and structural level stresses to any significant degree.
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Another factor that is responsible for generation of residual stresses is tool-part inter-

action. Due to the difference in CTE of the tool and the ply in contact with tool, the

tool and the ply expand at different rate upon heating. This mismatch in expansion

is responsible for the residual stresses induced in outer plies of the composite lami-

nate. The frictional forces on the ply in contact with tool cause uneven distribution

of thermal strains across the laminate. Upon tool removal this effect can be observed

as a distortion in the final part.

1.3 Spring-in and Warpage

When curved composite laminates are subjected to thermal stresses, such as the

heating and cooling processes during curing, they get distorted to negate the residual

stresses induced due to the difference between the in-plane and the through-thickness

thermal expansion coefficient, as well as chemical shrinkage of the resin. The phe-

nomenon of the enclosed angle of curved sections getting reduced is commonly referred

to as “spring-in or spring-back”. (Depending upon the direction of angular distor-

tion).

Spring-in usually is defined as the difference between the corner angle of the tool;

and the corner angle of the final composite laminate. Spring back is seen in initially

curved orthotropic laminates when the radial and circumferential dilatational strains

during cure are different. In simpler words, due to the uneven distribution of inter-

nal residual stresses in through-thickness and in longitudinal direction the spring-in

occurs.

Warpage is the deviation of initially flat laminate from flatness due to internal stresses

or strains while processing. While processing a composite part on a tool material hav-

ing high coefficient of thermal expansion, plies adjacent to the tool-part interface may

get stretched, which causes a stress gradient through the thickness that locks in when

the part cures. As a result, these parts warp away from the tool after processing. In

symmetric and balanced laminates, warpage typically arises because of non-uniform
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properties through the thickness, such as fiber volume fraction gradients, or thermo-

mechanical tool-part interaction. Change in composite dimensions is related to many

parameters such as: part angles, thicknesses, lay-ups, flange length, but also tool

materials, tool surface or cure cycles. The parameters related to material, lay-up,

and part shape are called intrinsic parameters and parameters related to processing

and tooling are called as extrinsic parameters. This classification permits sources of

residual stresses related to material selection and part design to be segregated from

sources that are controlled by processing. For thermoset polymer matrices, thermal

volume changes of the matrix and fibers are the material related sources of residual

stress, and cure shrinkage of the matrix. The extrinsic sources of residual stresses

depend on the particulars of the process and include mechanical tool-part interaction

and residual stress build-up due to cure gradients during processing.

Tool dimensions are required to be modified to compensate for process induced dis-

tortions. Simulating the composite curing process can help to predict spring-in for

composite parts before the first physical prototype is produced, reducing process de-

velopment costs and increasing product quality. Using simulation, it becomes easier

to predict the tooling geometry required to consistently produce high-quality struc-

tures within tight dimensional tolerances. Simulation can help predict the shape

deformations in complex as well as large shaped composite parts accurately. The

thermo-mechanical simulation of the curing process can provide the accurate final

material state. Simulation based on a previously developed cure kinetic model can be

an effective tool to predict the thermally induced residual stresses. The finite element

model then helps in predicting the dimensional changes.

1.4 ANSYS Composite Curing Simulation (ACCS)

Developed by LMAT, a consulting services company based in the United King-

dom, ANSYS Composite Cure Simulation (ACCS) is a reliable simulation platform

to support manufacturing and tooling engineers throughout the process design cycle.
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ACCS was industrialized in response to the growing market demand. The platform

has been broadly authenticated and subsequently used to compensate rib, spar and

wing-skin tools across the European aerospace and wind energy industries, where

previously re-machining the finished tooling after molding the first part was the only

method of achieving parts of sufficiently high tolerance to meet strict aerospace as-

sembly rules.

The ability of providing the accurate thermomechanical simulation for the compos-

ite curing process makes ACCS a unique software platform. The thermal module

provides the results for all the thermal process parameters such as degree of cure,

glass transition temperature, material state etc. Previously, for obtaining the ther-

mal results carrying out experiments was necessary. The thermal results obtained are

helpful in reducing the manufacturing time and cost as there is no need of conducting

the experiments for obtaining the thermal results.

ACCS structural module provides the accurate results for the final shape of the com-

posite part and the residual stresses present in the part post deformation. The com-

patibility of the software with various other finite element software makes ACCS

unique as carrying out the further structural and dynamic analysis on the composite

parts is easily possible using the presented methodology.

1.5 Overview of Thesis

This study is focused on obtaining the software results for the prediction of spring-

in and residual stresses in composite parts using ACCS. Various parameters have

been taken into consideration and the effects of those parameters on the dimensional

changes have been analyzed.

The objectives of this research work are as following:

• To predict the process induced residual stresses in composite angular plates

using ANSYS Composite Cure Simulation (ACCS)

• To validate the capabilities of ACCS package



7

• To investigate the effects of various parameters on the spring-in angle

• To compare the results obtained with the analytical and experimental results

previously presented by various researchers

• To validate the methodology used based on the comparative analysis between

experimental and software results.

This thesis covers all the objectives mentioned above. Chapter 2 provides detailed

information about the previous analytical methods used for predicting the spring-in.

In chapter 3 the simulation work flow and the cure kinetic model used for the cure

simulation have been presented. Chapter 4 contains of all the software results such as

spring-in, residual stresses, degree of cure results. Software results considering various

factors such as laminate thickness, flange length, width of the part and cure cycles

have been presented. Lastly chapter 5 discloses the conclusions of this research study

and the possible future scope for the work.
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2. REVIEW OF LITERATURE

Process induced distortions in composite materials has been given a lot of focus by

manufacturers. Many studies present different methodologies for predicting the mate-

rial behavior upon curing. The complexity of this issue has forced researchers to study

the major factors such as material properties, chemical and thermal cure shrinkage,

resin flow, compaction, degree of cure, glass transition temperatures. Various analyt-

ical methods have been presented here. Parameters affecting the shape deformations

have been discussed in the following sections.

2.1 Material Properties

A composite material can be defined as a combination of two or more materials

that results in better properties than when the individual components are used alone.

Therefore, while studying the material properties both fiber and matrix properties

need to be taken into consideration. While fiber properties are responsible for the

strength in fiber dominated direction, matrix properties have a great impact on the

strength in through-thickness direction. Therefore, for analyzing the development of

residual stresses, understanding resin behavior is necessary.

2.1.1 Glass Transition Temperature

Curing process consists of series of thermo-chemical reactions where the liquid

state resin is converted to rubbery solid first and then to a glassy solid state. The

temperature at which gelation occurs is known as the glass transition temperature.

Epoxies being the thermosetting materials, during the curing process, the final cured

epoxy materials do not melt or reflow when heated but usually get softend at elevated
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temperatures. Having the exact values of glass transition temperature is important

in estimating the material behavior at phase change [1].

2.1.2 Degree of Cure

Degree of cure at specific time can be defined as the ratio of the summation of

reaction heat at that specific time to the summation of total heat during the entire

cure cycle [2].

α = H/(HT +HR) (2.1)

Where α is the Degree of cure at specific time, H is the summation of reaction heat

till specific time from the beginning of the reaction, HT is the heat of entire cure cycle

and HR is the residual reaction heat.

DOC can be calculated experimentally using a differential scanning calorimeter

Fig. 2.1.: Heat of reaction response using DSC

(DSC). DSC measures the instant heat of reaction and DOC can be calculated. Figure

(2.1) shows a typical DSC response for a single-step cure cycle [3].
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Upon providing enough heat flow as activation energy for the chemical reactions the

following exothermic reactions take place. There is an increase in rate of DOC at the

beginning of the cure. The heat flow is then observed to be decreasing during later

stages of curing. Therefore, the heat of reaction is the area under the curve shown in

figure 2.1. It can be implied that the relation between the DOC and heat of reaction

is nonlinear function of temperature and time-history. Various cure kinetic models

provide different relations for the rate of DOC. It can usually be assumed that the

rate of DOC is the function of DOC and temperature. [4]

dα/dt = f(α, T ) (2.2)

Where α is degree of cure, T is the temperature and dα/dt is rate of reaction.

The rate of reaction can also be expressed in the form of rate of heat flow is pro-

portional to the rate of the heat flow. It is assumed that the rate of reaction is

proportional to the rate heat flow. Hence, rate of reaction is expressed as,

dα/dt = 1dH/HTdT (2.3)

Where, HT is total heat of reaction for the entire cure cycle and dH/dT is the heat

flow rate.

Table 2.1 lists few of the cure kinetic models that are being commonly used [3] [5] [6].

Table 2.1.: Cure kinetic models

No. Model Equation

1 Springer-Loss dα/dt = (k1 + k2α)(1 − α)(B − α)

2 Cole with Diffusion dα/dt = (1/(1 + ec(α−(αc0+αcT ))))K1α
m(1 − α)n

3 White and Hanh dα/dt = K1α
m(1 − α)n

4 Kamal dα/dt = (K1 +K2α
m)(1 − α)n

5 Kamal with Diffusion dα/dt = (1/(1 + ec(α−αc)))(K1 +K2α
m)(1 − α)n

6 Johnston and Hubert dα/dt = (Kαm(1 − α)n)/(1 + ec(α−(αc0+αcT )))

7 Lee, Chiu and Lin dα/dt = K1(1 − α)1 +K2α
m(1 − α)n
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Table 2.2.: Parameters of cure kinetic model

No. Parameter Expression

1

K i = Ae∆Ei/RT

Arrhenius factor

2 α Resin degree of cure

3 ∆Ei Activation Energy

4 R Universal gas Constant

5 T Temperature

6 A Pre-exponential factor

7 m.n Equation subscripts

8 C Diffusion constant

9 αC0, αC Critical DOC dependent and in-

dependent of temperature respec-

tively

The constants of curing kinetic models can be obtained using a mathematical

formula fitted with the experimental data using statistical software like MATLAB [4].

2.2 Cure Shrinkage

Volumetric changes are one of the main causes of dimensional variability and

residual stress development during the cure of composite materials. The volumetric

changes of a thermoset resin are a combination of chemical effects (shrinkage) and

thermal effects (CTE) [7]. the Van der Waal bonds between resin molecules convert to

shorter bonds during the series of chemical reactions. The polymerization occurred

causes a reduction in resin volume which is called cure shrinkage. Cure shrinkage
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occurs parallelly with other mechanisms like resin flow and compaction. Therefore,

estimating exact value of cure shrinkage is difficult to calculate. A model was de-

veloped by Bogetti and Gillespie [6] which described volumetric change in the epoxy

resin during curing process. Cure cycle was divided into three regions where resin

was assumed to be a viscous fluid in the first stage. The second region was where

the maximum shrinkage occurs, and the third region was considered where the curing

process is completed where no further shrinkage occurs.

Based on their model volumetric shrinkage can be expressed as,

∆Vr = ∆α/(αshrdiff ).v
T
shr (2.4)

Where ∆vr and vTshr are incremental and total volume shrinkage respectively. ∆α is

the incremental change in DOC and αshrdiff is the DOC the moment chemical shrinkage

ends.

2.3 Coefficient of Thermal Expansion

In previously referred studies, for CTE of uncured composite parts CTE of cured

composite parts was used for reducing the complexity. While classical laminate the-

ory can be used to calculate the CTE for composites many researchers have presented

micromechanics models to obtain the values of post cure CTE.

For developing a model White and Hahn [3] used strain gauges installed on the sur-

face of the outer layer of the composite. Thermal strains were obtained in both

longitudinal and transverse directions during cure. CTE then was calculated using

the expressions derived using classical laminate theory.

2.4 Stress Development in Composites

The governing equations of the stress analysis are based on the classical laminated

plate theory. A finite element incremental method can then be employed to solve the
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equations, if the fiber properties are constant or only function of the temperature

and the resin behaves as a “cure-hardening instantaneous linear elastic” material.

For a given increment, knowing the field of degree-of-cure and temperature from the

heat transfer analysis, the instantaneous composite elastic constants can be computed

using the resin elastic modulus model and the micromechanics approach. [8] Similarly,

the thermal and chemical strains can be calculated for a given increment knowing the

resin thermal and shrinkage behavior with the temperature and the DOC and using

the micromechanics approach. The stresses in the laminate can be then calculated

from the classical laminate theory. Development of residual stresses can also be a

function of time. It has been previously presented [3] that mechanical strains applied

to the composite early in the cure cycle have a significantly smaller effect than strains

applied late in the cycle due to the large difference in the rubbery and glassy modulus.

Developed residual stresses lead to the shape distortions upon removal of tool.

2.5 Analytical Calculation of Spring-in

Various studies have provided various analytical methods for predicting the spring-

in. While few studies consider the impacts of both CTE and cure shrinkage, few

approaches have also considered the effect of moisture. [9] [10] [11]

Spring-in can be defined as the reduction of closed angles due to process-induced

stresses or strains. Spring-in generally occurs in curved orthotropic laminates if the

radial and circumferential dilatational strains during processing are different i.e. dif-

ferential residual stresses are generated through the thickness of the composite lam-

inate. Spring-in is usually caused by cylindrically orthotropic strain in the laminate

due to cool down from the equal dimension temperature, due to chemical shrinkage

of matrix and residual stresses present in the laminate at the full cure temperature.

Spring in due to orthotropic dilatational strain is associated to the difference between

the out-of-plane (radial) and in-plane (circumferential) strain [12].

Radford proposed a simple equation for predicting spring-in of angled laminates based
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on material anisotropy [2]. This equation accounts for the temperature difference be-

tween cure and ambient conditions, the anisotropy of thermal expansion and cure

shrinkage, and the part angle.

∆Θ = Θ(εl−εt/1+εt = ∆ΘCTE+∆ΘCS = Θ((αl−εt)∆T/1+αt∆T )+Θ(φl−φt/1+φt)

(2.5)

where: ∆Θ= spring-in angle; ∆Θ CTE= thermal component of the spring-in

angle; ∆ΘCS= cure shrinkage component of the spring-in angle; α=coefficient of

thermal expansion; = resin shrinkage; subscripts l and t refer to the longitudinal and

transverse directions respectively.

The thermal component of spring-in arises due to the difference in through- thick-

ness coefficient of thermal expansions for any composite laminate. The expansion

in longitudinal direction is different than the expansion in transverse direction due

to the material property distinction of fiber and matrix. The thermal component is

significant during the cool-down from the final hold temperature [2].
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3. PROPOSED APPROACH

In this chapter we are presenting a comprehensive methodology to address the short-

coming of the analytical methods discussed in previous chapters. A cure kinetic

model which would explain the curing process is presented here. Also, the simulation

workflow has been explained in this chapter.

3.1 Scope

The methods presented in previous chapter provide the analytical expressions to

predict the spring-in for angular composite parts. However, effects of various param-

eters such as laminate thickness, flange length, part width were not considered in

those studies. Part geometry is one of the prominent parameters which affects the

shape distortions in composites. Here we have presented a methodology which not

only takes the effects of CTE and cure shrinkage into consideration but also studies

the effects of part geometry. Estimating the dimensional changes using simulation

helps in reducing the time required for analysis as well as the cost can be reduced as

the manufacturing the prototypes is not required post simulation.

The thermal-mechanically coupled simulation of the composite plate is based on fol-

lowing phenomena that influence the results:

• Thermal Strains in the material

• Material Shrinkage

• Temperature dependent structural properties

• Viscoelastic behavior of the material
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The simulation process can be complicated as composite materials are anisotropic.

The material properties vary when the resin is converted from a liquid state to a

gel state and then to a glassy solid state. Hence predicting the final material state

post curing is the most important part of the simulation. Accurately predicting the

post cure material properties results in predicting the final shape and accumulation

of residual stresses in parts.

As discussed previously, cure shrinkage plays an important role in generation of resid-

ual stresses. Resin cure shrinkage in all three directions (X,Y,Z) is considered based

on material properties and then applied in predicting the volumetric changes in resin

during the thermal curing process. A sophisticated thermo-mechanical model has

been presented to accurately predict the part distortions in timely manner.

3.2 Simulation Workflow

ANSYS Composite Cure Simulation (ACCS) was used to analyze the residual

stresses and spring in composite parts. The ACCS is fully integrated into the Work-

bench environment. The composite material data necessary for the cure simulation

are stored in the engineering data module. Connectivity to ANSYS Composite Prep-

Post, as well as other ANSYS products, enables seamless exchange of simulation and

process design data. The connection with ANSYS DesignXplorer enables advanced

design optimization of material and manufacturing process parameters [13].

The ACCS chemical solver is embedded within the transient thermal module and

simulates development of polymerization and glass transition temperature, as well as

internal heat generation related to exothermic cross-linking reactions. Subsequently,

thermal and cure data is passed into the structural data module where the ACCS cure

material model calculates development of residual stresses and process-induced dis-

tortions. For relatively thin laminates (¡ 5 mm thick), where a uniform temperature

distribution can be assumed, ACCS offers a quick three-step simulation approach.

This quick solution can be used in the early design stages for quick assessment of the
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process parameters. Once the simulation process is completed the distorted geometry

of the finite element model can be used to generate compensated tooling geometry.

Fig. 3.1.: ACCS simulation workflow

3.3 Cure Kinetic Model

The resin characterization is a key element in the manufacturing of composite

materials. Resin processing properties and their associated constitutive models are

essential in order to define and optimize the processing parameters and predict the

final properties of a composite structure. ACCS uses the exact same cure kinetic

model which LMAT have developed and compared with the one presented by Lolei

Khoun, Timotei Centea and Pascal Hubert [7]. The simulation results are obtained

using the cure kinetic model presented by researchers where the case study on CY-



18

COM 890RTM Epoxy Resin was conducted to investigate thermomechanical behavior

of the resin.

3.3.1 Total Heat of Reaction

The total heat of reaction released during the cure dynamic is usually measured

using modulated differential scanning calorimeter (MDSC) , whereas isothermal scans

are used to monitor the heat flow during a series of isothermal cures. The measured

heat generated by the resin can be then converted into cure rate based on the as-

sumption that the rate of reaction, dα/dt, where is degree of cure, is proportional to

the rate of the heat flow, dH/dt:

dα

dt
=

1

HT

dH

dt
(3.1)

where Ht is the total exothermic heat of reaction.

Estimation of rate of reaction is important for predicting the material phase and

resin characterization.

3.3.2 Degree of Cure

The degree-of-cure of the resin can be obtained by integrating the area under the

curve of cure rate vs time [7].

α =
1

HT

∫ t

0

(
dH

dt
)dt (3.2)

Fig. 3.2 shows the comparison of the experimental data and predicted autocat-

alytic cure kinetics model for isothermal tests conducted by Lolei Khoun, Timotei

Centea and Pascal Hubert [7]. Thus, the cure rate can be expressed as a function

of the degree-of-cure and compared to existing cure kinetics models. The constants

of curing kinetic models can be obtained using a mathematical formula fitted with

the experimental data using statistical software like MATLAB. The autocatalytic

cure model with a diffusion factor developed by Hubert et al. [7], is expressed by the

following equation:
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Fig. 3.2.: Comparison of experimental data and predicted autocatalytic cure

kinetics model for isothermal tests (a) degree-of-cure with the time, (b) cure rate as

a function of the degree-of-cure.

dα

dt
= K

αm(1 − α)n

1 + exp[C(α− (αCo + αCT T ))]
(3.3)

where K is a rate constant following an Arrhenius temperature dependency.

k = Aexp
−EA

RT
(3.4)

The autocatalytic model with the following constant values, A=58528 s-1, Ea=68976

J/mol, n=0.6, m=0.63, C=15.66, αC0=-0.90 and αCT =0.0039 K-1 accurately pre-

dicts the resin cure evolution for the different dynamic and isothermal cases consid-

ered [7].

3.3.3 Glass Transition Temperature

The glass transition temperature (Tg) significantly affects the resin mechanical

properties as it changes from its rubbery to its glassy state. An increase in the CTE
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is noticed when the resin progresses from its glassy state to its rubbery state with

a temperature ramp. The evolution of the Tg with the degree-of-cure was modeled

with the DiBenedetto equation [7].

T g − T g0

T g − T g∞ = λα
1−1−α (3.5)

where Tg is the glass transition temperature, Tg∞ and T g0

As previously mentioned, Bogetti and Gillespie model [18] was used to calculate

the cure shrinkage during the cure.

∆vr =
∆α

αshrdiff

vTshr (3.6)

Where ∆vrand vTshr are incremental and total volume shrinkage respectively. ∆α is

the incremental change in DOC and αshrdiff is the DOC the moment chemical shrinkage

ends.

3.4 Material Properties

Hexcel AS4-8552 was the selected curable material used inside ANSYS. Hexcel

AS4-8552 is a unidirectional prepreg with a high-performance tough epoxy matrix.

This material is widely used in primary aerospace structures. It exhibits good impact

resistance and damage tolerance for a wide range of applications. Hexcel AS4-8552

shows good translation of fiber properties. For simulating the entire curing process,

it is necessary to have the all the orthotropic properties available during the analysis.

The cure kinetic equations are then used to obtain the results such as DOC, material

state, glass transition temperature and heat of reaction. Following table illustrates

all the material properties associated with Hexcel AS4-8552. The material properties

presented in the following table were pre-defined inside ANSYS. It is possible to input
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material data inside ANSYS for different materials having different properties in X,

Y and Z directions.

Table 3.1.: Material properties for Hexcel ASA-8552

No. Material Property Value Unit

1 Density 1580 Kg m−3

2 Orthotropic Instantaneous Coefficient of

Thermal Expansion:

(i) Coefficient of Thermal Expansion in

X-Direction 1.00E-20 ◦C −1

(ii) Coefficient of Thermal Expansion in

Y-Direction 3.26E-05 ◦C −1

(iii) Coefficient of Thermal Expansion in

Z-Direction 3.26E-05 ◦C −1

3 Orthotropic Elasticity:

(i) Young’s Modulus X direction 1.35E+11 Pa

(ii)Young’s Modulus Y direction 9.50E+09 Pa

(iii) Young’s Modulus Z direction 9.50E+09 Pa

4 Poisson’s Ratio:

(i) XY 0.3

(ii) YZ 0.45

(iii) XZ 0.3

5 Shear Modulus:

(i) Shear Modulus XY 4.90E+09 Pa

(ii) Shear Modulus YZ 3.27E+09 Pa

(iii) Shear Modulus XZ 4.90E+09 Pa

6 Orthotropic Thermal Conductivity:

Continued on next page
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Table 3.1 – continued from previous page

No. Material Property Value Unit

(i) Thermal Conductivity in X direction 5.5 Wm −1◦C−1

(ii) Thermal Conductivity in Y direction 0.489 Wm −1◦C−1

(iii) Thermal Conductivity in Z direction 0.658 Wm −1◦C−1

7 Specific Heat, Cp 1300 Jkg −1◦C−1

8 Resin Properties:

Fiber volume fraction 0.5742

Initial Degree of Cure 0.0001

Maximum Degree of Cure 0.9999

Gelation Degree of Cure 0.33

9 Total Heat of Reaction 5.40E+05 J

10 Glass Transition Temperature:

Initial Value 2.67 ◦C

Final Value 218.27 ◦C

0.4708 ◦C

11 Orthotropic Cure Shrinkage

(i) Cure Shrinkage X direction 1.00E-20 mm −1

(ii) Cure Shrinkage Y direction 0.0073 mm −1

(iii) Cure Shrinkage Z direction 0.0073 mm −1

12 Orthotropic Liquid Pseudo Elasticity:

(i) Young’s Modulus X direction 1.32E+11 Pa

(ii) Young’s Modulus Y direction 1.65E+08 Pa

(iii) Young’s Modulus Z direction 1.65E+08 Pa

13 Poisson’s Ratio

(i) XY 0.346

(ii) YZ 0.982

Continued on next page
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Table 3.1 – continued from previous page

No. Material Property Value Unit

(iii) XZ 0.346

14 Shear Modulus:

(i) Shear Modulus XY 4.43E+05 Pa

(ii) Shear Modulus XY 4.16E+05 Pa

(iii) Shear Modulus XY 4.43E+05 Pa

3.5 Creation of Composite Solid Model

To obtain a through thickness cure properties the analysis must be done on a solid

composite model. A 3-D finite element solid model was used for this analysis. A shell

model was first extracted from the CAD file created using Autodesk FUSION 360.

The L-shaped plate was the imported to ANSYS Space-claim platform for creating

the shell model. ANSYS Composite Prep-post module was then used to create a

composite solid model.

Fig. 3.3.: Composite part geometry
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The spring-in for following parameters was analyzed:

• Laminate Thickness

• Part width

• Flange Length

• Cure Cycle

Fig. 3.4.: Composite Solid model of L-shaped plate

3.6 Convergence Study

Mesh generation is an important step in any finite element simulation. In finite-

element stress analysis knowing whether key stresses converge and checking if they

have converged to a reasonable level of accuracy is important. An acceptable mesh

must be used with respect to the shape and size of the elements to achieve results that

are reliable when using the finite element method,. The solution accuracy is usually

linked with mesh quality and mesh density [14]. Finite element analysis convergence

defines the relationship between the number of elements or degree of freedom and
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the analysis accuracy. Meshing was performed on all the geometries to get accurate

results.

3.7 Design of Experiments

The plate dimensions were varied as per the parameters. For the analysis of

studying the effect of laminate thickness on spring-in the plate dimensions were kept

constant. Number of layers were changed to change the laminate thickness. For

analyzing the effects of part width and flange length the part thickness was kept

constant as 1mm. The layup sequence was also kept same. Only the width and

flange lengths were varied. For the analysis of effects of cure cycle on spring-in the

part dimensions were same as the dimensions for the analysis of laminate thickness.

Different cure cycles were applied to the part. The following table illustrates the

details about solid models used for different analyses.

Table 3.2.: Parameters for software analysis

No. Parameter Part Laminate Number Layup

Dimensions(mm) Thickness of Layers Sequence

1 Laminate thickness 300×300 × 300 1 mm 8 [0/90]2S

2 mm 16 [0/90]4S

4 mm 32 [0/90]8S

2 Part width 300×300 × 300 1 mm 8 [0/90]2S

300×300 × 1500 1 mm 8 [0/90]2S

300×300 × 3000 1 mm 8 [0/90]2S

3 Flange Length 300×300 × 75 1 mm 8 [0/90]2S

300×300 × 150 1 mm 8 [0/90]2S

300×300 × 225 1 mm 8 [0/90]2S

300×300 × 300 1 mm 8 [0/90]2S

4 Cure cycle 300×300 × 300 1 mm 8 [0/90]2S
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3.8 Transient Thermal Analysis

A 3-step non-linear thermal analysis was performed to obtain the thermal model

for the structural analysis later. Newton-Raphson was used to solve the non-linear

analysis. The thermal properties such as degree of cure, glass transition temperature

and heat of reaction can be obtained here. A convection condition was given to the

composite plate as a thermal input load. The convective load resembles the heating

process of the composite part. The stepped convection condition characterizes the

cure cycle for the composite. Thermal load calculation for the entire cure cycle is

carried out and details about material curing, material phase are obtained. It is pos-

sible to obtain the DOC results for each individual ply using the simulation which

is helpful in predicting the thermal behavior of the composites having layers of two

or more different material. This ability makes this methodology unique from other

methods presented previously.

Fig. 3.5.: Thermal load condition for composite plate
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Figure 3.5 shows the convective load applied to the composite plate which repre-

sents the heating of the composite plate during the curing process.

Fig. 3.6.: Single-hold cure cycle (applied temperature vs time

plot)

Fig. 3.7.: Two-hold cure cycle (applied temperature vs time plot)

3.9 Static Structural Analysis

Like the thermal analysis a 3-step non-linear structural analysis was performed

to obtain the results for process induced residual stresses and shape distortions. The

parts were constrained to observe only spring-in and not warpage. A frictionless
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support and remote displacements were the applied load conditions. A fully cured

thermal model was used as the initial boundary condition for the structural analysis.

The results of the thermal loads that get applied on the composite part are obtained

from the transient thermal module. A support removal action was simulated which

imitates the tool removing process for the final step of composite manufacturing.

Fig. 3.8.: Applied load conditions for structural analysis

3.10 Manufacturing Process of Composite L-Plate

Composite L-shaped plate was manufactured to verify the spring-in effect. An

aluminum tool having dimensions 1 feet length, 1 feet width and 1 feet flange length

was used for the manufacturing. Acetone was applied to the tool for having a better

surface finish followed by the application of release agent. 4 layers of Gurit woven

carbon fiber prepreg were then applied on the tool. Vacuum bagging was done after

application of 2 layers to remove the air voids present between the layers. After the
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application of remaining two layers vacuum bagging was repeated. Then the tool and

the composite layers were put in the oven for the curing. A two- hold curing cycle

presented above was applied to get a fully cured part. Upon cooling the tool was

removed from the part and a final composite L-shaped plate was obtained.
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4. RESULTS

To verify the effect of various parameters on spring-in simulations were carried out.

ANSYS Composite Cure Simulation was the module used for the simulation. The

methodology presented in previous chapter was used to obtain thermal results such

as DOC, heat of reaction, glass transition temperature and then structural results

such as part deformations and residual stresses.

4.1 Thermal Results

4.1.1 Degree of Cure

With simulation it is possible to obtain the information about composite curing at

any point during the curing cycle. Using transient thermal module, the DOC results

at the end of every time step were obtained. To study the effect of cure cycle on the

composite part distortions, analysis was conducted using two different cure cycles.

The first cure cycle was one-step cure cycle where the part was heated from room

temperature to 180C and was hold at the same temperature for one hour and then

was cooled to the room temperature. The three phases of the curing were assumed

as liquid phase of the resin, gel phase of resin and the glassy solid phase of resin

where the part is completely cured. The values of DOC at end of each time step were

obtained from the software for the single-hold cure cycle. Figure 4.1 (a) shows the

tabular data for the DOC at end of each time step. Figure 4.1 (b) is the plot of all

the points from the tabular data for DOC from figure 4.1 (a)

The second cure cycle was a two-hold cure cycle where the part was heated from room

temperature to 120 ◦C, held for half hour and then again heated to 180 ◦C and again

held at the same temperature for half hour and then was cooled down to the room
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Fig. 4.1.: (a) DOC results for each time step (single-hold cure cycle)
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temperature. Similar to the one-hold cure cycle, DOC results at the end of each time

step were obtained and plotted on a graph.

Fig. 4.1.: (b) DOC vs time plot for single-hold cure cycle

Figure 4.2 (a) and (b) represent the tabular data of DOC at the end of each time

step for a two-hold cure cycle and the plot of DOC against the time for two-hold cure

cycle. The effect of cure cycle on DOC can clearly be observed here from both the

plots in figure 4.1 and figure 4.2. It is visible that for the single-hold cure cycle the

resin was cured faster than it was cured with a two-hold cure cycle. Effect of this

variation of DOC due to change in cure cycle can also be observed while analyzing

the spring-in.

Figure 4.3 shows the results for DOC for composite part. It is evident that the

outer plies are cured before the inner plies as the heat is being applied from outside.

These results also demonstration the accuracy of the simulation.



33

Fig. 4.2.: (a) DOC results for each time step (two- hold cure cycle)
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Fig. 4.2.: (b) DOC vs time plot for two-hold cure cycle

Fig. 4.3.: Ply-wise DOC results
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4.1.2 Glass Transition Temperature

The following plot shows the progression of glass transition temperature (Tg)

throughout the cure cycle (two-hold). From these results the phase change of the

resin can be analyzed. The resin converts from liquid phase to a rubbery phase when

gelation occurs. The resin then converts to a glassy solid state. The glass transition

temperatures at both these phase changes can be obtained from these results which

help in predicting the material phase at any specific point during the cure cycle.

Fig. 4.4.: Tg vs time plot for two-hold cure cycle

4.1.3 Heat of Reaction

Results for the heat of reaction are presented below in figure 4.5. The plot of

Heat of reaction against the time shows the total heat of reaction throughout the

cure cycle. Composite curing being an exothermic reaction, heat of reaction is seen

to be increasing during the second phase of the cure cycle where the resin is in gel
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phase. The heat of reaction then decreases as the part is cured and a drop in the

heat of reaction can be seen. The curve becomes a plateau as the part is fully cured.

Fig. 4.5.: Heat of Reaction vs time plot for two-hold cure cycle

4.2 Residual Stresses

Since analytical calculation of process induced residual stresses is a time consum-

ing and difficult process, obtaining the results for residual stresses through simulation

is a comprehensive technique. The residual stresses induced due to thermo-mechanical

curing process are obtained in the form of contour plot of the composite part. Follow-

ing figure shows the induced residual stress distribution in the composite laminate.

Just like the thermal module structural module also provides the stresses induced in

each individual ply. This pre-loading stresses over the composite parts can make the

part weaker upon loading. The results for residual stresses are the stresses present in

the part post deformation. Even if the part is deformed to get rid of stresses generated

during the curing process, there are stresses present in the part post deformation. It is

practically impossible to get rid of all the residual stresses as the stresses are trapped



37

in the composite laminate during phase change of the resin. These stresses can be

predicted and can be used as the initial stress condition for the part while the part

is further analyzed for practical load conditions such as crash, impact and torsion or

bending.

Fig. 4.6.: Residual stress contour for the composite laminate

4.3 Spring-in

Fig. 4.7.: Spring-in for L-shaped composite plate



38

Simulation results for spring-in of a L-shaped plate provide the accurate part shape

post curing. In this study various parameters which affect the composite shape were

examined. A comparative assessment of all the parameters gave a good correlation

with the experimental results that were available in previous studies.

Figure 4.7 shows the deformed L-shaped composite plate post curing. The change in

angle can clearly be observed. The values of the spring-in angle are obtained from the

simulation results. It is possible to acquire the direction deformation for the laminate

using this technique as well. It was detected that spring-in varies with variation in

parameters. As previously mentioned, the parts were analyzed for four parameters.

Laminate thickness, flange length, width of the part and the cure cycle were the

parameters against which the simulations were carried out.

Table 4.1 provides the results for the variation in spring-in for varying parameters.

It is evident that with increase in laminate thickness the spring-in decreases. Most

of the previous studies had demonstrated this relation between laminate thickness

and spring-in angle. Although few studies presented that with increase in laminate

thickness the spring in angle is increased, there are adequate experimental results

which support the trend obtained in simulation results.

Also, when the width of the part is increased the spring-in angle seems to be declining.

The warpage effect is more observable in wider part than the spring-in effect. However,

as the parts were constrained in a way to only observe spring-in effects warpage effects

can be assumed to be negligible in wide parts. Although, accuracy of the results for

wide parts may get hindered due to this.

Reducing the flange length can effectively reduce the spring-in effects in composite

angular parts. However, it cannot be an effective solution as the part geometries are

dependent on the assembly of the structures. The simulation results showed that

with Increase in flange length the spring-in angle also increases.

Thermal model simulation results showed that in single-hold cure cycle cured the

composite part quicker than a two-hold cure cycle. Similar trend was observed for
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Table 4.1.: Variation in spring-in as per varying parameters

Sr. No. Parameter Variation in Laminate Number Spring-in

Parameter Thickness of Layers Angle

1. Laminate 1 mm 1 mm 8 1.15

thickness 2 mm 2 mm 16 0.98

4 mm 4 mm 32 0.83

2. Part width 300 mm (1 ft ) 1 mm 8 1.15

1500 mm (5 ft) 1 mm 8 0.95

3000 mm (10 ft) 1 mm 8 0.89

3. Flange Length 75 mm 1 mm 8 0.98

150 mm 1 mm 8 1.06

225 mm 1 mm 8 1.10

300 mm 1 mm 8 1.15

4. Cure cycle One-hold 1 mm 8 1.03

Two-hold 1 mm 8 1.15

Fig. 4.8.: (a) Spring-in parameter: Laminate Thickness (1 mm)
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Fig. 4.8.: (b) Spring-in parameter: Flange Length (150 mm)

Fig. 4.8.: (c) Spring-in parameter: Part Width (5 ft)
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the spring-in angles as well. It is seen that spring-in angle for single-hold cycle was less

than that for a two-hold cure cycle. Quicker curing may decline the development of

residual stresses which ultimately results in spring-in angle being less for a single-hold

cure cycle.

4.4 Validation of the Methodology

The methodology presented here was validated by comparing the spring-in results

obtained by simulation with the experimental results that were presented by various

researchers whose work was reviewed. The simulation results showed a similar trend

as the experimental results as simulation was carried out for various parameters. In

some cases, the spring-in values achieved from simulation results were found to be

more accurate than the analytically calculated spring-in values.

LMAT [15] conducted experiments to verify effect of laminate thickness on spring-in

angle. The trend in the LMAT results was similar to the simulation results obtained

using the methodology presented here.

Figure 4.9 shows that with increase in laminate thickness spring-in angle is reduced in

both experimental and simulation results. The difference between the experimental

and simulation spring-in value was due to the fact that effect of warpage and effect

of tool-part interaction were neglected in this particular case while simulating the

curing process and applying the structural loads.

Carolyne Albert, Goran Fernlund [16] presented a model where an analytical

model was developed to calculate the spring-in for L-shaped and C-shaped composite

parts. The simulation results provided results closer to experimental results presented

in this particular study than the analytically obtained spring-in values. Figure 4.10

shows the simulaton results of spring-in in a C-shaped composite part. Table 4.2

shows the comparison between analytical, simulation and experimental values of the

spring in. The analytical and experimental values were obtained from the Carolyne

Albert, Goran Fernlund model.
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Fig. 4.9.: Comparative plot of simulation and experimental results of spring-in angle

vs. laminate thickness

Fig. 4.10.: Spring-in for C-shaped composite plate
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Table 4.2.: Comparison between analytical, simulation and experimental values of

the spring in

Analytical Value Simulation value Experimental Value

0.90 0.81 0.78

For validating the results for other parameters there were no significant previous

results available. Future recommendation for this study would be to validate all

these parameters by manufacturing all the parts with parameters defined here.

4.5 Prediction of Three-directional Shape Distortions

Effect of warpage/bending in wider parts can also be analyzed using the method

presented in this thesis. Wider parts show more warpage or bending of the flat

surfaces. ACCS can be effective tool to analyze the warpage in wider commercial

parts such as gurney flaps or wider composite panels, ribs, roofs etc.

Fig. 4.11.: Warpage effect in wider L-shaped composite plate

Figure 4.11 shows the bending in the L-shaped composite plate which is 10 feet

wider. Warpage in both vertical and horizontal surface can be observed here. Usually
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tool-part interaction is responsible for the warpage effect occurring. It is possible to

model the effects of using different tool on the warpage and bending of composite

plate. ACCS assists to analyze the 3-directional dimensional changes in composite

parts. This ability is unique as most of the previous methods were good for obtaining

the results for 2-directional dimensional changes. With this ability analyzing the de-

velopment of residual stresses in commercial composite parts with complex geometries

is feasible.

Fig. 4.12.: (a) Shape Deformations in composite front fender of an automobile

Fig. 4.12.: (b) Residual stresses in composite front fender of an automobile
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Figure 4.12 (a) and figure 4.12 (b) show the capability of the methodology to be

a ground-breaking technique in commercial composite manufacturing for predicting

the final shape of the composite part.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

Predicting the final shape of any composite part post curing has become crucial

in recent years. This thesis has provided a comprehensive methodology to predict the

process induced shape distortions accurately and in less time. The ability to predict

the final shape of the part before tool design is helpful in reducing the manufacturing

cost. Although several previous studies have emphasized using finite element analysis

for predicting the shape distortions, all the methods had several limitations. This

study has proposed a comprehensive methodology to predict the final shape of the

composite part not only for simple flat panels but also for complex composite parts

using ANSYS Composite Cure Simulation (ACCS).

This thesis presented the thermal results for composite parts during cure. This helped

in obtaining the results for all the thermal properties. While previous studies provided

the structural results for spring-in this thesis presented both thermal and structural

results. When compared with experimental results previously presented, the sim-

ulation results obtained here were observed to be more accurate than analytically

calculated results.

The methodology developed here was found to be accurate, less time consuming and

effective for further analysis of the composite parts for various practical purposes.

This technique may open a new window in composite manufacturing with its extraor-

dinary accuracy. Also, the ability of using the deformed model for further mechanical

analysis such as crash analysis or analysis for various load cases makes this technique

unique.
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5.2 Future Scope

The future extensions for the presented method can be as following:

• The present study does not take effect of friction between the tool and the

composite part. However, using simulation it is possible to model the effects of

the friction between the tool and the composite part.

• The simulation results for few of the parameters were compared with the ex-

perimental results presented in literature referred. For validation of all the

parameters experiments can be conducted for varying the flange lengths and

widths of the L-shaped plates.

• For validating the effect on one-hold cure cycle and two-hold cure cycle the

parts can be manufactured and different cure cycles can be applied to study the

effects of cure cycle on spring-in.

• The shape deformation can be performed on various complex geometries. The

analysis of crash structures can be revolutionary. It is possible to perform a

comparative crash analysis with undeformed and deformed geometry.

• Analyze warpage as well as bending in composite parts post curing using this

methodology.

• Compensate the spring-in during tool design and perform multiple iterations to

obtain an accurate final shape of the desired composite part.
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