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ABSTRACT

Goggin, McClain M. M.S., Purdue University, May 2019. A Passive Safety Approach
to Evaluate Spacecraft Rendezvous Mission Risk. Major Professor: Dr. David A.
Spencer.

Orbital rendezvous enables spacecraft to perform missions to service satellites,

remove space debris, resupply space stations, and return samples from other planets.

These missions are often considered high risk due to concerns that the two spacecraft

will collide if the maneuvering capability of one spacecraft is compromised by a fault.

In this thesis, a passive safety analysis is used to evaluate the probability that a

fault that compromises maneuvering capability results in a collision. For a rendezvous

mission, the chosen approach trajectory, state estimation technique, and probability

of collision calculation each impact the total collision probability of the mission. This

thesis presents a modular framework for evaluating the comparing the probability of

collision of rendezvous mission design concepts.

Trade studies were performed using a baseline set of approach trajectories, and

a Kalman filter for relative state estimation and state estimate uncertainty. The

state covariance matrix following each state update was used to predict the resulting

probability of collision if a fault were to occur at that time. These trade studies

emphasize that the biggest indicator of rendezvous mission risk is the time spent on

a nominal intercept trajectory.
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1. INTRODUCTION

Sections of this chapter have been adapted from reference [1].

Orbital rendezvous and proximity operations have been an important means of

accomplishing complicated missions in space [2]. During the 1960s and 70s, both

the United States and the Soviet Union considered orbital rendezvous a key enabling

technology for space exploration [3].The decade following the launch of Sputnik in

1957 saw a huge increase in the level of interest in orbital rendezvous. Six years

after the first orbital launch, Apollo astronaut Buzz Aldrin submitted his doctoral

thesis to MIT on manned orbital rendezvous [4]. In his thesis, with the exception of

two references about general celestial mechanics, every reference was published after

1958. By 1965, the first successful orbital rendezvous occurred during the Gemini

VI mission, and the first docking on Gemini VIII followed a year later [3]. Orbital

rendezvous enabled humans to get to the moon, assemble and maintain space sta-

tions, and repair the Hubble space telescope. While Table A.1 shows that over 27

rendezvous vehicles have flown (+4 awaiting first flight), the table does not show the

significant number of rendezvous mission concepts currently being developed. En-

tities ranging from government agencies and universities, to large corporations and

small startups, are developing a myriad of rendezvous mission concepts. These con-

cepts include missions to service satellites, remove orbital debris, perform in-space

manufacturing, build and supply space stations, and return material from planets,

moons, and asteroids. Despite the increasing importance for space applications, or-

bital rendezvous remains an activity that is a driving risk for many applications. The

rendezvous phase of a mission represents a critical time that introduces a substantial

amount of operational complexity. When visiting vehicles arrive at the International

Space Station, the rendezvous is overseen by astronauts in orbit, teams at NASA

Johnson Space Center, and the mission operations center of the vehicle performing
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the rendezvous [5]. Despite numerous precautions to reduce mission risk, several or-

bital rendezvous failures are documented. In 1997, an unmanned Russian Progress

resupply vehicle collided with the Mir space station [6]. That same year, the ETS-

VII rendezvous and docking demonstration vehicle experienced multiple anomalies

during the final phases of rendezvous [7], and in 2005 DARPA’s Demonstration of

Autonomous Rendezvous Technology (DART) mission experienced an anomaly that

resulted in a collision [8, 9]. These failures still affect perceptions about the risks of

rendezvous missions.

As the number of rendezvous missions increases, designers may wish to impose

a maximum acceptable probability of uncontrolled collision as a design requirement.

Program managers may wish to see how this indicator of mission risk is impacted by

design decisions and weigh them against the related cost implications. Engineers will

want to design an optimal rendezvous for their specific missions. This thesis provides

a framework that can be used to evaluate the probability of collision due to loss of

maneuverability during the terminal rendezvous phase of a mission.

1.1 Terminal Rendezvous Zones

Every rendezvous mission will pass through three “Zones of Criticality” [10] as

shown in Table 1.1. These zones are useful for managing the type of action that

must be taken if a spacecraft experiences a malfunction (fault) during the terminal

rendezvous. The first zone is the “Passive Safety Zone”. While the rendezvous mission

is in this zone, the probability that a spacecraft fault will cause the two spacecraft

to collide is negligible, even if maneuverability is lost [11]. The second zone is the

“Active Abort Zone”. Once the rendezvous vehicle enters the active abort zone, any

abort that is triggered by a fault will require a maneuver to prevent a collision. The

final zone is the “Unavoidable Intercept Zone”. Once the rendezvous mission enters

this zone the spacecraft does not have adequate thrust to divert from an impact

trajectory.
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Table 1.1. Definition of “Zones of Criticality”

Zone 1 Zone 2 Zone 3

Passive Safety Active Abort Unavoidable Intercept

No maneuver is

required to prevent a

collision.

A maneuver can be

performed to prevent

a collision.

No maneuver can be

performed to prevent

a collision.

1.2 Combined Hardbody

The transition between the passive safety zone and the active abort zone is defined

by the probability that the trajectory following a fault will result in a collision. A

trajectory is defined as a collision trajectory if the center of mass of one vehicle

intersects with combined “hardbody” of both vehicles. This combined hardbody, as

shown in Figure 1.1, is typically represented as a sphere with a radius consisting of

the combination of the maximum radial dimension of each spacecraft. Using a sphere

with the combined hardbody radius (CHR) allows the probability of collision to be

determined without an accurate understanding of the attitude of each spacecraft.

This hardbody radius is sometimes increased to further add margin by generating

a “keep out sphere”. The keep out sphere for the international space station is 200

meters [12] while the maximum radial dimension is 65.5 meters. A fault within this

keep-out-sphere is considered unacceptable.
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Figure 1.1. Combined hardbody and keep-out-sphere definition for
collision determination

1.3 Terminal Rendezvous Key Areas

The probability that a given rendezvous mission design results in a collision is in-

fluenced by numerous design decisions including approach trajectory, filter methodol-

ogy, sensor selection, and hardware reliability. While these design decisions come with

other considerations, their impact on mission risk should not be ignored. There are

several approaches to calculating the collision probability, and each approach involves

a different set of assumptions. Once a method for determining collision probability

has been established however, the same method can continue to be used throughout

the spacecraft design phase to understand how subsequent design changes alter the

collision probability.
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1.4 Statement of Purpose

1.4.1 Addressing Stakeholder Issues

This thesis details a framework for estimating the probability of collision for a ren-

dezvous mission while providing a framework that can be updated as design changes

are proposed and implemented. The method can enable program managers to weigh

the cost of design changes against the corresponding change in collision probability. It

can be used by trajectory designers to minimize collision probability based on design

parameters, and by fault protection algorithms to determine if the vehicle is in the

passive safety or active abort zone.

1.4.2 Determining Rendezvous Collision Probability

The total collision probability for a rendezvous mission is a function of the trajec-

tory design and dynamics models, the state estimation methodology, and the method

used to calculate the collision probability. Figure 1.2 shows the flow of information

between trajectory design, state estimation, and collision probability determination.

The trajectory design provides the relative state (ρ, ρ̇) and planned maneuvers (∆v̄)

using the state estimate (ρ̃, ˙̃ρ) determined by the orbit determination filter. The rela-

tive position is then observed (z̄) using on-board state determination sensors that are

simulated by reducing the true relative state to the observable quantities and adding

Gaussian white noise. The state estimation filter improves upon these observations

and estimates the full state based upon consecutive observations. The state estimate

(ρ̃, ˙̃ρ) and state uncertainty covariance (C) are then used to determine the probabil-

ity that a collision will occur (P̃c) if a fault occurs (with a probability of occurring

PF ) during the time between observations (t). This probability (P̃c) is then used to

determine if the spacecraft is in the passive safety or the active abort zone. The to-

tal collision probability (PT ) of the terminal rendezvous phase of the mission is then
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determined. The total probability of collision for a rendezvous mission can be used

to perform trade studies to compare potential mission designs.

Figure 1.2. Information process flow for rendezvous collision probability

1.5 Scope

While orbital rendezvous can enable many different missions, case studies pre-

sented in this thesis investigate the design of a Mars sample return mission involving

the capture of an Orbiting Sample canister (OS) by a Sample Return Orbiter (SRO).

In this scenario, the one-way light time between Mars and Earth prohibits ground-

in-the-loop control of the rendezvous. The absence of GPS and ground-based target

tracking around Mars results in the need for an automated rendezvous using the

SRO proximity sensor suite for relative state estimation. A rendezvous around Mars

is therefore an ideal candidate for a passive safety analysis. In the event of a fault

caused by an extended period during which the OS is not visible to the SRO, it would

be advantageous for the SRO to be on a low probability of collision trajectory. This

trajectory would allow the SRO to passively wait to reacquire visibility of the OS

without using additional fuel. The same passively safe trajectory would allow the

SRO to completely shut off thrusters in the event of a more serious fault.

Three Mars sample return rendezvous trajectories were used as case studies. These

case studies formed the basis of a trade study on the impacts of trajectory changes

on the total collision probability. The case studies consisted of a single ballistic

trajectory, a straight-line transfer approach, and a two phase approach beginning
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with radial impulse transfer “hops” followed by a straight-line transfer along the V-

bar as described in Section 1.6.1. Trade studies were then performed to identify how

changing trajectory parameters such as the number of “hops” and the location of the

transition point between phases affected the total collision probability.

This thesis presents a modular rendezvous collision probability framework. This

framework consists of three main areas: a maneuver planning tool, state estimation

filter, and collision probability calculator. The scope of each area has been limited

to commonly used trajectories, filters, and probability calculations to demonstrate

a realistic baseline from which to conduct parameter trade studies. While a fourth

area consisting of methods for computer vision and state observation was investigated,

implementation of these methods was considered outside of the scope of this thesis due

to the significant variation between methodologies. Similarly, control architectures

such as artificial potential functions, attitude control schemes, and optimal control

laws were considered outside the scope of the current work. However, the developed

framework allows new or updated methods in each area, such as control schemes,

observation models, and state estimation filters, to be included as part of future

work.

1.6 Literature Survey

Extensive research has been conducted in each of the three main areas developed

for this thesis. As discussed previously, relative orbital motion and rendezvous tra-

jectories have been heavily investigated since the dawn of the space age. Similarly,

one of the first major applications of the Kalman state estimation filter was on the

Apollo missions [13].
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1.6.1 Rendezvous Dynamics and Approach Trajectories

Relative Motion

The relative motion of interest is that of a “deputy” spacecraft with respect to a

non-maneuvering “chief” spacecraft. This motion is commonly described in the local

vertical local horizontal (LVLH) reference frame centered on the chief vehicle. This

reference frame is alternately known as the RTN, RIC, RSW, and Hill frame [14].

As defined in section 2.1, the LVLH frame consists of the inertial chief radius vector,

the inertial chief angular momentum vector, and the vector that completes the right-

handed triad in the direction of motion.

Relative Dynamics Models

Extensive work has been done by Scharf et al. [15], Alfriend and Yan [16], and

Sullivan et al. [17] to compile the closed form relative dynamics models currently

available. These models range from the well-known linear translational model of

Hill-Clohessy-Wiltshire (CW) that has seen extensive flight heritage [17] and their

extension to curvilinear coordinates by Alfriend et al. [16] and De Bruijin et al. [18],

to the orbital element state representation models by Yan [16], and Vallado [19]. The

simplest solutions involve the most assumptions such as a circular chief orbit and

small spacecraft separation. From these basic models, extensions are made to include

either larger spacecraft separations, chief eccentricity [20], perturbations [21, 22], or

some combination thereof [23].

Relative geometric formulations developed by D’Amico and Montenbruck [24], as

well as those developed by Lovell, Tragesser, and Tollefson [25], with extensions by

Lovell and Spencer [26], showed that relative orbital elements can provide geometric

insight into the relative motion that is unavailable from other models. This insight can

be a significant advantage for preliminary rendezvous design when the assumptions

in the underlying dynamics are valid.
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Rendezvous Transfers

In Fehse’s discussion of rendezvous trajectory types [27], he details ten transfer

types for rendezvous with vehicles in near-circular orbits. He groups them into ra-

dial impulse transfers, tangential impulse transfers, and straight-line transfers. While

radial and tangential impulse transfers take advantage of natural dynamics to make

transfer “hops”, straight-line transfers use frequent maneuvers to overcome the nat-

ural dynamics and travel in a straight line. One common rendezvous approach is to

combine a radial impulse transfer and a straight-line transfer with constant velocity.

This is a commonly used two-phase approach strategy [2] because the initial portion

takes advantage of natural dynamics to introduce some level of passive safety [27]

while the final portion overcomes the relative dynamics using thrusters to increases

the level of control for a successful docking/mating.

Rendezvous mission sequences typically involve maneuvers, and no maneuver is

executed perfectly. Small changes in mass properties and thruster performance over

time are very difficult to model, and as such both the magnitude and direction of a

maneuver are subject to error. The maneuver error model as presented by Gates [28]

was one of the first maneuver execution error models published. This model grouped

maneuver errors into proportional and fixed errors for both magnitude and pointing

errors. These can be simplified to characterize maneuver error as only proportional

magnitude and pointing errors [29].

1.6.2 Relative State Estimation

There are many methods of observing the position of another object. If an ob-

ject’s state is observable, this means that there is sufficient information available to

determine that portion of the full state. A single image is sufficient to observe the

position of a single point in two dimensions but does not have sufficient information

to observe the depth. This is known as an angles only observation. Adding a second

camera located a known distance from the first provides stereoscopic vision and can
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provide the depth perception in the same way as a pair of eyes. On the other hand, a

direct range measurement such as a laser rangefinder can determine the range, but no

angles. Sensors such as a LIDAR can observe both the depth and angles, making the

full relative position observable. Table 1.2 shows that each of the seven rendezvous

mission investigated includes a combination of sensors to make both the range and

angles observable.

Table 1.2. Survey of proximity sensors on rendezvous missions

Program/

Project

Narrow

Angle

Wide

Angle
IR Video LIDAR

Laser

Range

Finder

Inter-

Sat

link

CPOD X X X X

Orbital

Express
X X X X X

PRISMA X X X

ATV X X X X

Cygnus X X

Dragon X X

HTV X X

While there are many methods for observing the relative state, all the techniques

are susceptible to noise. To produce an improved relative state estimate, the noisy

observations are passed through a state estimation filter. One of the important aspects

of any state estimation filter is the resulting variance-covariance matrix. This matrix

defines a hyper-ellipsoid of the distribution of potential positions and velocities, and

an ellipsoid describing the potential positions. This position ellipsoid has a surface

with constant probability density [30] and provides a visual representation of where

the true relative position is the most likely to be.
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The two most common filters used in orbit determination are least squares and

sequential processing filters [7]. Least squares filters are ideally suited for quickly

obtaining a state estimate from large quantities of data, while sequential processing

methods are best suited for improving upon a previous state estimate in real-time

while describing the potential error in the state with a covariance matrix. The Kalman

filter [31] and its extensions are probably the best known sequential filters and have

been extensively used to improve state estimates of dynamic systems from noisy

observation data. The Extended Kalman Filter (EKF) is simply the extension of the

linear Kalman filter to nonlinear dynamics. As noted by Sullivan [32] the EKF still

requires a first order linearization to propagate the state uncertainty covariance.

The Unscented Kalman Filter (UKF) as developed by Julier [33] enables the state

uncertainty covariance to be propagated using nonlinear dynamics by generating a

representative set of weighted points and propagating them through the nonlinear

dynamics. The weights ensure that the state estimate is the mean of the distribution

of points both before and after the propagation. The Kalman filter and its extensions

are especially suited to the rendezvous problem because they continually update the

relative state and covariance as new relative observations are taken.

1.6.3 Collision Probability

There are two broad categories for determining collision probability. The first is

through covariance analysis and is the focus of this research. The second is through

Monte Carlo analysis which is considered more accurate [34] but is also far more time

and resource intensive. A Monte Carlo analysis generates a statistically significant

number of potential initial states, propagates them individually, and uses the percent

of the initial states that result in a collision as the collision probability.

Covariance analysis uses the assumption that the relative state uncertainty fol-

lows a Gaussian distribution. The probability that the true state is located at a

given location can then be determined by a Gaussian probability density function.
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The collision probability at a single instant in time is determined as the probability

that the center of mass of the deputy vehicle lies within the volume of a sphere cre-

ated by adding together the maximum radius of each spacecraft. Any relative states

within this “combined hardbody” are considered to have collided. The two biggest

limitations in the accuracy of covariance analysis are the assumption of a Gaussian

distribution, and the presence of any unmodeled dynamics when propagating the co-

variance matrix. When the model used to propagate the covariance is accurate, the

accuracy of covariance probability analysis increases.

Methods for calculating collision probability from a state covariance depend on the

amount of time the spacecraft spend in close proximity to one another. In his book on

spacecraft collision probability Chan [35] categorizes spacecraft collision probability

methods based on the relative velocity of the spacecraft. For most orbital spacecraft

encounters not involving rendezvous, the relative velocity is high and encounters

last only a few seconds. These high velocity encounters are typically modeled as

rectilinear motion. There are many methods of calculating collision probabilities for

the rectilinear case, however none of them can be directly applied to the low velocity

case of a rendezvous where the motion of one spacecraft with respect to another does

not resemble a straight line.

Phillips [36] compiled an extensive review and comparison of extended encounter

collision probability methods. These methods range from the development of an

analytic solution that must be re-derived for any given relative orbit geometry from

Chan [35], to methods that break the relative trajectory into small increments of near

rectilinear motion that can be combined to generate a total probability of collision

such as that by Patera [37], McKinley [38], and Alfano [39]. These methods convert

reference frames to a constant covariance centered at the origin of the LVLH frame.

They then have the combined hardbody change size and shape with time to sweep

out a single a volume representing the entire trajectory. This volume then becomes a

function of Cartesian coordinates rather than of time and can be integrated as a time-

invariant function. The probability of collision is typically very small when evaluated
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near the initial condition but grows swept-out trajectory and hardbody near the chief.

In the case of a rendezvous where the deputy range is decreasing while the covariance

is expanding, the probability of collision is almost entirely contained within a small

portion of the swept-out volume. One useful method for approximating this integral,

and thereby saving substantial computation time, is by taking the instantaneous

collision probability as determined by a single covariance at the time of maximum

collision probability. While this approximation has been shown to slightly under

predict the cumulative or total collision probability in certain circumstances [40],

it provides a straightforward method for comparing the collision probability of one

trajectory to that of a different trajectory. This approximation has been used in this

thesis.

1.7 Contributions to State of the Art

This thesis advances the state of the art in three ways. The first is by providing a

method for determining if the spacecraft is on a passively safe trajectory at any point

during the rendezvous. The second is by providing a modular framework by which the

total probability of collision of the rendezvous phase of a mission can be evaluated.

Finally, a trajectory parameter trade study is performed that demonstrates how the

method can be used to design a passively safe trajectory.

This trade study emphasizes that the time spent on a nominal intercept trajectory

is the biggest driver of collision probability. The trade study also shows that while

a nominal intercept trajectory places the spacecraft in the active abort zone, not all

trajectories in the active abort zone are nominal intercept trajectories. Therefore, a

trajectory that is in the active abort zone can decrease the total collision probability,

provided it sufficiently reduces the time of flight of the subsequent intercept trajectory.

Finally, the trade studies show that for the cases evaluated, a straight-line transfer

and a two-phase transfer can provide a reduction in collision probability compared to

the single ballistic transfer.
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2. MATHEMATICAL APPROACH

Sections of this chapter have been adapted from reference [1].

2.1 Reference Frames

In order to determine the total probability of collision of a given rendezvous mis-

sion, it is important to first describe the relative motion. The relative motion of one

spacecraft with respect to another is commonly described in the local vertical, local

horizontal (LVLH) reference frame of non-maneuvering chief vehicle.

Figure 2.1. Local Vertical, Local Horizontal (LVLH) coordinate sys-
tem definition for relative orbital motion.
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2.1.1 Inertial Reference Frame (I)

The inertial frame (I) for the rendezvous problem is a non-rotating frame centered

in the central planetary body with the Z axis pointing in the direction normal to the

planet’s equator, and the X axis pointing in the direction of the vernal equinox.

2.1.2 LVLH reference frame (R)

The relative motion of a maneuvering deputy vehicle with respect to a non-

maneuvering chief vehicle is described in the chief local vertical, local horizontal

(LVLH) frame. This frame consists of an x̂ component along the chief radius vector,

a ẑ component along the chief orbital angular momentum vector, and a ŷ component

that completes the right handed triad as seen in Figure 2.1. For circular chief orbits,

the ŷ vector lies along the velocity vector. In Figure 2.2,the subscript (C) indicates

the LVLH frame centered at the chief.

2.1.3 Body Reference Frame (B)

The final frame of interest is the deputy “body” frame (B). If knowledge of the

deputy attitude and inertial state can be assumed, then knowledge of the rotation

between the body frame and the LVLH frame can also be assumed. An example

of this transformation is provided in Appendix C. All observations provided to the

model were assumed to be pre-converted from the body frame to the LVLH frame.

This assumption removes the need for an accurate attitude dynamics and control

model. Figure 2.2 shows the observation z̄ at instant k of the relative state in the

body frame subject to Gaussian noise shown by the ellipse surrounding the chief,

and the relative position as ρ̄C . Section 2.3.1 describes the mathematical model for

simulating an observation.
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Figure 2.2. Local Vertical, Local Horizontal (LVLH) coordinate sys-
tem definition for both chief and deputy spacecraft showing deputy
body frame, relative position, and observed relative position.

2.1.4 Reference Frame Conversions

To convert the relative state estimate of the chief in the deputy LVLH frame (ξ̃C =

[ρ̃C , R ˙̃ρ
C

]T ) to the relative state of the deputy in the chief LVLH frame ξ̃ = [ρ̃, R ˙̃ρ]T ,

differences in inertial angular velocity must be taken into account.

To obtain the inertial state estimate of the chief from the inertial deputy state

and the state estimate of the chief in the deputy LVLH frame, the relative position

estimate of the chief (ρ̃C) is added to the inertial position of the deputy (r̄)

r̃C = r̄ + ρ̃C (2.1)
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The inertial deputy velocity (I v̄) is similarly added to the relative velocity (Rd ˙̃ρC),

accounting for the differences in the reference frame in which derivatives were taken.

I ṽC = [I v̄ + Rd ˙̃ρC − (Ω̄× ρ̃C)] (2.2)

where

Ω̄ = h̄/||r̄||2 (2.3)

h̄ = r̄ × I v̄ (2.4)

To obtain the relative position of the deputy in the chief LVLH frame (ρ̃), the

estimated inertial position of the chief(r̃C) is subtracted from the deputy position

vector:

ρ̃ = r̄ − r̃C (2.5)

The relative velocity of the deputy in the chief LVLH frame can be obtained by

taking the difference between the inertial velocities and accounting for differences in

rotational velocity.

R ˙̃ρ = I v̄ − I ṽC − (Ω̃× (r̄ − r̃C)) (2.6)

where

Ω̃ = h̃/||r̃C ||2 (2.7)

h̃ = r̃C × I ṽC (2.8)

To plan a maneuver in the inertial frame based on the relative state in the chief

LVLH frame, the post-maneuver deputy velocity in the chief LVLH frame (Rc ˙̄ρf ) must

be converted back to the inertial frame.

I ṽf = [Rc ˙̃ρf + I v̄C − (Ω̃C × ρ̃)] (2.9)

where

Ω̃C = h̃C/||r̃C ||2 (2.10)

h̃C = r̃C × I ṽC (2.11)
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In equations 2.1 to 2.11, the preceding superscript indicates the reference frame in

which the derivative is taken, the superscript C following the position or velocity

indicates the position or velocity of the chief vehicle while the subscript f indicates

the desired state after a maneuver. The (̄·) represents a vector, the ˙(·) represents a

time derivative, and (̃·) represents a vector being estimated during the relative orbit

determination. The angular momentum is denoted by h, and Ω represents the orbital

angular rate. As shown in Figure 2.2, r and v are inertial position and velocities while

ρ and ρ̇ are relative quantities.

2.2 Dynamics Models

2.2.1 Inertial Dynamics Model

Inertial dynamics were propagated to include the analytical expression for the J2

spherical harmonic perturbation, as described in Bate’s book [41]. The J2 pertur-

bation was included as the dominant error source rather than separation distance or

chief orbit eccentricity, due to the proximity of the spacecraft during terminal ren-

dezvous, and the expectation that the orbiting sample would be placed into a circular

parking orbit for retrieval.

ẍ+ µx/d3[1 + J2(3/2)(Rm/d)2(5z3/d2 − 1)] = 0 (2.12)

ÿ + µyẍ/x = 0 (2.13)

z̈ + µz/d3[1 + J2(3/2)(Rm/d)3(3− 5z2/d2)] = 0 (2.14)

In 2.12 through 2.14, x, y, z correspond to distances in the inertial X, Y, Z frame, and

all derivatives are taken in this frame. The gravitational parameter of the central

body is denoted as µ, and J2 is the spherical harmonic coefficient, Rm is the mean

equatorial radius of the central body, and d is the orbital radius of the spacecraft.
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2.2.2 Clohessy-Wiltshire Dynamics Model

When the chief orbit is nearly circular, the relative position between the deputy

and chief is small, and the relative perturbations are small, the first order approxima-

tion of linear relative dynamics described by Clohessy and Wiltshire dominate [42].

In the case of terminal rendezvous with an orbiting sample placed into an equatorial

orbit, all of these assumptions are reasonable for small time intervals.

ẍ− 2nẏ − 3n2x = 0 (2.15)

ÿ + 2nẋ = 0 (2.16)

z̈ + n2z = 0 (2.17)

The analytic solutions can be obtained as derived by reference [42]

x(t) =(4x0 + 2ẏ0/n)− (3x0 + 2ẏ0/n) cos [n(t− t0)]+

(ẋ0/n) sin [n(t− t0)] (2.18)

y(t) =y0 − 2ẋ0/n− (6nx0 + 3ẏ0)(t− t0)+

(2ẋ0/n) cos [n(t− t0)] + (6x0 + 4ẏ0/n) sin [n(t− t0)] (2.19)

z(t) =z0 cos [n(t− t0)] + (ż0/n) sin [n(t− t0)] (2.20)

ẋ(t) =(3nx0 + 2ẏ0) sin [n(t− t0)] + ẋ0 cos [n(t− t0)] (2.21)

ẏ(t) =− (6nx0 + 3ẏ0)− 2ẋ0 sin [n(t− t0)]+

(6nx0 + 4ẏ0) cos [n(t− t0)] (2.22)

ż(t) =− nz0 sin [n(t− t0)] + ż0 cos [n(t− t0)] (2.23)

where n is the mean motion of the chief spacecraft, x is the radial distance, y is the

along-track distance, and z is the cross-track distance in the chief LVLH frame. All

derivatives are taken in the chief LVLH frame.
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2.2.3 Relative Orbital Elements

Two major advantages of these linearized equation are the ability to directly

solve for relative positions, and the ability to convert them to the more visually

intuitive relative orbital elements (ROEs) as presented by Lovell and Tragesser [26].

These ROEs simplify the process of planning rendezvous approaches like the V-bar

and straight-line approaches as presented by Fehse. The following equations are

reproduced from reference [26].

The radial instantaneous center of motion (xr) is a function of the LVLH radial

position (x0) and the along-track velocity (ẏ0) and is a constant with respect to time.

xr = 4x0 + 2ẏ0/n (2.24)

The along-track instantaneous center of motion is a function of time, the initial along-

track position, and the x̂ and ŷ velocity.

yr = y0 − 2ẋ0/n− (6nx0 + 3ẏ0)(t− t0) (2.25)

The amplitude of the along-track motion, also referred to as the relative semi-major

axis, is also a constant with time.

ar =
√

(6x0 + 4ẏ0/n)2 + (2ẋ0/n)2 (2.26)

The relative eccentric anomaly describes where along the relative ellipse the spacecraft

is located.

Er = atan2 (2ẋ/n, 6x0 + 4ẏ0/n) + n(t− t0) (2.27)

Finally, the amplitude of the cross-track motion and the cross-track eccentric anomaly

are independent of the planar motion and are described entirely by the cross-track

position and velocity.

Az =
√
z2

0 + (ż0/n)2 (2.28)

ψ = atan2 (z0, ż0/n) + n(t− t0) (2.29)
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In equations 2.24 through 2.29, the x, y, z values are the same is in the CW

equations and n is once again the mean motion. As shown in Figure 2.3(a) and

2.3(b), xr is the radial instantaneous center of relative motion, yr is the along-track

instantaneous center of relative motion, ar is the amplitude of the along track motion,

Er is the relative eccentric anomaly, Az is the amplitude of the cross-track motion,

and ψ is the cross-track eccentric anomaly.

(a) Relative Geometry: x̂− ŷ (b) Relative Geometry: x̂− ẑ

Figure 2.3. Relative orbit geometry as defined by Lovell and Tragesser [25]

A V-bar hop can be visualized as the top (or bottom) portion of the ellipse as

shown in Figure 2.3(a). To place the spacecraft on the V-bar hop trajectory the

velocity must to match the velocity of the desired ellipse as shown in Figure 2.4(a)

Once on the first ellipse, the location of the second maneuver is determined by locating

the next crossing of the ŷc axis, and the ∆v̄ vector is determined by the predicted

velocity at the maneuver point and the desired velocity that will place the deputy

on an identical trajectory to the first, starting from the now closer position as seen

in Figure 2.4(b). If additional passive safety as described by Fehse is desired, the

instantaneous center of motion can be moved down in the case of a -V-bar approach,

or up in the case of a +V-bar approach in order to force the average motion of the
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deputy spacecraft to move away from the chief spacecraft by changing the deputy

orbital period.

Maneuvers for a straight-line V-bar approach can be calculated in the same man-

ner by shifting the initial deputy location to the top of the ellipse rather than one

side. Maneuvers can be seen in figure 2.5(b).

2.2.4 Relative Motion including J2 Perturbation

When a more accurate relative state propagation is required, the relative dynamics

of Schweighart and Sedwick [21] which include the J2 perturbation are used.

ẍ− 2(nc)ẏ − (5c2 − 2)n2x = 0 (2.30)

ÿ + 2(nc)ẋ = 0 (2.31)

z̈ + (3c2 − 2)n2z = 0 (2.32)

where

c =
√

1 + s (2.33)

s =
3J2R

2
m

8r̄C
(1 + 3 cos 2iC) (2.34)

In equations 2.30 through 2.34, x, y, z are the relative position of the deputy in the

chief LVLH frame, n is the chief mean motion, J2 is the first zonal harmonic coefficient

of the central body, Rm is the mean equatorial radius of the central body, iC is the

reference inclination of the chief vehicle, and c and s are constants.

2.2.5 Maneuver Error

Most rendezvous will consist of one or more maneuvers. Each maneuver is subject

to pointing and magnitude errors ēM and ēP . Magnitude errors point along the

planned maneuver vector, while pointing errors point in the plane normal to the

planned maneuver vector. Maneuver errors are added to the desired error to simulate

actual hardware maneuver errors. These errors can be modeled as in reference [29]:
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ēM = EM ||∆v̄||η∆v̂ (2.35)

ēP = EP ||∆v̄||δ̂ ×∆v̂ (2.36)

where η is a zero-mean Gaussian random variable, δ̂ is a normalized zero-mean Gaus-

sian random vector, and EM and EP are the proportional pointing and magnitude

errors of the planned maneuver impulse vector ∆v̄, and ∆v̂ is the maneuver unit

vector.
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(a) Initial ROE geometry for V-bar hop with spacecraft at the ŷc axis

(b) Additional V-bar hop trajectory maneuvers

Figure 2.4. Radial impulse hop maneuver planned using relative orbital elements
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(a) Initial Straight Line Geometry

(b) Straight Line Trajectory Maneuvers

Figure 2.5. Straight-line transfer maneuver planned using relative orbital elements



26

2.3 State Estimation

For the following discussion, the state is assumed to be a 6x1 Cartesian vector

consisting of position and velocity, and it is assumed that the relative position is

observable such that observations are 3x1 Cartesian vectors.

2.3.1 State Observations

The simplified observation model of the chief state in the deputy LVLH frame is

assumed to add Gaussian white noise to the true state as described by Equation 2.38:

ξ̄C = [ρ̄C , Rd ˙̄ρ]T (2.37)

z̄k = Hξ̄C + ν̄k (2.38)

Where ν̄k is 3x1 a zero-mean Gaussian random variable at observation k, and H is

a 3x6 transformation matrix between the observable states in the body frame and

the full state in the deputy LVLH frame. If BLR is the 3x3 rotation matrix from the

LVLH frame to the Body frame, and if both range and angles are observable, H is

given by

H = [BLR, 03x3] (2.39)

where 03x3 is a 3x3 zero matrix. If the deputy is holding its body frame equal to its

LVLH frame, BLR becomes the 3x3 identity matrix.

2.3.2 The Linear Kalman Filter

In situations where the CW assumptions are valid, a linear Kalman filter can

rapidly provide a state estimate and covariance [43]:
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Predict

In the prediction step, the previous state estimate and covariance denoted by the

subscript k−1 is propagated using the 6x6 state transition matrix (Φ), including any

control ū.

ξ̃k|k−1 = Φξ̃k−1 + Būk (2.40)

If ū is a 3x1 impulse vector, B is a 6x3 shaping matrix.

B = [03x3, I3x3]T (2.41)

The 6x6 covariance C is then propagated and any unmodeled dynamics are accounted

for through the 6x6 process noise matrix Q. Impulsive maneuvers are modeled

through an impulsive covariance expansion Cvv(ūk), included in appendix D.

Ck|k−1 = ΦCk−1Φ
T + Q + Cvv(ūk) (2.42)

Update

The predicted observation (ȳ) is obtained using the H matrix

ȳ = Hξ̃k|k−1 (2.43)

The 3x3 pre-fit residual covariance matrix (S) is then obtained from the expected

measurement noise (R) and the predicted covariance (Ck|k−1).

S = HCk|k−1H
T + R (2.44)

The 6x3 optimal Kalman gain (K) is determined by the the predicted covariance

(Ck|k−1) and pre-fit residual covariance matrix (S).

K = Ck|k−1H
T/S (2.45)

Finally, the updated state estimate is obtained by multiplying the optimal Kalman

gain to the pre-fit residual (z̄k − ȳ) and adding this to the predicted state estimate.
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The updated covariance can then be determined from the predicted covariance and

the Kalman gain.

ξ̃k = ξ̃k|k−1 + K(z̄k − ȳ) (2.46)

Ck = (I−KH)Ck|k−1 (2.47)

2.3.3 The Unscented Kalman Filter

When nonlinear dynamics are required, the unscented Kalman filter can provide

a more accurate covariance propagation method than an extended Kalman filter.

For reference on an extended Kalman filter and the comparison between the two for

orbital rendezvous, see reference [17]. The UKF works on the principal that it is

easier to approximate a distribution of states than it is to linearize dynamics [33].

The UKF is adapted here from references [44] and [33]:

Predict

A 6x13 matrix X is first formed, consisting of 2L + 1 state vectors according to

the distribution described by the covariance

λ = α2(L+ k)− L (2.48)

X0 = ξ̃Ck−1 (2.49)

Xi = (ξ̃Ck−1 +
√

(L+ λ)Ck−1)i, {i = 1, ..., L} (2.50)

Xi = (ξ̃Ck−1 −
√

(L+ λ)Ck−1)i, {i = L+ 1, ..., 2L} (2.51)

where L is the dimension of the state, λ is a scaling parameter, α determines the

spread of the points around the mean (ξ̃) and is typically small, k is a secondary

scaling parameter usually set to 0 [44].
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These vectors are then numerically propagated according to the nonlinear dynam-

ics models described by Schweighart and Sedwick (SS) [21] to produce a matrix of

predicted states (Xk|k−1), accounting for any input control (Būk).

Xk|k−1 = SS(Xi) + Būk, {i = 0, ..., 2L} (2.52)

Weights for the mean and each of the additional state vectors are then formed for

both the state estimate (Wm) and covariance (W c), where β is used to describe the

distribution type, β = 2 is optimal for Gaussian distributions [44].

Wm
0 = λ/(L+ λ) (2.53)

W c
0 = λ/(L+ λ) + (1− α2 + β) (2.54)

Wm
i = W c

i =
1

2(L+ λ)
, {i = 1, ..., 2L} (2.55)

The predicted state is approximated using weighted sample mean.

ξ̃k|k−1 =
2L∑
i=0

Wm
i Xk|k−1 (2.56)

The predicted observation ȳ is obtained using a weighted sample mean of the predicted

observations of each of the sample points (Y).

Y = HXk|k−1 (2.57)

ȳ =
2L∑
i=0

Wm
i Yi (2.58)

Finally, the predicted covariance of the propagated sample points is determined.

Ck|k−1 =
2L∑
i=0

W c
i [Xk|k−1 − ξ̃k|k−1][Xk|k−1,i − ξ̃k|k−1]T (2.59)

Update

The pre-fit residual covariance Cȳk,ȳk and the pre-fit residual cross correlation ma-

trix between the mean and the observed states Cξ̃,ȳk
are formed using the covariance
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weights to compute the 6x3 Kalman gain K incorporating the measurement noise

covariance R, assuming that noise is additive and independent

Cȳk,ȳk = R +
2L∑
i=0

W c
i [Yi − ȳ][Yi − ȳ] (2.60)

Cξ̃,ȳk
=

2L∑
i=0

W c
i [Xi − ξ̃k|k−1][Yi − ȳ] (2.61)

K = Cξ̃,ȳk
C−1
ȳk,ȳk

(2.62)

The final state estimate and covariance are computed from the Kalman gain and the

residual between the expected observation and the actual observation, as in the linear

Kalman filter.

ξ̃k = ξ̃k|k−1 + K(z̄k − ȳk) (2.63)

Ck = Ck|k−1 −KCȳk,ȳkK
T (2.64)

2.4 Collision Probability

2.4.1 Instantaneous Collision Probability

A covariance matrix describes a distribution of points. For a Gaussian distri-

bution, the probability that a point lies within this distribution is determined by a

probability density function of the form [45]:

P =
1√
2πσ

e−
1

2σ2
(x−µ)2 (2.65)

where σ is the standard deviation, x is the Gaussian random variable, and µ is the

mean value.

The probability density function can then be extended to apply to the probability

of collision between the three-dimensional state estimate and the volume of the com-

bined hardbody. This instantaneous collision probability is the integrated probability
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that the true state lies within the combined hardbody volume. This integration is

given by equation 2.66 [35]:

Pc(tj) =
1√

(2π)3|Cr|

∫ ∫ ∫
V

e−.5d̄
TC−1d̄dxdydz (2.66)

where Cr is the position uncertainty covariance, and d̄ is the vector of integration

parameters. This vector points from the state estimate to points within the combined

hardbody volume.

One method for approximating this integral that does not require numeric inte-

gration, is through the method of approximate distributions (AD) as developed by

Chan [35]. This approximation typically produces probabilities that agree with nu-

merical integration to a tenth of a percent. The general concept revolves around con-

verting the collision probability integral into a cumulative non-central chi-square dis-

tribution (Ψ2) and then converting to a cumulative central chi-square distribution(χ2),

and finally to the evaluation Gaussian distribution of one variable. If r = ||ρ̄|| and

the combined hardbody radius is given by RH , then letting χ2 = X2, and t = T ,

when Ψ2 = R2
H , the probability of collision can be given as the probability:

P = P
[
r2 ≤ R2

H

]
= P

[
Ψ2 ≤ R2

H

]
=
[
χ2 ≤ X2

]
= P

[
t ≤ T

]
(2.67)

The method is summarized here, and explained in more depth in Appendix B.

The total mean, variance, and third moment about the mean are given by:

µ =
3∑
j=1

[σ2
j + ρ2

j ] (2.68)

µ2 = 2
3∑
j=1

[σ4
j + 2σ2

jρ
2
j ] (2.69)

µ3 = 8
3∑
j=1

[σ6
j + 3σ4

jρ
2
j ] (2.70)

The degree of the desired central chi-square distribution (χ2) is given by:

n′ =
8µ3

2

µ2
3

(2.71)
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When Ψ2 = R2, let χ2 = X2, giving

X2 = n′ +

√
2n′

µ2

(R2 − µ) (2.72)

Finally, the transformation from a central chi-square distribution to a normal distri-

bution as derived originally by Wilson and Hilferty [46] is given by:

T = [
3

√
X2

n′
− (1− 2

9n′
)]/

√
2

9n′
(2.73)

PMAD =
1

2
[1 + erf(T/

√
2)] (2.74)

where ρj is the relative position element of the relative position vector ρ̄ =

[ρ1, ρ2, ρ3], σ is the diagonal element of the position uncertainty covariance (Cr),

and R is the combined hardbody radius. The degree of the desired central chi-square

distribution(Ψ2) is given by n′, T denotes the desired third moment about the mean,

and erf is the error function.

For a spacecraft performing a rendezvous mission, the state uncertainty covari-

ance represents the statistical distribution of possible true states, centered at the

state estimate. Equation 2.66 represents the probability that the nominal trajectory

intersects the combined hardbody, and therefore the probability that a collision has

occurred at that time.

2.4.2 Propagated Collision Probability

A single initial state can be propagated forward in time to determine if it will

result in a collision at a later time. Similarly, as is done in Monte Carlo analysis, a

distribution of initial states can be propagated forward in time to determine what

percent of the original distribution will result in a collision. A state covariance ma-

trix describes the potential distribution of an initial state and can be propagated

forward in time to describe what percent of the original distribution will result in a

collision. The covariance propagation can be done without requiring the propagation

of a statistically significant number of individual initial states.
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If a covariance represents the potential distribution of relative states at a given

time, sampling this covariance as it is propagated shows the potential distribution

of trajectories. The left side of Figure 2.6 shows a planar view in the LVLH frame

of a set of three trajectories propagated through 3/4 of an orbit (rev) beginning

at 10 meters, 15 meters, and 20 meters from the origin of the LVLH frame. Each

figure also shows the corresponding distribution of points as described by the 3σ

covariance ellipsoid, sampled at two-minute intervals along the propagated trajectory.

The inner arc created by the 3σ ellipsoids shows the potential path of one initial state

on the lower boundary of the initial covariance. The outer arc created by the 3σ

ellipsoids shows the potential path of a different initial state on the high boundary

of the initial covariance. Looking at the intersection of these and other potential

trajectories with the combined hardbody radius shows that the time when the most

potential trajectories are collision trajectories is represented by a single 3σ covariance

ellipsoid. This ellipsoid has been highlighted in red in Figures 2.6(a), 2.6(c), and

2.6(e). Sampling a single collision probability at this location can reduce computation

time when compared to other probability estimation methods. This reduction in

computation time is important because the relative state estimate and state estimate

covariance will have updated initial conditions with every new observation so the

probability of collision must also be re-determined with each observation.

The question then becomes how to identify when to calculate the instantaneous

collision probability such that it is representative of the likelihood that a collision

will occur. For rectilinear motion when relative velocities are high, the location of

closest approach is used to calculate the propagated collision probability [35]. For

trajectories with low relative velocities this is no longer the case because relatively

small variations in trajectories can lead to significantly different locations of maximum

collision probability.

The right side of Figure 2.6 shows how the instantaneous collision probability

varies along the trajectory shown on the left throughout one full rev. As the trajec-

tory progresses, the state uncertainty grows, and the nominal range from the origin
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decreases. For the ten-meter case, the trajectory results in almost 100% of all po-

tential trajectories result in a collision with the combined hardbody. However, every

instant along the trajectory does not correspond to a 100% probability of collision.

In fact, the point at which the nominal trajectory passes through the origin does

not correspond to an instantaneous collision probability of 100%. This can be seen

in Figure 2.6(e) where the 3σ state uncertainty covariance has expanded beyond the

diameter of hardbody at this point. As the initial trajectory location is changed to

15 and 20 meters, the location in the rev where the maximum collision probability

occurs also changes.

To determine the maximum collision probability of a given trajectory, the collision

probability throughout the trajectory was determined using the method of approxi-

mate distributions (AD) described previously and taking the maximum value.

Figure 2.6(d) shows the instantaneous collision probability as a function of time

for the same trajectory as Figure 2.6(c). To emphasize that the minimum range does

not correspond to the maximum collision probability, the probability of collision as

determined by time of minimum range has been shown. For the specific trajectory

shown in figure 2.6(d), the minimum range also produces a good approximation of

the maximum collision probability location. However when the same trajectory is

initiated at twenty meters as shown in figure 2.6(b) the range no longer produces a

good estimate. The maximum collision probability for a propagated trajectory, or

“propagated collision probability” (P̃c), is used to represent the collision probability

following an updated state estimate, and can be used to determine if the spacecraft

is in the passive safety zone or the active abort zone.
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(a) Covariance propagated from 20m (b) Instantaneous collision probability for 2.6(a)

(c) Covariance propagated from 15m (d) Instantaneous collision probability for 2.6(c)

(e) Covariance propagated between 10m

and 0m

(f) Instantaneous collision probability for 2.6(e)

Figure 2.6. Instantaneous collision probability through 1 rev showing
that the point of maximum collision probability corresponds to the
instantaneous collision probability described by a single covariance
(shown as a red 3σ ellipsoid)



36

2.4.3 Total Collision Probability

If a fault occurs during the rendezvous sequence, it is assumed that future ma-

neuvers during the approach phase cannot be performed. The probability tree in

Figure 2.7 shows a graphical representation of how the total collision probability is

calculated.

Figure 2.7 indicates a series of sequential observations, with a node at each time

of sensor input. The initial node on the top left indicates the vehicle at time t1, where

a sensor input state observation occurs. The probability that a fault occurs at this

time is denoted by PF . If a fault occurs at t1, the probability of a collision resulting

from the uncontrolled trajectory is equal to the propagated probability of collision

from time t1 (P̃C(t1)). The combined probability of impact occurring due to a fault at

t1 is equal to the probability of a fault occurring PF multiplied with the propagated

probability of collision (PF P̃C(t1)).

This combined probability is denoted as P̃c(t1)|F . The resulting propagated col-

lision probability due to a fault at time tj can be calculated by equation 2.75. For

the jth observation, the probability that no faults have occurred is one minus the

probability that a fault occurred at any previous observation. The probability that a

fault did not occur at the first observation is (1−PF ), the probability that a fault did

not occur at either the first or second observation is (1 − PF )(1 − PF ) = (1 − PF )2.

This formula is known as the binomial distribution for Bernoulli trials. The proba-

bility that a fault occurs at the jth observation is PF . Therefore the probability of a

fault occurring at the jth observation and that no faults have occurred up through

observation j − 1 is PF (1− PF )(j−1).

P̃c(tj)|F = PF P̃c(tj)(1− PF )(j−1) (2.75)
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Figure 2.7. Probability tree diagram showing the probability of colli-
sion due to an anomaly at any point during the rendezvous sequence

The probability that no collision occurred at each point during the rendezvous se-

quence (1− P̃c(tj)) can again be determined by a binomial distribution for a Bernoulli

trial as seen in Figure 2.8

P =
k∏
j=1

(1− P̃c(tj)|F ) (2.76)

where k is the number of observations between the initialization of the rendezvous

sequence and the time of successful capture. This probability includes both the

probability of no faults occurring and of no collisions occurring following a fault.

Figure 2.8. Probability tree diagram showing the total probability of
no collisions occurring

The probability that a collision occurred at any point during the rendezvous is

then one minus the probability that no collisions occurred.

PT = 1−
k∏
j=1

(1− P̃c(tj)|F ) (2.77)
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3. SIMULATION

3.1 High-Fidelity and Simplified Models

A MATLAB simulation was created to run both a simplified model and a “High-

Fidelity” (HIFI) model. The simplified model takes advantage of the linearized CW

equations to quickly compare the exact same trajectory while only changing one

variable. The HIFI model allows for individual cases to be run in a more realistic

manner for detailed study of individual cases and to demonstrate the applicability of

this modular framework to fault protection.

3.1.1 Maneuver Planning and Dynamics

The maneuver planner for both the simplified and the HIFI models takes advan-

tages of the geometric representation of ROEs from Lovell and Tragesser. ROEs are

used to predict the time at which the maneuvers should occur as well as the planned

maneuver vector. Sketches of maneuver planning using ROEs for both V-bar hops

and straight line approaches can be seen in figures 2.4(b) and 2.5(b).

For the HIFI mode, the maneuver planner takes in the current state estimate and

uses ROEs to predict the time and impulse of the next maneuver. If the time is

greater than the deputy observation rate, the nonlinear dynamics of both spacecraft

are propagated to the time of the next observation. If the time to the next maneuver

is less than the observation rate, the dynamics are propagated to the maneuver time

and the impulse including maneuver error is added to the final state. In this way,

ROEs are only used to predict the maneuver as far in advance as the time between

observations. If a new state estimate informs the maneuver planner that the maneuver

should have already occurred, the maneuver is applied a tenth of a second after the
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observation. This delay is one the biggest difference between the simplified and high-

fidelity models.

For the simplified model, the maneuver planner uses the true state to predict

the next maneuver time and propagates to it directly using ROEs. The post ma-

neuver state is then used to determine the subsequent maneuver and post maneuver

trajectory. The linear equations of motion allow the entire rendezvous sequence to

be created in less than a second with repeatable results. This repeatability allows

for one parameter to be changed in a trajectory while leaving all other elements the

same for comparison. Both modes plan maneuvers based on a user-input concept of

operations matrix consisting of rows describing the type of transfer to be performed

and the ending condition. Once the end condition is met, the planner advances to

the next phase of the concept of operations.

3.1.2 State Estimation

State estimation is performed in both the simplified model and the high-fidelity

mode to minimize the error from the dynamic model used to propagate the true

state. In the high-fidelity mode, noisy observations of the true state are passed into

the UKF in real time and outputs are provided directly to the maneuver planner. The

sensor noise covariance used in the filter is the same as the one used to simulate the

observation, representing an accurate understanding of the state observation method

and hardware. Process noise on the order of magnitude of the integration tolerance

is added to the filter state covariance propagation. Maneuvers are modeled with the

planned maneuver and the covariance is expanded impulsively in accordance with the

expected maneuver errors.

The simplified model provides the linear Kalman filter with simulated observations

from the entire rendezvous. The filter then processes through the observation data

adding impulsive covariance expansions corresponding to expected maneuver errors

at the maneuver times.
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3.1.3 Collision Probability

Once the filter has obtained an updated state and covariance update, the propa-

gated collision probability of the new best estimated trajectory is determined. The

state and covariance are propagated using CW approximations at a one second time

step for one full rev. The instantaneous collision probability is determined at each

timestep, and the maximum collision probability is obtained. This case study only

determined the propagated collision probability for one rev beyond the time of a

potential fault, because it is assumed that beyond this time, the on-board fault pro-

tection system would be able to take sufficient action to either address the fault or

actively abort to a predetermined orbit until the issue could be addressed.

In the high-fidelity model, the time of maximum collision probability is used to

re-propagate the state and covariance using the unscented transform described in

the propagate step of the unscented Kalman filter. This more accurate state and

covariance are then used to compute the propagated collision probability using the

method of approximate distributions.

Once the last phase of the concept of operations is completed, the total collision

probability calculations are performed.

3.2 Capture Conditions

The definition of the “capture condition” or point where the rendezvous ends

successfully defines both what trajectories can be evaluated, and where faults stop

influencing the collision probability. For example, the fault that occurred on the

Gemini VIII mission where a thruster became stuck open after a successful docking,

would not be included in a probability of collision analysis, while the same fault

occurring less than a meter away just prior to docking would be included. One

limitation of using a combined hardbody sphere to model when a collision occurs is

that there is likely time between the moment the deputy spacecraft enters this sphere

and when an actual successful capture or docking occurs. This simulation assumes
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that the boundary of this sphere defines the boundary of the “Unavoidable Intercept

Zone” as defined in section 1.1. Cases discussed in the following chapter evaluate

both the situation where entering this zone terminates the rendezvous, and where the

probability of a fault resulting in a collision is 100% between entering this zone and

completing a successful capture at a sphere 1/4 the size of the combined hardbody

sphere. This comparison shows how the additional time required to pass through

the unavoidable intercept zone can alter what trajectories prove the most effective at

reducing the total collision probability.
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4. ANALYSIS AND RESULTS

Sections of this chapter have been adapted from reference [1].

4.1 Reference Rendezvous Mission

A motivation for this thesis is the development of a methodology for evaluat-

ing the collision probability of a Mars Sample return mission. Table 4.1 Shows the

gravitational parameters and assumed reference orbit of the OS.

Table 4.1. Reference mission orbital parameters

Central Body Mars

Gravitational Parameter 0.042828e15 (m3/s2)

Planetary Radius 3396.2 (km)

J2 Zonal Harmonic Coefficient 1960.45e-6

Altitude 479 (km)

Orbital Period (rev) 2.035 (hours)

Eccentricity 0

Inclination 0 (deg)

Longitude of Ascending Node 0 (deg)

True Anomaly 0 (deg)

4.2 Case Studies

Three cases were chosen as baselines against which to evaluate passive safety. All

cases involved a stationary hold at +50 meters along the V-bar (+ŷ) for 1/2 rev
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to allow the filter to converge before maneuvers began. The rendezvous sequence

for which the collision probability was estimated began immediately following this

hold. Each trajectory ended at the origin of the OS LVLH reference frame, while

the calculations of collision probability were terminated after the SRO entered the

sphere created by the combined hardbody. The common parameters for both cases

can be found in Table 4.2. All results shown for the case studies were computed

Table 4.2. Common rendezvous case parameters

y0 Initial hold position 50 m

xr V-bar hop center of motion 0 m

v̄sl straight line transfer velocity 0.05 m/s

σm Maneuver magnitude error 1.5%

σp Maneuver pointing error 1.5%

PF Probability of Fault 1/30 revs

CHR Combined Hardbody Radius 4 m

using the high-fidelity model, but shown against the simplified or “nominal” model

for comparison.

The first case study was a ballistic trajectory initiated from a radial impulse

provided in Figure 4.1. The second case studied was that of a straight-line transfer

consisting of one initial impulse in the negative V-bar direction of 0.05m/s followed by

a trajectory correction maneuver to maintain a straight line every 60 seconds. While

this case was called a “straight-line”, this maneuver frequency was not sufficient to

keep a completely straight line as displayed in Figure 4.3. The third case consisted

of a two-phase transfer. The first phase involved four radial impulse transfer hops

and ended at ten meters from the origin. The second phase involved a straight-line

transfer. The two-phase transfer case can be seen in Figure 4.6.

In addition to these case studies, two primary trajectory trade studies were per-

formed. These trade studies took advantage of the reduced runtime and increased
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consistency of the simplified model. The first trade study, shown in Figure 4.9 in-

creased the number of tangential impulse transfer hops used to complete the 50m

transfer. The second trade study, shown in Figure 4.10 varied the transition point

of the two-phase approach from 40 meters to the origin to determine if a minimum

collision probability transition point exists. These trade studies, and the studies per-

formed to further investigate the initial results, emphasize that the most significant

factor contributing to the collision probability of a rendezvous mission is the time

spent, not distance traveled, on an intercept trajectory.

4.2.1 Ballistic Transfer

Figure 4.1 shows that the trajectory as determined by both the simplified model

and the high-fidelity model are consistent. Figure 4.2 shows the propagated probabil-

ity of collision calculated at each new observation. Within 10 minutes, the filter was

able to converge sufficiently to predict a 100 percent probability of collision. This

ability to predict that the spacecraft is on a collision trajectory in real time is of

significant interest when designing fault protection strategies. Engineers and project

sponsors can set collision probability thresholds above which an active abort should

be performed, and under which a passive abort should be executed. Figure 4.2 shows

that following the initialization of the terminal rendezvous after the initial 1/2 rev

hold, the entire rendezvous for the ballistic transfer was clearly in the active abort

zone.

Table 4.3 shows a total collision probability of 0.0148 (just under 1/60) based on

a probability of a fault occurring once every 30 revs for a 1/2 rev transfer. This

The ballistic trajectory only requires one impulse of just over 10.5 mm/s to complete,

making it the simplest of the three case studies to execute.
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Table 4.3. Ballistic transfer case study results

Total Collision Probability 0.0149± .00011

Total Impulse 10.68 mm/s

Number of impulses 1

Elapsed time 0.45 Revs (55 min)

Figure 4.1. Ballistic transfer trajectory from a single radial burn at
50 meters showing simplified and HIFI models
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Figure 4.2. Ballistic Transfer propagated collision probability
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4.2.2 Straight-Line Transfer

Figure 4.3 shows that both the simplified model and high-fidelity model were

unable to maintain an exactly straight line due to the assumed maximum maneuver

frequency of 1/60 seconds. This figure shows the difficulty of completely overcoming

the relative orbital motion.

Figure 4.4 shows the predicted trajectories that would occur following a fault

at the time of a maneuver if the subsequent maneuver were not performed. Figure

4.4 demonstrates that the straight-line trajectory was nominally passively safe until

the 13th maneuver that occurred at a range of 14 meters. After this maneuver,

the nominal trajectory would have intercepted the combined hardbody even if the

maneuver at 11 meters were not performed.

Figure 4.5 shows the propagated collision probability for the straight-line transfer.

This shows that not only did the 13th maneuver result in a nominal intercept, but

also that this maneuver resulted in a propagated collision probability of 1. This is in

contrast to the ballistic trajectory maneuver which was only predicted to have a 0.98

probability of collision immediately following the maneuver. This difference is due

to the drastically reduced time between 13th maneuver in the straight-line trajectory

and the intercept point, and the time between the ballistic trajectory maneuver and

predicted intercept point.

Table 4.4 shows that the total collision probability was reduced by an order of

magnitude from the ballistic trajectory case while the number of impulses and total

impulse were increased by an order of magnitude.

Table 4.4. Straight-line transfer case study results

Total Collision Probability 0.0011± .00000

Total Impulse 146 mm/s

Number of impulses 17

Elapsed time 0.04 revs (4.88 min)
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Figure 4.3. Straight-line transfer trajectory from trajectory correc-
tion maneuvers at one minute intervals showing simplified and HIFI
models
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Figure 4.4. Straight-line transfer trajectory showing the propagated
trajectory from post-maneuver state estimate.

Figure 4.5. Straight-line transfer propagated collision probability
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4.2.3 Two-Phase Transfer

The third case that was evaluated consisted of four initial radial impulse transfer

hops followed by a straight-line approach along the V-bar. This trajectory can be

seen for both the simplified mode and the high-fidelity mode in Figure 4.6. Figure 4.7

shows that the first four radial impulse transfer hops were passively safe, and return

to the initial location of the impulse.

This feature of the tangential impulse hops allows for the transfer to be attempted

a second time provided the fault that prevented the subsequent maneuver can be

cleared in one rev. If the fault persists, state uncertainty at the time of the fault will

result in the covariance continuing to grow to account for deviations from the nominal

trajectory. Given sufficient time, the collision probability could be substantial. How-

ever, as discussed in Section 3.1.3 the simulation assumed that for faults lasting more

than one rev, the on-board fault protection system would be able to take sufficient

action to either address the fault or actively abort to a predetermined orbit until the

issue could be addressed.

Figure 4.8 shows that the propagated probability of collision jumped from zero to

one at the transition point between phases due to the reduced time for the covariance

to expand with the straight-line transfer approach.

Table 4.5 shows that this two-phase approach had a slightly lower total probability

of collision than the entirely straight line approach.

Total Collision Probability 0.0006± .00000

Total Impulse 78.36 mm/s

Number of impulses 7

Elapsed time 2.04 Revs (249.02 min)

Table 4.5. Two-phase transfer case study results
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Figure 4.6. Two-phase transfer trajectory from four radial impulse
transfer hops transitioned to straight-line transfer at ten meters show-
ing simplified and HIFI models

Figure 4.7. Two-phase transfer trajectory showing propagated trajec-
tory based on post-maneuver state estimate.
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Figure 4.8. Two-phase transfer propagated collision probability
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4.3 Trajectory Trade Studies

4.3.1 Radial Impulse Hops in Ballistic Transfer

Figure 4.9 shows the effect of breaking up the trajectory into smaller V-bar hops.

This figure shows that when the capture occurred at the hardbody radius, smaller

intercept radial impulse hops reduce total collision probability until the penultimate

hop became an intercept trajectory as was the case for 13 hops to transfer 50 meters

(3.846 m/hop) with a 4-meter combined hardbody radius. When the capture occurred

at 1/4 the hardbody radius, a minimum collision probability of 0.013 occurred for 7

hops (7.14 m/hop). This result indicates that the primary reason the total collision

probability is reduced with increasing hops is because of the larger portion of the

smaller hops that is taken up by the successful capture. The slight minimum at

6 hops that occurs for the capture at the origin, however, indicates that there is

some reduction in total collision probability due to introducing more time spent on

a passively safe trajectory. This is likely because that a fault becomes more likely

with the increased time associated with increasing the number of hops. This would

indicate that the probability of having a successful rendezvous, as determined by the

probability that no faults occur, also decreases with increasing hops.
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Figure 4.9. Total collision probability vs number of radial impulse hops
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4.3.2 Phase Transition Location in Two-Phase Transfer

Figure 4.10 shows the effects of changing the transition point from V-bar hops

to a straight-line approach. Figure 4.10 shows that there was very little change

in total collision probability between a straight-line transfer (PT = 0.0011) and a

two-phase transfer with a transition point greater than 10 meters along the V-bar

(+ŷ), but that a transition less than 1 meter from the combined hardbody radius can

introduce significantly more risk. Figure 4.11 shows that refining Figure 4.10 around

the transition region at 10 meters does not produce a significant minimum collision

probability before the increase begins.

Figure 4.12 shows the same trade study as Figure 4.11 when additional passive

safety was added by lowering the instantaneous center of motion. This additional

passive safety during the first phase of the approach introduced a minimum collision

probability of 0.0006 when the transition point was located between 5 and 6.5 me-

ters. This local minimum demonstrates that there was additional risk of a collision

occurring one rev after a fault occurs just prior to the transition between phases.

Figure 4.13 shows the propagated collision probability for the two-phase approach

where the phase transition occurred at 6 meters. The propagated collision probability

increased as the trajectory approached the end of the two-phase final radial transfer

hop, counteracting any reduction in collision probability due to the slightly shorter

straight-line approach phase. As expected, Figure 4.14, showing the propagated col-

lision probability for the two-phase transfer with a center of motion of -2m, does not

show this increase in propagated collision probability at the end of the final hop.

Comparing the time axis of Figures 4.13 and 4.14 shows that the time for each hop is

reduced when the instantaneous center of motion is lowered. This is evident both in

the time that the final hop occurs (almost half a rev sooner) and in the corresponding

reduction in propagated collision probability immediately following the maneuver.
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Figure 4.10. Total collision probability vs two-phase transfer phase transition point

Figure 4.11. Total collision probability vs two-phase transfer phase
transition point (increased resolution)
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Figure 4.12. Total collision probability vs two-phase transfer phase
transition point (increased resolution) for transfer hop instantaneous
center of motion of -2 meters
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Figure 4.13. Two-phase transfer propagated collision probability with
phase transition point at 6 meters showing only the final radial im-
pulse transfer

Figure 4.14. Two-phase transfer propagated collision probability with
phase transition point at 6m for transfer hop instantaneous center of
motion of -2 meters, showing only the final radial impulse transfer
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5. CONCLUSIONS AND FUTURE WORK

Sections of this chapter have been adapted from reference [1].

As the number of commercial or routine rendezvous missions increases, so too

does the need for a framework for evaluating rendezvous mission risk. The modular

framework presented in this thesis allows engineers and other stakeholders to directly

see the impact of trajectory design decisions on the probability that a fault during the

rendezvous will result in a collision between the two spacecraft. This probability of

collision is a metric which can be used to inform decisions that would previously have

been made by gut instinct. As this framework developed in this thesis continues to

be applied to more varied situations, teams will be able to make educated rendezvous

mission design decisions without relying on intuition.

The trade studies performed for this thesis show that it is possible to provide

justification for design decisions based on collision probability. The trade studies

demonstrate that the biggest driver of rendezvous mission risk is the time spent

on a nominal intercept trajectory. A ballistic trajectory formed by a single radial

impulse takes just under half an orbit from the time of the impulse until a successful

capture is achieved. Reducing the time spent on a nominal intercept trajectory by

performing a straight-line transfer with multiple impulses is one way to reduce the

total probability of collision. Further reductions in the total collision probability

can be obtained by replacing the initial portion of the rendezvous with a passively

safe transfer hop. This passively safe transfer hop can be used to replace a portion

of the distance traveled on the straight-line intercept trajectory with a non-intercept

trajectory. This reduction in the time spent on an intercept trajectory further reduces

the total collision probability.

Future work consists of the extension of the method presented in this thesis to

include additional rendezvous approaches, sensor parameters, and the effects of hard-
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ware reliability. This method could be used to identify the collision probability for

other rendezvous approaches, such as an R-bar approach or other control method-

ologies. Sensor parameters were not studied in this thesis; however the method may

point towards sensors that reduce the risk of a collision during the rendezvous mis-

sion. Finally, hardware reliability and fault protection systems affect the probability

of a fault. Studying these design parameters could alter some of the trends observed

in this thesis. For example, substantially reducing the probability of a fault occurring

may reduce some of advantages gained by adding additional time on passively safe

trajectories.

This thesis directly lends itself to parameter optimization. A minimum collision

probability rendezvous mission could be developed as part of future work. A multi-

objective parameter optimization method could maximize the probability of no faults

occurring during the rendezvous and minimize the probability that a fault would result

in a collision. Additional constraints, including constraints on maximum impulse and

capture conditions, could ensure the optimized rendezvous design remained feasible.

This thesis could also be extended to other dynamics regimes involving additional

perturbations or other sources of error. This would likely involve the use of other

dynamics and maneuver planning models. This extension would demonstrate if a

design that works well for one orbit would work similarly well in a more perturbed

orbit.

A Monte Carlo simulation could also be run and used to compare against the

method presented in this thesis. Monte Carlo simulations are often considered the

most accurate form of probability analysis and would provide a valuable comparison

to the method developed in this thesis.

Additional spacecraft details or assumptions not included in this study, such as

attitude and thrust capabilities, could be added to identify the transition to the

unavoidable intercept zone, and to continue to increase model fidelity. These additions

would allow the framework to be applied to specific rendezvous missions.
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A. RENDEZVOUS MISSION SURVEY

Table A.1.: Rendezvous mission survey

Program/

project
Organization

Time

Period
Class Operability

Chief Co-

operation
Behavior

Dream

Chaser

Sierra

Nevada
2020+ Large Autonomous

Cooperative,

Controlled
Docking

MEV
Orbital

ATK
2019+ NA

Ground-in-

the-loop

Non-

Cooperative,

Controlled

Docking

CADRE EPFL 2019+ Nano Autonomous

Cooperative,

Uncon-

trolled

Rendezvous

CPOD Tyvak 2019+ Nano
Ground-in-

the-loop

Cooperative,

Controlled
Docking

OCSD

The

Aerospace

Corpora-

tion

2017 Nano NA
Cooperative,

Controlled
Rendezvous

Tianzhou CNSA 2017 Large Autonomous
Cooperative,

Controlled
Docking

LoneStar

Pro-

gram

Texas

A&M
2016 Nano Autonomous

Cooperative

Controlled
Docking

continued on next page
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Table A.1.: continued

Program/

project
Organization

Time

Period
Class Operability

Chief Co-

operation
Behavior

Banxing-

2
CNSA/SAST 2016 Nano Autonomous

Cooperative,

Controlled
Rendezvous

ZDPS-2 CNSA 2015 Nano
Ground-in-

the-loop?

Cooperative,

Controlled

Formation

Fly-

ing/Rendezvous

GSSAP USAF 2014 Medium
Ground-in-

the-loop

Non-

Cooperative,

Controlled

Rendezvous

ANGELS AFRL 2014 Micro
Ground-in-

the-loop

Cooperative,

Uncon-

trolled

Rendezvous

Cygnus
Orbital

ATK
2014 Large

Pilot-in-

the-loop

Cooperative,

Controlled
Docking

Dragon SpaceX 2012 Large
Pilot-in-

the-loop

Cooperative,

Controlled
Rendezvous

PRISMA ESA 2010 Mini
Ground-in-

the-loop

Cooperative,

Controlled
Rendezvous

HTV JAXA 2009 Large
Pilot-in-

the-loop

Cooperative,

Controlled
Rendezvous

ATV ESA 2008 Large Autonomous
Cooperative,

Controlled
Docking

Banxing-

1
CNSA/CASC 2008 Nano Autonomous

Cooperative,

Controlled
Rendezvous

continued on next page
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Table A.1.: continued

Program/

project
Organization

Time

Period
Class Operability

Chief Co-

operation
Behavior

Orbital

Express
DARPA 2007 Medium

Ground-in-

the-loop

Cooperative,

Controlled
Docking

SPHERES MIT 2006 Nano Autonomous
Cooperative,

Controlled
Docking

XSS-11 AFRL 2005 Micro
Ground-in-

the-loop
Rendezvous

DART NASA 2005 Mini Autonomous
Cooperative,

Controlled
Rendezvous

XSS-10 AFRL 2003 Micro
Ground-in-

the-loop

Non-

Cooperative,

Uncon-

trolled

Rendezvous

Shenzhou CNSA 1999 Manned
Pilot-in-

the-loop

Cooperative,

Controlled
Docking

AERCam

Sprint
NASA 1997 Nano Piloted

Non-

Cooperative,

Uncon-

trolled

Docking

ETS-

VII
NASDA 1997 Large

Ground-in-

the-loop

Cooperative,

Controlled
Docking

KIKU-7 JAXA 1997 Large

TAOS AFRL 1994 Mini
Ground-in-

the-loop

Cooperative,

Controlled
Rendezvous

continued on next page
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Table A.1.: continued

Program/

project
Organization

Time

Period
Class Operability

Chief Co-

operation
Behavior

STS NASA 1981 Manned Piloted
Cooperative,

Controlled
Docking

Soyuz USSR 1967 Manned
Pilot-in-

the-loop

Cooperative,

Controlled
Docking

Apollo NASA 1966 Manned Piloted
Cooperative,

Controlled
Docking

Gemini NASA 1962 Manned Piloted
Cooperative,

Controlled
Rendezvous
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B. METHOD OF APPROXIMATE DISTRIBUTIONS

The probability of interest for an instantaneous collision probability calculation is the

probability that the true position ρ̄, modeled as a set of three independent Gaussian

random variable of mean ρ̃j (renamed b̃ in the following derivation) and covariance

C lies within the combined hardbody volume of radius RH . That is, the probability

that:

P = P
[
r2 ≤ R2

H

]
(B.1)

P (||ρ̄|| < RH) = P (
k∑
j=1

ρj ≤ RH) (B.2)

Let Ψ2 be defined as

Ψ2 =
n∑
j=1

ρj (B.3)

Let bj denote the elements of the estimated state, and σj denote the diagonal entries

of the covariance matrix. Equation B.3 can be re-written as:

Ψ2 =
k∑
j=1

σ2
j (
ρj − bj
σj

+
bj
σj

)2 (B.4)

=
k∑
j=1

vj(qj + aj)
2 (B.5)

where

qj = (ρj − bj)/σj (B.6)

aj = bj/σj (B.7)

vj = σ2
j (B.8)

The probability of collision can now be determined as

P = P
[
r2 ≤ R2

H

]
= P

[
Ψ2 ≤ R2

H

]
(B.9)



70

The characteristic function of a random variable with probability density function

f(x) takes the form similar to the Fourier transform [47]:

φ(t) = E[eixt] (B.10)

=

∫ ∞
−∞

eixtf(x)dx (B.11)

This can be related to the moments of the distribution through

φx(t) =
∞∑
n=1

(it)nE[xn]/n! (B.12)

=
∞∑
n=1

(it)nµ′n/n! (B.13)

where i2 = −1. The expected value for a single expansion term (µ′r) can be found as

the rth derivative of the characteristic function evaluated at t=0.

µ′r =
1

ir

( d
dt

)r
φ(t)

∣∣∣
t=0

(B.14)

The Characteristic function (φ(t)) for a noncentral chi-square distribution with

non-zero mean and non-unit standard deviation is given by:

φ(t) =
n∏
j=1

φj(t) (B.15)

=
n∏
j=1

(1− 2itσ2
j )

(1/2)exp

[
n∑
j=1

(itσ2
ja

2
j)/(1− 2itσ2

j )

]
(B.16)

The first three moments about the mean for φj(t) are given by:

µ = µ′1 (B.17)

µ2 = µ′2 − µ′21 (B.18)

µ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 (B.19)

These moments are independent when determined for independent variables, there-

fore, the total mean, variance, and third moments can be determined by summing

the mean, variance, and third moment for each axis.
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m ≡ µ =
n∑
j=1

[vj + vja
2
j ] =

n∑
j=1

[σ2
j + b2

j ] (B.20)

v ≡ µ2 = 2
n∑
j=1

[v2
j + 2v2

ja
2
j ] = 2

n∑
j=1

[σ4
j + 2σ2

j b
2
j ] (B.21)

µ3 = 8
n∑
j=1

[v3
j + 3vja

2
j ] = 8

n∑
j=1

[σ6
j + 3σ4

j b
2
j ] (B.22)

For a central chi-square distribution(χ2), (aj = 0, σj = 1), the characteristic

equation B.16 simplifies to:

φ(t) = (1− 2it)(−n/2) (B.23)

where n is the degrees of freedom and describes the shape of the distribution. The

resulting first three moments for the central chi-square distribution are determined

by:

µ = n (B.24)

µ2 = 2n (B.25)

µ2 = 8n (B.26)

For the non-central chi-square distribution to be approximated by the central

chi-square distribution, the fit should satisfy

χ2 − n′√
2n′

=
Ψ2 −m√

v
(B.27)

The non-central chi-square distribution can then be approximated by a central

chi-square distribution by setting the first three moments equivalent to each other

such that if E(·), V (·), T (·) denote the operators for the mean, variance, and third

moment about the mean according to a desired degree of freedom n′:
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E
(χ2 − n′√

2n′

)
= E

(Ψ2 −m√
v

)
(B.28)

V
(χ2 − n′√

2n′

)
= V

(Ψ2 −m√
v

)
(B.29)

T
(χ2 − n′√

2n′

)
= T

(Ψ2 −m√
v

)
(B.30)

(B.31)

If E(Ψ2) = n′, and v(Ψ2) = 2n′ to fit the central chi-square distribution, the mean

and variance of the central chi-square distribution automatically align such that:

E(χ2) = n′ (B.32)

V (χ2) = 2n′ (B.33)

The third moment about the mean yields

T (χ2) =
(2n′

v

)3/2

µ3 (B.34)

where µ3 is the third moment about the mean of the non-central chi-square dis-

tribution. To be consistent with the definition of a central chi-square distribution,

T (χ2) = 8n′, and thus the desired degree of freedom of the central chi-square distri-

bution can be solved.

n′ = 8v3/µ2
3 (B.35)

When Ψ2 = R2
H , let χ2 = X2. Equation B.27 then allows the probability of

collision to be determined as

P = P
[
r2 ≤ R2

H

]
= P

[
Ψ2 ≤ R2

H

]
=
[
χ2 ≤ X2

]
(B.36)

Finally, the central chi-square distribution must be formulated in terms of a Gaus-

sian distribution. The following transformation was formed in 1931 by Wilson and

Hilferty [46]
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t =
[(χ2

n′
)(1/3) − (1− 2

9n′
)
]
/

√
2

9n′
(B.37)

When χ2 = X2, let t = T such that

P = P
[
r2 ≤ R2

H

]
= P

[
Ψ2 ≤ R2

H

]
=
[
χ2 ≤ X2

]
= P

[
t ≤ T

]
(B.38)
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C. BODY FRAME TO LVLH FRAME ROTATION

Observations of the relative position (z̄) comprised of a magnitude and angles α, η

For a given observation of the relative position in the body frame z̄ = [z1b̂1, z2b̂2, z3b̂3],

the observation vector can be converted to the LVLH frame through a rotation matrix

RLB, such that

Rz̄ = RLBB z̄ (C.1)

where the preceding superscript indicates the reference frame. An example of this

rotation would be if the spacecraft is maintaining a fixed attitude such that the b̂2

body fame unit vector points along the inertial velocity, and the b̂1 body frame unit

vector points along the orbital angular momentum vector. In this case, the only

deviation from the LVLH frame is the flight path angle.

RLB =


1 0 0

0 Cγ Sγ

0 −Sγ Cγ

 (C.2)
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D. IMPULSIVE COVARIANCE EXPANSION

When an impulsive maneuver subject to a known maneuver error is applied, the

covariance can be impulsively expanded to account for the additional uncertainty.

Figure D.1. Impulsive maneuver in the LVLH frame

The planned maneuver ∆v̄ has magnitude U and the projection of the magnitude

into the ŷ − ẑ plane Uxz

∆v̄ = [u1x̂, u2ŷ, u3ẑ]T (D.1)

U = ||∆v̄|| (D.2)

Uxz = ||u2, u3|| (D.3)

The right ascension φ and declination θ describe the direction of the impulse.

θ = cos−1 (u1/||∆v̄||) (D.4)

φ = cos−1(u3/Uxz) (D.5)
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The rotation matrix to a frame where the planned impulse is along the V̂x direction

can then be formed:

V LR =


cos(θ) sin(θ) sin(φ) cos(φ) sin(θ)

0 cos(φ) − sin(φ)

− sin(θ) cos(θ)sin(φ) cos(θ) cos(φ)

 (D.6)

The rotation to the impulse frame is required because errors are given in terms of

magnitude error applied along the planned impulse vector, and pointing errors applied

in the plane perpendicular to the planned impulse vector. The impulse vector in the

impulse frame then contains the entire magnitude of the planned impulse in the v̂x

direction.

∆v̄V = V LR ∗∆v̄ = [U, 0, 0]T (D.7)

Let ∆v̄a denote the actual burn such that

∆v̄a = ∆v̄ + ē (D.8)

where ē is the maneuver error vector. The expected value of the actual maneuver is

then

E[∆v̄a] = ∆v̄ + E[ē] (D.9)

because the expected value of the desired burn without maneuver error is the desired

burn.

The maneuver error ē is comprised of both the magnitude and pointing errors

ē = ēM + ēP . If M, θ, φ denote independent normal Gaussian random variables

corresponding to the magnitude and pointing errors, then
ex

ey

ez

 =


(U +M) cos(θ)− U

(U +M) sin(θ) cos(φ)

(U +M) sin(θ)sin(φ)

 (D.10)
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Because the random variables are Gaussian, their probability density functions

take the form:

PM(M) =
1√

2πσ2
M

exp(−M2/(2σ2
M)) (D.11)

Pθ(θ) =
1√

2πσ2
θ

exp(−θ2/(2σ2
θ)) (D.12)

Pφ(φ) = 1/π, 0 ≤ φ ≤ π, Pφ = 0, elsewhere (D.13)

where σM and σθ are the standard deviation of the magnitude and off-axis pointing

errors. Combining Equations D.10, D.11, and D.12, the expected value of the error

in the maneuver direction ex is determined as

E[ex] = U

∫ ∞
−∞

cos(θ)Pθdθ +

∫ ∞
−∞

∫ ∞
−∞

M cos(θ)PM(M)Pθ(θ)dθdM − U (D.14)

= U

∫ ∞
−∞

cos(θ)Pθdθ +

∫ ∞
−∞

MPM(M)dM

∫ ∞
−∞

cos(θ)Pθ(θ)dθ − U (D.15)

Where evaluating the integral shows that∫ ∞
−∞

MPM(M)dM = 0 (D.16)∫ ∞
−∞

cos(θ)Pθ(θ)dθ = e−
1
2
σ2
θ (D.17)

The expected value of the error in the maneuver direction is then

E[ex] = Ue−
1
2
σ2
θ − U (D.18)

Similarly it can be shown as by [29] that

E[ey] = 0 (D.19)

E[ez] = 0 (D.20)

(D.21)

The expected value of the executed maneuver is then

E[∆v̄a] =


Ue−

1
2
σ2
θ

0

0

 (D.22)
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The difference between the actual burn and the expected burn is

∆v̄a − E[∆v̄a] =


ex + U − Ue− 1

2
σ2
θ

ey

ez

 (D.23)

The covariance for the maneuver is described by

P = E([∆v̄a − E[∆v̄a][∆v̄a − E[∆v̄a]
T ) (D.24)

Finding the expected value of each of the terms, it can be shown that all off-diagonal

terms vanish, and because each of the errors is assumed to be independent, the

diagonal terms reduce to the following.

A = .5 ∗ (U2 + σ2
m)(1 + e−2σ2

p)− U2e−σ
2
p (D.25)

B = 1/4 ∗ (U2 + σ2
m) ∗ (1− e−2σ2

p) (D.26)

P =


A 0 0

0 B 0

0 0 B

 (D.27)

The covariance of the burn can then be rotated back into the LVLH frame and added

to the state estimate covariance.

Cvv = RLV PV LR (D.28)


