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ABSTRACT

Rodriguez, Darren G. M.S., Purdue University, May 2019. Classifying Objects from
Overhead Satellite Imagery Using Capsules. Major Professor: Michael D. Zoltowski.

Convolutional neural networks lie at the heart of nearly every object recognition

system today. While their performance continues to improve through new architec-

tures and techniques, some of their deficiencies have not been fully addressed to date.

Two of these deficiencies are their inability to distinguish the spatial relationships be-

tween features taken from the data, as well as their need for a vast amount of training

data. Capsule networks, a new type of convolutional neural network, were designed

specifically to address these two issues. In this work, several capsule network archi-

tectures are utilized to classify objects taken from overhead satellite imagery. These

architectures are trained and tested on small datasets that were constructed from

the xView dataset, a comprehensive collection of satellite images originally compiled

for the task of object detection. Since the objects in overhead satellite imagery are

taken from the same viewpoint, the transformations exhibited within each individual

object class consist primarily of rotations and translations. These spatial relation-

ships are exploited by capsule networks. As a result it is shown that capsule networks

achieve considerably higher accuracy when classifying images from these constructed

datasets than a traditional convolutional neural network of approximately the same

complexity.
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1. INTRODUCTION

1.1 Background

Object recognition, or image classification in particular has become a highly re-

searched topic in the past several years in large part due to the advent of convolutional

neural networks and their respective performance on complex classification tasks. Im-

age classification technology has revolutionized and automated many practical sys-

tems that would otherwise require a human operator and in many cases has exceeded

the performance of human operators [1]. While object recognition technology has

demonstrated near perfect accuracy on large, well defined datasets it often struggles

to exhibit the same level of performance on more complex and smaller datasets.

Many of the common convolutional neural network architectures being utilized

today are excellent at extracting features from raw data, however they tend to have

a few major drawbacks. In a standard convolutional neural network, spatial relation-

ships between objects are not preserved. This is caused by a common operation that

takes place between convolutional layers called max-pooling, where some of the data

is effectively discarded in an effort to achieve some amount of translational invari-

ance as well as downsampling the data to a more manageable size. Another issue

surrounding the use of convolutional neural networks is the immense amount of data

required to train them.

In December 2017 Dr. Geoffrey Hinton of Google AI introduced a new type of

convolutional neural network [2] aimed at addressing the two problems mentioned

above. The so-called capsule network aims to represent data in a way that preserves

spatial relationships while requiring less data to train. In this thesis capsule networks

are explored as a method of recognizing objects taken from overhead satellite im-
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agery which consists of many similar objects in various different poses (rotations and

translations).

1.2 Problem Statement

Overhead satellite imagery consists of images of the Earth or other planets that

are collected by imaging satellites in either the public or private domain. Among the

publicly available satellite imagery datasets is the xView [3] dataset, which consists

of images covering over 1400km2 of the Earth’s surface and contains over 1 million

labeled instances split into 60 total classes for the task of object detection, that is

localization and identification of objects. As the task of localization of objects within

these images is a separate problem on its own, it will not be explored in this work.

Working under the assumption that objects or areas of interest can be identified by

some method or algorithm, this thesis aims to demonstrate that capsule networks can

be utilized to correctly identify the objects contained within those areas of interest.

This is due to the inherent nature of capsule networks to preserve spatial relationships

between features and thus be more robust to changes in pose; satellite imagery consists

of many similar objects with differences in background and pose. Several capsule

network models are developed and compared to a traditional convolutional neural

network with approximately the same number of trainable parameters to demonstrate

that capsule networks are superior in identifying objects in this domain.
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2. RELATED WORK

2.1 Object Recognition History

Modern computer vision research can be traced back at least as far as the 1960s

where pattern recognition was applied in an effort to automate office related tasks [4].

Since then many other traditional methods of object recognition have been developed

as highlighted in [5], however none of these methods could match the performance

of convolutional neural networks once they broke through in 2012 [6]. Since then

CNNs have been the center of focus for the majority of object recognition and object

detection tasks due to their performance relative to traditional methods.

Much of the research conducted in the field of CNNs serves as the foundation for

the work in this thesis. Some of the more notable works are described in more detail

in this section.

2.2 Artificial Neural Networks

The term artificial neural network arises from the fact that this type of logical

network is designed to mimic parts of the human brain, more specifically the way

neurons in the brain communicate with one another. In an ANN neurons are con-

nected to one another and can transmit signals, real numbers in this case, to other

neurons. This idea combined with a non-linear function applied at the output of each

layer of neurons allows an ANN to classify images into different categories. In gen-

eral an ANN can have one or more hidden layers that apply weights to their inputs,

these weights are updated as learning advances. Figure 2.1 shows a simple multilayer

perceptron, a type of ANN.
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Fig. 2.1. Multilayer Perceptron

The general idea surrounding ANNs is that each neuron learns a weight and

applies it to a signal. The weight causes the strength of a signal to either increase or

decrease, therefore signals only get passed to deeper neurons if their signal strength

is increased by a previous neuron. This can be thought of in reverse as well, as

some signals will have their strength decreased to the point that they do not pass

to neurons deeper in the network. The neurons that are utilized in ANNs represent

features that are learned from the input layer. Unlike traditional machine learning

methods these features do not have to be designed and processed by a human prior

to their use. Instead the network itself learns features on its own through training

which saves considerable time and can offer better performance overall.

2.3 Convolutional Neural Networks

Convolutional Neural Networks are almost synonymous with object recognition

and object detection today. CNNs are a class of feed forward neural networks that

are composed of one or more convolutional layers, pooling layers, and fully connected

layers. While the idea of CNNs has been around for quite some time, it wasn’t until

2012 that their application was fully realized in [6], where a CNN won the ImageNet
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Large Scale Visual Recognition Competition by a large margin. CNNs have won the

competition every year since. A simple CNN architecture is depicted in Figure 2.2.

It should be noted that CNN architectures are generally much more complex than

the one in Figure 2.2.

Fig. 2.2. A simple CNN with one convolutional layer. Note that a pooling
layer is not shown.

Within the convolutional layers various kernels are used to convolve through the

original image as well as the intermediate layers in an effort to extract features from

the image. This has a few advantages; since the kernels are applied to the whole

image or feature map, location invariance occurs. This allows CNNs to recognize

objects regardless of their position within an image. The weight sharing mechanism

that occurs within feature maps also helps to reduce overall model complexity by

reducing the number of trainable parameters or the number of operations that need

to occur.

Between convolutional layers an activation function is applied to the feature map

to introduce nonlinearities into the network. Without this function the network would
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essentially be a linear regression model and would struggle on complex data. Some

of the most common activation functions include the rectified linear unit (ReLU)

f(x) = max(0, x), the sigmoid function f(x) = 1
1+e−x , and the softmax function

f(x)j = exj∑K
k=1 e

xk
, for j = 1 to K. The softmax function also has the benefit of

squeezing each output to lie between zero and one and diving by the sum of the

outputs. This allows the outputs to be interpreted as a probability and is often used

at the final layer.

The pooling layer which is usually placed between convolutional layers provides

a method of reducing the feature map size while also reducing the possibility of the

network overfitting to training data. This operation works by dividing a feature map

into an N × M grid and sampling typically only one value from within each cell.

Most often used are max pooling, where the max value in each grid cell is kept, and

average pooling where the average of each grid cell is taken. While pooling layers

have been shown to improve performance of CNNs, there are some inherent problems

that arise through their use which will be explored in the next chapter. Figure 2.3

demonstrates max pooling.

Fig. 2.3. Example of max pooling with a 2× 2 kernel and a stride of 2.

Fully connected layers in CNNs are often a bottleneck in performance considering

that they are typically of fixed size and require all inputs from the previous layer to
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be fed forward to them as inputs. It is quite common to see fully connected layers at

the output of a CNN for use as a classifier, where each neuron in the layer is meant to

represent a single class, however fully connected layers can also be utilized elsewhere

in a CNN usually at the cost of efficiency.

Convolutional neural networks are trained in two stages utilizing forward and

backward propagation. In the forward stage the input is fed through the CNN utilizing

the current weights and biases to compute an output prediction. Once this is acquired

a loss function is used to compute the error between the prediction and a ground

truth label. With the loss available backward propagation begins where the gradient

of the error with respect to each parameter is computed and utilized to update the

parameters for the next forward pass. This process is repeated over multiple iterations

and only stops when a sufficiently low error rate is reached.

Training a CNN would not be possible without backpropogation [7] and stochastic

gradient descent (SGD) [8]. Since the ultimate goal of a CNN is to map arbitrary

inputs to chosen outputs, CNNs can in a sense be thought of as a large optimization

problem. Backpropagation provides a method of computing the gradient of a loss

function while SGD is one of several methods that can be used to perform learning,

or parameter adjusting based on the gradient.

Training of a CNN is a constant battle between two extremes, namely overfitting

and underfitting. Overfitting occurs when a CNN adjusts its parameters in such a

way that it performs very well on the training dataset and achieves a small error

percentage, however when fed input from a testing dataset the CNN performance

drops considerably. In other words, overfitting occurs when a CNN cannot generalize

to data that was not part of the training dataset. Overfitting can be combated by

data augmentation, that is creating synthetic data to add to the training dataset

usually by performing rotations, translations, etc. on the original data. Dropout [9]

is yet another popular method that is used to combat overfitting, where nodes or

neurons within the network are ”turned off” or zeroed out during training, usually at

random. This is done to encourage the network to learn more robust features.
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Underfitting of a neural network occurs when a sufficiently low error rate cannot

be obtained. Generally this is indicative of a poor network architecture, not enough

training data, or very complex training data. Underfitting is an issue that is difficult

to resolve as it usually requires more data to be collected and even then there is no

guarantee that more data will allow for better results.

2.4 Satellite Imagery

The history of satellite imagery dates back to at least 1946 when the U.S. launched

V2 rocket recorded images from a 65 mile apogee, which was higher than the 1935

Explorer II balloon images. Since then huge advances have been made in both satellite

technology as well as the imaging methods that are utilized. Today satellite imagery is

used in a number of different applications ranging from meteorology and oceanography

to forestry and warfare.

Satellite imagery can be obtained with ground plane resolutions of less than 1 me-

ter. This accompanied with the fact that a single image can cover several kilometers

of the Earth’s surface results in databases that are extremely large, making satellite

imagery a prime candidate for machine learning and deep learning processing tech-

niques. These techniques have already been applied successfully as in [10], however

the public availability of data has hampered the progression of research in this area.

The DIUx xView challenge [3] aided in ameliorating this issue by presenting a public

challenge utilizing satellite imagery and providing a large, well annotated dataset for

experimentation. An example image from this dataset with annotations is shown in

Figure 2.4. This dataset was compiled for the task of object detection and as such

the provided labels consist of the top left and bottom right point of a bounding box

that encompasses a single object as well as the object name. These annotations can

be used to crop out objects from their parent images as is done in this work.
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Fig. 2.4. Example image from xView dataset with annotations.
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3. CAPSULES

Since the resurgence of convolutional neural networks in 2012, many efforts have been

made to improve their performance in a number of different tasks as well as apply

CNNs to new problems with varying degrees of success. While many of these efforts

have proved successful, they often fail to address some of the limitations of CNNs in

general. Two of these limitations are the amount of data required to train a CNN to

an acceptable level of accuracy, and their inability to retain information about the

spatial relationships of the objects contained within images.

The amount of data required to successfully train a convolutional neural network

varies depending on the complexity of the data itself, however it is generally accepted

that more data will lead to better performance. While many datasets are now avail-

able to the general public the issue remains that to construct a new dataset for use in

object recognition the data itself must be meticulously chosen and labeled, often by

hand. This quickly becomes a problem when datasets are expected to contain hun-

dreds of thousands or even millions of instances each with corresponding labels. The

popular ImageNet Large Scale Visual Recognition Challenge [11] offers over 14 mil-

lion images spread across over 20000 categories, with one thousand of those categories

used in the yearly ImageNet object recognition challenge. Although this dataset is a

great asset for advancing CNN technology it is but one example that fails to address

why so many images are needed in the first place.

Convolutional neural networks exhibit translation invariance, a property that al-

lows a network to recognize objects regardless of their spatial location within an

image. This property arises mainly from the pooling operation that takes place be-

tween layers in a CNN, where any particular feature is noted as being present in an

image however the relative location of that feature is cast aside. While this is desir-

able in the sense that it allows CNNs to generalize to data that it was not trained on,
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it is often argued that translation invariance is not ideal and instead we should strive

for translation equivariance. Rather than having the ability to recognize an object

regardless of its location in an image, it is more beneficial to recognize that the same

object is present in multiple images and only its pose (rotation, translation, scale,

reflection) has changed. Figure 3.1 demonstrates a simple example of translational

invariance and why it is an issue.

Fig. 3.1. The problem with invariance: To a traditional CNN, these images
are the same and both represent a face. The location of features is not
important, only their existence matters.

Effort has been made in designing feature detectors that can recognize not only

features in images but also their pose information. In the scale-invariant feature

transform (SIFT) [12] key points in an image are extracted and stored in a database

so that they can later be compared to new images. These points or features vectors

are matched to new image based on Euclidean distance, and those that highly agree

are considered the same features leading to a match. In an effort to speed up run

time variations of SIFT have been developed including speeded up robust features

(SURF) [13], however these techniques are generally complicated and hand crafted

for individual problems.
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Capsules, which were introduced by Geoffrey Hinton in [2], are a group of neurons

that together form a vector that represents different properties of an entity. The use

of scalar inputs and outputs in traditional CNNs is what leads to their deficiencies as

highlighted above. Capsules aim to solve these issues by encoding the probability of

an entity being present in an image as well as providing instantiation parameters, or

pose information, about that object. This concept is what led to [14,15] which serve

as the foundation for the work in this thesis.

3.1 Transforming Auto-Encoders

The idea of utilizing capsules, or small vectors, to represent visual entities and their

corresponding instantiation parameters was explored in 2011 by Geoffrey Hinton and

others in [2]. The main motivation for this was that although CNNs had at that point

proved effective to solve many complex problems, their implementation was misguided

in that they aim for viewpoint invariance through the use of scalar outputs between

convolutional layers. Instead viewpoint equivariance should be sought after, where

the likelihood of a visual entity being present within an image is encoded as normal

but its instantiation parameters change as the entity moves around its domain of

viewing conditions. This idea allows for whole visual entities to be broken into parts

and the whole entity can only be recognized if its individual parts agree spatially, an

issue that traditional CNNs had yet to solve as they search for parts but do not care

about their spatial relationship to one another.

To demonstrate the utility of capsules and how an artificial neural network can

learn to convert pixel intensities to instantiation parameters, the authors of [2] propose

a transforming auto-encoder. This feedforward neural network takes as its input an

image and a desired shift amount ∆x and ∆y. The network learns to output the

same image that is shifted by the desired amount. Utilizing the MNIST [16] dataset

the auto-encoder is trained utilizing 30 capsules each containing 10 recognition units

and 20 generation units. Each image from the MNIST dataset is shifted by at most
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Fig. 3.2. The transforming auto-encoder. Taken from [2]

2 pixels in a random direction and this shift is supplied to the network as an input

alongside the image. The network successfully learns to transform the input images

by the desired amount. The utility of capsules was further explored by extending to

3-D data, where the auto-encoder was able to learn 3 dimensional transformations

between computer generated car models further strengthening the idea of utilizing

capsules instead of simple scalars and pooling operations.

3.2 Dynamic Routing Between Capsules

In [14], the capsule network or CapsNet is introduced where layers of capsules are

used to make predictions for layers of capsules at a higher level. This is accomplished

through the routing by agreement algorithm where lower level capsules send their

input to higher level capsules that best ”agree” with its input. Termed routing by

agreement, this iterative algorithm was proved to not only to be more effective than
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the max pooling method in traditional CNNs in [14], but also to exhibit the property of

equivariance. Equivariance allows the trained model to recognize objects in differing

poses to those that the model was initially trained on. As an added benefit the spatial

relationship between features is also preserved. This was all made possible by trading

scalar features for vector features, or capsules, and replacing pooling with routing by

agreement.

Routing by agreement is a dynamic routing algorithm that is repeated a number

of times during each forward pass of the network. For each capsule in the current

layer, a vector ci is calculated which represents the routing weights for a lower level

capsule i. Initially all coefficients cij are set to zero representing a state of maximum

confusion and uncertainty. Softmax is applied to each ci to enforce a probabilistic

nature of the coefficients cij. Once the vector ci is computed, a linear combination of

the input capsules uj|i and the routing coefficients ci is computed and a non-linear

squash function is applied to each of the output vectors sj . The routing coefficients

get updated as cij ←− cij + uj|i · vj where vj is the squashed linear combination from

the previous step. In the end vj is returned as the output vector. The dot product

in this algorithm is used as a means to measure the similarity between two capsules

or vectors. If they highly agree with one another the output of the dot product

is positive and large while if they disagree greatly the output is negative and large

corresponding to an increase or decrease in the routing weight respectively. Figure 3.3

shows a simple illustration of the weight update process in the routing by agreement

algorithm.

Since inputs and outputs of CapsNets are vectors, the non-linear functions such

as ReLU and Sigmoid that are applied to traditional CNNs are no longer applicable.

Instead [14] replaces these functions with a non-linear vector function titled squashing

which takes in a vector as input and returns a vector output that has its direction

preserved but its magnitude mapped to between zero and one. This allows the cap-

sules to be interpreted as a probability much like the Softmax function allows scalar

neurons to be interpreted as probabilities.
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Fig. 3.3. Demonstration of routing by agreement. Left: Current capsule
ûi|j does not agree with higher level capsules causing the routing weight
to decrease. Right: Current capsule ûi+1|j does agree with higher level
capsules causing the routing weight to increase.

As all convolutional neural networks require a loss function to optimize during

training, so to does CapsNet. In CapsNet two losses are utilized together, a margin

loss that pronounces the existence of a class within an image and a reconstruction

loss which is used to encode the instantiation parameters of a particular class. In [14]

a mask is created for the correct class in an image and is then used to reconstruct

the output of the class capsule. This allows the reconstruction to regularize the

margin loss while providing some insight into what type of information the capsules

are representing. The total loss used for training is the sum of the margin and

reconstruction losses with the reconstruction loss being scaled down considerably, by

a factor of 0.0005 in the original implementation.

An interesting aside that was investigated in [14] is what the capsules themselves

are representing. By tweaking each individual dimension of a capsule by a small

amount, the authors were able to utilize the decoder network to generate images of

the tweaked capsules and found that they are highly interpretable. Each dimension

appeared to represent some feature of the input image, such as the thickness or skew



16

Fig. 3.4. CapsNet architecture as presented in [14].

of lines, or in some class specific cases the diameter of the loops present in digits such

as 6 and 0.

The capsule network also demonstrated the ability to segment highly overlapping

digits. To do this the MNIST dataset was modified by overlaying a digit on top

of another digit with on average 80% overlap. CapsNet is able achieve a 5% error

rate on this modified MNIST dataset in large part due to the routing by agreement

algorithm; since capsules only get routed to higher level capsules if it makes sense

to do so, the ambiguity between which pixels belong to which digits gets ”explained

away”.

3.3 Matrix Capsules with EM Routing

Not long after [14] was published new work with capsules was presented in [15]

in which capsules are extended to contain a logistic unit to represent the presence of

an entity and also a 4× 4 transformation matrix. This new entity is titled a matrix

capsule and a variation of the original capsule network architecture is presented to

classify images from the smallNORB dataset, a collection of images of 5 different toys

at different azimuths, elevations, and lighting conditions.

The modified capsule network architecture consists of a regular convolutional layer

with 32 channels, a primary capsule layer, and two convolutional capsule layers instead
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Fig. 3.5. The CapsNet architecture presented in [15].

of one as in [14]. At the output lies the class capsule layer which outputs the five

different classes and their corresponding transformation matrix. This architecture is

depicted in Figure 3.5.

Aside from the addition of an extra convolutional capsule layer in this implementa-

tion, the introduction of the 4×4 transformation matrix required modifications to the

routing by agreement algorithm. Computation of this matrix during training is done

iteratively using a variation of the expectation maximization method. Traditionally

this method is used to fit points into a mixture of Gaussian models by alternating calls

to the E-step and M-step. In the context of matrix capsules, the E-step determines

the the assignment probability rij of each datapoint to a parent capsule, while the

M-step recalculates the Gaussian models’ values based on rij. This, as in the original

CapsNet, takes place over three iterations for each connection between capsule layers.

This work aimed to demonstrate that while viewpoint changes cause complicated

effects on pixel intensities, they exhibit simple linear effects on the pose matrix for any

particular object. The authors go on to demonstrate that this CapsNet architecture

achieves a state-of-the-art test error rate of 2.2% on the smallNORB dataset while

only requiring ∼68K trainable parameters.
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4. METHODS

4.1 Environment

The work in this thesis was conducted utilizing a Windows 10 Pro based machine

containing an Intel Core i7-7700K CPU @ 4.5GHz, Nvidia GTX-1080ti @ 1708Mhz

with 11GB GDDR5X memory, and 32GB DDR4 RAM at 2166MHz. Software li-

braries utilized include but are not limited to Python 3.7.1, PyTorch 1.0.1, Numpy

1.15.4, Scikit-Learn 0.20.2, Spyder 3.3.3, and Matplotlib 3.0.3.

4.2 Data Preprocessing

Data for the work conducted in this thesis comes from the xView [3] dataset, a

collection of high resolution overhead satellite images. This data was collected and

labeled primarily for the advancement of object detection techniques in overhead

satellite imagery, however in this work the task of detecting and localizing objects

within the images is not explored. Instead the provided labels are used to crop

out objects from images to explore the use of capsule networks as a classifier of

those objects. Since the images are all taken from an overhead viewpoint, the main

variations between objects of the same class are rotations and translations within a

particular scene. Capsule networks have proved effective in recognizing objects even

after undergoing transformations while also requiring significantly less data to train

overall which provides the motivation for their use in this work.

Each of the images in the xView dataset has been sampled to cover a 1km2 area

of the earth’s surface with 60 total classes annotated. These annotated classes were

cropped out from their parent images and placed within their own class folder. It

was noted both from the paper as well as from the action of cropping that their is a



19

large imbalance between the number of instances within each class. The most preva-

lent objects are small cars and buildings as much of the data is taken from densely

populated areas where these two objects exist in abundance. Training convolutional

neural networks with datasets exhibiting this type of class imbalance can lead to

skewed results since the network may learn to classify each image as the type with

the most instances during training. This can provide a high classification accuracy

yet prove unusable in practice since the network will always provide the same output

regardless of the input image that is passed through it.

During cropping of the objects it was discovered that many of the annotations

extend beyond the dimensions of the original image. To combat this the cropped

instances were clipped to lie within the bounds of the original image, at which point

it was discovered that some of the crops had a height or width of only a few pixels

and the object that is contained within the crop was not perceivable. Instances

of this nature, in particular those that contained a height or width of less than

3 pixels in total, were excluded from the dataset that was ultimately used during

experimentation.

Once each of the object classes was cropped out from their parent images, each

cropped image was resized to 30× 30× 3. This is done to ensure that the input the

the network is of consistent size as well as reduce the amount of physical memory

that is required to process batches of these crops. It is noted that the act of resizing

the cropped images not only degrades their quality but also alters the aspect ratio of

the objects contained within each crop. Because there are 60 total classes each with

varying sizes and aspect ratios there is no obvious way to address this issue.

During training, images have random horizontal and vertical flips applied within

each batch as well as a random cropping of 30×30 with at most a 2 pixel shift an any

direction. This is done to discourage overfitting since the dataset is much smaller than

what would typically be used to train a CNN. Images that are held out for testing

have no transformations applied and are fed through each network configuration as

is.
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4.3 Baseline CNN

Fig. 4.1. Baseline CNN architecture.

In an effort to gauge performance of capsule networks versus traditional CNNs on

the xView dataset, a traditional style CNN was implemented as a baseline network

against which the capsule network architectures may be compared. This network

was designed to have a comparable number of trainable parameters to the CapsNet

implementations.

The baseline CNN consists of three convolutional layers with 256, 256, and 128

channels respectively. Each convolutional layer utilizes a kernel size of 5 × 5 and a

stride of 1. The output of the last convolutional layer is reshaped and fed to the first

of three fully connected layers of size 328, 192, and Nclasses. Batch normalization is

applied to each of the convolutional layer outputs and the ReLU non-linearity is used

at the output of every layer except the final output layer, where the softmax function

is used to map the output to each class with cross-entropy loss. Dropout is also

applied between each pair of fully connected layers. This configuration is depicted in

Figure 4.1.

The baseline CNN was trained until convergence, or 500 epochs, utilizing the

Adam optimizer with a batch size of 128, a learning rate of 0.001, and a learning rate

decay of 0.99 to avoid decreasing the learning rate too quickly given the relatively

small number of training images.
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4.4 CapsNet Implementations

4.4.1 Configuration 1

The first proposed model of a capsule network for object recognition in overhead

satellite imagery closely resembles that of the original model in [14]. The input images

are first fed through a convolutional layer with 256 channels and a kernel size of 9×9.

ReLU applied at the output of this layer as well as batch normalization before being

fed to a primary capsule layer. The primary capsule layer consists of 32 channels of

8-dimensional capsules which results in 1568 total capsules at its output (7× 7× 32).

Each of these outputs is fed to a second capsule layer where classification will take

place. This classification layer contains a single 16-dimensional capsule for each class

in the dataset. The routing by agreement algorithm will only take place between the

two capsule layers.

Fig. 4.2. Full capsule network configuration 1.

A decoder network is also utilized in this architecture to provide an image recon-

struction from the learned features. This subnetwork consists of 3 fully connected

layers with ReLU applied at the output. The final layer’s output foregoes ReLU for

sigmoid and is reshaped to match the dimensions of the original input image. The

error between this reconstructed image and the original input is added to the training
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loss although it is scaled down considerably to allow the margin loss to dominate dur-

ing training. Figure 4.2 provides a graphical illustration of the network configuration.

This network is trained for 500 epochs utilizing the Adam optimizer with a batch

size of 128, learning rate of 0.001, and a learning rate decay of 0.99. Two experiments

are conducted using this network, the first of which involves training utilizing only 4

classes from the xView dataset. These four classes are aerial vehicles, namely Cargo

Plane, Fixed Wing Aircraft, Helicopter, and Small Aircraft. There are only ∼1200

images between these four classes which allows for gauging both the capsule network

and baseline CNN’s response to a small training dataset as well as their ability to

distinguish between very similar classes. Figure 4.3 shows a sample from each of the

classes in the aerial vehicles dataset.

Fig. 4.3. Sample image from each class of the aerial vehicles (Images have
been scaled up for clarity and may contain deformations not found in the
dataset used for training).

Due to class imbalance, weighted or stratified sampling is utilized during training

to ensure the network sees approximately the same number samples from each class.

∼3% of the data is selected at random and held out for testing while the rest is used

during training.

The second test using this configuration utilizes 10 of the 60 classes from the

xView dataset. These classes were selected based on their number of occurrences in

the dataset with each class containing ∼200 instances, as well as the fundamental

differences between each class of objects. All training hyper-parameters are kept the

same as in test one and stratified sampling is again used during training with ∼10%
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of the data held out for testing. A sample image from each of the classes in this

dataset is shown in Figure 4.4.

Fig. 4.4. Sample image from each class of the 10 class training set. TOP
(left to right): Aircraft Hangar, Barge, Cement Mixer, Container Crane,
Container Ship. BOTTOM (left to right): Crane Truck, Engineering
Vehicle. Ferry, Flat Car, Helipad.

4.4.2 Configuration 2

The second configuration of a capsule network in this work is created by adding

another convolutional capsule layer between the primary capsule layer and the clas-

sification layer. This is done in an effort to gauge if a more complex network results

in better performance overall. A decoder network is also utilized however it remains

unchanged from configuration 1.

The image is fed through a convolutional layer with 256 channels and a kernel

size of 9 × 9 with ReLU applied at the output. This output is fed to the primary

capsule layer which similar to the first model consists of 32 channels of 8-dimensional

capsules. These outputs are then fed to a capsule layer with 30 capsules of dimension

16. The choice of outputting 30 capsules at this layer is made due to GPU memory

constraints as adding even 10 more capsules results in memory overflow errors. The

output of this layer is finally fed to the classification layer containing Nclasses number
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of capsules of dimension 16. This network was trained in similar fashion to the first

configuration, with both the 4 class and 10 class datasets being utilized. The network

configuration is shown in Figure 4.5

Fig. 4.5. Full capsule network configuration 2.

4.4.3 Configuration 3

A third network configuration is constructed utilizing only the primary and classifi-

cation capsule layers but with a second convolutional layer placed before the primary

capsule layer. Since convolutional layers are used to extract features from images

adding another layer should allow for a richer feature set prior to the capsule layers.

The convolutional layer contains 256 channels and a kernel size of 9 × 9. ReLU and

batch normalization are applied at the output of each of the two convolutional lay-

ers. The decoder subnetwork as well as the primary and class capsule layers remain

unchanged from configuration 1. This configuration is again trained similar to the

prior two configurations. The network configuration is shown in Figure 4.6.
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Fig. 4.6. Full capsule network configuration 3.

4.5 Results

In the section the results of testing each of the aforementioned capsule networks

is presented and assessed. These results are compared to the baseline convolutional

neural network.

4.5.1 Baseline CNN

The baseline CNN was trained and tested on two datasets with a 97%/3% and

90%/10% train/test split. Both datasets are small with approximately 1200 and

1900 total images, a much smaller amount than is typically utilized when training

CNNs. This is purposely done to test both the capsule network and baseline networks

response to small training datasets. The baseline was trained for 500 epochs with the

best performing model then being used for testing.

Figure 4.7 shows the training graphs for the baseline CNN. On both datasets this

number of training iterations appears to be enough as the training loss and validation

accuracy have both plateaued prior to the epoch 500 mark.
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(a) 4 class dataset. (b) 10 class dataset.

Fig. 4.7. Training graphs for the baseline CNN.

Figure 4.8 shows the confusion matrix for the baseline CNN on the 4 class dataset.

The small aircraft class appears to cause the most trouble for the baseline as it is

mistaken as a cargo plane and fixed wing aircraft 2 and 5 times respectively out of the

total 10 instances in the testing set. In total the baseline CNN achieves an accuracy

of 65.0% on the 4 class dataset.
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Fig. 4.8. Confusion matrix for the baseline CNN on the 4 class dataset.

The confusion matrix in Figure 4.9 demonstrates that the baseline CNN cannot

scale to more object classes. While the helipad was correctly classified every time, only

the ferry and flat car also exhibited similar performance. The rest of the predictions

are sporadically placed with no obvious misclassification patterns seen. The baseline

CNN achieves an accuracy of 40.0% on the 10 class dataset.
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Fig. 4.9. Confusion matrix for baseline CNN on the 10 class dataset.

4.5.2 Configuration 1

The first configuration proposed was trained and tested on the same two datasets

as the baseline CNN. This configuration was trained on each dataset for 500 epochs

with the highest performing model then being utilized during testing. The training

graphs for each dataset are shown in Figure 4.10.



29

(a) 4 class dataset. (b) 10 class dataset.

Fig. 4.10. Training graphs for configuration 1.

Interestingly, the training loss appears to converge to a much lower value than the

validation loss which indicates that the network is overfitting to the training data.

Most commonly this requires more data to be gathered, however given the nature of

the data being used for this testing acquiring more data is not feasible.

Table 4.1.
Accuracy of Baseline vs. CapsNet configuration 1.

CapsNet 1 Baseline

4 class 82.5% 65.0%

10 class 61.0% 40.0%
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Table 4.5.2 shows the accuracy of configuration 1 as compared to the baseline

convolutional neural network. On both the 4 class and 10 class datasets the capsule

network configuration outperforms the baseline CNN. It should be noted that in the

4 class dataset both the Fixed Wing Aircraft and the Helicopter classes only contain

approximately 60 images to train on. The capsule network was able to distinguish

between the classes fairly well even under these conditions as is highlighted by the

confusion matrix in Figure 4.11.

Fig. 4.11. Confusion matrix for CapsNet configuration 1 on the 4 class
dataset.

The confusion matrix in Figure 4.12 also indicates that the capsule network con-

figuration can extend to more classes quite well, with the most common mistakes

occurring on objects that vary drastically between images (container crane, crane

truck).
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Fig. 4.12. Confusion matrix for CapsNet configuration 1 on the 10 class
dataset.

4.5.3 Configuration 2

The second configuration of a capsule network produced the most puzzling results

of the three proposed architectures. Adding another convolutional capsule layer not

only resulting in poorer performance in terms of accuracy, but in the case of the 10

class dataset resulted in nearly every prediction being chosen as barge. This is clearly

shown by the confusion matrix in Figure 4.15.
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Table 4.2.
Accuracy of Baseline vs. CapsNet configuration 2.

CapsNet 2 Baseline

4 class 62.5% 65.0%

10 class 12.0% 40.0%

The accuracy of the second capsule network configuration dropped considerably

compared to the first configuration. This may be in part due to hardware limitations

where the added capsule layer is only allowed 30 capsules in total. With such a low

number of capsules the network may not be able to learn enough features to accurately

categorize the different classes.

(a) 4 class dataset. (b) 10 class dataset.

Fig. 4.13. Training graphs for configuration 2.
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The training graphs in Figure 4.13 also indicate an initial period of learning where

the model does not improve. In the case of the 4 class dataset the model is able to

overcome this period at around the epoch 90 mark, however for the 10 class dataset

the model is never able to overcome this barrier and thus produces predictions that

are on par with random choice. This again may be caused by the limitation of the

number of capsules in the added layer. In the four class dataset the 30 capsules

may be enough to construct features from the data, however extending to 10 classes

requires more parameters to properly construct features from the data.

Fig. 4.14. Confusion matrix for CapsNet configuration 2 on the 4 class
dataset.

The confusion matrix in Figure 4.14 offers a promising outlook on adding more

capsule layers to the network. Overall the model was able to predict the correct class

62.5% of the time which, although less than configuration 1 (82.5%), may improve
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provided more data is utilized during training or hyperparameters are selected in just

the right way.

Fig. 4.15. Confusion matrix for CapsNet configuration 2 on the 10 class
dataset.

Figure 4.15 shows that the 10 class capsule network was unable to learn useful

features from the data. The predictions mostly appear to be of the barge class which

represents approximately 10% of the test data. This explains the models accuracy

of only 12.0% which is significantly less than configuration 1 (61.0%). If provided

with more training data and hardware that allows for processing of more capsules

within the added layer the model may improve, however testing this hypothesis is not

currently feasible.
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4.5.4 Configuration 3

The third capsule network configuration created in this work involved adding

a second convolutional layer after the first. Since convolutional layers are used to

extract features from data adding a second layer should in theory allow for more

complex features to be extracted from each image prior to being passed the the

primary capsule layer. The accuracy of this network configuration was actually lower

than configuration 1, however it performed better much better than configuration 2.

Table 4.3.
Accuracy of Baseline vs. CapsNet configuration 3.

CapsNet 3 Baseline

4 class 77.5% 65.0%

10 class 57.5% 40.0%

Table 4.5.4 shows the accuracy of the third capsule network configuration versus

the baseline CNN. Again the capsule network is able to outperform the baseline on

both the 4 class and 10 class datasets by a considerable margin.

The training graphs for this configuration are shown in Figure 4.16. Interestingly

enough the capsule network again exhibits overfitting to the training data on both

of the datasets. This may be due in part the the limited amount of training data as

well as the hyperparameter selection during training.
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(a) 4 class dataset. (b) 10 class dataset.

Fig. 4.16. Training graphs for configuration 3.
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Fig. 4.17. Confusion matrix for CapsNet configuration 3 on the 4 class
dataset.

The confusion matrix in Figure 4.17 demonstrates that this network configuration

is able to categorize the 4 different classes quite well, with the exception being the

fixed wing aircraft. This may be due to the inconsistencies between images within

this class as fixed wing aircraft encompasses many different types of airplanes each

with their own subtle differences. There are also only 64 images of this class used

during training which may not be quite enough to learn robust features from.
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Fig. 4.18. Confusion matrix for CapsNet configuration 3 on the 10 class
dataset.

The final confusion matrix in Figure 4.18 shows that adding a convolutional layer

to the capsule network architecture can in fact extend to a more diverse dataset.

While accuracy falls compared to the first configuration the classification of the 10

different objects is still quite robust with the misclassifications occuring primarily

between objects with highly overlapping features, for example barge is classified as a

container ship 9 times whereas the unique classes such as helipad is only misclassified

twice as an aircraft hangar.
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5. SUMMARY

5.1 Conclusion

In this thesis capsule networks were proposed as a method for classifying objects

taken from overhead satellite imagery given the underlying spatial similarities within

each class. The capsule networks proposed are shallow architectures that not only

perform well with a limited amount of training data but also perform consistently

better than a regular convolutional neural network of approximately the same depth.

The capsule networks proposed are able to distinguish between classes that are very

similar such as aerial vehicles while also showing promising performance on a more

general set of object classes.

While the task of localizing and extracting objects from satellite imagery is left

for future research, this work provides a promising method for classifying said ob-

jects even in the presence of limited training data. This is key considering there is

guaranteed to be a great imbalance between object types within these images. The

ability to use a small collection of these objects to produce a viable model is a key

step towards the full automation of satellite imagery processing which will in turn

open the door to a wide variety of applications utilizing this type of data.

5.2 Recommendations and Future Work

While this work demonstrated that capsule networks can be used to classify objects

in the domain of satellite imagery, there are many areas where improvements can be

made.

Capsule networks are considerably more difficult to train compared to their tradi-

tional CNN counterparts. This is in part due to the routing by agreement algorithm
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that takes place between capsule layers as there is currently no simple method to

optimize this operation. There is also a practical limitation involved since the use of

vector inputs and outputs within capsule layers requires significantly more memory

to process. This pushes current hardware to its limits and makes scaling a capsule

network up to a more significant number of layers impossible. While one workaround

is to offload some of the processing to CPU/RAM, this often comes with a huge

performance hit in terms of training and testing speed.

While the network architectures proposed in this work exceeded the performance

of a baseline CNN of approximately the same complexity, it would be of great interest

to see how these architectures perform compared to larger, more advanced network

architectures such as VGG16 and ResNet in the realm of satellite imagery.

This work only utilized two small datasets consisting of 4 and 10 classes respec-

tively. The xView dataset contains labels for 60 different object classes. Experiment-

ing with a model utilizing each of the 60 classes would be of great benefit to gauge

how well capsule networks can scale to larger and more complicated datasets. This

would require more advanced hardware to process the larger model, however it is

worth investigating as the number of object classes contained within satellite imagery

can be further expanded to much more than 60.

Satellite imagery in the form of RGB color images is used in this work, however

satellite imagery is often collected using many spectral bands at varying resolutions.

Testing a capsule network on satellite data outside of the optical range, such as syn-

thetic aperture radar imagery, could prove beneficial and lead to better performance

overall while also providing other benefits such as immunity to weather conditions

and day and night cycles. This however requires obtaining and annotating a large

amount of data prior to experimentation.

Lastly while classification of images is an interesting and difficult area of research

on its own, the logical next step seems to be extending this work to both localization

and classification of objects within satellite imagery, or object detection.
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A. EFFECTS OF SYNTHETICALLY CREATING MORE

DATA

Two datasets were utilized during the implementation of this work, one being a set

of aerial vehicles with 4 total classes and the other being a random selection of 10

classes of the 60 from the xView dataset. These selections were made purposely to

test both the capsule network’s and baseline CNN’s robustness when dealing with

small datasets with limited examples of each object class. Utilizing basic image

transformations these datasets can be expanded to include more instances of each

object class.

In an effort to gauge the benefit of acquiring more data, both of the training sets

for each dataset were used to generate more samples of each object class. Rotations

were applied to each image in the training sets at 90◦, 180◦, and 270◦ with each

rotation being added to the training set. These angles were chosen to avoid distorting

images since rotating by any other angle will require interpolation and the addition

of new pixel data along the edges of each image. These transformations result in each

training set increasing in size by a factor of 4 since each image will provide 3 new

images at the specified rotations.

A.0.1 CapsNet Config 1

Since one of the main benefits of capsule networks is their ability to retain infor-

mation about the spatial relationships between objects in each image, the addition

of these transformed training instances should have little to no effect on the overall

accuracy as the network should be able to identify that the new images are simply

items that it has seen before rotated by some amount.
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(a) 4 class extended dataset. (b) 10 class extended dataset.

Fig. A.1. Training graphs for CapsNet config 1 on extended training
datasets.

The training graphs for CapsNet configuration 1 on the new training datasets

are shown below in Figure A.1. As expected the network did not improve by any

significant amount with the best models achieving 82.5% and 59.5% on the 4 class

and 10 class datasets respectively. These values are nearly identical to training with

the default datasets and the slight drop in accuracy of the 10 class model may be

solely from the stochastic nature of the SGD algorithm. The confusion matricies for

these two models are shown in Figure A.2 and A.3 respectively.
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Fig. A.2. Confusion matrix for CapsNet config 1 on the extended 4 class
dataset.

Fig. A.3. Confusion matrix for CapsNet config 1 on the extended 10 class
dataset.
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A.0.2 Baseline CNN

Convolutional neural networks are notorious for requiring copious amounts of data

to properly train. This coupled with the fact that our baseline CNN was designed

to contain roughly the same number of parameters as the CapsNet implementations

severely limits its ability to perform well on the two datasets used in this work. By

incorporating more training data into these datasets the baseline CNN should in

theory see a slight increase in accuracy as the extra data should allow more robust

features to be learned during training.

(a) 4 class extended dataset. (b) 10 class extended dataset.

Fig. A.4. Training graphs for baseline CNN on extended training datasets.

Figure A.4 shows the training graphs for the baseline CNN on the new extended

4 class and 10 class datasets respectively. Interestingly, both the 4 class and 10 class

model did not seem to be affected at all by the extra data utilized during training

as the accuracy remained identical at 65.0% for the 4 class dataset and dropping to
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36% for the 10 class dataset. It is possible that the network configuration itself is

limiting the models performance as it is shallow with only 3 convolutional layers and 3

fully connected layers. The best performing CNNs contain upwards of 11 layers with

various connections taking place between each layer and even feedback connections

existing from early layers to deeper layers.

The 10 class model was allowed an extra 500 epochs to train due to its drop in

performance with the extra training data. This resulted in the model once again

reaching 40% accuracy however it did not go beyond this value further confirming

that the network architecture itself is limiting the models performance. The confusion

matricies for the baseline CNN trained with more data are shown in Figures A.5 and

A.6 respectively.

Fig. A.5. Confusion matrix for baseline CNN on extended 4 class dataset.
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Fig. A.6. Confusion matrix for baseline CNN on extended 10 class dataset.


