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The human ether-a-go-go-related gene (hERG, KCNH2) potassium channel has been 

implicated in diverse physiological and pathological processes. The KCNH2 gene encodes a 

rectifier voltage-gated potassium channel (Kv 11.1) that governs the chief repolarizing current, IKr, 

which is essential for normal electrical activity in excitable cells such as cardiomyocytes. It is also 

involved in cell growth and apoptosis regulation in non-excitable cells, such as tumor cells. 

Dysfunction of hERG is associated with potentially lethal complications, including diseases and 

sudden death under certain circumstances.  While the mechanisms regulating KCNH2 expression 

remain unclear, recent data suggested that microRNAs (miRNAs) are involved, particularly in the 

context of several pathologic effects.  

miRNA is a class of RNA defined by its conserved, short, non-coding nature. miRNAs are 

important regulators of gene expression at the post-transcriptional level that bind through 

complimentary annealing to the 3’ untranslated regions (3’ UTRs) of target mRNAs, resulting in 

mRNA destabilization and translational repression. The primary objectives of this research were 

to 1) identify miRNAs regulating KCNH2 expression in cancer, 2) investigate the potential 

association between miR-362-3p expression and risk of drug-induced QT interval lengthening, and 

3) identify miRNAs potentially regulating KCNH2 expression and function in cardiac cells.  

Through bioinformatics approaches, five miRNAs were identified to potentially regulate 

KCNH2 expression and function in breast cancer cells. The five identified miRNAs were validated 
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through a Dual-Luciferase Assay using the KCNH2 3′ UTR. Only miR-362-3p was validated to 

bind to the KCNH2 3’ UTR, decreasing luciferase activity by 10% ± 2.3 (P < 0.001, n = 3) when 

compared to cells transfected with luciferase plasmid alone. miR-362-3p was also the only miRNA 

that its expression positively correlated with overall survival of patients with breast cancer from 

The Cancer Genome Atlas-Cancer Genome (TCGA) database by log-rank test (HR: 0.39, 95% CI: 

0.18 to 0.82, P = 0.012). Cell proliferation was assessed by MTS assay (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 48 hours following 

transfection in breast cancer cell lines, including SK-BR-3 and MCF-7. miR-362-3p significantly 

decreased proliferation of SK-BR-3 and MCF-7 cells by 23% ± 8.7 (P = 0.014, n = 3) and 11.7% 

± 1.0 (P < 0.001, n = 3), respectively. Cell cycle phases in SK-BR-3 and MCF-7 cells were 

differentiated by flow cytometry 48 hours following transfection. miR-362-3p and hERG siRNA 

(positive control) significantly increased the accumulation of cells in G0/G1 phase in MCF-7 by 

11.7% (from 51.1% ± 0.64 to 57.1 ± 0.96, P = 0.002, n = 3) and 10% (from 51.1% ± 0.64 to 56.8 

± 0.96, P < 0.001, n = 3), respectively.   

The demonstrated ability of miR-362-3p to regulate hERG in breast cancer cells coupled 

with previously published data that indicated an alteration of miR-362-3p expression during HF 

and a potential association between its expression and QT interval prolongation suggesting an 

important role for this miRNA in regulation of hERG function during HF. Therefore, the 

contribution of miR-362-3p to hERG function was investigated in patients administered the QT 

prolonging drug ibutilide, known to inhibit hERG. A total of 22 patients completed a prospective, 

parallel-group comparative study during which they received subtherapeutic doses (0.003 mg/kg) 

of ibutilide. The study was originally designed to investigate the influence of heart failure with 

preserved ejection fraction (HFpEF) on response to drug-induced QT prolongation. Blood for 
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determination of serum Ibutilide concentrations and miR-362-3p expression, along with 

electrocardiograms (ECGs) were serially collected over a span of 12 hours. ΔΔ-Fridericia-heart 

rate corrected QT (ΔΔQTF) intervals were utilized for all analyses to account for baseline and 

diurnal variation.  

To assess the ability of miR-362-3p to predict ibutilide QT-induced ΔΔQTF changes, 

nonlinear mixed effects pharmacokinetic/ pharmacodynamic (PKPD) modeling was performed to 

assess the contribution of miR-362-3p to drug-induced QT interval lengthening. The model that 

best fit serum ibutilide concentrations versus time was a 3-compartment model with first order 

elimination and proportional residual errors, while the model that best described the ibutilide 

concentration- ΔΔQTF relationship was an Emax model with an effect compartment. In addition to 

miR-362-3p expression, several demographic and clinical data were evaluated as potential 

covariates on PK and PD parameter estimates. Of tested covariates, heart failure (HF) status on 

Emax  (ΔOFV = -4.1; P < 0.05), and miR-362-3p expression on EC50 (ΔOFV = -9.9; P < 0.05) were 

incorporated in the final PKPD model. The mean individual Emax was significantly higher in HF 

patients when compared to non-HF patients (P = 0.015), while EC50 was negatively correlated 

with miR-362-3p expression (P < 0.0001, R2 0.93).  

 Previous evidence indicates that miR-362-3p is altered in patients with HF. In addition, 

several miRNAs commonly regulate the same ion channel. Therefore, we have developed a large-

scale high-throughput bioassay (HT-bioassay) to explore and identify other miRNAs potentially 

involved in KCNH2 expression and function in human induced pluripotent stem cell-derived 

cardiomyocytes (hiPS-CM) during sustained β-adrenergic receptor (βAR) stimulation or 

overexpression of activated calcium/calmodulin-dependent protein kinase 2 (CaMKII), which are 

classical consequences of HF.  
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Through bioinformatic approaches, putative miRNA binding sites (n=327) were identified 

in the KCNH2 3′ UTR. Fragments containing these putative binding sites were synthesized, cloned 

into linearized plasmids, and amplified. The plasmid pool was transfected into hiPS-CM cells 

either treated with βAR stimulation or overexpressing CaMKII. Next-generation sequencing was 

performed to identify: 1) expression of putative miRNA binding sites and 2) endogenous miRNAs 

versus control. Eight predicted binding sites were found to be significantly downregulated in the 

CAMKII group (P <0.05, log fold change -0.287 to -0.59), and six significantly downregulated in 

the sustained βAR group (P <0.05, log fold change -0.29 to -0.72). Two binding sites were 

significantly reduced in both treatment groups (P < 0.05, log fold change between -0.38 and -0.61). 

Thirty-one miRNAs were predicted to bind to the 16 binding sites identified from the 

bioassay. Of these, seven were selected for further screening using dual luciferase assays. None of 

the putative miRNAs reduced luciferase activity. However, hERG expression was assessed by 

immunoblot analysis following transfection of the seven miRNAs into HEK293 cells stably 

expressing hERG (HEK293-hERG). Six of the seven miRNA mimics reduced hERG protein 

expression. An additional validation step was performed by assessing hERG-related current 

density by whole cell electrophysiology, in which three of the six miRNAs inhibited hERG protein 

transfected into HEK293-hERG cells. Those same three miRNA mimics significantly decreased 

Ikr current (P <0.05).  

Finally, expression of the miRNAs identified by HT-bioassay was examined in the patients 

enrolled in the clinical trial in which genome-wide next generation sequencing was performed on 

miRNAs extracted from whole blood samples. Of the 31 miRNAs identified from HT-bioassay, 

six were found to be expressed in patients (n = 12). A correlation analysis was performed between 
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levels of the expressed miRNAs and corresponding QTF interval lengthening with ibutilide. Of the 

six miRNAs, only miR-4665-5p was significantly associated with QTF interval (P = 0.0379).  

In summary, miR-362-3p was identified to regulate hERG, and reduces proliferation of breast 

cancer cells through a mechanism that may be partially mediated by hERG inhibition. While miR-

362-3p may have modest effects in cancer, in Aim 2 we demonstrated that it along with HF status 

accounts for a significant amount of variability in QTF prolongation following ibutilide 

administration. However, it is common for several miRNAs to regulate a single ion channel. 

Therefore, an HT-bioassay was developed to identify all miRNAs that potentially regulate KCNH2 

during HF. In addition to miR-362-3p, thirty-one miRNAs were predicted to regulate KCNH2; one 

miRNA (miR-4665-5p) was significantly associated with QTF prolongation. The potential for 

miR-362-3p and HT-bioassay-identified miRNAs to reduce hERG-related current and influence 

susceptibility to drug-induced QT interval prolongation warrants further investigation.   
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 INTRODUCTION 

1.1 KCNH2 definition  

KCNH2 is the official name for the human ether-a-go-go related gene (hERG), which 

encodes the pore-forming subunit of the rapid component of the delayed rectifier voltage-gated 

potassium channels (Abbott, et al. 1999). These channels are generally referred to as hERG, IKr, 

or Kv11.1. In this work, KCNH2 refers to the gene or mRNA and hERG refers to the pore-forming 

subunit protein expression (Vandenberg, et al. 2012). Kv11.1 would refer to the full protein with 

all the auxiliary subunits that confer the physiological IKr. While the physiological function of 

hERG is best characterized in the heart, hERG is also expressed in several other cell types 

including smooth muscle, endocrine cells, and a wide range of tumor cell lines. These potassium 

channels have a variety of roles depending on the specific cell or tissue type context (Akbarali, et 

al. 1999).  

1.2 Gene and protein structure 

The human KCNH2 gene is located in region q36.1 on chromosome 7, spans approximately 

33 kb, and contains 15 exons. It contains three alternative transcription start sites and two 

alternative termination sites, resulting in five KCNH2 transcript variants (Itoh, et al. 1998). The 

full-length transcript, KCNH2-1a, is the predominant transcript expressed in the heart, and gives 

rise to a 1,159 amino acid protein. Use of an alternate transcription start site in intron 5 of the full-

length transcript produces KCNH2-1b, which lacks the first five exons. Both KCNH2-1a and 

KCNH2-1b are identical from exon 6 and onwards. The third transcript is KCNH2-1c, which has 

its transcription start site in intron 2; it lacks the first two exons but is thereafter identical to 
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KCNH2-1a. These three transcripts can form functional channels with distinct gating properties. 

An alternative stop codon in exon 9 results in a transcript with a premature COOH-terminal 

truncation, referred to as KCNH2USO (Lees-Miller, et al. 1997; London, et al. 1997). The three 

KCNH2 isoforms (a-c) are functional and mediate IKr current while the KCNH2USO isoforms are 

not functional but can modulate the channel characteristics. 

Functional hERG channels are tetramers with a pore domain formed by the coassembly of 

four α-subunits. Each α-subunit consists of six transmembrane α-helical segments (S1-S6) along 

with large cytoplasmic NH2- and COOH- terminal domains. The S1-S4 segments form the voltage 

sensor domain, while S5, S6, and the pore loop from each of the four subunits form the ion-

conducting pore domain. These pore domains line the central potassium ion conduction pathway 

(Morais Cabral, et al. 1998; Warmke and Ganetzky 1994).  

Exon 1 of KCNH2 encodes the 5’UTR, which plays a critical role in channel deactivation 

kinetics. Exons 2 and 3 encode the Per-Arnt-Sim (PAS) domain of the protein’s NH2 terminus. 

Exon 6 encompasses the NH2 terminus and 1-3 transmembrane segments. Segment 4 and the pore 

domain are mostly encoded by exon 7, while the remaining exons encode the c-linker, the cyclic 

nucleotide binding domain, and the distal COOH terminal domain (Jiang, et al. 2002; Liu and 

Grigoriev 2004).  

The accessory β-subunits KCNE1 and KCNE2 are single transmembrane proteins that can 

interact with a hERG α-subunit. These accessory subunits are not essential components of the IKr 

current, but are essential for the slow delayed rectifier potassium (IKs) (Anantharam and Abbott 

2005; McDonald, et al. 1997). However, previous literature has shown that KCNE1 and KCNE2 

may interact with hERG and alter its gating kinetics in mammalian cells (Anantharam and Abbott 

2005).   
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1.3 Physiological role of hERG channels 

While hERG are expressed in various tissues (Guasti, et al. 2005; Huffaker, et al. 2009; 

Rosati, et al. 2000), their physiological roles are best characterized in cardiac cells (Carmeliet 1992; 

Lees-Miller, et al. 1997; London, et al. 1997). Similar to other voltage-gated potassium channels, 

the S4 segment contains two basic Arg residues (R528, R531) and one Lys residue (K525) that 

contribute to the activation gating charge and acts as the primary voltage sensor for channel 

activation (Aggarwal and MacKinnon 1996; Liman, et al. 1991; Tristani-Firouzi, et al. 2002). The 

channels can exist in the following states: closed, open, or inactivated. Transitions between these 

states are voltage-dependent. Furthermore, the transition between closed and open in response to 

membrane depolarization is very slow, while that between open and inactivated is much 

faster(Piper, et al. 2005; Subbiah, et al. 2004; Zhang, et al. 2004). The slow activation and 

deactivation of hERG channels coupled with their rapid, voltage-dependent inactivation kinetics 

make them ideally suited for the physiological role of IKr in cardiac repolarization (Sanguinetti and 

Tristani-Firouzi 2006).  

The IKr current plays a critical role in determining the duration of the plateau phase of atrial 

and ventricular action potentials, which is key to allowing sufficient time for calcium release to 

enable cardiac contraction. The plateau phase is terminated when repolarization (phase 3) begins 

as a result of IKr outward current coupled with other outward potassium channels, including IKs 

current.  As repolarization begins, the hERG channels rapidly recover from inactivation, allowing 

more IKr current to pass and resulting in an outward tail current that further repolarizes the cell 

(Sanguinetti and Tristani-Firouzi 2006; Smith, et al. 1996).  

Pharmacological inhibition and other factors including genetic defects in hERG channels 

can result in reduction in Ikr current and subsequently lead to hereditary or acquired long QT 
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syndromes; these are characterized by increased action potential duration, lengthened QT interval, 

and increased risk for life-threatening ventricular arrhythmia and sudden cardiac arrest. The 

increase in QTc of 60 ms  or QTc interval prolongation to greater than 500 ms are generally 

considered a major determinant of the risk of drug induced torsades de pointes (TdP). Loss of 

function mutations in KCNH2 result in reduction of Ikr currents, which produces long QT syndrome 

type 2 (LQTS2). LQTS2 is the second most common type of long QT syndrome, making up about 

25% of all QT syndrome cases(Anderson, et al. 2006; Smith, et al. 2016). Acquired LQTS can be 

due to drugs or other diseases (El-Sherif, et al. 2018; Yap and Camm 2003). Most drugs are 

believed to  prolong QT interval by inhibiting Ikr current resulting in increasing the action potential 

duration and hence increase susceptibility to early afterdepolarizations and the development of 

life-threatening arrhythmias, including TdP (Drici and Barhanin 2000; El-Sherif, et al. 2018; 

Roden and Viswanathan 2005; Sanguinetti, et al. 1995). TdP is a distinctive form of polymorphic 

ventricular tachyarrhythmia that appears on an ECG as continuous twisting of the QRS complex 

around the ECG baseline. TdP can degenerate into sustained ventricular tachycardia or ventricular 

fibrillation resulting in sudden cardiac death (El-Sherif, et al. 2018; Yap and Camm 2003). 

1.4 KCNH2 in cancer 

In addition to the important role of KCNH2 in cardiac cells, there is increasing evidence that 

hERG channels are involved in the development and pathophysiology of cancer (D'Amico, et al. 

2013; Lastraioli, et al. 2015). KCNH2 has been implicated as an oncogene that is overexpressed in 

several types of cancer, including breast cancer, glioblastoma, and colorectal cancer (Fiore, et al. 

2013; Pointer, et al. 2017; Staudacher, et al. 2014; Wang, et al. 2015). Furthermore, several pieces 

of evidence indicate that membrane potential changes during cellular differentiation and cell cycle 
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progression (Staudacher, et al. 2014). Therefore, it is unsurprising that voltage-gated channels such 

as hERG are expressed more frequently in tumors than their corresponding normal tissues. High 

expression of KCNH2 in cancer tissue correlates with the fact that membrane potentials in cancer 

cells are more depolarized at a membrane potential, in which hERG channels usually closed; 

noncancerous cells display more negative membrane potentials, suggesting lower KCNH2 

expression levels. 

In proliferating cells, the resting membrane potential varies from -40 to -90 mV. Differences 

in membrane potential between cells correlate to their respective proliferative potentials, ranging 

from -70 to -90 mV (slowly proliferative) to -40 to -55 mV (highly proliferative) (Binggeli and 

Weinstein 1986). During the G1 phase, cycling cells are depolarized, which can be largely 

attributed to the fact that hERG channels close at membrane potentials below -60 mV(Shapovalov, 

et al. 2011); the predominance of hERG channels in these cells maintains a more depolarized 

membrane potential that facilitates cell cycle progression, and thus accelerates the growth and 

invasiveness of tumors (Bianchi, et al. 1998). 

The first study investigating the role of hERG channels in cancer examined hERG expression 

and function in 17 different tumor cell lines using northern blot analysis and the patch clamp 

technique (Bianchi, et al. 1998). The examined tumor cells had much higher hERG expression 

than their corresponding non-cancerous cells. The findings of this study suggest that hERG over-

expression results in depolarized resting membrane potential in cancer cell lines that may facilitate 

cell proliferation and enhance cell survival, while hERG similar current (K+ inward-rectifier 

current) was not detected in non-cancerous cells. Another study showed that the hERG channel 

blocker E4031 reduced cell migration in the FLG29.1 leukemic cell line, which expresses hERG 

channels. Cell cycle analysis following treatment with E4031 revealed accumulation of cells in the 
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G1 phase (Smith, et al. 2002). However, cell cycle arrest in the G1 phase was not observed with 

other hERG blockers such as terazosin or in other cell lines expressing hERG channels (Benning 

and Kyprianou 2002), indicating that hERG function varies between cells.  

In human colorectal cancer, hERG channels were identified as regulators of tumor invasion, 

and their expression was observed more frequently in patients with poor prognosis and metastatic 

cancers than in those with less aggressive cancers (Lastraioli, et al. 2004), suggesting a potential 

role for hERG in colorectal cancer growth.  

In breast cancer, hERG channels are expressed in various cell lines, including SK-BR-3, MCF-7, 

and MDA-MB-231 (Bianchi, et al. 1998). Wang et al. investigated the role of hERG in MCF-7 

cells and showed that arsenic trioxide induces the apoptosis of MCF-7 cells through inhibition of 

hERG channels and activation of caspase-3 (Wang, et al. 2015). In addition, hERG channels have 

been thoroughly studied in many other cancers, including esophageal, gastric, pancreatic, 

endometrial, and ovarian cancers. Ongoing findings concerning hERG channels and their functions 

in different cancers, including breast cancer, suggest importance for these channels and their 

potential use as a novel target in cancer therapy. 

1.5 miRNA definition and function 

miRNAs are small, evolutionarily conserved, single-strand non-coding RNA molecules with 

an average length of 22 nucleotides. miRNAs regulate target mRNAs negatively and post-

transcriptionally by cleaving them or just repressing their translation (Lee, et al. 1993; O'Brien, et 

al. 2018; Perron and Provost 2008). It has been shown that miRNAs tend to target and regulate the 

expression of more than one mRNA, and mRNA target can be regulated by a set of miRNAs rather 

than one specific miRNA alone. In most cases, miRNAs regulate mRNAs through binding to 
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sequence motifs in the target’s 3’UTR (Ha and Kim 2014). However, miRNAs can interact with 

other regions including the coding sequence, 5’UTR, or promoters (Broughton, et al. 2016). 

Additionally, several studies showed that miRNAs can induce gene expression under certain 

conditions (Vasudevan 2012).  

miRNAs are critical for nearly all development and growth in humans. Aberrant expression 

of miRNAs has been demonstrated to be involved in a variety of pathological processes and other 

clinically important diseases (Ardekani and Naeini 2010). Several mechanisms can lead to 

dysregulation of miRNA expression and impairment of miRNA function, including single point 

mutations in miRNAs or their corresponding targets(Lee, et al. 2011).  

1.6 miRNA biogenesis and regulation 

The biogenesis of a miRNA starts with transcription of its host gene by RNA polymerase 

II/III, then the production of a primary miRNA (pri-miRNA) that contains a local hairpin structure. 

The pri-miRNA is subsequently processed into precursor miRNA (pre-miRNA) by a 

microprocessor consisting of ribonuclease III and Drosa (Cullen 2004; Denli, et al. 2004). After 

the pre-miRNA is generated, it is exported to the cytoplasm by the exportin 5 complex, then further 

processed into a mature miRNA by the RNase III endonuclease Dicer (Chendrimada, et al. 2005). 

About half of identified miRNAs are intragenic and encoded within the introns of coding and non-

coding transcripts; relatively few are processed from the exons of protein-coding genes.  Both of 

these types of miRNA are co-expressed with and in some cases share the same promoter as the 

corresponding protein-coding sequence. Still other miRNAs are intergenic, in which they are 

transcribed from independent transcription units and regulated by their own promoters (de Rie, et 
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al. 2017). Sometimes, miRNAs are co-transcribed as a cluster; these miRNAs may have similar 

seed regions and are considered a family of miRNAs (Tanzer and Stadler 2004).   

1.7 Mechanisms of miRNA-mediated gene regulation 

Once a miRNA duplex has been generated by Dicer, it is subsequently loaded in the 

Argonaute (AGO) complex to form an effector complex known as the pre-minimal miRNA-

induced silencing complex (pre-miRISC).  After loading, the passenger strand is quickly removed 

from the miRNA duplex, resulting in mature miRISC. This complex operates by base pairing the 

miRNA with a target mRNA, with the AGO protein recruiting factors to facilitate binding and 

induce translational repression or mRNA decay (Dueck, et al. 2012). 

The recognition of a mRNA target and the specificity of binding by miRISC are based on 

Watson-Crick pairing of the miRNA’s 5’ seed region (nucleotides 2-8) to the corresponding site 

in the target mRNA’s 3’UTR (Bartel 2009).  The miRNA-mRNA interaction is also called a 

miRNA response element (MRE). The degree of MRE complementarity determines whether 

miRISC induces translational inhibition or degradation of the target mRNA. If perfectly 

complementary, the interaction between miRNA and target mRNA induces cleavage of the mRNA 

by the AGO2 endonuclease. However, the majority of miRNA-mRNA target interactions in 

animals are not perfectly complementary, which results in resistance to AGO2 endonuclease 

activity and associated degradation (Meister and Tuschl 2004; O'Brien, et al. 2018).  

While most studies have focused on miRNA mediated downregulation, evidence indicates 

that miRNAs may upregulate gene expression under some conditions. This effect can result from 

a direct interaction between mRISC and a target mRNA or indirectly through stopping miRNA-

mediated repression. Several studies have provided evidence that miRNA-mediated upregulation 
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is a result of the presence/absence of factors that are required for miRISC function. One example 

is the let-7 miRNA, which has been found to activate translation during cell cycle arrest but induce 

translational repression in proliferating cells (Vasudevan and Steitz 2007). Gene activation by 

miRNAs may also occur through interactions with regions other than the 3’ UTR, as reported in a 

study by Orom et al. in which miR-10a binds to the 5′ UTRs of ribosomal protein mRNAs, 

resulting in upregulation of these proteins (Orom, et al. 2008). These examples and many others 

indicate that miRNA-mediated upregulation can happen under some circumstances.  

1.8 Dysregulation of miRNAs in cardiovascular diseases  

miRNAs are expressed in the cardiovascular system, have been identified as critical 

regulators of cardiovascular function, and play important roles in the pathogenesis of 

cardiovascular diseases including HF, cardiac arrhythmia, myocardial infarction, atherosclerosis, 

and coronary artery disease(Romaine, et al. 2015).   

1.8.1 Dysregulated miRNAs in HF 

Mounting evidence suggests that miRNA dysregulation is associated with HF and 

comorbid pathologies. Both miR-1 and miR-210 alteration have been associated with the New 

York Heart Association Class functional classification (Endo, et al. 2013; Sygitowicz, et al. 2015). 

In addition, Andrew et al. showed that declining expression of the miRNAs let-7i, miR-18b, miR-

18a, miR-223, miR-301a, miR-652, and miR-423 are associated with increased risk of mortality 

in HF patients (Ovchinnikova, et al. 2016). Conversely, increased levels of miR-1254 and miR-

1306 are associated with death and hospitalization, while increased levels of miR-208b and miR-

499 are strongly associated with death and development of HF (Bayes-Genis, et al. 2018).    
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Deep sequencing and bioinformatics tools have been used to examine miRNA expression 

profiles in healthy and failing human hearts. In failing hearts, over 250 miRNAs were differently 

expressed; among these, miR-362-3p was found to be highly expressed in patients with refractory 

end-stage HF when compared with controls (Leptidis, et al. 2013). This finding was further 

supported in our laboratory (unpublished data). miR-362-3p expression in the left ventricular tissue 

of with HF patients with reduced ejection fraction (HFrEF) was significantly higher when 

compared to controls.  Overall there is evidence to suggest acritical role of miRNAs in HF 

pathogenesis and their potential use as a biomarker or target in HF therapy.   

1.8.2 Dysregulated miRNAs in cardiac arrhythmia  

Similar to role of miRNAs in HF, changes in circulating miRNA expression levels have 

been associated with arrhythmia. Dysregulation of miR-29 was documented in cardiac tissue and 

found to contribute to atrial fibrillation (AF) development and progression(Dawson, et al. 2013). 

Upregulation of miR-208b has been identified in human cardiac tissue with AF (Nishi, et al. 2013). 

Elevated levels of miR-483 predict the risk of post-operative AF (Harling, et al. 2017), while miR-

23a and miR-26a have been shown to contribute to the development of post-operative AF 

(Feldman, et al. 2017).  

More evidence suggests that miRNAs may regulate the protein expression of several 

important ion channels, including the L-type calcium channel, calcium voltage-gated channels, 

and the K+-inwardly-rectifying channel, subfamilyJ3 (KCNJ3).  In particular, miR-328 was 

identified to regulate cardiac protein expression of L-type calcium channel and as a result 

contribute to electrical remodeling in AF (Li, et al. 2014). Another important miRNA is miR-30d, 

which was found to regulate the expression and function of both calcium voltage-gated channels 

and K+-inwardly-rectifying channels (Morishima, et al. 2016). 
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Recently, our group has identified miR-362-3p as an important regulator of hERG channel 

expression and hERG-related current (unpublished). Its effects were assessed in cancer cells 

endogenously expressly hERG and in HL-1 cardiomyocytes which were originally derived from 

murine atrial cardiomyocytes.  At 48 hours following miR-362-3p transfection, the hERG-related 

current density was reduced in both cell lines, indicating a potential role for miR-362-3p in 

regulating hERG current in the human heart.  

1.9 Dysregulation of miRNAs in cancer 

Dysregulation of miRNA expression has been shown to affect hallmarks of cancer including 

cell proliferation, evading growth suppressors, and activating invasion and metastasis. Based on 

these effects, miRNAs have been classified as oncomirs or tumor suppressors. Upregulation of 

oncomirs promote tumorigenesis, invasion, and metastasis while the downregulation of tumor 

suppressor miRNAs contributes to initiation and progression of tumors in susceptible tissues. 

There is a long list of miRNAs that have potential roles in cancer therapy.  

As discussed previously, KCNH2 has been implicated as a potential oncogene, and recently 

was identified as a direct target of miR-96 and miR-493.  The expression of miR-96 is 

downregulated in pancreatic cancer tissues, and its ectopic expression reduces hERG expression, 

which subsequently inhibits the proliferation, migration, and invasion of pancreatic cancer cells 

(Feng, et al. 2014). Similarly, Zhi et al. demonstrated that miR-493 acts as a tumor suppressor by 

reducing hERG expression, leading to inhibition of malignant behavior in pancreatic cancer (Zhi, 

et al. 2017). These results call for further investigation and more thorough screening of mRNAs 

targeting KCNH2 in order to better understand the roles of both miRNAs and hERG channels in 

cancer.  
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1.10 Population Pharmacokinetic/Pharmacodynamics (PKPD) 

Population PK/PD studies are conducted to quantify the drug concentration and its effect on 

a population of patients. They allow explaining and predicting variability in drug concertation 

profiles, and how this variability can subsequently contribute to drug PD response. Understanding 

the source of variability helps optimization of drug regimen, and provide precise and accurate 

dosing recommendations for patients based on their own characteristics. Statistical models are 

utilized to develop of population PKPD model to enable describing drug disposition and 

corresponding effect following drug administration, and to provide some outlines of the underlying 

biological process contributing to patients’ variability in drug disposition or response.  

PK models characterize drug disposition using compartmental analysis approach. In this 

approach, the drug is assumed to be distributed uniformly in compartments which are virtual 

spaces representing the distribution of drug inside the body in which it is distributed into different 

tissues and organs. Each compartment is characterized by its clearance and apparent volume of 

distribution. The developed population PK model is then used to study and identify the source of 

specific drug variability in which identified covariates incorporated in the final model, which is 

thenceforth used for PD analysis.    

PD models on the other hand allows to relate the drug concentration at site of effect to drug 

effect (PD effect). Given the difficulty of measuring drug concentration at site of effect, plasma 

concentration measurement used and linked to PD effect, assuming no delay between drug 

concentration and PD effect, implying that drug concentration at site of action has reached an 

equilibrium with plasma. This model is the simplest model and is called a direct model. Conversely, 

when plasma drug concentration is not in equilibrium with drug concentration at site of action, a 

notable delay between concentration and response can be observed when plot effect vs plasma 
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concentration resulting in a hysteresis curve. In this situation, a more complicated model taking 

into account the detected delay in effect can be built to better describe the relationship between 

drug concentration and PD response. This model called indirect model. Either direct or indirect 

model is linked to the developed final PK model to develop a final PKPD model. The final PKPD 

model is used to identify covariates contribute to variability in PD response.  

In this work, we used nonlinear-mixed effect model (NONMEM) software to develop a 

PKPD model for ibutilide, a QT prolonging drug. This model allowed for describing the ibutilide 

disposition and its QT interval lengthening effect. The final PKPD model was eventually used to 

test and describe the contribution of identified KCNH2-miRNAs in ibutilide PD effect.  

1.11 Screening of miRNA-mRNA interaction  

The process of miRNA target identification is complex due to several reasons, including the 

ability for one miRNA to regulate a set of target mRNAs, one mRNA target potentially being 

regulated by multiple miRNAs, the sharing of common seed sequences between miRNAs, and 

incomplete knowledge of the rules governing miRNA-mRNA target binding. A number of 

techniques can be performed to determine individual miRNA-mRNA interactions and to indicate 

the ability of such an interaction to regulate targeted gene expression and function, including 

quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase reporter 

assays, and western blotting. However, these techniques are limited to characterizing a single 

miRNA-mRNA interaction. Therefore, methods for large-scale miRNA identification and 

screening have been developed to screen and identify miRNA targets.     

Crosslinking immunoprecipitation sequencing (CLIP-seq) and crosslinking, ligation, and 

sequencing of hybrids (CLASH) of isolated RNA are examples of a high-throughput identification 
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technique that has been used for transcriptome-wide mapping of miRISC-binding sites on mRNAs 

in order to identify miRNA-mRNA interactions. CLIP-seq and CLASH are very powerful 

techniques that provides insight into the location of miRNA target sites. In this work, we developed 

a novel HT-bioassay to validate the bioinformatically predicted binding of miRNAs to the 3’UTR 

of KCNH2. Unlike CLIP-seq or CLASH techniques, HT-bioassay allows to determine miRNAs 

target site with the ability to modify these target sequencing to test the influence of sequencing 

variants on miRNAs bindings. The goal is to explore and identify all miRNAs that potentially 

regulate KCNH2 expression and function under specific conditions. Coupled with population 

PKPD models, the HT-bioassay is a very strong tool for the identification of novel miRNAs that 

potentially contribute to specific drug response and may provide promising biomarkers that 

warrant further investigation.    

1.12 Research objectives: 

Specific Aim I: Identify and determine the role of miRNAs in regulating KCNH2 gene expression 

and function in cancer.  

In this aim, we utilized bioinformatics prediction tools to identify and explore the miRNAs 

that potentially target and regulate hERG channels expression and function in breast cancer cells. 

additional in-vitro assays were performed to quantify miRNAs expression and characterize their 

function in culture breast cancer cells.  

 

Specific Aim II: Investigate the contribution of miR-362-3p to drug associated QT interval 

changes in HF.  
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In this aim, we hypothesized that miR-362-3p predicts drug induced QT interval 

lengthening in HF. To test this hypothesis, a PKPD model was developed for Ibutilide to describe 

the relationship between ibutilide disposition and its PD response. The final developed model was 

further used to explore the contribution of miR-362-3p in ibutilide QT interval lengthening.    

 

Specific Aim III: Identify miRNAs regulating KCNH2 expression and function in HF. 

In this aim, we developed a novel HT-bioassay to identify all miRNAs potentially regulate 

KCNH2 gene expression and function in hiPS-CM cells.  The bioassay-identified miRNAs were 

further validated using luciferase assay and patch clamp technique.  
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 METHODS 

2.1 SPECIFIC AIM I 

Identify and determine the role of miRNAs in regulating KCNH2 gene expression and function in 

cancer cells. 

2.1.1 Bioinformatics approaches  

miRNAs predicted to regulate KCNH2 were initially identified using the miRWalk 

database (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/). miRWalk is an open-source, 

comprehensive online algorithm that generates and provides information on miRNAs and their 

predicted and validated binding sites in genes (Sticht, et al. 2018). The four default algorithms 

were used to predict miRNAs that putatively regulate KCNH2 transcripts 1a and 1b: miRWalk, 

RNA22, miRanda, and TargetScan.  Only human data were searched. The input parameters used 

the 3’ UTR as the target location and required putative miRNAs to have a minimum seed length 

of 7 and/or a p-value of 0.05.  

The predicted miRNAs were further screened using the mirCancer database 

(www.mircancer.ecu.edu) (Xie, et al. 2013), which provides a comprehensive collection of 

miRNA and gene expression profiles along with their known roles in human breast cancer. The 

combination of both databases was chosen to improve prediction accuracy and reduce false 

positives. The overlap of miRNAs identified by a prediction algorithm and having a reported 

benefit in human breast cancer in the mirCancer database was used for subsequent analysis.  

OncoLnc (http://www.oncolnc.org) was used to interactively explore survival correlations 

related to the identified miRNAs (Anaya 2016). The OncoLnc dataset contains expression data for 
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mRNAs and miRNAs coupled to clinical data for 198 patients from breast invasive carcinoma 

(BRCA) studies performed by The Cancer Genome Atlas (TCGA).  

2.1.2 Cell culture and transfection 

Human breast cancer cell lines (SK-BR-3, MCF-7) were obtained and grown in McCoy’s 

5A medium (ATCC® 30-2020™) or minimum essential medium (EMEM medium; ATCC® 30-

2003™) containing 10% (v/v) fetal bovine serum (FBS; ATCC® 30-2020™) and 

penicillin/streptomycin 1% (v/v). The SK-BR-3 line consists of TP53-mutated invasive ductal 

carcinoma cells derived from a pleural effusion and has been shown to overexpress KCNH2 (Engel 

and Young 1978).  MCF-7 is an invasive ductal carcinoma cell line derived from a pleural effusion 

and has been shown to express estrogen receptors as well as KCNH2 (Kao, et al. 2009; Soule, et 

al. 1973).  

Human embryonic kidney 293 cells stably expressing KCNH2 (HEK293-hERG) were 

obtained from Dr. Craig T. January (Zhou, et al. 1998). HEK293-hERG cells were cultured and 

grown in EMEM medium (ATCC® 30-2003™) containing 10% (v/v) fetal bovine serum (FBS; 

ATCC® 30-2020™) and penicillin/streptomycin 1% (v/v). Cells were maintained at 37○C in an 

atmosphere containing 5% CO2. 

  Negative control miRNAs, MISSION miRNAs mimics, and siRNAs were purchased from 

Sigma Aldrich® (St. Louis, MO, USA) and Santa Cruz Biotechnology (Dallas, TX, USA). Cells 

were seeded in 6-well plates for 24 hours before transfection. On the next day, cells were 

transfected with 100 µM of negative control, MISSION miRNA mimic, or siRNA in 5 µL of 

Lipofectamine 2000 (Thermo Fisher Scientific®, Waltham, MA, USA) per well. Transfected cells 

were incubated for 48 hours before the experiment was performed.   



34 
 

2.1.3 Luciferase assays 

Putative miRNAs identified through the bioinformatics approach were quantitatively 

screened for KCNH2 3’ UTR activity using Dual-Luciferase Assays (Promega, Madison, WI, 

USA). The KCNH2 3′ UTR reporter clone (pLenti-UTR-LUC) was purchased from Applied 

Biological Materials (Richmond, BC, Canada; MT-h11487). SK-BR-3 cells were plated 24 hours 

before transfection of cells with the control reporter plasmid (Renilla), 100 µM of MISSION 

miRNA mimic, or the pLenti-UTR-LUC (negative control) using 5 µL of Lipofectamine 2000 

(Thermo Fisher Scientific®, Waltham, MA, USA) per well. Forty-eight hours following 

transfection, luciferase reporter activity, which was normalized to that of Renilla luciferase in the 

same well, was measured using a 96-well plate-reader (BioTek, Winooski, VT, United States). 

The firefly luciferase activity was measured using a TD-20/20 Luminometer. Experiments were 

performed in triplicate and repeated under independent conditions. Relative luciferase activity was 

normalized to Renilla to control for transfection efficiency. 

2.1.4 Quantitative reverse transcriptase-Polymerase Chain Reaction (q-PCR) analysis 

A total of 500 ng RNA from each sample was reverse transcribed using the High Capacity 

RNA-to-cDNA Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s 

protocol. The extracted RNA was mixed with 10 µL 2x RT Buffer, 1 µL 20x enzyme mix, 1 µL 

of a mixture of random-sequence oligonucleotide primers, and 4 µL nuclease-free water.  For 

cDNA synthesis, the thermal cycler (GeneAmp® PCR System 2700, Applied Biosystems, Foster 

City, CA, USA) was programmed as follows: 37○C for 30 minutes, 95 ○C for five minutes, and the 

final holding step at 4 ○C. The TaqMan® Gene Expression Kit (Life Technology, Carlsbad, CA, 

USA) was used with the 2-ΔΔCt  method (Livak and Schmittgen 2001) to quantify expression of 
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KCNH2 mRNA 48 hours after transfection in cell lines transfected with miRNA mimics or 

negative controls (Sigma Aldrich®, St.Louis, MO, USA). Threshold cycle (Ct) values were 

determined for both KCNH2 and GAPDH. The Ct value is the PCR cycle number required for the 

fluorescent signal of PCR reaction to cross the threshold. The Ct value inversely related to the 

amount of target in the sample. GAPDH was used to normalize Ct values for KCNH2. Using the 

normalized Ct values, the relative expression was calculated as 2^-ΔΔCt as follow: 

 ΔΔCt = ((Ct KCNH2 Ct – Ct GAPDH Ct) mimic miRNAs – (Ct KCNH2 Ct – Ct GAPDH Ct) 

Control) 

The 2^-ΔΔCt was calculated to determine expression fold change.  

 Specific primers targeting either KCNH2 mRNA (Product# 4351372) or the endogenous 

control for normalization, GAPDH (Product# 4331182), were purchased from Applied Biosystems 

(TaqMan® assays, Foster City, CA, USA). The PCR reactions consisted of 1 µL cDNA, 1 µL 

specific primers, 10 µL of TaqMan® Universal Master Mix II (Applied Biosystems, Foster City, 

CA, USA), and 8 µL nuclease-free water. The QuantStudio 12K Flex Real-Time PCR system 

(Applied Biosystems, Foster City, CA, USA) was used to quantify expression changes between all 

groups, and cycling conditions were set as follows: 50 ○C for ten minutes, 95 ○C for ten minutes, 

and 40 cycles consisting of 95 ○C for 15 seconds and 60 ○C for one minute.  

2.1.5 Western blot analysis 

For the Western blot analysis, the cells were washed with phosphate- buffered salt solution 

(PBS; Thermo Fisher Scientific®, Waltham, MA, USA) and then lysed with RIPA lysis buffer 

(Beyotime, Shanghai, China). Protein concentrations were determined for each sample using the 

Bradford method with BSA (Pierce®, Rockford, IL, USA) as the standard. Protein samples were 

then fractionated on a 6-12% sodium dodecyl sulfate-polyacrylamide gradient gel (Novex® Bis-
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Tris Bolt® SDS-PAGE gel; Thermo Fisher Scientific, Waltham, MA, USA) through 

electrophoresis for 1.5 hours at a constant voltage of 125 V. The electrophoresed proteins were 

transferred to nitrocellulose membranes (Thermo Fisher Scientific®, Waltham, MA, USA) at 4 ○C 

in a 25 Mm Trisma base/190 Mm glycin/20% methanol transfer buffer for one hour at a constant 

voltage of 100 V. After one hour blocking at room temperature with 5% bovine serum albumin 

(BSA; Sigma Aldrich®, St. Louis, MO, USA) in Tris-buffered saline with 0.1% (v/v) Tween 20 

(TBST; Sigma Aldrich®, St. Louis, MO, USA), the membrane was probed with hERG-specific 

primary antibodies (Product# 12889S, Cell Signaling, Danvers, MA, USA), and primary GAPDH 

antibodies (Product# sc-47724,Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4 ○C. 

The membrane was then washed in TBST and probed with secondary antibody (Santa Cruz 

Biotechnology, Dallas, TX, USA) for one hour at room temperature. Lastly, the membrane was 

washed and then developed using Pierce ECL Western Blotting Substrate (Thermo Fisher 

Scientific, Waltham, MA, USA). The Li-Cor Odyssey imaging system was used to quantify and 

detect hERG protein expression. Images were analyzed with ImageJ®.   

2.1.6 Cell proliferation assay 

Cell proliferation was determined using the CellTiter Aqueous One Solution Cell 

Proliferation Assay (MTS; Promega®, Madison, WI, USA). Cultured cancer cells transfected with 

miR-362-3p mimic or negative control (Sigma Aldrich®, St. Louis, MO, USA) were harvested and 

seeded in 96-well plates (Coring Incorporated®, Corning, NY, USA) then dissociated into single-

cell suspensions by digestion with 0.9% trypsin for 2 min at 37 °C followed by pipetting 30 times. 

After 48 hours, the medium was replaced with 100 µl of culture medium and 20 µl of CellTiter 

Aqueous One Solution, followed by incubation for four hours at 37 °C. Finally, the absorbance 

was measured at a wavelength of 490 nm (with 630 nm as the reference wavelength) using an 
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ELISA microplate reader (Shenzhen Highcreation Technology Co®, Turku, Finland). All 

proliferation assays were repeated in triplicate. 

2.1.7 Cell cycle analysis 

Flow cytometry was used to differentiate cell cycle phases following transfection with 

MISSION mimic for miR-362-3p, MISSION mimic negative control, or KCNH2 siRNA (Sigma 

Aldrich®, St.Louis, MO, USA). Cell cycle progression was examined using propidium iodide 

staining to assess DNA amounts in the G0/G1, S, and G2/M phases of the cell cycle. Cells were 

trypsinized 48 hours following transfection, fixed and permeabilized using 70% ethanol, rinsed in 

phosphate-buffered saline (PBS; Thermo Fisher Scientific®, Waltham, MA, USA), and treated 

with RNase A. DNA was then quantitatively stained with propidium iodide for 30 minutes at room 

temperature while protected from light. Fluorescence was analyzed using a BD LSRFORTESSA 

flow cytometer and ModFit LT software.  

2.1.8 Statistical analysis 

Data were expressed as mean ± standard deviation (SD) from at least three independent 

experiments. All statistical analyses were performed using GraphPad Prism version 8.0.0 for 

Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com). Student’s t-test was 

used for comparisons of two groups.  Analysis of variance (ANOVA) was used when comparing 

more than two groups, with Bonferroni correction as a post-hoc analysis. Differences between 

groups were considered significant if the P-value was less than 0.05. Multivariate Cox regressions 

were followed by a Kaplan–Meier survival analysis for miRNA expression, with p-values 

calculated by log-rank test. 
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2.2 SPECIFIC AIM II 

Investigate the contribution of miR-362-3p to drug associated QT interval changes in HF. 

2.2.1 Study design 

The data utilized for the development of the pharmacokinetic-pharmacodynamics (PKPD) 

model were collected from a prospective, parallel-group comparative study.  The study consists of 

three groups of volunteer subjects ³ 18 years of age. The purpose was to enroll a population of 

patients with heart failure with preserved ejection fraction (HFpEF), a population with heart failure 

with reduced ejection fraction (HFrEF), and a control population matched to the HFpEF and 

HFrEF groups for age and sex. The original goal of this clinical study was to establish the influence 

of HFpEF on sensitivity to drug induced QT prolongation. Patients were excluded if have any of 

the following: weight < 60 or  > 130 kg; serum potassium < 3.8 mEq/L; serum magnesium <1.8 

mg/dL; hematocrit <26%; aspartate aminotransferase/alanine aminotransferase > 3x the upper 

limit of normal; creatinine clearance < 20 mL/minute; received any Vaughan Williams class IA or 

III antiarrhythmic agent within five half-lives of ibutilide infusion; baseline \QTc interval > 450 

ms; history of TdP; New York Heart Association class IV heart failure; personal or family history 

of congenital long QT syndrome or sudden cardiac death outside the setting of an acute myocardial 

infarction; concomitant use of any QT interval-prolonging drugs; pregnancy; permanently paced 

ventricular rhythm; any sustained arrhythmias including atrial fibrillation, 2nd or 3rd degree 

atrioventricular block, junctional rhythm; premature ventricular complexes or premature atrial 

complexes requiring treatment.  

The study consisted of two phases. First was a screening phase in which subjects stayed 12 

hours at the Indiana Clinical Research Center (ICRC). They underwent three 12-lead ECGs 
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(Marquette Mac 5500, GE Healthcare Bio-Sciences, Pittsburgh, Pennsylvania) approximately one 

minute apart at pre-specified time points that were matched during the treatment (second) phase: 

0, 15, and 30 minutes and 1, 2, 4, 6, 8, and 12 hours. In the treatment phase, blood samples and 

three baseline (pre-ibutilide) 12-lead ECGs approximately one minute apart were obtained for each 

subject. Afterward, all subjects received a single intravenous dose of ibutilide 0.003 mg/kg diluted 

in 50 ml normal saline and infused over ten minutes via infusion pump. Three ECGs 

(approximately one minute apart) and venous blood samples for determination of serum ibutilide 

concentrations were obtained serially immediately at the end of infusion and at 5, 10, 15, 20, 30, 

and 45 minutes and 1, 2, 4, 6, 8, and 12 hours’ post-infusion. The study was approved by the 

Indiana University (IU) Institutional Review Board. All patients provided written informed 

consent. 

2.2.2 QT Interval measurements and baseline QTF interval correction 

ECGs were collected before administration of ibutilide, at the end of infusion, and at 5, 10, 

15, 20, 30, and 45 minutes and 1, 2, 4, 6, 8, and 12 hours following infusion.  At least three ECGs 

were recorded per time point, 1-3 minutes apart.  QT and RR intervals were determined from leads 

II, V1, and V5 by a study investigator blinded to time and the subjects’ assigned groups. QT 

intervals were measured using the MUSE automated system (GE Healthcare Bio-Sciences, 

Pittsburgh, PA) using electronic calipers as QRS deflection to the end of the T wave. The end of 

the T wave was defined as the intersection of the steepest last limb of the presumed T wave and 

the isoelecteric line. QT and RR intervals were averaged over ³ 3 consecutive beats, and the 

average of three QT intervals was taken to obtain a single mean QT interval at each time point for 

each lead. QT intervals were corrected for heart rate using the Fridericia correction method (QTF), 

and corrected intervals were used in analyses. Time-matched QTF interval measurements from the 
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treatment phase before ibutilide administration and a pre-randomization phase without ibutilide 

were subtracted from corresponding measurements from the ibutilide phase, which allowed the 

determination of a time-matched baseline (no-ibutilide) and placebo-corrected QTF interval 

(“DDQTF”) for the PKPD model.  

2.2.3 Ibutilide concentration assays 

Blood samples (10 ml) were obtained from the indwelling catheter in the contralateral arm 

to determine serum ibutilide concentration.  Briefly, serum was separated from whole blood and 

then stored at -70°F until analysis. Serum ibutilide concentrations were determined using reverse-

phase high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS; 

Agilent 1290 HPLC, Eksiegent Autosampler, and AB Sciex 5500 MS/MS) in the IU Clinical 

Pharmacology Analytical Core Laboratory.  

2.2.4 PKPD analysis model building 

Population PK and PKPD modeling was performed with a nonlinear mixed-effects 

approach using NONMEM (Version 7.2.1, GloboMax LLC, Hanover, Maryland). Models were 

estimated using first order conditional estimation with interaction methods throughout model 

development under subroutine ADVAN 11 (TRANS 4) for the PK model and ADVAN 13 (TOL9) 

for the PKPD model. Modeling was conducted using NONMEM with Pirana software (Certara, 

Princeton, NJ, United states) as the user interface. In conjunction with Pirana software, the R 

package Xpose4 was used for generating diagnostic plots. The change in Akaike’s information 

criterion (AIC) or the objective function value (OFV), and goodness of fit diagnostic plots (GOF) 

(individual plots, residual plots, and observed versus predicted plasma concentration) were used 

to assess and select the best representative structural models. 
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2.2.4.1 Structural PK model 

The basic population PK model was developed using ibutilide serum concentrations from 

22 subjects to describe ibutilide pharmacokinetic profiles. In this analysis, both 2 and 3-

compartment models were tested. The AIC, GOF plots, and PK parameter estimates, were 

compared to ensure appropriate model selection for this study population. 

2.2.4.2 Structural PKPD model 

The population PKPD model was developed and constructed using sequential PKPD 

analysis strategies on ibutilide PK individual estimated parameters from the final PK model and 

QTF interval data. The initial structure of the PD model was determined from exploratory plots of 

DDQTF intervals. Additional exploratory plots of individual and mean DDQTF and serum ibutilide 

concentrations versus time were created to investigate possible equilibration delays. The effect of 

ibutilide concentration on the QTF interval was fitted to linear (Equation 1), Emax (Equation 2), and 

sigmoid Emax models with and without hypothetical effect compartments. The model equations are 

given below: 

E = S*C   (equation 1) 

E = E0 + Emax*Ch/EC50h+ Ch    (equation 2) 

Where E is the QTF interval lengthening, S is the slope that describes the concentration-

effect relationship, C is the serum ibutilide concentration, E0 is the baseline effect of ibutilide, Emax 

is the maximum effect of ibutilide, EC50 is the serum concentration required to produce 50% of 

the maximum effect, and h is the Hill coefficient defining the sigmoid shape of the curve. For the 

Emax model, h was 1, indicating independent drug binding. For the effect compartment model, C 

represents the ibutilide concentration in the hypothetical effect compartment.   
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2.2.4.3 Random effects 

For both PK and PD parameters, inter-subject variability was modeled using a log-normal 

distribution of the between-subject variability in population parameter estimates (Equation 3). The 

below equations were used to relate individual estimates to population estimates:  

P = TVP * exp(ηp)   (equation 3) 

Where P is the individual parameter estimate, TVP is the population estimate, and exp(ηp) 

is the inter-individual variability for parameter P. 

The residual unexplained variability (RUV) (ε) was tested using additive, proportional, and 

combined models as described in equations 4, 5, and 6. The ε was assumed to be normally 

distributed with a mean of zero and a variance of σ2. For the final PK model, a proportional error 

term (equation 5) was chosen, whereas for the final PKPD model, an additive error term (equation 

4) was utilized. Below are the equations for tested residual error models. 

Additive error model: Y= IPRED + e2  (equation 4) 

Proportional error model: Y= IPRED + IPRED*e  (equation 5) 

Combined error model: Y= IPRED + IPRED*e1  + e2  (equation 6) 

Where Y is the observed concentration, IPRED is the individual predicted concentration, 

and e1 and e2 are additive and proportional error, respectively.   The final PK/PKPD model was 

developed in two steps: first, building the basic structural PK/PKPD model that describes the 

disposition of ibutilide for PK mode, or the ibutilide-DDQTF relationship, followed by selection of 

the significant covariates to be included in the final model.  
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2.2.5 Covariate analysis 

The potential contributions of individual specific covariates to the observed variability in 

the pharmacokinetics of ibutilide, and in the ibutilide induced QTF interval lengthening were 

evaluated using the structural base model. Potential tested covariates included individual age, sex, 

weight, race, and heart failure status (HFpEF or HFrEF) for both PK and PKPD models. In addition, 

miR-362-3p expression was tested as a potential predictor of ibutilide induced QTF interval 

lengthening in the PKPD model. Covariates were considered significant if the difference in OFV 

(DOFV) between the structural model and the covariate model was greater than 3.84, a=0.05. 

Covariates were tested and incorporated based on DOFV magnitude; only significant covariates 

were used for stepwise forward addition to develop the final model. The final model was then 

assessed using stepwise backward elimination. Covariates were removed from the model if DOFV 

> 7.88, a=0.05. Additive, proportional, and exponential inter-individual variability structure 

models for continuous covariates, and binary string structure models for categorical covariates, 

were tested as follows: 

2.2.5.1 Continuous covariates 

Additive model: P = THETA1+ (COV-COV median) *THETA2         (equation 7) 

Proportional model: P = THETA1 *(COV/COV median)**THETA2  (equation 8) 

Exponential model: P = THETA1 *EXP(COV*THETA2)                   (equation 9) 

2.2.5.2 Categorical covariates 

Binary string model: P = THETA1*COV+THETA2*(1-COV)        (equation 10)                  
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Where P is the individual value of the parameter, THETA1 represents the population value 

of the parameter estimate, COV is the covariate, and THETA2 is an estimated parameter describing 

the magnitude of the COV-parameter relationship. 

2.2.6 Model evaluation 

Adequacy of model fit was evaluated by assessing individuals predicted versus observed 

concentrations and weighted residuals versus predicted concentrations. The predictive 

performance of the final model on the observed data was evaluated through visual predictive 

checks (VPC) using xpose in R. The final model stability and its precision in estimating PK 

parameters were evaluated using bootstrapping with Pirana for NONMEM software. The median 

and 95% confidence intervals of final model parameter estimates obtained from bootstrap were 

compared with final model parameter estimates.  

2.2.7 Simulations 

The effects of miR-362-3p expression on ibutilide-induced DDQTF interval lengthening 

were evaluated through Monte Carlo simulations performed in NONMEM using the final 

population PKPD model with covariates. For each miR-362-3p expression group, 1000 patients 

were simulated.  

2.2.8 Statistical analysis 

Data was expressed as mean ± standard deviation (SD). All statistical analyses were 

performed using GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, CA, 

USA, www.graphpad.com). Analysis of variance (ANOVA) was used when comparing more than 
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two groups, with Bonferroni correction as a post-hoc analysis. Differences between groups were 

considered significant if the P-value was less than 0.05.  

2.3 SPECIFIC AIM III 

Identify miRNAs regulating KCNH2 expression and function in HF.  

A miRNA screening bioassay was developed to validate the putative binding of miRNAs 

to the KCNH2 3’ UTR. This HT-bioassay was adapted from the PASSPORT-seq assay originally 

developed by Ipe et al. to functionally test polymorphisms in miRNA target sites (Ipe, et al. 2018). 

Figure 2.1 summarizes assay development. The ability of validated miRNAs to regulate KCNH2 

expression was further evaluated utilizing different assays as described below. 

2.3.1 Experimental groups 

Three experimental groups were used in this assay as follow: βAR Group: Sustained βAR 

stimulation with isoproterenol 1.0 µM for 48h; CaMKII Group: Transfected with activated 

CaMKII; Control Group: Treated with vehicle.  All experiments were conducted in hiPS-CMs. 

 

 

 

 

 



 
 

  

Figure 2:1. Approaches to identify potential miRNAs binding sites regulating hERG expression and function. This figure illustrates the modes 
used in this work to identify miRNAs that regulate hERG.   
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2.3.2 High throughput bioassay analysis 

2.3.2.1 Identification of putative miRNAs and corresponding binding sites in KCNH2 mRNA  

miRNAs predicted to regulate KCNH2 were initially identified using the miRWalk 

database (Sticht, et al. 2018). The four default algorithms were used to predict miRNAs that 

putatively regulate KCNH2 transcripts 1a and 1b: miRWalk, RNA22, miRanda, and TargetScan.  

Only human data were searched. The input parameters used the 3’ UTR as the target location and 

required putative miRNAs to have a minimum seed length of 7 and/or a p-value of 0.05.  

Fragments (35 bp) of the KCNH2 3’ UTR containing binding sites for each putative 

miRNA identified from miRWALK and TargetScan were synthesized and sequenced. Each 

binding site fragment started 5 bp before the seed region (seed region length ~8bp) and ended 22 

bp after the seed region.  

2.3.2.2 miRNA Target Sequence Fragment Design  

A total of 327 miRNA target site sequence fragments were identified and used for the HT-

bioassay analysis. Each fragment was flanked by universal primers, in which 

GCCGTGTAATTCTAGGAGCTC was added to the fragment start and 

CGTTCTAGAGTCGGGC to the end. The final test fragments were 73 nucleotides in length 

(Figure 2.2). All miRNAs target fragments were commercially synthesized as pooled single-

stranded DNA oligonucleotides (OligomixR , LC Sciences, Houston, TX, United States). The pool 

contained 10–50 attomoles of each sequence. One µL of the diluted OligomixR (1:5) was made 

double-stranded and amplified in a 50 µL PCR reaction using 0.3 µM universal primers and 25 µL 
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2X CloneAmpTM HiFi PCR premix (Takara, Mountain View, CA, United States). The PCR 

conditions used were: 98 °C (10 s), 53 °C (5 s), and 72 °C (5 s) for 35 cycles.  

 
 

2.3.2.3 Plasmid library preparation  

Plasmids containing the miRNA target sites were constructed from the pIS-0 vector 

(plasmid 12178; Addgene, Cambridge, MA, United States) (Yekta, et al. 2004). Briefly, 2 µL of 

PCR product containing the double-stranded oligoneuclotide pool was mixed with 40 ng of 

linearized plasmid using the NEBuilderR HiFi DNA assembly kit (New England Biolabs, Ipswich, 

MA, United States). Competent Escherichia coli (E. Coli) Cells were transformed with 2 µL of  

the plasmid using the heat shock method and plated on 20 LB-agar plates containing 100 µg/ml 

ampicillin. All colonies were harvested after overnight incubation, pooled together in LB broth, 

and incubated for 5 h at 37 °C. The plasmid DNA was then isolated and purified using QIAprepR 

Spin miniprep columns (Qiagen, Germantown, MD, United States) as per manufacturer’s 

Figure 2:2. miRNA target fragment diagram 
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instructions. The final plasmid DNA concentration was quantified using a Quant-iTTM DNA 

Broad Range kit (Thermo Fisher Scientific, Waltham, MA, United States). 

2.3.2.4 Sanger sequencing 

Twenty randomly-selected colonies transformed with plasmids from the target fragment 

library were harvested and separately grown in LB broth containing 100 µg/ml ampicillin. The 

final plasmid DNA was isolated using QIAprepR Spin miniprep columns (Qiagen, Germantown, 

MD, United States) as per manufacturer’s instructions. The plasmid DNA was then Sanger 

sequenced using a primer (GTGGTTTGTCCAAACTCATC) with complementary sequence near 

the miRNA target sequence insert (ACGT, Inc., Wheeling, IL, United States). 

2.3.2.5 Transfection of cells in culture  

The plasmid library was used to transfect hiPS-CMs cells (Cellular Dynamics, Madison, 

WI, United States). The cells were thawed and maintained in 12-well plates for four days per 

manufacturer’s instructions. On day four, the cells were transfected with 600 ng/well of the 

plasmid library and 600 ng/well of CAMKII plasmid or empty vector. Transfection was performed 

using 4 µL of ViaFect transfection reagent (Promega, Madison, WI, United States) and 50 µL 

transfection mix in Opti-MEMR (Life Technologies, Carlsbad, CA, United States).  

2.3.2.6 RNA isolation and cDNA synthesis  

Total RNA was isolated from transfected hiPS-CMs cells after 48 hours using a RNeasyR 

purification kit with the optional DNase treatment (Qiagen, Germantown, MD, United States). 

Isolated RNA was quantified using the Quant-iTTM RNA Broad Range kit (Thermo Fisher 
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Scientific, Waltham, MA, United States), and reverse transcribed to make cDNA using the 

QuantiTectR Reverse Transcription kit (Qiagen, Germantown, MD, United States). 

2.3.2.7 Molecular barcoding 

 Each experiment group contained four biological replicates. Using cDNA synthesized 

from the hiPS-CMs transfected cells, miRNA binding site inserts were amplified in 50 µL PCR 

reactions using 0.3 µM flanking universal primers and 25 µL 2X CloneAmpTM HiFi PCR premix 

(Takara, Mountain View, CA, United States). Inserts from the input plasmid pool were also 

amplified. PCR conditions were set as follows: 98 °C (10 s), 54 °C (5 s), and 72 °C (5 s) for 25 

cycles. To ensure that transfection and isolation of the plasmids  were successful in hiPS-CMs 

cells, the final PCR product was confirmed by agarose gel electrophoresis (Figure 2.3). The 

presence of multiple bands indicating that there are some plasmids with duplicate inserts. Bands 

that represent single inserts are indicated by the blue arrow. The plasmid with more than one insert 

was informatically removed. 

2.3.2.8 Next-generation sequencing 

The miRNA binding sites were amplified using universal primers that incorporated unique 

6-nt barcodes on the 5’ end, as displayed in Table 2.1. All groups were given different sets of 

barcodes, including their biological replicates, allowing them to be pooled together and with the 

input plasmid library for sequencing. Sequencing was performed using an ion-proton sequencing 

system. Expression of miRNAs was assessed in the treatment groups with their respective binding 

sites through sequencing of RNA and cDNA isolated from the transfected hiPS-CMs cells. The 

reads from each treatment group, including biological replicates, were grouped based on barcodes. 
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The effect of treatment was determined by comparing read numbers between groups. Read 

numbers were normalized to the input plasmid pool to ensure precise RNA-seq analysis. 

2.3.3 Electrophysiology 

A set of whole-cell recordings of IKr current were performed in HEK293-hERG cells using 

a HEKA® EPC 9 amplifier in voltage-clamp mode. All functional experiments were performed at 

room temperature. Data were recorded and analyzed with HEKA® Patchmaster and Fitmaster 

software. Currents were recorded using two silver electrodes, in which a reference electrode was 

placed in the bath solution and a patch electrode inside the glass micropipette filled with the 

internal solution. The micropipette tip moved toward the cell membrane, allowing for a high 

resistance seal (~1 GΩ) between the cell membrane surface and the micropipette tip. This seal is 

referred to as a gigaseal. Gentle suction was applied to break the membrane patch enclosed by the 

micropipette tip and allow whole cell access.  

2.3.3.1 Electrophysiology solutions and chemicals 

The electrophysiology solutions were prepared to mimic the physiologic intracellular and 

extracellular environments of cells, with potassium concentration being higher inside the cell. At 

the time of recording, the cell culture medium was replaced with the external (bath) solution, which 

contained (in mM): 137 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose (Sigma 

Aldrich®, St. Louis, MO, USA), with pH adjusted to 7.4 using NaOH. The patch pipette was filled 

with internal solution, which contained (in mM): 130 KCl, 1 MgCl2, 10 HEPES, 5 Mg-ATP, and 

5 EGTA (Sigma Aldrich®, St. Louis, MO, USA), with pH adjusted to 7.2 using KOH. The 

osmolarity of each solution ranged between 285-295 milliOsm/L.  
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2.3.3.2 Experimental protocols 

The effects of bioassay miRNAs on hERG channel conductivity were assessed through 

measurement of IKr inward tail currents via a voltage clamp protocol in miRNA-transfected cells 

and control cells 48 hours following transfection. Membrane voltage was increased from a holding 

potential of -80 mV to +60 mV using one-second depolarizing steps, followed by a series of five-

second repolarizing steps between -100 mV and +40 mV to elicit tail current. 

  

 

Figure 2:3. cDNA of miRNAs target site fragments on agarose gel. This figure illustrates the band 
that contains amplified cDNA of miRNA target site insert after successful transfection. The band 
of interest is indicated by blue arrow in which the fragment is single and 85 bp in length.  
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Table 2.1. Barcode & primers sequences used to prepare plasmid library. 

Sample# Group  5’ Barcode and Primer (27 nt) 3’ Barcode and Primer* (25 nt) 

1 ISO (1) GTAGAGGCCGTGTAATTCTAGGAGCTC GTTAGTCGTTCTAGAGTCGGGGC 

2 ISO (2) TAACCCGCCGTGTAATTCTAGGAGCTC TACAGACGTTCTAGAGTCGGGGC 

3 ISO (3) TAGAACGCCGTGTAATTCTAGGAGCTC TATGCCCGTTCTAGAGTCGGGGC 

4 ISO (4) TCAAAGGCCGTGTAATTCTAGGAGCTC TCCATACGTTCTAGAGTCGGGGC 

5 CTR (1) TCGATTGCCGTGTAATTCTAGGAGCTC TCTACCCGTTCTAGAGTCGGGGC 

6 CTR (2) TGCTAGGCCGTGTAATTCTAGGAGCTC TGAACCCGTTCTAGAGTCGGGGC 

7 CTR (3) TTCGAAGCCGTGTAATTCTAGGAGCTC TTAACGCGTTCTAGAGTCGGGGC 

8 CTR (4) AAACACGCCGTGTAATTCTAGGAGCTC TTCTGGCGTTCTAGAGTCGGGGC 

9 CAMK (1) TAAGACGCCGTGTAATTCTAGGAGCTC TGCTCACGTTCTAGAGTCGGGGC 

10 CAMK (2) TGGGATGCCGTGTAATTCTAGGAGCTC TCTTAGCGTTCTAGAGTCGGGGC 

11 CAMK (3) TCTGCTGCCGTGTAATTCTAGGAGCTC AAGAACCGTTCTAGAGTCGGGGC 

12 CAMK (4) AACGGTGCCGTGTAATTCTAGGAGCTC AACTTCCGTTCTAGAGTCGGGGC 

13 INPUT AATGTGGCCGTGTAATTCTAGGAGCTC GCAGAACGTTCTAGAGTCGGGGC 

ISO= hiPS-CMs cells treated with isoproterenol, CTR= Control, CAMKII= hiPS-CMs cells 
transfected with a plasmid containing active Calcium/calmodulin-dependent protein kinase II.  
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 RESULTS 

3.1 SPECIFIC AIM I 

Identify and determine the role of miRNAs in regulating KCNH2 gene expression and function in 

cancer cells.  

In this aim, we utilized bioinformatics prediction tools to identify and explore the miRNAs 

that potentially target and regulate the expression and function of hERG channels in breast cancer. 

The putative miRNAs were screened and validated using dual luciferase assays. The expression 

levels of validated miRNAs were further assessed in cultured breast cancer cells, and in data for 

patients with breast cancer. Of the five miRNAs, miR-362-3p was confirmed to significantly 

regulate KCNH2 expression and its expression positively correlated with overall patient survival.  

3.1.1 microRNAs predicted to regulate KCNH2 channels 

The number of miRNAs predicted to bind KCNH2 were: 432 by miRWalk, 266 by 

miRanda, 436 by RNA22, and 432 by TargetScan. To minimize false positive predictions, these 

sets were intersected with the miRcancer database, which contains 256 dysregulated miRNAs that 

have been previously associated with beneficial effects in breast cancer. Among these 256 

miRNAs, five (miR-199b-5p, miR-362-3p, miR-494-3p, miR-497-5p, and miR-625-5p) were 

predicted by at least one algorithm to regulate the KCNH2 3’UTR (Table 3.1).  Two of these (miR-

362-3p & miR-625-5p) were predicted to bind KCNH2 by at least two of the prediction algorithms. 



 
 

Table 3.1. Bioinformatics approaches to identified miRNAs predicted KCNH2 binding with known beneficial effect in breast cancer. 

 miRWALK database 
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/) 

Prediction algorithms miRWALK miRANDA RNA22 Targetscan 

Putative miRNAs identified by 
each algorithm 

432 miRNAs 266 miRNAs 436 miRNAs 375 miRNAs 

mirCancer database 256 miRNAs associated with benefit in human breast cancer 

KCNH2-putative miRNAs 
associated with breast cancer 
benefits (mirCancer database) 

miR-494-3p 

miR-497-5p 

miR-625-5p 

miR-362-3p miR-625-5p 

miR-199b-3p 

miR-362-3p 

miR-625-5p 

miRNAs identified by at least 2 
algorithms 

miR-362-3p 
miR-625-5p 
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3.1.2 Lower expression of miR-362-3p is associated with longer survival in breast cancer 

Kaplan–Meier survival analyses were performed using the OncoLnc online tool to examine 

the strength of association between the expression of five putative KCNH2-regulating miRNAs 

(miR-199b-5p, miR-362-3p, miR-494, miR-497, and miR-625-5p) and clinical outcomes in the 

form of survival data from The Cancer Genome Atlas-Cancer Genome (TCGA). Expression 

distributions of the five miRNAs in breast cancer patients (n = 988) are presented in Figure 3.1. 

To examine the influence of these miRNAs on survival, survival rates were compared by log-rank 

test between patients with the highest expression (90th percentile; n = 98) and those with the lowest 

expression (10th percentile; n = 98). Patients with low miR-362-3p expression had significantly 

reduced survival rates (HR: 0.39, 95% CI: 0.18 to 0.82, P = 0.012), as displayed in Figure 3.2. For 

the other four miRNAs, no statistically significant difference in overall survival was found 

between patients with low and high expression, including for miR-625-5p (HR: 0.93, 95% CI: 0.43 

to 2, P = 0.36), which was the only other miRNA predicted by more than algorithm.



 
 

 

Figure 3:1. Histogram of miRNA expression. This figure represents expression of miRNA-199b-5p, miR-362-3p, miR-494-3p, miR-
497-5p, and miRNAs-625-5p in 988 breast cancer patients from The Cancer Genome Atlas-Cancer Genome (TCGA) database.   

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

m iR -3 6 2 - 3 p

E x p r e s s io n

R
e

la
ti

v
e

 f
r

e
q

u
e

n
c

y
 (

fr
a

c
ti

o
n

s) F r e q u e n c y

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6

0 .0

0 .1

0 .2

0 .3

0 .4

 m iR - 6 2 5 -3 p

E x p r e s s io n

R
e

la
ti

v
e

 f
r

e
q

u
e

n
c

y
 (

fr
a

c
ti

o
n

s) F r e q u e n c y

0
1 0 0

2 0 0
3 0 0

4 0 0
5 0 0

6 0 0
7 0 0

8 0 0
9 0 0

1 0 0 0
1 1 0 0

1 2 0 0
1 3 0 0

1 4 0 0
1 5 0 0

1 6 0 0
1 7 0 0

0 .0

0 .1

0 .2

0 .3

m iR -1 9 9 b -5 p

E x p r e s s io n

R
e

la
ti

v
e

 f
r

e
q

u
e

n
c

y
 (

fr
a

c
ti

o
n

s) F r e q u e n c y

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

m iR -4 9 4 - 3 p

E x p r e s s io n

R
e

la
ti

v
e

 f
r

e
q

u
e

n
c

y
 (

fr
a

c
ti

o
n

s) F r e q u e n c y

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
1 0 0

1 1 0
1 2 0

1 3 0
1 4 0

1 5 0
1 6 0

1 7 0

0 .0

0 .1

0 .2

0 .3

0 .4

m iR -4 9 7 - 5 p

E x p r e s s io n

R
e

la
ti

v
e

 f
r

e
q

u
e

n
c

y
 (

fr
a

c
ti

o
n

s) F r e q u e n c y

 57 



 
 

 

Figure 3:2. Kaplan-Meier survival curves for expression of the identified miRNAs in breast cancer.  (A) Survival data of patients 
highly expressing miR-199b-5p (647±184) versus those with low expression (49.6±17.9). (B) Survival data of patients highly 
expressing miR-362-3p (5.9±2.8) versus those with low expression (0.01±0.05). (C) Survival data of patients highly expressing miR-
494-3p (6.19±3.88) versus those with low expression (0±0). (D) Survival data of patients highly expressing miR-497-5p 
(73.15±24.27) versus those with low expression (6.52±1.74). (E) Survival data of patients highly expressing miR-625-5p 
(12.28±5.22) versus those with low expression (0.45±0.3). Only patients with low expression of miR-363-3p had significantly 
shorter overall survival rate than their counterparts with high expression by log-rank test (HR: 0.39, 95% CI: 0.18 to 0.82, P = 0.012).
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3.1.3 miR-362-3p decreases KCNH2 3’UTR activity 

The five putative KCNH2-regulating miRNAs (miR-199b-5p, miR-362-3p, miR-494, miR-

497 and miR-625-5p) were screened for KCNH2 3′ UTR activity using luciferase assays (Figure 

3.3A). miR-362-3p significantly decreased luciferase activity (10% ± 2.3, P < 0.001) when 

compared to cells transfected with luciferase plasmid alone, while the four other miRNAs did not 

reduce luciferase activity, including miR-625-5p  (0.66% ± 3.56, P = 0.55).  

3.1.4 miR-362-3p decreases KCNH2 expression in breast cancer cells 

Based on the results of the bioinformatics approach, survival analysis, and luciferase 

screening, miR-362-3p was selected for additional screening to verify its regulation of KCNH2. 

Both SK-BR-3 and MCF-7 cancer cells have been reported to express KCNH2. miR-362-3p and 

KCNH2 siRNA (positive control) significantly decreased KCNH2 mRNA expression in SK-BR-3 

cells, by 15.9% ± 6.0 (P < 0.001, n = 3) and 42.3% ± 4.0 (P = 0.01, n = 3) respectively. Similarly, 

miR-362-3p and KCNH2 siRNA significantly decreased KCNH2 mRNA expression in MCF-7 

cells, by 25.7% ± 11.1 (P = 0.02, n = 3) and 23.7% ± 6.4 (P = 0.03, n = 3) respectively. Screening 

results are displayed in Figure 3.3B. 
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Figure 3:3. (A) Luciferase assay screening of the five putative KCNH2-regulating miRNAs. Only miR-
362-3p significantly reduced KCNH2 3’ UTR activity (10% ± 2.3, P < 0.001). (B) The effect of miR-
362-3p on KCNH2 expression in SK-BR-3 and MCF-7 cells. Both miR-362-3p and the positive control 
significantly decreased KCNH2 mRNA in both cell lines (SK-BR-3: 15.9%, P < 0.001 and 42.3%, P = 
0.01; MCF-7: 25.7%, P = 0.02 and 23.7%, P = 0.03). Experiments were performed as biological 
triplicates; error bars depict standard error of means; asterisks denote significance. 
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3.1.5 Effect of miR-362-3p on hERG protein expression 

Relative to GAPDH, miR-362-3p decreased immature endogenous hERG (0.18 ± 0.03 to 

0.08 ± 0.01, P = 0.038, n=3) by an average of 47%, and mature (i.e. fully glycosylated) endogenous 

hERG (0.16 ± 0.03 to 0.08 ± 0.01, P = 0.0369, n=3) by an average of 51%, as shown in Figure 4A 

and 4B. 
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Figure 3:4: (A) Representative protein immunoblots of mature and immature hERG following 
transfection with miR-362-3p or negative control in SK-BR-3 cells. (B) Mature and immature 
hERG protein expression was decreased following miR-362-3p expression in SK-BR-3 cells. 
Experiments were performed as biological triplicates; error bars depict standard error of means; 
asterisks denote significance.   
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3.1.6 miR-362-3p decreases cell proliferation in breast cancer cell lines 

The role of miR-362-3p in cell proliferation was explored by performing MTS assays in 

both SK-BR-3 and MCF-7 cancer cells. The assay was performed 48 hours following transfection 

with a miR-362-3p mimic or negative control. As shown in Figure 3.5, miR-362-3p significantly 

decreased proliferation of SK-BR-3 cells (23% ± 8.68, P = 0.014, n = 3) when compared with 

control wells.  A similar effect was observed in MCF-7 cells (11.7% ± 1.0, P < 0.001, n = 3). 

 

 

 

 

 

 

Figure 3:5. Effect of miR-362-3p on proliferation of SK-BR-3 and MCF-7 cells. 
Proliferation was significantly reduced in transfected cells when compared to negative 
controls. Experiments were performed as biological triplicates; error bars depict standard 
error of means; asterisks denote significance. 
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3.1.7 miR-362-3p and KCNH2 siRNA significantly increased the proportion of MCF-7 breast 

cancer cells in G0/G1 phase  

To elucidate the effect of miR-362-3p on the cell cycle, the effects of miR-362-3p on SK-

BR-3 and MCF-7 cells were assessed. miR-362-3p did not significantly increase the accumulation 

of cells in G0/G1 phase in SK-BR-3 cells with an average increase of 5.8% (from 59.6% ± 0.12 to 

63.0 ± 0.74, P = 0.06, n = 3) when compared to control group. However, KCNH2 siRNA decreased 

the accumulation of cells in G0/G1 phase in SK-BR-3 cells by 5.13% (from 59.6% ± 0.12 to 56.3 

± 0.73, P = 0.006, n = 3) as displayed in Figure 3.6A. On the other hand, miR-362-3p significantly 

increased the accumulation of cells in G0/G1 phase in MCF-7 cells by 11.7% (from 51.1% ± 0.64 

to 57.1 ± 0.96, P = 0.002, n = 3) when compared to control. Additionally, siRNA KCNH2 behaved 

similar to miR-362-3p, in which KCNH2 siRNA increased cells count in G0/G1 phase by 10% 

(from 51.1% ± 0.64 to 56.8 ± 0.96, P < 0.001, n = 3) (Figure 3.6B).   

 

 

 

 

 

 

 

 

 



 
 

Figure 3:6. Effects of miR-362-3p on cell cycle in SK-BR-3 (A) and MCF-7 (B) cells 48 hours’ post-transfection. Experiments were performed 
as biological triplicates with error bars depicting standard error of means. asterisks denote significance. 
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3.2 SPECIFIC AIM II 

In specific Aim I, miR-362-3p was identified as a regulator of hERG expression and function 

in cultured breast cancer cells. In addition, our laboratory has previously shown that miR-362-3p 

is expressed in cardiac tissue and up-regulated in cardiac tissue in patients with heart failure. Therefore, 

the objective of Specific Aim II was to investigate the contribution of miR-362-3p to drug-

associated QTC interval lengthening in heart failure.   

The hypothesis tested was that miR-362-3p predicts patient sensitivity to drug-induced QTc 

interval lengthening in patients with heart failure. To test this hypothesis, a population PKPD 

model was developed from a clinical study to determine the influence of several covariates, 

including miR-362-3p expression and heart failure status, on drug-associated QTc interval 

lengthening in heart failure patients.  

3.2.1 Participant demographics and characteristics 

 A total of 22 patients met the study inclusion and exclusion criteria and were enrolled in 

the three groups (HFpEF n=10, HFrEF n=2, and control n=10). A total of 1440 ibutilide 

concentrations and QT interval observations were collected from subjects who completed the study 

(n = 22) and included in the final analysis. The characteristics of the study patients are summarized 

in Table 3.2.  
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Table 3.2. Study population characteristics. 

Characteristics HFrEF (n=2) HFpEF (n=10) Control (n=10) 

Males 1 (50) 3 (30) 3 (30) 

White 1 (50) 7 (70) 8 (80) 

African American  1 (50) 3 (30) 2 (20) 

Age (years) 67 ± 1 69 ± 8 67 ± 9 

Body Weight (Kg) 87.3 ± 3 89.7 ± 13 82.2 ± 12 

Ibutilide dose (mg) 0.26 ± 0.01 0.27 ± 0.04 0.25 ± 0.04 

Concurrent diseases    

- Hypertension 2 (100) 8 (80) 6 (60) 

- Coronary artery disease 2 (100) 3 (30) 1 (10) 

- Diabetes mellitus 1 (50) 5 (50) 2 (20) 

- Hyperlipidemia 2 (100) 5 (50) 6 (60) 

Concomitant medications    

- ACE inhibitors/ARBs 2 (100) 7 (70) 3 (30) 

- Loop diuretics 2 (100) 7 (70) 2 (20) 

- β-blockers 2 (100) 8 (80) 2 (20) 

- Statins 2 (100) 5 (50) 4 (40) 

Data presented as n (%) or mean ± SD.  
HFpEF = heart failure with preserved ejection fraction, HFrEF = heart failure with reduced 
ejection fraction, ACE = angiotensin-converting enzyme, ARB = angiotensin receptor 
blocker. 
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3.2.2 Population PK model 

A structural pharmacokinetic model was developed to describe the disposition of ibutilide 

following IV infusion (Figure 3.7). Ibutilide disposition was best described by a 3-compartment 

model with first-order elimination from the central compartment. Compared to a 2-compartment 

model, the 3-compartment model AIC was decreased by 63 (-1210 vs -1147). Its residual error 

was best described as a proportional residual error model, as other residual error models did not 

improve model performance (DOFV < 3.84). Therefore, a 3-compartment model with first order 

elimination and proportional residual error was selected as the base structural model. Population 

parameter estimates for the base model were: clearance (CL) = 240 L/hr, volume distribution of 

central compartment (VC) = 40.3 L, volume distribution of peripheral compartment 1 (VP1) = 78.5 

L, and volume distribution of peripheral compartment 2 (VP2) = 1120 L. Inter-individual and 

residual variabilities are summarized in Table 3.3.  

To explore all covariate relationships, each covariate was first tested independently as 

shown in Table 3.4. None of the covariates tested were found to have a significant impact on any 

of the PK parameters. Therefore, the base structural model was determined to be the final PK 

model. GOF diagnostic plots for the final model comparing individual and population predictions 

against measured concentrations are shown in Figure 3.8. The weighted residuals were 

approximately normally distributed and displayed an even distribution around zero and mostly 

within two units of the null ordinate. All individual plots for the final PK model are illustrated in 

Figure 3.9.  
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Figure 3:7. Ibutilide serum concentration over time for all patients included in the analysis (n=22). 
Data presented with mean ± SD.   
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Table 3.3. Final model and bootstrap parameter estimates for the population pharmacokinetic 
model of ibutilide. 

Parameter Population Estimates Bootstrap Estimates (95 CI%) 

CL, L/hr 240 242 (210, 276) 

CLic1, L/hr 227 220 (179, 270) 

CLic2, L/hr 407 414 (366, 467) 

Vc, L 40.3 
 

VP1, L 78.5 
 

VP2, L 1120 1112 (946, 1300) 

ω Cl % 31.6 30.9 (22.1, 39.7) 

ω Cl ic1 % 34.8 31.6 (10.2, 47.8) 

ω Cl ic2 % 19.5 18.2 (0.7, 24.5) 

ω Vc % 10 
 

ω VP1 % 47.9 
 

ω VP2 % 36.7 34.8 (20.5, 45.1) 

σ PROP % 16.1  16.2 (14.3, 18.1) 

CL = systemic clearance, CLic1 = intercompartmental clearance 1, CL ic2 = 
intercompartmental clearance 2, VC = volume distribution of central compartment, VP1 = 
volume distribution of peripheral compartment 1,  VP2= volume distribution of peripheral 
compartment 2, ω = inter-individual variability (omega), σ = residual variability (sigma), 
PROP = proportional, CI = confidence interval. 
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Table 3.4. Summary of PK covariate model analysis. 

PK model OFV D OFV P-value 

Base model -1262   

Base model + WT on CL -1263 -1 ns 

Base model + WT on Vc -1244 18 ns 

Base model + WT on Vp1 -1263 -1 ns 

Base model + WT on Vp2 -1264 -2 ns 

Base model + AGE on  CL -1264 -2 ns 

Base model + SEX on CL -1258 4 ns 

Base model + RACE on CL -1263 -1 ns 

Base model + HF on CL -1264 -2 ns 

ΔOFV is the difference in objective function values between base and covariate 
model. CL = systemic clearance, VC = volume distribution of central 
compartment, VP1 = volume distribution of peripheral compartment 1, VP2 = 
volume distribution of peripheral compartment 2, WT = weight, HF = heart 
failure, ns = not significant. 
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Figure 3:8. Goodness of fit for the final PK model. (A) Observed concentration vs. 
individual predicted concentration. (B) Observed concentration vs. population predicted 
concentration. (C) Conditional weighted residuals (CWRES) vs. population predicted 
concentration. (D) CWRES vs. time (hour) 
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Figure 3:9. Individual GOF plots from the final PK model. Open blue circles are observed serum 
concentrations. Solid lines are individual predicted drug concentrations.  
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3.2.4 PK final model evaluation 

The predictive performance of the model was assessed using VPCs that were generated 

with the final PK model. Model predictive performance was determined to be adequate as most 

observed data points were included in the 90% prediction interval (5th-95th percentiles) of the 

model (Figure 3.10). Additionally, the final population PK parameter estimates for both fixed-

effect and random-effect parameters were in very close agreement with the corresponding median 

estimates derived from bootstrapping, indicating model robustness and precision of the final 

parameter estimates (Table 3.3). 

 

Figure 3:10. Visual predictive checks (VPCs) for the final PK model. The figure illustrates the 
relationship of observed ibutilide serum concentration (ng/mL) with time (hour). Observed serum 
concentrations are represented by open blue circles. The solid red line represents the median observed 
plasma concentration while the semitransparent red field represents the corresponding predicted 95% 
confidence interval for the simulated ibutilide concentration median. The dashed red lines represent 
the 5th and 95th percentiles, while the semitransparent blue field represents the 95% confidence interval 
for the corresponding predicted percentiles. 
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3.2.5 Population PKPD model 

The PD dataset consisted of 176 ΔΔQTF observations from 22 subjects. The initial PD 

model structure was determined based on ΔΔQTF-ibutilide concentration exploratory plots. The 

ΔΔQTF-ibutilide concentration relationship demonstrated a counterclockwise hysteresis loop in 

most patients suggesting a delay effect as illustrated in the representative plots in Figure 3.11.  

First, the concentration-response relationship was characterized by testing several models 

with or without an intercept term (α), including linear, Emax, and sigmoid models. Both direct and 

effect compartment models were evaluated, with the effect compartment model best describing the 

delay observed between serum ibutilide concentration and ΔΔQTF intervals. According to changes 

in AIC and improved GOF plots, the lengthening of ΔΔQTF interval following ibutilide 

administration was best explained by an Emax model with intercept and an effect compartment, 

which was therefore utilized as the structural base model. An intercept term was introduced to the 

model to enhance stability by permitting prediction of negative ΔΔQTF observations. The model 

is schematically depicted in Figure 3.12. GOF plots for the base model are displayed in Figure 

3.13.  

The residual error variability was best described by an additive error model. In the 

structural base model, the final parameters for Emax and EC50 were 44.1 ms and 0.065 ng/mL, 

respectively.  Other estimated parameters along with Inter-individual and residual variabilities are 

summarized in Table 3.5. 
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Figure 3:11. The ΔΔQTF-ibutilide serum concentration relationship derived from observed data 
for 2 patients. The ΔΔQTF-ibutilide serum concentration relationship in both patients demonstrated 
a hysteresis loop, suggesting a delay effect between response and ibutilide concertation.    
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Figure 3:12. Schematic for the structural PKPD model. CL = systemic clearance, VC = volume 
distribution of the central compartment, VP1 = volume distribution of peripheral compartment 1, 
VP2 = volume distribution of peripheral compartment 2, Q2 = intercompartment clearance for 
compartment 2, Q3 = intercompartment clearance for compartment 3, Keo = effect rate constant, 
Ke = hypothetical elimination rate constant. 

 
 

 



 
 

 

 

Table 3.5. Summary of the estimated population PKPD parameters from both base and covariate model. 

 

Parameter Base Model Covariate Model 
 Population Estimates Population Estimates Bootstrap Estimates (95 CI%) 

OFV  1309  

Emax (ms) 44.1 35.6 36.2 (29.4, 43.6) 
EC50 (ng/mL) 0.06 0.15* 

0.17** 
0.15 (0.11, 0.25) 
0.168 (0.1, 0.2) 

Α (ms) -3.7 -4.33 -4.3 (-6.8, -1.6) 
KeO (hr-) 2.2 5.36 4.9 (2.5, 8.7) 
Ke (hr-) 8.1 8.5 8.1 (6.5, 10.3) 

HF on Emax - 1.39 1.42 (1.1, 1.9) 
miR-362-3p on EC50 - -0.09 -0.07 (-0.14, 0.01) 

ω Emax % 30.8 26.2 25.7 (5.1, 4.74) 
ω EC50 % 32.4 26.4 

 

σ ADD (ms) 7.9 7.87 7.8 (6.9, 8.8) 
Emax = maximum effect of ibutilide on QT interval length, EC50 = serum ibutilide concentration required to achieve 50% 
of the maximum effect on ΔΔQTF, α = intercept, KeO = effect rate constant, Ke = elimination rate constant, ω = inter-
individual variability (omega), σ = residual variability (sigma), ADD = additive. 
* EC50 for patients without miR-362-3p expression data. 
** EC50 for patients with miR-362-3p expression data. 
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Figure 3:13. Validation of the structural PKPD model. (A) Observed ΔΔQTF vs. individual 
predicted ΔΔQTF. (B) Observed ΔΔQTF vs. population predicted ΔΔQTF. (C) Conditional 
weighted residuals (CWRES) vs. population predicted ΔΔQTF. (D) CWRES vs. time (hour). 
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3.2.6 Covariate PKPD model 

Several covariates were evaluated as potential predictors of ibutilide-associated ΔΔQTF 

changes. Tested covariates included miR-362-3p expression, age, sex, race, weight, and HFrEF or 

HFpEF. miR-362-3p expression data was collected from 12 patients. The miR-362-3p expression-

time profile for the three groups are illustrated in figures 3.14 and 3.15. The miR-362-3p and 

ΔΔQTF relationship was further explored and characterized in each group as demonstrated in 

Figure 3.16.  

First, to explore all covariate relationships and their impact on the performance of the 

PKPD model, each covariate was first tested independently (Table 3.6). Of the tested covariates, 

both HF status (either HFrEF or HFpEF) and miR-362-3p expression significantly decreased the 

OFV by > 3.84 (P <0.05). Due to model complexity and the inability to pursue covariate model 

building while testing HFrEF and HFpEF as independent covariates, these two groups were 

combined into one covariate (HF status) for subsequent analysis. Next, the final model with 

significant covariates were built through the forward addition and backward elimination approach, 

resulting in HF status on Emax and miR-362-3p expression on EC50 as significant contributors to 

ibutilide-induced changes in ΔΔQTF.  

Individual and population predictions were improved in the final model over the base 

model, as displayed in Figure 3.17. The weighted residuals were nearly normally distributed in the 

final model, displaying an even distribution around zero and mostly within two units of the null 

ordinate.   

Overall performance of the final model was better than the base model, and the 

incorporated covariates explained large portions of the variability in the population predictions. 

Between base and final models, the ΔOFV was -14 (P < 0.01). All individual plots for the final 
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PKPD model are shown in Figure 3.18. In the final PKPD model, the unexplained interpatient 

variability decreased from 30.9% to 26.2% for Emax, and 32.4% to 26.5% for EC50. The mean 

individuals estimated Emax was significantly higher in HFrEF or HFpEF patients when compared 

to matched control, with P <0.0001, and P <0.05 respectively (Figure 3.19) while EC50 was 

negatively correlated with miR-362-3p expression, with P value < 0.0001 and R2 of 0.93 (Figure 

3.20).  Figure 3.21 displays representative plot of ΔΔQTF vs time plot in which incorporated 

covariates improved PKPD model fitting. 

 

Figure 3:14. miR-362-3p expression-time profile (Over 8 hours) for all patients included in the 
analysis.
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Figure 3:15. miR-362-3p expression-time profile (Over 2 hours) for all patients included in the 
analysis.  
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Figure 3:16. ΔΔQTF-miR-362-3p serum expression relationship for (A) HFrEF patients (n=2), (B) 
HFpEF patients (n=10), (C) and match control (n=10). Data presented as mean. 
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Table 3.6. Summary of PD covariate model analysis. 

PD model OFV DD OFV P-value 

Base model 1323.9   

Base model + HF on Emax 1319.8 -4.1 <0.05 

Base model + HF on EC50 1314.4 -9.5 <0.05 

Base model + MIR on Emax 1317.8 -6.1 <0.05 

Base model + MIR on EC50 1313.9 -9.9 <0.05 

Base model + AGE on  Emax 1322.6 -1.2 ns 

Base model + AGE on  EC50 1320.5 -3.3 ns 

Base model + SEX on  Emax 1334.4 10.6 ns 

Base model + SEX on  EC50 1323.7 -0.1 ns 

Base model + RACE on Emax 1323.7 -0.2 ns 

Base model + RACE on EC50 1323.7 -0.13 ns 

Base model + MIR + HF on EC50 1311.2 -2.7 ns 

Base model + MIR on EC50 & Emax 1313.9 -0.02 ns 

Base model + MIR on EC50 + HF on Emax 1309.9 -4.03 <0.05 

ΔOFV is the difference in objective function values between base and covariate model.  HF 
= heart failure, MIR = miRNA-362-2p, Emax = maximum effect of ibutilide on ΔΔQTF, EC50 
= serum ibutilide concentration required to achieve 50% of the maximum effect on QTF, ns= 
not significant.  
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Figure 3:17. Final PKPD model validation. (A) Observed ΔΔQTF vs. individual predicted 
ΔΔQTF. (B) Observed ΔΔQTF vs. population predicted ΔΔQTF. (C) Conditional weighted 
residuals (CWRES) vs. population predicted ΔΔQTF. (D) CWRES vs. time (hour). 
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Figure 3:18. Individual GOF plots for the final PKPD model. Open blue circles are observed ΔΔQTF. 
Solid lines are individual predicted drug concentrations. 
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Figure 3:19. Representative ibutilide individual Emax for patients with or without HF. Mean 
individual Emax was significantly higher in patients with either HFrEF or HFpEF when compared 
to matched control group.   

 

Figure 3:20. Representative ibutilide EC50 individual estimated concentrations versus miR-362-3p 
expression (ΔCT-25). The solid line represents the best-fit line. The correlation is negative (P < 
0.0001 and R2=0.93), in which higher expression of miR-362-3p is associated with lower EC50 
values. 
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Figure 3:21. Representative individual PKPD model fit before (A) and after (B) significant 
covariates were incorporated. Heart failure (HFrEF or HFpEF) on Emax and miR-362-3p expression 
on EC50 improved model fitting.    
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3.2.7 PKPD final model evaluation 

Predictive performance of the models is evident in the VPCs, in which most observed data 

points were included in the 90% prediction interval (5th-95th percentiles), as shown in Figure 3.22. 

Final PD parameter estimates for both fixed-effect and random-effect parameters were comparable 

to the median parameter estimates obtained from bootstrapping and fell within the 95% Cl, 

indicating precision and stability of the final parameter estimates (Table 3.5). In addition, all 

parameters were normally distributed, confirming the assumption of symmetry for model building. 

 

Figure 3:22. Visual predictive checks (VPCs) for the PKPD model. The figure illustrates the 
relationship of ΔΔQTF (ms) with time (hour). Observed ΔΔQTF values are represented by blue 
open circles. The solid red line represents the median ΔΔQTF while the semitransparent red field 
represents the corresponding predicted 95% confidence interval for the simulated median. Dashed 
red lines represent the 5th and 95th percentiles while the semitransparent blue field represents the 
95% confidence interval for the corresponding predicted percentiles. 
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3.2.8 Population PKPD simulations 

Monte Carlo simulations were performed using the PKPD covariate model (n=1000 per 

miR-362-3p expression group) to evaluate the effect of miR-362-3p on ibutilide EC50. Three 

groups of subjects with different levels of miR-362-3p expression were included as follows: high 

expression (miR-362-3p DCT-25 = 25), medium expression (miR-362-3p DCT-25 =15), and low 

expression (miR-362-3p DCT-25 =1). Each subject’s miR-362-3p expression level remained 

consistent across all time points (0, end of infusion, and at 5, 10, 15, 20, 30, and 45 minutes and 1, 

2, 4, 6, 8, and 12 hours following infusion). Simulations revealed that ibutilide EC50 differed 

significantly between the three groups (P < 0.001), as displayed in Figure 3.23. Subjects with high 

expression of miR-362-3p demonstrated a lower ibutilide EC50 compared to those in either the 

medium or low expression groups.    

 

 

Figure 3:23. Simulation results for the effect of low, medium, and high miR-362-3p serum 
expression of on ibutilide EC50 (P < 0.001). 
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3.3 SPECIFIC AIM III 

Specific Aims I and II demonstrated that miR-362-3p regulates hERG-related current, along 

with the potential role for serum expression to predict patient sensitivity to ibutilide-induced QT 

interval lengthening. These findings suggest a potential role for miRNAs in regulating hERG 

expression and function. While hERG is a direct target of miR-362-3p, several miRNAs commonly 

regulategene expression. Therefore, the objective of Specific Aim 3 was to develop a 

comprehensive screening bioassay to identify miRNAs  that potentially regulate KCNH2 

expression and function during pathophysiological consequences of HF.  The bioassay utilized 

hiPS-CMs that were exposed to classical consequences of heart failure; including βAR stimulation 

or activated CaMKII overexpression.  

3.3.1 High-throughput screening strategy identified 16 binding sites potentially regulated by 

miRNAs in hiPS-CMs cells 

Using bioinformatic tools, 327 target predicted miRNA target sequences were identified in 

the KCNH2 3’UTR, which are predicted to be regulated by miRNAs. Of those sites, eight were 

significantly downregulated in the CAMKII group (P <0.05, log fold change between -0.29 and -

1.07), and six were significantly downregulated in the sustained βAR stimulation group (P <0.05, 

log fold change between -0.29 and -0.72). Two binding sites were significantly reduced in both 

treated groups (P < 0.05, log fold change between -0.38 and -0.61). These 16 putative regulatory 

sites were predicted to be bound by 31 miRNAs (Table 3.7). 
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Table 3.7. Summary of HT-bioassay identified binding sites significantly downregulated in hiPS-
CMs treated cells. 

Binding sites Fold change P Value Putative miRNAs 

CAMKII group 

GCCGCTCCCCTTGGAGGCCCTGCTCAGGAGGCCCT -0.59 0.01 miR-378a-5p 

miR-1200* 

miR-3653-5p* 

GGCTCGGACCCGGGCAGTTAGTGGGGCTGCCCAGT -0.40 0.01 miR-4690-3p 

TGCTCAGGAGGCCCTGACCGTGGAAGGGGAGAGGA 

 

-0.8 0.02 miR-4512 

TGCTCAGGAGGCCCTGACCGTGGAAGGGGAGAGGA 

 

-0.38 0.02 miR-3127-3p 

miR-6756-3p 

GGCCATGTGGTTCCCTGCAGCCTCATGCCTGGCCC 

 

-0.66 0.03 miR-3622b-5p 

CATTAGCTGGTCTAACTGCCCGGAGGCACCCGGCC 

 

-1.07 0.04 miR-7843-5p 

AGGGATCAAGGCGCTGCTGGGCCGCTCCCCTTGGA 

 

-0.29 0.04 miR-920  

miR-6090  

miR-1343-5p 

miR-939-5p 

ACTGCCCGGAGGCACCCGGCCCTGGGCCTTAGGCA 

 

-0.39 0.05 miR-4747-3p 
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Table 3.7 continued 

ISO treated group 

GAACTCGAAAGCACAGCTCCTCCCCCAGCCCTTGG 

 

-0.68 <0.001 miR-5589-5p*  

miR-5787  

miR-4505 

AACTCGAAAGCACAGCTCCTCCCCCAGCCCTTGGG 

 

-0.59 0.01 miR-5787  

miR-5001-5p 

miR-4498  

miR-762  

miR-4492  

GGAACTCGAAAGCACAGCTCCTCCCCCAGCCCTTG -0.57 0.01 miR-4731-5p 

CATGCCTGGCCCCTTGACACATCCAAAGCAAAGGG 

 

-0.50 0.02 miR-1251-3p 

GCATGTGGTTCATTCTAGCATTTCTGTTCTGTGCT -0.29 0.04 miR-4773 

GCAGTAGAGGAAGAAATGCTAGCCTGGAAGCTCGG 

 

-0.72 0.04 miR-3180-5p 

Downregulated in both groups 

ACTCGAAAGCACAGCTCCTCCCCCAGCCCTTGGGA 

 

-0.53 

(CAMKII) 

-0.62 (ISO) 

0.01 

<0.001 

miR-6085  

miR-4446-3p 

AGGAACTCGAAAGCACAGCTCCTCCCCCAGCCCTT 

 

-0.38 

(CAMKII) 

-0.38 (ISO) 

0.04 

0.04 

miR-4665-5p*  

miR-7109-5p*  

miR-637* 

*miRNAs selected for HT-bioassay validations.     
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3.3.2 Luciferase assay screening of miRNAs identified from the HT-bioassay 

Of those 31 miRNAs, seven were selected for subsequent validation analysis: miR-637, 

miR-1200, miR-3653-5p, miR-4665-5p, miR-5589-5p, miR-7109-5p, and miR-7843. From the 

CAMKII group, miR-7843, miR-1200, and miR-3653 were selected since their corresponding sites 

demonstrated the lowest P value (P = 0.01) and highest fold changes (log fold change = -0.59) 

among all miRNAs in this group. From the ISO group, miR-5589-5p was selected since the 

corresponding binding site demonstrated the lowest P value (P < 0.001) and the highest fold 

change (log fold change = -0.68) among all miRNAs. Lastly, miR-4665-5p, miR-7109-5p, and 

miR-637 were selected due to their presence in both groups (P = 0.04, log fold change between -

0.38). 

These seven miRNAs were quantitatively screened for KCNH2 3′UTR activity using 

luciferase assays (n = 3 per group). None were found to significantly reduce KCNH2 3’UTR 

activity (Figure 3.24). 
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Figure 3:24. Screening of HT-bioassay-identified miRNAs with luciferase assays. A KCNH2 
3′UTR reporter clone was co-transfected with a control reporter plasmid (renilla) and MISSION 
miRNA mimics of the selected miRNAs or negative control into a human adenocarcinoma cell 
line (SK-BR-3); n=3 per group. None of the seven miRNAs significantly reduced KCNH2 3’ UTR 
activity. 
  

3.3.3 Three selected miRNAs attenuate Ikr in HEK293-hERG cells  

While most of the identified miRNAs failed to reduce KCNH2 3’ UTR activity in luciferase 

assays, three of these miRNAs (miR-637, miR-1200, miR-3653-5p ) were screened further for 

their effects on Ikr current in HEK293-hERG. Current-voltage relationships for Ikr current were 

recorded 48 hours post-transfection in cells transfected with miRNA mimics and in control cells. 

At 48 hours post transfection, there were significant differences in mean peak tail currents between 

groups over the voltage range -100 to +40 mV (P <0.05), as shown in Figure 3.25.  

The voltage-dependence of hERG channel activation was assessed by analyzing tail 

currents from the activation protocol. From a holding potential of -60 mV, cells were depolarized 
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using a series of depolarizing pulses between -50 and +60 mV for one second to activate hERG 

channels. The cells were then stepped back to a repolarizing voltage of -50 mV to allow recovery 

from inactivation for tail current measurement. Representative Ikr current traces recorded using 

this voltage protocol from HEK293-hERG are in shown in Figure 3.25A&D. In cells transfected 

with a positive control (miR-362-3p) and KCNH2 siRNA, Ikr current was attenuated (Figure 3.25B). 

Corrected tail current (tail current amplitude normalized to the maximum peak tail current 

amplitude) was used to construct the activation curve shown in Figure 3.25E. At 48 hours post-

transfection, the three selected miRNAs significantly reduced hERG activation currents (P <0.05). 

The ability of the tested miRNAs to reduce Ikr current indicates that the novel high-throughput 

bioassay was more accurate at identifying miRNAs with regulatory effects than the commonly-

used luciferase assays.      
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Figure 3:25. (A) Representative traces of KCNH2 tail currents following transfection with 
scrambled, positive control, or KCNH2 siRNA. (B) Current-Voltage (I-V) plot showing the 
three selected miRNAs significantly reduced KCNH2 tail currents. (C) Maximum peak 
activation current. (D) Representative traces of KCNH2 activation currents following 
transfection with scrambled, positive control, or KCNH2 siRNA. (E) Current-Voltage (I-V) plot 
showing the three selected miRNAs significantly reduced KCNH2 activation currents. (F) 
Maximum activation current. 
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3.3.4 Association between expression of HT-bioassay identified miRNAs and maximum QTF 

interval (maxQTF) 

 After assessment of the HT-bioassay with the patch clamp technique, the expression of 

HT-bioassay miRNAs was examined in the serum of a total of 12 patients from the clinical trial 

described in Specific Aim 2. The patients demographics are described in Table 3.8. A total of 14 

serum samples were collected from the patients at baseline (nine samples), one hour (one sample) 

and four hours (four samples) following ibutilide administration and included in the correlation 

analysis. QT intervals were measured at each timepoint. Of the 31 HT-bioassay-identified 

miRNAs (Table 3.7), six were found to be expressed in patients: miR-378a-5p, miR-939-5p, miR-

4446-3p, miR-4665-5p, miR-4690-3p, and miR-5589.  

Correlation analysis was performed to assess the potential association between expressed 

miRNAs and corresponding max QTc interval lengthening. Of the six expressed miRNAs, only 

miR-4665-5p was significantly associated with max QTc interval (P = 0.0379) (Figure 3.26). 
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Table 3.8. Study population characteristics. 

Characteristics HFrEF (n=2) HFpEF (n=6) Control (n=4) 

Males 1 (50) 1 (17) 1 (25) 

White 1 (50) 5 (83) 3 (75) 

African American  1 (50) 1 (17) 1 (25) 

Age (years) 64 ± 1 66 ± 9 61 ± 9 

Body Weight (Kg) 87.3 ± 3 92 ± 13 85 ± 16 

Ibutilide dose (mg) 0.26 ± 0.01 0.28 ± 0.04 0.26 ± 0.04 

Concurrent diseases    

- Hypertension 2 (100) 2 (33) 2 (50) 

- Coronary artery disease 2 (100) 2 (33) 1 (25) 

- Diabetes mellitus 1 (50) 4 (67) 1 (25) 

- Hyperlipidemia 2 (100) 4 (67) 2 (50) 

Concomitant medications    

- ACE inhibitors/ARBs 2 (100) 4 (67) 2 (50) 

- Loop diuretics 2 (100) 5 (83) 1 (25) 

- β-blockers 2 (100) 5 (83) 0 (0) 

- Statins 2 (100) 4 (67) 2 (50) 

Data presented as n (%) or mean ± SD.  
HFpEF = heart failure with preserved ejection fraction, HFrEF = heart failure with reduced 
ejection fraction, ACE = angiotensin-converting enzyme, ARB = angiotensin receptor 
blocker. 



 
 

 

Figure 3:26. Correlation between expression of HT-bioassay-identified miRNAs in patients and maximum QTc interval. Expression of 
miR-4665-5p was significantly correlated with maximum QTc interval. 
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 DISCUSSION AND SUMMARY 

4.1 miRNAs regulate hERG in cancer cells  

 The first Specific Aim identified the miRNAs that potentially regulate hERG expression 

and function in cultured breast cancer cells. Breast cancer is the second leading cause of all cancer-

related deaths and the most common cancer among females worldwide (Becker 2015). The 

KCNH2 gene is expressed in certain cancers including colorectal cancer, glioma, breast cancer, 

and leukemia, and has been associated with cancer development and progression (Asher, et al. 

2010; Babcock and Li 2013; Glassmeier, et al. 2012; Gong, et al. 2010; Li, et al. 2007; Masi, et al. 

2005; Shao, et al. 2008; Shao, et al. 2005; Thomas, et al. 2003). In these cancers, inhibition of the 

hERG potassium channel has been shown to impair cell proliferation and the invasiveness of tumor 

cells. This work identified miR-362-3p as a potential regulator of hERG expression and function 

in breast cancer cells.   

The expression and role of miR-362-3p has been investigated in several types of cancer 

(Christensen, et al. 2013; Kang, et al. 2016; Li, et al. 2017; Shen, et al. 2015; Wang, et al. 2018a; 

Wang, et al. 2018b; Zhang, et al. 2015; Zou, et al. 2016). In colorectal cancer, miR-362-3p 

expression has been negatively correlated with the risk of tumor progression, and increasing its 

expression inhibits cell proliferation through the regulation of multiple related cancer genes 

(Christensen, et al. 2013). For example, the potential tumor suppressors E2F1, USF2, and 

PTPN1 were identified as direct targets of miR-362-3p in colorectal cancer (Christensen, et al. 

2013). Additionally, Kang et al. reported that miR-362-3p is a tumor suppressor in human breast 

cancer; its downregulation promotes tumor progression (Kang, et al. 2016). The oncogene 



101 
 

MCM5 was identified as a direct target of miR-362-3p in cervical adenocarcinoma (Wang, et al. 

2018a). Thus, miR-362-3p targets oncogenes to exert beneficial effects. 

In addition, miR-362-3p may regulate tumor suppressors in various cancers. For example, 

in hepatocellular carcinoma, miR-362-3p was found to contribute to hepatic malignancy by 

directly targeting the Tob2 gene (Shen, et al. 2015). The Tob2 gene has been implicated to 

regulate cell cycle and tumorigenesis as an anti-proliferative protein. A direct target of miR-362-

3p in gastric cancer is the metastasis suppressor CD82, which is known to regulate epithelial-to-

mesenchymal cell transition (EMT) (Zhang, et al. 2015). Consequently, anti-miR-362-3p 

inhibited the migration and invasion of gastric cancer. Thus, despite the evidence that miR-362-

3p expression is associated with improved cancer outcomes, it may also possess counteractive 

oncogene activity via targeting Tob2 or CD82.  

Previous work has supported an oncogenic effect for hERG in breast cancer, with hERG 

channel inhibition inducing apoptosis and reducing cancer cell growth in MCF-7 cells (Roy, et 

al. 2008). Our results demonstrate that miR-362-3p inhibits both KCNH2 mRNA and hERG 

protein expression in breast cancer cells that endogenously express hERG channels. miR-362-3p 

reduced hERG-related current and demonstrated anti-proliferative effects. This is in agreement 

with previous work demonstrating that miR-362-3p inhibits p130Cas expression in human breast 

cancer (Kang, et al. 2016). p130Cas has been implicated as an important regulator of cellular 

signaling, and its overexpression in breast cancer is associated with poor prognosis. Together, 

hERG and p130Cas might be involved in mediating the downstream effects of miR-362-3p. 

hERG channels have also been implicated as being involved in different phases of cell 

cycle progression (Staudacher, et al. 2014). Therefore, we performed a cell cycle assay to 

explore this possible mechanism for regulation of breast cancer progression by miR-362-3p. 
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Indeed, transfection of breast cancer cells (MCF-7) with either miR-362-3p or KCNH2 siRNA 

increased the proportion of cells in the G1 phase (Staudacher, et al. 2014). These findings are 

similar to previous studies in glioblastoma, where hERG inhibitors cause significant arrest of 

cancer cells in the G1 phase. However, there was no significant change in SK-BR-3 cells 

transfected with KCNH2 siRNA when compared with control cells, indicating that the beneficial 

effects of miR-362-3p in these cells is most likely independent of cell cycle regulation.  

There are two prevailing explanations for the distinct effects of miR-362-3p and KCNH2 

siRNA in MCF-7 and SK-BR-3 cells. First, MCF-7 and SK-BR-3 cells are genetically different; 

thus, distinct tumorigenic pathways drive their proliferation and invasion. Secondly, the primary 

evidence for hERG being involved in cell cycle regulation is from neuroblastoma and colorectal 

cancer (Christensen, et al. 2013; Staudacher, et al. 2014). The actual involvement of hERG 

channels in cell cycle regulation in breast cancer cells has not been investigated. Therefore, the 

modest effect of miR-362-3p on cell cycle distribution observed in this work might indicate that 

hERG channels exert their effects in breast cancer cells independent of cell cycle regulation.  

4.2 The contribution of miR-362-3p to ibutilide-induced QT-interval lengthening 

  The ability of miR-362-3p to regulate KCNH2 in breast cancer cells suggests a potential 

role for this miRNA in regulation of hERG function. In the present study, we utilized population 

PKPD modeling to investigate the contribution of miR-362-3p to drug-induced QT prolongation 

in patients administered ibutilide, known to prolong the QTc interval.  

A population PKPD model was developed to characterize the relationship between ibutilide 

concentration and DDQTF changes and to determine the contribution of miR-362-3p expression 

and other potential covariates to variability in ibutilide-induced QT interval lengthening. 
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Pharmacokinetic and expression data were collected from a prospective, parallel-group 

comparative study during which a total of 22 patients received subtherapeutic doses (0.003 mg/kg) 

of ibutilide. This population PKPD model established that only HF (HFrEF or HFpEF) status is a 

significant predictor of maximum ibutilide-induced DDQTF interval lengthening, while miR-362-

3p expression is a significant predictor of the ibutilide concentration required to produce 50% of 

maximum ibutilide-induced DDQTF interval lengthening.  

The results showed that the combination of patients with either HFrEF or HFpEF had a 

greater degree of ibutilide-induced DDQTF interval lengthening, with a mean Emax increased by 39% 

compared to non-HF patients Thus, HF patients had a higher sensitivity to ibutilide-induced QT 

interval lengthening. In patients with acute decompensated HF or chronic severe HF, low cardiac 

output results in reduced hepatic blood flow; therefore, the pharmacokinetics of some high-

extraction drugs might be altered (Benowitz and Meister 1976; Ogawa, et al. 2013). In particular, 

the clearance of high-extraction drugs approximates liver blood flow. One such drug is lidocaine, 

for which clearance is substantially decreased in HF, leading to increased exposure and subsequent 

increased risk of toxicity (Thomson, et al. 1973; Zito and Reid 1978). Although ibutilide is a high-

extraction drug, in this study its pharmacokinetics were not altered by HF, suggesting that the 

observed significant increase in mean Emax is not related to ibutilide disposition in this population.  

Patients with HF are at increased risk for drug-induced TdP, which is associated with a 

prolonged QT interval (Li and Ramos 2017; Tisdale 2016; Yap and Camm 2003). An increase in 

QTc of 60 ms is generally considered a major determinant of the risk of drug-induced TdP. The 

findings of the present study are in agreement with those of a multicenter prospective study in 

which 6 patients with heart failure with reduced ejection fraction (HFrEF) and 9 matched control 

received 1 mg ibutilide intravenously (Tisdale, et al. 2012). They observed that median area under 
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the effect curve (AUEC) for QTF vs. time was significantly larger in patients with HF while EC50 

was lower, indicating that patients with HF have enhanced sensitivity to drug-induced QT interval 

lengthening.  

The effect of miR-362-3p on ibutilide-induced DDQTF changes was also evaluated as a 

potential covariate. Indeed, miR-362-3p expression was identified as a predictor of ibutilide EC50; 

specifically, they are negatively correlated, as patients with higher expression of miR-362-3p 

demonstrated a lower EC50. This finding is supported by data presented in Aim 1, in which miR-

362-3p reduced hERG expression in cultured cancer cells, suggesting hERG regulation may 

mediate the involvement of miR-362-3p in ibutilide-induced QT interval lengthening. However, 

the exact mechanism underlying the association between miR-362-3p expression and ibutilide 

remains unclear. One potential explanation is reduction of expressed channels due to high miR-

362-3p expression, leading to fewer available targets for ibutilide and subsequently intensifying 

its effect. However, the effect of miR-362-3p on hERG channels is not immediate, as hERG 

turnover has a half-life of 8 to12 hours. Therefore, it would not be possible for miR-362-3p to 

instantly influence drug-associated QT interval lengthening through hERG downregulation. 

Another possible explanation is that the observed change in miR-362-3p expression might be 

mainly driven by ibutilide-associated QT changes; subsequently, the effect of miR-362-3p on QT 

interval lengthening could be evaluated more precisely several hours (>12 hours) following 

ibutilide administration, which was not the case in this study. A third explanation is that ibutilide 

might have a potential involvement in regulation of miR-362-3p expression. Recent studies have 

revealed that several drugs might be associated with alteration of miRNA expression (Rodrigues, 

et al. 2011). Rodrigues et al. investigated the influence of 19 drugs on the expression of ten 

different miRNAs in four different cell lines, and found that all ten miRNAs were differentially 
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expressed, depending on the administered drugs. Therefore, miR-362-3p expression might have 

been altered following ibutilide administration. Lastly, the observed change in ibutilide response 

could be attributed to either a significant increase in releasing cellular miRNAs to circulation or a 

significant elimination of miRNAs from circulation, resulting in alteration to levels of circulating 

miR-362-3p. The mechanisms underlining the release of miRNAs to circulation and their 

elimination from circulation have not been fully elucidated. Therefore, further studies are needed 

to understand the association between miR-362-3p serum expression and QT interval changes. 

Further investigation of this association would provide insight into the precise role and 

contribution of miR-362-3p in ibutilide-induced QT interval lengthening.  

Few studies have examined the regulation of hERG by miRNAs. Wang et al. identified miR-

17-5p as a regulator of hERG trafficking in neonatal rat ventricular myocytes (Wang, et al. 2013). 

Specifically, they found that miR-17-5p targeted multiple ER chaperones, and its upregulation 

interrupted hERG trafficking, which resulted in reduction of Ikr current. In addition, KCNH2 has 

been identified as a direct target of miR-96 and miR-493. The expression of miR-96 is 

downregulated in pancreatic cancer tissues, and its ectopic expression reduces hERG expression, 

which subsequently inhibits the proliferation, migration, and invasion of pancreatic cancer cells 

(Feng, et al. 2014). Similarly, Zhi et al. demonstrated that miR-493 acts as a tumor suppressor by 

reducing hERG expression, leading to inhibition of malignant behavior in pancreatic cancer (Zhi, 

et al. 2017).  

Endogenous expression of miRNAs has additionally been assessed in healthy and failing 

human hearts through deep sequencing and bioinformatics tools (Leptidis, et al. 2013). Over 250 

miRNAs were differently expressed in failing hearts when compared with controls; among these, 

miR-362-3p was found to be highly expressed in patients with refractory end-stage heart failure.  
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4.3 Global miRNA involvement in regulation of KCNH2 in hiPS-CM cells 

While it is evident that patients with HF are at higher risk of drug-induced QT prolongation, 

the underlying mechanism remains unclear. The data presented in Aim 1 and 2 indicate a potential 

involvement of miR-362-3p in drug-induced QT prolongation. In addition, previous evidence 

indicates that miR-362-3p expression is altered in patients with HF (Leptidis, et al. 2013). Overall, 

mounting evidence suggests that miRNA in general are aberrantly expressed in HF (Vegter, et al. 

2016; Wong, et al. 2016). While KCNH2 is a direct target of miR-362-3p, it is potentially regulated 

by a set of miRNAs, especially others aberrantly expressed in HF. Several pieces of evidence 

demonstrate that most genes are under miRNA regulatory control (Catalanotto, et al. 2016). 

Initially, miRNA studies focused on the mapping of one individual miRNA to one novel mRNA 

target. However, multiple miRNAs can modulate the expression of a single gene (Selbach, et al. 

2008). This was first experimentally confirmed by Wu et al. with the identification of 28 miRNAs 

that suppress the expression of cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as 

p21aCip1/Waf1, by directly binding its 3’ UTR (Wu, et al. 2010). Therefore, a large-scale high-

throughput bioassay was developed to identify all miRNAs, in addition to miR-362-3p, potentially 

involved in regulating KCNH2 expression and function in hiPS-CM during sustained β-adrenergic 

receptor (βAR) stimulation or overexpression of activated calcium/calmodulin-dependent protein 

kinase 2 (CaMKII), which are classical consequences of HF.  

The developed HT-bioassay identified 31 miRNAs that potentially regulate the expression 

of KCNH2. These 31 miRNAs corresponded to 16 binding sites in the KCNH2 3’ UTR, indicating 

that multiple miRNAs can share common binding sites. Interestingly, miR-362-3p was not 

identified among these miRNAs. While this result might contradict previous data suggesting 

upregulation of miR-362-3p in HF, it suggests that miR-362-3p might be regulated independently 
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of sustained βAR stimulation or the CAMKII signaling pathway. Meanwhile, the molecular 

systems underlying the progression of HF are very complex, and it is unrealistic to expect an in 

vitro experiment to take into account all pathways altered during HF. In fact, the HT-bioassay 

findings implicate miRNAs in regulating KCNH2 through druggable pathways that warrant further 

investigation.  

The HT-bioassay was further validated by testing seven of the 31 identified miRNAs through 

dual luciferase assays. Surprisingly, none reduced luciferase activity, indicating that luciferase 

assays might not be sensitive enough to detect or determine the binding of these miRNAs to the 

KCNH2 3’ UTR. However, additional validation was performed by assessing hERG-related 

current density through whole cell electrophysiology using three of those six miRNAs. All three 

tested miRNA mimics significantly decreased Ikr current (P <0.05), suggesting that the HT-

bioassay successfully identified miRNAs that potentially regulate hERG protein expression.   

The lack of confirmation from the screening of HT-identified miRNAs with the luciferase 

assay may be attributable to the performance of those assays in SK-BR-3 cells. Several studies 

have shown that cellular context influences miRNA function, including through differences in 

expression of mRNA-binding proteins (RBPs) (Zealy, et al. 2017). In conjunction with miRNAs, 

RBPs play a major role in post-transcriptional gene regulation; for example, which types of RBPs 

are expressed may determine whether miRISC binds to its target. Therefore, it is possible that 

impaired miRNA-mRNA interaction in SK-BR-3 cells affected the ability of the tested miRNAs 

to repress luciferase activity.  

Finally, expression of the miRNAs identified by HT-bioassay was examined in patients 

enrolled in a clinical trial in which genome-wide next generation sequencing was performed on 

miRNAs extracted from whole blood samples. Of the 31 HT-bioassay miRNAs, only six were 
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detected in serum samples (n = 12). A possible explanation for why only these six miRNAs were 

detected is that circulating miRNAs may not fully reflect those expressed in cardiac tissue 

(Dufresne, et al. 2018). In addition, the hiPS-CM miRNA expression profile might differ from the 

adult circulating miRNA expression profile. For the six detected miRNAs, a correlation analysis 

was performed to explore the relationship between their expression levels and ibutilide-induced 

QTF interval lengthening. Of the six, only miR-4665-5p was significantly associated with QTF 

interval length. It is important to mention that this analysis was performed using very a low sample 

size; therefore, the absence of significant correlation for the other miRNAs does not necessary 

imply that there is no relation between their expression and QTF interval length.  

miR-4665-5p has not been thoroughly studied. Slattery et al. suggest a potential 

contribution of miR-4665-5p to regulating the TGFβ signaling pathway in colon and rectal cancer 

(Slattery, et al. 2017). The role of miR-4665-5p in cardiac cells has not been investigated; the 

finding of this work suggests a potential involvement for this miRNA in KCNH2 regulating that 

warrant further investigation.   
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CONCLUSION 

In summary, miR-362-3p was identified to regulate hERG, and reduces proliferation of 

breast cancer cells through a mechanism that may be partially mediated by hERG inhibition. While 

this effect is modest and may not support the development of miR-362-3p as a therapeutic option 

in cancer, the role of hERG and its modulation should be assessed as a potential biomarker or 

further for potential benefit in cancers that overexpress this potential oncogene. Notably, miR-362-

3p expression was altered during HF and did account for a significant amount of variability in QTF 

prolongation following ibutilide administration. Consistent with findings from Aim 1, high 

expression of miR-362-3p was associated with a lower ibutilide concentration to produce response, 

suggesting sensitivity to ibutilide may be increased as a result of hERG inhibition by miR-362-3p. 

However, several miRNAs commonly regulate the same target protein or ion channel. Therefore, 

in the interest of obtaining a better perspective on global changes in miRNA expression associated 

with HF, the HT-bioassay was developed to identify all miRNAs that potentially regulate KCNH2 

during HF. This assay identified 31 other miRNAs predicted to regulate KCNH2, of which one 

(miR-4665-5p) was significantly associated with QTF prolongation. Therefore, the potential for 

miR-362-3p and HT-bioassay-identified miRNAs to reduce hERG-related current and influence 

susceptibility to drug-induced QT interval prolongation warrants further investigation. 
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