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ABSTRACT

Talikoti, Amruthavarshini M.S., Purdue University, May 2019. Estimating Pheny-
lalanine of Commercial Foods : A Comparison Between a Mathematical Approach
and a Machine Learning Approach. Major Professor: Mireille Boutin.

Phenylketonuria (PKU) is an inherited metabolic disorder affecting 1 in every

10,000 to 15,000 newborns in the United States every year. Caused by a genetic

mutation, PKU results in an excessive build up of the amino acid Phenylalanine (Phe)

in the body leading to symptoms including but not limited to intellectual disability,

hyperactivity, psychiatric disorders and seizures. Most PKU patients must follow a

strict diet limited in Phe. The aim of this research study is to formulate, implement

and compare techniques for Phe estimation in commercial foods using the information

on the food label (Nutritional Fact Label and ordered ingredient list). Ideally, the

techniques should be both accurate and amenable to a user friendly implementation

as a Phe calculator that would aid PKU patients monitor their dietary Phe intake.

The first approach to solve the above problem is a mathematical one that com-

prises three steps. The three steps were separately proposed as methods by Jieun

Kim in her dissertation. It was assumed that the third method, which is more com-

putationally expensive, was the most accurate one. However, by performing the three

methods subsequently in three different steps and combining the results, we actually

obtained better results than by merely using the third method.

The first step makes use of the protein content in the foods and Phe:protein

multipliers. The second step enumerates all the ingredients in the food and uses

the minimum and maximum Phe:protein multipliers of the ingredients along with

the protein content. The third step lists the ingredients in decreasing order of their

weights, which gives rise to inequality constraints. These constraints hold assum-
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ing that there is no loss in the preparation process. The inequality constraints are

optimized numerically in two phases. The first involves nutrient content estimation

by approximating the ingredient amounts. The second phase is a refinement of the

above estimates using the Simplex algorithm. The final Phe range is obtained by

performing an interval intersection of the results of the three steps. We implemented

all three steps as web applications. Our proposed three-step method yields a high

accuracy of Phe estimation (error ≤ ±13.04mg Phe per serving for 90% of foods).

The above mathematical procedure is contrasted against a machine learning ap-

proach that uses the data in an existing database as training data to infer the Phe

in any given food. Specifically, we use the K-Nearest Neighbors (K-NN) classifica-

tion method using a feature vector containing the (rounded) nutrient data. In other

words, the Phe content of the test food is a weighted average of the Phe values of

the neighbors closest to it using the nutrient values as attributes. A four-fold cross

validation is carried out to determine the hyper-parameters and the training is per-

formed using the United States Department of Agriculture (USDA) food nutrient

database. Our tests indicate that this approach is not very accurate for general foods

(error ≤ ±50mg Phe per 100g in about 38% of the foods tested). However, for low-

protein foods which are typically consumed by PKU patients, the accuracy increases

significantly (error ≤ ±50mg Phe per 100g in over 77% foods).

The machine learning approach is more user-friendly than the mathematical ap-

proach. It is convenient, fast and easy to use as it takes into account just the nutrient

information. In contrast, the mathematical method additionally takes as input a

detailed ingredient list, which is cumbersome to be located in a food database and

entered as input. However, the Mathematical method has the added advantage of

providing error bounds for the Phe estimate. It is also more accurate than the ML

method. This may be due to the fact that for the ML method, the nutrition facts alone

are not sufficient to estimate Phe and that additional information like the ingredients

list is required.
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1. INTRODUCTION

Many patients diagnosed with metabolic disorders like Phenylketonuria (PKU) are

instructed to follow a strict diet limited in certain nutrients as part of their treatment.

In order to do so, patients must know the quantities of these nutrients in all the foods

they consume. While the Nutrition Facts Label of commercial foods lists the various

nutrients present, it is not a very comprehensive list. Information like amino acids is

missing. Also, the nutrients labeled are rounded to the nearest integer. This lack of

precision is often a challenge to patients monitoring very strict diets.

The aim of our research is to formulate, implement and compare techniques to

estimate missing nutrient quantities present in a food. We believe that the implemen-

tation of such techniques in web or phone applications would be useful for patients

suffering from metabolic disorders of all kinds to be able to monitor their dietary

intake.

Our particular interest in this thesis is with respect to estimation of the content

of the amino acid Phenylalanine (Phe) in commercial foods. The Phe intake must

be controlled in the diet of patients diagnosed with Phenylketonuria (PKU). PKU is

a metabolic disorder that is caused by mutations in the Phenylalanine Hydroxylase

(PAH) gene. This in turn affects the secretion of the Phenylalanine Hydroxylase

enzyme, which is very important to break down the amino acid, Phe. Mutations in

this gene, thus, result in a build up of the Phe content in the body of the patients.

An excessive quantity of Phe causes symptoms like intellectual disability, mental

disorders, seizures and behavioral problems among others. By taking enormous care

to limit their intake of Phe, PKU patients can avoid these adverse effects.

Our aim is to propose techniques to estimate latent quantities from the information

present in the Nutrition Facts Label and ordered Ingredients List. We have discussed

two approaches for the same.
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The first is a mathematical process comprising three steps, as discussed in Chapter

2. The first step considers the protein content in foods and the Phe:protein multipliers

to determine Phe content in foods. The revised Phe:protein multipliers discussed

in [1] are used for the same to ensure better prediction accuracy of Phe estimates.

The protein content taken from the Nutrition Facts Label is a rounded value. This

rounded value is used to determine the minimum (min) and maximum (max) protein

content in the foods. Subsequently, the min and max protein contents are used along

with multipliers [1] to estimate a range for Phe. This step alone is sufficient to

identify foods with very high Phe content (like aspartame containing foods). The

second step of the Mathematical process is more elaborate in that it considers the

Ingredients list information in addition to the Nutrition Facts Label. We list all

the Phe:protein multipliers of all the ingredients [2]. The min and max of these

multipliers are respectively multiplied with the min and max value of protein (as

used in Step 1). This yields a second range of Phe estimates. The third step is

a numerical optimization based method. It sets up inequality constraints using the

information from the Nutrition Facts label and an ordered list of ingredients written in

decreasing order of their weights. This approach is developed on the assumption that

no part of any ingredient is dismissed in the preparation process. These inequalities

are optimized in two phases. The first phase is an inverse recipe method, where the

nutrient content is estimated by approximating ingredients amounts. The second

phase comprises refining the above estimates using the simplex algorithm. So, this

gives a third range for the Phe estimate. The third step has been discussed in detail

in [3–5]. By combining the intervals for Phe obtained in the three steps described

above, we obtain a refined range for Phe. By doing so, one achieves better accuracy

for Phe estimation as compared to using the computationally intensive third step

alone. These results have been published in [6].

Chapter 3 discusses the second approach, which is a Machine Learning (ML)

based method. The aim is to use only the nutrition facts and attempt to estimate

Phe through a training approach. It makes use of eight nutrients (per 100g) for foods
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taken from [7] and a K-NN based classification to estimate Phe. The nutrient facts

are collected in a feature vector that is used to represent a food. A four-fold cross

validation is performed using the data [7] and the algorithm is trained to evaluate a

good choice for K (number of nearest neighbors). Once set, this value of K is used for

testing. The Phe of a test sample is estimated as the weighted average of Phe values

of the K nearest neighbors. The errors in prediction are studied using histograms to

analyse the accuracy of the approach.

Finally, in Chapter 4 we compare the two approaches discussed above. This is

done by using both the approaches to estimate Phe in a set of 20 commercial foods

used in [3, 4]. The errors in estimation of Phe by both the approaches are compared

with ground truth from standard database references. Subsequently, the number of

foods with Phe estimates from the ML approach lying in the range of Phe predicted

by the Mathematical approach gives an indication of accuracy and concurrence of ML

approach to the Mathematical method.

There is an increasing focus on employing mobile technology or wearable hand-

held devices to monitor dietary nutrient intake [8–10]. For example, studies have

shown the usefulness of using mobile applications to self monitor one’s diet for weight

management [11, 12]. Food personalization frameworks are developed with intent of

providing a personalized diet [13]. With the growing awareness about health and need

for a balanced diet, mobile apps that use real-time questionnaires to give indications

about particular foods are common. Such apps provide individualized nutritional

recommendations, both to healthy individuals looking for a balanced diet and for

patients suffering from pathological conditions. These help combat chronic diet re-

lated ailments [14, 15]. To make the system more user-friendly, there are apps that

use image segmentation technologies to gather information about the food intake to

monitor one’s diet [16]. Using advanced computer vision techniques, apps to estimate

specific nutrients (like Carbohydrate) from food images can be developed [17]. There

has been exemplary work done towards food recognition algorithms for dietary intake

management [18,19]. Our objective is to develop techniques that would be amenable
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for implementation as a phone or web application. This is important as it would serve

as a useful calculator for the PKU patients to estimate their dietary Phe intake. The

three methods of the Mathematical approach have been implemented as web appli-

cations and are freely available at https://engineering.purdue.edu/brl/PKU/.

Although the focus of this study has been towards PKU patients and estimation of

Phe, we strongly believe that these techniques can suitably be adopted for estimation

of other nutrients (like Lysine) for the treatment of other metabolic disorders.
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2. A 3-STEP MATHEMATICAL METHOD TO

ESTIMATE PHE

This work has been published in IEEE Access, “A 3-step process to estimate pheny-

lalanine in commercial foods for PKU management” [6].

2.1 Introduction

The mathematical approach described in this chapter is a 3-step method. The

first step is based on multipliers suggested by Kim and Boutin in [1]. The second

step, although not formally published, was suggested by the same authors. The third

step was described and published in [4]. Our contribution is the combination of these

three steps. More specifically, we intersect the results of the three steps to obtain a

refined range for Phe estimates. As we show in this chapter, our proposed three-step

method, which combines the results of the individual methods, yields better estimates

than any of the methods applied alone.

In the related web and phone applications, the results for this approach have

previously been presented to users as an interval. Specifically, the output of the

computation was given as the minimum and the maximum values of the Phe in one

serving. However, from a user’s viewpoint, we see that values expressed as an estimate

of the Phe content ± some error gives a better idea about the food. Such an estimate

(determined from the mid point values of the (min,max) range) ± some error (max

value of Phe - mid point estimate) is the new form of expression of the results which

we propose.

As each consecutive method takes as input more information than the previous

one, the ranges of possible Phe values tend to become narrower with each consecutive

method. We combine the results of the three methods by taking the intersection of all
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their ranges to produce the final estimate. Note that, as a user progresses through the

methods, they are required to enter more and more information in the application.

The third method can be perceived as particularly tedious. However, depending on

the precision required, the user may choose to stop after the first or second method

to gain a fair estimate of the Phe content. For example, such early terminations can

be useful to eliminate foods with high Phe content, like foods containing aspartame.

2.2 Three-Step Methodology

2.2.1 Step 1: Phe from Protein Estimation

Step 1 takes as input the rounded protein content from the food label and deter-

mines whether the food contains aspartame. As nearly half the weight of aspartame

is Phe, this sweetener is generally avoided in the PKU diet. The Phe estimate at

this step is obtained by multiplying the minimum and maximum protein content by

the appropriate minimum and maximum Phe:protein ratio, respectively, in order to

obtain a minimum and maximum Phe amount.

The first step is useful when the user has limited information regarding the in-

gredients in the food as it considers only the rounded protein content from the food

label. If the user is completely unaware of the ingredients, or is not sure if the food

contains aspartame, then Phe:protein ratio for aspartame, namely 547 mg Phe per

gram protein [2] is used. This gives a very high value for Phe and thus rejects the food

as unsuitable for the diet. If the user is certain that the food contains no aspartame,

we use the minimum and maximum Phe:protein ratios suggested in [1], namely 20mg

and 64.5mg of Phe per gram protein. An optimal refinement can be obtained if more

information about the ingredients is known. Specifically, if the food has only fruit

based ingredients, the minimum and maximum Phe:protein ratios suggested in [1],

namely 20mg and 39mg of Phe per gram protein are used.

To be more precise, let us now explain the method in mathematical terms. Let

p be the rounded protein value and let ∆ be the maximum rounding error. For
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example, if the label of a food sold in the US states that it contains 1g of protein,

then p = 1 and ∆ = 0.5. Let minprotein = p − ∆ and maxprotein = p + ∆.

Let minphetoprotein = 20 and maxphetoprotein = 64.5. If the food is known to

be made only of fruit ingredients and Phe-free ingredients, then replace the value of

maxphetoprotein by 39. If the food contains aspartame (or if it is not know whether

it does), replace the value of maxphetoprotein by 547. The minimum and maximum

Phe values for the first step are then set to

minphe1 = (minphetoprotein)× (minprotein),

maxphe1 = (maxphetoprotein)× (maxprotein).

If minphe1 is high considering the individual’s personal Phe tolerance, the user

is advised not to consume the food and the process is terminated. For example,

for classical PKU patients whose daily Phe allowance is below 400mg, a minimum

Phe value of 100mg should be ground for dismissing the food. Likewise, if the food

contains aspartame (or if it is not known whether it does), the user is advised not to

consume the food and the process is terminated.

The Phe estimate for Step 1 is taken to be the middle point of the interval

[minphe1,maxphe1], and the error of that estimate is set to maxphe1−minphe1
2

. If the

size of the error is considered to be small enough, the user may choose to terminate

the process and use the estimate of Step 1 in their diet records. For example, con-

sidering the precision of the Phe values obtained by laboratory measurements and

the many possible causes of individual food variations, an error value below about

10− 15mg may be considered acceptable.

Observe that the more precise the protein value, the smaller the error of the Phe

estimate. When the protein content is rounded to the nearest 0.1g (e.g., for some

imported foods sold in the US), the estimate provided is quite accurate. However,

Nutrition Facts Labels in the US give the protein content rounded to the nearest 1g.

For general foods without aspartame, the smallest maximal error one can obtain is for

foods with 0g of protein (±16.13mg Phe). For foods made of fruit-based ingredients,
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that maximal error decreases to a mere±9.8mg Phe. However, the size of the maximal

error grows with the protein content. Thus for US foods whose protein content is 1g

or more, this initial step only provides a rough range of possible Phe values and thus

is mostly used to quickly screen for foods that are obviously too high in Phe for the

patient based on their individual tolerance.

2.2.2 Step 2: Phe from Protein and Ingredient Estimation

The second step takes as input the previously mentioned protein content p and

maximum rounding error ∆ as well as the ingredient list. Let n be the number

of ingredients in the list, and let phetoproti be the Phe:protein ratio for ingredient

i (from this Phe:protein database [2] or some other database). For this step, the

ingredients do not need to be in any particular order. We consider the maximum and

minimum Phe:protein ratio for all the ingredients:

minphetoprotein = min{phetoproti}ni=1

maxphetoprotein = max{phetoproti}ni=1

If more than one possibility for an ingredient is found in the Phe:protein database,

and thus the phe:protein value is unclear, all values are added to the set before picking

the maximum and the minimum. If an ingredient does not contain protein (or only

traces of it), or if a minuscule amount of the ingredient is used in the food, then it

may be discarded from the list.

Again, we let minprotein = p −∆ and maxprotein = p + ∆, and the minimum

and maximum Phe values for the second step are set to

minphe2 = (minphetoprotein)× (minprotein),

maxphe2 = (maxphetoprotein)× (maxprotein).

The Phe estimate for Step 2 is taken to be the middle point of the interval

[minphe2,maxphe2], and the error of that estimate is set to maxphe2−minphe2
2

. If the
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size of the error is considered to be small enough, the user may choose to terminate

the process and use the estimate of Step 2 in their diet records. Note that the es-

timate of Step 2 should be more accurate (smaller error) than the estimate of Step

1.

2.2.3 Step 3: Numerical Optimization and Interval Intersection

The third step uses the ingredient list and the Nutrition Fact Label. This infor-

mation is used to set up a set of inequalities which are then solved in order to find

the values of minphe3 and maxphe3 using a third method for Phe estimation. The

corresponding Phe interval is then intersected with that of Step 2 and 1 in order to

produce the final estimate.

To apply the third method of Phe estimation, the ingredients must be listed in

decreasing order of weight. This gives us a set of inequality constraints. The method

also assumes that there is no loss during the preparation process (e.g., nothing is dis-

carded). This gives us two equality constraints: the sum of each ingredient content

equals to a serving size and the weighted sum of a nutrient content for one gram

of each ingredient equals to the nutrient content for a serving size. We further con-

sider inequality constraints obtained from the Nutrition Facts Label. The proposed

method is applicable even if the nutrient content of some of the ingredients is not fully

known. But, in general, the more nutrient information is known, the better the accu-

racy of the final estimate. Step 3 is performed using six nutrients (protein, sodium,

calories, carbohydrates, fat and cholesterol) This Phe estimation method proceeds in

two phases which are described in [4].

2.3 Results

We estimated the Phe of 20 commercial foods using our proposed three step

Mathematical method. None of the foods chosen contains aspartame, and none of

them is made solely of fruit-based ingredients. Details of our data are available at [20].
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We used the protein content rounded to the nearest gram (± 0.5g error) in order to

show the accuracy one would expect when using US food labels and the protein

content rounded to 0.1g (± 0.05g error) to incorporate food labels of products from

non-US countries.

Tables 2.1 and 2.3 show the Phe estimation results obtained from Step 1 for the 1g

and 0.1g protein rounding respectively. Tables 2.2 and 2.4 show the Phe estimation

results obtained from Step 2 and Step 3, along with the final estimates for the 1g

and 0.1g protein rounding respectively. For each step, the results comprises the Min

Phe (in mg), Max Phe (in mg), estimated Phe (in mg) and the error (in mg). Tables

2.1 and 2.3 also contain the protein content of the foods. Tables 2.2 and 2.4 show

the final Phe estimate with error that is obtained by intersecting the (min,max) Phe

intervals of all the three steps.

From Table 2.1 we note that the error obtained for foods with 0g protein is only

about 16mg as seen in 8 out of the 20 foods when using protein content rounded

to nearest gram. If the protein content is rounded to nearest 0.1g, then the error

is 10 times smaller as seen in Table 2.3. With increasing protein content, the error

increases. This can be observed in Table 2.1 wherein error increases from 43mg to

88mg when protein content increases from 1g per serving to 3g per serving. A similar

trend is seen in Table 2.3 (with rounding of 0.1g) wherein error increases from 24mg

to 64mg when protein content per serving increases from 1g to 3g. Foods containing

a very high Phe content can be identified using Step 1 alone and the algorithm can

be terminated. For example, “Yoplait Original Strawberry” contains a min Phe of

110mg (with 0.5g rounding error) and 115mg (with 0.05g rounding error). This cell

has been marked yellow in Tables 2.1 and 2.3 respectively. Such high-Phe content

foods can be rejected as unsuitable for a classic PKU diet.

Performing Step 2 improves the Phe estimates. As seen from Table 2.2, the errors

reduce in all the cases compared to errors obtained in Step 1. The accuracy for Step

2 depends on the spread of the Phe:protein ratios for the ingredients. The smaller the

range of (Min,Max) of the ratios, the larger the improvement in accuracy seen from
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Step 1. As seen for Food # 1 in Tables 2.1 and 2.2, the error reduces from 43mg to

30mg.

Step 3 further improves the accuracy by lowering the errors obtained. The error

for Food # 1 reduces to 16mg after performing Step 3. Although Step 3 takes a lot

more input data, it is computationally expensive and yields the lowest errors among

the three steps. A similar trend of improvement in accuracies can be expected with

Steps 2 and 3 for the 0.05g protein rounding error case.

Subsequently, by combining the results of the three steps and intersecting the

intervals, we get better results. For example, the error for Food # 1 reduces to

13mg by combining intervals. This is possible since the intervals obtained from the

3 steps are not necessarily nested. Thus, it leads to an overall more refined estimate

with lower errors than those achieved by using the methods individually. Such an

improvement is seen in 3 foods (Foods # 1,3,7) for the 0.5g precision case and in 7

foods (Foods # 1,2,3,7,11,14,20) for the 0.05g precision case as seen from the yellow

shaded cells in Tables 2.2 and 2.4 respectively. An important observation is that

by increasing the precision of the input values, we can achieve much smaller errors

than before. As seen in Table 2.4, the errors after final intersection are very small

compared to final errors in Table 2.2.
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Table 2.1.
Phenylalanine Content Estimate After Step 1 with Protein Content Pre-
cision of ±0.5g.

Food

Num-

ber

#

Description ( serving size ) Protein

Con-

tent

(in g)

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

1 Carr’s Whole Wheat Crackers ( 17 g ) 1 10 96.75 53.38 43.38

2 Heinz Tomato Ketchup ( 17 g ) 0 0 32.25 16.13 16.13

3 KIT KAT Milk Chocolate ( 42 g ) 3 50 225.75 137.88 87.88

4 Campbell’s Tomato soup ( 122 g ) 2 30 161.25 95.63 65.63

5 Cheerios Cereal ( 28 g ) 3 50 225.75 137.88 87.88

6 Rice Krispies Cereal ( 33 g ) 2 30 161.25 95.63 65.63

7 Enchilada Sauce ( 60 g ) 1 10 96.75 53.38 43.38

8 Eggo waffle ( 70 g ) 4 70 290.25 180.13 110.13

9 Garlic chili pepper sauce ( 9 g ) 0 0 32.25 16.13 16.13

10 Salsa sauce ( 30 g ) 0 0 32.25 16.13 16.13

11 Simply potatoes Garlic mashed potatoes ( 124 g ) 3 50 225.75 137.88 87.88

12 Butter with Canola Oil ( 14 g ) 0 0 32.25 16.13 16.13

13 Go-Gurt ( 64 g ) 2 30 161.25 95.63 65.63

14 Jell-O Gelatin Snacks-Strawberry ( 98 g ) 1 10 96.75 53.38 43.38

15 Ore-Ida French fries ( 84 g ) 2 30 161.25 95.63 65.63

16 Spicy Brown Mustard ( 5 g ) 0 0 32.25 16.13 16.13

17 Starburst Fruit Chews ( 40 g ) 0 0 32.25 16.13 16.13

18 Vinaigrette Balsamic Dressing ( 31 g ) 0 0 32.25 16.13 16.13

19 Yoplait Original Strawberry ( 170 g ) 6 110 419.25 264.63 154.63

20 ALTOIDS peppermint ( 2 g ) 0 0 32.25 16.13 16.13



13

Table 2.2.
Phenylalanine Content Estimate After Steps 2 and 3 with Protein Content
Precision of ±0.5g.

# Step 2 Step 31 Final Intersection

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

Phe es-

timate

(in mg)

Error

(in mg)

1 20.55 79.69 50.12 29.57 53.61 85.11 69.36 15.75 66.65 13.04

2 0.00 32.14 16.07 16.07 1.20 6.57 3.89 2.69 3.89 2.69

3 87.72 185.94 136.83 49.11 144.27 191.53 167.90 23.63 165.11 20.84

4 30.91 132.81 81.86 50.95 40.69 95.45 68.07 27.38 68.07 27.38

5 120.72 199.23 159.97 39.26 179.86 180.51 180.19 0.32 180.19 0.32

6 78.87 134.62 106.74 27.87 91.54 94.80 93.17 1.63 93.17 1.63

7 12.20 96.43 54.31 42.12 0.41 34.14 17.28 16.87 23.17 10.97

8 143.82 297.25 220.53 76.71 196.26 216.35 206.31 10.05 206.31 10.05

9 0.00 16.58 8.29 8.29 2.65 5.27 3.96 1.31 3.96 1.31

10 0.00 26.73 13.37 13.37 7.90 18.23 13.07 5.17 13.07 5.17

11 70.31 183.33 126.82 56.51 139.51 162.23 150.87 11.36 150.87 11.36

12 0.00 26.19 13.10 13.10 12.06 17.66 14.86 2.80 14.86 2.80

13 31.07 129.55 80.31 49.24 116.38 120.95 118.67 2.29 118.67 2.29

14 10.00 51.00 30.50 20.50 10.01 30.44 20.23 10.22 20.23 10.22

15 40.35 160.72 100.53 60.19 77.64 78.76 78.20 0.56 78.20 0.56

16 0.00 32.14 16.07 16.07 10.11 10.16 10.14 0.03 10.14 0.03

17 0.00 18.00 9.00 9.00 0.00 4.48 2.24 2.24 2.24 2.24

18 0.00 32.14 16.07 16.07 0.00 5.53 2.77 2.77 2.77 2.77

19 113.92 336.82 225.37 111.45 287.11 291.08 289.10 1.98 289.10 1.98

20 0.00 10.36 5.18 5.18 0.43 4.22 2.33 1.90 2.33 1.90

1The results for Step 3 have been taken from [4].
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Table 2.3.
Phenylalanine Content Estimate After Step 1 with Protein Content Pre-
cision of ±0.05g.

Food

Num-

ber

#

Description ( serving size ) Protein

Con-

tent

(in g)

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

1 Carr’s Whole Wheat Crackers ( 17 g ) 1.01 19.00 67.73 43.36 24.36

2 Heinz Tomato Ketchup ( 17 g ) 0.2 3.00 16.13 9.56 6.56

3 KIT KAT Milk Chocolate ( 42 g ) 2.8 55.00 183.83 119.41 64.41

4 Campbell’s Tomato soup ( 122 g ) 1.8 35.00 119.33 77.16 42.16

5 Cheerios Cereal ( 28 g ) 3.4 67.00 222.53 144.76 77.76

6 Rice Krispies Cereal ( 33 g ) 2.2 43.00 145.13 94.06 51.06

7 Enchilada Sauce ( 60 g ) 1.01 19.00 67.73 43.36 24.36

8 Eggo waffle ( 70 g ) 3.9 77.00 254.78 165.89 88.89

9 Garlic chili pepper sauce ( 9 g ) 0.01 0.00 3.23 1.61 1.61

10 Salsa sauce ( 30 g ) 0.01 0.00 3.23 1.61 1.61

11 Simply potatoes Garlic mashed potatoes ( 124 g ) 2.8 55.00 183.83 119.41 64.41

12 Butter with Canola Oil ( 14 g ) 0.01 0.00 3.23 1.61 1.61

13 Go-Gurt ( 64 g ) 2.4 47.00 158.03 102.51 55.51

14 Jell-O Gelatin Snacks-Strawberry ( 98 g ) 1.0 19.00 67.73 43.36 24.36

15 Ore-Ida French fries ( 84 g ) 2.01 39.00 132.23 85.61 46.61

16 Spicy Brown Mustard ( 5 g ) 0.2 3.00 16.13 9.56 6.56

17 Starburst Fruit Chews ( 40 g ) 0.0 0.00 3.23 1.61 1.61

18 Vinaigrette Balsamic Dressing ( 31 g ) 0.01 0.00 3.23 1.61 1.61

19 Yoplait Original Strawberry ( 170 g ) 5.8 115.00 377.33 246.16 131.16

20 ALTOIDS peppermint ( 2 g ) 0.0 0.00 3.23 1.61 1.61

1Exact values not found. Rounded values with increased precision of 0.1g considered.
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Table 2.4.
Phenylalanine Content Estimate After Steps 2 and 3 with Protein Content
Precision of ±0.05g.

# Step 2 Step 3 1 4 Final Intersection

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

Min

Phe

(in

mg)

Max

Phe

(in

mg)

Phe

esti-

mate

(in

mg)

Error

(in

mg)

Phe es-

timate

(in mg)

Error

(in mg)

12 39.04 55.78 47.41 8.37 53.61 85.11 69.36 15.75 54.70 1.08

2 3.09 16.07 9.58 6.49 1.20 6.57 3.89 2.69 4.83 1.74

3 96.49 151.41 123.95 27.46 144.27 191.53 167.90 23.63 147.84 3.57

4 36.06 98.28 67.17 31.11 40.69 95.45 68.07 27.38 68.07 27.38

5 161.76 196.38 179.07 17.31 179.86 180.51 180.19 0.32 180.19 0.32

6 113.04 121.15 117.10 4.06 91.54 94.80 93.17 1.63 -3 -3

72 23.17 67.50 45.34 22.17 0.41 34.14 17.28 16.87 28.66 5.48

8 158.20 260.92 209.356 51.36 196.26 216.35 206.31 10.05 206.31 10.04

92 0.00 1.66 0.83 0.83 2.65 5.27 3.96 1.31 -3 -3

102 0.00 2.67 1.34 1.34 7.90 18.23 13.07 5.17 -3 -3

11 77.34 149.29 113.31 35.97 139.51 162.23 150.87 11.36 144.40 4.89

122 0.00 2.62 1.31 1.31 12.06 17.66 14.86 2.80 -3 -3

13 48.68 126.95 87.82 39.14 116.38 120.95 118.67 2.29 118.67 2.28

14 19.00 35.70 27.35 8.35 10.01 30.44 20.23 10.22 24.72 5.72

152 52.45 131.79 92.12 39.67 77.64 78.76 78.20 0.56 78.20 0.56

16 4.03 16.07 10.05 6.02 10.11 10.16 10.14 0.03 10.14 0.02

17 0.00 1.80 0.90 0.90 0.00 4.48 2.24 2.24 0.90 0.90

182 0.00 3.21 1.61 1.61 0.00 5.53 2.77 2.77 1.61 1.60

19 119.10 303.14 211.12 92.02 287.11 291.08 289.10 1.98 289.10 1.98

20 0.00 1.04 0.52 0.52 0.43 4.22 2.33 1.90 0.74 0.3

1The results for Step 3 have been taken from [4].
2Exact values not found. Rounded values with increased precision of 0.1g considered.
3Feasible final intervals cannot be determined.
4Computed using ±0.5g protein precision instead of ±0.05g.
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2.4 Web Implementation

As discussed in Chapter 1, the aim of the project has been to develop techniques

for Phe estimation that are user friendly and amenable to implementation as smart

phone or web applications. The goal is to aid PKU patients make appropriate food

choices and monitor their dietary Phe intake.

A prototype of such a web application has been implemented for the three separate

methods discussed in this chapter. It is readily available at https://engineering.

purdue.edu/brl/PKU/.

The “protein multiplier method” is an implementation of the first step. As shown

in Figure 2.2, it takes as input only the protein content. It also ensures whether the

food contains the high Phe ingredient aspartame. It enquires if the food contains only

fruits and Phe-free ingredients so as to choose the right Phe:protein multipliers. As

shown in Figure 2.3, the result is expressed both as range of (min,max) Phe values

and as a Phe estimate with an ±error.

The “Phe:protein ratio ingredients method” implements the second step. In ad-

dition to the protein content, it takes as input the ingredients list as shown in Figure

2.4. The web app takes into account the values for Phe:Protein ratios of ingredients

of various food products from standard databases [2]. These databases are used as a

look-up table to search for the values required in Step 2. The result is expressed as

range of (min,max) Phe and as (Phe estimate±error) as seen in Figure 2.5.

Finally the “Inverse recipe method” is an implementation of the third step. It

takes as input, the serving size, ingredients list and nutrient information (Figure 2.6).

The results of the first phase include the approximate ingredients amounts and the

corresponding Phe estimates (result expressed in both forms) as shown in Figure

2.7. The second phase results show the maximizers and minimizers from the Simplex

method and the final refined Phe estimates (result expressed in both forms) as shown

in Figure 2.8.
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The web page is developed using HTML, PHP and Python. The first two steps

and the first phase of the third step were implemented by Jieun Kim. We implemented

the second phase (Simplex) of the third step. We also expressed the results in the

form of (phe estimate±error) for all three steps, which provides more readability than

the previous (Min,Max) Phe representation.

Currently, the app requires the user to manually enter the ingredients, answer

questions about the presence of aspartame and indicate if the food is solely fruit-

based. However, its implementation can be further enhanced to include OCR (Optical

Character Recognition) techniques to read the values of protein content and the

ingredient composition directly from the scanned images of the food label taken by a

smart-phone to make it more user-friendly. Another option would be to read the bar

code. One could also extend the scope of the app for estimation of other amino acids

so as to extend its application to other inborn metabolic disorders.

Fig. 2.1. Home Page of the Web Application
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Fig. 2.2. Input Data for Method 1

Fig. 2.3. Results of Method 1
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Fig. 2.4. Input Data for Method 2

Fig. 2.5. Results of Method 2
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Fig. 2.6. Input Data for Method 3

Fig. 2.7. Results of Method 3
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Fig. 2.8. Results of Method 3 Continued

2.5 Conclusion

Some people may require information about commercial foods they consume that

may not be readily available on the Nutrition Facts Label and ordered ingredients

list. This information (with good precision) may be crucial for dietary management of

metabolic disorders like PKU. To combat this issue, a 3-step mathematical method

was proposed that determines latent values of nutrients (like Phe) from the data

available on the label.

The third step is based on the assumption that no ingredients are missed in the

preparation process. The first two methods hold no such requirements. The overall

method is applicable even if the nutrient content of some ingredients is unknown. In

our experiments, our method was shown to work well, with an error less than ±13mg

for 18 out of the 20 foods assuming protein values rounded to nearest gram.
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By adding one digit to the protein content precision, the accuracy further im-

proves, as seen in Table 2.4. However, in some cases, the Phe interval after the first

two steps is inconsistent with the one obtained after the third step. This is likely due

to ingredient loss during the preparation process. Note that this happened in 4 out

of the 20 foods considered. However, the error in Phe in these 4 cases is very small

(less than 4-5mg), and so there is no need to improve it. In the remaining 16 out

of the 20 foods, intersecting the intervals yield a non-empty Phe interval. For those

foods, the error is less than ±6mg for 14 out of the 16 foods.

Each subsequent step of the 3-step process takes more input data, but yields more

refined Phe estimates. This in turn leads to lower errors with each step performed.

Also, since the intervals produced by the three steps are not nested necessarily, better

results can be obtained by combining the results. Considering the good accuracy of

our results, and the facts that the method provides clear error bounds on the Phe

estimate, we believe that this mathematical method can serve as a useful tool for

PKU management. It would be interesting to extend this work to other nutrients so

as to extend its application to other metabolic disorders.
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3. A MACHINE LEARNING BASED METHOD TO

ESTIMATE PHE

This approach is based on the intuition that nutrient facts are related to the amount

of Phe in the food [1]. The idea to use K-Nearest Neighbors approach for Phe es-

timation was originally suggested by J. Kim. The realization of the methodology,

implementation and results constitute our contribution to the work.

3.1 Introduction to Data and Pre-processing

The objective of the Machine Learning approach is to estimate Phe from the

Nutrition Facts Label. To develop this approach, we used data from the USDA food

nutrient database [7] to gain relevant nutrient information of various foods. This

database provides 5079 foods with suggested values for Phe content. While it is

important to look at all foods, for our application, we are particularly interested in

low protein and low Phe foods.

We consider eight nutrition facts which include Protein (in g), Total Lipids or Fats

(in g), Carbohydrates by difference (in g), Energy (in kcal), Total Sugars (in g), Total

Dietary Fibers (in g), Sodium (in mg) and Cholesterol (in mg). These nutrition facts,

which are values per 100g of the food, are placed in a feature vector. Subsequently,

these feature vectors are used to estimate the Phe content (in g) per 100g of the food.

We whiten the data as follows [21]. This statistical transformation is carried out

so that dimensions are made statistically uncorrelated. This is done by ensuring that

the data has an identity covariance matrix.

Let us assume a data matrix X of dimensions (k X n), wherein k be the number

of attributes/features and n be the number of samples. Each row of this matrix is



24

populated by subtracting from the i-th attribute of the samples, the mean of the i-th

attribute of all samples. This can be represented as follows:

X1 · · · Xn

f1 X1 −m(f1) · · · Xn −m(f1)
...

...
. . .

...

fk X1 −m(fk) · · · Xn −m(fk)

,

wherein X1 · · ·Xn are the n samples which are k-dimensional, f1 · · · fk are the k

attributes, m(f1) · · ·m(fk) are the means of the samples along the f1 · · · fk dimensions.

The covariance of each of the dimensions with respect to each other is given by

constructing a covariance matrix Σ as follows:

Σ = cov(X) = E(XXT ) ≈ XXT

n
.

As per the above definition, Σ is symmetric and positive semi-definite. So, its Singular

Value Decomposition (SVD) is

Σ = EDE−1,

wherein E is a (K X K) sized matrix with each column as an eigenvector of Σ, D is

a diagonal matrix whose diagonal elements Dii are eigenvalues corresponding to the

eigenvectors of the i-th column of E. Transforming Σ into a diagonal matrix D can

be done as

E−1ΣE = D. (3.1)

The aim is to transform the data matrix X into a new data matrix Y using a trans-

forming matrix WD

Y = WDX, (3.2)

whose dimensions are uncorrelated. In other words, Y has a diagonal covariance

matrix. We want a transformation WD that makes

D = cov(Y ) = E(Y Y T ). (3.3)
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From equations 3.1 to 3.3, we can derive that

WD = ET .

Now we also need to ensure an identity covariance matrix. This is done by scaling the

dimensions which are now uncorrelated. In other words, we need a transformation

that makes D, an identity matrix:

D−1D = I,

D−1 = D−1/2ID−1/2,

D−1/2E−1ΣED−1/2 = I.

Let WW be the whitening matrix that ensures cov(Y ) = I. This is given by

WW = D−1/2ET = D−1/2WD = D−1/2ET .

This whitening matrix is determined using the training data and is used to transform

the train, validation and test data before being used.

Also, covariance matrices are computed before and after whitening.

Fig. 3.1. Covariance Matrix Before Whitening
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Fig. 3.2. Covariance Matrix After Whitening

Fig. 3.1 shows one of the covariance matrices prior to whitening. The corre-

sponding eigenvalues are obtained using SVD as (1.59359821e+05, 2.46326654e+04,

1.69305868e+04, 5.14085932e+02, 1.12549629e+02, 5.52634670e+01, 1.09029561e+01,

1.44379219e+00). Fig. 3.2 shows the corresponding covariance matrix after whiten-

ing. The eigenvalues for this obtained using SVD are all unity (1, 1, 1, 1, 1, 1, 1, 1)

as expected. This ensures that the data has been correctly whitened. An important

observation is that all the eigenvalues even prior to whitening are not even close to

zero. This implies that the 8 nutrients considered form 8 dimensional vectors and that

any attempt to express these vectors using fewer dimensions using a linear change of

basis would result in a significant information loss. Another important observation

was regarding the covariance matrix constructed using the 8 nutrients and Phe values,

for a total of 9 attributes. (See Figure 3.3). Performing an SVD, the eigenvalues of

this matrix are (5.42918107e+05, 2.51725937e+04, 1.77892883e+04, 5.11152935e+02,

1.11335891e+02, 5.32776382e+01, 1.13777216e+01, 1.28348000e+00, 1.12602609e-

02). The ratio between the largest and smallest eigenvalue is 107. This large ratio

suggests a linear dependency between the Phe content and the 8 nutrients in any

food considered. This reinforces our motivation that K-NN classification might be a

worthwhile attempt at solving the problem of Phe estimation from nutrition facts.
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Fig. 3.3. Covariance Matrix of 9 Attributes (Including Phe) Before
Whitening

3.2 K-NN Method Description

In order to select the appropriate number of neighbors K, a four-fold cross-

validation is carried out with K-NN classification with K ranging from 1 to 50. After

a random shuffling, the data (5079 foods) is divided into four sets namely A (1270

foods), B (1270 foods), C (1270 foods) and D (1269 foods). In each fold, one of the

above sets is treated as test data and the other three sets are combined to be used as

the train data. 20% of the train data is set aside as validation data within each fold.

For example, for fold 1 of the algorithm, D is used as test data, 20% of (A+B+C) is

used as validation data and the remaining 80% of (A+B+C) is the train data.

This step is used to determine a good value for the hyper-parameter, K. Once the

value of K is set, it will be used for the rest of the experiments.

Cross-validation is performed to determine the best K by evaluating validation accu-

racies for different values of K (1 to 50). For each fold, Phe estimates are evaluated

for the validation data using the training data in that particular fold for a given value

of K. This is done by determining the K nearest neighbors to the validation data

sample in the train data. Subsequently, a weighted average of the Phe values of these
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neighbors is assigned as the Phe estimate to the validation data sample. This is done

as follows

Phe(validation sample) =
w1Phe(n1) + w2Phe(n2) + ......+ wKPhe(nK)

w1 + w2 + ......+ wK

,

wi =
1

di
, i = 1...K,

wherein, Phe(validation sample) is the Phe estimate assigned to the validation sample

under consideration, n1...nK are the K nearest neighbors to the validation sample,

w1...wK are the weights assigned to neighbors n1...nK , Phe(n1)...Phe(nK) are the

Phe values of the neighbors n1...nK and d1...dK are the distances from the validation

sample under consideration to the neighbors n1...nK .

Subsequently, the absolute difference between the actual Phe value and the esti-

mated Phe value (using weighted average) for the validation sample is determined.

If this difference is less than 0.1g Phe, then the estimation is labelled as accurate for

that particular sample. The number of accurately estimated samples divided by the

total number of samples in a fold gives the accuracy for that fold for a given K. Such

validation accuracies are determined for each fold for all possible values of K ranging

from 1 to 50. Fig. 3.4 shows a plot of these accuracies against different values of K

for each fold. This is used to determine the best possible values of K to be 4 or 7

that yield the highest validation accuracies.
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Fig. 3.4. Accuracy Versus K for Each Fold of Validation

Having determined the best values of K from validation, we now move on to

testing. The process of testing is carried out similar to validation and Phe estimates

of the test samples are calculated using the training data of each fold. Once the Phe

estimates for the test samples are determined, a histogram of the errors are plotted

for analysis. The error is calculated as the absolute difference between the actual

and estimated Phe values. A histogram of these errors are plotted for each of the

folds (Figures 3.5 to 3.22). For further analysis, foods estimated with error ≤ 50mg

Phe per 100g are considered to be accurately predicted and grouped in good accuracy

foods. Similarly, foods estimated with errors > 50mg Phe per 100g are grouped under

bad accuracy foods.
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3.3 Methods to Improve the Choice of Metric

The metric used to find distance to the neighbors in the train set from any sample

in the validation or test sets is Euclidean. Various methods to improve the accuracy

by altering the distance metric were experimented.

Firstly an exhaustive search was carried out by changing the weights of the Eu-

clidean distance metric as values from (0,0.2,0.4,0.6,0.8,1.0). However, this was not

a feasible option because of the huge number of permutations (68) and limited time

frame.

So, instead, we worked towards a numerical gradient ascent method. The initial

solution for weights is considered as

w = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0).

The gradient vector is calculated for each dimension i=1...8 as follows

f
′(wi)(w1, ..., wi, ...w8) ≈

f(w1, ..., wi + ∆, ..., w8)− f(w1, ..., wi, ..., w8)

∆
,

with ∆ = 0.01 The gradient vector is given by

∇f = (f
′(w1), ..., f

′(wi), ...f
′(w8)).

The next solution for weights using gradient ascent is given by

w′ = w + γ∇f,

wherein γ is the learning rate chosen as = 0.05 or 0.1. Using the new set of weights,

w′ in the distance metric, the new accuracies are determined. However, we see that

there is again no significant improvement in the accuracy by performing the gradient

ascent. Thus, we can say that we are possibly at a local maxima in the accuracy plot.

3.4 Implementation

The source code is written in Python 2.7 using an open source cross-platform Inte-

grated Development Environment (IDE), Spyder as part of the Anaconda Navigator
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Package. The system used for running the code is a Windows 10 Personal Computer

(PC) with 64-bit operating system working on Intel(R) Core(TM) i5-7200U CPU.

The python code and related files can be found at [22].

3.5 Numerical Experiments

Different metrics were experimented with to represent the accuracy for our pro-

posed KNN Phe estimation method. One such metric represents the percentage error

determined as follows

%Error =
Predicted Phe - Actual Phe

Actual Phe

However, the issue with this metric is that it is not a suitable choice to represent

error in foods with an actual Phe content of 0g. Hence, the metric finally chosen was

a histogram of the absolute value of error (in mg per 100g food) defined as

Error = |Predicted Phe - Actual Phe|

These histograms are as shown in Figures 3.5 to 3.22. The x-axis denotes the

Error in Phe Estimation (in g) per 100g of food. The y-axis denotes the number of

foods with the errors in ranges as shown along the x-axis. All but the last column

in the histogram are the foods estimated with what we consider as good accuracy.

The last bar contains those foods with poorly predicted Phe estimates (error > 50mg

Phe per 100g food). As we can see in the Fig. 3.5 (K=4), the first column, which

represents foods predicted with a great accuracy (Error ≤ 5mg Phe per 100g food),

contains about 70 foods. The last column contains over 700 foods that have not been

well estimated for Phe (Error > 50mg Phe per 100g food). We can also observe that

the number of foods predicted with a good accuracy (Error ≤ 50mg Phe per 100g

food) represented by the first 10 columns in the graph is lesser than the number of

foods predicted with a bad accuracy and represented in the last column. In fact,

on an average, 1972 out of 5079 foods are predicted with a good accuracy and the

remaining 3107 foods are predicted with a bad accuracy. In other words, the Phe of
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38% of the foods is estimated with a good accuracy, as summarized in Table 3.1. The

histograms for the case of K=7 are similar to the results described for K=4 case as

can be seen in Fig. 3.6. These results as described in the Figure 3.5 and 3.6 are for

the general case which comprises all foods.

As discussed in Section 3.2, the number of accurately predicted foods (foods esti-

mated with error ≤ 50 mg Phe) divided by the total number of foods gives the good

accuracy of a fold. Similarly, the bad accuracy is computed for each fold (using foods

estimated with error > 50 mg Phe). The average of the accuracies of the four folds

gives the final good and bad accuracy. The results are summarized in Table 3.1. The

first column in this table denotes the restrictions on foods (if any) regarding the pro-

tein and Phe content in the food. The second column denotes the two possible values

for K (number of nearest neighbors), which are 4 or 7. The third column denotes the

average percentage of foods predicted with a good accuracy (Error ≤ 50mg Phe per

100g food) over the four folds. This corresponds to the cumulative sum of the first 10

columns of the histograms shown in Figures 3.5 to 3.22. The fourth column denotes

the average percentage of foods predicted with a bad accuracy (Error > 50mg Phe

per 100g food) over the four folds. This corresponds to the number of foods popu-

lating the last column in the histograms shown in Figures 3.5 to 3.22. So, the sum

of the good and bad accuracy in each case must total to a 100%. The good accuracy

percentage is determined by taking the average of the good accuracies for each fold.

Consider the case of “All Foods” with K=4. The number of accurately predicted

foods, with an Error ≤ 50mg Phe per 100g food, as seen from Fig. 3.5 are 498, 498,

469 and 508 respectively for the four folds. The total number of foods in each fold are

1269, 1270, 1270 and 1270 respectively. So, the percentage of good accuracies in the

four folds are 39.24%, 39.21%, 36.93% and 40.00% respectively. The average value of

these accuracies, which is equal to 38.85%, is final value of good accuracy tabulated.

Similarly, the bad accuracy is computed to be 61.15% from the number of bad foods

in each fold being equal to 771, 772, 801 and 762 respectively.
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One could argue that perhaps the reason for the large mistakes in the Phe esti-

mates of certain foods is the lack of similar foods present in the database. To answer

this question, we studied the distance of the farthest neighbor considered for estimat-

ing Phe of a given test sample. A histogram of these distances are plotted for both

the good and bad accuracy foods and overlapped. This allows us to see if there is a

relation between distance to the farthest neighbor and accuracy of Phe estimation.

Such an analysis helps us explain the density of the database in terms of the accu-

rately and poorly estimated foods. It also helps us determine if the reason for low

accuracies of prediction was fewer neighbors closer to the test food.

These distance histograms are shown in Figures 3.23 to 3.31. The x-axis denotes

the distance to the farthest neighbor. The y-axis denotes the number of foods with

distances to their farthest neighbors lying in the range shown along x-axis. The blue

region denotes the foods predicted with good accuracy. The transparent red region

denotes the foods predicted with bad accuracy. The purple region denotes overlap

of the two categories of foods. As we can see in the Fig. 3.23, there is no clear

separation of the distance histograms for the foods predicted with good and bad

accuracies. There is a large region of overlap, denoted by purple, which implies that

no prediction about the accuracy can be made based solely on the distance of the

farthest neighbor. We observe that this is true for all cases of restrictions placed on

foods as well (Figures 3.24 to 3.30). This implies that there is no evident relation

between the number of close neighbors and the accuracy of Phe estimation. In other

words, we can say that the database density is uniform for the foods estimated for

Phe with good and bad accuracies. Both the categories of foods have close and far

neighbors and the lack of data is not a reason for the low accuracy of prediction for

a large fraction of the foods.

Appendices A and B lists the various foods predicted with good and bad accuracy

(K=4) respectively.

As discussed in Section 3.1, for our application, low protein and low Phe foods

which are the main constituents of a PKU diet are of particular interest. So we
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study various cases and combinations of these low protein and low Phe restrictions.

Foods with protein ≤ 2g and 1g per 100g food are considered. And foods with Phe

≤ 4mg and 2mg per 1g of food are considered. The algorithm is tested for different

combinations of these restrictions, histograms are observed and accuracies tabulated.

A summary of the experiments is depicted in Figures 3.7 to 3.22 and Table 3.1.

The histograms, as seen in Figures 3.7 to 3.22, depict results for the cases with foods

restricted to low protein and low Phe cases. By restricting the foods, while we see

that the number of total samples reduce, there is also an increase in the fraction of

foods estimated with a good accuracy. Let us take a look at the Fig. 3.21. These

histograms describe the foods with protein ≤ 1g per 100g food and Phe ≤ 2mg per

1g of food for the case of K=4. As seen in the figure, the average number of foods

per fold is around 140. Equivalently, the total number of foods is 563. The average

number of foods estimated with a good accuracy, denoted by the first ten columns

of the histogram, is 107 per fold. In other words, on an average over 76% of the 563

foods are estimated with a good accuracy (Error ≤ 50mg Phe per 100g food). Also

note that on an average, 30 of these foods are estimated with a great accuracy (Error

≤ 5mg Phe per 100g food) as seen by the first columns of the histograms for each

fold. So, we can see that by restricting the foods to those containing low protein

and low Phe, the accuracy of Phe estimation increases. This is important to note

because low protein and low Phe foods are the main constituents of a PKU diet. The

corresponding results for the case of K=7 as seen in Fig. 3.22 are similar to the K=4

case with a 74% good accuracy of prediction.

These results have also been summarized in Table 3.1. For example, consider

the case of “Foods with protein ≤1g per 100g of food” with K=4. The number of

accurately predicted foods, with an Error ≤ 50mg Phe per 100g food, as seen from

Fig. 3.17 are 106, 103, 101 and 128 respectively for the four folds. The total number

of foods in each fold are 131, 143, 132 and 157 respectively. So, the percentage of

good accuracies in the four folds are 80.92%, 72.03%, 76.52% and 81.53% respectively.

The average value of these accuracies, which is equal to 77.75%, is the final value of
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good accuracy tabulated. Similarly, the bad accuracy is computed to be 22.25% from

the number of bad foods in each fold being equal to 25, 40, 31 and 29 respectively.

As seen from the Table 3.1, the average percentage of good accuracies increase

as one places restrictions on the foods. When all the foods are considered, the good

accuracy is only about 38.85%. However, by restricting the protein to 1g per 100g

food, we can achieve 77.75% foods predicted with good accuracy (Error ≤ 50mg Phe

per 100g food). Such restricted foods are of particular interest in our application as

they mainly constitute a PKU diet.

(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.5. Histograms of Error in Phe Estimation for All Foods (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.6. Histograms of Error in Phe Estimation for All Foods (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.7. Histograms of Error in Phe Estimation for Foods with Phe ≤
4mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.8. Histograms of Error in Phe Estimation for Foods with Phe ≤
4mg/g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.9. Histograms of Error in Phe Estimation for Foods with Phe ≤
2mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.10. Histograms of Error in Phe Estimation for Foods with Phe ≤
2mg/g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.11. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.12. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.13. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g and Phe ≤ 4mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.14. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g and Phe ≤ 4mg/g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.15. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g and Phe ≤ 2mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.16. Histograms of Error in Phe Estimation for Foods with Protein
≤ 2g/100g and Phe ≤ 2mg/g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.17. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.18. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.19. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g and Phe ≤ 4mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.20. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g and Phe ≤ 4mg/g (K=7)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.21. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g and Phe ≤ 2mg/g (K=4)
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(a) Histogram for Fold 1. (b) Histogram for Fold 2.

(c) Histogram for Fold 3. (d) Histogram for Fold 4.

Fig. 3.22. Histograms of Error in Phe Estimation for Foods with Protein
≤ 1g/100g and Phe ≤ 2mg/g (K=7)
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(a) K=4 (b) K=7

Fig. 3.23. Histograms of Distance to Farthest Neighbor for All Foods

(a) K=4 (b) K=7

Fig. 3.24. Histograms of Distance to Farthest Neighbor for Foods with
Phe ≤ 4mg/g
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(a) K=4 (b) K=7

Fig. 3.25. Histograms of Distance to Farthest Neighbor for Foods with
Phe ≤ 2mg/g

(a) K=4 (b) K=7

Fig. 3.26. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 2g/100g
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(a) K=4 (b) K=7

Fig. 3.27. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 2g/100g and Phe ≤ 4mg/g

(a) K=4 (b) K=7

Fig. 3.28. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 2g/100g and Phe ≤ 2mg/g
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(a) K=4 (b) K=7

Fig. 3.29. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 1g/100g

(a) K=4 (b) K=7

Fig. 3.30. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 1g/100g and Phe ≤ 4mg/g
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(a) K=4 (b) K=7

Fig. 3.31. Histograms of Distance to Farthest Neighbor for Foods with
Protein ≤ 1g/100g and Phe ≤ 2mg/g
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Table 3.1.
Percentage of Foods with Good Accuracies {Error ≤ ±50mg per 100g
of Food} and Bad Accuracies {Error > ±50mg per 100g of Food } for
Machine Learning Approach.

Restrictions on Foods K Good Bad

Accuracy (%) Accuracy(%)

All Foods 4 38.85 61.15

7 37.51 62.49

Foods with Phe ≤4mg per g of food 4 53.59 46.41

7 53.51 46.49

Foods with Phe ≤2mg per g of food 4 61.25 38.75

7 60.11 39.89

Foods with protein ≤2g per 100g of food 4 70.93 29.07

7 69.13 30.87

Foods with protein ≤2g per 100g of food 4 70.42 29.58

and Phe ≤4mg per g of food 7 69.58 30.42

Foods with protein ≤2g per 100g of food 4 68.42 31.58

and Phe ≤2mg per g of food 7 67.61 32.39

Foods with protein ≤1g per 100g of food 4 77.75 22.25

7 76.56 23.44

Foods with protein ≤1g per 100g of food 4 76.37 23.63

and Phe ≤4mg per g of food 7 74.05 25.95

Foods with protein ≤1g per 100g of food 4 76.46 23.54

and Phe ≤2mg per g of food 7 73.82 26.18
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3.6 Conclusion

We have proposed to use the KNN Machine Learning method to estimate the Phe

content of a food using its nutrition facts. The dataset used for training is the USDA

food nutrient database [7]. We used cross-validation to determine the best values of

K as 4 or 7.

In the general case of all foods, the Machine Learning approach has an accuracy

of about 38%. In other words, only 38% of the total 5079 foods were estimated with

a good accuracy (Error ≤ 50mg Phe per 100g food). However, these foods include

high protein foods like meats, dairy products, nuts and aspartame which are strictly

prohibited in a PKU diet. By restricting the foods to those with low protein and low

Phe (foods typically consumed by a PKU patient), we achieve higher food percentages

with a good accuracy (77% foods with protein ≤ 1g and Phe ≤ 2mg with error ≤

50mg Phe). These are the foods that matter.

By looking at the distance histograms in Figures 3.23 to 3.31, we see that there is

not much distinction between the histograms for the foods estimated with good and

bad accuracies. The distribution is quite similar for both categories. In other words,

both categories have the farthest neighbors at small and large distances. So we can

say that the data is not sparse or that the database is not unevenly distributed for

the good and bad accuracy cases. This distance to neighbors is not related to the

accuracy of estimation. Hence, we can conclude that the low accuracy of estimation

using ML approach is not because database is incomplete but because information

is actually incomplete in nutrition facts alone. Thus, we might be able to improve

the accuracy of Phe Estimation only by incorporating additional information (e.g.,

ingredients list).



60

4. COMPARISON OF THE PROPOSED TWO METHODS

AND CONCLUSION

In the following discussion, we compare the numerical results obtained from the ML

approach (Chapter 3) with respect to those numerical results obtained from the Math-

ematical approach (Chapter 2). For this, the 20 commercial foods [20] studied in the

Mathematical approach are used. The ML Phe estimate is calculated by K-NN clas-

sification (K=7). We used the rounded nutrient values from the food labels and per-

formed an exhaustive search for the nearest neighbors in the entire USDA database.

Since 6 of the 20 foods considered were themselves present in the database, they were

removed prior to the search.

Table 4.1 shows the actual Phe values per serving for the 20 foods from either

USDA or the Low-protein food database. It contains the phe estimates obtained

from the Mathematical method and the difference between this estimate and the

actual Phe (that gives the lowest difference). All values of Phe are in mg per serving

of the food. We can see that the results obtained from Mathematical method are

fairly accurate. The cells shaded yellow indicate actual Phe values of those foods

which lie within the final interval predicted by the Mathematical method. The error

between the prediction and actual Phe as seen from Table 4.1 is less than ±20mg per

serving for 16 out of the 20 foods. The maximum error is about -32mg (Food # 8)

or 33mg (Food # 3). This indicates a good accuracy for about 80% of the foods by

the mathematical approach. So we can say that this approach has a good accuracy

for Phe estimation.

Similarly, Table 4.2 shows the actual Phe values, ML Phe estimates and the dif-

ference between the estimate and actual Phe value. We see that the error is less

than ±20mg for around 13 foods only. This comprises about 65% of the total cases.

Also, the errors for the ML approach can be as large as -126.78mg (Food # 19) or



61

-106.77mg (Food # 13). So we may say that the errors in the ML approach are larger

than those seen in the Mathematical method.

We also computed the difference in Phe estimates (in mg) obtained from the two

approaches for a serving of the foods. Since Mathematical method is more accurate,

we also checked if the ML Phe estimate lies in the Phe interval resulting from the

Mathematical method (Table 2.2). The results are summarized in Tables 4.3.

Table 4.3 shows the results of comparison between the two methods for the case

when the ML approach estimates Phe (in mg) per 100g of the food. The first col-

umn in the table denotes the food number as referenced in Table 2.1. The second

column denotes the Phe content estimated with ML approach (rounded to two dec-

imal places). The cells shaded yellow indicate those foods whose ML Phe estimates

lie within the Phe interval predicted by Mathematical method. The third column

denotes the difference between Phe estimates of ML and Mathematical methods (in

mg).

As seen from the Tables 4.3 the number of foods whose ML Phe estimate conforms

to the Mathematical Phe range estimate are only about 25% of the total foods. In

some cases, the two approaches agree very well with each other with a difference in

estimates of only -0.3mg (for Food # 11 in Table 4.3). Also, around 50% of the food

estimates are well within a difference of ±10mg per serving. However, for most of

the cases (over 75% of the foods), we see that the Phe estimates calculated with the

ML approach do not agree with the predicted Phe intervals from the Mathematical

method. Also, the difference between the two estimates can be as high as -131.21mg

(for Food # 19 in Table 4.3). We conclude that the 3-step Mathematical method is

very accurate. In fact, combining the three steps gave us improved accuracies than

those obtained by the individual methods proposed earlier.



62

Fig. 4.1. Difference Between Ground Truth and Phe Estimates Obtained
by Mathematical and ML Method.

To better understand the nature of these errors we plot the difference between the

actual Phe estimates and those obtained by Mathematical and ML method as shown

in Fig. 4.1. We can see that in many cases, the error obtained by ML approach

is comparable to the error from the Mathematical method. It may even be smaller

than the Mathematical error in some cases. However, an important observation is

in quite a few cases, the prediction can be terribly wrong as seen for Foods # 12,

17 and 18 from Fig. 4.1. This unpredictability is rendered in ML method because

Phe estimates are predicted without any error bounds like those in the Mathematical

method. In order to combat this, one may choose to use the results of ML method

along with the results of Step 1 of the Mathematical method. Ascertaining that the

ML Phe estimate lies in Step 1 interval would add more reliability to the process.

We see that the ML approach is not very accurate in the general case of all foods.

However, it is important to realize that this set contains a lot of high protein foods
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which are strictly prohibited in a PKU diet and hence, is not very relevant to our

study. On the other hand, the ML method performs fairly accurately in the foods

with protein and Phe restricted to low values. As we saw from Chapter 3, ML method

performs with an accuracy up to 77% for the low-protein, low-Phe foods which are

the relevant foods for our target disorder.

Additionally, the ease of use and simplicity of the ML approach makes it very

desirable for user applications. It eliminates the need to enter the ingredients in

order of their increasing weights as required by the Mathematical method. In fact,

the need to enter data about ingredients, nutrients and serving size makes the third

step of the Mathematical method cumbersome. A search for the ingredients in the

database is often laborious, ambiguous and may even sometimes be futile. In such

scenarios, the ML approach serves as a feasible alternative apart from the Step 1 of

the Mathematical method which only yields a crude range for Phe. However, the ML

method does not give any error bounds on the estimate. So, there can be significant

risks to using this method.

One might argue that the ML approach may suffer from the lack of data or in

other words, the small size of the database considered (5079 foods) [7]. It could also

be said that the errors could be attributed to the lack of close neighbors. However, an

analysis of the Figures 3.23 to 3.31 shows that this is not the case. Thus, we believe

that the problem is ill-posed and the ML approach for Phe estimation cannot be

further improved without using additional data (like the ingredients list). However,

it might still be worthwhile to attempt this problem using Deep Neural Networks

(DNNs). Ideally, we should test the results on a completely new database, so that

the test results are not biased by the training data.
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Table 4.1.
Comparison of the Mathematical Approach with Ground Truth.

# USDA database Low-protein database Mathematical Mathematical Phe

Actual Phe (in mg) Actual Phe (in mg) Phe estimate (in mg) estimate-Actual Phe

1 81.60 75 66.65 -8.35

2 4.42 10.2 3.89 -0.53

3 113.4 131.86 165.11 33.25

4 68.32 66.90 68.07 -0.25

5 175.84 165 180.19 4.35

6 116.82 107 93.17 -13.83

7 N/A 6 23.17 17.17

8 N/A 238 206.31 -31.69

9 N/A 1.93 3.96 2.03

10 N/A 11 13.07 2.07

11 N/A N/A 150.87 -

12 N/A 6 14.86 8.86

13 N/A 120 118.67 -1.33

14 N/A 23.76 20.23 -3.53

15 N/A 76 78.20 2.20

16 N/A 8 10.14 2.14

17 N/A 5.42 2.24 -3.18

18 N/A 3 2.77 -0.23

19 N/A 284.67 289.10 4.43

20 N/A N/A 2.33 -
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Table 4.2.
Comparison of the Machine Learning Approach with Ground Truth.

# USDA database Low-protein database ML ML Phe

Actual Phe (in mg) Actual Phe (in mg) Phe estimate (in mg) estimate-Actual Phe

1 81.60 75 61.57 -13.43

2 4.42 10.2 10.58 0.38

3 113.4 131.86 119.23 5.83

4 68.32 66.90 58.17 -8.73

5 175.84 165 145.86 -19.14

6 116.82 107 128.92 12.1

7 N/A 6 24.19 18.19

8 N/A 238 220.05 -17.95

9 N/A 1.93 8.13 6.2

10 N/A 11 20.88 9.88

11 N/A N/A 150.57 -

12 N/A 6 28.70 22.70

13 N/A 120 13.23 -106.77

14 N/A 23.76 11.20 -12.56

15 N/A 76 59.61 -16.39

16 N/A 8 12.25 4.25

17 N/A 5.42 46.37 40.95

18 N/A 3 88.58 85.58

19 N/A 284.67 157.89 -126.78

20 N/A N/A 7.00 -
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Table 4.3.
Comparison of the Machine Learning Approach and the Mathematical
Approach.

# Phe Estimated with ML Phe Estimate-Mathematical

ML Approach (in mg) per serving Phe Estimate (in mg) per serving

1 61.571 -5.08

2 10.58 6.69

3 119.23 -45.88

4 58.171 -9.9

5 145.86 -34.33

6 128.92 35.75

7 24.191 1.02

8 220.05 13.74

9 8.13 4.17

10 20.88 7.81

11 150.571 -0.3

12 28.70 13.84

13 13.23 -105.44

14 11.201 -9.03

15 59.61 -18.59

16 12.25 2.11

17 46.37 44.13

18 88.58 85.81

19 157.89 -131.21

20 7.00 4.67

1Cells shaded yellow indicate those foods whose ML Phe estimates lie within the Phe interval pre-
dicted by Mathematical method.
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4.1 Future Work

Optical Character Recognition (OCR) and other computer vision techniques can

be employed to make the web applications more user friendly. For example, it could

enable the user to click a picture of the food label and the code would be able to

extract all the information regarding ingredients, nutrients and serving size. Alter-

natively, it could read the barcode and access the same information from a database.

The accuracy of the Machine Learning method could also be improved. For example,

information regarding ingredients could be included in the KNN approach to improve

accuracy. Also, different ML techniques like Deep Neural Networks (DNNs) or Re-

gression Analysis can be employed to solve the problem.
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A. LIST OF FOODS ESTIMATED WITH GOOD

ACCURACY (ERROR ≤ 50MG PHE PER 100G OF

FOOD) (K=4)

1. Butter, whipped, with salt

2. Butter oil, anhydrous

3. Dessert topping, semi solid, frozen

4. Milk, human, mature, fluid

5. Whey, acid, fluid

6. Whey, sweet, fluid

7. Butter, without salt

8. Cream substitute, flavored, liquid

9. Vinegar, cider

10. Babyfood, GERBER, 2nd Foods, apple, carrot and squash, organic

11. Babyfood, tropical fruit medley

12. Babyfood, vegetables, green beans, junior

13. Babyfood, vegetables, beets, strained

14. Babyfood, vegetables, carrots, strained

15. Babyfood, vegetables, carrots, junior

16. Babyfood, vegetables, sweet potatoes strained

17. Babyfood, vegetables, sweet potatoes, junior

18. Babyfood, vegetables, corn, creamed, strained

19. Babyfood, vegetables, corn, creamed, junior

20. Babyfood, cereal, mixed, with applesauce and bananas, strained

21. Babyfood, cereal, mixed, with applesauce and bananas, junior, fortified

22. Babyfood, cereal, rice, with applesauce and bananas, strained

23. Babyfood, dessert, dutch apple, junior
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24. Babyfood, dessert, fruit pudding, orange, strained

25. Babyfood, vegetables, mix vegetables strained

26. Babyfood, beverage, GERBER, GRADUATES, FRUIT SPLASHERS

27. Babyfood, corn and sweet potatoes, strained

28. Babyfood, fruit, banana and strawberry, junior

29. Babyfood, banana with mixed berries, strained

30. Fat, beef tallow

31. Lard

32. Salad dressing, mayonnaise type, regular, with salt

33. Salad dressing, french dressing, reduced fat

34. Salad dressing, italian dressing, commercial, reduced fat

35. Salad dressing, russian dressing, low calorie

36. Salad dressing, thousand island dressing, reduced fat

37. Sandwich spread, with chopped pickle, regular, unspecified oils

38. Shortening, household, soybean (partially hydrogenated)-cottonseed (partially

hydrogenated)

39. Oil, soybean, salad or cooking, (partially hydrogenated)

40. Oil, rice bran

41. Oil, wheat germ

42. Oil, peanut, salad or cooking

43. Oil, soybean, salad or cooking

44. Oil, coconut

45. Oil, olive, salad or cooking

46. Oil, palm

47. Oil, sesame, salad or cooking

48. Oil, sunflower, linoleic (less than 60%)

49. Margarine, regular, hard, soybean (hydrogenated)

50. Salad dressing, italian dressing, commercial, regular

51. Oil, cocoa butter
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52. Oil, cottonseed, salad or cooking

53. Oil, sunflower, linoleic, (approx. 65%)

54. Oil, safflower, salad or cooking, linoleic, (over 70%)

55. Oil, safflower, salad or cooking, high oleic (primary safflower oil of commerce)

56. Vegetable oil, palm kernel

57. Oil, poppyseed

58. Oil, tomatoseed

59. Oil, teaseed

60. Oil, grapeseed

61. Oil, corn, industrial and retail, all purpose salad or cooking

62. Oil, walnut

63. Oil, almond

64. Oil, apricot kernel

65. Oil, hazelnut

66. Oil, babassu

67. Oil, sheanut

68. Oil, cupu assu

69. Fat, chicken

70. Oil, soybean, salad or cooking, (partially hydrogenated) and cottonseed

71. Shortening, household, lard and vegetable oil

72. Oil, sunflower, linoleic, (partially hydrogenated)

73. Shortening bread, soybean (hydrogenated) and cottonseed

74. Shortening cake mix, soybean (hydrogenated) and cottonseed (hydrogenated)

75. Shortening industrial, lard and vegetable oil

76. Shortening frying (heavy duty), beef tallow and cottonseed

77. Shortening confectionery, coconut (hydrogenated) and or palm kernel (hydro-

genated)

78. Shortening industrial, soybean (hydrogenated) and cottonseed

79. Shortening frying (heavy duty), palm (hydrogenated)
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80. Shortening household soybean (hydrogenated) and palm

81. Shortening frying (heavy duty), soybean (hydrogenated), linoleic (less than 1%)

82. Shortening, confectionery, fractionated palm

83. Oil, nutmeg butter

84. Oil, ucuhuba butter

85. Fat, turkey

86. Fat, goose

87. Salad dressing, mayonnaise, light

88. Oil, industrial, coconut, principal uses candy coatings, oil sprays, roasting nuts

89. Oil, industrial, soy (partially hydrogenated), principal uses popcorn and flavoring

vegetables

90. Shortening, industrial, soy (partially hydrogenated), pourable liquid fry short-

ening

91. Oil, industrial, soy, refined, for woks and light frying

92. Oil, industrial, soy (partially hydrogenated), multiuse for non-dairy butter flavor

93. Oil, industrial, soy ( partially hydrogenated), all purpose

94. Oil, industrial, soy (partially hydrogenated ) and soy (winterized), pourable clear

fry

95. Oil, industrial, soy (partially hydrogenated) and cottonseed, principal use as a

tortilla shortening

96. Oil, industrial, palm kernel, confection fat, uses similar to high quality cocoa

butter

97. Oil, industrial, palm kernel (hydrogenated), confection fat, uses similar to 95

degree hard butter

98. Oil, industrial, palm kernel (hydrogenated), confection fat, intermediate grade

product

99. Oil, industrial, coconut, confection fat, typical basis for ice cream coatings

100. Oil, industrial, palm kernel (hydrogenated) , used for whipped toppings, non-

dairy
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101. Oil, industrial, coconut (hydrogenated), used for whipped toppings and coffee

whiteners

102. Oil, industrial, palm and palm kernel, filling fat (non-hydrogenated)

103. Oil, industrial, palm kernel (hydrogenated), filling fat

104. Oil, industrial, soy (partially hydrogenated ), palm, principal uses icings and

fillings

105. Shortening, industrial, soy (partially hydrogenated ) for baking and confections

106. Oil, vegetable, soybean, refined

107. Soup, cream of celery, canned, condensed

108. Soup, cream of mushroom, canned, condensed

109. Sauce, ready-to-serve, pepper, TABASCO

110. CAMPBELL’S, Cream of Mushroom Soup, condensed

111. Soup, cream of asparagus, canned, prepared with equal volume water

112. Soup, cream of celery, canned, prepared with equal volume water

113. Soup, chicken gumbo, canned, prepared with equal volume water

114. Soup, cream of potato, canned, prepared with equal volume water

115. Soup, turkey vegetable, canned, prepared with equal volume water

116. Soup, tomato bisque, canned, prepared with equal volume water

117. Gravy, HEINZ Home Style, savory beef

118. Cereals, corn grits, yellow, regular, quick, enriched, cooked with water, with salt

119. Cereals, CREAM OF RICE, cooked with water, with salt

120. Apples, raw, with skin (Includes foods for USDA’s Food Distribution Program)

121. Apples, raw, without skin

122. Apples, raw, without skin, cooked, microwave

123. Apples, canned, sweetened, sliced, drained, heated

124. Apples, dehydrated (low moisture), sulfured, uncooked

125. Apples, dehydrated (low moisture), sulfured, stewed

126. Apples, dried, sulfured, stewed, without added sugar
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127. Apples, frozen, unsweetened, unheated (Includes foods for USDA’s Food Distri-

bution Program)

128. Apples, frozen, unsweetened, heated (Includes foods for USDA’s Food Distribu-

tion Program)

129. Applesauce, canned, unsweetened, without added ascorbic acid (Includes foods

for USDA’s Food Distribution Program)

130. Applesauce, canned, sweetened, without salt

131. Apricots, raw

132. Apricots, canned, water pack, with skin, solids and liquids

133. Apricots, canned, water pack, without skin, solids and liquids

134. Apricots, canned, juice pack, with skin, solids and liquids

135. Apricots, canned, extra light syrup pack, with skin, solids and liquids (Includes

foods for USDA’s Food Distribution Program)

136. Apricots, canned, light syrup pack, with skin, solids and liquids

137. Apricots, canned, heavy syrup pack, with skin, solids and liquids

138. Apricots, dried, sulfured, stewed, without added sugar

139. Bananas, raw

140. Blueberries, raw

141. Blueberries, canned, heavy syrup, solids and liquids

142. Blueberries, frozen, unsweetened (Includes foods for USDA’s Food Distribution

Program)

143. Blueberries, frozen, sweetened

144. Breadfruit, raw

145. Cherries, sweet, raw

146. Cranberries, raw

147. Elderberries, raw

148. Figs, raw

149. Figs, canned, water pack, solids and liquids

150. Figs, canned, light syrup pack, solids and liquids
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151. Figs, canned, heavy syrup pack, solids and liquids

152. Figs, dried, stewed

153. Grapefruit, raw, pink and red and white, all areas

154. Grapefruit, raw, pink and red, all areas

155. Grapefruit, raw, pink and red, California and Arizona

156. Grapefruit, raw, pink and red, Florida

157. Grapefruit, raw, white, all areas

158. Grapefruit, raw, white, Florida

159. Grapefruit, sections, canned, water pack, solids and liquids

160. Grapefruit, sections, canned, juice pack, solids and liquids

161. Grapefruit, sections, canned, light syrup pack, solids and liquids

162. Grapes, american type (slip skin), raw

163. Grapes, red or green (European type, such as Thompson seedless), raw

164. Grapes, canned, thompson seedless, water pack, solids and liquids

165. Grapes, canned, thompson seedless, heavy syrup pack, solids and liquids

166. Grape juice, canned or bottled, unsweetened, without added ascorbic acid

167. Guavas, strawberry, raw

168. Guava sauce, cooked

169. Kiwifruit, green, raw

170. Longans, raw

171. Loquats, raw

172. Mangos, raw

173. Melons, cantaloupe, raw

174. Melons, honeydew, raw

175. Nectarines, raw

176. Olives, ripe, canned (small-extra large)

177. Olives, ripe, canned (jumbo-super colossal)

178. Oranges, raw, all commercial varieties

179. Oranges, raw, California, valencias
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180. Oranges, raw, navels (Includes foods for USDA’s Food Distribution Program)

181. Oranges, raw, Florida

182. Oranges, raw, with peel

183. Orange juice, raw (Includes foods for USDA’s Food Distribution Program)

184. Orange juice, canned, unsweetened

185. Orange juice, chilled, includes from concentrate

186. Orange juice, chilled, includes from concentrate, with added calcium and vitamin

D

187. Orange juice, chilled, includes from concentrate, with added calcium

188. Tangerines, (mandarin oranges), raw

189. Tangerines, (mandarin oranges), canned, juice pack

190. Tangerines, (mandarin oranges), canned, light syrup pack

191. Tangerine juice, raw

192. Papayas, raw

193. Peaches, yellow, raw

194. Peaches, canned, water pack, solids and liquids

195. Peaches, canned, juice pack, solids and liquids

196. Peaches, canned, extra light syrup, solids and liquids (Includes foods for USDA’s

Food Distribution Program)

197. Peaches, canned, light syrup pack, solids and liquids

198. Peaches, canned, heavy syrup pack, solids and liquids

199. Peaches, spiced, canned, heavy syrup pack, solids and liquids

200. Peaches, dried, sulfured, stewed, without added sugar

201. Peaches, frozen, sliced, sweetened

202. Pears, raw

203. Pears, canned, water pack, solids and liquids

204. Pears, canned, juice pack, solids and liquids

205. Pears, canned, extra light syrup pack, solids and liquids (Includes foods for

USDA’s Food Distribution Program)
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206. Pears, canned, light syrup pack, solids and liquids

207. Pears, canned, heavy syrup pack, solids and liquids

208. Pears, dried, sulfured, stewed, without added sugar

209. Persimmons, japanese, raw

210. Pineapple, raw, all varieties

211. Pineapple, canned, water pack, solids and liquids

212. Pineapple, canned, juice pack, solids and liquids

213. Pineapple, canned, light syrup pack, solids and liquids

214. Pineapple, canned, heavy syrup pack, solids and liquids

215. Pineapple, frozen, chunks, sweetened

216. Plums, raw

217. Plums, canned, purple, water pack, solids and liquids

218. Plums, canned, purple, juice pack, solids and liquids

219. Plums, canned, purple, light syrup pack, solids and liquids

220. Plums, canned, purple, heavy syrup pack, solids and liquids

221. Sapodilla, raw

222. Sapote, mamey, raw

223. Strawberries, canned, heavy syrup pack, solids and liquids

224. Strawberries, frozen, unsweetened (Includes foods for USDA’s Food Distribution

Program)

225. Watermelon, raw

226. Feijoa, raw

227. Pears, asian, raw

228. Peaches, canned, heavy syrup, drained

229. Applesauce, canned, unsweetened, with added ascorbic acid

230. Applesauce, canned, sweetened, with salt

231. Pears, raw, bartlett (Includes foods for USDA’s Food Distribution Program)

232. Pears, raw, red anjou

233. Pears, raw, bosc (Includes foods for USDA’s Food Distribution Program)
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234. Pears, raw, green anjou (Includes foods for USDA’s Food Distribution Program)

235. Apples, raw, red delicious, with skin (Includes foods for USDA’s Food Distribu-

tion Program)

236. Apples, raw, golden delicious, with skin

237. Orange juice, chilled, includes from concentrate, with added calcium and vita-

mins A, D, E

238. Grape juice, canned or bottled, unsweetened, with added ascorbic acid and

calcium

239. Beans, snap, green, canned, regular pack, solids and liquids

240. Beans, snap, green, canned, regular pack, drained solids

241. Beans, snap, canned, all styles, seasoned, solids and liquids

242. Beans, snap, green, frozen, cooked, boiled, drained without salt

243. Beets, canned, regular pack, solids and liquids

244. Beets, canned, drained solids

245. Cabbage, cooked, boiled, drained, without salt

246. Cabbage, red, raw

247. Cabbage, chinese (pe-tsai), raw

248. Carrots, raw

249. Carrots, canned, regular pack, solids and liquids

250. Carrots, canned, regular pack, drained solids

251. Carrots, frozen, unprepared (Includes foods for USDA’s Food Distribution Pro-

gram)

252. Carrots, frozen, cooked, boiled, drained, without salt

253. Celery, raw

254. Celery, cooked, boiled, drained, without salt

255. Celtuce, raw

256. Chayote, fruit, raw

257. Chayote, fruit, cooked, boiled, drained, without salt

258. Cucumber, with peel, raw
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259. Cucumber, peeled, raw

260. Eggplant, cooked, boiled, drained, without salt

261. Endive, raw

262. Gourd, white-flowered (calabash), raw

263. Gourd, white-flowered (calabash), cooked, boiled, drained, without salt

264. Leeks, (bulb and lower leaf-portion), cooked, boiled, drained, without salt

265. Lettuce, iceberg (includes crisphead types), raw

266. Onions, raw

267. Onions, cooked, boiled, drained, without salt

268. Onions, canned, solids and liquids

269. Onions, frozen, chopped, unprepared

270. Onions, frozen, chopped, cooked, boiled, drained, without salt

271. Onions, frozen, whole, unprepared

272. Onions, frozen, whole, cooked, boiled, drained, without salt

273. Onions, sweet, raw

274. Peppers, hot chili, green, canned, pods, excluding seeds, solids and liquids

275. Peppers, sweet, green, cooked, boiled, drained, without salt

276. Peppers, sweet, green, canned, solids and liquids

277. Peppers, sweet, green, frozen, chopped, unprepared

278. Peppers, sweet, green, frozen, chopped, boiled, drained, without salt

279. Peppers, sweet, green, sauteed

280. Pumpkin, raw

281. Pumpkin, cooked, boiled, drained, without salt

282. Radishes, raw

283. Radishes, oriental, raw

284. Radishes, oriental, cooked, boiled, drained, without salt

285. Sesbania flower, raw

286. Squash, summer, crookneck and straightneck, raw
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287. Squash, summer, crookneck and straightneck, cooked, boiled, drained, without

salt

288. Squash, summer, crookneck and straightneck, canned, drained, solid, without

salt

289. Squash, summer, crookneck and straightneck, frozen, unprepared

290. Squash, summer, crookneck and straightneck, frozen, cooked, boiled, drained,

without salt

291. Squash, summer, scallop, raw

292. Squash, summer, scallop, cooked, boiled, drained, without salt

293. Squash, summer, zucchini, includes skin, raw

294. Squash, summer, zucchini, includes skin, cooked, boiled, drained, without salt

295. Squash, summer, zucchini, includes skin, frozen, unprepared

296. Squash, summer, zucchini, includes skin, frozen, cooked, boiled, drained, without

salt

297. Squash, summer, zucchini, italian style, canned

298. Squash, winter, acorn, raw

299. Squash, winter, acorn, cooked, baked, without salt

300. Squash, winter, butternut, raw

301. Squash, winter, butternut, cooked, baked, without salt

302. Squash, winter, spaghetti, raw

303. Squash, winter, spaghetti, cooked, boiled, drained, or baked, without salt

304. Tomatoes, green, raw

305. Tomatoes, red, ripe, raw, year round average

306. Tomatoes, red, ripe, cooked

307. Tomatoes, red, ripe, canned, packed in tomato juice

308. Tomatoes, red, ripe, canned, stewed

309. Tomato products, canned, sauce

310. Tomato products, canned, sauce, with mushrooms

311. Tomato products, canned, sauce, with tomato tidbits
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312. Turnips, raw

313. Turnips, frozen, unprepared

314. Turnip greens, cooked, boiled, drained, without salt

315. Vegetable juice cocktail, canned

316. Vegetables, mixed, canned, solids and liquids

317. Vegetable juice cocktail, low sodium, canned

318. Yambean (jicama), cooked, boiled, drained, without salt

319. Beets, harvard, canned, solids and liquids

320. Beets, pickled, canned, solids and liquids

321. Peppers, jalapeno, canned, solids and liquids

322. Radishes, white icicle, raw

323. Squash, summer, all varieties, raw

324. Squash, summer, all varieties, cooked, boiled, drained, without salt

325. Sweet potato, canned, syrup pack, solids and liquids

326. Tomato products, canned, sauce, spanish style

327. Tomatoes, orange, raw

328. Tomatoes, yellow, raw

329. Beans, snap, green, canned, no salt added, solids and liquids

330. Beans, snap, yellow, canned, regular pack, solids and liquids

331. Beans, snap, yellow, canned, no salt added, solids and liquids

332. Beans, snap, green, canned, no salt added, drained solids

333. Beans, snap, yellow, frozen, cooked, boiled, drained, with salt

334. Beets, canned, no salt added, solids and liquids

335. Cabbage, common, cooked, boiled, drained, with salt

336. Carrots, canned, no salt added, solids and liquids

337. Carrots, canned, no salt added, drained solids

338. Carrots, frozen, cooked, boiled, drained, with salt

339. Celery, cooked, boiled, drained, with salt

340. Gourd, white-flowered (calabash), cooked, boiled, drained, with salt
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341. Leeks, (bulb and lower leaf-portion), cooked, boiled, drained, with salt

342. Onions, cooked, boiled, drained, with salt

343. Onions, frozen, chopped, cooked, boiled, drained, with salt

344. Onions, frozen, whole, cooked, boiled, drained, with salt

345. Peppers, sweet, red, raw

346. Peppers, sweet, green, cooked, boiled, drained, with salt

347. Peppers, sweet, red, cooked, boiled, drained, without salt

348. Peppers, sweet, red, cooked, boiled, drained, with salt

349. Peppers, sweet, green, frozen, chopped, cooked, boiled, drained, with salt

350. Pumpkin, cooked, boiled, drained, with salt

351. Radishes, oriental, cooked, boiled, drained, with salt

352. Squash, summer, all varieties, cooked, boiled, drained, with salt

353. Squash, summer, crookneck and straightneck, cooked, boiled, drained, with salt

354. Squash, summer, crookneck and straightneck, frozen, cooked, boiled, drained,

with salt

355. Squash, summer, scallop, cooked, boiled, drained, with salt

356. Squash, summer, zucchini, includes skin, cooked, boiled, drained, with salt

357. Squash, summer, zucchini, includes skin, frozen, cooked, boiled, drained, with

salt

358. Squash, winter, acorn, cooked, baked, with salt

359. Squash, winter, spaghetti, cooked, boiled, drained, or baked, with salt

360. Tomatoes, red, ripe, cooked, with salt

361. Tomatoes, red, ripe, canned, packed in tomato juice, no salt added

362. Tomato juice, canned, without salt added

363. Yambean (jicama), cooked, boiled, drained, with salt

364. Peppers, sweet, red, canned, solids and liquids

365. Peppers, sweet, red, frozen, chopped, unprepared

366. Peppers, sweet, red, frozen, chopped, boiled, drained, without salt

367. Peppers, sweet, red, frozen, chopped, boiled, drained, with salt
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368. Peppers, sweet, red, sauteed

369. Sesbania flower, cooked, steamed, with salt

370. Beans, snap, yellow, canned, regular pack, drained solids

371. Beans, snap, yellow, canned, no salt added, drained solids

372. Catsup

373. Pickles, cucumber, dill or kosher dill

374. Pickles, cucumber, sweet (includes bread and butter pickles)

375. Pimento, canned

376. Pickle relish, sweet

377. Pickles, cucumber, sour, low sodium

378. Pickles, cucumber, dill, reduced sodium

379. Pickles, cucumber, sweet, low sodium (includes bread and butter pickles)

380. Catsup, low sodium

381. Peppers, sweet, yellow, raw

382. Radicchio, raw

383. Nopales, raw

384. Peppers, chili, green, canned

385. Peppers, hungarian, raw

386. Nuts, coconut water (liquid from coconuts)

387. Nuts, chestnuts, japanese, boiled and steamed

388. Alcoholic beverage, beer, regular, all

389. Alcoholic beverage, creme de menthe, 72 proof

390. Alcoholic beverage, distilled, all (gin, rum, vodka, whiskey) 80 proof

391. Alcoholic beverage, distilled, rum, 80 proof

392. Alcoholic beverage, distilled, vodka, 80 proof

393. Beverages, almond milk, chocolate, ready-to-drink

394. Beverages, carbonated, club soda

395. Carbonated beverage, cream soda

396. Beverages, carbonated, grape soda
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397. Beverages, carbonated, orange

398. Beverages, carbonated, pepper-type, contains caffeine

399. Beverages, carbonated, tonic water

400. Beverages, Clam and tomato juice, canned

401. Beverages, coffee, brewed, prepared with tap water, decaffeinated

402. Beverages, coffee, brewed, prepared with tap water

403. Cranberry juice cocktail, bottled, low calorie, with calcium, saccharin and corn

sweetener

404. Beverages, tea, black, brewed, prepared with tap water, decaffeinated

405. Beverages, tea, black, brewed, prepared with tap water

406. Beverages, water, bottled, PERRIER

407. Beverages, water, bottled, POLAND SPRING

408. Alcoholic beverage, distilled, all (gin, rum, vodka, whiskey) 94 proof

409. Alcoholic beverage, distilled, all (gin, rum, vodka, whiskey) 100 proof

410. Beverages, tea, black, brewed, prepared with distilled water

411. Alcoholic beverage, distilled, all (gin, rum, vodka, whiskey) 86 proof

412. Alcoholic beverage, distilled, all (gin, rum, vodka, whiskey) 90 proof

413. Mollusks, clam, mixed species, canned, liquid

414. Gelatin desserts, dry mix, prepared with water

415. Puddings, lemon, dry mix, regular

416. Puddings, banana, dry mix, regular, with added oil

417. Puddings, vanilla, dry mix, regular, with added oil

418. Hominy, canned, yellow

419. KFC, Coleslaw

420. Soup, egg drop, Chinese restaurant

421. APPLEBEE’S, coleslaw

422. CRACKER BARREL, coleslaw

423. Tomato sauce, canned, no salt added

424. Babyfood, grape juice, no sugar, canned



86

B. LIST OF FOODS ESTIMATED WITH BAD

ACCURACY (ERROR > 50MG PHE PER 100G OF

FOOD) (K=4)

1. Butter, salted

2. Cream substitute, liquid, with hydrogenated vegetable oil and soy protein

3. Cream substitute, liquid, with lauric acid oil and sodium caseinate

4. Dessert topping, pressurized

5. Cream substitute, flavored, powdered

6. Salt, table

7. Babyfood, juice treats, fruit medley, toddler

8. Babyfood, snack, GERBER GRADUATE FRUIT STRIPS, Real Fruit Bars

9. Babyfood, vegetables, green beans, strained

10. Babyfood, cereal, oatmeal, with applesauce and bananas, strained

11. Babyfood, cereal, oatmeal, with applesauce and bananas, junior, fortified

12. Babyfood, vegetables, mix vegetables junior

13. Babyfood, mashed cheddar potatoes and broccoli, toddlers

14. Salad dressing, thousand island, commercial, regular

15. Salad dressing, mayonnaise, regular

16. Salad dressing, mayonnaise, soybean and safflower oil, with salt

17. Salad dressing, mayonnaise, imitation, soybean

18. Salad dressing, mayonnaise, imitation, soybean without cholesterol

19. Salad dressing, french, home recipe

20. Salad dressing, home recipe, vinegar and oil

21. Sauce, ready-to-serve, pepper or hot

22. Soup, cream of chicken, canned, prepared with equal volume water



87

23. Cereals, CREAM OF WHEAT, regular (10 minute), cooked with water, without

salt

24. Cereals, corn grits, yellow, regular and quick, enriched, cooked with water, with-

out salt

25. Cereals, CREAM OF WHEAT, regular (10 minute), cooked with water, with

salt

26. Cereals, CREAM OF WHEAT, 2 1/2 minute cook time, cooked with water,

stove-top, without salt

27. Apples, dried, sulfured, uncooked

28. Apples, dried, sulfured, stewed, with added sugar

29. Apricots, canned, heavy syrup pack, without skin, solids and liquids

30. Apricots, canned, extra heavy syrup pack, without skin, solids and liquids

31. Apricots, dried, sulfured, stewed, with added sugar

32. Apricots, frozen, sweetened

33. Carambola, (starfruit), raw

34. Crabapples, raw

35. Figs, canned, extra heavy syrup pack, solids and liquids

36. Grapefruit, raw, white, California

37. Lime juice, raw

38. Peaches, canned, extra heavy syrup pack, solids and liquids

39. Peaches, dried, sulfured, stewed, with added sugar

40. Pears, canned, extra heavy syrup pack, solids and liquids

41. Pears, dried, sulfured, stewed, with added sugar

42. Persimmons, japanese, dried

43. Persimmons, native, raw

44. Pineapple, canned, extra heavy syrup pack, solids and liquids

45. Plums, canned, purple, extra heavy syrup pack, solids and liquids

46. Strawberries, raw

47. Strawberries, frozen, sweetened, sliced
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48. Plantains, green, boiled

49. Cabbage, raw

50. Carrots, cooked, boiled, drained, without salt

51. Cassava, raw

52. Chicory, witloof, raw

53. Eggplant, raw

54. Escarole, cooked, boiled, drained, no salt added

55. Lettuce, butterhead (includes boston and bibb types), raw

56. Lettuce, cos or romaine, raw

57. Lettuce, green leaf, raw

58. Lettuce, red leaf, raw

59. Mountain yam, hawaii, raw

60. Onions, yellow, sauteed

61. Peppers, sweet, green, raw

62. Potatoes, canned, solids and liquids

63. Potatoes, canned, drained solids

64. Pumpkin, canned, without salt

65. Pumpkin pie mix, canned

66. Purslane, cooked, boiled, drained, without salt

67. Sauerkraut, canned, solids and liquids

68. Sesbania flower, cooked, steamed, without salt

69. Squash, winter, acorn, cooked, boiled, mashed, without salt

70. Squash, winter, butternut, frozen, cooked, boiled, without salt

71. Squash, winter, hubbard, cooked, boiled, mashed, without salt

72. Sweet potato, cooked, boiled, without skin

73. Taro, cooked, without salt

74. Tomato products, canned, sauce, with onions, green peppers, and celery

75. Turnips, cooked, boiled, drained, without salt

76. Turnip greens, canned, solids and liquids
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77. Yam, cooked, boiled, drained, or baked, without salt

78. Yambean (jicama), raw

79. Beans, mung, mature seeds, sprouted, canned, drained solids

80. Squash, winter, all varieties, raw

81. Squash, winter, all varieties, cooked, baked, without salt

82. Sweet potato, canned, syrup pack, drained solids

83. Sweet potato, cooked, candied, home-prepared

84. Beans, snap, green, frozen, cooked, boiled, drained, with salt

85. Beans, snap, yellow, frozen, cooked, boiled, drained, without salt

86. Cabbage, common (danish, domestic, and pointed types), freshly harvest, raw

87. Cabbage, common (danish, domestic, and pointed types), stored, raw

88. Carrots, cooked, boiled, drained, with salt

89. Chayote, fruit, cooked, boiled, drained, with salt

90. Eggplant, cooked, boiled, drained, with salt

91. Peppers, hot chili, red, canned, excluding seeds, solids and liquids

92. Pumpkin, canned, with salt

93. Purslane, cooked, boiled, drained, with salt

94. Squash, winter, all varieties, cooked, baked, with salt

95. Squash, winter, acorn, cooked, boiled, mashed, with salt

96. Squash, winter, butternut, cooked, baked, with salt

97. Squash, winter, butternut, frozen, cooked, boiled, with salt

98. Squash, winter, hubbard, cooked, boiled, mashed, with salt

99. Sweet potato, cooked, boiled, without skin, with salt

100. Taro, cooked, with salt

101. Turnips, cooked, boiled, drained, with salt

102. Turnip greens, cooked, boiled, drained, with salt

103. Yam, cooked, boiled, drained, or baked, with salt

104. Pickles, cucumber, sour

105. Pickle relish, hamburger
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106. Carrots, baby, raw

107. Nopales, cooked, without salt

108. Nuts, coconut cream, canned, sweetened

109. Alcoholic beverage, beer, light

110. Beverages, Orange drink, breakfast type, with juice and pulp, frozen concentrate

111. Beverages, tea, instant, lemon, with added ascorbic acid

112. Noodles, chinese, cellophane or long rice (mung beans), dehydrated

113. Fruit syrup

114. Puddings, tapioca, dry mix

115. Puddings, vanilla, dry mix, regular

116. Frostings, chocolate, creamy, ready-to-eat

117. Frostings, cream cheese-flavor, ready-to-eat

118. Frostings, chocolate, creamy, dry mix

119. Frostings, chocolate, creamy, dry mix, prepared with butter

120. Frostings, vanilla, creamy, dry mix

121. Honey

122. Jams and preserves

123. Marmalade, orange

124. Pie fillings, canned, cherry

125. Puddings, banana, dry mix, regular

126. Puddings, lemon, dry mix, instant

127. Toppings, butterscotch or caramel

128. Frostings, vanilla, creamy, dry mix, prepared with margarine

129. Frostings, chocolate, creamy, dry mix, prepared with margarine

130. Puddings, lemon, dry mix, regular, with added oil, potassium, sodium

131. Puddings, tapioca, dry mix, with no added salt

132. Syrup, NESTLE, chocolate

133. Arrowroot flour

134. Cornstarch
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135. Hominy, canned, white

136. Tapioca, pearl, dry

137. POPEYES, Coleslaw

138. Agave, raw (Southwest)

139. DENNY’S, coleslaw


