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ABSTRACT

Yellamraju, Tarun Ph.D., Purdue University, May 2019. n-TARP: A Random Pro-
jection based Method for Supervised and Unsupervised Machine Learning in High-
dimensions with Application to Educational Data Analysis. Major Professor:
Mireille Boutin.

Analyzing the structure of a dataset is a challenging problem in high-dimensions as

the volume of the space increases at an exponential rate and typically, data becomes

sparse in this high-dimensional space. This poses a significant challenge to machine

learning methods which rely on exploiting structures underlying data to make mean-

ingful inferences. This dissertation proposes the n-TARP method as a building block

for high-dimensional data analysis, in both supervised and unsupervised scenarios.

The basic element, n-TARP, consists of a random projection framework to trans-

form high-dimensional data to one-dimensional data in a manner that yields point

separations in the projected space. The point separation can be tuned to reflect

classes in supervised scenarios and clusters in unsupervised scenarios. The n-TARP

method finds linear separations in high-dimensional data. This basic unit can be

used repeatedly to find a variety of structures. It can be arranged in a hierarchical

structure like a tree, which increases the model complexity, flexibility and discrimi-

nating power. Feature space extensions combined with n-TARP can also be used to

investigate non-linear separations in high-dimensional data.

The application of n-TARP to both supervised and unsupervised problems is in-

vestigated in this dissertation. In the supervised scenario, a sequence of n-TARP

based classifiers with increasing complexity is considered. The point separations are

measured by classification metrics like accuracy, Gini impurity or entropy. The per-

formance of these classifiers on image classification tasks is studied. This study pro-

vides an interesting insight into the working of classification methods. The sequence
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of n-TARP classifiers yields benchmark curves that put in context the accuracy and

complexity of other classification methods for a given dataset. The benchmark curves

are parameterized by classification error and computational cost to define a bench-

marking plane. This framework splits this plane into regions of “positive-gain” and

“negative-gain” which provide context for the performance and effectiveness of other

classification methods. The asymptotes of benchmark curves are shown to be optimal

(i.e. at Bayes Error) in some cases (Theorem 2.5.2).

In the unsupervised scenario, the n-TARP method highlights the existence of

many different clustering structures in a dataset. However, not all structures present

are statistically meaningful. This issue is amplified when the dataset is small, as

random events may yield sample sets that exhibit separations that are not present in

the distribution of the data. Thus, statistical validation is an important step in data

analysis, especially in high-dimensions. However, in order to statistically validate

results, often an exponentially increasing number of data samples are required as the

dimensions increase. The proposed n-TARP method circumvents this challenge by

evaluating statistical significance in the one-dimensional space of data projections.

The n-TARP framework also results in several different statistically valid instances of

point separation into clusters, as opposed to a unique “best” separation, which leads

to a distribution of clusters induced by the random projection process.

The distributions of clusters resulting from n-TARP are studied. This disserta-

tion focuses on small sample high-dimensional problems. A large number of distinct

clusters are found, which are statistically validated. The distribution of clusters is

studied as the dimensionality of the problem evolves through the extension of the fea-

ture space using monomial terms of increasing degree in the original features, which

corresponds to investigating non-linear point separations in the projection space.

A statistical framework is introduced to detect patterns of dependence between

the clusters formed with the features (predictors) and a chosen outcome (response)

in the data that is not used by the clustering method. This framework is designed
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to detect the existence of a relationship between the predictors and response. This

framework can also serve as an alternative cluster validation tool.

The concepts and methods developed in this dissertation are applied to a real world

data analysis problem in Engineering Education. Specifically, engineering students’

Habits of Mind are analyzed. The data at hand is qualitative, in the form of text,

equations and figures. To use the n-TARP based analysis method, the source data

must be transformed into quantitative data (vectors). This is done by modeling it as

a random process based on the theoretical framework defined by a rubric. Since the

number of students is small, this problem falls into the small sample high-dimensions

scenario. The n-TARP clustering method is used to find groups within this data

in a statistically valid manner. The resulting clusters are analyzed in the context of

education to determine what is represented by the identified clusters. The dependence

of student performance indicators like the course grade on the clusters formed with

n-TARP are studied in the pattern dependence framework, and the observed effect is

statistically validated. The data obtained suggests the presence of a large variety of

different patterns of Habits of Mind among students, many of which are associated

with significant grade differences. In particular, the course grade is found to be

dependent on at least two Habits of Mind: “computation and estimation” and “values

and attitudes.”
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1. INTRODUCTION

In the recent past, the progress made in machine learning techniques has been im-

mense. Coupled with tremendous growth in computational power, the capabilities of

machine learning techniques have reached new heights. These techniques are now able

to handle increasingly larger quantities of complex data. Data science and analysis

has also become increasingly popular over the last decade or so. Accompanying the

progress in machine learning and data science has been a growth in the amount of

data being collected, both in terms of quantity and dimensions. It is not uncommon

to find high-dimensional datasets where the number of dimensions is larger than the

number of samples. This leads to serious challenges in analyzing and understanding

the structures underlying the data. Machine learning techniques have faced difficulties

in working with very high-dimensional data relative to lower-dimension scenarios.

The growth in dimensionality of data has accentuated the phenomenon best known

as the “Curse of Dimensionality” [1,2], which highlights the challenges associated with

the exponentially increasing volume associated with increasing dimensions of data.

In higher dimensions, data tends to be sparse and similarity metrics are not very

effective at finding significant differences, as small changes in relevant dimensions can

be hidden under cumulative noise in all the other dimensions. Thus, distance based

methods that are perfectly valid for lower-dimensional scenarios perform poorly as

the data becomes sparser with increasing dimensions. This has led to an approach

to transform high-dimensional data to lower-dimensions. The techniques associated

with this approach are termed as dimension reduction techniques. These methods are

commonly used as a pre-processing step before applying other conventional machine

learning techniques on the lower-dimensional data.
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1.1 Dimension Reduction

A popular approach to dimension reduction is the Principal Component Analysis

(PCA) technique [3], which aims to preserve distances by eliminating directions of

low variance from the high-dimensional data. This is particularly useful for images

that can be represented by far fewer dimensions than the total number of pixels.

PCA acts as a pre-processing step that reduces the dimensionality of the problem,

making it more tractable. Extensions of the PCA framework include kernel PCA [4]

and non-linear PCA [5].

A more sophisticated approach to dimension reduction in a point proximity struc-

ture preservation scenario is through nonlinear dimensionality reduction techniques

and manifold learning [6,7]. The premise for this approach is that data lies on a lower-

dimensional manifold embedded in a high-dimensional space. For example, consider

a thin spiralling band that has 2 dimensions in 3D space. The band can be considered

a 2D manifold embedded in 3D space. Another example is a Mobius strip in 3D. The

manifold learning methods seek to identify the underlying manifold in order to rep-

resent the high-dimensional data in the lower-dimensional manifold, thereby making

the problem more tractable for other machine learning methods.

Research in Manifold Learning has resulted in many different techniques. For

example, Isomap [8] computes geodesic distances on a manifold, which are utilized to

determine positions of data points on the manifold. Another example is LLE (Locally

Linear Embedding) [9] which seeks to express a data point as a linear combination

of its neighbors. It then aims to determine a low-dimensional embedding such that

the same linear combinations are maintained. Subspace clustering methods like the

recent SSC-OMP [10] (Sparse Subspace Clustering - Orthogonal Matching Pursuit)

are based on the premise that points lie on sub-manifolds and the sub-manifold struc-

ture can be exploited to form clusters. They depend on point-proximity structures

and rely on the “self-expressiveness” concept, which in simple terms relates to a point

expressed as a sparse linear combination of other points. Autoencoders [11] are neural
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networks trained as an identity function. Half of the network is used for mapping

from high-dimensions to low-dimensions and the other half is used for inverting this

transformation. The intermediary low-dimensional space constitutes the manifold.

A few among many more popular Manifold Learning techniques include Diffusion

Maps [12], Hessian Eigenmaps [13], Laplacian Eigenmaps [14], Semidefinite Embed-

ding [15], Continuum Isomap [16], Tangent Space Alignment [17], Maximum Variance

Unfolding [18] and t-SNE (t-distributed Stochastic Neighborhood Embedding) [19].

Most of the above methods have a common component of spectral decomposition,

which can be slow in high-dimension scenarios. Some recent studies [20–24] have

made progress in speeding up spectral decomposition in the Manifold Learning sce-

nario.

Yet another approach to dimension reduction is through random projections. The

goal is to transform data in high-dimensional space Rp to a lower-dimensional space

Rp′ where p′ < p through a random projection model, i.e. take the inner product

with random vectors. The application of random projections to dimensionality re-

duction [25] is motivated by the Johnson-Lindenstrauss lemma [26] which relates to

preservation of structure in high-dimensional space when transformed to lower dimen-

sional spaces by preserving point distances. Through this approach, the data space

is transformed from high-dimensions to lower-dimensions to make the problem more

tractable, similar to what is achieved through manifold learning.

This idea has led to the use of random projections as a pre-processing step in

several supervised and unsupervised machine learning problems. The concept of

random projections [27,28] has previously been proposed as a basis for dimensionality

reduction techniques [25,29] with several applications in classification and clustering.

For instance, [30–33] use random projections to reduce high-dimensional data into

lower dimensional feature vectors for use with classifiers. Random projections have

also been used in an iterative manner to find visual patterns of structure in data

through dimension reduction [34]. Clustering methods based on random projections
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like [35] project data to a lower dimensional space of dimensions greater than one

followed by a point proximity based cluster assignment.

1.2 One-dimensional Random Projection: n-TARP

The conventional random projection techniques discussed above aim to preserve

structures in high-dimensions in a lower-dimensional space, followed by application

of point proximity metric based machine learning methods. In this dissertation, we

propose a new random projection technique called n-TARP where TARP stands for

Thresholding After Random Projection. The core idea of how this method works is

quite simple: data is projected onto a randomly generated line through the origin.

The projection is repeated until the projection points are found to form a bi-modal

distribution.

This method is an extreme case of dimension reduction, wherein we project high-

dimensional data down to just one dimension without concern for preserving dis-

tances. This is in contrast with the methods discussed previously. The kind of high-

dimensional structure we are trying to exploit with this technique is quite different to

the more conventional methods discussed previously. This method does not aim to

preserve the high-dimensional structures, rather, its aim is to extract structures that

are hidden in high-dimensions which can manifest as a point separation upon pro-

jection onto a trivial random 1D subspace (simplified illustrative example in Figure

1.1, reproduced from Chapter 3). Previous work [36, 37] has shown the effectiveness

of this idea and the presence of hidden structure in data that is manifested as point

separations with a high probability.

Our proposed n-TARP technique serves as a basic building block that can be used

in both supervised and unsupervised learning scenarios. Several units of this building

block can be combined to form more complex models as can be seen in [36–38].

We have also observed that the n-TARP method yields several different separation

criteria instead of some unique “best” criteria [39, 40]. This leads to the interesting
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Fig. 1.1. Scenario where the data distributions are sparse in the origi-
nal high-dimensional space and projection onto a random vector yields a
binary separation

question of what do the various separation criteria actually represent and what kind

of structure yields these criteria. We will go into further details and answer some of

the questions regarding this method and its applications in the chapters to follow.

1.3 Supervised Learning in High-dimensions

One of the core challenges in supervised learning is to find the optimal classification

method that achieves the lowest possible error. However, determining the lowest

possible error is a challenge in itself. Determining this quantity requires complete

knowledge of the probability distributions underlying the marginal class distributions

of the data. Bayes Error is the probability of error of a classifier that assigns classes

following Bayes Decision Rule and assuming full knowledge of the class (marginal)

probability densities and priors. It is proven to be optimal, in the sense that no

classifier can obtain a probability of error less than Bayes Error. Thus, Bayes Error
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is a benchmark for the probability of error of a classifier which corresponds to the

minimum possible probability of error that can be achieved for the given feature

vector [3].

Computing Bayes Error from training data is difficult, especially in high-dimension.

The task involves estimating the class probability densities and priors, and integrat-

ing these functions over potentially complex boundaries. While the case of univariate

normally distributed class densities can be computed analytically, high-dimensional

distributions (even normal ones) must be handled numerically. Computing Bayes

Error when the problem does not follow any common probability model is even more

difficult. There have been efforts to approximate Bayes Error and bound it. For

the special case of binary classification where both class densities are multivariate

Gaussians, Fukunaga et al [41] have presented an explicit mathematical expression

that approximates Bayes Error. The Chernoff bound [42] and the Bhattacharyya

bound [43] are well-known upper bounds; some closed form expressions for these

bounds exist for the special case of Gaussian densities of the underlying classification

data, but they are not necessarily tight or particularly insightful for distributions that

deviate markedly from a Gaussian [3].

Therefore, while it would be ideal to know if a given classification method achieves

Bayes Error, it is not feasible to evaluate. This issue becomes more complicated as

the number of dimensions of the data becomes larger, where reliably estimating the

probability distributions becomes quite challenging in addition to the data being

sparse in high-dimensions.

One avenue to follow in this scenario is to find an upper bound on the Bayes

Error. With that in mind, this dissertation introduces a benchmarking framework

built with n-TARP classifiers. The n-TARP units are combined in a hierarchical tree

structure that leads to a sequence of benchmarks with increasing model complexity.

Each benchmark in the sequence is associated with a performance metric (error rate

in this case). Hence, the benchmarks form curves in a space of error rate vs model

complexity (computational cost is used as a proxy). An example illustration of the
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benchmark curves is shown in Figure 1.2, reproduced from Chapter 2. While the

tree based n-TARP structures are generated at random, they are completely different

from the popular Random Forests technique [44]. The randomness with the n-TARP

benchmark trees is derived from the random projection process, while in the case of

Random Forests, it is based on dividing data into random subsets to train each tree

of the forest.

Fig. 1.2. The Benchmark Plane: The sequence of n-TARP classifiers
Bn

0 , B
n
1 , B

n
2 , B

n
3 , . . . for some n ∈ N with their associated error rates and

model complexity (computational cost serves as a proxy) define a bench-
mark curve with asymptote at Bn

∞ that serves as an upper bound to the
Bayes Error.

This framework of benchmark curves can be used to put in perspective the per-

formance of a given classification method, like a DNN (Deep Neural Network) for

example. The DNN will correspond to a point on the benchmark curve plane. The

suitability of this method for the given dataset can be judged by its position relative
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to the benchmark curves. An illustration of the benchmark curves is shown in Figure

1.2. As will be explained in Chapter 2, the benchmark curve divides the plane into 3

regions corresponding to different types of relative performances.

The goal of situating classification methods like the DNN with respect to the

benchmark curves is to gain a better understanding of the trade-offs between model

complexity and performance metrics. For instance, DNNs are inherently very complex

models that seem to yield good results, but is their level of complexity justified?

As model complexity increases, especially in high-dimensions, over-fitting the data

available becomes a major risk. Gaining a better understanding of this trade-off

can help in guiding choices of classifiers for a specific learning task. It also helps

in understanding and minimizing the risks associated with that choice in terms of

performance and generalization. These ideas are developed and discussed in detail in

Chapter 2.

1.4 Unsupervised Learning in High-dimensions

As discussed previously, data science and analysis using machine learning tech-

niques has become a very active area of research. Clustering data is a key ingredient

of this process and is a challenging problem in high-dimensions. This is so because

the high-dimensional data tends to be sparse, which causes the clustering problem to

become ill-conditioned. Consequently, moving the points slightly can result in a seem-

ingly different clustering structure. On the other hand, there is no reason to expect

that there is a unique way to meaningfully cluster the data. In other words, several

different cluster assignments may be valid instead of a unique one. This motivates

our use of the n-TARP based clustering method to find several possible clustering

structures, rather than a single one.

Another challenge associated with clustering in high-dimensions is the statistical

validation of the formed clusters, as groupings found among samples may not be

statistically meaningful. To validate the high-dimensional data groups, we usually
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require a much larger number of samples than available to run multivariate statistical

tests. For instance, estimating a covariance matrix (size 100 × 100) for a cluster of

m = 50 data samples in p = 100 dimensional space is fraught with reliability and

error concerns and can result in an ill-conditioned matrix.

The Hotelling T 2 statistic is a popular choice for multivariate statistical tests,

that uses the covariance matrix. Specifically, it requires the inverse of the covariance

matrix. However, in the m < p scenario of high-dimensional problems, this matrix is

singular and the test is not well defined. This behaviour is studied in [45], which also

finds poor performance even when m and p are close. Various approaches have been

proposed [46–48] that aim to estimate a diagonal covariance matrix as a work around.

Similar to the motivation of dimension reduction techniques discussed previously, a

random projection based approach has been developed [49] that aims to preserve

distances in a lower-dimensional space (of dimension greater than 1) before employing

the Hotelling T 2 test in the projected space. While the approach of [49] uses random

projections, the lower dimensional space is far from one-dimensional, with a single

random projection being used and aims to preserve distances, in contrast to n-TARP.

This indicates exploitation of point proximity structures as opposed to hidden point

separation structures.

The statistical validation approaches in the literature are not compatible with the

unsupervised scenario combined with the n-TARP framework. To address the issue

of statistical validity specific to the setup of n-TARP, we have proposed evaluation

of statistical significance of the clusters in the one dimensional space of projected

data associated with our n-TARP based clustering method, thereby bypassing the

challenges associated with statistical validation in high-dimensions. Our statistical

test procedure consists of two stages: Training and Validity Testing, wherein, half of

the high-dimensional data is used in the n-TARP framework to find a point separation

structure that yields clusters. The other half of the data is used to validate the

separation criteria in a permutation test scenario with Monte-Carlo simulations [50].

A similar idea of evaluating statistical significance in a one-dimensional projected
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space can be found in [51]. However, this work requires labels for data. Specifically,

it involves repeated training to find linear binary classifiers, while using all of the

available data. Consequently, while the one-dimensional analysis appears similar,

this approach is fundamentally different from our n-TARP based statistical analysis

framework, which will be discussed in further detail in Chapter 3.

The non-deterministic nature of the n-TARP method induces a stochastic distri-

bution of statistically valid clusters. It is not feasible to study the characteristics

of every individual grouping of the data resulting from n-TARP. Hence, we instead

propose to characterize and study the collective empirically determined distribution

of the clusters.

The n-TARP method is designed to find linear separations in high-dimensional

data. However, the feature space can be extended to include monomial terms of in-

creasing degree that changes the dimensionality of the problem. This allows n-TARP

to find non-linear separations in the data, which may result in different distributions

of the clustering assignments.

The clustering method and the approach for statistical validation will be discussed

in detail in Chapter 3. While the clustering method presented in this dissertation is

applicable to any sample size, we focus on a small sample size (20-30) setting which

is motivated by a real world data problem that will be discussed in Chapter 5. While

the sample sizes can vary quite a bit depending on the data being considered, we are

almost always going to be in a small sample scenario since it is very unlikely that we

will have enough data to not have a sparse distribution in high-dimensional space.

1.5 Predictor Response Patterns and Cluster Validation

The previous sections have introduced the utility of n-TARP based clustering.

The cluster assignments resulting from n-TARP can be viewed as random variables

induced by the random projection process. So the clusters can themselves be consid-

ered a random process, with several realized observations in our experiments. Given
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the probabilistic nature of the clusters, it would be interesting to understand the

significance of the resulting clusters. How does one interpret these clusters, or more

generally, separations in a projected random one-dimensional space? Do the clusters

have any meaning? These are interesting questions that we aim to address in a statis-

tical manner through our proposed pattern dependence framework. This framework

can also serve as an alternative means of validating clusters.

We have previously designed one-dimensional statistical tests to check the validity

of the clusters and will employ a different approach for cluster evaluation. Consider

the high-dimensional data sample as a multivariate vector, where the entries of a

vector are considered as a collection of predictor variables. A separate variable of

interest which is not part of the data that is clustered, is assigned as a response

variable. Basically, the clustering method has no information about the response

variable when the clusters are formed. We then investigate if the separation of data

into clusters has any effect on the response variable. We do not seek a functional re-

lationship between the predictors and response, rather, we investigate whether there

is a dependence between the patterns underlying the clusters and the response vari-

able. This is in contrast to approaches like regression which assume the existence of

a relationship, enforce a functional form and determine parameters to best optimize

some error metric. Examples of the regularized regression approaches include Ridge

Regression [52], LASSO [53] (Least Absolute Shrinkage and Selection Operator) and

Elastic Nets [54]. Instead, our goal with the pattern dependence framework is to

determine the existence of a relationship.

It is possible that any effects we see are no different from the effects one would

observe by partitioning the data at random. To check whether this is the case, our

framework involves a statistical hypothesis test that considers empirically determined

probability distributions of a measure of the response variable’s behavior when asso-

ciated with clusters. We test against a null hypothesis of random partition of samples

into groups. Our pattern dependence framework along with the associated statistical

test will be discussed in detail in Chapter 4.
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1.6 Putting it all together in a Real World Problem

The concepts and ideas introduced over the previous sections are applied to a real

world data analysis problem. A majority of the work presented in this dissertation

was motivated by the problem of analyzing qualitative source data in the Engineering

Education research domain with quantitative and statistical machine learning meth-

ods. The context for this work was qualitative student data based on peer reviewed

presentations in a course on digital signal processing. The data consisted of excerpts

of text, equations and figures. To run our n-TARP based data analysis methods, we

must first convert this qualitative data to quantitative data that is compatible with

the n-TARP techniques.

The qualitative data is mapped to quantitative data through the use of a rubric

developed and refined in a cross-disciplinary effort with colleagues at Purdue Univer-

sity [55]. The rubric is based on Habits of Mind [56], which are modes of thinking

required for STEM (Science Technology Engineering Mathematics) students to be-

come effective problem solvers capable of transferring such skills to new contexts.

The qualitative data is annotated by hand following the rubric. The annotations are

subsequently modelled in a probabilistic framework that yields feature vectors that

can be used in our n-TARP based analysis.

The resulting data fits into the scenario of small sample high-dimensional data,

which is the scenario we have focused on for developing the tools and concepts intro-

duced in the previous sections. The n-TARP clustering method is used to investigate

the structures underlying the education data. We further investigate the statistical

validity of the clusters we obtained and what meaning these clusters have. In particu-

lar, the student grade in the course is designated as a response variable while the data

we acquired is treated as predictor data under the pattern dependence framework.

In Chapter 5, we present the details of the qualitative data we acquired, the pro-

cess of mapping it to quantitative data and provide the context for our clustering

results and what the clusters signify and represent. Results of our n-TARP based
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unsupervised learning method are presented in the context of how student behavior

and learning skills affect their course grade at the end of the semester under the pat-

tern dependence framework. We hope that these results will eventually help identify

students having difficulties in learning, generally help students achieve better results

in their education, and aid in tailoring course design to improve student learning and

to introduce mid-course interventions to optimize student learning and performance.
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2. BENCHMARKS

The contents of this chapter appear in [38].

2.1 Introduction

In machine learning, the two-class pattern recognition paradigm is often formu-

lated in terms of a discriminant function g(x) whose sign should determine the class

of the data point x with a high probability of accuracy. The entries of x ∈ Rp are

features used to represent each object to be categorized, and the function g(x) is esti-

mated numerically using a training set of pre-labeled feature points x1, . . . , xN ∈ Rp.

The function g(x), often concocted using a complicated non-linear combination of the

original features x, can be viewed as a new feature. It is a distinguishing feature for

the classes considered, and many efforts have been spent to develop powerful methods

to effectively find good discriminant functions g(x). Deep neural networks are a great

example of such [57].

Pattern recognition in high-dimension can be quite challenging. Indeed, finding

such a distinguishing feature g(x) can be quite difficult when the feature vectors

x ∈ Rp are in a space of high-dimension p. Unless there are several good choices of

features, finding a good g(x) is like looking for a needle in a haystack: without a

good trick such as a prior model assumption or other prior information, one needs a

considerable amount of numerical work to be successful.

However, recent work suggests that high-dimensional data representing images or

videos have a lot of structure, “so much so that a mere random projection of the

data is likely to uncover some of that structure” [36]. There is some evidence that

this phenomenon extends to other types of high-dimensional data [37]. Thus, it is

quite conceivable that there are many high-dimensional pattern recognition problems
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where several and easily identifiable good choices of g(x) exist. Such cases are much

easier to deal with from a numerical and computational perspective.

It is not necessarily easy to tell from training data how many good classifiers g(x)

exist for a given pattern recognition problem, especially in high-dimension. More gen-

erally, there are no good all purpose methods for determining the difficulty of a given

pattern recognition problem from training data. However, having such information

would be useful, as it could guide the choice of method used to attack such problems

in practice. In the context of machine learning research, that information could also

be used to select good datasets for testing new pattern recognition methods: as good

results in an easy dataset could give false impressions of success, one should develop

new methodologies with the hard datasets in mind and focus the testing efforts on

such datasets.

In the following, we provide a framework for quantifying the difficulty of a given

pattern recognition problem. Specifically, we propose sequences of upper bounds for

the probability of error of a binary classification. The bounds are obtained using

simple heuristics based on random projection of the data on a one-dimensional linear

subspace; the decisions are made by thresholding the resulting one-dimensional fea-

tures. If a sophisticated pattern recognition method produces a worse outcome than

these bounds, one must conclude that it is ill-suited for that particular pattern recog-

nition problem. In other words, in order to justify its complexity and computational

cost, a sophisticated pattern recognition method should yield a significantly smaller

probability of error than our proposed error benchmarks for the given classification

problem.

The sequences of bounds we propose are all monotonic decreasing (Theorem 2.5.1).

Meanwhile the computational cost of the underlying classification heuristic starts

from extremely modest and then increases gradually. One can use the computational

cost of the method (either training cost or testing cost, depending on context) as

a proxy for complexity. The trade off between complexity and accuracy for each

sequence of bounds can be visualized by looking at the corresponding curve in the
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error and computational cost plane, as illustrated in Figure 2.1. One can look at

each of these curves in two ways: 1) for any given desired classification error, each

curve provides an upper bound on tolerable complexity (computational cost), and 2)

for any given computational cost allowed, each curve provides a maximum tolerable

classification error. Thus the curve divides the relevant area of the benchmark plane

(above the error axis and right of the vertical line through Bayes Error) into two

regions : the “negative-gain” region, situated above the curve, and the “positive-

gain” region (shaded), below the curve and right of the vertical line through Bayes

error. Any method lying in the negative-gain region of any benchmark curve (i.e. any

value of n) is ill-suited for the classification problem at hand.

Each sequence of bounds we propose converges to a limit; that limit can also be

used as an error benchmark which effectively divides the positive-gain region into

two: the region directly under the curve (right of the asymptote), which we call

“computational-gain” region, corresponds to methods that only provide a computa-

tional advantage over the random heuristics. Indeed, since there exists a random

heuristic with comparable error rate (right above the point of the method, on the

benchmark curve), the complexity of the structure allowed by the method is not ef-

fectively needed to achieve the given error rate. In other words, a comparable or even

smaller rate can be achieved with piece-wise linear separations chosen at random,

and thus any non-linearity afforded by the method is not effectively exploited. In

contrast, we call the region left of the asymptote the “structural-gain” region.

In some cases, the limit of our sequences is equal to Bayes Error (Theorem 2.5.2).

Thus in those cases, the structure-gain region is empty. Such pattern recognition

problems are extremely easy and do not warrant the use of any sophisticated method.

Testing new pattern recognition methods on such datasets should be discouraged. To

the contrary, one should look for datasets representing pattern recognition problems

for which the structure-gain region is very large. For such datasets, there is a lot of

room for improvement in accuracy and thus the use of complex and/or computation-

ally expensive methods is justified.
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Fig. 2.1. The Benchmark Plane: For a given classification problem, the
sequence of bounds Bn

0 , B
n
1 , B

n
2 , B

n
3 , . . . for some n ∈ N along with their

(training) computation time define a curve with asymptote at Bn
∞. Meth-

ods whose sophistication is warranted for the problem must lie in the
shaded region and to the left of the asymptote.

2.2 Benchmarking Pattern Recognition Problems

One benchmark traditionally used to put the results of a pattern recognition

method in perspective is Bayes Error. Bayes Error is the probability of error of a

classifier that assigns classes following Bayes Decision Rule and assuming full knowl-

edge of the class (marginal) probability densities and priors. It is proven to be optimal,

in the sense that no classifier can obtain a probability of error less than Bayes Error.

Thus, Bayes Error is a benchmark for the probability of error of a classifier which

corresponds to the minimum possible probability of error that can be achieved for

the given feature vector [3].
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Computing Bayes error from training data is difficult, especially in high-dimension.

The task involves estimating the class probability densities and priors, and integrating

these functions over potentially complex boundaries. While the case of univariate

normally distributed class densities can be computed analytically, high-dimensional

distributions (even normal ones) must be handled numerically. Computing Bayes

error when the problem does not follow any common probability model is even more

difficult. There have been efforts to approximate Bayes error and bound it. For

the special case of binary classification where both class densities are multivariate

Gaussians, Fukunaga et al [41] have presented an explicit mathematical expression

that approximates Bayes error. The Chernoff bound [42] and the Bhattacharyya

bound [43] are well-known upper bounds; some closed form expressions for these

bounds exist for the special case of Gaussian densities of the underlying classification

data, but they are not necessarily tight or particularly insightful for distributions that

deviate markedly from a Gaussian [3].

Thus in practice, one seldom attempts to either estimate or bound Bayes error.

Instead, one merely focuses on developing a classifier with the smallest possible prob-

ability of error. The accuracy of the chosen method on some test sets is used to

measure the success of that method. For example, the large scale image classifier

in [58] reports classification accuracy compared to other classifiers achieved on a sub-

set of the ILSVRC 2010 dataset [59]. Similarly, the texture classifier in [60] reports

and compares classification accuracies on three texture datasets : KTH-TIPS2 [61],

FMD [62] and DTD [63]. Yet another example is the DCNN based image classifier

in [64], which reports classification accuracies on the datasets : MIT-67 [65], Birds-

200 [66], PASCAL-07 [67] and H3D [68]. If these test sets are appropriate, then one

can conclude that Bayes error for each of these classification problems should be no

larger than the error reported with each of the chosen methods.

But as we just mentioned, Bayes Error is merely a minimum bound for the prob-

ability of error of a classifier corresponding to the overlap between the probability

distributions of the two underlying classes (class overlap): while it may be small
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for some problems, it is not clear how difficult the underlying pattern recognition

problem really is. For example, for the same value of Bayes Error, the optimal class

separation could be a hyperplane (simple structure of data that can be easily found)

or a hypersurface with highly varying curvatures and multiple connected components

(a complex structure that requires a sophisticated pattern recognition method). Thus

the value of Bayes Error provides no insight into the complexity of the classifier needed

to solve the problem or the nature of the pattern recognition problem at hand.

Another benchmark that can be used to judge the performance of a classifier on a

given classification problem is the value of the minimum class prior:

min{Prob (ω1),Prob (ω2)}, where ω1 and ω2 are the two possible classes for the given

classification problem. For example, if Prob (ω1) = 98%, then building a classifier

with a 1.9% probability of error would not be particularly impressive. Indeed, picking

the most likely class (ω1) regardless of the value of x would nearly beat that classifier.

This is relevant even if the class priors are equal Prob (ω1) = Prob (ω2) = 50%. In-

deed classifiers with an estimated probability of error above 50% are not unheard of.

Estimating the class priors from training data is not difficult. So while this bench-

mark also provides only a little bit of understanding about the nature of the pattern

recognition problem at hand, it is useful to consider it when analyzing the results of

a classifier.

2.3 Random Projections and TARP

As we mentioned earlier, the problem of building a two-class classifier is often

formulated as a quest for a function g(x) : Rp → R. The value of g(x) can be

viewed as a new feature; decisions are made by thresholding at zero the value of that

feature. The difficulty of finding a good g(x) tends to increase with the dimension

of the feature vector x. Thus some methods first seek to decrease the dimension of

x. Ideally, this should be done in such a way that the information that distinguishes

the classes is preserved. However, this is a chicken and egg problem: it is hard to
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preserve that information without knowing what it is, but one can hardly know what

it is before decreasing the number of dimensions.

One way to decrease the dimension of x is to project it onto some lower-dimensional

subspace. In the simplest cases, the lower-dimensional subspace is linear. Some ap-

proaches seek the best projection (in terms of some cost function) by careful numer-

ical optimization. Other approaches project the data in some random fashion. The

latter tends to be a lot less computationally extensive than the former. However,

one might express concerns about the accuracy of mere random projections. While

these concerns are justified, random projection methods are still popular because they

have been shown to be surprisingly effective. For example, classification algorithms

like [30], [31], [32] and [33] use random projections to transform high dimensional

data into lower dimensional feature vectors as a pre-processing step before classifica-

tion. Iterative random projections have also been used in the realm of Big Data to

find visual patterns of structure within data by projecting from a high dimensional

space to a low dimensional space [34]. An evaluation of the performance of random

projections for dimensionality reduction can be found in [29].

The idea of using the random projections of high-dimensional data in a lower-

dimensional space (of dimension greater than 1) is motivated by the

Johnson-Lindenstrauss lemma [26] that relates to preservation of point distances of

high-dimensional data when transformed to lower dimensions. Other examples of the

utility of working with data in lower dimensions (greater than 1) instead of the original

high-dimensional space include: [69] presents a framework to determine generalization

error bounds for linear classifiers trained on the projected data, [70] explores the idea

of using random projections as a regularization tool in scenarios where observations

are fewer than dimensions, [71] presents a statistical perspective on the effects of

using random projections in a least-squares problem in the lower-dimensional pro-

jected space of the data while [72] examines the problem of recovering the solution

of optimization problems in high-dimensional space after finding a solution in ran-

domly projected lower-dimensional space for reducing the computational cost. At
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this point, it is important to note that all the above works use random projections

as an intermediary dimension reduction tool (data is reduced to a low-dimensional

space of dimensions greater than 1). In contrast to this approach, in this chapter, we

propose to use random projections to reduce the dimensions of data down to one and

extract classification structure in this trivial one-dimensional space.

Previous work suggests that images [36] and other high dimensional data [37]

have so much hidden structure within that even randomly projecting down to just

one dimension will likely uncover some of that structure. Thus, one can potentially

construct a simple classifier based on the value of a feature vector x ∈ Rp by gener-

ating a random vector r ∈ Rp and thresholding the value of the projection r · x. In

mathematical terms, we can classify the data according to the rule (after relabeling

the classes if needed)

r · x ≶ω1
ω2
t.

for some threshold value t. Observe that a threshold value of t = ∞ would classify

all the points into the same class ω1. Conversely, a threshold value of t = −∞ would

classify all the points into the same class ω2. For optimal accuracy, the threshold

t ∈ R should be chosen to minimize the probability of error of the classifier. We call

the classifier obtained with the optimal value of the threshold a “TARP” (Thresh-

olding After Random Projection), for short. Observe that, while the accuracy of

such a classifier may not be particularly impressive in general, it is no worse than

the accuracy of picking the most likely class within the population. In other words,

regardless of the projection vector r, the probability of error of a TARP is no greater

than min{Prob (ω1),Prob (ω2)}. Furthermore, for some values of r, it can be quite

low depending on the nature of the classification problem at hand. For example, if

the data has been extended to a higher dimensional space using a kernel method (as

with support vector machines) in such a way that the data became linearly separable,

then the probability of error of a TARP classifier could be as low as 0%.
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2.4 TARP-based Benchmarks

Let B0 be the error rate achieved by always choosing the most likely class in the

population, in other words

B0 = min{Prob (ω1),Prob (ω2)}.

This benchmark is our starting point. Let r be a sample of a p-dimensional random

variable r ∈ Rp, and consider the projection of the feature vector x onto r, namely

r · x. Consider the threshold t and the class labeling that minimizes the probability

of error of the classifier

r · x ≶ω1
ω2
t.

Denote by ε1 = ε1(r) the probability of error of this TARP classifier. For an un-

specified random vector r, ε1 becomes a random variable εεε1 whose probability density

function is induced by that of r. Denote by B1 the expected value of εεε1:

B1 =

∫
Rp

ε1(r)fr(r)dr.

The value of B1, which represents the expected error of a TARP classifier under a

given probability model for the projection vector r, is our second benchmark. Observe

that B1 ≤ B0.

Now consider n samples r1, r2, . . . , rn of the random vector r (i.i.d) and the TARP

classifier for each projection ri · x, for i = 1, . . . , n. Then pick the “best” TARP

classifier among these n (for example, the one with the smallest probability of error,

smallest impurity, lowest entropy, etc.) We call the resulting classifier an “n-TARP”

(best among n TARP classifiers), and denote the probability of error of this classifier

by εn1 = εn1 (r1, r2, . . . , rn). For an unspecified set of random vectors (i.i.d.) r1, . . . , rn,

εn1 becomes a random variable εεεn1 whose probability density function is induced by

that of r. Denote by Bn
1 the expected value of εεεn1 :

Bn
1 =

∫
Rp×n

εn1 (r1, . . . , rn)fr(r1) . . . fr(rn)dr1 . . . drn.
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For any positive integer n, the value of Bn
1 represents the expected error of an n-TARP

classifier under a given probability model for the projection vector r.

Our proposed sequences of benchmarks are built by contructing a k-layer binary

decision tree using an n-TARP at every node of the tree. More specifically, we first

fix n ∈ N and let k vary among all positive integers. We then consider a k-layer tree

obtained by generating n random samples of the projection vector r for each node

and using these projection vector samples to construct a n-TARP classifier at each

node of the tree. Note that, although our proposed trees are built “at random,” they

are not the same as the trees defined by the well-known Random Forests [44]. Indeed,

the randomness in our trees comes from the n-TARP used for each node, whereas in

the case of random forests, it stems from the selection of random subsets of training

data to form each decision tree.

We denote the probability of error of a given (sample) decision tree with k levels by

εnk . For an unspecified set of random projection vectors (i.i.d.), εnk becomes a random

variable εεεnk whose probability density function is induced by that of r. Denote by Bn
k

the expected value of εεεnk , for k = 1, . . . ,∞, and set Bn
0 = B0, for any positive integer

n. We propose to use the sequence of bounds {Bn
k }∞k=0 to analyze the nature of the

structure of a pattern recognition problem.

2.5 Mathematical Properties of Proposed Benchmarks

Theorem 2.5.1 (Monotonicity in k) For any integer n0 ∈ N, the bounds {Bn0
k }∞k=1

form a monotonic decreasing sequence

Bn0
k+1 ≤ Bn0

k

converging to a limit

Bn0
∞ := lim

k→∞
Bn0
k

that is no smaller than Bayes Error

Bn0
∞ ≥ Bayes Error.
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Proof Let k ≥ 1, k ∈ Z. Consider a decision tree T with k+ 1 levels built using an

n-TARP at each node. Observe that T is a random sample of a random tree T with

a probability density function ρT (T ) that is induced by the random projection model

for r.

Let εnk+1(T ) be the probability of classification error of decision tree T . Let εnk(T )

be the probability of classification error of decision tree T restricted to its first k levels.

By construction (since none of the n-TARPS considered increases the classification

error from the previous level)

εnk+1(T ) ≤ εnk(T ). (2.1)

Observe that εnk+1(T ) and εnk(T ) are samples of the random variables εεεnk+1 and εεεnk

respectively. We have

Bn
k+1 = E(εεεnk+1) =

∫
T
εnk+1(T )ρT (T ) dT

≤
∫
T
εnk(T )ρT (T ) dT

= E(εεεnk)

= Bn
k

where T is the set of all k+ 1 level decision tress produced by the random projection

model. Therefore

Bn
k+1 ≤ Bn

k ∀ k ≥ 0, k ∈ Z, n ∈ N, (2.2)

and so {Bn0
k } is a monotone decreasing sequence in k.

By optimality of Bayes Error,

Bn0
k ≥ Bayes Error ∀ k ≥ 0, k ∈ Z, n0 ∈ N. (2.3)

From (2.2), we know that the sequence Bn0
k is monotone decreasing and from (2.3),

it is bounded below by the Bayes Error. Hence, using the Monotone Convergence

Theorem, the sequence Bn0
k is convergent in k and it converges to its infimum

Bn0
∞ = lim

k→∞
Bn0
k , Bn0

∞ ≥ Bayes Error.
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Corollary 1 The limits B∞k form a monotonic decreasing sequence

B∞k+1 ≤ B∞k

converging to a limit

B∞∞ := lim
k→∞

B∞k

that is no smaller than Bayes Error

B∞∞ ≥ Bayes Error.

Theorem 2.5.2 (Optimality of asymptotes) Suppose that the probability density

function fR(r) for the random projection vector r ∈ Rp is such that

pu =

∫
u

fR(r)dr 6= 0,

for any open set u ∈ Rp. If the data points x to be classified are drawn from a mixture

of two classes ω1, ω2

ρ(x) = Prob (ω1)ρ(x|ω1) + Prob (ω2)ρ(x|ω2)

such that the marginal distributions for both classes are normal with the same covari-

ance matrix

ρ(x|ω1) = N (µ1,Σ) , ρ(x|ω2) = N (µ2,Σ),

then all the asymptotes Bn
∞, ∀n ∈ N, are optimal

Bn
∞ = B∞k = Bayes Error ∀ k, n ∈ N.

Proof The optimal classifier in the case described is a linear separation hyperplane

in Rp. Let N̂ρ ∈ Rp be a unit normal vector to that hyperplane. Observe that if the

random vector sample drawn is r = N̂ρ, then the TARP classifier will be optimal.

Let u be an open neighborhood of N̂ρ and let pu be the probability that r ∈ u.

By assumption, pu 6= 0. Consider n independent random vector samples {ri}ni=1.

The probability that none of the samples lie in u is (1 − pu)
n, which approaches
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zero as n goes to infinity. Thus, with probability one, the infinite random vector

sequence {ri}∞i=1 contains a vector that is arbitrarily close to N̂ρ. This means that

the probability of error of an n-TARP (best TARP among n trials) will converge to

Bayes Error with probability one as n goes to infinity. Thus the expected value of

that error, Bn
1 , will approach Bayes Error as n goes to infinity. So the limit B∞1 =

Bayes Error. By Theorem 2.5.1, Bn
k+1 ≤ Bn

k . Taking the limit as n → ∞, we have

B∞k+1 ≤ B∞k for any k, and thus B∞k = Bayes Error, for any k ∈ N.

Now we look at Bn
k . So consider a tree with k levels constructed with a n-TARP

at each node. Observe that each node at the last level of the tree is concerned with

classifying a fraction of the original data space; if we picked N̂ρ as the random vector

at each of these nodes, then the overall k-level tree classifier would be optimal. In

that case, adding further levels (more n-TARP classifiers) below any of these nodes

would not decrease the accuracy of the classifier below that node, as it is already

optimal. As we travel down each branch of the tree and let the number of levels k go

to infinity, the random projection vector sample used for the n-TARP at each of the

nodes we encounter along our path will form an infinite sequence of vectors. By the

same argument as above, that infinite sequence contains a vector that is arbitrarily

close to the optimal one N̂ρ, with probability one. Thus the probability of error of a

k-level tree constructed with an n-TARP at each node approaches Bayes Error with

probability one, as k approaches infinity. Therefore the expected value of that error

also approaches Bayes Error, Bn
∞ = Bayes Error.

2.6 n-TARP Implementation and Bound Estimation

We implemented an algorithm to estimate the bounds Bn
k for a binary decision

problem using a dataset consisting of labeled (potentially high-dimensional) feature

vectors. Our code is available at [73]. To estimate Bn
k , we build a k-level binary

decision tree with an n-TARP at each node. We split the dataset set into two: 25%
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is training data used to select the random vectors for each n-TARP, 25% is cross-

validation data used to decide whether to apply a stopping criteria, and 50% of the

data is the testing data used to estimate the error rate of the decision tree. Note that

the stopping criteria does not effectively stop the tree from growing, but it prevents

the data from being split at that node, so that the tree continues to grow, albeit

artificially, to a length of k-layers,

For example, in order to estimate B1
1 , we construct a 1-level decision tree (k = 1)

with a single 1-TARP. To do this, we generate n = 1 random vector(s) {ri}ni=1 of the

same dimension as the data, with each element of the vector drawn from a uniform

distribution on [-1,1]. As described in Section 2.4, we take the inner product of every

data point in the training set with the random vector r1. We thus have n = 1 set(s) of

projections of the training samples. For simplicity, we assume that the projected class

distributions for the two underlying classes are 1D Gaussians with mean µ1, µ2 and

standard deviations σ1, σ2, respectively. Bayes Decision Rule [74] in this case yields

up to two thresholds: we pick the threshold t that lies between the two empirical

means. Now, we use the threshold t along with the the random vector r1 to classify

the cross-validation data and record the error obtained. If this error is greater than

the error observed before classifying the cross-validation set (the prior error in this

case), then we choose t to be ±∞. i.e. we do not split the data into two and record

the cross-validation error as the error achieved before classification (the prior error in

this case). Having constructed a 1-level decision tree, we use it to classify the testing

data and record the testing error. We repeat this construction and testing process

100 times and calculate the average testing error and use it as our estimate of B1
1 .

Now to estimate Bn
1 , we build a 1-level decision tree (k = 1) with a single n-

TARP. So we generate n random vectors of the same dimension as the features as

before. Projecting the dataset onto each of these random vectors, we obtain n one-

dimensional datasets and choose the best threshold using Bayes rule for each of these

datasets. Let t∗ be the threshold that produces the “best” split (we pick the one

which decreases the Gini impurity [3] on the training data the most). Following the
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same steps as above, we cross-validate the tree and compute the testing errors for 100

runs of the algorithm and calculate the average testing error. We declare this as our

estimate for Bn
1 .

For the general case of building a k-level decision tree with an n-TARP at each

node of the tree. Basically, we apply an n-TARP at each node of the tree starting

at the root. Based on the threshold found at that node, we split the data into two

classes and pass one class split to the left child and the other to the right child of the

current node. We now recursively apply the n-TARP construction process described

above at the child nodes formed. At level k, we will have 2k nodes and we find the

average testing error across the data present at all of these nodes and declare it as

our estimate of Bn
k . So by building a k-level tree in this manner, we can estimate

{Bn
1 , B

n
2 , ..., B

n
k }. Note that we grow a new set of k-level trees and evaluate them for

each value of the parameter k in order to estimate Bn
k . This means that a different

set of trees are grown each time to estimate Bn
k for a specific k and n.

Of course, the results at any particular node in the decision tree are affected by

the number of data points present at that node. When building a tree, the number of

training samples at each node keeps decreasing as we move down the tree. Naturally,

our estimates become unreliable when the number of samples at a node is too small.

Hence, there is an upper limit on the values that k can take while also providing a

good estimate of Bn
k . This limit is dependent on the dataset being used.

To test our implementation, we conducted the following experiment. We generated

6000 data samples from a mixture of two Gaussians in R5 and used 1500 data points

for training, 1500 for validation, and the remaining 3000 for testing in the n-TARP

algorithm. The results for this experiment are presented in Figure 2.2. We compute

the sequence B1
k for this data. The parameters for the Gaussian mixture are µ1 =

(0, 0, 0, 0, 0), µ2 = (10, 0, 0, 0, 0), Σ1 = Σ2 = I. Bayes Error in this case is below

machine precision (10−16). We observe that the asymptote B1
∞ is close to zero and

equals Bayes Error as expected. This shows that Theorem 2.5.2 holds true and our

bound estimates are accurate.
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Fig. 2.2. A Benchmark curve for Normally Distributed Data: This empir-
ical curve shows the asymptote defined by the limiting error bound B1

∞.
Here B1

∞ is close to zero, as predicted by Theorem 2.5.2.

2.7 Experiments with Real Data

2.7.1 Analysis of Digit Recognition Problems

We first look at two different two-class digit recognition problems. The first prob-

lem is that of distinguising between the digit “0” and the digit “1” on a gray scale

image. The other is that of determining whether the digit featured on a gray scale

image is even or odd. Both problems will be studied using the MFEAT dataset [75],

which contains 200 samples of each digit (0-9). The results of our analysis for each

of these two problems are presented in Table 2.1 and Table 2.2, respectively. To cap-

ture the dependence of the recognition problem on the feature set used to represent

the data, we consider three different feature sets: Fourier coefficients (76 features),

Karhunen-Loeve coefficients (64 features) and Zernike Moments (47 features).
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We used this data to estimate the first few terms of some of our proposed sequence

of bounds. The first bound B0 was estimated as 0.5 since the number of samples of

each class for both classification tasks were equal. For the 0-vs-1 classification, the

subsequent bounds Bn
k were calculated using the first 100 samples each of 0 and 1 as

training data (first 50 of each for training and the remaining 50 for cross validation)

and the next 100 samples as testing data for each feature set. Note that the ratio of

class 0 and class 1 samples in the training, validation and test sets was the same. For

the even-vs-odd classification, the subsequent bounds Bn
k were calculated using the

first 100 samples of each digit which were split into even and odd classes as training

data (first 50 of each digit for training and the remaining 50 for cross validation) and

the next 100 samples as testing data for each feature set. Again, the ratio of class

0 (even) and class 1 (odd) samples in the training, validation and test sets was the

same.

As expected, Bn
1 and Bn

2 for n = 1, 10, 50 are smaller than B0. Note that for the

0-vs-1 classification, B50
1 is nearly as low as 2% which is a significant improvement

over B0 at 50%. Such a small value of the 50-TARP Benchmarks might be surprising,

considering their low computational cost. Thus, even without having estimated any

of the asymptotes, we can see that the positive-gain regions for each of these feature

sets must be very small. On the other hand for the even-vs-odd classification, B50
1

is close to 20% for Karhunen-Loeve coefficients and 30% for the remaining two. The

improvement over B0 at 50% is not as great in this case but it is still significant

considering it was achieved with naive random projections.

For comparison, we used MATLAB to build support vector machine (SVM) clas-

sifiers [76] using different kernels and parameter values. We also trained a deep

neural network classifier [57] with 2 hidden layers. An Adaboost [77] classifier was

also used for comparison, where the family of weak classifiers used was of the form

p.sgn(xi − θ) where p is a parity bit, xi is the ith component of the feature vector x

and θ is a threshold. Training was done over 40 rounds in each case.
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Table 2.1.
Classification of images of 0 and 1. The empirical error of support vector
machines with various kernels and parameters, Deep Neural Network and
Adaboost is compared to the empirical estimate for our proposed error
bounds B0, B

1
1 , B

1
2 , B

10
1 , B

10
2 , B

50
1 , B

50
2 .

Fourier Coefficients

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 0% 0.5% 0% 0% 16.285% 25.125% 3.770% 6.855% 2.205% 2.340% 50%

Training Time (s) 9.198 15.537 2.280 0.078 0.0003 0.0006 0.0028 0.0016 0.0102 0.0058 -

Testing Time (s) 0.022 0.0020 0.0455 0.0025 0.0001 0.0001 0.00006 0.00005 0.00006 0.00008 -

Karhunen-Loeve Coefficients

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 0.5% 2% 1% 0.5% 22.535% 28.775% 6.055% 10.580% 4.315% 5.905% 50%

Training Time (s) 8.9281 12.9592 0.0494 0.0460 0.0008 0.0003 0.0022 0.0011 0.0086 0.0052 -

Testing Time (s) 0.0247 0.0003 0.0052 0.0015 0.00008 0.00009 0.00008 0.00005 0.00011 0.00005 -

Zernike Moments

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 1% 1.5% 1% 1% 10.925% 21.620% 2.775% 3.865% 2.465% 2.425% 50%

Training Time (s) 7.9931 9.6483 0.0212 0.0258 0.000002 0.0002 0.0016 0.0013 0.0069 0.0041 -

Testing Time (s) 0.0195 0.0003 0.0022 0.0012 0.00011 0.00009 0.00005 0.00002 0.00003 0.00003 -

∗ The family of weak classifiers used was of the form p.sgn(xi−θ) where p is a parity

bit, xi is the ith component of the feature vector x and θ is a threshold. Training was

done over 40 rounds in each case. ∗∗The deep neural network consists of 2 hidden layers

where the first layer has 35 components and the second layer has 15 components.
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Table 2.2.
Classification of images of even and odd numbers. The empirical error
of support vector machines with various kernels and parameters, Deep
Neural Network and Adaboost is compared to the empirical estimate for
our proposed error bounds B0, B

1
1 , B

1
2 , B

10
1 , B

10
2 , B

50
1 , B

50
2 .

Fourier Coefficients

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 12.3% 19.6% 15.2% Div† 38.462% 42.854% 30.678% 35.141% 29.047% 32.058% 50%

Training Time (s) 14.0915 136.6714 0.2155 - 0.0025 0.0012 0.0081 0.0047 0.0330 0.0206 -

Testing Time (s) 0.0230 0.0016 0.0299 - 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 -

Karhunen-Loeve Coefficients

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 1.4% 5.9% 2.2% Div† 34.715% 40.071% 22.378% 27.481% 16.517% 20.687% 50%

Training Time (s) 16.4836 112.4335 0.1616 - 0.0022 0.0011 0.0096 0.0053 0.0289 0.0179 -

Testing Time (s) 0.0238 0.0015 0.0201 - 0.0005 0.0002 0.0006 0.0003 0.0005 0.0002 -

Zernike Moments

Method DNN Adaboost SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear

parameter values ** * 10

Error 15.1% 23.2% 16.3% Div† 40.056% 43.148% 34.077% 36.210% 31.940% 33.440% 50%

Training Time (s) 16.9158 82.7901 0.3740 - 0.0017 0.0009 0.0065 0.0037 0.0237 0.0149 -

Testing Time (s) 0.0221 0.0014 0.1221 - 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 -

∗ The family of weak classifiers used was of the form p.sgn(xi−θ) where p is a parity

bit, xi is the ith component of the feature vector x and θ is a threshold. Training was

done over 40 rounds in each case. ∗∗The deep neural network consists of 2 hidden layers

where the first layer has 35 components and the second layer has 15 components. †Did

not converge after 15000 iterations.
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Observe that, in the case of the 0-vs-1 classification, the other classifiers are only

slightly more accurate than the benchmarks despite being significantly more expen-

sive. This is expected since the region of positive gain is very small and thus only

modest gains, if at all, can be achieved with more complex methods. There are two

factors at play here: an obvious structure in the data that can be found by simple

heuristics (random projections) as well as a small class overlap and thus a small value

of Bayes Error. Note that this holds for all three feature sets considered. The fact

that the structure is obvious makes this particular classification problem not suitable

for testing new classification methodologies.

The even-vs-odd classification problem is a lot more difficult, as can be seen by

comparing the benchmark values in each case. The TARP benchmarks go down to

about 30% for Fourier Coefficients and the Zernike Moments feature vectors and they

go down to about 16% for the Karhunen-Loeve Coefficients feature vector. We would

need to estimate the value of more terms in each sequence in order to estimate the

asymptotes (which we shall do in our further analysis below). However, we can still

observe the presence of a method (linear SVM) in the negative-gain region of the

benchmark plane. Indeed, it is interesting to note that the method did not converge

for any of the feature sets considering that reasonable piece-wise linear separations

can be found at random. On the other hand, the other methods have a better

accuracy than the benchmarks. Thus it is reasonable to imagine that the problem

at hand has a hidden structure (i.e., a complex non-linear separation boundary) that

cannot be found by simple random projections but that the machinery of an SVM,

Adaboost, or DNN can reveal. While the structure is hidden for all feature sets

considered, the class overlap appears to vary. We see a small class overlap in the case

of the Karhunen-Loeve coefficients, and a potentially large class overlap in the case

of the Fourier Coefficients and the Zernike moments. However the structural-gain

region in each case might actually have a similar size, as the difference between the

minimum benchmark values and the smallest of the complex methods accuracy is

around 15-20% in all three cases. In other words, all three problems may actually
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have a structure that is equally well hidden, despite the fact that one potentially

has a much smaller Bayes Error than the others. Such datasets could thus be good

candidates for developing and testing new classification methods.

2.7.2 Analysis of Pedestrian Detection Problems

We now look at the problem of detecting the presence of a pedestrian on a very

low-resolution image. We study this problem using the Pedestrian Dataset [78]. This

dataset contains low-resolution greyscale images divided into three training sets and

two testing sets; we trained with Training Set #2 (splitting into two for training and

validation) and tested on Testing Set #1. Each set contains 5000 samples without

pedestrian and 4800 samples with pedestrian. We used two different feature sets to

represent the images [73]. The first is a feature vector consisting of 648 discrete cosine

transform coefficients. The second representation uses 10 rows of the Pascal Triangle

of the image [79]. After removing the redundant right-hand-sides of the triangle and

storing each complex entry as two real entries (the middle of the triangle is always

real), we ended up with a total of 130 features for each image.

Again, we computed the first few terms of some of our proposed sequences of

bounds. Our results are presented in Table 2.3. The first bound B0 was estimated

as 4800
9800

(The ratio of the pedestrian samples to the total number of samples). The

subsequent bounds Bn
k were estimated using Training Set #2 and Testing Set #1 for

each set of feature. Note that the 4900 images we used for training contained the

same ratio of no pedestrian (2500) to pedestrian (2400) pictures as the validation set

(2500 no pedestrian, 2400 pedestrian). As expected, Bn
1 and Bn

2 for n = 1, 10, 50 are

smaller than B0 for both feature sets. In fact, B50
1 at 25.3% is nearly half of B0 for

the Pascal Triangle coefficient feature vectors.

For comparison, we used MATLAB to build support vector machine (SVM) clas-

sifiers [76] using different kernels and parameter values. We also trained a deep neural

network classifier [57] with 2 hidden layers. Again, the linear SVM did not converge
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Table 2.3.
Pedestrian Detection from Low-Resolution Pictures. The empirical error
of support vector machines with various kernels and parameters along
with Deep Neural Network is compared to the empirical estimate for our
proposed error bounds B0, B

1
1 , B

1
2 , B

10
1 , B

10
2 , B

50
1 , B

50
2 .

With DCT Coefficients

Method DNN SVM SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear MLP

parameter values ** 50 [1,−1]∗

Error 22.5% 21.5% Div† 38.7% 44.2% 45.5% 37.8% 39.4% 35.9% 36.8% 49.0%

Training Time (s) 577.659 177.399 - 21.801 0.141 0.067 0.440 0.268 0.181 0.117 -

Testing Time (s) 0.203 3.123 - 2.010 0.029 0.022 0.029 0.021 0.028 0.021 -

With Pascal Triangles

Method DNN SVM SVM SVM B1
2 B1

1 B10
2 B10

1 B50
2 B50

1 B0

RBF Linear MLP

parameter values ** 50 [1,−1]∗

Error 25.2% 27.6% Div† 49.50% 30.6 % 32.9% 27.1% 26.8% 25.5% 25.3% 49.0%

Training Time (s) 102.987 65.560 - 7.061 0.032 0.017 0.103 0.063 0.416 0.280 -

Testing Time (s) 0.089 2.101 - 0.628 0.006 0.004 0.005 0.004 0.004 0.005 -

∗Default parameters in MATLAB. ∗∗The deep neural network consists of 2 hidden layers where

for DCT, the first layer has 100 components and the second layer has 50 components. For Pascal

Triangles, the first layer has 60 components and the second layer has 30 components.†Did not

converge after 15000 iterations.
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for either of the feature vectors within the default maximum number of iterations

(15,000). Thus, the naive approach of finding a linear separation at random performs

better than the iterative approach of the linear SVM in this case. Similarly, the error

rate of the SVM with the MLP kernel is higher than some of the bounds listed. Thus

both the linear SVM and the MLP kernel SVM lie in the negative-gain region of the

benchmark plane. On the other hand, for the DCT coefficient feature vector, the error

rate of the Deep Neural Network and the SVM with Radial Basis Function Kernel

is significantly lower than any of the Bn
k presented in Table 2.3. While we do not

have enough data to estimate the position of the asymptotes, we can conjecture that

these two methods lie in the structure-gain region of the Benchmark plane. Thus the

evidence suggests that the structure is hidden since simple heuristics do not perform

as well as more sophisticated methods. In contrast, for the case of the Pascal Triangle

coefficient feature vector, the bound B50
1 is only beat by the Deep Neural Network by

a mere 0.1% which is quite small considering the much higher computational cost and

sophistication for the DNN. The SVM with the RBF kernel is even worse than our

bounds. Thus neither of these methods lie in the positive-gain region of the bench-

mark plane. It could be that the structure of the problem is obvious and that the

overlap between the classes is fairly large (around 25%). It could also be that the

overlap is smaller than that but the structure is very well hidden, so much so that

even the DNN or the two SVMs we tried are unable to capture that structure. Thus

this dataset could be a good candidate to develop and test new pattern recognition

methods.

Estimation of Asymptotes for the Even-vs-Odd Digit Classification Prob-

lem

Our previous experiments illustrate how to use one, two or a few bounds to analyze

the structure and class overlap of a pattern recognition problem. For a more com-

plete analysis, one needs to estimate the asymptotes Bn
∞ for some value(s) of n. To
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illustrate how to do this, we used the MFEAT data and we focus on the even-vs-odd

classification problem and use the Karhunen-Loeve Coefficient representation.

Fig. 2.3. Benchmark Curves for the even-vs-odd Classification Problem:
The evolution of the sequence of bounds Bn

k for n = 1, 10, 50 using the
Karhunen-Loeve Coefficients clearly shows the location of the asymptote
with merely 10 terms.

Figure 2.3 shows the curves obtained after computing ten terms in the sequence

Bn
k for n=1,10 and 50. This seems to be enough terms to estimate the asymptote for

each curve, the smallest of which (n = 50) appearing to lie around 10%, still above

the error rate of Adaboost (5.9%), DNN (1.4%) and the RBF kernel SVM (2.2%).

This provides further evidence that the class separation structure is hidden and that

a sophisticated classifier is required. For example, the sophistication of the DNN

classifier can decrease the error by a factor greater than seven.

This convergence to a limiting Bn
∞ indicates that our benchmarks are resistant

to over-fitting the data as simply increasing the number of levels in the decision tree

does not keep reducing the training error to 0%. Over the first few levels of the tree,
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the natural structure present in the data has been found and further levels don’t find

any new structure that can reduce the error further. The first few levels where the

structure within the data is being explored corresponds to the portion of the curves

in Figure 2.3 where the error is reducing relatively quickly with the level parameter

k. The later levels where the structure within the data has been completely detected

corresponds to the portion of the curves where the errors remain more or less the

same for increasing k with increasing computational cost (training time).

2.8 Conclusions

We observed that some pattern recognition problems, in particular high-dimensional

ones, are a lot easier to solve than others. Indeed the structure of the data is some-

times so easy to find that simple heuristics can lead to a near optimal classification

(i.e., with a probability of error close to Bayes error); the existence of such problems

was proven in our experiments. Other problems are a lot more difficult; finding a

way to accurately predict the class from a feature vector necessitates a sophisticated

method.

In order to analyze the nature of the structure of the class distributions in a pattern

recognition problem, we proposed simple heuristics to obtain upper bounds on the

probability of error of a classifier. Our bounds are obtained using extremely low-

computation methods based on random projections onto a one-dimensional subspace

of the feature space and are particularly well-suited to analyze high-dimensional data

sets. We use these bounds to construct a sequence of benchmark curves parameterized

by probability of error and computational cost. Each curve determines an error

asymptote which we proved to be optimal (equal to Bayes Error) in some cases. When

using a non-trivial pattern recognition method on a specific classification problem,

one should check that the computational time and probability of error of the method

are situated on the left-hand-side of our proposed curves (i.e., in the positive-gain

region of the benchmark plane); else their sophistication is either unwarranted (on or
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near the benchmark curve) or unsuited (right of the curve, the negative-gain region

of the benchmark plane) for the structure of the data.

To illustrate our proposed benchmarking framework, we looked at two types of

digit recognition problems: the problem of distinguishing between “0” and “1” on a

gray-scale image of a hand-drawn digit, and the problem of distinguishing between

even and odd integers on a gray-scale image of a hand-drawn digit. Our analysis in-

dicates clearly that the structure of the first problem is a lot easier to find than that

of the second. Such simple classification problems should not be used for testing and

developing new pattern recognition methods. We also looked at two pedestrian de-

tection problems. For one of these problems, none of the popular pattern recognition

methods we tried was found to lie in the positive-gain region of the benchmark plane.

Thus the evidence suggests that the problem at hand has an obvious structure that

can be found by random projection, while the class overlap is fairly large (Bayes Error

near 25%). Based on evidence presented in [36], we expect many pattern recognition

problems based on image/video data to have a similarly obvious structure.
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3. N-TARP CLUSTERING

The contents of this chapter are an extension of [40].

3.1 Introduction

Clustering is a fundamental task of data mining and exploration which seeks to

uncover structure within data and organize samples into groups of similar data in some

sense. While many clustering approaches exist that work well in low-dimensional data

space, the problem is considerably harder in higher dimensions. Methods like k-means

[80], Expectation Maximization [81], BIRCH [82] and DBSCAN [83] work well in lower

dimensional space, usually utilizing point proximity metrics, with the l2 norm being

a popular choice. However, such approaches are not feasible in higher dimensions,

in part because of the phenomenon termed as the “Curse of Dimensionality” [1,

2]. Indeed, the sparsity of datasets in high-dimensional spaces makes clustering a

challenging problem. This necessitates specially designed high-dimensional clustering

methods like Proclus [84], Clique [85], Doc [86], Fires [87], INSCY [88], Mineclus [89],

P3C [90], Schism [91], Statpc [92] and SubClus [93] among others. However, these

methods may still not be effective in small data problems where the number of samples

is much smaller than traditional big data problems.

Similarity functions tend to not distinguish classes well in high-dimensions. In

rough terms, this is because small differences in information can be hidden under

cumulated errors in non-relevant dimensions. High-dimensionality also poses a serious

challenge to finding statistically significant results from the data. Hence, there is a

need for effective clustering methods that find meaningful statistically significant

clusters in high-dimensions with an emphasis on small data problems.
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Another interesting and challenging aspect of high-dimensional clustering is the

possibility of finding several different “good” clusters instead of a unique “best” group-

ing. This is explored in our recent works [36,37] wherein we formed a hypothesis that

several different separations in the high-dimensional space can be found, so many

in fact that just generating random linear hyper-plane separations can yield valid

clusters.

Based on findings from [36, 37], we propose a novel randomized clustering algo-

rithm called n-TARP, where TARP stands for “Thresholding After Random Projec-

tion”. The core idea is to project the data onto randomly generated vectors and

threshold the resulting projections so as to separate them into two groups. This

forms the cluster assignment for the corresponding data points in the original high-

dimensional space. Due to the randomized nature of this method, cluster assignments

for each sample are random variables and the net result is a distribution of clusters

which reflects the idea of the existence of several clusters rather than a unique cluster

assignment. We incorporate a mechanism of statistical validation within this clus-

tering framework that allows us to determine if the resulting clusters are statistically

valid. We achieve this statistical validation by carrying out the necessary analysis in

our projected one dimensional space rather than the original high-dimensional space,

thereby bypassing the difficulties of statistical validation in high dimensions.

3.2 Random Projections in High-dimensions

The concept of random projections [27,28] has previously been proposed as a ba-

sis for dimensionality reduction techniques [25, 29] with several applications in clas-

sification and clustering. For instance, [30–33] use random projections to reduce

high-dimensional data into lower dimensional feature vectors for use with classifiers.

Random projections have also been used in an iterative manner to find visual patterns

of structure in data through dimension reduction [34].
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The application of random projections to dimensionality reduction [25] is mo-

tivated by the Johnson-Lindenstrauss lemma [26] which relates to preservation of

structure in high-dimensional space when transformed to lower dimensional spaces

by preserving point distances. Other clustering methods based on random projec-

tions like [35] project data to a lower dimensional space of dimensions greater than

one followed by a point proximity based cluster assignment. Our method however,

uses random projections with a different purpose. We do not aim to preserve the

structure, rather, we look to extract structure that is hidden in high dimensions

which can manifest itself as a point separation upon projection onto a trivial random

1D subspace (simplified illustrative example in Figure 3.1). This is an important

distinction as many other popular subspace clustering methods like the recent state-

of-the-art SSC-OMP [10] rely on point proximity and try to utilize the concept of

“self-expressiveness” to group data into clusters. The point proximity versus sep-

aration is a fundamental difference in the inherent geometries underlying subspace

clustering methods as compared to n-TARP.

3.3 The n-TARP method

The crux of the n-TARP method, as summarized by the acronym TARP, is

Thresholding After Random Projection. The idea is to generate a random vector

in the data space and project the data onto it to obtain projection values in R. This

is motivated by the hypothesis that the resulting distribution of projection values

will likely have a bi-modal distribution, which has been observed in [36,37]. When a

“good” bi-modal distribution is obtained, a threshold can easily be found to separate

the projection values into two groups as shown in Figure 3.1. We will now go through

the details of each step of the method in the following subsections.
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Fig. 3.1. The scenario where the data distribution is sparse in the origi-
nal high-dimensional space and projection onto a random vector yields a
binary clustering

3.3.1 Clusterability Quantification

Our method works when there exists structure in the high-dimensional space that,

with a high likelihood manifests itself as a bi-modal distribution in a random projected

1D subspace. We quantify the clusterability of the probability density function ρ(z)

underlying the distribution of the projections z of the data using an empirical estimate

of the quantity S introduced in [37], which is defined as:

S = S(ρ(z)) =
1

σ2
min
T∈R

∫ T

−∞
(z − µ−(T ))2ρ(z)dz +

∫ ∞
T

(z − µ+(T ))2ρ(z)dz,

where

σ2 =

∫ ∞
−∞

(z − µ)2ρ(z)dz, µ =

∫ ∞
−∞

zρ(z)dz, µ−(T ) =
1

π−(T )

∫ T

−∞
zρ(z)dz,

µ+(T ) =
1

π+(T )

∫ ∞
T

zρ(z)dz, π−(T ) =

∫ T

−∞
ρ(z)dz, π+(T ) =

∫ ∞
T

ρ(z)dz.
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The quantity S measures to what extent a 1D distribution is divided into two

clusters. Note that T corresponds to the position of the threshold and the ± signs

correspond to clusters in Figure 3.1. A good binary clustering corresponds to a low

value of S since this would imply that the within cluster variance is small. The

probability density function of S should have a non-negligible mass below S = 0.36

to indicate presence of binary clusters as discussed in detail in [37]. Based on our

empirical findings, if S < 0.36 for an instance of a random vector induced clustering,

that instance of clustering is deemed “good” with a lower value of S indicating a

better instance of clustering, i.e. sharper bi-modal distribution of projection values.

As discussed in [37], the S = 0.36 threshold is obtained by analyzing a null

hypothesis, wherein data is generated from a single multivariate Gaussian, simulating

absence of clusters. This null data is then projected onto random vectors following

which S is estimated for the resulting projections. It was proved in [37] that the

distribution of S for the null Gaussian data peaked at 0.36 irrespective of other

parameter settings. Hence, the value of S = 0.36 is a rough threshold for deciding

which projections are well clustered. The smaller the value of S below S = 0.36, the

further (more clustered) the projections deviate from the null hypothesis.

3.3.2 Clustering

n-TARP is a non-deterministic method that is designed to seek and generate

various statistically significant binary clusterings. We want to emphasize the possible

existence of several possible clustering structures in high-dimensional space. Since

not all random projections will yield a good separation, we use the TARP approach

n times and pick the best quality cluster as determined by our empirical estimate of

S. To check for statistical validity, the data is split into two sets at random: Training

and Validity Testing. The purpose is to find the best cluster using S as a metric

on the Training set in the 1D projection space and check if the resulting clustering

rule generates statistically valid groupings on the Validity Testing set. Note that our
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statistical test is performed in the 1D space of the projected values R, thereby avoiding

the challenges of statistical validity testing in higher dimensions. Presented below are

the steps carried out in the two n-TARP phases of Training (implementation at [94])

and Validity Testing.

Training:

Let x1, . . . , xm1 ∈ Rp be the training points.

1. For i = 1 to n:

2. Generate a random vector ri in Rp;

3. Project each xj onto ri by taking the dot product zi,j = (xj · ri);

4. Empirical estimation of S

(a) Use k-means with k = 2 to find 2 clusters in the projected space of z;

(b) Estimate Si for this clustering as

Si = S (zi,1, · · · , zi,m1) =

∑
l∈C1

(zi,l − µ1)
2 +

∑
l∈C2

(zi,l − µ2)
2

σ̃2 ·m1

,

where C1, C2 are the assigned clusters with their respective means µ1, µ2 and σ̃

is the empirical standard deviation of all the projections zi,j.

5. End loop.

6. Store the vector r∗ associated with the smallest Si.

7. Compute and store the threshold t∗ separating the two clusters such that z ≶ t∗

determines the cluster assignment;

Validity Testing:

Let y1, . . . , ym2 ∈ Rp be the testing points.

1. Import r∗ and t∗ from the training phase;
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2. Project each testing point yj onto the vector r∗ by taking the dot product

(yj · r∗);

3. Use the threshold t∗ to assign a cluster to each of the yj;

4. Perform permutation test with Monte-Carlo simulations [50] on the projected

test data at statistical significance level of 99%.

There are many ways to generate the random vectors ri. For simplicity, each co-

ordinate is generated using a i.i.d standard normal probability model N (0, 1). There

are also many ways to pick an appropriate threshold t∗. Again for simplicity, we

compute the threshold as the halfway point between the extreme ends (the closest

pair) of the projected values from the two clusters in the training phase. Note that n

is a user selected parameter, with higher values of n more likely to yield better binary

clusters as per the S metric. A simplified high level overview of the method is shown

in Figure 3.2.

Fig. 3.2. Block diagram overview of n-TARP
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3.3.3 Comments and insights on n-TARP

Note that each time the method is run, a different random vector is generated.

Therefore, the criteria (feature) used to cluster is different in every attempt. Hence,

every instance of n-TARP yields clusters resulting from different random vectors (i.e.

different similarity measures). The probability of getting nearly identical random

vectors in several iterations of n-TARP is negligible since the elements of the random

vector are independent, continuous valued and drawn without bias. It is however still

possible to get repeated cluster assignments resulting from distinct random vectors

as different clustering criteria may result in the same grouping of samples. However,

our experiments (Sections 3.4.2, 3.4.4, 3.4.5) show that a large number of the clusters

are distinct.

The statistical significance test for the grouping using a permutation test is appro-

priate when the data set is small and the assumptions for other tests like the T-test

do not hold. For other scenarios with larger datasets, an alternative statistical test

can be picked/designed that is suitable to the application and the dataset. By per-

forming the test in the projected space, we can validate if the clustering rule learned

in the training phase generalizes to unseen data in the testing set and consequently

is not biased by the training data. Performing statistical tests in high-dimensions

is challenging due to the sparsity of data in that space and often requires a large

sample size for reliable results. By following the projection space approach afforded

by n-TARP, statistical significance is evaluated quickly. The advantages of n-TARP

are most prominent on small data problems, but the principles involved apply equally

to big data problems.

Further, n-TARP can be viewed as a basic unit similar to a single neuron/layer

in a neural network. This unit can be combined or stacked together to make it more

powerful. A tree structure based incorporation of n-TARP is presented in [36, 37]

while an extension of the same framework to the task of classification is presented

in [38]. In this chapter, we will focus on a single n-TARP unit for simplicity. In our
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experience, a single n-TARP unit is more appropriate for small data problems, which

will be the main focus of the rest of this chapter. Other architectures of clustering

that combine several n-TARP units are appropriate for big data problems and the

reader is referred to [37] for some examples of the same. Those examples do not

contain checks for statistical validity, rather, they consider clustering accuracy to

measure effectiveness of the method.

3.4 Experiments

Our main focus for n-TARP is on small data problems, wherein we have a small

number of data samples in high-dimensional space. To this end, we will use an

educational research dataset [55] to illustrate the effectiveness and utility of n-TARP.

This dataset relates to attributes indicative of student learning comprising of data

for 27 students. Details of how this data was acquired and processed to form feature

vectors can be found in [39], and are detailed in Chapter 5. The dataset consists of

qualitative data relating to students’ Habits of Mind [56] that are evaluated based

on a rubric [55]. The data is in the form of text, figures and equations which are

annotated by hand following the developed rubric. These annotations are mapped to

quantitative data by modeling them in a probabilistic framework. After processing,

the dataset comprises 27 data samples, each represented by a 26 dimensional real-

valued feature vector.

3.4.1 Clusterability of the Dataset

We first present some supporting results for our hypothesis that data in high

dimensions has a lot of hidden structure that can be uncovered through simple random

projections. This is illustrated by the distribution of S obtained through one run of n-

TARP (without validation). Specifically, we set n = 500 and approximate S for each

of the resulting 500 cluster groupings (steps 1 - 5 of Training phase) using roughly
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half the data (13 samples) picked randomly. The empirical cumulative distribution

function (CDF) for S is shown in Figure 3.3 with a vertical boundary at S = 0.36.

Fig. 3.3. Empirical cumulative density function of separation indicator S.
The vertical line corresponds to S = 0.36

From Figure 3.3, we observe that approximately 85% of cluster groupings formed

in this one run of n-TARP produced values of S < 0.36 and the distribution of

S is skewed towards lower values. This indicates the existence of several different

grouping criteria that yield binary clusters. The criteria are different for each of the

500 iterations since the probability of generating repeated identical random vectors

is negligible.

Based on these results, we infer that the dataset has some kind of hidden structure

in the 26 dimensional space that can be extracted through simple projections onto

randomly generated vectors in the same 26D space with a high likelihood. Further,

there are several possible ways of extracting this structure instead of a unique “best”
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way, as evidenced by the large fraction of S < 0.36. Next, we present results on the

statistical validity of clusters formed using n-TARP.

3.4.2 Statistically Significant Clusters

In this section, we will compare n-TARP against k-means [80] along with the

following methods designed specifically for high-dimensions: Proclus [84], Clique [85],

Doc [86], Fires [87], INSCY [88], Mineclus [89], P3C [90], Schism [91], Statpc [92]

and SubClus [93]. The high-dimensional methods mentioned were used through the

Weka [95] implementations.

The experiment is designed as follows: We will use the educational research dataset

we briefly described in the previous section that consists of 27 data samples in 26

dimensional space. We will go into the details of how this data was acquired and

processed in Chapter 5. Except for n-TARP, all the other methods will use all of the

data samples available to form clusters. Due to the two phase approach described

previously, n-TARP will use about half the dataset for training and the other half for

validity testing. All the methods will be run 1000 times to analyze how many different

clusters can be formed by each. The statistical validity of the resulting clusters will

also be analyzed.

In our experiments, we found that Clique, Doc, INSCY, Mineclus and P3C did not

form any clusters while running Schism, Statpc and SubClus always resulted in errors

over many attempts. Fires produced overlapping cluster assignments which did not

fit our experiment. We suspect these issues to have been a consequence of the small

dataset size. Further, the Weka implementations of these methods did not allow us

to easily run these methods in a loop to see results over 1000 attempts. Hence, we

ran these methods manually and encountered the results we described above. It is

important to note the difficulty of getting these methods to work in the small data

scenario we are analyzing. We were successful in getting results only with Proclus

and k-means along with n-TARP, where Proclus was run manually for a few attempts
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until repeating clusters were observed, while k-means and n-TARP were run in an

automated manner for 1000 attempts.

For all the methods we tested, if a cluster assignment cannot be formed, an invalid

flag is raised. This event is counted as a clustering attempt but not as an instance

of clustering. For example, with n-TARP, we found that for statistically invalid

cluster instances, all samples were grouped into a single cluster which is not valid as

a grouping was not produced. Hence, this counts as an attempt but not as a cluster

assignment.

For n-TARP, we first set n = 500 (other values of n are experimented with in the

next section) and ran the method a total of 1000 times. For each individual run of

the clustering, we randomly split the students into one group of 13 for training and

another group of 14 for testing. The vast majority (68%) of the attempts resulted

in distinct clusters (Table 3.1). Here, distinct is quantified by at least one element

of a cluster being different. For larger datasets, one should probably increase the

number of differing elements needed to qualify distinctness of clusters. Since our

sample size is very small, even a difference of one element is significant. Note that if

the method repeatedly finds the same clusters with just one element being switched

between them, then the number of distinct clusters formed would be very small. This

is not the case with n-TARP as the number of distinct clusters is very high.

We found that about 80% of the n-TARP attempts resulted in statistically signif-

icant clusters. This is a very encouraging indicator that the grouping criteria learned

by n-TARP on a training subset of the data generalizes well to the unseen testing

data. Further, n-TARP is able to learn several distinct statistically valid grouping

criteria instead of repeatedly finding just a finite few. Our analysis further revealed

that in this data scenario, whenever a cluster assignment was formed by n-TARP,

it was also statistically valid. Instances where the validity test was not passed were

also the cases where cluster assignments could not be formed. Hence, the difference

between “Stat Sig in proj 1D” column and the “Distinct Clusters” column reveals

the fraction of repeated groupings in Table 3.1.
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Table 3.1.
Comparison of nature of clusters formed by different methods in 26D
feature space

Method Distinct Clusters Stat Sig in Stat Sig in

% (#) high D proj 1D

k-means 2.60 % (52) 22.7 % N.A.

n-TARP 68.10 % (1362) 16.7 % 81.9 %

Proclus 100 % (4) 25 % N.A.

In comparison, we also ran k-means with k = 2, 1000 times on the entire dataset.

Unsurprisingly, distinct clusters were only obtained in 2.6% of the 1000 attempts (52

different clusters). We checked for the statistical significance of these clusters (in the

original 26 dimensional space) using the high-dimensional version of the permutation

test with Monte-Carlo simulations [50] and found that 22.7% of the total attempts

resulted in statistically significant clusters in the original high-dimensional space.

Overall, only 20 distinct and statistically significant groupings were obtained with

this method with 6 repeated groupings.

Finally, for Proclus, since we were running the method manually, we observed that

only 4 distinct groupings were being formed with many repetitions. Of those, only 1

was found to be statistically valid in the original high-dimensional space. The Weka

software did not produce the projection space for analysis due to which we couldn’t

analyze this grouping in its projected state. Further, the projection space would not

be a trivial one-dimensional space that we are considering in this experiment, hence,

this comparison would not be appropriate.

It is important to note here that the statistical tests in 26D space may not be

highly reliable due to the small sample size as factors like the estimation of the

26 × 26 covariance matrix may not be very reliable. This problem is compounded

for n-TARP as only 14 samples are available for statistical tests instead of 27 for
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the other methods. Due to this reason, the tests in 1D are more reliable but we

could only perform these tests for n-TARP since k-means does not have a projection

subspace while Proclus is unlikely to use a 1D subspace. Observe the huge gap

between statistically valid clusters as determined in high-D vs 1D for n-TARP.

Ultimately, our goal with n-TARP is to extract a structure that was manifested

as point separations in projected space. To that end, the 1D analysis is the correct

approach; we provide high-dimensional analysis for further information only, since

the other methods are not compatible for a comparable 1D analysis. We note that

n-TARP creates significantly more distinct clusters than other clustering approaches,

if they can function in the small data scenario to begin with. As far as we know, our

proposed clustering method n-TARP is the only one that can reliably produce a large

number of statistically significant and/or distinct clusters for such a small dataset.

3.4.3 Effect of n on Clusters

The number of trial attempts n is an important parameter of the clustering

method. It influences the odds of finding a good binary clustering in terms of a low

S score. If we allow a larger number of trials, we are more likely to find a clustering

criterion with a lower S score. We now investigate the effects of this parameter on the

clusters formed. Specifically, we focus on how the fraction of statistically significant

clusters and distinct clusters varies as we change n. In our experiment, we varied the

parameter over n = 1, 2, 10, 50, 100, 300, 500 and each value of n is used to generate

1000 clusters. The results are presented in Figure 3.4, where n is in logarithmic scale.

We observe that the fraction of statistically significant clusters initially increases

with increasing n and then eventually saturates around 80% once n ≥ 10. The initial

sharp increase can be explained by a corresponding increase in the odds of finding

good binary groupings that are statistically valid. A larger n affords more freedom to

n-TARP in exploring the structure hidden in the data and finding statistically valid

clusters. There is an eventual saturation point when n-TARP has fully explored the
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Fig. 3.4. Evolution of distinct clusters and statistically valid clusters with
increasing number of trials n

hidden structure and identified all statistically valid groupings. Increasing n beyond

this saturation point will cause diminishing returns in terms of finding more groupings

and will likely not yield any significant changes as observed in Figure 3.4 for n ≥ 10.

Note that we are explicitly talking of saturation in terms of finding all statistically

valid groupings and not criteria. There is a subtle distinction between the two as

several different criteria resulting from distinct random vectors can yield repeated

cluster assignments.

Next, we investigate the more interesting case of the fraction of distinct clusters.

From Figure 3.4, we find that there is an initial sharp increase upto about n = 10

followed by a gradual decrease and eventual saturation as the value of n increases

further. The initial increase can be explained by a similar argument as for the sta-

tistically valid clusters above. As n initially gets larger, there are higher chances

of finding good binary groupings. Since n at this stage is not too large, there is
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lower probability of finding repeated cluster assignments corresponding to the lowest

S scores in each run of n-TARP. Hence, there is a higher chance of finding distinct

clusters within the 1000 runs of this experiment.

In contrast, when n gets larger beyond a certain dataset dependent limit, the

search space of n potential groupings is growing bigger and the likelihood of finding

repeated cluster assignments is increasing over many attempts of n-TARP. Conse-

quently, the fraction of distinct clusters goes down since the same low S scoring

clusters are found repeatedly for higher values of n. This decrease is expected to

continue until only the lowest S scoring clusters are found repeatedly in every run

of n-TARP at which point there will be a saturation in the fraction of distinct clus-

ters that will not change with increasing n. This effect is observed in Figure 3.4 for

n ≥ 10, with n = 10 being the maxima of the curve. We observe that for n = 50

to 500, the fraction of distinct clusters has small deviations around 65% and more or

less exhibits a saturation region.

3.4.4 Feature Space Extension

The 26 dimensional features of the dataset can be considered as linear first order

features representing the data. It is possible that combinations of these features may

provide more information about the underlying structure of data, similar to switching

from a linear kernel to a higher order polynomial kernel. For example, if we consider

order 2 features (i.e. all monomials of degree two in the feature coordinates), in

addition to the 26 linear order 1 features fi, i = 1, ..., 26, we will add terms of the

form fifj,∀i, j = 1, ..., 26 to the exisiting feature vector.

Following this idea, we expanded the feature space from order 1 to both orders 2

and 3 (monomials of degree 3) which expanded the feature space dimensions from 26

to 377 and 3003 respectively. The cluster analysis data using n = 500 and running

the method 1000 times for these modified feature spaces is shown in Table 3.2.
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Table 3.2.
Cluster Analysis for n-TARP with varying feature space orders including
anomaly

Feature Dimensions Distinct Stat Sig in

Order Clusters proj 1D space

1 26 61.2 % 82.5 %

2 377 38.2 % 44.6 %

3 3003 20.5 % 26.5 %

We observe that as the order increases, the fraction of distinct clusters is decreas-

ing. Similar to this trend, the total fraction of statistically significant clusters is also

decreasing with increasing dimensions. This is indicative of a changing nature in the

structure of the data which is possibly promoting some structures over others with

increasing dimensions as fewer distinct groupings are formed. Note that the data for

Table 3.2 was generated in a separate instance than for Table 3.1 which explains the

differing data for order 1 n-TARP. For order 3, 20.5 % distinct groupings corresponds

to 205 different instances of statistically valid cluster assignments in 3003 dimensional

space with just 13 training samples to use for learning a clustering criterion, which is

quite remarkable.

We further investigated the clusters formed for various orders and found that a

significant number of clusters were formed by separating just 1 sample (index 12 in

our dataset) from the rest of the data. The occurrence of this particular grouping

increased with increasing order. Further, each instance of this grouping resulted from

a different random vector, implying that several different criteria were found that

separated sample 12 from the rest of the data. This is a curious case of an outlier

in the dataset, especially considering that it occurred more frequently as the feature

space order grew higher. To gain further insight into this outlier, we ran the same
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experiments again with a single change of removing sample 12 from the dataset, shown

in Table 3.3.

Table 3.3.
Cluster Analysis for n-TARP with varying feature space orders with
anomaly removed

Feature Dimensions Distinct Stat Sig in

Order Clusters proj 1D space

1 26 56.7 % 77.5 %

2 377 42.7 % 52.2 %

3 3003 36.4 % 49.2 %

3.4.5 Outlier Detection

From Table 3.3, we notice that the number of distinct clusters found for order 1

was reduced after removing the suspected outlier. However, the number of distinct

clusters has increased for orders 2 and 3 with the outlier removed. This indicates that

the unique nature of sample 12 was predominant in orders 2 and 3, which influenced

the learned clustering criteria to separate it from the rest of the dataset. When sample

12 was removed, we no longer observe this biased clustering criteria and the method

is free to explore other candidate grouping criteria and consequently finds a larger

number of distinct statistically valid clusters than previously. There is no longer a

predominant repeated cluster assignment of 1 sample vs rest of the dataset.

With the removal of the outlier, for order 3 features, n-TARP is able to find about

36% or 360 instances of unique statistically valid grouping criteria in 3003 dimensional

space with just 13 samples to learn a criterion. To our knowledge, no other method can

yield this kind of performance in a small data problem. Considering the difficulties of

running other methods for the purpose of comparison in order 1 features, it is highly

unlikely that they would present any better performance, if they function at all, on
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the same number of samples in a much larger dimensional feature space and hence

we did not attempt such comparisons.

It is important to note that n-TARP without statistical validity checks can yield

invalid clusters as evidenced by the dropping number of statistically valid clusters

found as the feature space increased in Tables 3.2 and 3.3. Having a built in statistical

test has proven to be insightful and informative, especially in high dimensions.

3.4.6 Analysis of Euclidean Distances

Our proposed n-TARP method depends on point separations in the projected 1D

space to form clusters instead of utilizing euclidean distance metrics in the original

high-D space. This is an important aspect of the method since euclidean distance as

a metric for point similarity is not very reliable as the dimensions of the data keeps

growing. To illustrate this, we examine the clusters formed in the feature extension

experiment and summarized in Table 3.2. We consider the statistically valid distinct

clusters that were found. Specifically, for every pair of clusters formed, we compare the

inter-cluster and mean intra-cluster pairwise euclidean distances. The inter-cluster

distance is calculated as the euclidean distance between the cluster means while the

mean intra-cluster distance is calculated as the average euclidean distance of data

samples from the mean of the cluster they are assigned to. These distances are

calculated in the original high-D space, for all feature orders. This comparison is

shown below in Figure 3.5 through normalized histograms.

The inter-cluster distances are represented in blue while the intra-cluster distances

are represented in orange in Figure 3.5, while the overlap between the two is shown

in a darker shade. We observe a common theme in all three graphs in Figure 3.5

which is a large overlap in the distribution of inter-cluster and intra-cluster distances

corresponding to statistically valid clusters. This indicates that the distance between

clusters is similar to the distances between data samples present within a cluster. In

other words, based on euclidean distances alone, it is not feasible to determine if a
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(a) Order 1 Features (26 Dimensions) (b) Order 2 Features (377 Dimensions)

(c) Order 3 Features (3003 Dimensions)

Fig. 3.5. Inter-Cluster and Intra-Cluster Euclidean Distance Comparison
for Varying Feature Extensions Orders

given data sample belongs within a cluster or outside it. This is an illustration of

how similarity metrics based on euclidean distance measures are not effective in high-

dimensions, which motivates the utility of our projection based clustering method.

As a closing remark on the experiments, we highlight the advantage of n-TARP in

finding statistically valid clusters even in situations where conventional metrics like

the l2 norm can no longer provide good discriminating power as illustrated in the

experimental results described above.
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3.5 Conclusions

In this chapter, we introduced a novel clustering method called n-TARP, which

is non-deterministic and based on point separations instead of point proximity. The

method is designed to explore multiple clusters in data that are statistically significant

rather than a unique “best” grouping of data into clusters. The method is geared

towards high-dimensional data and its utility is most prominent in a high-dimensional

setting with a small dataset, although it can easily be extended to lower dimensions

and big data settings as well. This chapter focused on a small data problem in high-

dimensional space [39,55] as this was the context for the development of the method

as presented in this chapter.

The central idea of the method is the projection of data onto randomly generated

vectors. Our previous work [36, 37] has shown that data in high-dimensional space

has hidden structure that can be uncovered through this projection process. We have

shown empirical evidence to support this hypothesis for the dataset considered in this

chapter through the quantification of clusterability illustrated in Figure 3.3.

This chapter proposed statistical validity evaluation in the projected 1D space

where we hypothesised the hidden structure of high-dimensional data is manifested

[37]. This approach allows us to bypass statistical validity testing in high dimensions

with a small sample size. The clustering criterion is learned from half of the data

followed by the statistical validity test on the remaining half. Through this two step

procedure we are able to determine if the learned grouping criterion generalizes to

the whole dataset. This allows us to generate a large number of distinct statistically

significant clusters for a small dataset in high-dimensional space, something that to

our knowledge has not been possible before.

Through experiments on the high-dimensional small data problem considered in

this chapter, we have quantified the indicators of hidden structure in the data and

produced several hundreds of distinct statistically valid clusters in a variety of high-

dimensional settings, from 26 to 3003 dimensions. We have also shown an illustrative
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analysis to detect outliers in high-dimensions, which is a challenging problem. Fur-

ther, we illustrated that conventional similarity metrics like the l2 distance is not a

feasible option in high-dimensions and can lead to erroneous and statistically invalid

results. The point separation approach used in n-TARP provides a good alternative

and can find potentially a large number of statistically valid clusters in such extreme

scenarios.

In conclusion, our work has shown that data in high-dimensions has a lot of struc-

ture that is not limited to a unique “best” set of clusters. This structure manifests

itself as point separations in random projected 1D subspaces leading to several dis-

tinct sets of clusters. The cluster assignments themselves can be viewed as random

variables induced by the random projections of n-TARP. Our results point to a need

to study these cluster distributions to gain better understanding of high-dimensional

structures.
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4. PATTERN DEPENDENCE AND CLUSTER

EVALUATION

The contents of this chapter are an extension of [40].

4.1 Introduction

So far, we have studied the utility of random projections for grouping high-

dimensional data in Chapters 2 and 3. While the interpretation of the accuracy

of the results in a supervised learning scenario is quite straightforward, the accuracy

of the clusters in the unsupervised scenario is not. We are interested in the question

of how one can interpret and evaluate clusters in the absence of labels, as well as how

to use the clusters once they are obtained.

Chapter 3 showed that n-TARP based clustering yields a multitude of different

sets of clusterings that are statistically valid. In this chapter, we will study how to

determine the existence of a statistical effect caused by the separation of data into

groups as determined by n-TARP. We propose to carry out this study in a predictor

response setting, wherein the data used for clustering is treated as a set of predictors.

An independent quantity of interest associated with every data sample, which was

not used in the clustering process, is chosen as a response variable. In the following

sections, we will describe our framework to study the effects of the clustered predictor

variables on the response variable. The existence of an effect provides evidence that

the clusters found are meaningful and truly present in the data.

Specifically, this chapter is concerned with the problem of investigating if a re-

lationship exists between a response variable (in R) modelled as a random variable

and a vector of predictor variables (in Rp) modelled as a random vector. The vector

of predictor variables corresponds to the data samples that are clustered, where the
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data is continuous and quantitative in nature. We further focus on the scenario of a

very small sample size m (20-30 samples), corresponding to the data we have been

working with in Chapter 3 and will discuss in greater detail in Chapter 5. This is

a challenging problem as potential solutions and models might over-fit to the small

amount of data available. The framework we present can be modified easily to extend

to scenarios with larger sample sizes.

4.2 Background and Overview

A popular approach to the general problem of determining relationships between

predictors and a response is regression, e.g. multiple regression. However, the problem

is ill-posed and under-determined in the scenario where m < p, i.e., we have more

variables than data-samples. In this case, the least-squares approach can be used to

generate the minimum norm solution with the Moore-Penrose pseudo-inverse [96,97].

This is just one of infinitely many solutions and exploring other solutions may prove

useful. The problem at hand could also have a large condition number, which could

lead to errors in the pseudo-inverse solution [98]. To address this, regularization

in terms of prior models can be introduced, which inherently biases the solution.

There exist several choices for priors. Popular examples include l2 regularization as

in ridge regression [52], l1 regularization as in LASSO [53] and a combination of both

in Elastic Nets [54], all of which promote sparsity of coefficients corresponding to the

predictors. A limitation of this approach is that a particular functional relationship

has to be chosen and imposed among several choices, followed by a suitable choice

for the regularization parameters. An alternative is to use Bayesian Model Averaging

approaches [99] wherein several models are combined in a Bayesian manner to predict

the outcome variable from the predictor variables using various functional models

as ingredients. Bayesian hierarchical shrinkage priors in regression are considered

in [100]. Another approach is based on variable selection in a probabilistic manner,
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like the SSVS (Stochastic Search Variable Selection) [101] and some others discussed

in [102].

While these methods can work in finding a functional relationship that minimizes

some error metric of prediction under the m < p scenario, it is still quite challenging to

find a solution when m is very small. As mentioned previously, solutions (if any) may

have over-fitting issues leading to high variance of the model or under-fitting based on

model assumptions leading to high bias. This challenging problem may swing between

the extreme ends of the bias-variance trade-off, while ideally, we would like to find a

sweet spot between the two. The statistical validation of these solutions may also be

very challenging given the small sample size (20-30) and unknown distributions of the

predictors and response variables, which limits our capability to invoke the central

limit theorem and the law of large numbers [103], which is an underlying assumption

in a variety of statistical tests.

Some other general statistical tests and approaches to evaluating a dependence

between predictor and response are the Chi Square test [104] and Fisher’s exact

test [105, 106]. Fisher’s exact test is more general and makes less assumptions than

Pearson’s Chi Square test, however, they are both designed for categorical variables

which limits their utility for analyzing continuous quantitative data. These tests

cannot be used to check for dependence between multivariate quantitative data and

some response uni-variate quantitative data. The closest related approach to this is an

element-wise dependence check that is limited in scope as it will ignore combination

effects of the predictors that can cause changes in the response. Hence, approaches

like element-wise correlation [103] of each predictor with the response is not feasible.

Some studies on dependence between two variables include [107,108].

In summary, we have a small data problem with the number of samples m in the

20-30 range with the data in high-dimensional space (large p), which prohibits the use

of the central limit theorem and the law of large numbers. It also poses a challenge of

finding statistically valid solutions that do not overfit the data. Next, we do not seek

a precise functional relationship between the predictors and the response variables.
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Instead, we seek to answer the more general question of whether a relationship exists

between the predictors (as a whole vector entity) and the response without imposing

a model or functional form. We ask the question, “Can the chosen response be

predicted from the predictors?”, rather than assuming that it can and imposing a

functional relationship and determining its parameters. Building on this, we also

study the effects of subsets of clustered predictors on the response to understand

how certain predictors may/may not affect the response. Further, we also seek a

statistical validity framework that is appropriate, general, non-parametric and has

minimal assumptions, for our scenario of small data in high-dimensions.

4.3 The Pattern Dependence Framework

To study the existence of a relationship between multivariate predictors and a uni-

variate response, we must first define a quantifiable uni-variate response. Since we are

working with the same data used in Section 3.4, to be described in detail in Section

5.3, the data samples correspond to student learning indicators. We find a suitable

numeric student performance metric associated with each data sample (course grade),

which we will designate as our response variable associated with each student. The

response variable is not part of the data used for clustering.

Our goal is to find a quantifiable measure of the difference in the response vari-

able based on partitioning the predictors into groups. Consider that the predictors

associated with students are used to form two groups: Group 1 and Group 2. Let

the mean response variable associated with the students in Group 1 be µ1. In other

words, the average grade of the students in Group 1 is denoted by µ1. Similarly, the

mean response for Group 2 is µ2. Let ∆ be the quantity that measures differences

in response based on the groups. For simplicity, ∆ will be taken as the absolute

difference between the means of the grouped response variables, i.e. ∆ = |µ1 − µ2|.

Consider the example shown in Table 4.1 (reproduced from Chapter 5) which

contains the distribution of the response variable (grade) for an instance of n-TARP
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Table 4.1.
Example distribution of response variable (student grade) based on clus-
ters formed using predictors (student skills)

Response Variable All Cluster 1 Cluster 2

Grade Students

A (4.0) 5 0 5

B (3.0) 10 2 8

C (2.0) 8 4 4

D (1.0) 2 2 0

F (0.0) 2 2 0

Mean Grade 2.51 1.60 3.05

Standard Deviation 1.12 1.07 0.74

clustering using the predictor variables (student skills) as discussed in Chapter 3.

We observe a significant deviation of the response distribution between the response

(grade) specific to the clusters as well as from the original total distribution (Column

“All Students”). This difference in response corresponds to a value of ∆ = |1.60 −

3.05| = 1.45 for this instance of clustering.

The n-TARP clustering method discussed in Chapter 3 is used to find clusters us-

ing the students’ predictor data. The measure of response difference, ∆, is calculated

for each instance of the n-TARP binary cluster assignment. Since the n-TARP clus-

tering method is stochastic in nature and it determines how the response variables are

partitioned in our observed clusters, ∆ can also be considered a random variable with

a distribution that is induced by the n-TARP clustering process. The distribution of

∆ can be empirically estimated through the observations of ∆ for every instance of

n-TARP clustering.

The pattern dependence framework seeks to investigate if the response variables

are dependent on patterns detected in the predictors (clusters). Any change in re-
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sponse based on partitioning the data into clusters is measured by ∆. Since ∆ is a

random variable, we investigate the dependence (if it exists) by studying the empirical

CDF (Cumulative Distribution Function) of ∆ that is estimated through observations

of ∆ for every instance of n-TARP clustering. If we observe a large proportion of

clusters associated with non-negligible values of ∆, in the context of the dataset, we

can conclude that the response variable does indeed depend on the predictors and

that the groups formed based on patterns in the predictors leads to a quantifiable

difference in response.

4.3.1 Statistical Validation

A natural question that arises is the statistical validity of the conclusions drawn

from the empirical CDFs. It is important to investigate if the observed CDF is any

different from what would be found if students were grouped at random or if it is

a causal result of the clustering process (i.e. affected by patterns in predictors).

This necessitates a hypothesis test setup to compare the CDFs of ∆ resulting from

n-TARP clusters against a null distribution of ∆ where the response variables are

randomly divided into groups of the same size as that of the clusters, independent

of the predictor variables. This hypothesis test must be performed at a high level of

significance (above 95%).

The alternate CDF curve (resulting from the clustering process) is compared to a

null-hypothesis CDF curve corresponding to the case with no relationship or depen-

dency between the response variable and the clustering of the data samples using the

predictors. The null CDF curve is obtained by randomly partitioning the students

into two groups and computing ∆ for these groups. This partitioning is repeated

several times and the resulting sample values of ∆ are used to estimate a CDF curve.

The size of the random groups are chosen to match the various sizes of the groups

obtained by clustering.
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The null CDF curve obtained as described above will vary from one trial to the

next. Thus, we compute the average CDF curve over several trials, as well as the

CDF curves lying five standard deviations above/below the average curve. Let us fix

a value of ∆ = ∆0; the values of all the curves obtained through our trials can be

used to estimate the exact probability α0 that a curve value at ∆0 would be below five

standard deviations under the mean value when the curve follows the null distribution.

Let µ denote the mean curve value at ∆0 and σ denote the associated standard

deviation. The significance level estimated by the pair of curves for µ± 5σ corresponds

to a significance level of at least 96% based on Chebyshev’s inequality [109,110]. The

inequality states that for a random variable X with finite mean µ and finite non-zero

variance σ2 and any real number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2

which for k = 5 means that there is at most a 4% chance of a sample lying more

than 5 standard deviations away from the mean. This inequality does not make

any assumptions on the underlying distribution of the random variable X and so is

a conservative general bound, thereby guaranteeing a minimum significance level of

96% if a realization lies outside the ± 5σ boundary of the mean, which corresponds

to a maximum value of α0 ≤ 0.04.

The values of ∆ at which the experimental CDF curve lies five standard devi-

ations below the average null-hypothesis curve are highlighted; if ∆0 is a value in

the highlighted region, and if the experimental CDF curve value at ∆0 is p0, then p0

fraction of the patterns have a difference of ∆0 or less, and thus 1− p0 fraction of the

patterns have a difference of at least ∆0. This conclusion is valid with probability

1 − α0. Consequently, the lower a CDF curve is below mean null CDF, the larger

the proportion of clusters with a minimum ∆0 difference in response. Hence, a lower

alternate CDF curve is preferred to obtain clusters with more noticeable differences

in the response variable.

By following this process, we are able to achieve a graphical hypothesis test with

a minimum significance level of 96%, where the domain of significance is highlighted.
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If the alternate CDF falls outside the µ± 5σ zone of the null CDF, we can conclude

that the alternate CDF does not follow the same distribution as the null case, with

a maximum probability of erroneous conclusion being 4%. Hence, if we are able to

reject the null hypothesis in this scenario, we conclude that the dependence observed

between the predictor groups and response is a statistically valid and quantifiable

effect.

4.4 Experiments

As mentioned before, we will continue to work with the data described and used

in Chapter 3 to analyze the clusters formed using n-TARP under the pattern depen-

dence framework. Hence, the data consists of 27 samples in 26 dimensional space,

where the data relates to students’ learning skills called Habits of Mind [39,55]. The

response variable associated with student performance is the course grade. Further,

the predictor data corresponding to students can be broken into five separate compo-

nents A,B,C,D and E as will be discussed in Chapter 5 and can be found in [39, 55].

We will also consider the feature space extension data discussed in Chapter 3, where

we extend our feature vectors by including terms of order two and three, growing

the space dimension to 377 and 3003, respectively. This extension of feature space is

carried out in the same way as in the previous chapter. For example, we can extend

the dimensionality of the feature vector (f1, f2, ..., fp) by including terms of order k of

the form fi1 ·fi2 · · · fik ∀ i1, i2, · · · ik ∈ {1, 2, ...p}, to check for non-linear dependencies.

In order to estimate the alternate CDF, we use the n-TARP clustering method to

generate 10000 sets of binary clusters with the data and calulate the ∆ based on the

average grades of the students in each group for each instance of binary clustering.

To estimate the null CDF, we randomly divide the student grades into two groups

where the group sizes are the same as for the sets of clusters formed with n-TARP.

Hence, we form up to 10000 random groups of grades. We repeat this process 100

times to get 100 estimated CDF curves of the null hypothesis. From these 100 curves,
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we calculate the mean (µ) and standard deviation (σ) null CDF curves, which are

then used to create three curves to represent the null hypothesis: the µ null CDF and

the µ± 5σ curves that define the rejection zone.

4.4.1 Hypothesis Test on Empirical CDF

We first investigate the pattern dependence with order 1 linear features in 26

dimensions. In Figure 4.1, the alternate CDF is plotted in blue, the mean null CDF

in black with the 5σ zone represented in dashed black lines. A magenta indicator

curve at the bottom represents the locations in the domain of ∆ where the alternate

CDF is in the null hypothesis rejection zone, i.e. lies outside the µ±5σ null zone. For

the magenta curve, a high step (at y-axis value of 0.05) indicates that the alternate

CDF lies outside the null zone and we can reject the null hypothesis whereas a low

step (at y-axis value of 0) indicates that the alternate curve lies within the null zone

and the null hypothesis cannot be rejected.

As we can observe from Figure 4.1, the alternate CDF curve (blue) lies more than

5 standard deviations below the null CDF curve for a large range of values of ∆.

Hence, we can reject the null hypothesis and declare that grouping students based

on their learning skills data does indeed have a non-random effect on their course

performance. This claim can be made at a minimum of 96% significance level as

discussed in the previous section. This leads us to the conclusion that the response

variable (course grade) does have a statistically valid dependence on patterns in the

predictors (high-dimensional data samples).

This pattern dependence is investigated further in Figure 4.2, where we have ex-

tended the feature space to order 2 with 377 dimensions (Figure 4.2(a)) and order

3 with 3003 dimensions (Figure 4.2(b)). This allows us to study non-linear exten-

sions of the pattern dependence and see if the extent of dependence changes with

dimensionality. From Figure 4.2, we observe that for both orders 2 and 3, the sig-

nificance region indicated by the magenta curve is quite large, with the maximum
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Fig. 4.1. The hypothesis test for pattern dependence with order 1 features
(26 dimensions)

longest sequence being approximately 0.2 to 1.6 for order 2 in Figure 4.2(a). We also

notice a larger margin between the null zone and the alternate CDF as the dimen-

sion grows, particularly in Figure 4.2(b). This larger margin may indicate a larger

extent/strength of pattern dependence relative to the base line order 1 effect seen in

Figure 4.1. Since a greater margin between the null and alternate CDFs implies a

greater proportion of clusters that yield at least a given value of ∆, it can be inter-

preted as a relatively stronger dependence of the response on patterns in predictors.

In other words, the curve of Figure 4.2(b) is the lowest of three curves considered and

has the highest probability to yield clusters with large differences in their associated

response variables.

Based on the experiments discussed above, we can infer that there is indeed a

statistically valid pattern dependence effect observed between the predictors and re-
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(a) order 2 features (377 dimensions) (b) order 3 features (3003 dimensions)

Fig. 4.2. The hypothesis test for pattern dependence with higher order
features

sponse for all orders of features. The large expanse of the significance region for

all feature orders is an encouraging indicator of both the statistical validity of our

clusters and the dependence between the predictors and response.

4.4.2 Feature Selection

As mentioned previously, each of the features of our data samples is related to

one of 5 different components, denoted as A,B,C,D and E. These components of data

arise from a rubric that will be discussed in greater detail in the next Chapter. We

investigate whether the response is dependent on a given individual component by

removing the feature coordinates corresponding to that component and recomputing

the corresponding CDF curves. This CDF estimation is repeated 5 times, once each

for the removal of all 5 components A,B,C,D and E in a sequential manner. The

resulting CDF curves are compared to the baseline case wherein no components are

removed.

The results using the set of order 1 features (linear relationship) in Figure 4.3

show that the response depends prominently on components A (red) and B (green) in
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Fig. 4.3. Feature selection for pattern dependence with order 1 features
(26 dimensions)

a linear fashion since their removal shifts the corresponding CDF curve significantly

away from the baseline curve with all the components included (black). Removal of

other feature components does not seem to affect the curves to a significant extent

as the blue, cyan and magenta curves corresponding to removing components C,D

and E respectively, seem to mostly overlap with the black curve. It is interesting that

removing A seems to make it less probable to find a set of clusters with a contextually

large ∆ ≥ 0.7 for instance, whereas removing B seems to make it more probable. An

analysis of this nature may help in determining which components of data contribute

more significantly to an observed pattern dependence effect, which in this case appear

to be components A and B.

We investigate if the effects of individual components change in scenarios with

higher order features. Our results are shown for order 2 (Figure 4.4) and order
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Fig. 4.4. Feature selection for pattern dependence with order 2 features
(377 dimensions)

3 (Figure 4.5) features. Interestingly, we see that the effects observed for order 1

features in Figure 4.3 are not the same as those seen in higher order. For instance, in

Figure 4.4, removing B (green) does not change the CDF curve much in comparison

to the one with all features included (black) baseline. However, removing A (red) still

shifts the CDF curve higher than the default one (black). In addition, removing E

(magenta) also shifts the CDF curve higher than the default one, which was not the

case with order 1. While some of the other curves are shifted from the baseline black

curve, they exhibit that behaviour in a relatively smaller range of values in comparison

to the red and magenta curves that span almost the whole range of values shown in

Figure 4.4.

The case for order 3 features is also quite interesting. As seen in Figure 4.5,

while all the colored curves seem to be shifted from the default curve (black) in small
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Fig. 4.5. Feature selection for pattern dependence with order 3 features
(3003 dimensions)

regions, only the E removed (magenta) curve is consistently shifted higher than the

default curve (black). This is quite interesting as it demonstrates an evolution of a

different kind of pattern dependence effect as the dimensionality of data grows through

increasing feature order. The red and green curves corresponding to A and B seem to

be mostly overlapping or very close to the baseline curve for order 3 features (Figure

4.5), while they were prominently shifted much farther away for order 1 features

(Figure 4.3). Based on the margin of shift away from the baseline black curve, the

pattern dependence effect seems to be stronger for components A (red) and B (green)

for lower order features (Figure 4.3) while this dependence seems to grow weaker as

the order increases (Figures 4.4 and 4.5). The opposite appears to be the case for

component E (magenta). The pattern dependence effect for component E appears

weaker in lower order features and gradually becomes stronger in higher order features
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as seen sequentially in Figures 4.3 - 4.5. This is indicative of a non-linear relationship

between the predictors and the response for component E and linear relationships for

components A and B, in the context of yielding significant differences in responses

for the clusters resulting from the n-TARP process.

4.5 Conclusions

In this chapter, a statistical framework was developed to evaluate existence of

a relationship between a set of predictors and a given response. Specifically, we

investigated if an outcome was dependent on patterns found in the predictors, i.e.

grouping the predictors into clusters. This framework also serves as an alternative

approach to evaluating clusters and interpreting the grouping.

The experiments discussed have provided some important observations. The re-

sponse was observed to be dependent on clusters in a statistically valid manner. The

statistical validation was carried out through a hypothesis test on the distribution of

a measure of the difference in response when the data was clustered with n-TARP.

The extent of deviation from the null distribution appeared to increase as the dimen-

sionality of the data grew larger through the extension of the feature space to higher

order terms.

The CDF comparison approach was modified to investigate the dependence of the

response on the clusters formed as well as on individual components of the data. We

observed changes in the behavior of the distribution of the response when compo-

nents of the data were sequentially removed. Some components’ removal showed no

significant change in behavior while some produced significantly shifted CDF curves,

indicating a strong dependence of the response on those particular components. We

also observed a change in dependence on components with changing feature order

i.e. change in dimensionality of the problem. Components A and B seemed to have

strong pattern dependence behavior for the response in lower dimensions but the ef-

fect seemed to weaken in higher dimensions. On the other hand, the dependence on
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component E was weaker in the lower dimensions but significantly stronger in higher

dimensions. These results present an interesting insight into the dependencies of the

outcome on certain subsets of the data. The A and B components seem to yield a

linear dependence while E yields a non-linear dependence.

In summary, we explored the statistical existence of relationships between pre-

dictors and response without enforcing a functional form. We also studied how the

dependence was evolving with clusters of data and the dimensionality. Our results

can potentially be used to introduce changes in certain dimensions of data prior to

acquisition to cause desired effects on the response. They can also help in finding

a model to represent the relationship between the predictors and response after the

validation of the existence of a relationship. For instance, linear terms could be used

to model the influence of components A and B of the feature vectors while cubic

terms can be used for component E.

This study provides a better understanding and insight into the clusters formed

through the non-deterministic n-TARP clustering framework and what the clusters

represent in the context of the source data. The pattern dependence framework

provides an avenue to statistically interpret the distribution of clusters obtained in a

collective sense as analyzing them individually is not feasible.
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5. CLUSTERING EDUCATIONAL DATA

The contents of this chapter appear in [39].

5.1 Introduction

Educators, policymakers and engineering education researchers have attempted to

produce a clear understanding of the qualities and knowledge engineering graduates

should possess [111]. Strong foundations in mathematics, engineering, and technology

are highly emphasized in engineering programs [112]. Proficiency in areas such as good

communication skills, persistence, curious learning capability, drive and motivation,

and willingness to take calculated risks, among others is also important [111]. Bod-

ies of accreditation have identified not only the required knowledge and skills that

engineering graduates should exhibit, but also the attitudes and behaviors needed

to confront complex problems. For instance, ABET criteria [113] stipulate student

outcomes for engineering programs that consider the skills, knowledge, and behaviors

that students are expected to know and be able to do by the time of graduation. Such

criteria range from students’ abilities to apply knowledge of mathematics, science and

engineering, conduct experiments, analyze and interpret data, and design a system,

component, or process to meet desired needs; to abilities to function on multidisci-

plinary teams, demonstrate professional and ethical responsibility, and communicate

effectively, among others.

In order to identify solutions to current problems, engineering graduates must

possess a professional mindset needed to shape the future, in addition to the technical

knowledge and skill-set of a discipline. For example, the Engineer 2020 proposes a set

of aspirations for engineering students needed to operate in societal, geopolitical, and

professional contexts within which engineering and its technologies will occur [114].
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These aspirations include traits such as strong analytical skills, creativity, ingenuity,

professionalism, and leadership [114]. Such aspirations and traits relate to students’

“Habits of Mind,” which are defined in [115] as modes of thinking required for STEM

students to become effective problem solvers capable of transferring such skills to new

contexts. An example of Habit of Mind is a willingness to make mistakes while trying

to solve a problem, an attitude that allows engineers to successfully attack complex

problems.

The focus of this work are the Habits of Mind of students learning the theory and

application of Signals and Systems Theory. More specifically, the work is focused on

foundational concepts of digital signal processing taught to undergraduate engineering

students. Two questions are investigated: 1) What are the different Habits of Mind

patterns exhibited by the students?, and 2) Are some of these patterns associated

with differences in course grades?

The rationale for centering the investigation around signals and systems is that

these concepts are fundamental for electrical engineers and require a strong mathe-

matical background [116, 117]. Furthermore, research has shown that the content of

such courses is difficult to master [116, 118]. Previous studies of students learning

signals and systems concepts have used quantitative approaches such as concept in-

ventories [116] as well as qualitative approaches using textual analysis of students’

responses [118]. Both of these approaches have advantages, but also limitations.

The approach taken herein to characterize students’ ‘Habits of Mind’ combines a

qualitative method with random signal modeling and machine learning techniques.

This method combines the advantages of qualitative approaches by first uncovering

details of student performance from qualitative data and subsequently dividing stu-

dents into groups (clusters) based on distinguishing characteristics. In contrast with

global analysis methods, which reduce entire datasets into averages, percentages and

other descriptive statistics, the method proposed in this chapter allows for the groups

to be individually analyzed and compared so as to provide a more fine and detailed

analysis of the set of students being studied. The groups are found by first trans-
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forming the qualitative data into quantitative data. Specifically, the qualitative data

is transformed into real-valued feature vectors by random signal modelling so it can

be automatically clustered using machine learning approaches. The machine learning

method selected is well-suited to analyze small datasets in high-dimensions. It also

easily lends itself to statistical validation.

More specifically, the students’ work is first annotated manually based on a

custom-built rubric of Habits of Mind and skill levels. The annotations are vec-

tors, which are stored in sequence for each student. The sequence of vectors of each

student is modeled as a random process whose parameters are estimated from the ob-

served data. The parameters of the random process associated with all the students

are later clustered using a non-deterministic approach that yields several statistically

significant patterns of Habits of Mind. These patterns correspond to binary group-

ings of the students, i.e. divisions of the students into two groups. The corresponding

groups of students are then described using their Habits of Mind histogram as well as

course grades. A more detailed statistical analysis is then given using the cumulative

distribution function of the difference in average course grade of all the binary group-

ings. A statistical test is used to determine if the grade differences are significant.

Repeating the analysis after removing certain individual Habits of Mind provides a

visualization of the contribution of each Habit of Mind to the course grade.

The data analysis approach proposed is a new method that can generally be

used to characterize and measure different aspects of professional formation processes

in engineering education. The study itself provides a baseline for future efforts in

engineering education research methods and assessment.

The rest of the chapter is organized as follows: The underlying conceptual frame-

work is presented in Section 5.2 followed by a description of the methods used in

Section 5.3. The experimental results are presented in Section 5.4 followed by discus-

sions of the results and the conclusion of the work in Sections 5.5 and 5.6 respectively.



81

5.2 Conceptual Framework

This investigation is guided by the Scientific Habits of Mind conceptual frame-

work. Habits of Mind are individuals’ responses to situations and problems where

the answers are not immediately known [56]. Specifically, scientific Habits of Mind

refer to mathematical, logical and attitudinal modes of thinking required for sci-

ence, mathematics, technology and engineering students to become effective problem

solvers capable of transferring such skills to new contexts. Effective use of Habits of

Mind can allow students to search for solutions moving from highly theoretical to the

entirely concrete.

The implications of the conceptual framework for the design of this study relate

to the operationalization and characterization of different Habits of Mind in an engi-

neering context. The Habits of Mind explored and operationalized are described in

Table 5.1.

5.3 Methods

The methodological framework for this investigation is a comparative case study

method [119]. According to [120], a case study is a research strategy focused on

understanding the dynamics within single settings. In [121], it is described as an

empirical inquiry that investigates a contemporary issue in depth within its real-life

context, especially when the boundaries between phenomenon and context are not

clearly evident. A case study approach was chosen because it facilitates in-depth

investigations of student experienced Habits of Mind.

According to [121], a case study should include data collected from multiple data

sources so as to allow the identification of individuals’ behaviors, perceptions and

attitudes. The use of multiple cases is a common strategy for identifying contextual

variations [122]. By comparing cases, one can establish the range of generality of a

finding or explanation, and at the same time, pin down the conditions under which

that finding will occur [123]. The cases for this study were groups of students ex-
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Table 5.1.
Definition of Habits of Mind as proposed by [115] and operationalization
herein

Habits of Mind Definition Operationalization

Computation Ability to judge an appropriate Ability to choose an appropriate

and estimation computation method to be used computation method and carry out

based on specific circumstances. the mathematical procedure accurately.

Mathematical Ability for making careful observations Ability to handle mathematical rigor

rigor and for handling information. and remember details of a definition.

Communication Ability to communicate ideas and share Ability to communicate effectively,

skills information with fidelity and clarity. explain background and present a good

and meaningful flow of ideas.

Critical-response Ability to detect the symptoms of Ability to detect the symptoms of

skills doubtful solutions, assertions and doubtful solutions, assertions and arguments

arguments. in ones own work and in peers work.

Values and General social values and Students attitude towards

attitudes people’s attitudes toward their their peers work and their own ability

own or others ability to understand to make assessments on others work.

science, engineering and mathematics.

hibiting Habits of Mind in similar ways. The groups were found using a clustering

method called n-TARP [38,40,73] (previously discussed in Section 3.3) where TARP

stands for “Thresholding After Random Projection”; the method is applied to feature

vectors containing the parameters of a random process modeling a student’s Habits

of Mind expressed in an active learning activity. As described in the next section, the

sources of data considered included student produced material, peer review material

and course outcome data.

The clustering method looks for a good separation of the students into groups after

a random projection of their representation (i.e., the feature vector containing the

parameters of the student’s own random process) down to one dimension [36–38,40].

Since the structures of concern are found in a one-dimensional space, it is possible to

find such groupings even if the number of points projected is fairly small. The one-
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dimensionality of the data also greatly facilitates the statistical validation of these

small groups [40]. These two groups were then analyzed as separate cases and their

characteristics, including similarities and differences, were further explored.

5.3.1 Participants, Procedures and Dataset

The study context is a course on Signal Processing in which students were asked

to produce learning material and share it on a public website [124]. Specifically,

the instructor pre-defined nine topics covered in the course, and students prepared a

slecture [125] explaining the course material for a topic of their choice in their own

words. The term “slecture” is a concatenation of the words “student” and “lecture.”

Invented by Boutin in 2010, the idea is to have students create online learning material

based on the teaching of a professor.

In addition to creating a slecture, the students were also instructed to review

and comment on the slectures prepared by their peers (one slecture per topic for each

student). Note that online discussion comments have been previously used to uncover

students’ Habits of Mind [126].

Specifically, the unit of analysis, the major entity that is being analyzed in a

study, was each student’s individual contribution to a public website. Two additional

data sources were the feedback provided to their peers in the form of a review, and

the final grade as a measure of performance. The cases for this study were groups

of students exhibiting Habits of Mind in similar ways. Such cases were uncovered

by the clustering method and were further compared and analyzed regarding their

performance and observed Habits of Mind.

A total of 28 students participated: 27 students presented the slecture in written

form, while one presented it as a video. The 27 written slectures were used in this

study. There were 3.0 slectures per topic and 6.89 reviews per slecture, on average.

This is because some students did not complete the review assignment while others

provided more/less than 9 reviews. All students who completed the tasks received
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full credit on the assignment, so the exercise in itself did not produce any difference

in grades among the participants.

5.3.2 Data Scoring

The data scoring was performed using a rubric. The rubric was created and

validated iteratively, starting with an inductive approach, followed by a deductive

approach. For the inductive approach, one of the researchers with expertise in educa-

tion research built a Habits of Mind focused criteria (see Table 5.1), which was derived

from the literature [115]. The initial definitions were then further operationalized for

the context of the study. Based on the initial operationalization of each construct or

criterion, levels of performance were identified (see Table 5.2). A second researcher

with expertise in signals and systems then used the rubric to annotate the slectures

and the reviews. The first pass of the data scoring was then validated and reviewed

by a third author. In the process, the rubric was modified to better capture students’

patterns, and when modified, it was tested against the data following a deductive ap-

proach. The process and findings were discussed among the three researchers. This

iterative approach was performed three times resulting in the rubric presented in

Table 5.2 (reported in [55]).

The element “Values and Attitude” was initially focused on perceived importance

or confidence in the subject domain. Traditionally, this habit of mind is assessed via

surveys asking students to report their perceived confidence on the subject matter

or their self-perceived abilities to understand the concepts. Because an opportunity

to survey students was not available, “Values and Attitudes” focusing on students’

abilities to evaluate their own and their peers’ work was indirectly characterized.

That is, it was found that the critical views of their own work and that of their peers

was a proper indicator of students’ confidence and abilities in their own knowledge

and skills. So the focus was shifted to analyzing if students were able to provide
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a meaningful critique of their peers’ work and how their attitude appeared in their

feedback. Below are two examples of Values and Attitudes ratings.

• “I think specific outline is very helpful and make easy to follow the formula

and graphs. Formulas and graphs are very clear to understand.” − Basic Level

rating

• “I think an important aspect that you did not include in your final answer is

that the DTFT of a DT signal must be periodic. Your answer must be“rep-ed”

to denote its periodicity. Otherwise your answer is only correct for 0 ≤ ω ≤ 2π.

The DTFT of x[n] is rep2π(2πδ(ω−ω0)) Overall color coating was very helpful,

and the slecture was concise and clear” − Advanced Level rating

Another example is the element “Computation and Estimation”, which initially

focused on the ability to choose an appropriate computation method and recognize

when approximations can be made. The scenarios involving approximations were not

present in the topics, but rather, the problems involved mathematical computations.

Hence, the focus for this element was shifted to appropriateness of the computa-

tional method used and mathematical accuracy of the computation. A final example

is the element “Mathematical Rigor”, which in an earlier version of the rubric was

called “Manipulation and Observation”. Mathematical rigor in this case refers to

the correctness of the notation and attention to details in the writing of mathemat-

ical expressions. This element was mostly present in definitions and mathematical

statements either within a computation or standing on its own within the text of a

slecture. (See the top of Figure 5.1, tagged as (B1,D1), for an example of poor rigor).

The change was motivated by the fact that mathematical rigor within arguments and

explanations was found to play a more critical role than handling basic mathematical

manipulation and observation. In fact, manipulation and observation can be bundled

in with computation and estimation. The final rubric is presented in Table 5.2. Please

note the alphabetical labeling of the items, which is used in the annotation process

described below.
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5.3.3 Annotating Slectures and Comments with Rubric Tags

The annotated material of each student was recorded as a sequence of vectors rep-

resenting the sequence of Habits of Mind elements and levels of performance. For ex-

ample, one part of a slecture might have been tagged with the vector (A4, B4, C2, D4)

to denote that the student carried out the computations effectively with the necessary

rigor and validation but the explanation was lacking in terms of communication. The

length of the text used for each labelled block varied with the context and student

communication style, so as to include separate ideas and concepts. The lengths varied

from one sentence or equation for concise ideas to several paragraphs for lengthy or

redundant explanations and were decided subjectively by the rater on a case to case

basis.

Two examples are provided to illustrate how the slecture material is tagged /

annotated. The first one (Figure 5.1) shows a low value tag because of errors made in

the slecture. The second one (Figure 5.2) shows a high value tag since the material

was almost flawless.

Table 5.3 presents a comparison of two examples of the identified Habits of Mind.

Two examples from each are presented for comparison between different levels of

performance. Example 1 for “Computation and Estimation” shows a computation

error whereas for “Mathematical Rigor” and “Critical-response Skills”, Example 1

shows wrong mathematical statements. For “Communication Skills”, Example 1

provides a basic explanation of an idea through a set of mathematical equations

without much context or explanation. For “Values and Attitudes”, Example 1 shows

a very vague comment that does not really provide any insight or critique. Reasons

such as these justify a lower score for the scenarios presented under the Example 1

column of Table 5.3. In contrast, the corresponding scenarios in Example 2 are mostly

correct and error free in terms of mathematics and provide greater insight, critique

and context in terms of “Communication Skills” and “Values and Attitudes”, which

justifies a higher score.
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Fig. 5.1. Low value tag in a slecture

5.3.4 Inter-rater Reliability

The reliability of the data scoring was estimated by having another author anno-

tate the slectures and reviews of 11 students in two phases. Data from 11 students

was chosen at random to avoid bias and to span at least a third of the data. First,

the rubric was consulted and discussed with the first rater. Then the slectures and

reviews of five students were rated by the second rater. A discussion followed in which

the two raters compared their scoring and discussed the reasons behind the differ-

ences. The second rater then rated the slectures and reviews of six other students.

The reliability of the first (5 students) and second phase (6 students) were measured

using two correlation coefficients (Pearson product-moment coefficients [127,128]) for

each phase. One coefficient represents the reliability of the detection of the different

rubric elements present in the work; the other coefficient represents the reliability of

the accuracy of the scores for all the rubric elements.
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Fig. 5.2. High value tag in a slecture

More specifically, the reliability of the detection of the initial rater was estimated

using the letter tags (without scale value) for both raters: when a part of text was

coded with a given letter by a rater, a “detection”, denoted by a “1”, was recorded

for that rater; if the other rater also coded the same text with that letter, then the

other rater was considered to have also detected that event, and a “1” was recorded

for that rater as well. Conversely, if the other rater did not code that text with

that letter, then this rater was considered to have missed that event and a “0” was

recorded. The reliability of this detection process was measured using the correlation

coefficient [103] of the sequences of 0’s and 1’s for the two raters. The reliability of

the accuracy of the labeling (letter and score) was only considered for those events
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Table 5.3.
Examples of Habits of Mind enacted by Students

Habits of
Mind

Example 1 (Low level) Example 2 (High level)

Computation
and

Estimation

“X(f) ∗ fs
∑∞

k=−∞ δ(f − kfs) =

fs
∑∞

k=−∞X(f) ∗ δ(f − k
fs

)”
−Basic Level

“Xs(f) =
F (

∑∞
n=−∞ x(nT )δ(t− nT )) =∑∞

n=−∞ x(nT )F (δ(t− nT ))) =∑∞
n=−∞ x(nT )e−j2πfnT”
−Advanced Level

Mathematical
Rigor

“X(2πf) = X(f)” −Below Basic
Level

“· · ·X(f) = F (δ(t− t0)) =∫∞
−∞ δ(t− t0)e

−i2πftdt = e−i2πft0 =

e−iωt0” −Advanced Level

Communica-
tion

Skills

“Comb operator is used in time
domain:

combT [x(t)] = · · · = x(t)·PT (t) · · · ”
−Basic Level

“· · ·xs(t) is created by multiplying
a impulse train PT (t) with the

original signal x(t) and actually
xs(t) is combT (x(t)) where T is the
sampling period · · · ” −Advanced

Level

Critical-
response

Skills

“x(t) =
∫∞
−∞ δ(t− τ)dτ” −Below

Basic Level

“· · · the minimum repeating period
T has to be > a+ b (a is the left

boundary of the curve and b is the
right boundary of the curve).”

−Proficient Level

Values and
Attitudes

“I think specific outline is very
helpful and make easy to follow

the formula and graphs. Formulas
and graphs are very clear to
understand.” −Basic Level

“I think an important aspect that
you did not include in your final

answer is that the DTFT of a DT
signal must be periodic. Your

answer must be“rep-ed” to denote
its periodicity. Otherwise your

answer is only correct for
0 ≤ ω ≤ 2π. The DTFT of x[n] is
rep2π(2πδ(ω − ω0)) Overall color
coating was very helpful, and the
slecture was concise and clear”

−Advanced Level

(rubric elements) detected by both raters. A sequence of scores for each rater was

built by concatenating all the numerical scores for all the commonly detected events

of a given type (tag) into a vector; the correlation coefficient of the two vectors for

that tag was then computed.
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The reliability of the detection of the rubric elements in the first phase of the

inter-rater reliability testing was found to be 0.6163 (correlation coefficient). In the

second phase, that number increased to a much higher value of 0.8166. The reliability

of the accuracy of the scoring was found to be 0.9430, already a very high value, which

increased modestly to 0.9574 in the second phase. Thus, both the detection of rubric

elements and accuracy of the data scoring were considered to be very reliable. These

reliability estimates were computed after the two phases of rating were completed.

5.3.5 Data Analysis

Class Statistics

The Habits of Mind of the class are first summarized using a 2D histogram of tag

values (in a 5× 4 grid) in order to analyze the distribution of the annotation tags for

the entire set of students in the study and look for some global trends in the class

as a whole with regard to their Habits of Mind. The final grade distribution for the

entire course is also examined in order to characterize their academic performance in

the course as a whole.

Statistical Model Building

For a more in-depth analysis, a statistical model that describes each student’s

individual Habits of Mind is built; this model will later be used to cluster the stu-

dents. The statistical model represents a random process underlying the sequence of

annotation tag vectors. The parameters of the statistical model are estimated from

the annotated data. For simplicity, consecutive vector tags are assumed to be inde-

pendent. The different elements (A,B,C,D,E) are also assumed to be independent.

However, in other circumstances, another perhaps more complicated model could be

more appropriate. For example if the work was carried out over a long period of
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time over which an improvement was expected, the consecutive vector tags could be

modeled by a time-dependent process.

The statistical model consists of the likelihood of the tag scores for each element

in the proposed rubric. In other words, it is represented by the discrete probabilities

[103]: P (k) and P (j|k), for k ∈ {A,B,C,D,E} and j = 1, 2, 3, 4. These probabilities

are estimated by the relative frequencies of each tag in the scored data as follows.

P̄ (A) =

∑Ns

i=1 I{student s gets tag A in annotation i}
Ns

,

P̄ (1|A) =

∑Ns

i=1 I{student s gets tag A(1) in annotation i}∑Ns

i=1 I{student s gets tag A in annotation i}

where Ns is the number of annotations recorded for student s. A similar expression

is used for the other score values 2, 3, and 4, for rubric element A. The probabilities

for the other rubric elements B, C, D and E are computed in a similar fashion, except

that the parameters Ns takes the value 26 for E (since the students could review a

maximum of 26 slectures.)

Thus 5 model parameters for each of the 5 elements of the rubric are estimated,

for a total of 25 parameters for each student. In addition to these, the parameter

Ns (number of annotations received by the student) is added in order to highlight

the difference between short and long slectures. Thus, 26 parameters are used to

represent each student; these are stacked into a vector of dimension 26.

Clustering

Clustering a small number of points (27) in a high-dimensional space (26) is chal-

lenging and requires the use of an algorithm that is specially designed for small

data. One such algorithm is “n-TARP” [40, 73], an algorithm that seeks good sepa-

rations of the data after a projection onto a random line. The separation is obtained

by projecting and thresholding the data n times, and picking the projection with

the best separation among those n. It is a modification of the random projection
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approach developed in [36–38], which has been empirically shown to work well for

“real” high-dimensional data in general. The name TARP stands for “Thresholding

After Random Projection.” Instead of hierarchically clustering the data using a tree

of thresholds after random projections (n-TARPs) as in [37], the method performs

a single n-TARP on a fraction of the data given, and tests the statistical validity of

any clustering identified using the remaining fraction of the data [40], as discussed in

Chapter 3.

In general, clustering methods can be viewed as maps from the feature space (in

high-dimensions for the data at hand) to one-dimensional space R, followed by some

thresholdings. Different methods have different ways of defining the “best” projection

and thresholds. Projecting the data onto a line and thresholding corresponds to find-

ing a linear separation between the clusters, which is the simplest form of clustering.

Linear separations are well-suited for small data in high-dimensions because they can

be found when only a small number of points are given. Previous work in [36–38,40]

has shown that many good linear separations can be found in real data by picking the

line of projection at random. This is because real data often has a lot of hidden struc-

ture in high-dimensions that can be extracted through random projections [36, 37].

This observation, combined with the fact that only a small number of students are

considered in this study, are the motivations for employing n-TARP to cluster the

data.

In the experiments at hand, a binary clustering was performed using n-TARP

with the parameter n set to 500 in order to divide the set of students into two groups,

picking the best separation among the 500 projections performed. This was done

in two phases: a training and a validity testing phase. Half of the data (randomly

chosen every time) was used for each phase. Because the data size is so small (27

points), one would hardly expect to find any meaningful cluster in the original space.

Looking for clusterings in a one-dimensional space addresses this issue because the

projected points are closer together than in the original space. The extent to which

the (training) projected points are clustered is measured using “normalized withinss
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(W)”, a renormalized version of the within class scatter of the data [36, 129]. More

specifically the within class scatter of [129] is divided by the number of points and

the empirical variance of the projected data. This insures that the measure is inde-

pendent of the number of points considered and invariant under a rescaling of the

dataset [36]. The definition of “normalized withinss (W)” for a set of projected points

x1, x2, . . . , xm ∈ R is given below [37]

W =W (x1, · · · , xm) =

min
C1,C2

∑
i∈C1

(xi − µ1)
2 +

∑
i∈C2

(xi − µ2)
2

σ̃2 ·m
,

where C1 and C2 are a disjoint partition of the set of indices {1, . . . ,m}, µ1 and µ2

are the (empirical) mean of the points xi whose indices are in C1 and C2, respectively,

and σ̃ is the (empirical) standard deviation of the set of points x1, · · · , xm ∈ R.

Training Phase:

1. For i = 1 to n:

2. Generate a random vector ri in 26 dimensional space;

3. Project the training data onto this vector ri to form 1D projection values;

4. Use k-means (set k = 2) to find 2 clusters in the 1D projection values;

5. Find the normalized withinss wi for this cluster assignment;

6. End loop.

7. Pick lowest wi among the n measurements and store the random vector r∗

associated with it and determine a threshold t∗ that separates the classes formed

in the 1D projected space.

Validity Testing Phase

1. Import r∗ and t∗ from the training phase
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2. Project the testing data onto the vector r∗

3. Use the threshold t∗ to assign clusters to each of the testing samples

4. Perform permutation test with Monte-Carlo simulations [50] on the projected

test data at statistical significance level of 99%.

Pattern (Binary Clustering) analysis

Recall that the clustering is random, and thus can yield several different (and

valid) binary clusterings. Each of these clusterings splits the students into two groups

based on some distinctive Habits of Mind patterns. Although the pattern is described

by the coefficients of the random projection vector r∗ used for the projection, it is

typically hard to make sense of the pattern directly from these coefficients. As an

alternative, the histogram of Habits of Mind annotations for the two groups are

considered and compared (i.e., the frequency of occurrence of each rubric annotation

for both clusters). The distribution of the course grades for the two groups are also

compared.

The number of different Habits of Mind patterns exhibited by students is quan-

tified following the approach of [36, 37, 40]. Specifically, the distribution of the nor-

malized withinss of the (random) projected data is plotted, and the area of the dis-

tribution below the value ≤ 0.36 (threshold value after which no clusters exist) is

computed.

To quantify the relationship between Habits of Mind patterns and course grade,

the empirical Cumulative Distribution Functions (CDF) [103] of the absolute differ-

ence between the average grades of both groups is constructed. In order to check the

dependence of the different elements of the rubric and course grades, each element is

removed one by one and a new CDF of absolute difference between average grades

between groups is obtained: the resulting CDF curves are then compared.
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Hypothesis Testing

It is conceivable that randomly grouping the students into two clusters could

result in different grade distributions for the two clusters due to chance and not

in any way related to the Habits of Mind of the students. In order to test the

statistical significance of the observations, independence of the grades on the patterns

(groupings) of Habits of Mind is set as the null hypothesis, and statistical significance

of the observations is tested by comparing the CDF curves of the previously obtained

clusterings with the CDF curves for random clusterings. In other words, the CDF of

grade differences for the binary clusterings previously obtained is compared with the

CDF of grade differences that one would obtain with random division of the students

into two groups, as discussed in Section 4.3.

5.4 Results

In this section, the results of the data analysis are presented. After a brief com-

ment on slectures, summary statistics like frequency of occurrence of the different

levels of the elements of the rubric are presented. Following that, the results of the n-

TARP clustering algorithm, which uses the feature vector formed through the model

fitting described in the previous section, is presented. The frequency of occurrence of

the rubric tags for the resulting groups are compared to identify the differences that

led to the formation of the groups. Next, the results on the extent of clusterability

of the data are presented. The various different clusters formed as a result of the

random projection model underlying the n-TARP clustering algorithm are presented.

Finally, the connections between ‘Habits of Mind’ patterns and the grades of students

are examined.
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5.4.1 Overall Patterns of Students’ Habits of Mind

Table 5.4 shows the relative number of times each element/level of the rubric was

tagged in the study. The most frequent tag is Values at a basic level (32.2%), followed

by Values at a Proficient level (11.2%) and Computation at an Advanced level (7.7%).

No Below Basic level was found with a frequency above 2%, and the only Habits of

Mind element noted more than 3% of the time is Values. Overall, the elements other

than Values tend to be tagged more frequently at the Proficient or Advanced level.

Overall, a majority (64.8%) of the tags were given at the Proficient or advanced level.

Table 5.4.
Percentages of Exhibited Habits of Mind Among All 27 Students

Element/Level Below Basic Basic Proficient Advanced

Computation 0 1.06 1.32 7.71

Rigor 1.59 2.65 5.85 3.98

Communication 0.26 2.92 6.11 3.98

Critical Response 1.32 1.06 3.98 5.58

Values 1.06 32.18 11.17 6.11

The clustering method was repeated more than 1000 times to form groupings;

one such (statistically significant) grouping, which was found to have a significant

effect on the grades, is analyzed in Tables 5.5 and 5.6. Observe that students in

Cluster 2 have much larger numbers of high level tags for all the elements of the

rubric than Cluster 1, indicative of a higher level of Habits of Mind performance.

Indeed, a majority (64.8%) of annotation tags for Cluster 2 are at the “Proficient”

or “Advanced” level. In contrast, a majority (63.3%) of annotation tags for Cluster

1 are at the “Below Basic” and “Basic” level. Thus, the members of Cluster 2 are

identified as the “Habits Developed” students (Case 2), and the members of Cluster

1 as “Habits Developing” students (Case 1).
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5.4.2 Case Comparison

As stated earlier, two cases were identified. Case 1 is called the “Habits Devel-

oped” group, and Case 2 is called the ”Habits Developing” group. The groups were

characterized on the basis of the overall distribution of levels (more Advanced level

tags for Case 1 than for Case 2). As observed from the sums of the columns of Tables

5.5 and 5.6 for each row element (Habit of Mind), the “Habits Developing” group

(Cluster 1, Table 5.5) is also distinguished by a higher probability of expressing the

“Values” element, 55% vs 48% for the “Habits Developed” group (Cluster 2, Table

5.6). Further, the “Habits Developing” group also shows a slightly lower probability

of expressing the “Communication” element, 11% vs 14% for the “Habits Developed”

group. On the other hand, the likelihood of exhibiting the “Computation” (9% versus

11%), “Rigor” (14% versus 14%) and “Critical Response” (11% versus 12%) elements

are somewhat similar for both groups (Cluster 1, Table 5.5 vs Cluster 2, Table 5.6).

Table 5.5.
Percentages of Exhibited Habits of Mind for Case 1: Habits Developing
(10 students)

Element/Level Below Basic Basic Proficient Advanced

Computation 0 1.66 3.33 4.16

Rigor 3.33 4.16 5.00 1.66

Communication 0 5.00 4.16 1.66

Critical Response 2.50 1.66 3.33 3.33

Values 3.33 41.66 9.16 0.83

5.4.3 Overall Course Performance and Performance by Case

The grade distributions for the clusters and the entire class are shown in Table 5.7.

Observe the grade differences between the clusters (e.g., difference of 1.46 between
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Table 5.6.
Percentages of Exhibited Habits of Mind for Case 2: Habits Developed
(17 students)

Element/Level Below Basic Basic Proficient Advanced

Computation 0 0.78 0.39 9.37

Rigor 0.78 1.95 6.25 5.07

Communication 0.39 1.95 7.03 5.07

Critical Response 0.78 0.78 4.29 6.64

Values 0 27.73 12.10 8.59

average grades), indicating that having well developed Habits of Mind is associated

with good course performance. Indeed, none of the Habits Developing students re-

ceived an A in the course, whereas none of the Habits Developed students received

an F or a D in the course, a majority receiving As or Bs.

Table 5.7.
Grade Distributions specific to clusters compared to each other and the
distribution for all students together

Grade All Case 1: “Habits Case 2: “Habits

Students Developing” Developed”

A (4.0) 5 0 5

B (3.0) 10 2 8

C (2.0) 8 4 4

D (1.0) 2 2 0

F (0.0) 2 2 0

Mean Grade 2.51 1.60 3.05

Standard Deviation 1.12 1.07 0.74
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However, there may be other patterns of Habits of Mind whose association to the

course grade could be different. Figure 5.3 shows the distribution of normalized with-

inss W for the dataset, which shows the very high clusterability of the dataset [36,37],

as approximately 80% of the clusters found have a value of W ≤ 0.36 (cluster present).

The connection between these patterns and the grade is shown to be very strong in

Figure 5.4. Specifically, the graph shows the CDF of the (absolute) difference in av-

erage grade between the two groups for a total of 1000 attempted binary groupings

of which only valid statistically significant groupings are retained (about 90%). The

lower the curve at a given point (grade value), the higher the proportion of patterns

with an average grade difference at least as large as that grade value. For example,

about 30% of the Habits of Mind patterns found were associated with an average

grade difference of at least 0.5 (since the y-axis value for a difference in grades of 0.5

is about 0.7). The x-axis intercept is about 0.02 and thus no groups yield an average

grade difference less than 0.02 (0.5%).

The elements of the rubric were removed one at a time: each time similar to above,

a new set of 1000 clusterings was obtained of which only valid statistically significant

groups are retained, and the CDF of the absolute value of the average grade difference

between the groups was computed. The resulting curves are also shown in Figure 5.4.

Observe that removing Element A shifts the CDF curve up (i.e. the new CDF curve

is above the original CDF curve), and thus the relationship between Habits of Mind

patterns not involving Computation are less strongly associated with different grade

outcomes than Habits of Mind patterns involving Computation. This implies that

Computation is related (dependent) to the final grade. The same is true, though to

a lesser extent (less grade difference), with Values and Attitudes.

Hypothesis Testing

The CDF of grade differences for the binary clusterings is compared with the CDF

of grade differences that one would obtain with random division of the students into
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Fig. 5.3. Empirical probability distribution function of the normalized
withinss W . The Clusterability of the data is measured by the pdf of
Withinss.

two groups in Figure 5.4. The figure shows three CDF curves added to the plot of

Figure 5.4, identified in the legend as mean and ± 5sigma.

To obtain these five curves, the students were randomly grouped into 2 clusters

10000 times to get 10000 differences in average grades of the resulting random clusters.

Note that the Habits of Mind features were not utilized at any point in this process,

just random divisions of the students into two groups. These 10000 differences were

used to generate a CDF curve based on the null hypothesis. This process was repeated

100 times in order to get 100 CDF curves, which were used to form the mean null

hypothesis curve (in solid black in Figure 5.4) along with the null hypothesis curves

shifted five standard deviations away (in dashed black in Figure 5.4).

The significance level estimated by the pair of curves for mean ± 5 sigma cor-

responds to a significance level of at least 96% based on Chebyshev’s inequality
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Fig. 5.4. Cumulative distribution functions (CDF) for absolute value of
difference between average grades.

[109, 110]. The inequality states that for a random variable X with finite mean µ

and finite non-zero variance σ2 and any real number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2

which for k = 5 means that there is at most 4% chance of a sample lying more

than 5 standard deviations away from the mean. This inequality does not make

any assumptions on the underlying distribution of the random variable X and so is
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a conservative general bound, thereby guaranteeing a minimum significance level of

96% if a realization lies outside the ± 5σ boundary of the mean.

As discussed previously in Section 4.3, in order for the null-hypothesis to be re-

jected (i.e., to say that the grade differences observed are dependent on patterns of

Habits of Mind), the CDF curve obtained with a certain set of Habits of Mind should

lie above/below the ± 5σ curves at a given point. More specifically, if the CDF curve

for a grade difference of at least X based on patterns of Habits of Mind is, say, above

the +5σ curve or below the −5σ curve at X, then the probability that the observed

grade difference of at least X for the proportion of Habits of Mind patterns indicated

by the value of the CDF curve at X is due to chance is below 4%.

Recall that removing element A (green curve, Figure 5.4) not only shifted the

Habits of Mind curve up, it also shifted it higher above the null-hypothesis curve

(black curves). So in a statistically significant manner, removing element A reduces

the association of the grades with the clusters. In other words, removing the “Com-

putation and Estimation” Habit of Mind from the analysis results decreases the as-

sociation of the grades with the patterns of the Habits of Mind. On the flip side, one

see that removing element E (yellow curve) results in the CDF curve being pushed

up and significantly overlapping with the null-hypothesis curve (black curves). This

implies that the grade cluster associations from this experiment are not statistically

significant. Hence, removing the element “Values and Attitudes” results in patterns

of Habits of Mind that are not associated with a statistically valid grade difference.

Thus, this element is a pivotal component of the patterns formed by the Habits of

Mind associated with a significant grade difference since its removal results in statis-

tically invalid patterns. Finally, one observes that curves corresponding to retaining

all Habits of Mind (red curve), removing element B (blue curve), removing element D

(magenta curve) and removing element C (cyan curve) one at a time result in curves

that are below the null hypothesis curves (black curves) for a large range of grade dif-

ference values, indicating that the grade cluster associations displayed through these

experiments are indeed statistically significant. Therefore, groups formed by either
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including all Habits of Mind, or all Habits of Mind except “Mathematical Rigor”, or

all Habits of Mind except “Communication Skills” or all Habits of Mind except “Crit-

ical Response Skills” yield patterns that are associated with significant differences in

grades in a statistically valid manner.

5.5 Discussion and Implications for Research, Teaching and Learning

Results from this study suggest that the course grade was dependent on at least

two Habits of Mind: (a) Computation and Estimation and (b) Values and Attitudes.

The dependency of course grade on computation and estimation is consistent with

previous work that suggest that students’ ability to choose an appropriate compu-

tation method and accurately carry out a mathematical procedure is a critical skill

in engineering professionals [111]. Similarly, as reported in previous work on student

learning of signals and systems, strong mathematical knowledge is important to suc-

ceed in this course [116,117]. A second dependency of course grade was on values and

attitudes. In this study values and attitudes were operationalized as students’ reac-

tions and insights about others’ work; that is, it was operationalized as peer-feedback.

Student peer-feedback has been identified as a required skill to function properly in

industry as well as educational settings [130]. It has also been identified as a crit-

ical form of effective communication skills, problem-solving skills, and professional

responsibility to conduct the feedback. Although peer feedback has been widely im-

plemented in engineering education as part of team performance [131], researchers

have identified it as difficult to implement when the goal is improving students an-

swers to open-ended problems [130,132,133]. However, when successfully integrated,

peer feedback can result in better course performance and higher level thinking skill

display such as critical thinking, planning, monitoring, and regulation [134].

Implications for research relate to the use of clustering methods to supplement

traditional approaches for data analysis in education research. For instance, if only

traditional approaches for qualitative analysis were followed for this study, the inves-
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tigators would have been limited to characterizing the Habits of Mind as identified

in Table 5.2. Specifically, following a traditional qualitative approach would have

allowed to understand and describe how students’ Habits of Mind were enacted by

students in the context of a signals and systems course. Taking a step further by then

utilizing quantitative approaches to data analysis, allowed the researchers to identify

overall patterns of students’ performance as depicted in Table 5.4. By utilizing the

clustering method the investigators were able to identify several binary groupings

(i.e. divisions of the students into two groups) that were found to be statistically

significant. One particular grouping was highlighted. The patterns corresponding to

the two groups (Habits Developed and Habits Developing students) were compared

and contrasted based on their similarities and differences, both in terms of Habits

of Mind elements and levels exhibited (Tables 5.5 and 5.6) and course performance

(Table 5.7). The final step tested whether the grade differences observed for all the

different patterns (clusterings) of Habits of Mind were statistically significant (Figure

5.4).

The implications for teaching and learning relate to the integration of pedagogies

that not only focus on emphasizing the technical or mathematical elements of a course,

but also those that integrate critical peer-feedback. The use of slectures appears to

foster students’ application of signals and systems knowledge along with other skills.

That is, having students explaining the course material for a topic of their choice

in their own words, as well as reviewing and commenting on the slectures prepared

by their peers, may be an appropriate approach to help students develop Habits of

Mind [125].

5.6 Conclusions, Limitations and Future Work

This chapter looked at how engineering students exhibited ‘Habits of Mind’ in

the context of student-generated content for a course on signal processing. The five

Habits of Mind investigated were Computation and Estimation, Mathematical Rigor,
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Communication Skills, Critical Response Skills, and Values and Attitudes. A quanti-

tative analysis based on random signal modeling and clustering was performed. The

model assumed independence of the vector tags used to annotate the student slec-

tures, which is a simplifying assumption for a first order model. A more complex

model that relaxes this assumption and potentially models the data better, requires

a larger number of data samples than were available.

Students were found to exhibit various different patterns of Habits of Mind (binary

groupings). One such pattern (grouping) that was found to affect grade was analyzed:

the main difference between these particular groups was found to be the level of profi-

ciency of all the Habits of Mind elements. Thus the groups were designated as “Habits

Developed” and “Habits Developing”, respectively. Further analysis of the entire set

of patterns (groupings) found by clustering revealed that many patterns of Habits of

Mind affect grades, and that the grade is directly dependent on Computation and

Estimation and Values and Attitudes. The main limitation of the study is the depen-

dency of the proposed method on qualitative approaches to hand-scoring the data.

The small sample size allows iterative scoring of the data by hand, and validation of

such scoring by multiple raters. This step of the method will be harder to replicate

with larger samples. While this study is limited in scope and size, it will be interest-

ing to see if these results are confirmed in other electrical engineering core courses. It

would also be interesting to conduct a comparative study between students who did

slectures and the ones who did not. The analysis framework proposed is applicable

in many other contexts and data types (e.g., video data or think-alouds) and could

be used to study the relationship between other skills and educational outcomes.
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