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ABSTRACT

Bartusiak, Emily R. MSECE, Purdue University, May 2019. An Adversarial Ap-
proach to Spliced Forgery Detection and Localization in Satellite Imagery. Major
Professor: Edward J. Delp.

The widespread availability of image editing tools and improvements in image

processing techniques make image manipulation feasible for the general population.

Oftentimes, easy-to-use yet sophisticated image editing tools produce results that

contain modifications imperceptible to the human observer. Distribution of forged

images can have drastic ramifications, especially when coupled with the speed and

vastness of the Internet. Therefore, verifying image integrity poses an immense and

important challenge to the digital forensic community. Satellite images specifically

can be modified in a number of ways, such as inserting objects into an image to hide

existing scenes and structures. In this thesis, we describe the use of a Conditional

Generative Adversarial Network (cGAN) to identify the presence of such spliced forg-

eries within satellite images. Additionally, we identify their locations and shapes.

Trained on pristine and falsified images, our method achieves high success on these

detection and localization objectives.
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1. INTRODUCTION

1.1 Significance of this Research

Proper communication at both the public and personal level is key to the healthy

development and advancement of human civilization. Over the years, the means

of communication has evolved. In the present day, the most popular and important

technical platform for communication is the Internet. It enabled the creation of many

social media systems, instant messaging capabilities, and email services that provide

very inexpensive and effective ways to express and share one’s ideas with the rest of

the world. While effective communication systems for sharing information can help

us become more informed and connected as a society, they can also be used to spread

misinformation to achieve a nefarious objective. Hence, it is of paramount importance

that we verify and authenticate the shared data on these systems.

Ideas manifest in many forms. Of the various ways to express them, including

verbal speech, written text, and displayed signage and symbols, images prevail as one

most prevalent means of communication. A single picture can convey so much infor-

mation in such a short period of time, a preference of many in today’s fast, quick-paced

society. Oftentimes, images shared on the Internet lack context and sources, though.

Viewers of such images tend to assume instantaneous understanding and fail to inves-

tigate the origins or true messages of these uncontextualized images. Furthermore,

editing images has become very easy. Tools such as GIMP and Photoshop can be used

to modify images in a number of ways, and they are easily accessible to the general

public. The motivation for editing images could be rather harmless: to smooth skin on

a portrait that captures a moment forever; to enhance the colors of a scene in nature

experienced on vacation when the sky was greyer than desired; to further dramatize a

movie scene; or to elicit laughter and provide entertainment. Unfortunately though,
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image editing is sometimes performed with a more malicious intent. When edited

images surface on the Internet, either for an innocuous or malevolent reason, people

eager to be the first to publicize news to their network and to promote their own

opinions share them without much examination or thoughtfulness in regard to the

authenticity of the content. Thus, imagery promoting easily-misinterpreted messages

or outright erroneous content proliferates on the Internet.

The combination of these convincing tampered images with the image-sharing

practices of Internet users can have detrimental consequences. To address this prob-

lem, the forensic community has developed a wide array of tools to detect various

kinds of image forgeries [1–3]. Most of the images shared on the Internet originate

from consumer and smart-phones cameras, but other types of imagery, such as satel-

lite images, serve very important purposes in business and government applications.

Thus, they thus pose new problems and challenges for the forensic community [4, 5].

With the increase in the number of satellites equipped with imaging sensors and

the technological advancements made in satellite imaging technology, high resolution

images of the ground are becoming popular and easily obtainable. It is now possible

to not only access these overhead images from public websites [6] but also to purchase

custom satellite imagery of specic locations. Just like any other type of image, satellite

images can also be doctored. Although the forensic community is keen on developing

tools to tackle forgeries of all types, it has been biased towards imagery captured

by consumer cameras and smartphones [7–10]. The nature of acquisition of satellite

imagery is quite different from that of images from consumer cameras. Consequently,

it is important that forensic tools be developed that specically target satellite imagery.

In recent years, some methods [11–13] to contend with satellite image forgeries

have been developed. In [11], Ho et al. proposed an active forensic method based on

watermarks to verify the authenticity of satellite images. Watermarks are an effective

way of ascertaining whether an image is forged or not, as long as watermarks are

utilized in the first place. However, their absence renders such methods ineffective.

In [13], Ali et al. proposed a passive method based on machine learning to detect
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inpainting in satellite images. Yarlagadda et al. [12] proposed a method based on

deep learning to detect splicing in satellite images. They employ Generative Adver-

sarial Networks (GANs) [14,15] to learn a compact representation of pristine satellite

images, operating in a one-class fashion. Then, they use that representation to detect

splicing of various sizes. Although these methods produce promising results, there is

still room for improvement.

In this dissertation, we discuss detection and localization of splicing in satellite

images. Splicing refers to the process of replacing pixels in a certain region of an

image with pixels from another image to add or remove an object in the original

image. We employ a Conditional Generative Adversarial Network (cGAN) to learn a

mapping from a satellite image to its splicing mask. The trained cGAN operates on

a satellite image of interest and outputs a mask of the same resolution that indicates

the likelihood of a pixel belonging to a spliced region. Our cGAN’s architecture is an

extension of the popular pix2pix [16] network. Differently from [12], we learn a direct

mapping from an image to its forgery mask. Moreover, only pristine images are used

for training in their approach, but in contrast, we provide both pristine and forged

images to train our model. We use the same dataset proposed in [12] to validate our

method and report both the detection and localization performances.

This dissertation is organized as follows. First, we examine Conditional Generative

Adversarial Networks in Chapter 2. Next, we explain our method for estimating

spliced forgery masks of satellite images in Chapter 3. Then, we show experimental

results obtained using our proposed method in Chapter 4. Finally, we conclude our

work and discuss potential research opportunities for this topic in Chapter 5.

1.2 Contributions of this Thesis

In this thesis, we developed a Conditional Generative Adversarial Network (cGAN)

to detect and localize spliced forgeries in satellite images. We demonstrated high per-

formance of the method on the used dataset.
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1.3 Publication Resulting from the Thesis

• E. R. Bartusiak, S. K. Yarlagadda, D. Gera, F. M. Zhu, P. Bestagini, S.

Tubaro, E. J. Delp. Splicing Detection And Localization In Satellite Imagery

Using Conditional GANs. IEEE International Conference on Multimedia In-

formation Processing and Retrieval (MIPR), March 2019. San Jose, CA.
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2. BACKGROUND INFORMATION

2.1 Goals

We investigate the following two specific objectives in this paper: forgery detection

and localization. Detection refers to the goal of determining if an RGB satellite image

I has been modified via splicing. It is a binary classification problem where images

can be considered forged, if they have been modified, or pristine, if not. Localization

refers to the image segmentation goal of identifying each pixel in a forged image that

belongs to the spliced entity, otherwise known as the forgery. These goals are defined

in a similar manner to those outlined in [12].

2.2 Forgery Masks

Forgery masks M are used to help us visualize and determine the outcomes for

these objectives. For an image I, a forgery mask M of the same dimensions shows

the forgery in I, if it exists. In other words, for a satellite image I(x, y) where (x, y)

specifies the coordinate location of a pixel in I, the corresponding forgery mask M is

comprised of values defined as

M(x, y) =

255 if I(x, y) is forged,

0 otherwise.

(2.1)

Therefore, the shape, size, and location of a forgery in an image I can be ascertained

from the mask M if it contains white pixel values (i.e., 255). At an extreme, an

entirely white mask (M 6= 0) indicates that every pixel in I has been manipulated,

whereas an entirely black mask (M = 0) represents a pristine image.
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Our approach is to train a cGAN to create M̂, an estimate of the forgery mask

M. I is considered doctored if M̂ 6≈ 0, meaning that a forgery is detected in it and

is comprised of the pixels located at {(x, y) : M̂(x, y) 6= 0}. On the other hand, the

image I is considered pristine if no forgery is detected, indicated by M̂ ≈ 0. Examples

of satellite images and their corresponding ground truth forgery masks can be seen

in Figure 2.1.
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(a) Pristine I

(b) Pristine M

(c) Forged I

(d) Forged M

Fig. 2.1. Image - mask {I, M} pairs. (a) and (c) portray two ex-
ample satellite images under analysis. (b) and (d) illustrate their
corresponding ground truth masks. A pristine image’s mask is en-
tirely black, like (b). (d) displays a mask that contains a forgery. The
cGAN will try to create mask estimates that resemble masks (b) and
(d).
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2.3 Conditional Generative Adversarial Networks (cGANs)

We train our cGAN on both pristine and forged images to learn a mapping from

an input image I to a forgery mask M. It consists of two parts: a generator G and a

discriminator D. Figure 2.2 shows the overall cGAN architecture. Additional details

about the general cGAN concepts reported in this section can be found in [16].

2.3.1 The Generator

The generator G has a 16-layer U-net architecture (8 encoder layers, 8 decoder

layers) with skip connections [17]. When G is presented with an image I, it computes

an estimated forgery mask M̂, defined as M̂ = G(I). The generator’s objective is to

create M̂ that is close to the true M. Meanwhile, the discriminator D is trained to

differentiate between the true input-mask pairs {I, M} and synthesized input-mask

pairs {I, M̂} coming from the generator. In a cGAN, the generator G is coupled to the

discriminator D with a loss function. During the course of training, the discriminator

forces the generator to produce masks that resemble both the style and the content of

the ground truth masks. In learning to mimic the style of these authentic masks, the

generator G produces mask estimates that cannot be distinguished from ground truth

masks by the discriminator. Meanwhile, in learning to produce mask estimates that

are close to the ground truth masks, the generator G better constructs the content

of the masks so that they show the correct locations of forgeries. Both of these

concentrations improve the generator’s performance.

2.3.2 The Discriminator

The discriminator D has an architecture of a 5-layer Convolutional Neural Network

(CNN) that implements binary classification on masks. Sometimes, a true image-

mask pair {I, M} is presented to D. Other times, an image-mask estimate pair

{I, M̂} is presented. In both cases, the image under analysis I is presented to the
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discriminator D along with either a true mask M or a synthesized mask M̂. D divides

the input into patches of size 70× 70 pixels. It then predicts the likelihood that each

patch is pristine, assigning values ranging from zero (0) to one (1) to represent the

probability that a patch is pristine. A label of 0 indicates that the discriminator

D believes with strong likelihood for the presented image-mask pair to contain a

synthesized mask M̂ that came from the generator G. In contrast, a label of 1

indicates that D believes with strong likelihood for the pair to contain a true mask

M that came from the dataset. The values for all of the patches are averaged to

determine the classification for the entire input.

The following equations describe the two cases outlined in this paragraph:

D(I, M̂) = D(I, G(I)) = 0, (2.2)

D(I,M) = 1. (2.3)

2.3.3 The Coupled Loss Function

The generator G and the discriminator D compete in a min-max game, training

and improving each other over time. The coupled loss function of the network is

described by the following equation:

LcGAN(G,D) =EI,M[log(D(I,M))]+

EI[log(1−D(I, G(I)))].
(2.4)

The generator G tries to minimize this equation in order to create mask estimates

that are misclassified by D. Concurrently, the discriminator D tries to maximize this

equation in order to discern between true and synthesized image-mask pairs.

So far, we have described a network in which the generator G learns to create masks

that could be mistaken for real forgery masks by D. However, this does not ensure

that the synthesized masks will correctly show forgeries in images. For example, M̂
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may “fool” D and be classified as an authentic mask for I without resembling its

ground truth mask. In such a case, M̂ 6≈ M. Therefore, we impose an additional

constraint on the generator so that it learns to reconstruct the ground truth masks

of training images, i.e., M̂ ≈M. This can be achieved by training G to minimize a

reconstruction loss LR between M̂ and M.

Since our primary task is to classify every individual pixel into two classes (i.e.,

forged or pristine), we choose LR to be a binary cross-entropy (BCE) loss term. This

is different with respect to the classic pix2pix method which uses L1 loss for the loss

term LR. We later verify in our experiments that BCE is indeed a better choice for

LR over L1.

The total loss function of the cGAN is denoted as:

L = LcGAN + λLR. (2.5)

2.3.4 Architecture During Testing

Once training is complete, the generator G is capable of producing masks that are

realistic and close to the ground truth masks in the dataset. To analyze new images,

the discriminator D is not considered, and the generator G is used to produce mask

estimates for new images that it has never seen before during training.
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(a) Generator G coupled to discriminator D during training

(b) Discriminator D during training

(c) Generator G after training

Fig. 2.2. cGAN architecture. (a) shows the G-D training configura-
tion, where G produces mask estimate M̂ and presents it to D for
evaluation. D attempts to classify non-authentic {I, M̂} pairs as 0.
(b) depicts D during training when presented with a true mask M. It
attempts to classify true {I, M} pairs as 1. The model resembles (c)
after training is complete.
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3. IMPLEMENTATION

In this chapter, we report the details of our experiments. First, we describe the image

dataset. Next, training strategies are discussed.

3.1 Dataset

We utilized the dataset presented in [12] for our experiments. It contains color im-

ages of overhead scenes from a satellite and their corresponding ground truth forgery

masks. Each image-mask pair is defined as {I, M} and has resolution 650× 650 pix-

els. The images were adapted from ones originally provided by the Landsat Science

program [18,19] run jointly by NASA [20] and US Geological Survey (USGS) [21].

To create forged images, objects such as airplanes and clouds were spliced into

some of the images at random locations. These doctored images fall into one of three

size categories (small, medium, or large) based on the approximate dimensions of

the forgery they contain relative to the patch dimensions (70 × 70 pixels) used by

the discriminator D to analyze a mask. Small forgeries are approximately 32 × 32

pixels; medium forgeries are approximately 64 × 64 pixels; and large forgeries are

approximately 128 × 128 pixels. This information is summarized in Table 3.1. The

remaining satellite images were left as pristine.
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Table 3.1.
Spliced Forgery Object Size Details

Forgery Size Approximate Pixel Dimensions

Small 32× 32 Pixels

Medium 64× 64 Pixels

Large 128× 128 Pixels

For our purposes, pristine and small-forgery samples underwent data augmenta-

tion to increase the size of the training dataset. Augmentation methods included

rotating pristine and small-forgery {I, M} pairs by multiples of 90° and flipping them

about the vertical and horizontal center axes. This produced our dataset D, which

contains 344 total {I, M} pairs. Of the 344 {I, M} pairs included in this dataset,

158 pairs contain small forgeries, 32 pairs contain medium forgeries, 31 pairs contain

large forgeries, and 123 are pristine. These subsets of D are denoted as DS, DM ,

DL, and DP , respectively. This information is summarized in table 3.2. Examples of

images and masks in this dataset are shown in Figures 3.1 through 3.4.

Table 3.2.
Dataset

Subset # {I, M} Pairs

DS 158

DM 32

DL 31

DP 123
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(a) Pristine I (b) Pristine M

Fig. 3.1. An input image and its ground truth mask (an {I,M} pair) from DP .

(a) Small forgery I (b) Small forgery M

Fig. 3.2. An input image and its ground truth mask (an {I,M} pair) from DS.



15

(a) Medium forgery I (b) Medium forgery M

Fig. 3.3. An input image and its ground truth mask (an {I,M} pair) from DM .

(a) Large forgery I (b) Large forgery M

Fig. 3.4. An input image and its ground truth mask (an {I,M} pair) from DL.
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3.2 Training Strategies

The dataset D was split into three subsets for training, validation, and testing

purposes. The training dataset Dtrain contains 128 DS pairs and 90 DP pairs. The

validation set Dvalidation has 32 DS pairs and 18 DP pairs. The final dataset Dtest

consists of 32 DM , 31 DL, and 15 DP pairs. This information is summarized in Table

3.3. By creating disjoint training/validation and evaluation datasets, we observe how

well a trained model extends to new forgery sizes. It was hypothesized that small

forgeries might pose the biggest challenge to the network, so they compose the training

and validation sets.

Table 3.3.
Train-Validate-Test Dataset Split

Set # DS pairs # DM pairs # DL pairs # DP pairs

Dtrain 128 0 0 90

Dvalidation 32 0 0 18

Dtest 0 32 31 15

The cGAN was trained for 200 epochs using the Adam optimizer with an initial

learning rate of 0.0002. The reconstruction loss coefficient λ was set to 100. After

training, the model that performed the best on Dvalidation was selected to use for

testing.
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4. EXPERIMENTAL RESULTS

4.1 Visual Analysis of Results

We performed both visual and numerical analysis of the results to determine the

effectiveness of our proposed method. Figures 4.1 through 4.12 contain examples of

mask estimates produced by G and their corresponding ground truth masks. These

selections showcase the different conditions under which the method performed. For

example, the location of the forged object varies in these images. Sometimes it is

spliced over houses or buildings, and other times it is spliced over a field or a road.

The examples also show the different lighting conditions of the images under analysis.

Some images are darker than others, causing the spliced object to blend into the

background more so than in others. Regardless of the circumstances, these examples

show that the model produces mask estimates of both pristine and forged images that

very closely resemble the ground truth masks, i.e., M̂ ≈M. Thus, we can clearly see

if a forgery is present in an image I and, if so, its various properties. A numerical

analysis of the results further verifies this.
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(a) Pristine I

(b) Pristine M

(c) Pristine M̂

Fig. 4.1. Bright pristine image depicting houses.
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(a) Pristine I

(b) Pristine M

(c) Pristine M̂

Fig. 4.2. Bright pristine image depicting a field.
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(a) Pristine I

(b) Pristine M

(c) Pristine M̂

Fig. 4.3. Dark pristine image depicting houses
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(a) Small forgery I

(b) Small forgery M

(c) Small forgery M̂

Fig. 4.4. Dark image depicting houses and containing a small-sized plane forgery.
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(a) Small forgery I

(b) Small forgery M

(c) Small forgery M̂

Fig. 4.5. Bright image depicting a field and containing a small-sized plane forgery.
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(a) Small forgery I

(b) Small forgery M

(c) Small forgery M̂

Fig. 4.6. Dark image depicting houses and containing a small-sized plane forgery.
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(a) Medium forgery I

(b) Medium forgery M

(c) Medium forgery M̂

Fig. 4.7. Bright image depicting houses and containing a medium-
sized plane forgery.
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(a) Medium forgery I

(b) Medium forgery M

(c) Medium forgery M̂

Fig. 4.8. Bright image depicting houses and containing a medium-
sized plane forgery.



26

(a) Medium forgery I

(b) Medium forgery M

(c) Medium forgery M̂

Fig. 4.9. Dark image depicting a road and containing a medium-sized plane forgery.
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(a) Large forgery I

(b) Large forgery M

(c) Large forgery M̂

Fig. 4.10. Bright image depicting a field and containing a large-sized cloud forgery.
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(a) Large forgery I

(b) Large forgery M

(c) Large forgery M̂

Fig. 4.11. Dark image depicting houses and containing a large-sized plane forgery.
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(a) Large forgery I

(b) Large forgery M

(c) Large forgery M̂

Fig. 4.12. Bright image depicting a field and containing a large-sized plane forgery.
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4.2 Numerical Analysis of Results

To evaluate forgery detection, each image’s classification label (i.e. forged or

pristine) must first be determined based on its generated mask estimate M̂. In order

to accomplish this, the average pixel value of a mask estimate is employed. This value

is defined as

M̂avg =
1

X · Y

X∑
x=1

Y∑
y=1

M̂(x, y), (4.1)

where X × Y is the image resolution. Then, binary thresholding with threshold

T is used to determine whether the image under analysis I is pristine or forged.

As mentioned previously, an image is considered pristine when M̂ ≈ 0. From a

thresholding standpoint, this is achieved when M̂avg < T. Thus, all images that meet

this condition are labeled as pristine. Otherwise, they are labeled as forged. Next,

labels assigned to each mask estimate are compared to the ground truth labels to

determine the performance of this method in regard to detection.

To assess forgery localization, a similar evaluation process occurs; however, only

for images in which forgeries are detected. Each mask estimate M̂ is thresholded and

then undergoes a pixel-wise comparison to its corresponding ground truth mask M

to evaluate splicing localization.

Figure 4.13 shows the receiver operating characteristic (ROC) curves for our re-

sults, which reveal the performance of different thresholds T for both the detection

and localization objectives. This figure also illustrates model performances achieved

when using BCE loss and L1 loss for reconstruction. For the detection objective, the

areas under the curve (AUC) for both BCE and L1 loss are 1.000, indicating that it

is possible to achieve perfect detection accuracy with thresholding using either BCE

loss or L1 loss for LR. These results are further verified by the precision-recall (PR)

plot in Figure 4.14 for a model using BCE loss. It too indicates that perfect detection

is possible with our 2-class model, as its average precision score is also 1.000. On the



31

other hand, a difference in model performance is observed based on the localization

objective depending on whether BCE or L1 is used for LR. BCE yields a higher

AUC value of 0.988 in comparison to L1, which achieves an AUC of 0.927. The PR

curve (again using BCE loss) with an average precision score of 0.953 confirms that

localization results are very good. Based on these results, the final model implements

BCE loss for reconstruction.
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(a) ROC curves for forgery detection depicting comparison between BCE and

L1 loss for LR

(b) ROC curves for forgery localization depicting comparison between BCE

and L1 loss for LR

Fig. 4.13. ROC curves for detection and localization of spliced forgeries
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(a) PR curve for forgery detection using BCE loss for LR

(b) PR curve for forgery localization using BCE loss for LR

Fig. 4.14. PR curves for detection and localization of spliced forgeries
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5. CONCLUSION

5.1 Summary

In this thesis, we propose a forensic image analysis method based on a cGAN

for splicing detection and localization in satellite images. The proposed technique

exploits a data driven approach. Thus, it learns how to distinguish forged regions

from pristine ones directly from the available training data. Results show that the

developed methodology accomplishes both tampering detection and localization with

incredibly high accuracy on the used dataset. Moreover, it is interesting to notice

how the proposed solution generalizes to forgeries of different sizes than those seen

during training.

5.2 Future Work

While the results of this experiment look very promising, more work needs to be

done to improve the robustness of the system. A first step would be to investigate how

our method performs on datasets containing images coming from different satellites,

since the experiments mentioned in this thesis utilize images all captured from the

same satellite. The next step would be to extend the method to different types of

forgeries, such as copy-move and inpainting forgeries. A third improvement would

be to separate the training and testing datasets based on the object spliced into the

images. For example, the training data would only contain plane objects while the

testing data would only contain cloud objects. In creating this dataset, it would

be good to include pristine images containing planes and clouds to verify that the

method only flags spliced objects as forgeries. A final suggestion for future work is to

apply this method to different types of satellite imagery, including Synthetic Aperture
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Radar (SAR) and Multispectral Imagery (MSI). It would be interesting to see how

the technique performs in all of these scenarios and to further test our method’s

generalization capabilities.

5.3 Contributions of this Thesis

In this thesis, we developed a Conditional Generative Adversarial Network (cGAN)

to detect and localize spliced forgeries in satellite images. We demonstrated high per-

formance of the method on the used dataset.

5.4 Publication Resulting from the Thesis

• E. R. Bartusiak, S. K. Yarlagadda, D. Gera, F. M. Zhu, P. Bestagini, S.

Tubaro, E. J. Delp. Splicing Detection And Localization In Satellite Imagery

Using Conditional GANs. IEEE International Conference on Multimedia In-

formation Processing and Retrieval (MIPR), March 2019. San Jose, CA.
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[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA:
MIT Press, 2016.

[16] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5967–5976, Jul. 2017, Honolulu,
HI. [Online]. Available: https://doi.org/10.1109/CVPR.2017.632

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241,
Oct. 2015, Munich, Germany. [Online]. Available: https://doi.org/10.1007/978-
3-319-24574-4 28

[18] “Landsat on AWS,” Amazon Web Services Inc. https://aws.amazon.com/public-
datasets/landsat/, (Accessed on 12/01/2018).

[19] “Landsat science,” National Aeronautics and Space Administration
https://landsat.gsfc.nasa.gov/, (Accessed on 12/01/2018).

[20] “NASA,” National Aeronautics and Space Administration
https://www.nasa.gov/, (Accessed on 12/01/2018).

[21] “Usgs.gov — science for a changing world,” U.S. Geological Survey
https://www.usgs.gov/, (Accessed on 12/01/2018).

[22] E. R. Bartusiak, S. K. Yarlagadda, D. Güera, F. Zhu, P. Bestagini, S. Tubaro,
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