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ABSTRACT

Chawla, Aniesh M.S., Purdue University, May 2019. Automated System for Identi-
fying Usable Sensors in a Large Scale Sensor Network for Computer Vision Applica-
tions. Major Professor: Yung Hsiang Lu.

Numerous organizations around the world deploy sensor networks, especially vi-

sual sensor networks for various applications like monitoring traffic, security, and

emergencies. With advances in computer vision technology, the potential application

of these sensor networks has expanded. This has led to an increase in demand for

deployment of large scale sensor networks. Sensors in a large network have differences

in location, position, hardware, etc. These differences lead to varying usefulness as

they provide different quality of information. As an example, consider the cameras

deployed by the Department of Transportation (DOT). We want to know whether

the same traffic cameras could be used for monitoring the damage by a hurricane.

Presently, significant manual effort is required to identify useful sensors for different

applications. There does not exist an automated system which determines the use-

fulness of the sensors based on the application. Previous methods on visual sensor

networks focus on finding the dependability of sensors based on only the infrastruc-

tural and system issues like network congestion, battery failures, hardware failures,

etc. These methods do not consider the quality of information from the sensor net-

work. In this paper, we present an automated system which identifies the most

useful sensors in a network for a given application. We evaluate our system on 2,500

real-time live sensors from four cities for traffic monitoring and people counting ap-

plications. We compare the result of our automated system with the manual score

for each camera. The results suggest that the proposed system reliably finds useful
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sensors and it output matches the manual scoring system. It also shows that a camera

network deployed for a certain application can also be useful for another application.
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1. INTRODUCTION

Consider a scenario: Houston is enduring a hurricane and many parts of the city

are flooded. There are hundreds of cameras deployed by Houston Department of

Transportation [1] providing real-time images. First responders could leverage the

information from these cameras to monitor the flooding situation. Consider another

scenario: There is a big parade in Manhattan. A boy who comes with his family to

watch the parade, gets lost. Satyanarayanan [2] discusses the possibility of finding

the boy in the crowd using crowd sourced images from mobile phones. However,

instead of waiting for people to send images, authorities can also use traffic cameras to

search for the boy. Both these scenarios require an automated system which quickly

finds set of useful cameras for the intended application. We design such a system

called Method to Analyze Geo-tagged Images for Camera Classification (MAGICC),

which takes input as a list of cameras and an application like identifying flooding,

finding a person, traffic congestion, etc. and finds the useful cameras for the intended

application as shown in Fig. 1.1.

First responders and various organizations are also aided by the current increase

of deployment of sensors. This increase is due to low-cost availability of visual sensors

along with improvements in computer vision technology. It is expected that in the

next decade there will be substantial growth in the deployment of visual sensor net-

works, specifically camera networks [3]. In this paper, we focus only on one type of a

visual sensor network, i.e., a camera network. These camera networks are managed by

numerous organizations for various applications such as monitoring traffic, tourism,

forest, etc. Such diversity in cameras creates differences in two main characteristics of

a camera, i.e., resolution and frame rates. Fig. 1.2 shows such diversity in resolution

and frame rates for camera networks in four cities. Fig. 1.2(a) shows cameras in city1,
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Figure 1.1. MAGICC: Method to Analyze Geotagged Images for Cam-
era Classification takes input as a list of cameras, and a required
computer vision application. It outputs a rank list of the most useful
cameras for that particular application.

city2, and city3 have low resolution, and the cameras in city2 and city3 have higher

frame rates compared to cameras in city1 as shown in Fig. 1.2(b).

(a) (b)

Figure 1.2. Diversity in (a) Resolution and (b) Frame rates of cam-
eras across different cities. This shows that cameras have different
hardware across cities.

Diverse cameras, along with the differences in their resolutions, frame rates, lo-

cations, and orientations, lead to differences in their usefulness. We determine the
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usefulness of a camera based on the quality of information it provides for the intended

application. For example, consider the cameras deployed by the New York City De-

partment of Transportation in Fig. 1.3. Among these, the cameras (a)-(e) provide

quality information on the traffic flow. The cameras (f) and (g) are blocked or blurry;

therefore, they provide no valuable information for traffic monitoring. With the de-

velopment in computer vision technology, computer vision programs can be used to

extract the information from the camera images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.3. Example of Cameras in New York City Department of
Transportation network showing that all cameras do not provide use-
ful information for traffic monitoring application.

Previous studies on visual sensor networks do not consider information from the

sensors in their analysis. These studies are evaluated on either a small sensor net-

work [4] consisting of less than ten nodes or a simulated sensor network. These studies

propose methods to find reliability and availability [5–9] based only on the infrastruc-

tural and system issues like low battery [8,10], network congestion [11,12], hardware

failures, etc. Such methods do not incorporate the quality of information to quantify

the usability of the sensor network. Thus, presently it requires a significant amount

of laborious manual work to find the useful cameras in the network.
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In this paper, we propose a system to analyze geo-tagged images for classifying

cameras. MAGICC leverages quality of information for an intended application along

with infrastructure and system conditions to find usability of a camera. Quality of

information depends on the application requirements, e.g. for a traffic monitoring ap-

plication, it is required to detect vehicles from the images. Therefore, we use vehicle

detection as a measure to quantify the quality of information for a traffic monitoring

application. Similarly, any people counting application requires identification of peo-

ple in the image; therefore we use detection of people as a measure to quantify the

quality of information for such an application. To detect a vehicle(s) or a person(s),

MAGICC uses YOLOv3 [13], a state-of-the-art object detector. We evaluate MAG-

ICC on 2,500 real time cameras from four cities. The results shows that MAGICC is

effective in finding useful cameras. The output from MAGICC shows that a camera

network which is setup for an entirely different purpose can be useful for other appli-

cations as in the scenario discussed above where traffic cameras may be used to find a

missing person. We further show the variation in spatial distribution of the cameras

and the data from the camera effect the usability of the camera.
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2. RELATED WORK

Table 2.1.
Comparing various studies on sensor networks to our system, MAG-
ICC. None of the studies consider information from the sensor as a
parameter to consider the usefulness of sensor networks. These studies
are also done on a very small scale( < 10 cameras) or on a simulated
environment.

Methods
Parameters in Sensor Model Large

Scale

Testing

Network

Congestion

Hardware

Failure

Information

from Sensor

Liang et al. [11]

Zheng et al. [12]

Silva et al. [5]

Costa et al. [14]

Jesus et al. [6]

Tusher et al. [15]

Costa et al. [8]

Munir et al. [9]

MAGICC

2.1 Infrastructure and System

Silva et al. [5] propose a method to evaluate reliability and availability for indus-

trial setup based on network failure conditions and faults in the sensors. Mahmood et

al. [4] discuss various methods to improve reliability of data transmission in a sensor

network. Elghazel et al. [16] define reliability as continuous information being sent
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by the sensors and consider data loss only as a major factor. Liang et al. [11] improve

availability by reducing packet losses in resource constraint sensor networks. Zheng et

al. [12] propose a method to increase the life of sensors and thereby their availability

by reducing their power consumption.

Tusher et al. [15] propose a method to reliably detect faults in a sensor network by

using fall curve of the voltages. Lajara et al. [10] estimate the state of health of sensor

networks through the battery-related information. Costa et al. [14] find availability

issues of sensors based on node failures and field of view of the visual sensors. Bruneo

et al. [7] estimate reliability of the sensor network by taking reliability of a group

of sensors rather than a single sensor. Costa et al. [8] assess availability of a sensor

network for monitoring a target. They consider failure conditions as network and

battery failures only.

2.2 Markov Process and Reliability Improvement

Jesus et al. [6] model cameras using Continuous Time Markov Chain (CTMC)

based on hardware and battery states of wireless visual sensors. They use Fault

Tree analysis and find dependability for wireless visual sensor networks. Bruneo et

al. [17] also propose a Markov model for sensor networks using CTMC, based on

battery discharge to find reliability of sensor networks. Aditi et al. [18] estimate state

of a sensor using Linear Mixture Model to detect an anomalous node in the system.

SanMiguel et al. [19] create a unifying framework to model a camera with three states.

They also propose a method to reduce the energy consumption of the camera in order

to improve its reliability. Munir et al. [9] propose a Markov based camera model to

find reliability of sensor networks based on sensor failures.

2.3 Emergency Response and Surveillance

Quality of information is immensely important for applications like emergency

response, surveillance, etc. Koh et al. [20] show that public camera networks are useful
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for public safety, but they quantify the usefulness. Semertzidis et al. [21] present a

system for automatic traffic monitoring by including multiple data sources. Cayirci

et al. [22] propose a sensor architecture for rescue operations. In this architecture,

sensors are randomly deployed to detect individuals needing rescue. They perform

simulations to test their architecture.

2.4 Camera Positioning

Song et al. [23] propose a system for dynamically changing camera network re-

configuration to optimize scene-analysis. Erdem et al. [24] outline a method to cost

effectively place camera for improving coverage for an application. Hengel et al. [25]

describe a method to optimally place cameras in a building for improving surveillance.

Kritter et al. [26] discuss various optimal camera placement solutions.

2.5 Our Contribution

Table 2.1 compares our Method to Analyze Geo-tagged Images for Camera Clas-

sification, MAGICC, to previous studies on sensor networks. MAGICC analyzes the

sensor network on systems and infrastructural conditions like network congestion,

hardware failure, and the quality of information from the sensor. It is evaluated on

real-time camera networks from four cities consisting of 2,500 cameras. The contri-

butions of this paper are as follows:

1. This paper presents an automated system, MAGICC, that measures the useful-

ness of a camera for a given application.

2. MAGICC provides a list of most useful cameras for a given application.

3. To our knowledge, it is the first large scale study on more than 2,500 live cameras

generating real-time data.
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3. STATE TRANSITION MODEL OF A CAMERA

Figure 3.1. Flow Chart of MAGICC to find the usability of a cam-
era. It takes a list of cameras as an input. It uses YOLOv3 to detect
car and people from the images collected from the camera. It calcu-
lates usability for each camera to output a ranked list of most useful
cameras.

A camera network is installed for an intended application e.g. traffic monitoring,

surveillance, etc. As cameras are diverse in a large network, all cameras may not

provide the same quality of information required for the intended application. MAG-

ICC incorporates intended application requirements as a measure to define usability

of a camera as shown in Fig. 3.1. It models the camera into various states based on

whether it can get quality information from the camera. A camera moves between

these states with a certain set of rates of transitions. These rates also form an inte-

gral part of its transition model. Every camera has its own set of transition rates.

MAGICC calculates these rates from state transitions probability distributions for
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each camera. It does not assume any specific probability distribution, but identifies

the best distribution using various statistical tools. In order to find the best distribu-

tion, MAGICC collects the images from the cameras as shown in Fig. 3.1. It collects

images for a period of 7 days as to remove any single day event like power outages,

sports event, etc. which could lead to change in the usability of a camera.

3.1 Camera States

We create a state model of a camera based on the quality of information we receive

from the camera. The quality of information is measured by counting the number of

application- specific detections. For example, the quality of the information from a

camera for traffic monitoring would be determined by if a vehicle is detected.

Figure 3.2. Number of vehicles detected over time by one of the city1
cameras. The camera exists in three states: (1) One or more vehicles
detected (2) Vehicle not detected (3) Image not received.

The model of the camera consists of three states describing the type of informa-

tion received from a camera. These three states are Useful, Not Useful, and Down.

These states of a camera are also found when analyzing camera a for people counting

application. We define these states of a camera as follows:

1. Not Useful : A camera is in this state if the system receives an image from the

camera but the image is lacking information in regards to the application.
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2. Useful : A camera is in this state when our system can receive an image from

the camera, and the image has quality information.

3. Down: A camera is in this state when the system does not receive any image

from the camera or it receives an image which is exactly the same as the previous

image received. This state occurs because of infrastructure or system issues e.g.

network congestion, hardware issue, power outage, battery down, etc.

Fig. 3.2 shows these three states of a camera for a traffic monitoring application.

It shows that a camera is in the Not Useful state when an image was received from

a camera but there is no vehicles detected by YOLOv3; a camera is in Useful state

when there is at least one vehicle detected; a camera is down when a image is not

received from the camera.

Figure 3.3. Camera model showing transition of a camera between
three states over time. λi’s and µi’s are the rates of the transition
from one state to another

From Fig. 3.2 we observe that a camera can transition to any state irrespective

of its previous state. Thus, we establish a state diagram of a camera as shown in

Fig. 3.3. All the λi’s and µi’s in Fig. 3.3 are the rates of state transitions of a camera.

Though Fig. 3.3 resembles a Markov process we cannot assume that the model follows

a Markov process. The system should be memoryless for it to be a Markov process.

For a memoryless system the probability of the states comes from an exponential

distribution. Fig. 3.4 shows the probability plot for each of the states of a camera
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Figure 3.4. Probability of three States of a camera over time. As time
increases, State Probabilities becomes constant.

over time. To show that the system probabilities are exponential, we fit an exponential

function to the probability of states of a camera. We then evaluate the curve fit using

coefficient of determination (R2) method. R2 is a statistical tool which tells if the

fraction of variance in the data sample can be explained by the testing function. In

our case we use exponential function as a testing function. A value of R2 close to 1

means that an exponential function fits the data correctly and a value close to zero

represents the function does not fit the data. Table 1 (in Appendix) shows that the

R2 values for the exponential function on the set of cameras is close to 1. This means

the exponential function is a valid approximation of the data.

3.2 State Transition Probability Distribution

In order to find the usability score, we need to determine the rates for state

transitions. These rates come from probability distribution of the state transitions in

the model of a camera. We use the Kolmogorov-Smirnov (K-S) test [27] to find the

best distribution(s) for the states transition. K-S test is a hypothesis test for verifying

if different samples of data come from a same distribution. The following hypothesis

test is used in K-S test:
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• Null Hypothesis, H0: The sample data comes from the testing distribution

• Alternate Hypothesis, H1: The sample data does not come from the testing

distribution

K-S test outputs a p-value for the Null hypothesis. We reject the Null Hypothesis

(H0) when the p-value is less than 0.05. In our analysis, we test the top 12 distri-

butions which occur most prominently for sensor analysis. Table 2 (in Appendix)

shows the list of distributions and the p-values of K-S test on a random sample of

10 cameras from the city1. The K-S test results in Table 2 shows that only four

distributions, i.e., Exponential, Bradford, Uniform, and Weibullmin pass the p-value

threshold. Out of these four distributions, the best distribution is the one with the

least error from fitting a distribution on the data samples. We use the least error

method as we cannot select the best distribution just based on a higher p-value. Ta-

ble 3 (in Appendix) shows that the exponential distribution has the lowest error even

though it doesn’t have the highest p-values. Thus, we accept exponential distribution

is the best probability distribution for the transition rates of states for cameras. We

verify this result on all 4 cities.
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4. USABILITY OF A CAMERA

The quality of information a camera network provides is based on its spatial distribu-

tion and whether its cameras can provide quality images in both day and night. Given

a camera network with a fixed spatial distribution and a computer vision application,

we want to identify the usability of a camera for that application.

We define the usability of a camera by three aspects: (1) Reliability: Duration for

which the camera continuously sends quality information; (2) Availability: Duration

after which the camera returns to sending quality information from either not sending

the data or sending data with no information; and (3) Refresh Time: Duration after

which a camera updates the data.

As stated earlier the quality of information depends on the application. For exam-

ple, in Fig. 1.1 for detecting floods, water detected on the road is quality information;

whereas for a traffic congestion application, vehicles detected on the road is quality

information. For the use cases in this paper, we define detecting a vehicle and de-

tecting a person in an image as a measure to quantify the quality of information for

monitoring traffic and person counting applications respectively.

MAGICC models the cameras into three states described in previous section. It

finds the rates of state transitions for each camera by finding the probability distri-

butions of the state transitions. These rates are then used to calculate reliability and

availability of a camera. MAGICC additionally finds refresh time for each camera.

It then produces a usability score as a function of reliability, availability, and refresh

time. MAGICC uses this score to rank the cameras for the input list. This score is

also used to compare the cameras both across networks and within a single network.

We make this comparison to find the effect of spatial distribution on the usability of

a camera.
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Figure 4.1. The graph illustrates the definition of reliability and avail-
ability. The duration that a camera provides useful data contributes
to the reliability of the camera, whereas the availability is calculated
using the times that a camera spends in the not useful or down states.
A camera has higher availability if it spends less time in these states

4.1 Reliability

This aspect gives us the duration for which a camera gives quality information.

Consider Fig. 1.3(f), this camera sends data but the information is not relevant to

traffic monitoring application. This camera is not reliable for the purpose of traffic

monitoring. Fig. 4.1 shows that the time a camera spends in the Useful state con-

tributes to the reliability score. Reliability at time t is defined by Rausand et al. [28]

as the probability that the camera will remain in the Useful state at time T (> t)

given that camera is in the Useful state at time t.

R(t) = P (Useful(T ) > t) (4.1)

In simpler terms it determines the duration that a camera remains in the Useful state.

Based on the state model in Fig. 3.3, camera can transition to either Not-Useful or

Down state. Therefore, we take probability of the minimum time after which a camera

either goes to the Not-Useful or to the Down state.

P (T > t) = P (min(Tn, Td) > t) (4.2)
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Figure 4.2. Two hypothetical cameras that transition between Useful
and Not Useful/Down state over time. Camera A has low reliability
because it provides useful information for a short duration of time
but it has high availability as it quickly comes back to sending useful
information; whereas camera B has high reliability as it stays in Useful
state for a longer duration but it has low availability as it also remains
in Not Useful/Down for a long duration.

where Tn and Td are time after which a camera transition from the Useful state to

Not-Useful and Down state respectively. The model follows a Markov process and

state transitions are independent. Therefore Equation (4.2) can be further written

as,

P (min(Tn, Td) > t) = P (Tn > t ∩ Td > t)

= P (Tn > t) · P (Td > t) (4.3)

From the previous section, the probabilities of the state transitions are from the

exponential distribution. Therefore, Equation( 4.3) translates to

P (min(Tn, Td) = e−λn(t) x e−λd(t)

=⇒ R(t) = e−(λn+λd)t (4.4)

Large camera networks are deployed to be used for long term. Therefore, it is im-

portant to find the steady state time duration for which a camera remains in Useful

state. Fig. 3.2 shows that the camera can recover from any of the Not-Useful state
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to the Useful state. Therefore, we define the steady state duration in Useful state

as Mean Time between Failure (MTBF). Equation (4.5) shows derivation of MTBF

from reliability of a camera.

MTBF =

∫ ∞
0

R(t)dt

=
1

λn + λd
(4.5)

A camera which has high MTBF value means that the camera remains in the Useful

state for a longer period and therefore is more useful. Fig. 4.3 shows the MTBF

values for the cameras in the four cities. It shows that MTBF values are continuous.

In order to compare these values to availability, and refresh time values (discussed

in later sections), they need to be normalized between 0 and 1. MAGICC uses max-

min method to normalize MTBF values. Fig. 4.3(a) shows that more than 90% of the

cameras have MTBF values less than 60 mins but the maximum value of MTBF found

from the analysis is 1900 mins. Since max-min method of normalization is susceptible

to the outliers. Therefore, MAGICC removes the outliers from the MTBF values by

using Tukey method [29] before it normalizes the MTBF values. Tukey method uses

first and quartiles from the data sample to find outliers. We remove these outliers

so that they do not skew our result. We found that for MTBF values there are

270 cameras out of 2,500 cameras are outliers. Fig. 4.3(b) shows the distribution of

MTBF values in our data sample after removing outliers. Equation (4.6) defines the

reliability score derived from MTBF values of a camera.

Reliability score , REi =
MTBFci −min(MTBFc)

max(MTBFc)−min(MTBFc)
(4.6)

where,

MTBFci = MTBF of the ith camera of a network

max(MTBFc) = max MTBF in a camera network

min(MTBFc) = min MTBF in a camera network
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(a) (b)

Figure 4.3. MTBF value distribution for cameras (a) With outliers
(b) After removing outliers using Tukey method

4.2 Availability

Availability of a camera tells about the rate of recovery of a camera to a Useful

state from any other state. Fig.4.1 shows the duration of time a camera spends in

the Not Useful or Down state is used to calculate the availability score. It is different

from reliability of a camera as a camera which has lower reliability can still be more

useful if it quickly recovers from either Not Useful or Down states as shown in Camera

A in Fig.4.2. Availability at a time t is defined by Huang et al. [30] as probability

that a camera is in the Useful state at that time instant t. Mathematically, it is as

follows:

Availability, A(t) =P (Useful(t))

As shown in the previous section that the states of a camera model have exponential

probabilities. Therefore, as time progresses the probabilities of the states in the

camera model become constant and their derivatives become zero. Fig. 3.4 shows that

probability of the three states of a camera becomes constant with time. Equation (4.7)

shows probability vector P (t) of three states of a camera, where Pu, Pn, Pd represents

probabilities of Useful, Not-Useful, and Down state respectively.

P (t) = [ Pu(t) Pn(t) Pd(t) ] (4.7)
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We take the derivative of P (t),

∂P (t)

∂t
= P (t) ·M(t)

where,

M(t) =


−(λn + λd) λn λd

µn −(µn + λnd) λnd

µd µnd −(µd + µnd)



For steady state condition, ∂P (t)
∂t

= 0. Solving for steady state probability, Pu, for the

availability of the camera in the Useful state.

Pu =
µnµnd + µnµd + µdλnd

A+B + C
(4.8)

A = (λn + λd)(µnd + λnd)

B = µn(µd + µnd + λd)

C = µd(λn + λnd)

As Pu is a probability and its value is between 0 and 1. It is used as the availability

score, Ai, for a camera.

Ai = Pu (4.9)

4.3 Camera Refresh Time

This is the third important aspect which we use to evaluate the usability of a cam-

era. This is the time duration after which a camera updates the data. As discussed

earlier, we use networks of cameras hosted on various websites for the four cities.

These websites do not provide direct access to these cameras. They provide access

to these cameras by via snapshots from these cameras. These snapshots get updated
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Figure 4.4. Flow Chart for calculation of Refresh Time from a camera

after certain duration known as refresh time (RT). Fig. 1.2(b) shows different refresh

times of the cameras across various cities.

Fig. 4.4 shows how to calculate the camera’s RT, the system downloads a reference

image. The reference image indicates the initialization stage. The system removes

the cameras which do not send any information. Every second it polls the remaining

cameras to capture images from the website. It polls for 10 mins (empirical threshold)

or when it receives an image which is different from the reference image, whichever is

lower.

A higher value of refresh time means that the camera sends outdated information,

which makes the camera to be less useful. Therefore, refresh time is inversely related

to the usefulness of a camera. Fig. 4.5 shows refresh time of 40% cameras is less than

25 seconds. It also shows that the refresh times are continuous values. In order to

compare it with reliability and availability scores, we normalize refresh time using

the max-min method. Similar to MTBF values, the system removes outliers(if any)
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Figure 4.5. Distribution of refresh times in the four cities. About 40%
of the cameras have refresh time less than 25sec.

from the set of refresh time values using the Tukey method before it normalizes the

values. In the refresh time values we obtain from these 4 cities we do not observe any

outliers but we have kept Tukey method in case a camera network has outliers.

Refresh Time score, RSi = 1− RTi −RTmin
RTmax −RTmin

(4.10)

where,

RTi = refresh time of ith camera in network

RTmin = min of the refresh times in network

RTmax = max of the refresh times in network

4.4 Usability

In a large camera network, all the cameras are not equally useful. A camera is

most useful if it sends the most updated quality information. Availability(Ai) and

reliability(REi) scores quantify the quality of information and refresh time(RSi) score

quantifies duration after which data is updated from a camera. Therefore, usability

score is a function of these three scores.

The usability function may change with the application requirements. For a real-

time object tracking application the refresh time and reliability of the camera should

be weighted more. Whereas, a warehouse inventory counting application may require
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to have better reliability and availability. In our use cases, traffic monitoring and

emergency response applications, refresh time, reliability and availability are equally

important. A low score in either the refresh time or availability should not reduce the

usability of a camera for such applications. Therefore, to maintain the applications

requirement and keep the scoring function simple, we define the Usability score as

a linear combination of availability, reliability and refresh time scores as shown in

Equation (4.11).

Usability score, Ui = w1 ·REi + w2 · Ai + w3 ·RSi (4.11)

where, wis are weights for each score. Since we give equal importance to each score,

we take wis to be all equal to 1
3
. A Usability score of 1 means that the camera is most

useful, whereas a score near 0 means that the camera does not perform well for the

given application.

The reliability and refresh time scores in the usability score function are normal-

ized across all four camera networks before they are used. As discussed earlier these

scores are normalized by using the max-min method so that all the scores can be

compared against each other.
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5. EVALUATION

Not all the cameras in a network provide quality information. MAGICC finds the

usability of each camera based on the intended application. We evaluate MAGICC

on 2,500 cameras from four cities. Fig. 5.1 shows the spatial distribution of these

cameras in these four cities. We do not have control over the location, position, or

orientation of these cameras. Therefore, we do not control the quality of information

we receive from them. Fig. 5.2 shows examples of the cameras in city1, city2, city3,

and city4. It shows that the cameras in city1 are distributed in areas that are both

high population and traffic dense; whereas, cameras in city2, city3, and city4 are

located on the highways.

(a) city1 (b) city2 (c) city3 (d) city4

Figure 5.1. Spatial distribution of cameras in 4 cities. city2, and
city3 have cameras on the highways but the city1 cameras are placed
in densely populated area as well

5.1 Experimental Setup

We use the camera networks from the 4 cities which are available to anyone with an

internet connection. These cameras are hosted on websites that periodically update
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(a)

(b)

(c)

(d)

Figure 5.2. Examples of the city1, city2, city3, and city4 cameras.
City1 cameras are located in areas of dense vehicle and population
densities. City2, city3, and city4 cameras are located on the highways.
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the image collected from each camera. MAGICC collects these images at a sampling

rate that is lower than the periodic update rates of the websites. Table 5.1 shows the

total number of cameras and cameras from which we are able to obtain images for

each city. The images from the responsive cameras are collected over a period of 7

days.

Table 5.1.
Distribution of number of cameras per city from which images can be collected.

cities # cameras # cameras

(responsive)

city1 604 454

city2 601 367

city3 1,037 561

city4 1,430 1,056

Fig. 5.3 shows the experimental setup for evaluating MAGICC. It finds both the

numbers of vehicles and persons detected over time for each camera in the list of

2,500 cameras from four cities. It then uses these values as input to the K-S test to

obtain the parameters of the exponential distribution for each state transitions for

the camera. MAGICC calculates reliability and availability from these parameters

using Equation (4.6) and Equation (4.9) respectively. MAGICC also calculates the

refresh time scores separately from the cameras. MAGICC uses Equation (4.11) to

find usability score for each camera and it creates a rank list of cameras using this

usability score.

5.2 Model Evaluation

We evaluate MAGICC by comparing it’s scores with the scores we get by manually

scoring each camera for the two applications: traffic monitoring and people counting.
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Figure 5.3. Experimental setup for evaluating MAGICC. We evaluate
MAGICC based on traffic monitoring and people counting applica-
tions. YOLOv3 is used as an object detector for these applications.

MAGICC calculates usability score for each camera and outputs a ranked list of

cameras for each application across four cities.

5.2.1 Traffic Monitoring

MAGICC identified usability scores for 2,024 out of the 2,500 sample cameras

tested for traffic monitoring application. Remaining 476 cameras do provide informa-

tion in more than 75% of the sampled images and thus are removed from usability

score calculation and consider to have lowest usability. Out of the 2,024 cameras,

Fig. 5.4(a) and (b) shows two examples that have high usability scores. These cam-

eras are located on roads that have heavy traffic and will in turn detect many vehicles.

Some of the cameras similar to the one shown in Fig. 5.4(c) are positioned such that

they capture vehicles which are parked along the street. Since the system does not
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differentiate between a moving and a stationary vehicle, these cameras are ranked

highly.

(a) usability = 0.98 (b) usability = 0.97 (c) usability = 0.99

Figure 5.4. Examples of the cameras with high usability score for
traffic monitoring. (a) Camera is placed at one of the busiest highway
(b) Camera is placed in a city (c) Camera is located at a busy street
in the city

(a) usability = 0.20 (b) usability = 0.16 (c) usability = 0.19

Figure 5.5. Examples of the lower ranked cameras for traffic monitor-
ing by MAGICC. (a) Camera is blocked by a pole (b) Flash from the
vehicles blinds the camera at night (c) Camera is in an ideal location
however, it does not update very often.

Many cameras that have much lower usability scores are often blocked or do not

have direct views of streets. Fig. 5.5(a) shows a camera that is blocked by a pole.

This camera will not be very good at identifying traffic and it has a low usability

score, which is an expected behavior. Fig. 5.5(b) and (c) both show images that

can be useful in identifying traffic patterns, however they have low usability scores.

Fig. 5.5(b) shows a road at night when headlights from an oncoming car blind the

camera. It is expected for this camera to have a low usability score as it is difficult
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to monitor traffic from this camera during night. Additionally, Fig. 5.5(c) shows an

image with many cars. One would expect this camera to have a high usability score.

Upon further analysis, this camera has a high refresh time of 598 seconds, hindering

the camera’s ability to send real-time traffic update. When sampling the website over

multiple days, the same image was returned.

(a) framei (b) framei+1 (c) framei+2

Figure 5.6. This camera has usability score of 0.13 in our system gen-
erated lowered ranked list for traffic monitoring. The camera shows
lot of cars in framei but in the next two frames the number of cars
goes to zero.

Fig. 5.6 shows another camera which has a low usability score but still has the

potential to detect many vehicles. This camera gives burst of information regarding

traffic. Although there are many vehicles detected in framei, the camera may not be

good at determining traffic flow. The camera only shows a short portion of the road

that is why it detects the vehicles only for a short duration of time. This makes this

cameras has low availability and reliability.

Fig. 5.7 shows the distribution of cameras for reliability, availability, refresh time,

and usability scores for traffic monitoring application. MAGICC uses Equation(4.6)

to find reliability score for each camera. Fig. 5.7(a) shows more than 50% of the city1

cameras have reliability score close to 1, whereas city2, city3, and city4 appear to

have a normal distribution of reliability scores.

Availability of a camera is calculated by MAGICC using Equation (4.9). Fig. 5.7(b)

shows that cameras in city2, city3, and city4 have most of the cameras in low avail-

ability. City1 cameras on the other hand are distributed for the whole range.



28

Figure 5.7. Distribution of reliability, availability, refresh time, and
usability scores in 4 cities for traffic monitoring application. City1
cameras have high usability score because most of the cameras have
high reliability, availability, and refresh time scores as compared to
other cities.



29

MAGICC calculates refresh time score of a camera by using Equation (??). Fig. 5.7(c)

shows that most of the cameras have good refresh time scores.

A city may have many cameras that have low refresh times; that alone may

not make them usable for an intended application, as we can see from the usability

distribution shown in Fig. 5.7(d).

5.2.2 People Counting

The other application we tested our system on is detecting and counting people.

Fig. 5.8 shows examples of three cameras with high usability for this application.

These cameras focus on populated intersections or urban centers. Fig. 5.8(a) and (b)

show people crossing a downtown intersection, while Fig. 5.8(c) shows people spread

out in a tourist destination.

As discussed earlier, most of the cameras in city1 are located in areas that are both

highly populated and traffic dense, shown in Fig. 5.1(a). Compared with cameras in

the other three cities, cameras in city1 are able to detect more people. Fig. 5.9 (a) and

(b) show the reliability and availability of the cameras in city1 for this application.

Due to the difference in geographical location of the other cities, there is a less number

of useful cameras.

(a) usability = 0.69 (b) usability = 0.86 (c) usability = 0.85

Figure 5.8. Examples of the cameras with high usability score for
People counting application. (a) Camera is placed at one of the busiest
intersection (b) Camera near intersection (c) Camera near a busy
tourist spot
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Figure 5.9. Distribution of various scores in city1 for people counting
application. Cameras in cities 2-4 do not detect people; therefore, this
figure does not show these cameras.
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5.3 Day vs Night

The data from a camera changes over time. Therefore, its usefulness also varies

with time. To find a relation between usefulness of a camera and time, we evaluate

variation of usability of cameras within a day and across days. We observe that there

is stark difference in the usability of the cameras during the day as compared to night.

For all the four cities more than 80% of vehicles and people detected during the whole

day are from the images from the day. Fig. 5.10 shows an example of one of a camera

in a city3 camera network. This camera has a reliability score of 0.38, availability

score as 0.04 and the refresh time score as 0.24 for detecting vehicles. Therefore it has

a usability score of 0.22. However, Fig. 5.10(a) shows that this camera captures a lot

of vehicles during the day and is quite useful. Therefore, we evaluate its performance

between sunrise and sunset time of city3. It is found that during the daytime its

reliability score increased to 0.90 and availability score shoots up to 0.84, and thereby

the usability score becomes 0.74. Thus, making this camera most useful during the

day.

(a) (b)

Figure 5.10. Example of a Camera with a usability score of 0.22 for
the whole day, 0.74 for daytime traffic monitoring. Camera performed
lower at night as there is less traffic on the road.

As observed during analysis of lower ranked cameras. Most common reasons for

cameras become less usable during the night are (1) Less traffic at night(in general)

(2) Cameras are setup to capture images during the daytime. These camera have low
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quality of images during the night. (3) Cameras are blinded by the headlights of the

vehicles.

Figure 5.11. Reliability and availability of the cameras for the 4 cities
during the day for traffic monitoring application. From Fig. 5.7 we
observe that for city3 and city4 reliability and availability score dis-
tribution moves closer to value 1. Thereby improving the usability
score of the cameras in city3 and city4

Figure 5.12. Usability score of the cameras for city1 during the day for
people counting application. The cameras in city2, city3, and city4
are found to be not useful for people counting application.
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Fig. 5.11 and Fig. 5.12 shows the distribution of the reliability, availability, and

usability scores during the daytime for the cameras in four cities for traffic monitoring

and people counting application respectively. These figures compared with Fig. 5.7

and Fig. 5.9 shows that there is shift in the availability and reliability scores towards

better values. This shift in scores also leads to shift in usability towards better values

of the cameras in the four cities.

5.4 Model Validation

We validate the MAGICC by comparing the usability scores obtained from it

with the manual scores for the cameras for traffic monitoring and people counting

applications. For manual scoring, we ask a candidate to rate a camera between 0-9

for the usability of the camera for the two applications. A score of 0 means that the

camera cannot be used for the intended application; whereas, a score of 9 means that

the camera is very useful for the application.

Fig. 5.13 and Fig. 5.14 shows the comparison between manual usability scores

and MAGICC usability scores for traffic monitoring and people counting application

respectively. The plot is for a 20% sampled set of cameras for all the cities. The

red line in the graph indicated the ideal case, i.e., manual score matches exactly the

score given by MAGICC. The values above the red line indicates that manual score

is higher than the MAGICC given score. And the values below the red line indicates

that manual score is lower than MAGICC usability score. Fig. 5.13 shows that the

manual scores comes very close to the MAGICC usability scores for the four cities.

Some of the manual usability scores specifically for city3 are very low as some cameras

were down during the manual scoring and the candidate gave it a very low score.

Similarly, manual scoring for people counting application in Fig. 5.14 shows that

the data points comes very close to the ideal line. This shows that the manual scores

for people counting application also comes very close to the MAGICC usability scores.
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(a) city1 (b) city2

(c) city3 (d) city4

Figure 5.13. Manual scores comparison with the usability scores from
MAGICC for the four cities for traffic monitoring application. The
red line is the ideal line at which manual score equals the usability
score by MAGICC. There were lot of cameras which were down in
city3 during manual scoring.
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The results discussed above show that the usability score from MAGICC resembles

the user’s expectation of the useful cameras. It that MAGICC is able to correctly

identify the most useful camera for an intended application.

Figure 5.14. Manual scores comparison with the usability scores from
MAGICC for the four cities for people counting application. The red
line is the ideal line at which manual score exactly equals the usability
score by MAGICC.
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6. DISCUSSION

6.1 Various State Models

From the data that we collect from sampling the cameras, we find that not all

the cameras in a network have full state transition model shown in Fig. 3.3. Fig. 6.1

shows various state models of a camera found in our analysis. Table 6.1 presents

the distribution of the cameras in these state models across cities. A camera in a

state model other than in Fig. 3.3 does not imply that the state model is incorrect.

It indicates that in our data collection there are very few or no instances of some

state transitions leading to a different state model for the camera. Thus, rates cannot

be estimated for such states. This means that these transitions rarely happens and

therefore have very low rates.

Table 6.1.
Distribution of Cameras in Various State Models. In our data sam-
ples, all the cameras do not always exist in the state model shown
in Fig. 3.3. This is because some of the rates of state transitions are
very low. These rates could not be determined from the samples in
our dataset.

Camera

States

# Cameras

Vehicle Person

Only Useful State 9 0

State in Fig. 3.3 515 34

State in Fig. 6.1(a) 5 0

State in Fig. 6.1(b) 274 166

State in Fig. 6.1(c) 1,200 40

Only Down State 435 2,198
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(a) No Not Useful State (b) No Down State

(c) No transition between Not Useful and Down State

Figure 6.1. Various other State Models for camera found in our anal-
ysis of four camera networks in four cities.

6.2 Effect of Object Detector

For this paper, we do not evaluate the effect of using different object detector.

We understand that a camera can be considered to be less useful because the object

detector does not work efficiently for that camera. Fig. 6.2 shows an example of

YOLOv3 for detecting vehicles for a camera in city1 network. Fig. 6.2 also shows

that YOLOv3 does not give desired results for this camera as it misses detecting

vehicles or detects vehicle with low accuracy. In this paper, we do not work on to

improve the efficiency of YOLOv3. Improving YOLOv3 might help to change the

ranks of some of the cameras but it will not displace the camera model.

6.3 City wise Evaluation

In this paper, we use cameras that are hosted on various websites. This set of

cameras does not have all the cameras for the cities we use in our analysis. These
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(a) Misses the red car in

front

(b) Wrongly predicts a car (c) Detects very few cars

at night

Figure 6.2. Example of YOLOv3 missing or wrongly detecting car on
one of the city1 Camera. This method requires computer vision for
automatic analysis; improving computer vision is a topic beyond the
scope of this paper.

are the cameras that are made available to public. It is not an exhaustive list of

public cameras nor does it have cameras that have restricted access. Therefore we

do not claim that one city cameras are better than other city. We find the degree of

usefulness of a camera based on the given set of cameras and the application.

6.4 Applicability

There are varied application of the system shown in this paper. Some of the

applications where it will be most useful are:

1. It will help authorities to better plan the location for new cameras and evaluate

usefulness of already placed cameras.

2. It will help verify if a desired computer vision application will work for a given

set of cameras.

3. The system will be helpful to an emergency response team. It will help to proac-

tively find most useful cameras which emergency team can use for managing an

emergency in future.

4. Tung et al. [31] discuss that current computer vision models struggle to provide

consistent and accurate results on real time data from cameras. This study will
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help identify cameras such as in Fig. 6.2 which can be used to create a real-time

image database. This database can be used to train and improve neural network

performance which will improve the efficiency of computer vision applications.

In order for these networks to be useful, the data from these cameras must be

analyzed.
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7. CONCLUSIONS

We build an automated system to identify the usefulness of a camera for a given

computer vision application. The system creates a state transition model for each

camera and then calculates a usability score. We show the correctness of the camera

model and the system by evaluating it on 2,500 cameras from the four cities for

monitoring traffic and people counting applications. We evaluate the MAGICC’s

by comparing its usability score with the manual usability scores of the cameras.

Evaluation results show that the usability of a camera changes with time and intended

application. Evaluation results confirm that MAGICC is able to find useful cameras

for an intended application. The results further show that most of the cameras in all

the four cities are useful for traffic monitoring application. However, the cameras in

city1 are also useful for people counting application.
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Table 1.
R2 values for exponential curve fit on state probabilities

Prob 1 2 3 4 5 6 7

Useful 0.76 0.33 0.42 0.82 0.81 0.71 0.87

Not Useful 0.00 0.27 0.31 0.80 0.78 0.63 0.82

Down 0.92 0.63 0.45 0.72 0.75 0.77 0.84
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Table 3.
Error in best curve fit from the distributions on the data sample

distribution 1 2 3 4 5 6 7 8

Expo 514.18 201.35 245.15 453.06 253.14 434.09 306.75 223.55

Uniform 1345.41 359.71 447.26 1583.51 315.95 1023.60 864.49 454.82

Bradford 727.24 190.44 328.65 867.14 251.17 906.21 707.14 346.60

Weibullmin 3190.01 356.41 26680.66 469.00 1569.55 314.08 20815.29 348.21


