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ABSTRACT

Guo, Longyun PhD, Purdue University, May 2019. Mathematical Modeling of Pheny-
lalanine and Lignin Biosynthetic Networks in Plants. Major Professor: John A.
Morgan.

L-phenylalanine (Phe) is an important amino acid which is the precursor of various

plant secondary metabolisms. Its biosynthesis and consumption are governed by

different levels of regulatory mechanisms, yet our understanding to them are still

far from complete. The plant has evolved a complex regulation over Phe, likely

due to the fact that a significant portion of carbon assimilated by photosynthesis is

diverted to its downstream products. In particular, lignin as one of them, is among

the most abundant polymers in plant secondary cell wall. Studies have unraveled the

interconnected metabolism involved in lignin biosynthesis, and a hierarchical gene

regulatory network on top of it is also being uncovered by different research groups.

These biological processes function together for sufficient lignification to ensure cell

wall hydrophobicity and rigidity for plant normal growth. Yet on the other hand, the

presence of lignin hinders the efficient saccharification process for biofuel production.

Therefore, it is fundamental to understand lignin biosynthesis and its upstream Phe

biosynthesis in a systematic way, to guide rational metabolic engineering to either

reduce lignin content or manipulate its composition in planta.

Phe biosynthesis was predominantly existed in plastids according to previous

studies, and there exists a cytosolic synthetic route as well. Yet how two pathways

are metabolically coordinated are largely under-explored. Here I describe a flux

analysis using time course datasets from 15N L-tyrosine (Tyr) isotopic labeling studies

to show the contributions from two alternative Phe biosynthetic routes in Petunia

flower. The flux split between cytosolic and plastidial routes were sensitive to genetic
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perturbations to either upstream chorismate mutase within shikimate pathway, or

downstream plastidial cationic amino-acid transporter. These results indicate the

biological significance of having an alternative biosynthetic route to this important

amino acid, so that defects of the plastidial route can be partially compensated to

maintain Phe homeostasis.

To understand the metabolic dynamics of the upstream part of lignin biosynthesis,

we developed a multicompartmental kinetic model of the general phenylpropanoid

metabolism in Arabidopsis basal lignifying stems. The model was parameterized

by Markov Chain Monte Carlo sampling, with data from feeding plants with ring

labeled [13C6]-Phe. The existence of vacuole storage for both Phe and p-coumarate

was supported by an information theoretic approach. Metabolic control analysis with

the model suggested the plastidial cationic amino-acid transporter to be the step with

the highest flux controlling coefficient for lignin deposition rate. This model provides

a deeper understanding of the metabolic connections between Phe biosynthesis and

phenylpropanoid metabolism, suggesting the transporter step to be the promising

target if one aims to manipulate lignin pathway flux.

Hundreds of gene regulatory interactions between transcription factors and struc-

tural genes involved in lignin biosynthesis has been reported with different experimental

evidence in model plant Arabidopsis, however, a public database is missing to sum-

marize and present all these findings. In this work, we documented all reported gene

regulatory interactions in Arabidopsis lignin biosynthesis, and ended up with a gene

regulatory network consisting of 438 interactions between 72 genes. A network is then

constructed with linear differential equations, and its parameters were estimated and

evaluated with RNA-seq datasets from 13 genetic backgrounds in Arabidopsis basal

stems. We combined this network with a kinetic model of lignin biosynthesis starting

from Phe and ending with all monolignols participated in lignin polymerization. This

hierarchical kinetic model is the first model integrating dynamic information between

transcriptional machinery and metabolic network for lignin biosynthesis. We showed

that it is able to provide mechanistic explanations for most of experimental findings
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from different genotypes. It also provides the opportunity to systematically test all

possible genetic manipulation strategies targeting to lignification relevant genes to

predict the lignin phenotypes in silico.
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1. INTRODUCTION

1.1 Phenylalanine biosynthetic network in plants

L-phenylalanine (Phe) is one of nine essential amino acids which is not produced

in the human body. Together with two other aromatic amino acids, namely L-tyrosine

(Tyr) and L-tryptophan (Trp), Phe is synthesized by the shikimate pathway in

plants [1]. Thousands of phenylalanine-derived metabolites have been identified, and

they play important roles in different aspects for plants normal growth under various

environmental conditions. These metabolites include phenylpropanoids, benzenoids,

salicylic acids, flavonoids, etc. Many of these are of essential for normal plant

development. For instance, the biopolymer lignin is one of major secondary cell wall

components, and its subunits are all derived from Phe. Thus not surprisingly, a

significant amount of carbon fixed by plants is invested into Phe biosynthesis [2].

Phe is known to be synthesized via two alternative pathways from prephenate,

namely, the arogenate pathway and phenylpyruvate pathway [3]. In the arogenate

pathway, prephenate is first transaminated and then dehydrated/decarboxylated to

phenylalanine by prephenate aminotransferase (PPA-AT) and arogenate dehydratase

(ADT). On the other hand, in the phenylpyruvate pathway, Phe is produced with

prephenate dehydratase (PDT) followed by phenylpyruvate aminotransferase (PPY-

AT). [4] have reported that Phe is predominantly produced in plastids via the arogenate

pathway in Petunia. The dominance of the plastidial route for Phe biosynthesis was

further verified in later studies in tomato [5] and Arabidopsis [6]. On the other hand, [7]

identified a cytosolic phenylpyruvate pathway which alternatively produces Phe in

Petunia. Interestingly, cytosolic PPY-AT strongly favors Tyr as the amino donor [7]

instead of glutamate. The alternative cytosolic route seems to play a compensating

role for Phe homeostasis, as its flux was increased when ADT and PPA-AT were
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transiently downregulated in petunia flowers [7]. These studies together indicate that

a complex Phe biosynthetic network spanning multiple compartments is present in

plants.

As an important precursor to various downstream metabolisms, Phe biosynthesis

is regulated by different regulatory mechanisms in plants [1]. Multiple allosteric

regulatory mechanisms are reported for Phe biosynthesis in plants. Phe was shown

to competitively inhibit chorismate mutase (CM) [8, 9] and ADT [10, 11]. While

there is no evidence for a Phe-sensitive 3-Deoxy-D-arabino-heptulosonate 7-phosphate

(DAHP) synthase in plants, inhibition of DAHP synthase from Tyr and Trp were

reported [12,13]. Furthermore, the fact that Tyr activates ADT [10] and Trp activates

CM [8, 9] suggests the complex interactions exist among the aromatic amino acids

within shikimate pathway. Beyond the allosteric regulation, a transcription factor

ODORANT1 was identified in Petunia flowers and its suppression through RNAi

led to decreased expression for genes encoding DAHP synthase and 5-enol-pyruvyl-

shikimate-3-phosphate synthase, which are involved in shikimate pathway [14]. [4]

later found the increased expression of the shikimate pathway genes with reduced Phe

levels when ADT was suppressed by RNAi. These results suggest that in addition to

allosteric regulation, transcriptional regulation connected with a currently unknown

signaling mechanism might be also active in Phe biosynthetic network in plants.

1.2 Lignin biosynthesis in plants

Lignin is a heteropolymer consisting primarily of subunits which are all derived

from Phe. As one of the key components in terrestrial plant secondary cell wall,

lignin provides structural supports for plants and it also enables efficient water

transport by its hydrophobicity [15]. On the other hand, lignin impedes the enzymatic

hydrolysis of cell wall polysaccharides for biofuel production, by physically detaching

polysaccharides from the hydrolyzing enzyme or competitively inhibiting the reaction

[16]. Genetic manipulation of lignin synthesis is thus one potential approach to lower
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Fig. 1.1. Lignin biosynthesis in Arabidopsis. Abbreviations: 4CL,
4-coumarate: CoA ligase; ADT, arogenate dehydratase; ALDH, alde-
hyde dehydrogenase; C3H, p-coumaroyl shikimate 3-hydroxylase;
C4H, cinnamate-4-hydroxylase; CAD, cinnamyl alcohol dehydrogenase;
CCoAOMT, caffeoyl CoA 3-O-methyltransferase; CCR, cinnamoyl-
CoA reductase; COMT, caffeic acid O-methyltransferase; CSE, caffeoyl
shikimate esterase; F5H, ferulate 5-hydroxylase; HCT, hydroxycin-
namoyl CoA: shikimate hydroxycinnamoyl transferase; PAL, phenylala-
nine ammonia lyase; PCAT, plastidial cationic amino-acid transporter.

the pretreatment costs, by either reducing the total lignin content or altering its

composition [17]. While success has been achieved by perturbating the expression of

genes involved in lignin biosynthesis [18–23], undesired phenotypes such as dwarfism

were observed in some cases [24–28], indicating lignification is a complex process of

which the perturbation responses cannot be easily predicted.

In plants, lignin is mainly composed of three monolignols, p-coumaryl alcohol,

coniferyl alcohol and sinapyl alcohol. All three alcohols are synthesized from cytoso-

lic Phe, and twelve enzyme families are responsible for monolignol biosynthesis in
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Arabidopsis (Fig. 1.1. Isoforms exist for 4-coumarate: CoA ligases (4CL) [29–31],

cinnamyl alcohol dehydrogenases (CAD) [32,33] and phenylalanine ammonia lyases

(PAL) [34,35], which are known to be directly involved in Arabidopsis lignin biosynthe-

sis. Some other enzymes have isoforms active in response to environmental stimuli, for

instance, the Arabidopsis gene for cinnamoyl-CoA reductase 2 (CCR2) was shown to

be upregulated under biotic stress [36]. Further complexities are introduced with some

enzymes able to catalyze multiple substrates (Fig. 1.1. In Arabidopsis, 4CLs show

activities for p-coumarate, caffeate, ferulate and sinapate [29,30]; all CoA esters in the

pathway are reduced by CCR1 [36,37]; Aldehyde dehydrogenase (ALDH) can utilize

p-coumaraldehyde, caffealdehyde and sinapaldehyde [38]; both CAD4 and CAD5 can

reduce all aldehydes in the pathway [33]; Hydroxycinnamoyl CoA: shikimate hydrox-

ycinnamoyl transferase (HCT) is responsible for two reversible reactions between

CoA esters and shikimate esters [39]; Ferulate 5-hydroxylase (F5H) has activities for

coniferaldehyde and coniferyl alcohol, and marginally for ferulate as well [40]; Caffeic

acid O-methyltransferase (COMT) attaches a methyl group to a wide range of pathway

intermediates [41]. Together they form a complicated network for lignin biosynthesis

(Fig. 1.1, and modeling efforts are definitely needed to systematically understand the

individual roles of enzymes towards overall pathway dynamics.

To ensure sufficient lignin deposition during the plant normal development, various

transcription factors function to control the expression of structural genes in lignin

biosynthesis, usually in coordination with genes responsible for other secondary cell

wall components [42,43]. Multiple NAM, ATAF1/2 and CUC2 (NAC) master switches

have been identified to activate the second-level myeloblastosis (MYB) factors, and they

together induce the expression of other downstream transcription factors and secondary

cell wall biosynthetic genes [44–50]. While it is believed that a well-structured

hierarchy exists for gene regulatory network of lignin biosynthesis [51], the real

situation might be more complicated, as some MYB factors can affect the expression of

NAC genes, forming feedback loops within the gene regulatory network. For instances

in Arabidopsis, MYB4, MYB7 and MYB32 repressed the expression of SECONDARY
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WALL-ASSOCIATED NAC DOMAIN PROTEIN 1 (SND1) in transfection assays,

while SND1 was shown to directly bind to MYB32 promoter region in an electrophoretic

mobility shift assay [52]. MYB4, MYB7 and MYB32 were all directly activated by

MYB46 [53,54], and MYB46 can be directly bound and activated by SND1 [53,55,56].

Interestingly, the expression of MYB7 can be repressed by MYB4 [57]. On the other

hand, the expression of MYB4 is upregulated by subunits of Mediator complex, MED5a

and MED5b [58]. In addition, the Mediator complex is involved in the repression of

gene expression in lignin biosynthesis, probably by regulating MYB factors including

MYB4, MYB20, MYB43, MYB85 and MYB103 [58]. The gene expression of Kelch

repeat F-box (KFB) protein family is also regulated by Mediator [58], and KFBs are

known to mediate PAL activities by ubiquitination followed by degradation [59–61].

Why plants have evolved such a complex gene regulatory network is still unclear, and

a modeling approach integrated with transcriptional analysis will help to organize the

current knowledge of gene-gene interactions in Arabidopsis, as well as generating new

hypotheses to test for a better understanding of the regulation of lignin biosynthesis.

1.3 Mathematical approaches to understand cellular dynamics in biolog-

ical systems

Various experimental techniques are currently widely available to quantify different

components in a biological system. For instances, RNA-seq can be used to measure

the gene expressions in a genome scale [62]. Proteomic and metabolomic data can be

obtained with MS based approaches [63–65]. However, no techniques are available to

directly quantify intracellular metabolic fluxes. This is mainly due to the fact that

metabolic fluxes are an emergent property of the biological system, resulting from the

interactions between enzymes and intermediates. If the studied pathway is strictly

linear and its product is exported extracellularly, internal fluxes can then be recovered

from the excretion measurements. However, such simplicity is rare because multiple

metabolic branch points are usually present to either ensure the needs from different
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downstream metabolisms or due to the enzyme promiscuity (e.g., 4-coumaric acid:

coenzyme A lyases are able to use p-coumarate, caffeate, ferulate, as well as sinapate

as substrates in lignin biosynthesis). Therefore, metabolic fluxes are usually indirectly

estimated with metabolic flux analysis which fits data from isotopic labeling studies

using metabolite and isotopic atom enrichment balance equations. On the other

hand, kinetic modeling can also reveal the flux distribution of the target metabolism,

as it directly simulates the interactions between enzymes and metabolites within

the pathway. This property makes the applications of the kinetic model wider than

metabolic flux analysis, as it can be used to simulate the consequences when certain

parts of the metabolism are perturbed. Next, these techniques will be described in

more detail and their applications towards the Phe and lignin biosynthetic network in

plants are presented in the current dissertation.

1.3.1 Metabolic flux analysis

Metabolic flux analysis (MFA) is widely applied in different studies to quantify

the metabolic fluxes of the target metabolism [66, 67]. Frequently, an isotopically

labeled precursor is fed into the system, and metabolic flow through pathway reactions

can be indirectly quantified with the isotope enrichment of the intermediate pools.

Depending on whether the measurements are taken at an isotopically steady state or

in a time series before the steady state, MFA is applied as either stationary MFA [68]

or a non-stationary MFA [69, 70]. In either case, mathematical modeling is needed

to recover the flux information from the isotope enrichment data. There are two

kinds of balance relationships in a typical MFA approach; one for the balance between

the synthesis and the consumption for each metabolite, which is known as the mass

balance. The other is an enrichment balance, as its name suggested, describing the
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fractions of isotopic and natural abundances for each metabolite. Both balances are

represented as differential equations listed below:

dC

dt
=

synthesis∑
i

vi −
consumption∑

j

vj (1.1)

dfC

dt
=

synthesis∑
i

fivi −
consumption∑

j

fvj (1.2)

where t is time, C is the concentration of the metabolite, f is the isotopic enrichment

of the metabolite, and v is the velocity of the relevant reaction.

A metabolic steady state is usually assumed for the biological system, meaning all

fluxes are constant over time. This assumption avoids the needs to simulate enzyme

kinetics, thus greatly simplifies the model structure. In this case, mass balances are

reduced to a set of linear equations to constrain the flux values. This leads to a smaller

set of independent fluxes, and the rest of dependent fluxes can be readily deduced with

the linear equations once the independent fluxes are quantified. For a non-stationary

MFA, isotopic dynamics from measurements are simulated with the adjusted isotopic

enrichment balances:

df

dt
=

∑synthesis
i fivi −

∑consumption
j fvj

C
(1.3)

This is obtained with dC
dt

being zero due to a metabolic steady state. An opti-

mization algorithm is then applied to estimate all independent fluxes and metabolite

concentrations, so that the isotopic enrichment dynamics derived from eq. 1.3 match

with experimental observations.

It is simpler to perform MFA in single celled microbial systems, as they are closer to

a homogenous system than multicompartmental organisms. This means the isotopically

labeled molecules are well mixed with the unlabeled cellular intermediates, so that the

pathway dynamics can be reliably estimated with eq. 1.3. Some applications of MFA

in microbes include the studies of central carbon metabolism in cyanobacteria [69],

Escherichia coli [71] and a thermophilic strain Geobacillus LC300 [72], as well as

a genome-scale MFA in Escherichia coli [73]. In plants, additional parameters are
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needed to quantify the subcellular pool sizes for multicompartmental metabolites. [74]

have applied MFA to generate flux maps for photosynthetic metabolism in Arabidopsis

under varying light conditions. They found that photorespiration was enhanced under

high light condition in coordination with higher CO2 fixation. This is probably due

to the lower CO2 partial pressure at the carboxylation site in high light acclimated

plants [75]. In another example of plant MFA, [76] have determined the flux distribution

for oilseed rape embryos of nine genotypes with different biomass compositions. They

observed a tradeoff between the contents of lipid and starch, and this tradeoff is likely

mediated by post-translational regulation of phosphofructokinase and ADP-glucose

pyrophosphorylase. MFA has been also applied to study the cellular dynamics under

low-nitrogen condition for cell suspensions of hybrid poplar [77]. Other examples of

MFA in plants can be found in a recent review [78]. In certain cases, the assumption

of a metabolic steady state has to be relaxed if the whole system obviously obviates

from the steady state over time. In [79], [80] and [81], we assumed the rate of change

of fluxes was linear over time, which ended up with a similar form of MFA allowing

one to reliably solve for the fluxes from the corresponding isotopic labeling studies.

1.3.2 Kinetic modeling

Kinetic modeling is a mathematical approach to describe cellular metabolism in

a mechanistic manner. Most of its applications in plants are focused on a target

pathway in a specified tissue [82,83]; Fig. 1.2 and Supplementary Table A.1. Similar

with MFA, it uses mass balance eq. 1.1 to describe the metabolic dynamics within

a pathway. In contrast to MFA, the reaction velocity v is no longer represented by

a fixed parameter, but it is simulated as a rate equation, which is a function of the

concentrations of substrates, the catalyzing enzyme, as well as other metabolites as

allosteric regulators if necessary. Michaelis-Menten kinetics are usually the default

choices for the rate equations [84,85]. However, other kinds of functions are also widely

used in different kinetic models, including Hill equation [86, 87], mass action [88], and
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generalized mass action [89,90] (Fig. 1.2 and Supplementary Table A.1. Specifically,

the Hill equation is used when substrate cooperativity is observed for the corresponding

enzyme kinetics [91]. And if no mechanistic kinetic information is available for the

reactions, generalized mass action is a good choice to empirically fit the data [92–95].

If most of enzymes within the target pathway are already characterized with in

vitro assays, the easiest way to parameterize the kinetic model is to apply those kinetic

parameters to the model [91, 96–98]. Since enzyme amounts vary between different

species and tissues, they need to be quantified from the studied organism instead

of any in vitro systems. In plants, this approach has been taken to study sucrose

metabolism [96], photosynthesis [97,98], aspartate-derived amino-acid pathway [91],

etc. It should be noted that care must be taken when one implements these models,

as the in vitro assays conditions might be distinct from the physiological one [99]. The
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best practice is thus performing any needed in vitro assays under conditions that best

mimic the cellular environment. Ideally, kinetic models built in this way are shown to

have good agreement with the in vivo dynamics [91]. While this bottom-up approach

is straightforward, a top-down parameter estimation is necessary when some or all

of the parameters are missing. Indeed, the situation of lacking literature values for

enzyme parameter references is frequently encountered, especially when it comes to

secondary metabolism [100–103]. In this case, this top-down approach is essentially

an optimization problem, where the objective function is to minimize the differences

between the model predicted dynamics and available measurements by adjusting the

values of free parameters. Various optimization algorithms were applied to solve the

parameter estimation problem [101,103–105], yet because of the non-convexity of the

problem, none of them guarantee to identify the global minimum. This limitation

makes the models fidelity questionable, and careful validation with independent

datasets is indispensable to verify that the model trained in this way correctly reflects

in vivo behaviors. Some successful examples using this optimization framework include

the parameterization of phenylpropanoid metabolism [100], fenclorim metabolism [101],

flavonoid pathway [102] and benzenoid network [103].

There are other methodologies for parameter estimation, which partially overcome

the limitation of the current optimization algorithms. Ensemble modeling increases

the reliability of the modeling output by summarizing outputs from thousands or even

millions of individual models [92–95,106]. Each individual model is parameterized with

a sample from a prior parameter distribution, which is usually a uniform distribution

spanning the possible physiological range. One model is selected into the ensemble

only when it passes the pre-specified criteria, which is the minimum agreement it needs

to match with the known facts. Therefore, although for each model, it might fit the

data up to a suboptimal degree, the sum of many of them could end up with an output

range covering the reality with a high confidence. The limitation of ensemble modeling

is that the choices of sample number and filtering criteria are somewhat arbitrary.

Moreover, when the parameter distribution matching the observation is significantly
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narrower than the prior distribution, the valid samples are very difficult to obtain.

A series of models for lignin biosynthesis in different plant species were developed

using ensemble modeling [92–95], and hypotheses of metabolic channeling by multiple

enzymes were proposed based on comparison between models with different structure.

Monte Carlo sampling is another methodology to infer parameter values by estimat-

ing the distribution of parameters given data [107]. We implemented Markov Chain

Monte Carlo (MCMC) sampling in our parameter estimation approach [108,109]. The

advantage of MCMC is that it guarantees to reach the global minimum given sufficient

number of samples. Briefly, in a typical MCMC approach, a Markov Chain of samples

is generated based on a pre-specified transition function. The transition function is

composed of a proposal function and an acceptance function:

T (x→ x′) = q(x′|x)α(x′, x) (1.4)

In Metropolis-Hastings algorithm, the proposal function is a symmetric one (See

eq. 1.5 for an instance of a Gaussian random walk with a step size of σ), and the

acceptance function is calculated based on the likelihood ratio of the proposed sample

x′ and the previous sample x (eq. 1.6 [110,111].

x′ ∼ q(x′|x) ≡ N(x, σ2) (1.5)

α(x′, x) = min{1, π(x′)

π(x)
} (1.6)

π(x)T (x→ x′) = π(x′)T (x′ → x) (1.7)

In this setting, the detailed balance of a Markov Chain (eq. 1.7 is preserved, so

that given a sufficiently long run, the sample distribution generated by the transition

function will converge to the posterior distribution π due to the property of a Markov

Chain.

One key point for a successful MCMC is to control the balance between the

acceptance rate and the proposing step size. It is usually the case that when a step size

is too large, the acceptance rate will be very low since the new sample is likely picked

in a low probability area. On the other hand, although a small step size increases the
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acceptance rate, it could get trapped into a local probability area thus inefficiently

exploring the whole parameter space [107]. While any proposal functions can be used

as long as they satisfy certain criteria, a proposal with bad mixing property can lead

to a very slow convergence. An advanced version of MCMC has been proposed in [108],

which greatly increases the MCMC mixing property, so that it could shift to a higher

probability area faster. However, when it comes to a high dimensional problem, even

this advanced MCMC could suffer from the extremely high computation demands for

parameter estimation.

Once the kinetic model is developed, it can be used in different ways. One of the

most common applications is metabolic control analysis [112, 113]. As is suggested

by its name, metabolic control analysis is performed to calculate the changes of the

target flux when each network component is slightly perturbed. For an instance, flux

control coefficient for individual enzymes within the pathway can be obtained with

this analysis, and it has been shown that instead of only single enzyme being the sole

limiting step determining the pathway flux, the control of flux is spread to multiple

enzymes in most cases. Other applications of kinetic models include: flux estimation;

simulation of metabolic responses to genetic or environmental changes; parameter

scanning, where one adjusts the value of a given parameter in a specified range to see

the models sensitivity to the parameter [114, 115]; pathway modulation, where one

monitors the significance of each kinetic mechanism by removing it from the model

and observe the effect [109,116]; and pathway optimization, where one simulates the

optimal adjustments to the pathway to achieve a given objective, and the objective

can be a metabolic engineering goal [92,97,98].

1.3.3 Gene regulatory network inference

The transcriptional rate of a given gene is largely controlled by its upstream

transcription factors or other regulators. By defining a directional relationship between

the upstream transcription factor and its downstream target gene, a gene regulatory
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network (GRN) is then collectively defined by these interactions. It is well known

that complex GRNs exist, yet a direct test of all possible transcription factor and

gene interactions in a genome is very difficult if not impossible. Given the relative

easier measurements of mRNA levels, many attempts have been made to infer a

GRN given expression datasets using all kinds of mathematical techniques, which are

summarized in recent reviews [117–119]. These techniques include regression-based

methods [120–123], Bayesian approach [124, 125], differential equations [126–131],

as well as other kinds of statistical or machine learning methods [132–136]. The

generated GRN can be either semi-quantitative, with only interactions recovered from

the data [121, 134, 135]; or quantitatively differentiate interactions based on their

regulatory strengths, therefore can be used to simulate cases when certain genes are

silenced within the network through genetic engineering [125–128,131].

To date, many newly developed GRN inference methods were tested for their effi-

ciencies on the Dialogue for Reverse Engineering Assessments and Methods (DREAM)

challenge benchmarks. For instances, a tree-based ensemble method GENIE3 [134]

ranked the first among the algorithms that took part in DREAM4 competition [137],

where gene-gene interactions were inferred from the synthetic gene expression datasets

generated in silico by networks of up to 100 genes. GENIE3 continued to win the

DREAM5 competition [138], closely followed by an ANOVA based method ANOVer-

ence [135]. It is worth mentioning that DREAM5 consists of microarray datasets from

Escherichia coli, Staphylococcus aureus and Saccharomyces, each under hundreds of

conditions generated by different gene, drug and environmental perturbations [138].

A later published method, regression-based TIGRESS [121], was shown to have

similar performance as GENIE3 and ANOVerence, and its performance can be sig-

nificantly improved by a fine parameter tuning. A recent GRN inference method

based on Granger causality [136] was verified with DREAM3, a benchmark simi-

lar to DREAM4 [139]. Since each of these methods are developed with different

mathematical foundations, it is a common approach to average their predictions

for a robust GRN inference in practice. [140] generated an Arabidopsis GRN for
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secondary cell wall synthesis using GENIE3, ANOVerence, TIGRESS, Inferelator [133]

and SIRENE [132]. Other applications of GRN inference in plants include models

for the circadian clock [126,129], flowering time [130], seed development [141], fruit

development [142], root hair growth [143], etc.

One advantage of using differential equations to reconstruct a GRN is their

compatibility with metabolic dynamic models [129]. Although theoretically sound,

current models integrating transcriptional and metabolic levels are mainly applying

simpler settings for each level [144]. Flux balance analysis is heavily applied for

metabolism, and transcriptional regulation is integrated with techniques such as

Boolean logic or some statistical methods [145–147]. This is almost certainly due

to the difficulties in parameterization of a large differential equation system. In the

current study, we partially solve this challenge by selecting a candidate interaction set

a priori from literature evidence, and by assuming linearity for the gene regulatory

interactions. A GRN consisting of 250 interactions is integrated with a kinetic model

of lignin biosynthesis having 50 metabolic reactions in total.

1.4 Organization of dissertation

The dissertation is organized as follows. In chapter 2, flux analysis of the Phe

biosynthetic network in plants is presented. This analysis directly extracted the fluxes

from several isotopic labeling studies, and avoids the need of detailed enzyme kinetics

for each metabolic step. Interplay between plastidial arogenate pathway and cytosolic

phenylpyruvate pathway was elucidated, as well as several regulatory mechanisms

for Phe homeostasis. Some of these key findings were incorporated into the kinetic

model of phenylpropanoid metabolism in Arabidopsis, which is described in chapter

3. An information theoretic approach helped to select the best model from multiple

candidates, and revealed the flux controlling property of the Phe export step from the

plastid. Such understanding of the upstream lignin biosynthesis was the initial building

block of an extended kinetic model covering the whole lignin metabolism, including a
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gene regulatory network on top of lignification in Arabidopsis. The construction and

the application of this hierarchical model was presented in chapter 4.

1.5 Statement of published and collaborative work

Chapter 2 contains materials published in Nature Communications, Volume

6, 2015 under doi 10.1038/ncomms9142; Plant Journal, Volume 92, 2017 under

doi 10.1111/tpj.13730 and Nature Communications, Volume 10, 2019 under doi

10.1038/s41467-018-07969-2. I performed the mathematical modeling for all published

work and wrote the Methods for computation parts.

Chapter 3 has been published in Metabolic Engineering, Volume 49, 2018 under

doi 10.1016/j.ymben.2018.07.003. I performed the mathematical modeling of the

published work and wrote the main body of the manuscript. Peng Wang performed

the feeding experiments and contributed equally as co-first author for the manuscript.

Materials in Chapter 1 and Chapter 4 will be published in near future.
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2. FLUX ANALYSIS UNCOVERING KEY REGULATORY

MECHANISMS IN PHENYLALANINE METABOLISM

2.1 Introduction

In addition to be involved in the protein biosynthesis, L-phenylalanine (Phe) is

also the precursor of thousands of indispensable metabolites in plants [1]. These

phenolic compounds play vital roles in various processes to ensure plants normal

growth, reproduction and survival. For example, the biopolymer lignin is derived

from Phe and functions to sustain rigidity and hydrophobicity of cell walls to provide

enough stem strength and efficient water transduction [17]. Other important Phe-

derived metabolites include phenylpropanoids, benzenoids, salicylic acids, flavonoids,

etc. While most of these compounds are synthesized in the cytosol, their precursor

Phe is predominantly produced in plastids. Inside the plastid, the shikimate pathway

is the precursor to produce all three aromatic amino acids, Phe, L-tyrosine (Tyr) and

L-tryptophan (Trp) [1]. Complex regulatory mechanisms are active in this pathway

to accurately control the carbon partition towards each of the aromatic amino acids,

which consist of several allosteric interactions between end products and upstream

catalyzing enzymes [12, 13, 148, 149]. Transcriptional regulation is also present as

the expression of shikimate pathway genes is induced upon various environmental

stimuli [150,151]. However, whether there exist any transcriptional mechanisms sensing

downstream metabolite concentrations is still unclear.

A protein transporter is required for Phe translocation towards the cytosol, due

to Phes low permeability through the membrane [152, 153]. Our collaborator has

identified a gene encoding a Petunia hybrida plastidial cationic amino-acid transporter

(PhpCAT) located in plastids [79]. This transporter is capable of transporting all

three aromatic amino acids, and its key role in Phe metabolism was characterized
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with a series of molecular biological and genetic studies [79]. Thus [79] has completed

the final metabolic step connecting Phe biosynthesis in plastids and Phe consumption

in cytosol.

Previously, [7] identified an alternative Phe biosynthetic route in cytosol, which

produces Phe with a cytosolic phenylpyruvate aminotransferase (PPY-AT) instead

of arogenate dehydratase (ADT) (Fig. 2.1a). While PPY-AT is shown to be actively

contributing to make Phe, it is unknown about the starting point of this cytosolic

pathway. Recently, [81] has revisited the cytosolic isoform PhCM2 in Petunia, and

demonstrated its role in providing the precursor prephenate for the downstream

prephenate dehydratase (PDT) and following PPY-AT for Phe biosynthesis. RNAi

suppression of PhCM2 has led to the decreased levels of all three aromatic amino acids,

suggesting some yet unknown regulatory mechanisms on top of the two alternative

pathways.

Plants dont have similar Phe catabolic enzymes as mammals and microbes [154,155].

Hyperaccumulation of Phe was observed when its consumption through phenylala-

nine ammonia lyase (PAL) was impaired in Arabidopsis pal1 pal2 lines [35]. These

observations raise the question that how plants deal with high Phe levels. PAL-RNAi

lines were generated in Petunia and all three aromatic amino acids were significantly

accumulated compared to wild type (Fig. 1 in [80]. Interestingly, shikimate con-

centrations in PAL-RNAi lines were largely reduced, indicating the suppression of

shikimate pathway [80]. A Petunia hybrida tonoplast cationic amino-acid transporter

(PhCAT2) was identified and its role in the vacuolar sequestration of Phe was further

characterized [80]. The presence of PhCAT2 explains a nearly twofold expansion in

Phe content in PAL-RNAi lines relative to wild type vacuoles. The reduction of its

activity in PAL-RNAi lines led to higher phenylacetaldehyde emission, which was

likely due to the increased Phe availability in cytosol [80].

Here we used flowers of Petunia hybrida cv Mitchell, a plant system with high carbon

flux towards emitted phenylalanine-derived volatiles, to study the Phe metabolism by

flux modeling strategies without the need of enzyme kinetic information. These models
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are particularly suitable for the case where full knowledge of the enzymatic steps is

unavailable, while metabolic flux values can still be reliably estimated using data from

isotopic labeling studies. Carbon flux through the cytosolic phenylpyruvate pathway

was tracked with 15N-tyrosine, as the cytosolic aminotransferase has a high affinity

for tyrosine as the amino donor. Using data from this isotopic study, we successfully

revealed the flux dynamics of two alternative pathways for Phe biosynthesis between

18:00 and 22:00 h for 2-day-old Petunia corollas. In addition, further studies are

needed to investigate whether the perturbation of cytosolic Phe consumpton could

affect its upstream plastidial shikimate pathway. To keep track of the flux splits

between the aromatic amino acids from shikimate, uniformly 13C-labeled ([U-13C6])

glucose was applied to the flower system. A different flux model with this dataset was

developed to show the different flux distributions between wild-type and PAL-RNAi

lines in Petunia.

2.2 Materials and Methods

All simulations were performed in Matlab R2013a environment (The MathWorks,

Inc., Natick, MA).

2.2.1 Metabolic flux analysis with 15N-tyrosine labeling

We generated a metabolic flux model that utilizes experimentally determined pool

sizes and isotopic enrichment of phenylalanine from exogenously fed 15N-tyrosine.

Feeding of 10 mM 15N-tyrosine (Cambridge Isotope Laboratories, Andover, MA) to

2-day-old corollas of control and PhpCAT -RNAi lines was performed as previously

described [7]. Similar to our previous labeling study [7], the labeling percentage of

tyrosine quickly reached >80% and a pseudo-steady state within 2 h upon feeding,
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and stayed constant for the rest of the experimental period. The model was based on

the dynamic mass balance around phenylalanine as defined as:

dCPhe
dt

= v1 + v2 − vc (2.1)

where CPhe is the phenylalanine pool size, v1 is the flux through the plastidial

arogenate pathway, v2 is the flux through the cytosolic phenylpyruvate pathway and

vc is the consumption rate of phenylalanine. To determine v2, it was also required to

know the mass balance of isotopic enrichment for phenylalanine as defined as:

dfPheCPhe
dt

= fTyrv2 − fPhevc (2.2)

where fPhe and fTyr represent isotopic abundance of phenylalanine and tyrosine,

respectively, in the total pools. With equations 2.1 and 2.2, v1 and v2 can be derived

as follows:

v1 =
(fTyr − fPhe)dCPhedt

CPhe
dfPhe
dt

fTyr
+
fTyr − fPhe

fTyr
vc (2.3)

v2 =
fPhe

dCPhe
dt

+ CPhe
dfPhe
dt

fTyr
+
fPhe
fTyr

vc (2.4)

Since the labeling percentage and concentration of phenylalanine increased linearly

over 6 h, dCPhe
dt

and dfPhe
dt

were computed from the slopes of the time-series data. Then

every 6-min estimates of CPhe and fPhe were derived based on dCPhe
dt

and dfPhe
dt

. fTyr

was the average labeling percentage of tyrosine along the experiment. To determine

the control vc, emitted volatiles from day 2 control flowers fed with 10 mM tyrosine

were collected for 2, 4, and 6 h starting at 18:00 h. No statistical differences were found

in the scent profiles of flowers fed with 10 mM tyrosine compared to control. Since

the volatile amount was found to increase linearly (Supplementary Fig. 4b in [79], vc

was assumed to be constant during the experimental period, and was derived from

the slope of the time-series data. The vc for PhpCAT -RNAi lines was subsequently

determined by multiplying the control vc by the average fractional decrease of total

emission observed in lines 9 and 17 (Fig. 5a in [79]. With these obtained values, v1 and

v2 were calculated along the experimental period every 6 min using equations 2.3 and
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2.4. Variances in the estimated slopes were derived with a standard linear regression

procedure as described in [156], while setting the intercepts as constants was based on

experimental measurements. Since flux values are a function of the estimated trend

slopes and other experimental measurements, flux variances can then be derived by

considering the propagation of errors based on the following equation:

σ2
y =

n∑
i=1

σ2
xi

(
∂y

∂xi
)2 (2.5)

where y = f(x1, . . . , xn).

2.2.2 Metabolic flux modeling of aromatic amino acid biosynthesis

Aromatic amino acid biosynthesis was simplified as three parallel lumped reactions,

each of which converts the common precursor glucose into Phe, Tyr or Trp. The

equations for the three reactions focused on carbon mass balance are as follows:

1.67 Glucose
v1−→ Phe+ CO2 (2.6)

1.67 Glucose
v2−→ Tyr + CO2 (2.7)

2 Glucose
v3−→ Trp+ CO2 (2.8)

Aromatic amino acids were assumed to be the major sinks for the shikimate

pathway, and therefore its flux during the feeding studies was estimated from the sum

of the fluxes through those three reactions. All fluxes were assumed to be constant

within a 4-hour period of feeding time, and metabolite concentration dynamics in the

pathway can be captured by linear functions, which matched with corresponding time

course measurements. An empirical function was applied to simulate glucose labeling

percentage dynamics and v1 was constrained by known Phe-derived volatile emission

rates. Inclusion of a metabolically inactive pool parameter for Phe improved fit with
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experimental observations. In total, 11 unknown parameters were estimated for each

case. Detailed involvements of these parameters into the model are listed below:

CPheactive,t = θ1 +
θ2 − θ1

4
t (2.9)

CTyrt = θ3 +
θ4 − θ3

4
t (2.10)

CTrpt = θ5 +
θ6 − θ5

4
t (2.11)

fGlucoset = θ7(1− e−θ8t) (2.12)

v1 = vemission +
θ2 − θ1

4
(2.13)

v2 = θ9 (2.14)

v3 = θ10 (2.15)

CPheinactive = θ11 (2.16)

For each aromatic amino acid, labeling percentage dynamics were numerically

integrated with the following balance equations [79] by ode15 solver in Matlab R2013a:

dfPheactive,t
dt

=
(fGlucoset − fPheactive,t)v1

CPheactive,t
(2.17)

fTyrt
dt

=
(fGlucoset − fTyrt)v2

CTyrt
(2.18)

fTrpt
dt

=
(fGlucoset − fTrpt)v3

CTrpt
(2.19)

To enable direct comparison of the models outputs with experimental measurements,

the metabolically inactive Phe pool was integrated into the final outputs as follows:

CPhet = CPheactive,t + CPheinactive,t (2.20)

fPhet = fPheactive,t
CPheactive,t
CPhet

(2.21)

The objective function was defined as the differences between model-predicted

profiles and experimentally measured profiles, weighed by the measurement variances.

Parameters were estimated by minimizing the objective function through lsqnonlin
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function in Matlab R2013a with multi-run approach. The mathematical representation

of the optimization process is shown below:

θ̂ = argmin
θ

∑ (Profilesimulated − Profilemeasured)2

s2Profilemeasured
(2.22)

Parameter uncertainty analysis was also performed as described in [156]. Briefly,

5,000 synthetic datasets were generated based on average and variance for each

measurement by assuming a Gaussian distribution. For each dataset, the same

optimization process was performed to obtain parameter values, and parameter

uncertainty as well as model-predicted profile variance was estimated based on the

variance of 5,000 parameter sets.

2.3 Results

2.3.1 PhpCAT controls phenylalanine biosynthetic flux [79]

Since downregulation of PhpCAT led to a decrease in the levels of phenylalanine,

tyrosine, and their shared precursors prephenate and arogenate (Fig. 5a in [79], we

hypothesized that phenylalanine and tyrosine accumulate inside plastids of PhpCAT -

RNAi lines and feedback inhibit the arogenate pathway (Fig. 2.1a). Recently we showed

that plants also contain an alternative pathway that proceeds via phenylpyruvate to

produce phenylalanine in the cytosol, and flux through this route increases when the

plastidial biosynthetic pathway (via arogenate) is impaired [7]. In the alternative

pathway, a cytosolic PPY-AT preferentially converts phenylpyruvate to phenylalanine

using tyrosine as an amino donor [7] (Fig. 2.1a). Interestingly, tyrosine cannot serve

as an amino donor for PPA-AT in the plastidial arogenate pathway [157]. Taking

advantage of this characteristic to distinguish between the two pathways, we employed

metabolic flux analysis with stable isotopic labeling using 15N-tyrosine to determine

the effect of reduced plastidial phenylalanine export on carbon flux through the parallel

phenylalanine biosynthetic pathways.
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Fig. 2.1. Metabolic modeling of the phenylalanine biosynthetic network
in control and PhpCAT -RNAi lines. (a) Scheme depicting cytosolic
formation of phenylalanine and potential feedback inhibition mech-
anisms involved in plastidial phenylalanine biosynthesis [1]. White
boxes with questions marks indicate unknown transporters/transport
steps. AS, anthranilate synthase; E4P, erythrose 4-phosphate; PPA-
AT, prephenate aminotransferase; PEP, phosphoenolpyruvate. (b)
Flux models representing the phenylalanine biosynthetic network in
2-day-old petunia flowers from control and PhpCAT -RNAi lines. See
Material and Methods for detailed modeling approach. v1 flux through
the plastidial arogenate pathway (green lines), v2 flux through the
cytosolic phenylpyruvate pathway (pink lines), vc flux depicting the
consumption of phenylalanine (blue lines). The v2/v1 ratio is shown
by black lines. Solid lines are estimated values and dotted lines are
standard deviation for each flux value. n = 3 for control and n = 6
for PhpCAT -RNAi lines.
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Excised 2 day-old petunia flowers from control and PhpCAT -RNAi lines 9 and 17

were fed with 10 mM 15N-tyrosine starting at 18:00 h, harvested after 2, 4, and 6 h,

and analyzed by liquid chromatography-mass spectrometry (LC-MS) to determine

phenylalanine and tyrosine pool sizes and isotope abundances. Similar to what was

observed previously [7], the labeling percentage and concentration of phenylalanine

increased linearly over 6 h, as did the level of emitted volatiles (Supplementary

Fig. 4 in [79]. To assess the control PhpCAT exerts on metabolic fluxes through

the phenylalanine biosynthetic network, a metabolic flux model was developed (See

Materials and Methods). The simulation revealed that v1, the rate of synthesis through

the plastidial arogenate pathway, was 32 and 44% lower (p < 0.05, Students t-test,

n≥3, Bonferroni corrected) at t0 and t6, respectively, in PhpCAT -RNAi lines compared

to control (Fig. 2.1b and Table 2.1). This finding is consistent with our hypothesis

that reduced export of phenylalanine and tyrosine from plastids in PhpCAT -RNAi

lines leads to feedback inhibition of the arogenate pathway. At the same time, the

flux analysis showed that in control and the PhpCAT -RNAi lines, v2, the flux through

the cytosolic phenylpyruvate pathway, was minor at t0, but significantly increased

over the 6-h period (Fig. 2.1b and Table 2.1). In addition, increase in the rate of v2

in PhpCAT knockdowns was more rapid than in control (p < 0.01, Students t-test,

n≥3, Bonferroni corrected) (Fig. 2.1b and Table 2.1), suggesting that more carbon

flux is directed through the cytosolic pathway. Taking this into account with the

decrease in flux through the arogenate pathway, the relative contribution of cytosolic

phenylalanine production is considerably higher in PhpCAT -RNAi lines compared

to control (a v2/v1 flux ratio of 0.44 versus 0.18, respectively, at t6) (Fig. 2.1b and

Table 2.1).

2.3.2 PhCM2 influences flux through both phennylalanine pathways [81]

To determine the effect of PhCM2 -RNAi downregulation on the carbon flux through

the phenylalanine biosynthetic pathways, 2-day-old control and PhCM2 RNAi line
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Table 2.1.
Plastidial arogenate (v1) and cytosolic phenylpyruvate (v2) pathway
fluxes, and relative changes in flux, in flowers from control and Php-
CAT -RNAi petunia lines at t0h and t6h (Shown as average±standard
deviation).

Plastidial synthesis rate v1

(µmol g FW−1 h−1)

Cytosolic synthesis rate v2

(µmol g FW−1 h−1)

t0h t6h Relative Change

at t6h

t0h t6h Relative Change

at t6h

Control 1.051±0.227 0.896±0.191 -14.7% 0.0067±0.0017 0.161±0.048 +2303%

PhpCAT -RNAi 0.711±0.089 0.500±0.065 -29.7% 0.0068±0.0010 0.218±0.041 +3106%

Relative change

in PhpCAT -RNAi

-32.4% -44.2% +1.5% +35.4%
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Fig. 2.2. Metabolic modeling of phenylalanine biosynthetic pathways
in control and PhCM2 -RNAi petunia flowers. Flux models repre-
senting the phenylalanine biosynthetic network in 2-day-old control
and PhCM2 -RNAi petunia flowers. See Material and Methods for
detailed modeling approach. v1 flux through the plastidial arogenate
pathway (green lines), v2 flux through the cytosolic phenylpyruvate
pathway (pink lines, also in enlarged in inserts), vc flux depicting the
consumption of phenylalanine (blue lines). The v2/v1 ratio is shown
by black lines. Solid lines are estimated values and dotted lines are
standard deviation for each flux value (n = 3 biological replicates).

17 flowers were fed with 10mM 15N-tyrosine starting at 18:00 h. After 2, 4 and 6

h of feeding, phenylalanine and tyrosine pool sizes and their isotopic abundances
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Table 2.2.
Changes in flux in flowers from control and PhCM2 -RNAi petunia
lines at t0h and t6h (Shown as average±standard deviation).

Plastidial synthesis rate v1

(nmol g FW−1 h−1)

Cytosolic synthesis rate v2

(nmol g FW−1 h−1)

t0h t6h Relative Change

at t6h

t0h t6h Relative Change

at t6h

Control 266±21.2 255±20.5 -3.95% 0.627±0.0560 11.1±1.08 +1660%

PhCM2 -RNAi 162±8.28 160±8.22 -1.17% 0.147±0.0168 1.64±0.131 +993%

Relative change

in PhCM2 -RNAi

-39.0% -37.3% -76.2% -85.2%

were analyzed by LC-MS and used in our metabolic flux model of the phenylalanine

biosynthetic network (See Materials and Methods for more details). As previously

reported [7, 79], the labeling percentage of phenylalanine increased linearly over a 6 h

period (Supplementary Fig. 6 in [81]. The model revealed that v2, the flux through

the cytosolic phenylpyruvate pathway, was 76 and 85% lower (p < 0.0005, two tailed

Students t-test, n=3, Bonferroni corrected) at t0 and t6, respectively, in PhCM2 RNAi

plants relative to control (Fig. 2.2 and Table 2.2), further supporting that PhCM2

contributes to phenylalanine biosynthesis via the cytosolic phenylpyruvate pathway.

At the same time, the flux analysis showed that in PhCM2 -RNAi line, v1, the flux

through the plastidial arogenate pathway, was also decreased by 39 and 37% (p <

0.005, two tailed Students t-test, n=3, Bonferroni corrected) at t0, and t6, respectively,

relative to control (Fig. 2.2 and Table 2.2). The decrease in plastidial aromatic amino

acid biosynthesis is consistent with observed decrease in internal pools of arogenate

and tryptophan (Fig. 2c in [81].

2.3.3 Reduction in PAL activity decreases carbon flux through the shiki-

mate pathway and the accumulation of Phe that is metabolically

inactive [80]

To determine changes in flux through the shikimate pathway, wild type and line 11

petunia flowers were fed with [U-13C6]-glucose, and pool sizes and isotopic abundances
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Table 2.3.
Model-predicted metabolic fluxes within the aromatic amino acid
biosynthetic network.

Biosynthetic fluxes (nmol g FW−1 h−1)

Phe Tyr Trp Shikimate Inactive Phe (nmol g FW−1)

Wild type 456.6±91.4 0.14±0.02 0.04±0.01 456.8±91.4 188.5±26.8

PAL-RNAi 224.2±37.2 0.25±0.05 0.07±0.03 224.5±37.2 830.9±71.7

Relative change -50.9% +78.6% +75.0% -50.9% +340.8%

All parameter means and variances were obtained based on the values estimated from 5000 synthetic datasets

fit to experimentally determined label incorporation from exogenously supplied [U-13C6]-glucose over 4 h, as

described in Materials and Methods.

of glucose, shikimate, and aromatic amino acids were analyzed at different time points

over a 4-h period. The glucose labeling pattern was nearly identical in both control

and transgenic petals (Fig. 2.3). In both genotypes, glucose labeling always exceeded

labeling of shikimate, consistent with a simple precursor-product relationship between

sucrose and shikimate (Figure S4 in [80]. Over this time course, the shikimate pool was

significantly reduced in transgenic petals relative to the control, while there was little

difference in its isotopic labeling (Figure S4 in [80]. We have constructed a dynamic

model of the aromatic amino acid biosynthetic network to reproduce the observations

from 13C-labeled glucose feeding for both wild type and PAL-RNAi flowers (See

Materials and Methods for more details). Shikimate pathway flux estimated by the

model was found to be 50.9% less in PAL-RNAi than wild type (Table 2.3). There is

a corresponding decrease of 50.9% in flux towards Phe, while the fluxes toward Tyr

and Trp are increased by 78.6 and 75.0%, respectively.

The observed labeling patterns further suggested that within the cell there is an

inaccessible largely unlabeled Phe pool, which based on the constructed dynamic flux

model of the aromatic amino acid biosynthetic network was increased by 341% in the

PAL-RNAi line 11 relative to wild type (Table 2.3).



28

Fig. 2.3. Dynamic model simulation and experimentally obtained pool
sizes and labeling patterns for aromatic amino acids and glucose in
wild-type and PAL-RNAi petunia flowers. Isotopic abundances and
pool sizes were analyzed over a 4-h time period (starting at 18:00 h) of
[U-13C6]-glucose feeding to flowers of control (blue lines and symbols)
and transgenic PAL-RNAi line 11 (red lines and symbols) plants.
Lines represent simulation results, with the shaded area reflecting 95%
confidence area for models outputs. Data points are the average of
three biological replicates, error bars represent standard deviation.

2.4 Discussion

The purpose of the flux measurements presented here is to independently test the

key genetic findings in the studies by [79,80] and [81]. Due to lack of complete kinetic

and metabolic information about the pathways, it is extremely difficult to construct

an accurate mechanistic model to describe all the experimental results. Through

carefully designed isotopic labeling studies, we were able to quantify metabolic fluxes
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through each Phe biosynthetic branch using novel modeling strategies. As a result,

we currently have a better understanding of Phe metabolism in plants.

[79] identified PhpCAT as a homologue of the Escherichia coli pheP [158]. Ph-

pCAT is localized to plastids, and developmentally and rhythmically regulated just

as other benzenoid biosynthetic genes with highest expression at night. It shows the

transport activity for all three aromatic amino acids, and when its expression was re-

duced, significant decreases were observed for Phe and Tyr, with only minor decreases

for Trp. Consistently, Phe and Tyr levels were increased in PhpCAT -overexpression

lines, while Trp only showed an increasing trend (Fig. 5 in [79]. Our metabolic

flux analysis indicated that these metabolite changes were closely correlated with

plastidial shikimate pathway flux, as it decreased 32 and 44% at 18:00 h and midnight,

respectively, in PhpCAT -RNAi lines compared to control. This flux decrease was

partially compensated by the increased cytosolic flux, which contributed up to 30% of

total Phe biosynthesis in PhpCAT -RNAi lines compared to 15% in control. The per-

turbation of the PhpCAT activity might mainly affect downstream steps in shikimate

pathway instead of upstream ones, as shikimate amounts were only minimally affected

in PhpCAT -RNAi and PhpCAT -overexpression lines, yet prephenate amounts were

significantly perturbed as well as Phe and Tyr. Therefore, a possible scenario could

be that the reduced activity of PhpCAT led to accumulated aromatic amino acids in

the plastid. Potentially, feedback inhibition from these aromatic amino acids towards

the downstream shikimate pathway enzymes caused accumulation of some pathway

intermediates which were exported into the cytosol for cytosolic Phe biosynthesis.

While it is not clear which intermediate was accumulated in this case, its elevated

export into the cytosol could trigger the cytosolic phenylpyruvate pathway to dissipate

the accumulated metabolic pools inside the plastid. In this way, plants can compensate

the feedback control of plastidial aromatic amino acids when the plastidial export is

impaired.

[7] has demonstrated the existence of a cytosolic phenylpyruvate pathway for Phe

biosynthesis, yet the source of phenylpyruvate was unclear. [81] has characterized



30

PhCM2, a cytosolic enzyme involved in phenylpyruvate pathway, thus expanding the

current knowledge of the cytosolic Phe biosynthesis. As expected from its metabolic

role, suppression of PhCM2 has led to the decreased prephenate amounts, as well as

volatile emission and Phe amounts. Intriguingly, arogenate, Tyr and Trp amounts

were also significantly decreased. These observations suggest that when the PhCM2

is impeded in the cytosol, the plastidial arogenate pathway was also affected. Our

metabolic flux analysis also revealed the decreased flux values for both Phe biosynthetic

pathways in PhCM2 -RNAi lines, which not only indicates the direct involvement

of PhCM2 into the cytosolic Phe biosynthesis, but also a potential yet unknown

mechanism connecting the cytosol and plastid. This suggests that in spite of the low

contribution of the cytosolic route to Phe biosynthesis, it might play an important

role in maintaining Phe homeostasis.

Since all previous reported mechanisms of feedback control by Phe are effective in

plastids, it remained to be addressed whether and how cytosolic Phe is being regulated

in plants. [80] have generated PAL-RNAi lines in Petunia with 18-fold higher levels

of Phe than wild type. Our flux model showed a decrease of 51% in biosynthetic

flux of Phe in PAL-RNAi lines compared to wild type, which might be caused by

the reduced shikimate supply, as shikimate amounts were significantly decreased.

How the reduced cytosolic Phe consumption activity was coordinated with decreased

plastidial shikimate pathway is not fully understood. One possible explanation is the

accumulation of cytosolic Phe in response to impaired PAL activity feedback inhibited

PhpCAT activity. This exporter inefficiency led to higher amounts of aromatic amino

acids in plastids, which further shut down the shikimate pathway flux through allosteric

feedback inhibitions. This possibility was supported by the observed high accumulation

of both Tyr and Trp, although neither of their consumption were affected directly in

PAL-RNAi lines. Our model also suggested a large metabolically inaccessible pool of

Phe, which is 341% higher in PAL-RNAi lines compared to wild type. This pool of Phe

was shown to be subcellularly separated from active cellular metabolism, evidenced

by 13C labeled carbon from glucose was not incorporated into this inactive Phe pool
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during a 4-h feeding time period. Further experimental investigations suggested that

this inactive Phe pool was likely sequestered in the vacuole. A tonoplast cationic

amino acid transporter previously found in [79] was further characterized, and its

ability to transport Phe was verified in a Saccharomyces cerevisiae expression system.

When its activity was suppressed in Petunia PAL-RNAi lines, a significant increase in

phenylacetaldehyde emission was observed. This could be due to the higher availability

of cytosolic Phe since its vacuolar sequestration mechanism was impeded.

In conclusion, Phe biosynthesis in plants is regulated by different mechanisms to

keep Phe availability at a sustainable level for its downstream consumption. These

mechanisms not only include post-translational regulation, but very likely transcrip-

tional regulation as well. Moreover, an alternative cytosolic Phe biosynthetic route is

active in parallel with the tightly controlled plastidial pathway. This cytosolic route

might be free from feedback inhibition of Phe, so that it plays a compensating role to

maintain Phe homeostasis when the plastidial Phe export is impaired. While plastidial

shikimate pathway enzymes are spatially separated from cytosolic Phe, upstream

shikimate pathway might still be able to indirectly sense the cytosolic Phe level,

probably by inhibition of the plastidial transporter by cytosolic Phe. On the other

hand, in an extreme situation where Phe is hyperaccumulated in cytosol, a vacuolar

sequestration mechanism is activated to isolate extra Phe from the rest of cellular

metabolism. If one attempts to simulate metabolic dynamics of phenylpropanoid

metabolism in plants, these regulatory mechanisms are key elements to be included

for an accurate kinetic model.
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3. DYNAMIC MODELING OF SUBCELLULAR

PHENYLPROPANOID METABOLISM IN ARABIDOPSIS

LIGNIFYING CELLS

Lignin is a polymer that significantly inhibits saccharification of plant feedstocks.

Adjusting the composition or reducing the total lignin content have both been demon-

strated to result in an increase in sugar yield from biomass. However, because lignin

is essential for plant growth, it cannot be manipulated with impunity. Thus, it is

important to understand the control of carbon flux towards lignin biosynthesis such

that optimal modifications to it can be made precisely. Phenylalanine (Phe) is the

common precursor for all lignin subunits and it is commonly accepted that all biosyn-

thetic steps, spanning multiple subcellular compartments, are known, yet an in vivo

model of how flux towards lignin is controlled is lacking. To address this deficiency,

we formulated and parameterized a kinetic model based on data from feeding Ara-

bidopsis thaliana basal lignifying stems with ring labeled [13C6]-Phe. Several candidate

models were compared by an information theoretic approach to select the one that

best matched the experimental observations. Here we present a dynamic model of

phenylpropanoid metabolism across several subcellular compartments that describes

the allocation of carbon towards lignin biosynthesis in wild-type Arabidopsis stems.

Flux control coefficients for the enzymes in the pathway starting from arogenate

dehydratase through 4-coumarate: CoA ligase were calculated and show that the

plastidial cationic amino-acid transporter has the highest impact on flux.

3.1 Introduction

Plant lignocellulosic biomass is one of the most promising resources for second-

generation biofuel production because of its ready availability and reduced environ-



33

Phenylalanine

Cinnamate

p-Coumarate p-Coumaroyl CoA

SCoA

…

Plastid

Phenylalanine

CoA

CoA

PAL

C4H

4CL

HCTCCR

Monolignols

…

Cytoplasm

LigninSecondary Cell Wall

Erythrose 4-phosphate

Phosphoenolpyruvate

…

CoA

Fig. 3.1. Lignin biosynthesis in Arabidopsis. A simplified schematic of
lignin biosynthesis is shown with metabolic steps explicitly simulated
in the current study. Black arrows represent metabolic reactions with
corresponding enzyme names. Green dashed arrows represent mem-
brane transport steps between cellular compartments. Abbreviations:
4CL, 4-coumarate: CoA ligase; C4H, cinnamate 4-hyrdoxylase; CCR,
cinnamoyl-CoA reductase; HCT, hydroxycinnamoyl CoA: shikimate
hydroxycinnamoyl transferase; PAL, phenylalanine ammonia lyase.

mental impacts [159]. It is estimated that up to 442 billion liters of bioethanol could

be produced each year from global lignocellulosic biomass [160], yet commercial appli-

cation is largely inhibited by the complex production process that currently render it

economically unfavorable [161]. One of the technical barriers lies in inefficient sacchar-

ification due to the presence of lignin in plants secondary cell wall. Lignin impedes the

process by either physically restricting cellulose/hemi-cellulose accessibility [162], or

adsorbing hydrolytic enzymes such as cellulase [16,163]. An improvement in hydrolysis

efficiency and a reduction in cost is thus expected by either reducing the total amount

of lignin, or manipulating its composition [17, 20]. A better understanding of how
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plants allocate carbon into lignin biosynthesis will be beneficial for these engineering

efforts.

The general phenylpropanoid pathway connects primary metabolism with lignin

biosynthesis in plants. All monolignols found in the lignin of dicotyledonous plants are

derived from Phe, which is the key product of shikimate pathway and the precursor

of phenylpropanoid compounds (Fig. 3.1). Multiple compartments are involved in

phenylpropanoid metabolism, but genetic studies showed that Phe is predominantly

synthesized inside the plastid, and translocated into cytosol with a cationic-amino

acid transporter [4–6,79]. Moreover, isotopic labeling experiments in petunia flowers

revealed that 84.8% of Phe is produced inside the plastid during the period of active

volatile production [79].

Plants possess several mechanisms to control flux through the phenylpropanoid

network by regulating the synthesis of Phe and the activities of downstream phenyl-

propanoid enzymes, as well as by sequestering pathway intermediates. Arogenate

dehydratase (ADT) in plastids, which catalyzes the conversion of arogenate to Phe, is

known to be feedback inhibited by its product [11, 164]. Another mechanism includes

post-translational regulation over PAL, the gateway enzyme for phenylpropanoid

metabolism. The Kelch repeat F-box (KFB) protein family interacts with PAL thus

mediating its ubiquitination and degradation [59–61]. In addition, cinnamate, the di-

rect product of PAL, competitively inhibits PAL in several plant species [103,165,166].

Furthermore, plants utilize compartmental sequestration of pathway intermediates to

control the flux through network. Indeed, nearly 90% of p-coumarate, the product

of C4H was detected in the vacuole of soybean [167]. There is also recent evidence

showing the importance of the vacuole in sequestering Phe under metabolic imbalance

via a vacuolar Phe transporter [80,168].

Kinetic modeling is a suitable approach to understand plant metabolism because it

provides an integrative and quantitative framework [83,97,103,115,169]. Because of its

mechanistic nature, once a valid kinetic model has been developed, metabolic control

analysis can be applied to determine which step(s) within the network has the highest
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control of flux [91,103,115]. In addition, manipulations can be explicitly simulated

to predict possible outcomes of pathway perturbation [97, 113]. These predictions

are helpful as they provide guidance for metabolic engineering efforts to reduce the

number of genetic manipulations for experimental investigation [97].

Accurate model development involves selection of the best model(s) from multiple

possible model candidates [170]. Akaikes Information Criterion (AIC) stems from the

estimation of relative Kullback-Leibler distance of each model towards the ground

truth, which is a fundamental information measure for any models. Thus, it provides

an information theoretic way for model selection [171,172], which considers the balance

between models performance and complexity. Using AIC and an Escherichia coli

kinetic model, [173] successfully identified previously unknown allosteric interactions

that are likely active in vivo in E. coli.

To date there are several mathematical models of lignin biosynthesis that have

been developed by different groups [93, 94, 174]. [93] and [94] have applied generalized

mass action kinetics to simulate each reaction within the pathway, and they observed

that the model was able to fit the observations only when specific metabolic channels

were considered. On the other hand, [174] simulated the pathway with Michaelis-

Menten kinetics, and all kinetic parameters were measured by in vitro assays. Allosteric

inhibitions towards enzymes from pathway intermediates were included in the model as

well if the corresponding Ki values could be quantified. However, these models did not

consider subcellular compartments and were not able to explore which of the regulatory

mechanisms mentioned above contribute the most to control of carbon flux towards

lignin biosynthesis. In this work, we developed a multicompartmental kinetic model

connecting Phe biosynthesis with lignin production. By applying AIC, we identified

a physiologically relevant kinetic model for general phenylpropanoid metabolism in

Arabidopsis lignifying cells. The developed dynamic model quantitatively captures

the critical regulatory properties of phenylpropanoid metabolism controlling carbon

flux towards lignin biosynthesis.
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3.2 Materials and Methods

3.2.1 Feeding study in wild type Arabidopsis stem

Arabidopsis thaliana (Columbia-0) wild type plants were grown in soil at 23 ◦C

under 16/8-hour light/dark cycle. Feeding studies were conducted on primary stems

of around 10 cm [175]. For each treatment, stems were excised and inserted into

the medium with [13C6]-Phe (0.1, 0.3, 1 and 3 mM). [13C6]-Phe was purchased from

Cambridge Isotope Laboratories, Inc. To avoid injury-induced artefacts due to cutting,

only the segments 0.5-2 cm from the base of the stems were harvested, at time points

of 0, 40, 90, 120, 180 and 240 min after insertion. Three replicates were collected and

immediately frozen in liquid nitrogen for each time point, with 10 stem fractions pooled

together as one replicate. Stem tissue was ground in liquid nitrogen with a mortar and

pestle. An aliquot of each sample from time points at 0, 40, 90, 240 min were taken for

enzyme assays. The rest of the sample was used for soluble phenylpropanoids analysis

using LC/MS-MS [65] and lignin quantification by acetyl bromide lignin analysis and

derivation followed by reductive cleavage (DFRC)/GC/FID/MS [176]. See sections

below for detailed methods. Profiles of Phe and p-coumarate were directly applied for

kinetic modeling. Sum of [13C6]-lignin monomers and all downstream intermediates of

p-coumarate was used to represent the labeled product profile for each treatment.

3.2.2 LC-MS/MS analysis

The LC-MS/MS method developed by [65] was applied to quantify metabolites

within the pathway. Briefly, tissue samples were extracted in 75% methanol (10 L

per mg FW) and incubated for 2 hours at 65 ◦C. The samples were centrifuged for

10 min at 16,000 x g, and the supernatants were then dried in a speed-vac. Samples

were re-dissolved in 60 L 50% methanol and analyzed using a Zorbax Eclipse C8

column (150 mm 4.6 mm, 5 µm, Agilent Technologies, Santa Clara, CA) as described

in [65]. A QTrap 5500 triple quadruple mass spectrometer (AB Sciex, Redwood City,
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CA) was used to detect soluble metabolites by multiple reaction monitoring in the

negative ion mode. Quantification was achieved with calibration curve generated with

standards of Phe, cinnamate, p-coumarate, caffeate, ferulate, sinapate, shikimate, p-

coumaraldehyde, coniferaldehyde, sinapaldehyde, p-coumaryl alcohol, coniferyl alcohol,

sinapyl alcohol, p-coumaroyl shikimate, and caffeoyl shikimate. The same calibration

was used to for both unlabeled and labeled isotopologues.

3.2.3 Lignin analysis

After soluble metabolites extraction, the cell wall debris was further washed with

10 mL 70% ethanol (v/v) five times and once with acetone. The cell wall residues

were then dried at room temperature for lignin analysis. Total lignin was quantified

using acetyl bromide lignin analysis following [177]. Briefly, about 2 mg cell wall

residue was weighed and dissolved in 2.5 mL solution of acetyl bromide: glacial acetic

acid (25:75) overnight at room temperature. Samples were mixed with 2.5 mL 2 M

NaOH, 12 mL glacial acetic acid, and 0.5 mL 7.5 M hydroxylamine hydrochloride

in a 50-mL volumetric flask. The final volume was brought to 50 mL with glacial

acetic acid. Absorbance at 280 nm was measured for each sample and total lignin

was calculated using the extinction coefficient of 23.29 g−1 L cm−1. The rest of each

cell wall residue sample was weighed and used for monomer composition analysis

with DFRC/GC/FID/MS. Samples were dissolved overnight at room temperature

in 2.5 mL of a solution of acetyl bromide in acetic acid (20:80) with 0.2 mg 4,4’-

ethylidenebisphenol as internal standard. The products were dried then dissolved in

2 mL dioxane: acetic acid: water (50:40:10). 50 mg zinc dust was added into each

sample and mixed well. After 20 min of reaction, about 200 L supernatants were

loaded onto a LC-Si solid phase extraction column pre-conditioned with 95% ethanol

and water and washed with 2.5 mL 25% ethanol. Samples were eluted with 2.5 mL

95% ethanol then dried before derivatization with 0.5 mL anhydrous acetic anhydride:

pyridine (60:40) overnight. Acetylated products were then dried and dissolved in
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200 µL dichloromethane. A 1 µL sample was analyzed on GC/FID for monomer

composition and on GC/MS for labeling percentage of each monomer. To determine

de novo lignin deposition rate, we harvested 0.5-2 cm stem sections from soil-grown

plants each day for five days after bolting. Total lignin content in the sections was

quantified with acetyl bromide method. Linear regression was applied to estimate the

slope, which was used to determine the de novo lignin deposition rate. For labeled

lignin quantification at each time point, we first measured the composition of each

monomer released from lignin with DFRC/GC/FID. Then we estimated the amount

of each monomer by multiplying total acetyl bromide lignin content. The labeled

lignin content was calculated by multiplying the total amount of each monomer by its

labeling percentage determined from DFRC/GC/MS analysis. The sum of all three

types of labeled lignin was used to estimate the labeled lignin deposition rate.

3.2.4 Enzyme assays

Crude proteins were extracted from each sample with Tris-HCl buffer (pH 7.8)

and desalted. PAL assays were performed in 100 mM Tris-HCl buffer (pH 7.5) with 5

mM Phe and 5 µL protein extract in a final volume of 50 µL, by incubating at 23 ◦C

for 120 min. 4CL assays were performed in 100 mM Tris-HCl buffer (pH 7.5) with 5

mM MgCl2, 5 mM ATP, 1 mM p-coumarate, 0.3 mM CoA and 2 µL protein extract

in a final volume of 40 µL. Reactions were incubated at 23 ◦C for 20 min. Both assay

products were analyzed with HPLC on a Shim-pack XR-ODS column (Shimadzu;

column dimensions, 3 x 75 mm) using acetonitrile and 0.1% formic acid as mobile

phases, and quantified using cinnamate and p-coumaroyl CoA as standards. Protein

concentrations were determined by Bradford assay with bovine serum albumin as

standard.
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3.2.5 Kinetic modeling

The pathway is assumed to be at a metabolic steady state prior to external Phe

feeding. The output flux from the pathway is set to be equal to the average lignin

deposition rate (3.44 nmol g FW−1 min−1) measured from 5-week-old Arabidopsis

basal stems, as lignin is the major sink for the phenylpropanoid pathway in this

type of tissue. The refined model also has two extra fluxes towards vacuole storage

for both Phe and p-coumarate. The models stoichiometry is shown in Fig. 3.2 with

abbreviations detailed in the caption. The mass balance equations for the refined

model are:

d[12Pheplastid]

dt
=12 vADT −12 vPCAT (3.1)

d[12Phecytosol]

dt
=12 vPCAT −12 vPAL −12 vV CAT (3.2)

d[13Phecytosol]

dt
=13 vPXT −13 vPAL −13 vV CAT (3.3)

d[12Phevacuole]

dt
=12 vV CAT (3.4)

d[13Phevacuole]

dt
=13 vV CAT (3.5)

d[12pCAcytosol]

dt
=12 vPAL −12 v4CL −12 vPV T (3.6)

d[13pCAcytosol]

dt
=13 vPAL −13 v4CL −13 vPV T (3.7)

d[12pCAvacuole]

dt
=12 vPV T (3.8)

d[13pCAvacuole]

dt
=13 vPV T (3.9)

d[13Product]

dt
=13 v4CL (3.10)

d[13Phexylem]

dt
= V olumexylem[13Phemedium] (3.11)

For the base model, mass balances of vacuolar metabolites and corresponding

vacuolar transporter reactions are absent. For the models with cinnamate and/or p-

coumaroyl CoA introduced, similar mass balance equations are introduced for both 12C
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and 13C isotopes. The Phe concentration in the xylem is assumed to be equal with the

Phe concentration in the feeding medium. Essentially this means the transpiration rate

is assumed to be much faster than cellular uptake, so that the xylem is instantaneously

filled with Phe upon feeding, and the concentration remains constant throughout the

feeding period. The rest of reactions are modeled with Michaelis-Menten equations,

with each isotopic molecule competing for the same enzymatic sites. Detailed reaction

kinetics in the refined model are listed below:

12vADT =
vapparentADT

1 +
[12Pheplastid]

KADT
i,Phe

(3.12)

12vPCAT = Vmax,PCAT
[12Pheplastid]

KPCAT
m,Phe (1 +

[12Phecytosol]+[13Phecytosol]

KPCAT
i,Phe

) + [12Pheplastid]
(3.13)

13vPXT = Vmax,PXT
[13Phexylem]

KPXT
m,Phe + [13Phexylem]

(3.14)

12vPAL = Vmax,PAL
[12Phecytosol]

KPAL
m,Phe + [12Phecytosol] + [13Phecytosol]

(3.15)

13vPAL = Vmax,PAL
[13Phecytosol]

KPAL
m,Phe + [12Phecytosol] + [13Phecytosol]

(3.16)

12vV CAT = Vmax,V CAT
[12Phecytosol]

KV CAT
m,Phe + [12Phecytosol] + [13Phecytosol]

(3.17)

13vV CAT = Vmax,V CAT
[13Phecytosol]

KV CAT
m,Phe + [12Phecytosol] + [13Phecytosol]

(3.18)

12v4CL = Vmax,4CL
[12pCAcytosol]

K4CL
m,pCA + [12pCAcytosol] + [13pCAcytosol]

(3.19)

13v4CL = Vmax,4CL
[13pCAcytosol]

K4CL
m,pCA + [12pCAcytosol] + [13pCAcytosol]

(3.20)

12vPV T = Vmax,PV T
[12pCAcytosol]

KPV T
m,pCA + [12pCAcytosol] + [13pCAcytosol]

(3.21)

13vPV T = Vmax,PV T
[13pCAcytosol]

KPV T
m,pCA + [12pCAcytosol] + [13pCAcytosol]

(3.22)

When the mass balances on either cinnamate or p-coumaroyl CoA are considered,

the reaction kinetics for either C4H or CCR is introduced as a one-substrate Michaelis-

Menten equation. With the presence of p-coumaroyl CoA, free CoA is modeled as
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an independent substrate for 4CL kinetics, which leads to the new equation for 4CL

reaction:

iv4CL = Vmax,4CL
[ipCAcytosol][CoA]

K4CL
m,pCAK

4CL
m,CoA + (K4CL

m,CoA + [CoA])([12pCAcytosol] + [13pCAcytosol])

i = 12 or 13 (3.23)

In this case, net synthesis of CoA during the feeding study is assumed to be

negligible, so that its mass balance is:

d[CoA]

dt
=12 vCCR +13 vCCR −12 v4CL −13 v4CL (3.24)

Each model with potential metabolite-enzyme interactions includes one possible

regulatory interaction (activation, competitive or uncompetitive inhibition). The

general form of such interactions in the corresponding enzymatic kinetics was modeled

as:

v = Vmax
[activator]

Ka + [activator]

[substrate]

Km(1 + [inhibitor]
Kic

) + [substrate](1 + [inhibitor]
Kiu

)
(3.25)

3.2.6 Parameter identification

Not all model parameters are independent as steady state assumption is made at

time 0 for the model. For the refined model, the number of independent parameters

estimated is 15. Parameters were estimated by minimizing a pre-defined objective

function score defined as the sum of square differences between models predictions and

experimental observations weighted by measurement errors given training datasets:

ˆsse =

q∑
i=1

T∑
t=1

M∑
m=1

(Y predicted
m,t,i − Y measured

m,t,i )2

s2m,t,i
(3.26)

With M available measurements, each having T time points, and q different

treatment datasets are used for model training.

The objective function was minimized first with lsqnonlin in MATLAB (R2013a,

Mathworks, Inc), a gradient-based optimization algorithm with a multi-start approach
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using random initial guesses. The best result was then used as the starting point for

the following Markov Chain Monte Carlo (MCMC) sampling algorithm [108] to further

explore the global minimum in the parameter space. For each MCMC batch, 100,000

samples were generated for an efficient exploration. The sampling was continued until

the objective function score was not reduced with an additional MCMC batch.

For each parameter, the 95% confidence intervals were estimated by ranking 100,000

samples from highest to lowest and extracting values at 2,500th and 97,500th.

3.2.7 Model comparison with information criterion

Models in the current study have different numbers of parameters. Therefore a

direct comparison of the objective function fitting score is not appropriate since it is

biased toward models with more parameters. Thus, AIC was applied to compensate

for this issue [172]. The form of AIC score corrected for small sample/parameter

ratio [172] is:

AIC = n ln(
ˆsse

n
) +

2k(k + 1)

n− k − 1
(3.27)

where ˆsse is the sum of squared errors, which is the objective function score; n

represents number of independent measurements, and k represents number of free

parameters. A lower AIC score indicates an overall better model performance corrected

with its complexity.

3.2.8 Metabolic control analysis

Metabolic control analysis provides a quantitative evaluation of the perturbation of

enzyme amount towards pathway flux for each metabolic step [113]. The flux control

coefficients (FCC) of an enzyme is mathematically defined as:

FCCi =
∂J

J

/∂[Ei]

[Ei]
(3.28)

Here J represents flux through the pathway, and [Ei] represents the target enzyme

amount. Computationally, starting with a steady state model, Vmax of the target
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enzyme was changed by ±5% to get to new steady states, where new flux values were

recorded which were used to compute FCCs.

3.3 Results

3.3.1 Metabolic profiling of wild-type Arabidopsis basal stem fed with

ring labeled [13C6]-Phe

A feeding system in Arabidopsis stem was previously developed [175] using the basal

portions of Arabidopsis stems in which the tissue segments were able to take up [13C6]-

Phe from external medium, and incorporate it into downstream phenylpropanoids

including lignin. Four feeding experiments were conducted using different [13C6]-Phe

concentrations (0.1, 0.3, 1 and 3 mM) and metabolite profiling was performed at several

points over a four-hour period (Fig. 3.3). The profiles describe the overall abundances

of metabolites within the selected tissue, thus lack the subcellular details. On the

other hand, significant labeling of extracted Phe was already achieved after 40 min of

feeding with the degree of labeling increasing proportionally to the concentration of

fed [13C6]-Phe (Fig. 3.3). After 40 min, labeled p-coumarate and lignin were readily

detected in extracts from the stem tissue and the cell wall residue, respectively (Fig. 3.3

and Supplementary Fig. B.1), suggesting that the exogenous [13C6]-Phe is transported

into stem tissue and efficiently incorporated into pathway end products.

To test if the activities of biosynthetic enzymes remain unchanged during the

feeding process, the activities of PAL and 4CL in the stem tissue were determined

after 0 min, 40 min, 90 min, and 240 min of feeding. As shown in Supplementary

Fig. B.2, there were no changes in PAL and 4CL activities during the feeding process,

independent of the exogenous Phe concentrations.
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Fig. 3.2. Metabolite-enzyme interactions and vacuole storage mecha-
nisms considered in the general phenylpropanoid pathway. The kinetic
model in the current study is depicted with possible interactions be-
tween each metabolite and enzyme, and two possible vacuole storage
mechanisms. Red dashed arrow represents feedforward activation,
black dashed lines represent both competitive and uncompetitive feed-
back inhibition, green dashed arrows represent vacuole storage fluxes.
Feedback competitive inhibition of plastidial phenylalanine towards
ADT and cytosolic phenylalanine towards PCAT are bolded as they
are included in the model a priori. Abbreviations: PCAT, plastidial
cationic amino-acid transporter; PVT, putative vacuolar transporter;
PXT, putative xylem transporter; VCAT, vacuolar cationic amino-acid
transporter.

3.3.2 Base kinetic model construction and parameterization

A base kinetic model for the general phenylpropanoid pathway was constructed

based on the known structure of phenylpropanoid metabolism in Arabidopsis [28]. A

putative xylem transporter (PXT) was added to model Phe uptake from the xylem

(Fig. 3.2). At the same time, the plastidial cationic amino-acid transporter (PCAT)

was incorporated into the model to account for unlabeled Phe that is synthesized in
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Fig. 3.3. Data fitting comparison between base and refined models.
The model performance with experimental observations are shown
for both base model (dashed) and refined model (solid) with vacuole
storage for both phenylalanine and p-coumarate. Three treatments
were used for both model training, with the 1 mM dataset left out for
validation. Superscript 12 represents natural molecules with 12C, while
13 represents molecules with 13C labeled rings. 13Product is the sum
of all quantified phenylpropanoid molecules including lignin monomers
labeled with 13C. Details of experiments can be found in Materials
and Methods. Measurements are the average ± standard deviation
(n=3), while model predictions are shown as lines. Abbreviations:
pCA, p-coumarate.

the plastid by ADT, and subsequently exported by transporter into the cytosol [79]

where Phe is converted to cinnamate by PAL. As cinnamate was below the detection

limit for all feeding experiments, it was not included in the base model. Therefore,
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initially PAL and C4H enzymatic steps were lumped together into one single reaction.

The product of this PAL/C4H reaction is p-coumarate, which is then consumed by

4CL en route to all monolignols in lignin biosynthesis. The base model treats this

step as a one-substrate reaction due to lack of measurements of the other reactants,

CoA and ATP. PAL and 4CL isoforms were not considered in the current model, as

only total activity for these enzymes were measured. Therefore, all Vmax and Km

values within the model are apparent ones. In addition to the enzymatic steps directly

involved in phenylpropanoid metabolism, two feedback inhibition mechanisms were

also included: (i) plastidial Phe competitive inhibition of ADT and (ii) cytosolic Phe

inhibition of PCAT (Fig. 3.2). There were 11 parameters to estimate in the base

model.

An efficient MCMC sampling algorithm was applied for parameter estimation [108].

To evaluate how well the proposed base kinetic model can explain the in vivo metabolite

dynamics, three datasets with different levels of fed [13C6]-Phe (0.1, 0.3 and 3 mM) were

first fit with the objective function to train the model, with the 1 mM dataset left out

for model validation. Metabolite profiles predicted with estimated parameter values by

MCMC for the base model were compared against experimental data (Fig. 3.3, dashed

lines). Although the dynamics of Phe and downstream products were accurately

captured by the model, it failed to predict p-coumarate trends in all cases (for both

training and validation datasets), indicating that the base model was unable to fully

capture the experimental observations. As the structure of the network included in

the base model is experimentally supported in Arabidopsis [29, 31, 34, 35, 178], it is

more likely that some regulatory mechanisms active in vivo remain unknown and thus

had not been considered.
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Fig. 3.4. Reduction in the AIC score relative to the base model without
vacuole storage. Three additional models were generated and tested
by considering possible combinations of vacuole storage mechanisms
within the studied metabolism. Corrected AIC was applied to evaluate
the performance of these models. The model with lowest AIC score is
the one which fits the data best with the simplest structure.

3.3.3 Incorporation of vacuolar storage of Phe and p-coumarate signifi-

cantly improve model performance

[80] identified a vacuole storage mechanism for Phe via a VCAT in petunia.

Arabidopsis contains four homologues encoding vacuolar membrane amino acids

transporters [179,180]. Additionally, subcellular fractionation studies have detected

the vacuolar pools of Phe [168] and p-coumarate [167] in planta. Therefore, we

hypothesized that the vacuole storage mechanisms are also present in Arabidopsis

lignifying cells. The putative vacuolar transporters could remove excessive Phe and

p-coumarate from the cytosol into this separate compartment, to maintain lignin
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biosynthetic homeostasis if the concentration of either compound changes substantially.

To test this hypothesis, we added two vacuolar transporters into the base model.

Because simulation had been performed over a short time period (4 hour), the vacuole

transporters were modeled to function unidirectionally from cytosol to vacuole. Thus,

each transporter can be modeled with two additional parameters (See Materials and

Methods for detailed equations). Three competing models were formulated with

vacuole storage mechanisms for Phe and/or p-coumarate (Fig. 3.4). To evaluate

which, if any, of these competing models have better performance, the AIC corrected

for low sample/parameter ratio was applied to all four datasets. The model with

storage mechanisms for both Phe and p-coumarate had the largest reduction in AIC

score relative to the base model, indicating that having those additional transporters

significantly improved the fit (Fig. 3.4).

To evaluate whether the refined model has prediction capability outside of training

data, the refined model with two storage mechanisms was trained using three datasets

(0.1, 0.3 and 3 mM), while the 1 mM dataset was used for model validation, just as

it was done for the base model. As expected, the refined model better matched the

data trends in both the training and validation sets as compared to the base model

(Fig. 3.3), especially on the predictions of p-coumarate profiles. The simulations of

the refined model suggest that p-coumarate mainly accumulates inside the vacuole

during feeding studies (Table 3.1), providing the evidence of an active sequestration

mechanism when Phe was present at high concentrations.

Next, all four datasets were utilized for the final parameter identification. Estimated

parameters were compared with literature values when available (Table 3.2). The

model accurately predicted PAL Km for Phe which within a 95% confidence interval

was consistent with in vitro measurements (3.3 versus 4.3 nmol g FW−1). However,

the 4CL Km for p-coumarate was largely underestimated (0.30 versus measured 2.4

nmol g FW−1). Since 4CL step was modeled as a single-substrate reaction, it should

be noted that the estimated Km is a combined one including the influence of CoA and

ATP. A significantly lower estimated value might indicate the either CoA and/or ATP
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Table 3.1.
Subcellular metabolite profiles under different feeding conditions pre-
dicted by the refined model (Units: nmol g FW−1, values are repre-
sented as average ± standard deviation estimated by MCMC).

Condition t = 0 min t = 240 min

Metabolite (Location) Non-fed 0.1 mM 0.3 mM 1 mM 3 mM

Phe (Xylem) 0.0±0.0 2.8±0.3 8.4±0.8 27.8±2.6 83.5±7.7

Phe (Plastid) 15.4±0.9 15.4±0.8 15.5±0.8 16.1±0.8 25.0±2.1

Phe (Cytosol) 1.7±0.6 2.3±0.8 4.0±1.3 12.6±3.9 220±21

Phe (Vacuole) 0.0±0.0 9.4±1.0 11.2±1.2 14.3±2.7 16.4±4.3

p-coumarate (Cytosol) 0.07±0.01 0.10±0.01 0.16±0.02 0.40±0.04 1.11±0.13

p-coumarate (Vacuole) 0.00±0.00 0.93±0.04 1.5±0.1 3.7±0.2 9.3±0.7

pool in vivo is not saturating 4CL, as occurs in in vitro assays. Consistently, 4CL

maximal capacity predicted by the model was significantly lower than 4CL activity

measurements from crude extracts (Table 3.2 and Supplementary Fig. B.2), indicating

that 4CL was not functioning at its in vitro maximal velocity likely due to low CoA

and/or ATP concentration.

3.3.4 No in silico evidence for existence of other metabolite-enzyme in-

teractions

The proposed models (both base and refined ones) included two competitive inhi-

bitions based on the previous knowledge of the pathway [11,79,164]. These models

have the risk of being biased against unknown factors because a priori no other

metabolite-enzyme regulatory interactions were considered. The wide range of pertur-

bations undertaken in the feeding studies (from 0.1 up to 3 mM treatment) provides

an excellent dataset to search for any significant regulatory interactions. Starting

with the refined model, 14 possible metabolite-enzyme interactions were evaluated
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Table 3.2.
Final parameter list estimated by the refined model.

Parameter identity Reference value Estimated value 95% Confidence intervalsa Unit

Total Phe amount at t = 0 16.7±3.9b 17.2 [16.3, 17.8] nmol g FW−1

Total pCA at t = 0 0.3±0.2b 0.07 [0.06, 0.09] nmol g FW−1

Cytosolic fraction of Phe at t = 0 - 0.06 [0.04, 0.18] dimensionless

Xylem volume - 31.7 [22.6, 32.6] µL g FW−1

KPCAT
m,Phe - 5.0 [0.4, 9.8] nmol g FW−1

KPXT
m,Phe - 56.3 [45.6, 76.9] nmol g FW−1

KPAL
m,Phe 4.3c 3.3 [2.2, 12.0] nmol g FW−1

KV CAT
m,Phe - 1.2 [0.17, 4.3] nmol g FW−1

K4CL
m,pCA 2.4d 0.30 [0.27, 0.48] nmol g FW−1

KPV T
m,pCA - 70.0 [20.7, 98.9] nmol g FW−1

KADT
i,Phe - 0.10 [0.10, 0.73] nmol g FW−1

KPCAT
i,Phe - 34.5 [5.2, 94.8] nmol g FW−1

Vmax,ADT - 548 [75.1, 537] nmol g FW−1 min−1

Vmax,PCAT - 4.6 [3.6, 5.7] nmol g FW−1 min−1

Vmax,PXT - 20.4 [18.9, 28.6] nmol g FW−1 min−1

Vmax,PAL 10.5±3.0b 14.7 [14.3, 17.5] nmol g FW−1 min−1

Vmax,V CAT - 0.07 [0.04, 0.11] nmol g FW−1 min−1

Vmax,4CL 82.4±21.4b 19.0 [18.0, 23.4] nmol g FW−1 min−1

Vmax,PV T - 3.0 [0.74, 4.2] nmol g FW−1 min−1

aEstimated with 100,000 MCMC samples;

bMeasured in current study;

c [34], cytosol volume setimated from [181];

d [29].

(Fig. 3.2, Supplementary Table B.1). These included all possible combinations between

metabolite and enzymes interactions: competitive inhibition, uncompetitive inhibition

and feedforward activation of enzymes by metabolites. The AIC score was applied

to evaluate if a model with any of the proposed interactions had a better perfor-

mance than the refined model. Since no reduction in AIC score was observed for any

model, the data do not support the in vivo existence of any tested metabolite-enzyme

interactions (Supplementary Table B.1).

3.3.5 Expanding the model with additional metabolites did not improve

models performance

Cinnamate was not initially included as an independent metabolite in the model

because its amount was below the detection limit with LC-MS/MS [65]. Yet it

is possible that its presence could have significant impact on the models behavior,



51

considering that cinnamate inhibits PAL activity in plants including Arabidopsis [165].

Additionally, CoA, a substrate for 4CL-catalyze reaction was also not included in the

model because of lack of information about its subcellular levels. The product of 4CL

is p-coumaroyl CoA, which is a precursor for either CCR en route to the synthesis of H

lignin, or HCT towards production of G and S lignin (Fig. 3.1). Both enzymes release

the CoA moiety back to the free CoA pool. Since underestimation of the 4CL Km

for p-coumarate suggested the possible limitation of CoA in vivo, dynamics of CoA

pools might play a role in regulating flux through 4CL step. To test the effect of these

metabolites, three additional models including the mass balances of cinnamate and/or

p-coumaroyl CoA (the latter also includes CoA balance) were constructed and fit to

the data from all four feeding experiments for comparison against the refined model.

As shown in Supplementary Fig. B.3, including a cinnamate mass balance into the

model did not improve the statistical fit. This suggests that C4H is not a limiting step

even during feeding experiments with high concentrations of Phe. Incorporation of the

p-coumaroyl CoA mass balance also did not improve models performance, suggesting

that within those feeding treatments CoA balance did not have significant impact on

4CL flux (Supplementary Fig. B.3).

3.3.6 Refined model unravels subcellular pathway dynamics during feed-

ing studies

All attempts described above to improve the model revealed that the kinetic

model with vacuole storage mechanism for Phe and p-coumarate (refined model) best

represents in vivo situations. This model was then used to quantify two Phe input

fluxes via PXT and ADT and the output flux through 4CL under different feeding

conditions (Fig. 3.5). The [13C6]-Phe uptake rate from the xylem (via PXT) into

the lignifying cells in the basal stems continuously increased with higher fed Phe

concentration up to 12 nmol g FW−1 min−1, thus contributing from 24% up to 89%

of flux that reaches 4CL at 0.1 mM and 3 mM of fed Phe, respectively (Fig. 3.5). On
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Fig. 3.5. Pathway flux distribution at 240 min for different feeding
treatments. Fluxes at 240 min for different feeding treatments were
predicted by the refined model. Shown were the average ± standard
deviation values for fluxes from 100,000 MCMC simulation samples.
Black line represents total carbon flux through the 4CL enzyme (sum
of 12C and 13C fluxes), red line is the flux through the PXT, and the
blue line is the reaction rate of ADT.

the other hand, accumulation of cytosolic Phe at high fed Phe concentrations resulted

in a decrease in the plastidial Phe synthesis rate (Fig. 3.5 and Table 3.1).

Analysis of model-predicted subcellular distribution of Phe and p-coumarate

revealed that at low Phe fed concentrations (0.1 mM and 0.3 mM) the enzymes in

the cytosol are capable of efficiently utilizing increasing amounts of substrates, as

both Phe and p-coumarate were around or below their respective Km for PAL and

4CL, respectively (Table 3.1 and 3.2). Vacuole storage mechanisms played important

roles for pathway homeostasis since they sequester a significant amount of Phe and
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p-coumarate (29% and 90% out of total for each, at 0.3 mM fed Phe) (Table 3.1).

However, at higher fed Phe concentrations (1 mM and 3 mM) the model predicted

that the vacuolar transporters became saturated, resulting in dramatic expansion

in the cytosolic Phe and p-coumarate pools. After 240 min, cytosolic Phe and p-

coumarate pools were 16.4-fold and 1.8-fold higher respectively at 3 mM fed Phe than

at 1 mM fed Phe, suggesting that PAL and 4CL were no longer able to efficiently

convert these substrates into downstream products. The hyper-accumulated cytosolic

Phe can feedback inhibit PCAT leading to the build-up of plastidial Phe, which in

turn inhibits ADT. Interestingly, while an accumulation of Phe was observed in the

cytosol (17.5-fold), the plastid Phe level for the 3 mM fed Phe only increased by

1.6-fold compared to 1 mM fed Phe, mainly due to tight feedback regulation of ADT

(Table 3.1).

3.3.7 Metabolic control analysis determines the relative enzymatic con-

trol of flux in the general phenylpropanoid pathway

The FCC determined by metabolic control analysis (MCA) provide a quantitative

view of the distribution of control that the individual enzymes impose on each flux

within the metabolic network. Under non-fed Phe conditions, the highest control

coefficients were found upstream of PAL (Table 3.3). Specifically, PCAT had the

highest control coefficient over the flux, which is consistent with the role of petunia

plastidial cationic amino-acid transporter (PhpCAT) in phenylpropanoid metabolism

in flowers [79]. Indeed, a 75-80% downregulation of PhpCAT transcript levels led

to 20-42% reduction in the phenylpropanoid pathway flux. MCA also indicates

that downstream enzymes do not have significant controls over the pathway flux in

Arabidopsis stems under non-fed conditions. When PAL and 4CL activities were

measured in crude extracts of basal stem tissue used in the feeding studies, both

values were significantly higher than lignin deposition rate (on average over all feeding

conditions 10.5 nmol g FW−1 min−1 for PAL, 82.4 nmol g FW−1 min−1 for 4CL, and
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Table 3.3.
Flux control coefficients of pathway enzymes.

Enzyme Flux control coeffcient 95% Confidence intervalsa

ADT 0.19 [0.03, 0.28]

PCAT 0.80 [0.71, 0.97]

PAL 0.01 [0.01, 0.02]

4CL 0.00 [0.00, 0.00]

VCAT -0.01 [-0.01, -0.01]

PVT 0.00 [0.00, 0.00]

aEstimated with 100,000 MCMC samples.

3.4 nmol g FW−1 min−1 for lignin synthesis; Table 3.2 and Supplementary Fig. B.2),

suggesting that neither enzyme was functioning at their Vmax levels. Together with the

very low estimated FCCs, these observations suggest that phenylpropanoid metabolism

is mainly controlled by Phe biosynthetic reactions and its export from the plastid.

3.4 Discussion

This study developed multiple kinetic models of the phenylpropanoid metabolism

in Arabidopsis lignifying cells by evaluating different regulatory mechanisms. As

plant metabolism is highly compartmentalized [182], subcellular compartments were

also integrated in the model allowing estimation of subcellular concentrations of

metabolites. Cascade feedback inhibition of plastidial ADT by cytosolic Phe via

PCAT was incorporated in the current kinetic model of Arabidopsis phenylpropanoid

metabolism. The refined model with this inhibition was able to accurately capture

Phe profiles in all feeding datasets. Recently, it has been suggested that the plant

is able to sense the amount of cytosolic Phe and control carbon allocation to its

biosynthesis [80]. Indeed, hyperaccumulation of Phe in PAL-RNAi petunia petals

and Arabidopsis double pal1pal2 and quadruple pal1pal2pal3pal4 knockout mutants
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reduced carbon flux in the shikimate pathway, which provides precursors for Phe

biosynthesis [80]. In fact, without feedback control of plastidial Phe biosynthesis by

cytosolic Phe, no model is able to explain the observed accumulation of unlabeled

plastidial Phe upon feeding, especially at 3 mM fed Phe (Fig. 3.3) and reduction of

flux through ADT, which has a low Ki value for Phe (0.10 nmol g FW−1, Table 3.2).

Indeed, a drastic change of cytosolic Phe concentration was predicted for 1 mM, and

3 mM fed Phe, while changes in plastidial Phe concentrations were relatively small

(Table 3.1). The cytosolic Phe concentration (220 nmol g FW−1, Table 3.1) was far

above the predicted PCAT Ki value for Phe (34.5 nmol gFW−1, Table 3.2), suggesting

that during hyper-accumulation of cytosolic Phe, the plastidial Phe transporter will

be feedback inhibited.

An information-theoretic approach was applied to select the model with the

best performance, which suggested vacuole storage for both Phe and p-coumarate.

Although initial pools of Phe and p-coumarate inside the vacuole before feeding are

not identifiable through current approach, these storage mechanisms seem to function

upon the feeding of exogenous Phe. It is thus hypothesized that active vacuolar

transporters help maintain the flux homeostasis by translocating excess amounts

of substrate/intermediates into a physically separate compartment, making them

unavailable for enzymes. The role of the vacuole in sequestration of excess cytosolic

Phe was recently demonstrated by [80]. Phe amount inside the vacuole was nearly

doubled in PAL-RNAi petunia relative to wild-type control likely due the block of

cytosolic Phe consumption.

Despite the low fluxes into the vacuole relative to the main flux towards lignin

(Supplementary Fig. B.4), the optimized model predicts that substantial accumulation

of Phe and p-coumarate occurs in the vacuole (Table 3.1). Indeed, the estimated

maximal capacities for both vacuolar transporters are smaller (0.07 and 3.0 nmol g

FW−1 min−1) than the other Vmax values within the pathway (Table 3.2). The low

capacity of Phe transporter was insufficient to efficiently translocate cytosolic Phe

under high Phe (1 and 3 mM) feeding, which is the main cause of hyperaccumulation
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of cytosolic Phe. The most similar homologues of petunia PhCAT2 in Arabidopsis

are AtCAT2 and AtCAT4 in stems, encoding vacuolar amino acids transporters [180].

Under normal growth conditions, they have relatively low expressions [180, 183].

However, under abiotic and biotic stresses which are known to result elevated free

Phe pools in plants, the expression of AtCAT2 and AtCAT4 are induced [183,184],

suggesting these transporters mediate the transfer of excess Phe into vacuole.

The control coefficients of ADT, PCAT, PAL, C4H and 4CL were calculated and

the results suggest PCAT has the most significant control on flux towards lignin under

non-fed conditions. It has been shown previously that perturbing the expression of the

plastid transporter leads to significant changes in the downstream efflux in petunia

flowers [79]. The reason for this translocation step to be limiting is because of its

relatively low predicted Km value compared to the plastidial Phe amount (5.0 versus

15.4 nmol g FW−1, Table 3.1 and 3.2). No in vitro enzyme assay has been done to

characterize the Km value for PCAT in Arabidopsis, although a homolog in Escherichia

coli has a Km value of 2 µM [158], corresponding to around 0.4 nmol g FW−1 based

on the estimated plastid volume in plants [181]. Both calculations suggest that this

transporter is easily saturated under normal condition, so that the translocation rate

is largely determined by the protein amount instead of substrate level. For the other

enzymatic steps, the model suggests that they are controlled by substrate levels instead

of protein amounts, which explains why pathway flux is insensitive to small changes

of enzyme levels in MCA. However, when a large perturbation towards the enzyme

levels occurs, eventually the control will be shifted from substrate to enzyme.

Cinnamate is involved in the phenylpropanoid metabolism as a product of PAL and

is the substrate for p-coumarate synthesis. During the feeding studies, especially at 3

mM treatment, both Phe and p-coumarate accumulate to a much higher amount than

under the non-fed condition, suggesting that [13C6]-Phe has been effectively taken up

by the plant, and the pathway capacity has reached a saturation point in converting

those metabolites to lignin. Even under this condition, no cinnamate was detected

in extracts. Inclusion of a cinnamate mass balance into the model did not improve
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the models performance, while the model was able to fit the data well by simulating

PAL and C4H as one single reaction. These observations might be explained by a

very efficient (high kcat/Km) C4H enzyme within the pathway. As a membrane bound

protein, it is very difficult to directly test this hypothesis by measuring its maximal

capacity in the basal stem tissue. Metabolic channeling has been proposed between

PAL and C4H [185,186], which provides another possible explanation of undetectable

cinnamate, since the intermediate could then be efficiently passed between enzymes

without having any significant accumulation.

We also attempted including mass balances for CoA and p-coumaroyl CoA, but

found the model fits unimproved. Although the current refined model still has some

underfitting issues over p-coumarate profiles for the 3mM treatment, it was not resolved

by modeling 4CL step as a bi-substrate reaction. Another factor that might have

significant effect but was not considered is ATP, which is also required by the 4CL

reaction. As ATP has multiple subcellular locations, a metabolomics technology with

the ability to estimate its subcellular concentrations is required.

In summary, kinetic modeling combined with a statistical evaluation procedure

successfully described metabolite distributions and fluxes within the phenylpropanoid

network in Arabidopsis lignifying cells. The AIC model selection procedure supported

by feeding treatment datasets proposed regulatory mechanisms active in vivo, which

could be experimentally tested in future. In addition, MCA suggested limitations

within the phenylpropanoid network, thus providing a useful guide for future metabolic

engineering efforts. For example, knocking down phenylalanine export from the plastids

is a first metabolic engineering target for reducing lignin biosynthesis.
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4. COMBINING GENE REGULATORY NETWORK AND

KINETIC MODELING OF LIGNIN BIOSYNTHESIS IN

ARABIDOPSIS

4.1 Introduction

Lignin is a heterologous biopolymer which is deposited in secondary cell walls of

terrestrial plants. It is one of the most abundant cell wall polymers and is crosslinked

with two other major polymers, cellulose and hemicellulose to form a complex matrix

[187, 188]. Studies have shown that lignin plays important roles in normal plant

growth, by contributing to the lodging resistance [189], the water proofing of conductive

elements in xylem [190,191], as well as against external hazards [192,193]. On the other

hand, plant lignocellulosic biomass has drawn lots of attention for its great capacity

and reduced environmental impacts as the source for second-generation biofuels [159].

Current industrial applications of lignocellulosic biomass are limited by the high

costs during the pre-treatment of cell wall materials, and lignin is reported as one of

the major inhibitory factors due to its chemical and structural characters [187,194].

Therefore, one of the major strategies to improve biomass pretreatment is to reduce

lignin content or manipulate its composition [17], and a systematic understanding of

the lignin biosynthesis in plants is necessary for the success of such strategies.

Lignin is mainly composed of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S)

subunits, which are derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl

alcohol, respectively. In certain cases and in specific tissues, other types of subunits are

observed [23,32,195,196], which are derived from other aromatic aldehydes/alcohols

that share the common precursor L-phenylalanine (Phe). A series of enzyme families

are active in lignifying cells to convert Phe to downstream monolignols, with isoforms

existing for phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL) and
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cinnamyl alcohol dehydrogenase (CAD) in Arabidopsis (Fig. 4.1). The presence of

isoforms provides redundancy for pathway robustness, since larger decreases in lignin

content were frequently observed when multiple isoforms were impaired simultaneously,

compared with the cases when only one of isoforms was perturbed [23, 31, 35]. In

addition, both 4CLs and CADs are capable of catalyzing multiple reactions within

the pathway, due to similar molecular structures of their substrates (Fig. 4.1). En-

zyme promiscuities are also present for cinnamoyl-CoA reductase (CCR, [36, 37],

aldehyde dehydrogenase (ALDH, [38], hydroxycinnamoyl CoA: shikimate hydroxycin-

namoyl transferase (HCT, [39], ferulate 5-hydroxylase (F5H, [40] and caffeic acid

O-methyltransferase (COMT, [41] (Fig. 4.1). The presence of isoforms and substrate

competitions complicates the metabolic network of lignin biosynthesis, which leads to

numerous possible routes between Phe and downstream monolignols. These complexi-

ties make it difficult to predict the consequences of genetic perturbations for some

metabolic steps within the pathway, since unexpected outcomes might be triggered by

events such as distal interactions between competing substrates, activation of hidden

routes upon pathway block, etc. While several successful manipulations have been

made in lignin biosynthesis and resulted in improved saccharification [18–23], the

time-consuming process of genetic perturbations in planta is still the bottleneck for

the global understanding over lignin biosynthesis, as well as for the rational design of

a promising biofuel plant.

Kinetic modeling provides opportunities to integrate the current knowledge of a

given pathway in a dynamic manner [82,83,197]. It simulates the metabolism by a

set of mass balance equations to track the changes in intermediate concentrations

due to the differences between the synthesis and consumption rates, and reaction

rates are formulated as functions of its substrates and catalyzing enzyme. Such a

framework is able to incorporate individual enzymatic kinetics together into a dynamic

model, as shown in several recent applications [91, 96,97,174,198]. When the kinetic

information for the pathway is incomplete, unknown parameters can be estimated

by data fitting strategies with experimental inputs from metabolic and/or proteomic
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Fig. 4.1. Lignin biosynthesis in Arabidopsis. Key transcription factors
and all metabolic steps involved in the lignin biosynthesis in Arabidop-
sis is shown. Transcription factors are colored in blue and structural
genes in black. Intermediates and lignin products are shown in italic.
Chemical reactions are represented by black arrows. Regulatory inter-
actions for activation and inhibition are represented in red and green,
respectively. Post-transcriptional regulation is shown in blue.

analysis [103,109,173,199]. Such flexibility of kinetic modeling makes it possible to

mechanistically integrate different types of information of the studied metabolism for

a systems biological understanding. Further applications such as metabolic control

analysis can utilize the constructed model to identify key steps in the pathway which

control the metabolic flux, and this type of knowledge helps to determine targets for

metabolic engineering [113]. In plants, kinetic modeling has been applied to primary

carbon metabolism [96,97,105,115,198,200,201], as well as different kinds of secondary

metabolism [91,101–103,109,114,116,202].
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Kinetic models for lignin biosynthesis were previously developed for Populus

trichocarpa [92,174], Medicago Sativa L. [93], Panicum virgatum [94] and Brachypodium

distachyon [95]. These models contributed to explore the dynamic responses of the

pathway against different genetic perturbations [92–95, 174], and to propose and

test the hypotheses of metabolic channeling in silico [93–95]. While kinetic models

facilitate deeper understanding of lignin biosynthesis in plants, some limitations in

model structures are present which leaves room for improvement. Previously, enzyme

isoforms were simulated in a system-wise manner only in one study [174]. Generalized

mass action models have difficulties in simulating all isoforms separately due to

their empirical function nature. Therefore, without available kinetic information

for each isoform, parameter identifiability is an issue for reliable estimation of all

unknown parameters for a single metabolic step [92–95], and to propose and test the

hypotheses of metabolic channeling in silico [93–95]. On the other hand, for those

generalized mass action models, substrate competitions were incorporated into models

only when it showed advantages for data fitting [93,94]. It is likely that many substrate

competitions didnt play significant roles in their studied genetic lines, yet it limits the

applications of models to the cases when those hidden factors were activated. [174]

experimentally tested all possible substrate competitions by in vitro assays for all

combinations of enzyme and inhibitor pairs in the pathway. However, we show that

substrate competitions can be simulated in a more concise and systematic way in the

current study, which bypasses possible error propagations from extra experiments.

Moreover, none of above studies integrated the transcriptional regulation into the

model, which is another major novelty in our work.

It is well known that a complex gene regulatory network (GRN) exists over lignin

biosynthesis in plants [43, 49]; Fig. 4.1). NAM, ATAF1/2 and CUC2 (NAC) are

master switches that were identified to be involved in the regulation of secondary

cell wall synthesis in plants, including lignin biosynthesis [44–50]. They function

together with second-level myeloblastosis (MYB) master switches to turn on the

expression of downstream lignin biosynthetic genes [48, 49, 52, 203]. In addition to
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this hierarchical regulatory structure, feedback control mechanisms from downstream

transcription factors (TF) to the top-level master switches are also likely active in plants.

The expression of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN

1(SND1) is inhibited by MYB4, MYB7 and MYB32 in Arabidopsis [52], while MYB4,

MYB7 and MYB32 are all directly activated by MYB46 and MYB83 [53,54], which

are second-level master switches regulated by SND1 [53,55,56,204]. The important

regulatory role in lignin biosynthesis for the Mediator complex is also characterized in

recent studies [22,58,205], and Mediator complex is likely regulating lignin biosynthesis

via affecting the expression of MYB factors [58]. The Mediator complex also regulates

the gene expression of Kelch repeat F-box (KFB) protein family, which are post-

transcriptional regulators of the phenylalanine ammonia-lyase (PAL), thus controlling

the first metabolic step in the lignin biosynthesis [59–61]. It is therefore important to

understand the transcriptional level of lignin biosynthesis in addition to the metabolic

level, if one aims to develop an in silico systems biological framework to predict the

dynamic responses against various kinds of genetic perturbations.

Models for GRN of lignin biosynthesis has been previously developed for root xylem

cells [140] and hypocotyledonous stem tissue [206] in Arabidopsis. [206] applied a mutual

information based method to infer a two layered network between TFs and structural

genes trained on microarray data. They showed their method outcompeting some other

existing methods with higher accuracy in identifying positive regulatory mechanisms.

Furthermore, they found it common to have multiple regulators functioning upstream

of each structural gene in lignin biosynthesis. On the other hand, [140] have developed

feedforward networks to describe the regulatory mechanisms against abiotic stress in

plants. Models in [140] have a better model structure than ones in [206], since the

former incorporated the interactions between TFs. While both of them successfully

revealed the parts of lignin biosynthesis GRN in their studies, a full view of the

transcriptional regulation is lacking due to the limited sizes of their models. Moreover,

both studies only inferred the existence of a specific interaction without the knowledge
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of regulatory strength, therefore the model cannot be applied in a dynamic way to

predict the responses against genetic perturbations.

In the current study, we developed a dynamic model of lignin biosynthesis in-

tegrating the metabolic reactions with the transcriptional regulatory mechanisms.

Due to the difficulties in parameterization of a large differential equation system,

previous efforts for the hierarchical model development have mainly focused on the

combination between flux balance analysis for metabolism and statistical models such

as Boolean logic for transcriptional regulation [145–147]. While these models scale

well on a genome scale, they sacrificed the mechanistic and dynamic properties. We

overcame the challenges in parameterization by starting with a candidate set for

gene interactions based on literature evidence, and simplified the system with first

order kinetics for gene regulation. Model built in this way still preserves the dynamic

nature and is well-compatible with our kinetic model for the metabolic network. The

model was trained and validated with data from various genetic backgrounds, and its

capability to uncover key changes in response to genetic perturbations was presented.

Moreover, the model provides the opportunities to predict the consequences of all

possible genetic manipulations for either structural genes or TFs in lignin biosynthesis,

thus can be a great system for new hypothesis generation, as well as evaluation of our

current understanding of lignin biosynthesis.

4.2 Materials and Methods

4.2.1 Plant materials and growth

Arabidopsis thaliana (Columbia-0) plants of different genotypes were grown in

soil at 23 ◦C under 16/8-hour light/dark cycle. For consistency with [175], the basal

0.5-2 cm of the inflorescent stems were taken from four-week-old plants for RNA-

seq and LC-MS/MS analysis. For the mutant genotypes used in the current study,

pal1 (SALK 096474C), pal2 (GABI 692H09-025071), 4cl1 (WiscDsLox473B01), cse-2

(SALK 023077), cadC (SALL 1265 A06), cadD (SALL 776 B06), med5a (SALK 011621)
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and med5b (SALK 037472) were generated by T-DNA insertion and obtained from

the Arabidopsis biological resource center; fah1, ref2, ref3-2, ref3-3 and ref8 were

isolated from ethyl methanesulfonate-mutagenized populations with reduced sinapoyl

malate contents [24, 207–209], which impacts the functioning of F5H, an enzyme

in aliphatic glucosinolate biosynthesis, and C4H, respectively; F5H overexpresser

(C4H:F5H ) introduced a Arabidopsis C4H promoter driven F5H in the plant [18];

SmF5H introduced a Arabidopsis C4H promoter driven Selaginella moellendorffii

F5H [210]. Higher order mutants were generated by crossing corresponding single

mutants.

4.2.2 RNA-seq datasets

RNA-seq datasets for wild type, pal1 pal2, ref3-2, ref3-3, 4cl1, cse-2, fah1, med5a/b

ref8, med5a/b ref2, F5H -overexpression, ref8 fah1 SmF5H and med5a/b genetic

backgrounds in Arabidopsis thaliana Columbia-0 were taken from [211]. Four replicates

were collected for each mutant genotype and eight for wild type. Briefly, RNA-seq

analysis was performed on a single chip with an Illumina NovaSeq instrument at Purdue

Genomics Core Facility. Fragments per kilobase of transcript per million mapped

reads (FPKM) were generated with HISAT2 [212] and HTSeq-count programs [213]

over TAIR10 genome build.

4.2.3 LC-MS/MS analysis

Metabolome datasets for wild type, pal1 pal2, 4cl1, cse-2, fah1, med5a/b ref2, F5H -

overexpression and med5a/b genetic backgrounds in Arabidopsis thaliana Columbia-0

were obtained from the same plant materials as for the RNA-seq datasets [211]. Three

replicates were collected for each genotype. All phenylpropanoid measurements in

the datasets were obtained with LC-MS/MS as in [65]. Briefly, tissue samples were

extracted and incubated in 75% methanol (v/v at 10 µL mg FW−1) for 2 hours at

65 ◦C. The samples were centrifuged for 20 min at 16,000 x g, followed by drying
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the supernatants in a speed-vac to concentrate the samples. The dried extracts were

re-dissolved in 60 µL 50% methanol before separating by LC on a Zorbax Eclipse

C8 column (150 mm 4.6 mm, 5 µm, Agilent Technologies, Santa Clara, CA), where

the mobile phase is acetonitrile/H2O/formic acid (9.8/2/0.2) buffered by 2.5 mM

ammonium acetate (pH 5.6). Soluble metabolites were detected with a QTrap 5500

mass spectrometer (AB Sciex, Redwood City, CA) by multiple reaction monitoring in

the negative ion mode. Calibration curves were applied for quantification, which were

generated with standards of Phe, cinnamate, p-coumarate, caffeate, ferulate, sinapate,

shikimate, p-coumaraldehyde, coniferaldehyde, sinapaldehyde, p-coumaryl alcohol,

coniferyl alcohol, sinapyl alcohol, p-coumaroyl shikimate, and caffeoyl shikimate.

4.2.4 Lignin analysis

Lignin content and monomer composition was analyzed as in [109]. Briefly, the cell

wall residues were dried at room temperature for lignin analysis after being washed

with 10 mL 70% ethanol (v/v) five times and once with acetone. Acetyl bromide

lignin analysis was used to quantify total lignin content [177]. About 2 mg of cell wall

residue was dissolved in 2.5 mL solution of acetyl bromide: glacial acetic acid (25:75)

overnight at room temperature. Samples were mixed with 2.5 mL 2 M NaOH, 12

mL glacial acetic acid, and 0.5 mL 7.5 M hydroxylamine hydrochloride in a 50-mL

volumetric flask with final volume brought to 50 mL with glacial acetic acid. Total

lignin for each sample was measured with absorbance at 280 nm and calculated with

the extinction coefficient of 23.29 g−1 L cm−1. The rest of the cell wall residue sample

was weighed and used for monomer composition analysis with DFRC/GC/FID/MS.

Samples were dissolved overnight at room temperature in 2.5 mL of a solution of

acetyl bromide: acetic acid (20:80) using 0.2 mg 4,4’-ethylidenebisphenol as internal

standard. The products were dried and dissolved in 2 mL dioxane: acetic acid: water

(50:40:10). Zinc dust (50 mg) was added to each sample and mixed well for 20 min.

About 200 µL supernatant was then loaded onto a LC-Si solid phase extraction column
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pre-conditioned with 95% ethanol and water and washed with 2.5 mL 25% ethanol.

2.5 mL 95% ethanol was used for sample elution, and then samples were dried before

derivatization with 0.5 mL anhydrous acetic anhydride: pyridine (60:40) overnight.

Acetylated products were then dried and dissolved in 200 µL dichloromethane. A 1

µL sample was analyzed on GC/FID for monomer composition and on GC/MS for

labeling percentage of each monomer.

To determine de novo lignin deposition rate, the 0.5-2 cm stem sections from

soil-grown plants were harvested at three days after bolting for wild type, pal1 pal2

and 4cl1. Total lignin content was quantified by acetyl bromide method [177]. Slopes

were estimated with linear regression, which were used to determine the de novo lignin

deposition rate (Supplementary Fig. C.1). The estimated deposition rate for wild

type was similar with the previous report [109], therefore the previous value 3.44

nmol g FW−1 min−1 in wild type was used as the reference value, so that parameters

from the previous model [109] can be directly transferred to the current study. De

novo lignin deposition rates for pal1 pal2 and 4cl1 were calculated by multiplying the

reference rate with the relative ratios between pal1 pal2/4cl1 and wild type obtained

from Supplementary Fig. C.1. Deposition rates for fah1 and F5H -overexpression

genotypes were calculated by multiplying the reference rate with the relative ratios

of mutant versus wild type. Deposition rates for cse-2 and med5a/b genotypes were

calculated by multiplying the reference rate with the relative ratios of mutant versus

wild type from previous studies [21,22]. Similarly, steady state fluxes towards each

lignin subunit were calculated by multiplying the de novo deposition rate for each

genotype (except for pal1 pal2 and 4cl1, which were measured from the current study)

with the monomer compositions reported in previous studies [18,21,22,210]. We do

not have data for med5 ref2 lignin content and monomer composition, therefore lignin

subunit fluxes for this genotype was not constraint during model training.
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4.2.5 PAL and 4CL enzyme assays

Stem tissue was harvested and frozen in liquid nitrogen. Crude protein was

extracted from ground tissue with Tris-HCl buffer at pH of 7.8, and desalted on a gel

filtration column (SephadexTM, G-50 fine, GE Healthcare). PAL and 4CL assays

were conducted following the method in [214]. Each PAL assay contained 100 mM

Tris-HCl buffer pH 7.5, 5 mM Phe, and 5 µL protein extract in a final volume of 50

µL. The reactions were incubated at 23 ◦C for 120 min. The 4CL assay contained 100

mM Tris-HCl buffer pH 7.5, 5 mM MgCl2, 5 mM ATP, 1 mM p-coumarate, 0.3 mM

CoA, and 2 µL protein extract in a final volume of 40 µL. Each reaction was incubated

at 23 ◦C for 20 min. Assay products were quantified on HPLC with cinnamate and

synthesized p-coumaroyl CoA as standards, respectively. Protein concentrations were

measured with Bradford assay using bovine serum albumin as standard.

4.2.6 HCT enzyme assay

HCT assay was coupled with 4CL reaction. Purified (22 ng) 4CL enzyme expressed

in Escherichia coli was used to synthesize p-coumaryl CoA or caffeoyl CoA substrate

at 23 ◦C for 3 hours before the HCT assay. HCT reaction was initiated by adding

protein extract and lasted for 20 min at 23 ◦C. The assay mixture contained 100 mM

Tris-HCl buffer pH 7.5, 5 mM MgCl2, 2.4 mM ATP, 2.4 mM CoA, 2 mM p-coumarate

or caffeate, 7.5 mM shikimate, 2 µL of 4CL enzyme, 8 µL protein extract in a final

volume of 40 µL. Assay product p-coumaroyl shikimate or caffeoyl shikimate was

quantified on HPLC. Protein concentrations were measured with Bradford assay using

bovine serum albumin as standard.

4.2.7 CCR enzyme assay

CCR assay was coupled with 4CL reaction. Purified 4CL (22 ng) enzyme expressed

in Escherichia coli was used to synthesize p-coumaryl CoA substrate at 23 ◦C for 3
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hours before the CCR assay. One unit glucose 6-phosphate dehydrogenase was used to

synthesize NADPH in a mixture of 1 mM NADP+, 10 mM glucose 6-phosphate at 30

◦C for 5 min. This NADPH synthesis mixture (12 µL) was added to each CCR assay

mixture. The CCR assay was initiated by adding protein extract and incubated for 20

min at 23 ◦C. The assay contained 100 mM Tris-HCl buffer pH 7.5, 5 mM MgCl2, 1

mM ATP, 0.15 mM CoA, 0.1 mM p-coumarate, 0.2 mM NADPH, 1 µL of 4CL enzyme,

4 µL protein extract in a volume of 60 µL. The product p-coumaroyl aldehyde was

quantified on HPLC. Protein concentrations were measured with Bradford assay using

bovine serum albumin as standard.

4.2.8 Gene regulatory network reconstruction

In total 438 candidate gene regulatory interactions were collected from literature,

specifically for lignin biosynthesis in Arabidopsis. These interactions were used

to define an initial gene regulatory network of lignin biosynthesis in Arabidopsis.

Mathematically, the network was formulated with linear differential equations, where

a mass balance equation is formulated as:

d[Gi]

dt
= Consti +

∑
j

Kreg,j,i[Pj]−Kdecay,i[Gi] (4.1)

Where [Gi] represents the mRNA amount of the gene involved in the lignin

biosynthesis; Consti is the constitutive synthesis rate for [Gi], which summarizes

the transcriptional driving forces in addition to the regulatory mechanisms in lignin

biosynthesis; Kreg,j,i is the regulatory strength exerted by the transcription factor [Pj ];

Kdecay,i is the mRNA decay rate for [Gi]. Kdecay,i values were collected from [215], with

missing values filled with the median decay rate. In addition, observations from [216]

suggested that although there is no strong correlation between transcriptome and

proteome data, the correlation between a given genes expression and its associated

protein amount seems preserved along different conditions. These observations justified
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the assumed linearity between mRNA and protein amounts corresponding to each

gene, converted with a transfer coefficient αj:

[Pj] = αj[Gj] (4.2)

Therefore equation 4.1 can be adjusted to exclude the needs to simulate protein

amounts for transcription factors explicitly:

d[Gi]

dt
= Consti +

∑
j

K ′reg,j,i[Gj]−Kdecay,i[Gi] (4.3)

Where K ′reg,j,i is the apparent regulatory strength for [Gj].

FPKM values were used in the model to represent the gene expression levels in each

genetic background. For the simulation of mutant generated by T-DNA insertion, the

synthesis rates of the corresponding gene (both Consti and K ′reg,j,i) were multiplied

with a correction factor of zero to mimic the mutation event. For the simulation of

F5H -overexpression line, the synthesis rates of F5H were multiplied with a correction

factor of 61.5, which was obtained from the F5H ratio between fah1 and wild type

lines. To estimate Consti and K ′reg,j,i values in the model, RNA-seq datasets from

wild type, pal1 pal2, ref3-2, ref3-3, 4cl1, cse-2, fah1, ref8 fah1 SmF5H, med5a/b ref8

and med5a/b ref2 genetic backgrounds were applied for model training. Parameters

were estimated by optimizing the following objective function:

ˆsseGRN =
N∑
i=1

Fi∑
j=1

(
[Gpredicted

i,j ]− [Gmeasured
i,j ]

si,j
)2 (4.4)

With Fi measurements of FPKM for genes in the network for each of N datasets,

si,j is the standard deviation estimated from n = 4 for each condition (n = 8 for wild

type). Note that the equation 4.3 reduces to a linear equation when the system reaches

a steady state, therefore the optimization problem was solved by iteratively calculating

the solution for the linear equations for a given parameter set. The lsqnonlin function

in MATLAB (R2013a, Mathworks, Inc) was then applied to determine the changing

directions for the parameters for each iteration. The final solution was achieved

when the algorithm stopped, and its robustness was verified with ode15 integration

independently starting from an initial point where all mRNA amounts were zeros.
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4.2.9 Kinetic modeling

The kinetic model of lignin biosynthesis in Arabidopsis consists of reactions starting

from plastidial Phe synthesis, and ending up with the production of five aldehydes and

five alcohols which can be incorporated into the lignin polymer. First order kinetics

are assumed for the lignin incorporation for each aldehyde/alcohol. In addition, all

acids are assumed to have sink reactions with first order kinetics. Mass balances of

pathway intermediates are simulated with the equation below (See Supplementary

Material D.1 for detailed mass balances):

dC

dt
= Sv (4.5)

where C is the vector of metabolite concentrations, v is the vector of reaction

velocities, and S is the stoichiometric matrix for the pathway. Michaelis-Menten

kinetics are applied to simulate the reaction rates. Since several enzymes are capable

of utilizing multiple substrates, those substrates act as competitive inhibitors towards

each other for common catalytic sites [217]. In general, the rate equations take the

form as shown below (See Supplementary Material D.2 for detailed rate equations for

the kinetic model):

vE,A = V A
max,E

[A]

KE
m,A

1 + [A]

KE
m,A

+ [B]

KE
m,B

(4.6)

where vE,A is the rate of the reaction catalyzed by the enzyme E and converts

A to the downstream product; [A] and [B] are the concentrations of competing

substrates; V A
max,E is the maximal capacity for E catalyzing substrate A, with the

binding affinity of KE
m,A (Similarly, KE

m,B is the binding affinity of B). Parameters

for Phe biosynthesis including ADT and PCAT kinetics were taken from a previous

phenylpropanoid model [109]. For the rest of the pathway, most Km values for

enzymes involved in the lignin biosynthesis in Arabidopsis were collected from literature

(Supplementary Table C.1), with the exceptions for all parameters for HCT, K4CL
m, CoA

for 4CL isoforms and KCCoAOMT
m, KACoA for CCoAOMT. To estimate the cytosol volume

for unit conversion for Km, water content in 0.5-2 cm basal stem was first measured
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to be 0.96 ± 0.01 mL g FW−1. The fraction of active lignifying cells was estimated

to be 34.2% from a microscopic cross-section of a typical Arabidopsis basal stem,

by excluding pith and epidermis regions. By applying the estimation of cellular

fraction of cytoplasm from [181], the final converting factor was calculated to be 0.022

mL g FW−1. kcat or Vmax values for PALs, 4CLs, CADs, CCR, COMT, F5H and

ALDH were also collected from literature to capture different catalytic efficiencies for

competing isoforms/substrates (Supplementary Table C.1). The catalytic efficiencies

for Arabidopsis HCT are taken as free variables in the model as there were no literature

values. Since HCT catalyzes two reversible reactions, Haldane relationship [217]

was applied, which reduced the total number of unknown kinetic parameters for

HCT to seven. Specifically, kinetic parameters of HCT need to satisfy the following

relationships:

KpCACoA
eq, HCT =

kpCACoAcat, HCTK
HCT
m, pCASKK

HCT
m, CoA

kpCASKcat, HCTK
HCT
m, pCACoAK

HCT
m, SK

(4.7)

KKASK
eq, HCT =

kKASKcat, HCTK
HCT
m, KACoAK

HCT
m, SK

kKACoAcat, HCTK
HCT
m, KASKK

HCT
m, CoA

(4.8)

KpCACoA
eq, HCT and KKASK

eq, HCT were estimated to be 0.411 and 2.334 with eQuilibrator

[218,219] assuming ionic strength of 0.33, pH of 7.4 and temperature of 25 ◦C. The

kpCACoAcat, HCT was set as 1 s−1 to further reduce one variable. Note that since all kcat

values were multiplied with corresponding estimated enzyme amounts to obtain Vmax

values in the model, only relative ratios of kcat for competing isoforms/substrates were

important. In each genotype simulation, the enzyme amount ratios for isoforms in

a common enzyme family were assumed to be equal with the corresponding mRNA

expression ratios under corresponding genetic condition, so that each enzyme family

can be simulated by only one free variable to represent one isoforms concentration,

with the rest of isoform levels in the same family derived from mRNA ratios. Post-

transcriptional regulation of KFBs to PALs was simulated with a linear equation:

[PPALi ] = αPAL[GPALi ]−KKFB([GKFB01]+[GKFB20]+[GKFB39]+[GKFB50]), i = 1, 2, 4

(4.9)
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There are 12 parameters for enzyme abundances, 9 parameters for unknown kinetic

parameters, three for initial concentrations of Phe, CoA and shikimate, two for first

order kinetic coefficients for acid and lignin sinks, one for the KFB regulatory factor,

summing up to 27 free parameters to be estimated for the kinetic model. The whole

differential equation system was integrated with ode15 function in MATLAB. For

each simulation, modeling outputs were obtained until the system reached the steady

state, starting from an initial point where all intermediate pools being zeros, except

for CoA and shikimate.

The model was trained with datasets from wild type, pal1 pal2, 4cl1, cse-2, fah1

and med5a/b ref2 genetic backgrounds with in total 176 measurements. Lignin subunit

fluxes and metabolite concentrations were available for each genetic line, and wild

type has additional measurements of maximal capacities for PAL, 4CL, HCT and

CCR. While all these measurements were applied for parameter estimation, a weighted

objective function was applied:

ˆssekinetic model =

Q∑
i=1

[
10

L∑
j=1

(
Y predicted
lig,i,j − Y measured

lig,i,j

slig,i,j
)2 +

Mi∑
m=1

(
Y predicted
met,i,m − Y measured

met,i,m

smet,i,m
)2
]

+
R∑
r=1

(
Y predicted
vmax,wt,r − Y measured

vmax,wt,r

svmax,wt,r
)2 (4.10)

With Mi metabolite concentrations, L lignin subunit fluxes for each of Q datasets,

and R maximal capacity measurements for wild type condition, si,j is the standard

deviation estimated from n = 3 for each condition. The training procedure was

the same as [109]. Briefly, lsqnonlin in MATLAB was used with multiple starts to

generate a starting point for Markov Chain Monte Carlo (MCMC) sampling [108],

and MCMC batches each with 100, 000 samples were generated until no further

reduction in ˆssekinetic model was observed for a new batch. The parameters with the

lowest ˆssekinetic model were then selected as the point estimations, and the second to

last batch of MCMC samples were used to estimate the variations for parameters and

model outputs. Samples for variance analysis were selected with an interval size of

100 to reduce the autoregression effect in MCMC chains.
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4.3 Results

4.3.1 Transcriptional/post-transcriptional regulatory interactions for lignin

biosynthesis in Arabidopsis were compiled from the literature

A large number of studies has been carried out to identify transcriptional/post-

transcriptional regulatory mechanisms in lignin biosynthesis in Arabidopsis thaliana

[44–46,48,49,52,140,203,206], which has resulted in a much more comprehensive view of

the regulation of lignin biosynthesis compared with other plant species [51]. We aimed

at building an evidence-derived GRN at first by collecting all interactions reported

so far in Arabidopsis. Our focus has limited on the experimental evidence which

provides the information of interaction type (activation/inhibition). This constraint

reduced our literature search to the evidence from steroid receptor-based inducible

system [220], glucocorticoid receptor-mediated post-translational inducible system [46],

in vivo chromatin immunoprecipitation [55], electrophoretic mobility shift assay [55],

transfection assay [221], histochemical β-glucuronidase staining assay [222] as well

as significant expression changes in TF perturbed genetic lines. The former four

experiments provide the evidence for direct binding of TF to the target genes promoter

region, and the later three only provide indirect evidence for regulation without

evaluation of direct binding. In total, we have collected 487 transcriptional/post-

transcriptional regulatory interactions between 89 genes reported in Arabidopsis

(Supplementary Table C.3). Since the purpose of the interaction collection was to

construct a GRN of genes that regulate structural gene (enzymes) expression in

lignin biosynthesis, we further removed TFs without any downstream targets and

their associated upstream interactions, ending up with 438 transcriptional regulatory

interactions and 12 post-transcriptional regulatory interactions between 72 genes

(Supplementary Fig. C.2). Among 450 collected interactions, 23.6% (106 out of 450)

of them have evidence for direct binding. We listed the top ten TFs (Table 4.1) and

structural genes (Table 4.2) with highest number of reported interactions. MYB46 is

the hub node in the network, with 10 TF regulators and 30 gene targets reported so
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Table 4.1.
Top 10 TFs with highest number of interactions reported.

Upstreama Downstreamb

Gene Name Locus Directc Indirectd Direct Indirect Total

MYB46 AT5G12870 5 5 21 9 40

MYB63 AT1G79180 2 14 1 17 34

SND1 AT1G32770 1 6 8 16 31

KNAT7 AT1G62990 8 7 1 12 28

MYB83 AT3G08500 5 5 12 6 28

NST1 AT2G46770 2 1 5 18 26

MYB103 AT1G63910 5 12 0 8 25

MED5a AT3G23590 0 0 0 23 23

MED5b AT2G48110 0 0 0 23 23

MYB58 AT1G16490 2 10 9 1 22
aNumber of regulators;

bNumber of targets regulated by the gene;

cNumber of interaction with direct binding evidence;

dNumber of interaction without direct binding evidence.

far. MYB83, the ortholog of MYB46, also ranked in top ten list. Besides MYB factors

and NAC master switches, KNAT7 and Mediator subunits MED5a and MED5b also

ranked in the top ten list (Table 4.1). For structural genes in lignin biosynthesis, most

findings of regulatory interactions have been reported in the upstream part of the

pathway, as PAL1 and 4CL1 ranked the top two in the list (Table 4.2).

4.3.2 Gene regulatory network was reconstructed from the collected in-

teractions with linear differential equations

A linear differential equation system was developed to represent the dynamic

interactions within the GRN for lignin biosynthesis in Arabidopsis, this consists of
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Table 4.2.
Top 10 Structural genes with highest number of interactions reported.

Upstreama

Gene Name Locus Directb Indirectc Total

4CL1 AT1G51680 3 26 29

PAL1 AT2G37040 9 19 28

CCoAOMT AT4G34050 5 22 27

HCT AT5G48930 3 20 23

PAL4 AT3G10340 5 12 17

C4H AT2G30490 4 12 16

C3’H AT2G40890 2 13 15

F5H AT4G36220 1 12 13

CCR AT1G15950 2 10 12

COMT AT5G54160 3 9 12

aNumber of regulators;

bNumber of interaction with direct binding evidence;

cNumber of interaction without direct binding evidence.

438 transcriptional regulatory interactions from the literature (See Materials and

Methods for more details). Only the dynamics of genes were simulated in the GRN,

with TF protein amounts implicitly incorporated into the apparent K ′reg values for

conciseness. To parameterize the GRN model, we applied RNA-seq datasets from

wild type, pal1 pal2, ref3-2, ref3-3, 4cl1, cse-2, fah1, ref8 fah1 SmF5H, med5a/b ref8

and med5a/b ref2 genetic backgrounds for model training. There are in total 511

parameters to be estimated from 710 measurements. The model was further validated

with data from cadC cadD, F5H -overexpression and med5a/b genetic backgrounds, and

showed good matches with experimental measurements in both training and validation

datasets (Fig. 4.2a). To evaluate the number of active interactions predicted by the
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(a) (b)

Fig. 4.2. GRN reconstruction for lignin biosynthesis in Arabidopsis.
(a) Comparison between models prediction versus experimental mea-
surements for training and validation datasets. Adjusted coefficients
of determination were calculated to evaluate the models performance
for both training and validation datasets. (b) The GRN for lignin
biosynthesis in Arabidopsis after parameter rounding. Blue nodes
represent TFs and yellow nodes represent structural genes. Arrows
represent the regulatory interactions between a TF and its target gene.
Activation is represented by red color and inhibition by green. The
thickness of arrows are proportional to the product of the regulatory
coefficient and the corresponding TFs expression in wild type. The
plot was generated with Cytoscape 3.7.0.

model, parameter rounding was implemented by setting values smaller than 0.00001

to zero. We verified the gene expression predicted by the model after parameter

rounding only differed at most 3% from the one predicted by the model without any

rounding, and the rounded model has 320 interactions in total with non-zero regulatory

coefficients (Fig. 4.2b). To investigate the regulation exerted by the Mediator complex

subunits MED5a/b, the subnetwork of MED5a/b was extracted from the GRN by

selecting all TFs and structural genes regulated by MED5a/b or their downstream

TFs (Fig. 4.3). Interestingly, distal interactions between MED5a/b and SND1 were

present in the subnetwork, which were connected with a series of MYB factors. On the
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Fig. 4.3. Subnetwork of med5a/b for lignin biosynthesis in Arabidopsis.
Blue nodes represent TFs and yellow nodes represent structural genes.
Arrows represent the regulatory interactions between a TF and its
target gene. Activation is represented by red color and inhibition by
green. The thickness of arrows are proportional to the product of the
regulatory coefficient and the corresponding TFs expression in wild
type. The plot was generated with Cytoscape 3.7.0.

other hand, structural genes in lignin biosynthesis seem to be regulated by MED5a/b

mainly with yet unknown mechanisms other than MYB factors, as the arrows between

MED5a/b and structural genes were obviously thicker than ones between MED5a/b

and MYB20/MYB103 in general (Fig. 4.3).

4.3.3 Kinetic modeling of lignin biosynthesis in Arabidopsis was con-

structed and parameterized with a weighted objective function

To mathematically describe the metabolic dynamics for lignin biosynthesis in

Arabidopsis, a kinetic model of the pathway was developed, which includes all known

isoforms and substrate competitions in the metabolic network (See Fig. 4.1 and
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Supplementary Material D.2 for more details). The information of all kcat/Km values in

previous literature were collected to parameterize the model (Supplementary Table C.1).

Since no literature reference values were available for the Km value of CoA for 4CLs, the

Km value of caffeoyl CoA for CCoAOMT, as well as kcat and Km values of all substrates

for HCT in Arabidopsis, they were made to be free parameters in the model. To reduce

the burden of the model parameterization and also for parameter consistencies, we

further assumed that all 4CL isoforms share a common Km value for CoA; and Haldane

relationship [217] was applied to reduce the number of free parameters for HCT step,

with estimated equilibrium constants [218,219]. [216] observed that the correlation

between a given genes expression and its associated protein amount seems preserved

along different conditions, which justifies the linearity assumption between the enzyme

amount and the mRNA level for the associated gene. Therefore, the Vmax values in the

model were calculated by the product between enzyme amounts and kcat values, with

the former values further derived from the products between the mRNA levels and the

mRNA-protein transfer coefficients. Each enzyme family shared a common transfer

coefficient in the model, so that the relative ratios of each isoform were proportional

to their gene expression ratios, respectively. For the end product formation, since

monolignols other than H, G or S subunits were observed in lignin [23,32,195,196],

we assume the lignin polymerization to be a flexible process, so that all aldehydes and

alcohols can be incorporated into the polymer in the model. First order kinetics were

assumed for the lignin incorporation for each aldehyde/alcohol. This simplification is

due to the lack of mechanistic understanding for the polymerization process. Thus,

mass action kinetics was assumed. To allow for new steady states when some upstream

enzymes are blocked, sink reactions were added for all acids in the pathway. In fact,

the accumulation of acid derivatives has been frequently reported in different mutant

lines of lignin biosynthesis when lignification was impaired [223]. Free parameters

were also set for initial concentrations of Phe, CoA and shikimate, implicitly assuming

no net synthesis exists for CoA and shikimate during the modeling periods. For the

simulation of each genetic condition, enzyme amounts were adjusted by the mRNA



79

levels, and the model was integrated with the initial condition in which the rest of

metabolite concentrations being zero. The integration was stopped once the steady

state was reached, so that the whole simulation was to represent the activation and

establishment of a stable lignification process in plants.

Free parameters were estimated by training the model with data from wild type,

pal1 pal2, 4cl1, cse-2, fah1 and med5a/b ref2 genetic backgrounds. The parameterized

model was validated with data from F5H -overexpression and med5a/b lines (Fig. 4.4).

Each genetic condition has data for phenylpropanoid concentrations and lignin subunit

fluxes, and wild type condition has Vmax measurements for PAL, 4CL, CCR and

HCT as well. The objective function weighted a factor of 10 for lignin subunit fluxes.

Such weighting treatment took into consideration of the fact that the metabolome

measurements are indeed the summation of multiple subcellular pools [80, 109, 167,

168], which not necessarily represent the cytosolic condition. Therefore, instead of

attempting to fit all measurements equally well, we encouraged the model to fit the

lignin subunits data better since the main purpose of the modeling is to reliably predict

phenotypes of lignification in different genetic backgrounds. While the choice of the

weighting factor can be further tuned, the model fit in this way had a reasonable

prediction for lignin subunit fluxes for both training and validation datasets (Fig. 4.4).

4.3.4 A hierarchical model was developed to combine the GRN and the

kinetic model of lignin biosynthesis

The kinetic model presented in the previous section requires the input of mRNA

levels from the genetic line to be simulated, which limits the potential applications of

the model in the situation where gene expression measurements are missing. The GRN

developed in the current study provides a reasonable prediction for gene expression

in response to different genetic perturbations (Fig. 4.2a), thus is a great system

to generate gene expression inputs for the kinetic model. To test the idea of this

hierarchical modeling, the kinetic model was trained and validated with the same
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Fig. 4.4. Data fitting comparison between kinetic models with gene
expression inputs from RNA-seq datasets or the GRN. The perfor-
mance was compared between the kinetic model with gene expression
inputs from RNA-seq datasets (left column) and the model with inputs
from the GRN (right column). Both models were trained with the
same datasets from six genetic backgrounds (first row), and validated
with data two independent genetic backgrounds (second row). Note
that the GRN was trained without using any information from F5H -
overexpression and med5a/b lines, which ensures a fair comparison.
Adjusted coefficients of determination were calculated to evaluate the
models performance for both training and validation datasets.

datasets as presented in the previous section, with the only difference being the gene

expression inputs from the GRNs prediction (Fig. 4.4). Note that the GRN was trained
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without any data from F5H -overexpression and med5a/b backgrounds, so that the

fairness of the comparison was kept. Overall both models have similar performance for

a reasonable prediction of lignin subunit fluxes. The hierarchical model ended up with

a slightly worse value of the adjusted coefficient of determination for training data,

which was largely due to the overestimation of the H subunit flux in cse-2 background.

Other than that, lignin subunit fluxes predicted by the hierarchical model had good

matches with measurements, just as the model with RNA-seq inputs for training

data. The hierarchical model even had a better performance for the flux prediction in

med5a/b background, which is in the testing datasets.

While a weighted objective function was applied for model training to fit the

lignin data particularly, the hierarchical model had accurate predictions for measured

maximal capacities in wild type (Fig. 4.5a). PAL, 4CL, HCT and CCR all had

significantly higher capacities compared with lignin deposition rate 3.44 nmol g FW−1

min−1 in wild type (Supplementary Fig. C.1 and Fig. 4.5a), indicating the pathway is

likely running under a substrate limiting condition. Predicted maximal activities for

other enzymes were consistent with the substrate limiting hypothesis, except for F5H

and ALDH (Fig. 4.5b-d). On the other hand, the model seems to have difficulties

in fitting measurements for metabolite concentrations (Supplementary Fig. C.3). In

fact, most metabolite amounts were underestimated by the model, except for Phe,

coniferyl alcohol, and some acids. Such deviations either indicate the limitations in

the current model structure, or perhaps implying that the measured metabolite pools

are in an additional location besides lignifying cells cytoplasm. Consistent with the

latter hypothesis, multiple phenylpropanoids have been found in vacuole [80, 167,168],

and sinapate is expected to accumulate in epidermal cells, as it is the precursor of

sinapate esters for UV protection in plants [24,207–209,224]. The full list of estimated

parameters for the hierarchical model can be found in Supplementary Table C.2.
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Fig. 4.5. Maximal enzyme capacities in the hierarchical model. Maximal
enzyme capacities were calculated from the hierarchical model under wild
type condition. Capacities for PAL, 4CL and CAD are the summation
of all isoforms. Bar labels are represented as enzyme name substrate
to differentiate the competing reactions. Bars are represented as point
estimation ± standard deviation, with the latter calculated from 1,000
MCMC samples. (a) Maximal capacities for PAL, 4CL, HCT and CCR
were compared between measurements (blue bars) and predictions (red
bars). (b-d) Other maximal capacities from the hierarchical model.
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4.3.5 Flux maps for different genetic backgrounds were derived from the

hierarchical model

When a kinetic model reaches a steady state, metabolic fluxes in the model will

be constant over time, so that the flux map in this case represents the stable carbon

allocation at branch points and to different end products. We generated a lignin

biosynthesis flux map in wild type Arabidopsis to investigate the carbon allocation

in the pathway (Fig. 4.6). The model predicted 75% of entering flux ended up as G

lignin, 18% for S lignin and 5% for H lignin. A minor output flux came out from

coniferaldehyde as well. Interestingly, the model suggested that the majority of flux

going to G and S lignin synthesis was through CSE instead of HCT, which provided a

quantitative estimation of the contributions from these two alternative routes (Fig. 4.6).

This is consistent with the observations that CSE is important for the biosynthesis

of G and S lignin [21]. And the reduced lignin content in HCT -RNAi plants [225] is

likely due to the perturbations to the first HCT step. 4CLs sustained a large flux

not only for p-coumaroyl CoA, but also for caffeoyl CoA production (Fig. 4.6). This

might explain the reason why plants invest a large amount of enzyme for 4CL steps

(Fig. 4.5), as the fluxes going through 4CLs were at least two-fold compared with

other enzymes in the model (Fig. 4.6). S lignin was predicted to be synthesized mainly

from coniferyl alcohol, and F5H was functioning close to saturation to compete for

coniferyl alcohol from G lignin synthesis (91% of its maximal capacity, see Fig. 4.5c

and Fig. 4.6). Being the only enzyme working at full capacity, the reaction rate

catalyzed by F5H for coniferyl alcohol consumption was much less sensitive to the

reduced upstream fluxes (Supplementary Fig. C.4 – C.6). Therefore S/G ratios were

increased in response to the upstream flux reduction, as G lignin synthesis was much

more sensitive to those perturbations than S lignin in the model. This provides an

explanation for the increased S/G ratios in various genotypes with impaired upstream

enzymes [21,31,35,209].
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Fig. 4.6. Flux map of lignin biosynthesis in wild type Arabidopsis.
The map was generated from the hierarchical model once it reached a
steady state. The thickness of arrows are proportional to the reaction
rates. Numbers next to the arrows are shown as point estimation
± standard deviation, with the latter calculated from 1,000 MCMC
samples (Unit: nmol g FW−1 min−1).

The most significant reduction in lignin deposition was observed for pal1 pal2

and 4cl1 simulation (Supplementary Fig. C.4, C.5), with only 35% and 43% of wild

type flux, respectively. However, model applied different strategies to deal with the

perturbations to reach to a new steady state. When PAL1 and PAL2 were deleted,

hyperaccumulation of Phe in the cytosol feedback inhibited the plastidial export,

which activated the feedback inhibition of plastidial Phe to its own synthesis. This

led to an overall reduced flux entering the pathway (Supplementary Fig. C.4). On

the other hand, when 4CL1 was blocked, acid sinks were activated for p-coumarate

and ferulate to dissipate extra carbon fluxes due to the saturations of 4CL2 and 4CL4.
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These flux balancing mechanisms were missing from the previous kinetic model in

Poplar [174], and we show that the presence of these mechanisms not only improved

the models robustness, but also enabled the model to reproduce the observations in

pal1 pal2 [35, 80] and 4cl1 [223] plants.

PAL1, 4CL1 and CAD5 carried the majority of flux going through the metabolic

steps with isoforms. While other isoforms didnt play significant roles in wild type

simulation, they were activated when major isoforms were blocked (Supplementary

Fig. C.4, C.5). PAL2 was predicted to be completely inhibited by KFBs in wild

type (Fig. 4.6), while this is likely due to the model artifacts, activation of PAL2 was

observed in the med5a/b simulation (Supplementary Fig. C.7). It is unclear whether

these results are of physiological relevance at this point. On the other hand, when

4CL1 was knocked out, 4CL2 and 4CL4 were shown to function at different steps to

compensate for 4CL1 loss (Supplementary Fig. C.5). 4CL2 was the major isoform

responsible for p-coumaroyl CoA synthesis, and 4CL4 directed flux from CSE branch

to the G and S lignin biosynthesis. p-Coumarate and ferulate outcompeted caffeate

for 4CLs occupation, thus caffeate consumption by 4CLs did not carry significant flux

in 4cl1 simulation (Supplementary Fig. C.5).

4.3.6 Hierarchical model can be used to generate in silico predictions for

various genetic perturbations in lignin biosynthesis

Lignin amount and composition are major factors contributing to cell wall recal-

citrance [187, 194], and it has been shown that a lower lignin content and a higher

S/G ratio are correlated with the improved saccharification yield [20]. Therefore

plants, with reduced lignin content or adjusted monolignol composition are desired.

To evaluate the models capability in predicting these lignin phenotypes in different

genetic backgrounds, we generated the gene expression levels with the GRN by ad-

justing the synthesis of each gene in the network with a factor of zero, 0.5 and 2 to

simulate the effects of knockout, knockdown and overexpression (Fig. 4.7). Steady
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Fig. 4.7. Lignin phenotypes of various genetic perturbating lines
predicted by the hierarchical model. The hierarchical model was
applied to simulate steady states for various genetic perturbations by
multiplying the synthesis of each gene with a factor of zero for knockout
(ko), 0.5 for knockdown (kd), and 2 for overexpression (ox), individually.
Total lignin deposition rate and the S/G ratio were calculated for each
perturbation case after the steady state was reached. Most points were
overlapped with wild type condition. Points separated from the point
of wild type were labeled with the corresponding genetic perturbations.

states of gene expression were obtained for all cases except for SND1 -overexpression.

A further investigation identified that self-activation of SND1 in the model led to

an infinite accumulation of SND1, once its synthesis passed a threshold point by

overexpression. While self-activation of SND1 was supported by the direct binding of

SND1 protein to its own promoter region [52], an unknown mechanism likely exists

in plants to prevent its hyperaccumulation to ensure the system robustness. Except

for SND1 -overexpression, each gene expression output from the GRN was then fed

into the kinetic model to predict the new metabolic steady state in response to the



87

corresponding genetic perturbation. Total lignin deposition rate and the S/G ratio

were extracted from the model once the steady state was achieved (Fig. 4.7). The

highest S/G ratio was reached with PAL1 knockout, concomitant with around 65%

reduction in lignin content, which are qualitatively consistent with the previous find-

ings in pal1 genotype [35]. Increased S/G ratios were also observed for 4cl1, ref3, cse,

F5H -overexpression lines [18,21,31,209], which were captured by the model as well

(Fig. 4.7). The model predicted moderate changes in S/G ratios and lignin content by

perturbing TFs in general. The expression of MED5a/b was predicted to be inversely

proportional to the S/G ratio (Fig. 4.7). However, [22] showed a decreasing trend in

S/G ratio in med5a/b genotype. On the other hand, the model predicted a correct

trend of decreased S/G ratio when MYB103 is knocked out (Fig. 4.7). Decreased

S/G ratios were reported in myb103 genotypes from [226], which is likely due to the

observed dependence of F5H expression on MYB103 [226]. MYB103 was shown to

be upregulated in SND2 -overexpressing plants [227], which indicates SND2 can also

have positive effects on F5H expression indirectly. Consistently, the model predicted

positive correlation between S/G ratios and SND2 expression (Fig. 4.7). These ob-

servations suggest a hierarchical regulation of SND2 and MYB103 over F5H, which

is a key metabolic step controlling S/G ratios in Arabidopsis. Overall, these results

demonstrate the potential of the hierarchical model in predicting lignin phenotypes

for different genetic perturbations, as well as facilitating the global understanding of

the lignin biosynthesis.

4.4 Discussion

Systems biology approaches of lignin biosynthesis have been taken for Poplar

[51,92,174], alfalfa [93], switchgrass [94,228], etc. for their economic values. On the

other hand, [51] presented a list of identified TFs in lignin biosynthesis in various plant

species, with the largest number of TFs discovered and characterized in Arabidopsis

thaliana, significantly more than any other species. Therefore, although genetic studies
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for lignin biosynthesis in Arabidopsis may not be directly transferrable to industrial

crops, a more complete view of lignin biosynthesis can be established by integrating

the knowledge learned from the previous efforts. With the belief that such systematic

understanding will provide a rational guidance for genetic manipulation of other plants,

we collected all reported transcriptional/post-transcriptional regulatory interactions

in Arabidopsis, and an evidence-derived GRN was constructed based on literature

evidence types (Supplementary Fig. C.2). [51] have proposed a model with hierarchical

structure to describe the regulation over lignin biosynthesis, which is driven with

a top NAC master switch and followed by a series of second or third level master

switches such as MYB factors. TFs were described to function in this hierarchical

way to regulate lignin biosynthetic genes. Similar feedforward structures have been

proposed in the GRNs from [140] as well. However, the literature has examples

with a much more complex process for lignin biosynthesis regulation in Arabidopsis.

Feedback controls to SND1 from MYB4, MYB7 and MYB32 were reported in [52],

with these MYB factors being the downstream targets of other MYB factors such

as MYB46 [53, 54] and MYB83 [54]. MYB46 and MYB83 ranked in the top ten

TFs with highest number of interactions in the network (Table 4.1). This means

SND1 expression could be indirectly influenced by the combined effects of all these

interactions, if most of interactions identified previously are of physiological relevance.

Evidence also exists for self-activation for SND1 [52] and self-inhibition for MYB4

and MYB7 [53], meanwhile Mediator complex shows a distal connection with SND1

through a series of MYB factors. All these complex interactions were preserved in

the parameterized GRN (Fig. 4.2b and Fig. 4.3), suggesting the gene regulation over

lignin biosynthesis proposed by [51] is likely an oversimplified model.

The GRN parameterized with RNA-seq datasets in the current study suggested

the Mediator complex is regulating lignin biosynthetic genes by mechanisms other

than via MYB factors. Current GRN is not able to propose hypotheses for the

possible mechanisms, therefore more studies are needed to investigate the regulatory

mechanisms that control the expression of lignin biosynthetic genes. Additionally,
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further studies on the regulation of 4CL1 might be warranted, since it ranked the first

in the top ten structural genes with highest number of interactions in the network

(Table 4.2), suggesting it to be an important gene. Yet direct bindings of TFs were

only established for three cases (Supplementary Table C.3), far less than the average

evidence ratio of direct binding in the network (10.3% versus 23.6%).

Kinetic modeling offers a mechanistic framework to integrate information from

different biological components such as metabolites and enzymes to the emergent

properties of the system. It has been shown that given the correctness of individual

enzyme kinetics, the system developed in silico using kinetic modeling can reproduce

the cellular dynamics accurately [91]. While the information of kinetic parameters

for enzymes in lignin biosynthesis in Arabidopsis are incomplete, we implemented an

optimization approach to estimate all unknown factors simultaneously given data from

transcriptome, metabolome, lignin compositions, as well as selected enzyme assays.

We compared the performance of two kinetic models, each with Vmax values tuned

from RNA-seq datasets or from the GRN estimation. It should be noted that since

our GRN lacks the potential signaling mechanisms from metabolism to transcriptional

machinery, TFs expression in our GRN was not affected by the genetic perturbations

to the downstream structural genes. Yet such feedback influences were frequently

observed for different genetic lines such as in pal1 pal2 plants [35]. Therefore the

estimated gene expression from GRN is only an approximation of the measurements,

and a worse performance in data fitting is expected for the model using GRN inputs,

if transcriptional regulation plays significant roles in lignin biosynthesis in response to

genetic perturbations. While the model with GRN inputs had a worse performance in

cse-2 simulation, it has similar capability in reproducing experimental observations as

the model with RNA-seq inputs for other simulation. The model with GRN inputs

even had a slightly better match with data from med5a/b plants (Fig. 4.4). It is

possible this is due to the insufficient training of models with limited size of datasets.

An alternative explanation might be that while the expression of genes is sensitive to

local perturbations, some post-transcriptional mechanisms exist to partially control
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the whole metabolism closer to the wild type condition. Furthermore, understanding

of post-transcriptional regulation is likely important and missing in the current model.

Information on this could be obtained with proteomic data.

The hierarchical model combining the GRN and the kinetic model reproduced

the lignin phenotypes in different genotypes reasonably well (Fig. 4.4). And it also

incorporated the enzyme information for PAL, 4CL, HCT and CCR correctly (Fig. 4.5).

However, a global underestimation for metabolite concentrations was observed from

the model outputs (Supplementary Fig. C.3). Initially the objective function was

designed to put less weights for metabolome data, since they are collected from the

whole basal stem tissue, thus containing information other than metabolite pools in

lignifying cell cytoplasm. Yet such large deviations for so many metabolites were

still unexpected. One can argue that shikimate is also present in plastids where

it is produced [1]; and p-coumarate, caffeate and ferulate have been found to be

majorly sequestered in vacuole in soybeans [167]; sinapate is likely accumulated mainly

in epidermal cells to generate sinapate esters for UV protection [24, 207–209, 224];

aldehydes/alcohols also likely exist extracellularly, since they are involved in the lignin

polymerization. However, these facts fail to explain the underestimation of CoA esters

in the model (Supplementary Fig. C.3). On the other hand, the high amounts of

CoA esters are indeed contradictory with the high CCR activity (Fig. 4.5a) and high

binding affinities of CCR enzymes (Supplementary Table C.1). Note that the highest

Km value of CCR is for caffeoyl CoA, which is reported to be 12.5 µM [36]. Even by

an extreme estimation of cytosol volume in basal stem tissue, the highest value of

binding affinity of caffeoyl CoA can be no larger than 12.5 nmol g FW−1 (assuming

100% of cytosol volume, making the unit conversion factor to be 1 mL g FW−1). The

total pool of CoA esters was 9.6 nmol g FW−1 (Supplementary Fig. C.3) and CCR

maximal capacity was 42.6 nmol g FW−1 min−1 in wild type Arabidopsis (Fig. 4.5a).

Also note that while CCR Vmax was measured only with p-coumaroyl CoA as the

substrate, this measurement is in fact a lower bound since p-coumaroyl CoA has the

slowest kcat among the various CoA esters [36, 37]. Calculating with typical Michaelis-
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Menten kinetics, the fluxes through CCR steps should be no smaller than 19 nmol g

FW−1 min−1 given all above information, which is almost six fold of measured lignin

deposition rate in wild type Arabidopsis (3.44 nmol g FW−1 min−1, Supplementary

Fig. C.1). This simple calculation clearly suggests inconsistencies between different

type of measurements, and current model was only able to fit lignin fluxes and maximal

capacities by sacrificing the performance in reproducing metabolite concentrations.

More advanced techniques providing more reliable measurements or finer subcellular

resolution are expected to overcome the challenges faced with the current model.

Meanwhile it is interesting to explore a more flexible modeling framework to be

relatively insensitive to these inconsistencies. Such a framework might be achievable

with some more carefully designed weighting mechanisms, which is rudimentarily

explored in the current study.

The hierarchical model was able to generate flux maps under various genotypes

(Fig. 4.6, Supplementary Fig. C.4 – C.9). The model successfully captured increased

S/G ratios in several genotypes [21,31,35,209], without the extra assumptions such as

metabolic channeling as taken in some other modeling approaches for lignin biosynthe-

sis [93–95]. Flux towards the S lignin synthesis was robust against genetic perturbations

in the upstream pathway, since F5H was functioning at almost its Vmax in wild type

simulation (Fig. 4.5c, 4.6). It is interesting to observe that F5H catalyzed coniferyl

alcohol consumption is the only enzyme limiting step in wild type simulation, so

that S lignin production is tightly controlled by F5H expression. This tight control

was confirmed with the simulation of F5H -overexpression and fah1 (Supplementary

Fig. C.8, C.9), with nearly 100% and 0% of S monomer in the final lignin polymer,

respectively. In addition, the hierarchical model quantitatively evaluated the contri-

butions from CSE and HCT branches for the synthesis of G and S lignin (Fig. 4.6).

78% of carbon flux from the first HCT step was going through CSE branch in wild

type simulation (Fig. 4.6). The high abundances of 4CL enzymes ensured the efficient

utilization of caffeate to generate downstream products (Fig. 4.5a). The presence of

CSE branch reduced the burden of HCT in the model, since p-coumaroyl CoA and
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caffeoyl shikimate compete for the HCT catalytic sites. The competition made HCT

itself unable to efficiently direct most carbon flux to G and S lignin synthesis, since

without CSE, 46% of flux entering lignin biosynthesis ended up as H lignin in the

model (Supplementary Fig. C.6). This is in agreement with higher H lignin content in

cse plants [21]. Intriguingly, in pal1 pal2 and 4cl1 simulation, flux through the second

HCT step was much less affected in response to the reduction of upstream flux, while

flux through CSE was largely reduced (Supplementary Fig. C.4, C.5). This was mainly

due the reduction of p-coumaroyl CoA led to less competition between p-coumaroyl

CoA and caffeoyl shikimate over HCT catalytic sites, which increased the relative

contribution from second HCT step for G and S lignin synthesis (Supplementary

Fig. C.4, C.5). In all simulated genotypes, ALDH steps did not carry any significant

fluxes. While ALDH has been found to be important for acid synthesis [229], current

modeling results suggest it might play important roles in other cell types such as

epidermis.

Isoforms are known to be present for PAL, 4CL and CAD steps for lignin biosynthe-

sis in Arabidopsis [23, 31,35]. The hierarchical model predicted the majority of fluxes

going through one dominant isoform for each step, namely, PAL1, 4CL1 and CAD5.

Compensating roles of other isoforms were only observed when the dominant isoform

was deleted (Supplementary Fig. C.4, C.5). Shifted flux distribution among acids

were observed in 4cl1 simulation (Supplementary Fig. C.5). 4CL catalyzed caffeate

consumption was responsible for 70% of synthetic flux of G and S lignin in wild type

simulation (Fig. 4.6), while this reduced to only 2% in 4cl1 simulation (Supplementary

Fig. C.5). In 4cl1 simulation, ferulate was used instead to contribute to 39% of

flux to G and S lignin synthesis (Supplementary Fig. C.5). Examinations over acid

concentrations in the model found that all acids were accumulated in 4cl1 simulation,

however, p-coumarate and ferulate accumulated to 1877 and 252 fold of wild type

concentrations, while caffeate only accumulated to 3 fold of wild type case. These huge

differences led to the almost full occupation of 4CL catalytic sites with p-coumarate

and ferulate, thus shifting the flux distribution of acid consumptions in 4cl1 simulation.
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For CAD steps, multiple CAD isoforms are found in Arabidopsis in addition to major

isoforms CAD4 and CAD5 [33]. The current model only incorporated CAD3 as a

third isoform, yet it did not carry any significant fluxes in all simulated cases due

to its extremely low expression. cadC cadD plants in [32] still deposited G and S

lignin, suggesting the important compensating roles of other CAD isoforms. Therefore,

incorporations of other CAD isoforms might be necessary to accurately capture the

observations in cadC cadD plants.

The integration between the GRN and the kinetic model for lignin biosynthesis

has great potential in predicting the lignin phenotypes by simulating the cellular

metabolism of various genotypes. By simulating the effects of knockout, knockdown and

overexpression for each gene in the network, the hierarchical model made predictions

for the total lignin contents and S/G ratios for each genotype (Fig. 4.7). Most of the

findings were consistent with previous reports, supporting the reliability of the model

to reproduce in vivo situations. Overall the model predicted that higher S/G ratios

can be achieved by either removing upstream enzymes to reduce G lignin synthesis,

or overexpressing F5H enzyme to direct more flux to S lignin. Overexpression of

SND2 or knockout of MYB103 was predicted to have effects on S/G ratio, which

is due to the activation of F5H expression by their presence in the model. While

the effect of MYB103 knockout has been validated in previous literature [226], it

would be interesting to see if SND2 overexpression also led to higher S/G ratios in

Arabidopsis. In general, it seems that perturbing structural genes has more significant

effects on lignin phenotypes, however, due to the dynamic and highly-connected nature

of the hierarchical model, nonlinear outcomes might exist for combinatory genetic

perturbations. This is worth exploring in future studies, and the current model is a

great starting point to explore such possibilities. Of course, some improvements can

be made for the model presented in the current study, such as resolving the artifacts

of complete inhibition of PAL2 by KFBs in wild type, infinite loops of self-activation

and accumulation of SND1 in SND1 -overexpression lines. These limitations could be

solved by having more mechanistic equations for those regulatory processes.
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In conclusion, the hierarchical modeling approach by integrating a large scale GRN

and a kinetic model offers great opportunities to study the dynamic responses of the

metabolism to the transcriptional regulatory machinery and various genetic perturba-

tions. Most of the observed phenotypes in previous reports for lignin biosynthesis in

Arabidopsis can be captured by the current model, with explanations provided by the

interactions between transcriptional regulation, isoform and substrate competitions.

These in silico results generate new hypotheses to facilitate a global understanding of

the whole pathway, and the model also acts as an efficient platform to systematically

predict desired genotypes by scanning possible genetic strategies for all gene targets

related to the pathway.
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5. SUMMARY

Mathematical modeling of cellular process is an important tool in systems biology,

which helps to unravel the dynamic interactions between individual biological com-

ponents. This is usually achieved by developing models with limited but plausible

assumptions, parameterizing the model with data, and then testing the model by

making predictions to be verified with experimental measurements. Various analysis

can then applied with this in silico model for a better understanding of the biological

system. For instance, biological properties such as metabolic fluxes, which are usually

not able to be directly measured with current techniques, can be estimated with

solving a kinetic model. Competing hypotheses of the possible regulatory mechanisms

occurring in cells can be tested by mechanistically integrating them into separate

kinetic models, and comparison of these candidate model capabilities in reproducing

observations can help to reject incorrect hypotheses. Moreover, a dynamic model of

complex systems can be a valuable platform to iteratively integrating new measure-

ments and generating testable interpretations/hypotheses over the system, offering

great opportunities to identify knowledge gaps, as well as promising directions for

further exploration. In the current study, depending on the amount/types of available

measurements and questions to answer, various mathematical modeling strategies are

taken to simulate metabolism in plants.

Metabolic flux analysis was taken to quantitatively evaluate the contributions of

two alternative L-phenylalanine (Phe) biosynthetic routes in Petunia. Due to the

limited kinetic knowledge of the enzymes in the pathway, simplified metabolic models

were constructed. The models were able to calculate the steady state flow of carbon,

metabolic fluxes, which were estimated from isotopic labeled substrate feeding data

using mass and isotope balances. We showed that fluxes can be reliably estimated with

this metabolic model, and the model helped to reveal the importance of the cytosolic
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phenylpyruvate pathway for Phe biosynthesis in Petunia, as well as the potential

interactions between two alternative routes for Phe homeostasis. Furthermore, similar

metabolic flux analysis in pal1 pal2 Petunia has determined a significant sequestering

pool of Phe when its consumption was impaired. Hyperaccumulation of cytosolic Phe

also shuttled down the shikimate pathway in plastids, as suggested by the model.

These simple models helped to extract flux information from small datasets, and

together with experimental efforts, a complex Phe biosynthetic network in plants is

being uncovered.

One limitation of metabolic flux analysis is being unable to simulate dynamic

situations. Kinetic modeling is a superior strategy for such cases. This modeling

strategy simulates cellular metabolism by representing the kinetics of each enzyme as

a differential equation. Interactions between enzymes and pathway intermediates can

be mechanistically simulated with this type of model. To study the dynamic responses

of the general phenylpropanoid metabolism in Arabidopsis over different metabolic

perturbations, we formulated and parameterized a kinetic model to investigate the key

mechanisms contributing to the observed metabolic profiles under different isotopically

labeled Phe treatments. With an information theoretic approach, a kinetic model

with vacuole storage of Phe and p-coumarate was shown to have best match with

feeding datasets. Plastidial Phe export was predicted to be the major metabolic step

to control the flux entering the phenylpropanoid metabolism. Moreover, feedback

inhibition from cytosolic Phe toward the plastidial transporter in the model provided

one possible way for plastids to react to downstream Phe requirements. In silico

parameterization of these metabolic steps paved the way for applying similar model

developing approach to the whole lignin biosynthesis.

Large scale models have tremendous advantages in capturing complex biological

phenomena for a wide range of environmental and genetic conditions. This is because

a model with limited coverage needs to have more assumptions to deal with the

interactions between modeled players and components outside of modeling scope.

These assumptions can be easily invalid if those interactions change dramatically
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and bring unexpected influences into the model system. While a large scale model is

able to simulate most relevant interactions to cover the complex biological network,

sufficient model training is an enormous challenge limiting its success. In the current

study, we aimed to incorporate transcriptional control of lignification in Arabidopsis by

constructing a hierarchical model combining a gene regulatory network and the kinetic

model of lignin biosynthesis. To overcome the curse of dimensionality in large scale

modeling, attempts have been made to take full use of established knowledge for the

pathway. A gene regulatory network was first constructed from a candidate interaction

sets with reported literature evidence. Next, a kinetic model for the entire lignin

biosynthetic pathway downstream of Phe was formulated using in vitro information

and by estimating kinetic parameters with missing reference values. In this way,

we managed to develop a large scale model with data from 13 different genotypes

in Arabidopsis. The model contains hundreds of interactions and reactions, and it

successfully reproduced observed phenotypes in various genetic perturbation lines.

Detailed explanations are provided to uncover the causes for those observations, which

can be further explored either with new experiments or testing the model with new

datasets. The model was also applied to thoroughly examine for promising genotypes

for desired phenotypes resulting from alterations of single gene expression, which

opened more possibilities for metabolic engineering.

Overall, mathematical modeling is a powerful approach to find a multifaceted in

silico framework that integrates information from data, even if they are from different

types of measurements. The flexibility of the modeling approaches makes it suitable

to meet different needs to interpret data for different questions and applications. Here

we have shown that mathematical modeling can advance the understanding of plant

metabolism by learning from data to propose casual relationships between different

metabolic factors. Modeling applications in Phe and lignin biosynthetic networks

aided in discoveries of key mechanisms in cellular metabolism, and extension of these

modeling efforts are expected to continually contribute to answer different research

questions in plants.
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[146] S. Imam, S. Schäuble, A. N. Brooks, N. S. Baliga, and N. D. Price, “Data-driven
integration of genome-scale regulatory and metabolic network models,” Frontiers
in Microbiology, vol. 6, p. 409, 2015.

[147] Z. Wang, S. A. Danziger, B. D. Heavner, S. Ma, J. J. Smith, S. Li, T. Herricks,
E. Simeonidis, N. S. Baliga, J. D. Aitchison et al., “Combining inferred regulatory
and reconstructed metabolic networks enhances phenotype prediction in yeast,”
PLoS Computational Biology, vol. 13, no. 5, p. e1005489, 2017.

[148] J. A. Suzich, J. F. D. Dean, and K. M. Herrmann, “3-Deoxy-D-arabino-
heptulosonate 7-phosphate synthase from carrot root (Daucus carota) is a
hysteretic enzyme,” Plant Physiology, vol. 79, no. 3, pp. 765–770, 1985. [Online].
Available: http://www.plantphysiol.org/content/79/3/765

[149] J. E. B. P. Pinto, J. A. Suzich, and K. M. Herrmann, “3-deoxy-D-arabino-
heptulosonate 7-phosphate synthase from potato tuber (Solanum tuberosum
L.),” Plant Physiology, vol. 82, no. 4, pp. 1040–1044, 1986. [Online]. Available:
http://www.plantphysiol.org/content/82/4/1040

[150] W. E. Dyer, J. M. Henstrand, A. K. Handa, and K. M. Herrmann, “Wounding
induces the first enzyme of the shikimate pathway in Solanaceae,” Proceedings
of the National Academy of Sciences, vol. 86, no. 19, pp. 7370–7373, 1989.
[Online]. Available: https://www.pnas.org/content/86/19/7370

[151] B. Keith, X. N. Dong, F. M. Ausubel, and G. R. Fink, “Differential induction
of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis
thaliana by wounding and pathogenic attack,” Proceedings of the National
Academy of Sciences, vol. 88, no. 19, pp. 8821–8825, 1991. [Online]. Available:
https://www.pnas.org/content/88/19/8821

[152] A. Carruthers and D. Melchior, “Study of the relationship between bilayer
water permeability and bilayer physical state,” Biochemistry, vol. 22, no. 25, pp.
5797–5807, 1983.

[153] A. C. Chakrabarti and D. W. Deamer, “Permeability of lipid bilayers
to amino acids and phosphate,” Biochimica et Biophysica Acta (BBA) -
Biomembranes, vol. 1111, no. 2, pp. 171 – 177, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005273692903089



111

[154] R. A. Williams, C. D. Mamotte, and J. R. Burnett, “Phenylketonuria: an inborn
error of phenylalanine metabolism,” The Clinical Biochemist Reviews, vol. 29,
no. 1, p. 31, 2008.

[155] G. Fuchs, M. Boll, and J. Heider, “Microbial degradation of aromatic com-
poundsfrom one strategy to four,” Nature Reviews Microbiology, vol. 9, no. 11,
p. 803, 2011.

[156] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
recipes 3rd edition: The art of scientific computing. Cambridge University
Press, 2007.

[157] H. Maeda, H. Yoo, and N. Dudareva, “Prephenate aminotransferase directs
plant phenylalanine biosynthesis via arogenate,” Nature Chemical Biology, vol. 7,
no. 1, p. 19, 2011.

[158] J. Pi, P. J. Wookey, and A. J. Pittard, “Cloning and sequencing of the pheP
gene, which encodes the phenylalanine-specific transport system of Escherichia
coli,” Journal of Bacteriology, vol. 173, no. 12, pp. 3622–3629, 1991.

[159] J. K. Saini, R. Saini, and L. Tewari, “Lignocellulosic agriculture wastes as
biomass feedstocks for second-generation bioethanol production: concepts and
recent developments,” 3 Biotech, vol. 5, no. 4, pp. 337–353, 2015.

[160] S. Kim and B. E. Dale, “Global potential bioethanol production from wasted
crops and crop residues,” Biomass-Bioenergy, vol. 26, no. 4, pp. 361–375, 2004.

[161] H. Zabed, J. Sahu, A. Boyce, and G. Faruq, “Fuel ethanol production from
lignocellulosic biomass: an overview on feedstocks and technological approaches,”
Renewable and Sustainable Energy Reviews, vol. 66, pp. 751–774, 2016.

[162] C. Alvarez, F. M. Reyes-Sosa, and B. Dı́ez, “Enzymatic hydrolysis of biomass
from wood,” Microbial Biotechnology, vol. 9, no. 2, pp. 149–156, 2016.

[163] N. Pareek, T. Gillgren, and L. J. Jönsson, “Adsorption of proteins involved in hy-
drolysis of lignocellulose on lignins and hemicelluloses,” Bioresource Technology,
vol. 148, pp. 70–77, 2013.

[164] T. Huang, T. Tohge, A. Lytovchenko, A. R. Fernie, and G. Jander, “Pleiotropic
physiological consequences of feedback-insensitive phenylalanine biosynthesis in
Arabidopsis thaliana,” Plant Journal, vol. 63, no. 5, pp. 823–835, 2010.

[165] M. J. Chen, V. Vijaykumar, B. W. Lu, B. Xia, and N. Li, “Cis- and trans-
cinnamic acids have different effects on the catalytic properties of Arabidopsis
phenylalanine ammonia lyases PAL1, PAL2, and PAL4,” Journal of Integrative
Plant Biology, vol. 47, no. 1, pp. 67–75, 2005.

[166] G. S. Hu, J. M. Jia, Y. J. Hur, Y. S. Chung, J. H. Lee, D. J. Yun, W. S.
Chung, G. H. Yi, T. H. Kim, and D. H. Kim, “Molecular characterization
of phenylalanine ammonia lyase gene from Cistanche deserticola,” Molecular
Biology Reports, vol. 38, no. 6, pp. 3741–3750, 2011.

[167] N. Benkeblia, T. Shinano, and M. Osaki, “Metabolite profiling and assessment of
metabolome compartmentation of soybean leaves using non-aqueous fractionation
and GC-MS analysis,” Metabolomics, vol. 3, no. 3, pp. 297–305, 2007.



112

[168] S. Krueger, P. Giavalisco, L. Krall, M. C. Steinhauser, D. Büssis, B. Usadel,
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A. SUPPLEMENTARY TABLE FOR INTRODUCTION

Table A.1.: List of kinetic models in plants. A complete list of plant kinetic models is

shown. Models presented in [82] are not included here.

Organism Tissue/Cell

Type

Pathway Compartments Rate Equations Parameter

Assignments

References

Saccharum

officinarum

Culm Tissue

from Internode

3-10

Sucrose

Metabolism

Cytoplasm Michaelis-Menten;

Hill Equation

Measured [96,230]

Arabidopsis

thaliana

Leaf Mesophyll

Cells

Aspartate-

Derived Amino-

Acid Pathway

Chloroplast Michaelis-Menten;

Mass Action; Hill

Equation

Measured [91,231]

Nicotiana

tabacum L.

Leaves Photosynthesis Cytoplasm; Chloro-

plast; Thylakoid

Membranes and

Lumen

Michaelis-Menten Measured;

Fitted

[232]

Catharanthus

roseus

Hairy Roots Central Carbon

Metabolism

Not Specified Michaelis-Menten;

Hill Equation

Measured;

Fitted

[104]

Solanum

tuberosum

Tubers Phenylpropanoid

Metabolism

Cytoplasm Mass Action; Gen-

eralized Mass Ac-

tion

Fitted [100]

”Typical”

C3 Plant

C3 Leaves Photosynthetic

C3 Carbon

Metabolism

Cytoplasm; Chloro-

plast

Michaelis-Menten Measured [97]

Arabidopsis

thaliana

Leaves Aliphatic Glu-

cosinolate

Biosynthesis

Not Specified Michaelis-Menten;

Mass Action

Measured;

Fitted

[116]

Mentha

piperita

Secretory Cells

in Glandular

Trichomes

p-Menthane

Monoterpene

Biosynthesis

Cytoplasm Michaelis-Menten Measured;

Fitted

[114,233]

Eschscholtiza

californica

Cell Cultures Central Carbon

Metabolism

Cytoplasm; Vacuole Michaelis-Menten;

Hill Equation

Fitted [200,234]

Arabidopsis

thaliana

Cell Cultures Fenclorim

Metabolism

Cytoplasm; Cell Wall Michaelis-Menten;

Mass Action

Measured;

Fitted

[101]

Arabidopsis

thaliana

Leaves Flavonoid Path-

way

Not Specified Mass Action Fitted [102]

Petunia hy-

brida

Flowers Benzenoid Net-

work

Cytoplasm Michaelis-Menten;

Mass Action

Fitted [103]

Populus

trichocarpa

Xylem Lignin Biosyn-

thesis

Cytoplasm Generalized Mass

Action

Fitted [92]

Arabidopsis

thaliana

Leaves Central Car-

bohydrate

Metabolism

Not Specified Michaelis-Menten Fitted [105]

Medicago

Sativa L.

Sixth Internode Lignin Biosyn-

thesis

Cytoplasm Generalized Mass

Action

Fitted [93]

Arabidopsis

thaliana

Cell Cultures Cell Wall

Biosynthesis

Not Specified Mass Action Fitted [202]

Solanum

tuberosum

Hairy Roots Central Carbon

Metabolism

Not Specified Michaelis-Menten Measured;

Fitted

[201]

continued on next page
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Table A.1.: continued

Organism Tissue/Cell

Type

Pathway Compartments Rate Equations Parameter

Assignments

References

Solanum ly-

copersicum

Pericarp Sugar

Metabolism

Cytoplasm; Plastid;

Vacuole

Michaelis-Menten;

Mass Action; Hill

Equation

Measured;

Fitted

[115]

Populus

trichocarpa

Secondary Dif-

ferentiating

Xylem

Lignin Biosyn-

thesis

Cytoplasm Michaelis-Menten Measured [174]

C4 Plants Bundle Sheath

and Mesophyll

Cells

Photosynthesis Cytoplasm; Chloro-

plast; Peroxisome

Michaelis-Menten Measured [98,198]

Panicum

virgatum

Stem and Tiller

Tissue

Lignin Biosyn-

thesis

Cytoplasm Generalized Mass

Action

Fitted [94]

Brachypodium

distachyon

Not Specified Lignin Biosyn-

thesis

Cytoplasm; ; Outer

Endoplasmic Reticu-

lum Surface

Generalized Mass

Action

Fitted [95]

Arabidopsis

thaliana

Basal Stem Phenylpropanoid

Metabolism

Cytoplasm; Plastid;

Vacuole

Michaelis-Menten Fitted [109]
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B. SUPPLEMENTARY FIGURES AND TABLE FOR

DYNAMIC MODELING OF SUBCELLULAR

PHENYLPROPANOID METABOLISM IN ARABIDOPSIS

LIGNIFYING CELLS
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Fig. B.1. Total [13C6]-lignin in stems fed with [13C6]-Phe. Measure-
ments are represented as points by average ± standard deviation
(n=3).



122

0.00

3.00

6.00

9.00

12.00

15.00

18.00

a
c
ti
v
it
y

(n
m

o
l 
g
 F

W
-1

m
in

-1
)

PAL 

0.00

25.00

50.00

75.00

100.00

125.00

150.00

a
c
ti
v
it
y

(n
m

o
l 
g
 F

W
-1

m
in

-1
)

4CL

Fig. B.2. Measured and estimated PAL and 4CL activities in wild
type stems over the feeding period. Shown are the maximal capacities
of PAL and 4CL, which were obtained from measurements within
the feeding period (black bars), or refined model prediction (grey
bars). All bars are presented as average ± standard deviation (n=3
for measurements).
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Fig. B.3. AIC scores of the models relative to one without cinnamate
and p-coumaroyl CoA mass balances. Three additional models were
generated by considering all possible combinations of mass balances of
cinnamate and p-coumaroyl CoA. Corrected AIC was applied to eval-
uate the performance of these models. Abbreviations: CA, cinnamate;
pCACoA, p-coumaroyl CoA.



124

Phe

pCA

V
a

c
u

o
le

Phe

Plastid

Phe

Cytosol

2.04
12.84

14.48

14.43

0.07

0.04

Xylem

Fig. B.4. Flux distribution of the phenylpropanoid pathway during
3 mM [13C6]-Phe feeding condition. Shown were the fluxes at 240
min after feeding, predicted by the refined model. The width of the
arrows are proportional to the flux through the reactions (Units: nmol
g FW−1 min−1).
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Table B.1.
AIC scores of the models relative to the one without any potential
metabolite-enzyme interactions. Shown are the relative change of AIC
scores when each interaction was introduced into the refined model.
No interaction significantly improves the models performance since all
AIC score changes are positive.

Introduced interaction ∆AIC

Phev competitively inhibits VCAT 0.32

Phec competitively inhibits PXT 0.33

Phev uncompetitively inhibits VCAT 0.46

pCAc uncompetitively inhibits PXT 1.57

Phec uncompetitively inhibits PCAT 2.25

pCAc uncompetitively inhibits PAL 2.25

pCAv uncompetitively inhibits PVT 2.59

pCAc competitively inhibits PAL 2.68

pCAc uncompetitively inhibits PCAT 2.69

pCAv competitively inhibits PVT 2.74

pCAc competitively inhibits PXT 2.74

pCAc competitively inhibits PCAT 2.76

Phec activates 4CL 2.79

Phec uncompetitively inhibits PXT 18.04
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C. SUPPLEMENTARY FIGURES AND TABLES FOR

COMBINING GENE REGULATORY NETWORK AND

KINETIC MODELING OF LIGNIN BIOSYNTHESIS IN

ARABIDOPSIS

0

5

10

15

20

25

30

35

3 4 5 6 7 8 9 10

lig
n
in

 c
o

n
te

n
t 

(μ
m

o
l 
g

 F
W

-1
)

day after bolting

Lignin deposition in developing stems

wild type

pal1 pal2

4cl1

wild type in Guo et al. (2018)

Fig. C.1. Lignin deposition in wild type, pal1 pal2 and 4cl1 Arabidopsis.
Molecular weight for lignin monomer was assumed to be 202.4 g/mol,
which was calculated based on wild type ratios of H, G and S lignin
and their molecular weights respectively.
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Fig. C.2. Reported regulatory interactions of lignin biosynthesis in
Arabidopsis. Each node in the network represents one gene involved
in lignin biosynthesis, with yellow color for structural genes and blue
for TFs. Interactions are represented as arrows between the TFs and
the targets. Activations are shown in red and inhibitions are shown in
green. Arrows in solid lines represents the corresponding interactions
were supported with evidence of direct binding, while arrows in dashed
lines represents the interactions without direct binding evidence. The
plot was generated with Cytoscape 3.7.0.
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Fig. C.3. Metabolite concentrations of lignin biosynthesis in wild
type Arabidopsis. Blue bars represent LC-MS/MS measurements for
wild type Arabidopsis, and red bars represent predicted metabolite
concentrations from the hierarchical model. The predicted values were
obtained once the model reached a steady state. Bars for measurements
are represented as average ± standard deviation. Bars for model
predictions are shown as point estimation ± standard deviation, with
the latter calculated from 1,000 MCMC samples.
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Fig. C.4. Flux map of lignin biosynthesis in pal1 pal2 Arabidopsis
from the hierarchical model (Unit: nmol g FW−1 min−1).
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Fig. C.5. Flux map of lignin biosynthesis in 4cl1 Arabidopsis from
the hierarchical model (Unit: nmol g FW−1 min−1).
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Fig. C.6. Flux map of lignin biosynthesis in cse-2 Arabidopsis from
the hierarchical model (Unit: nmol g FW−1 min−1).
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Fig. C.7. Flux map of lignin biosynthesis in med5a/b Arabidopsis
from the hierarchical model (Unit: nmol g FW−1 min−1).
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Fig. C.8. Flux map of lignin biosynthesis in F5H -overexpressing
Arabidopsis from the hierarchical model (Unit: nmol g FW−1 min−1).
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Fig. C.9. Flux map of lignin biosynthesis in fah1 Arabidopsis from
the hierarchical model (Unit: nmol g FW−1 min−1).
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Table C.1.: List of parameters collected from the literature

for kinetic modeling.

Parameter Type Enzyme Metabolite Value Reference

Vmax PAL1 Phe 5.5 pkat/µg protein [34]

Vmax PAL2 Phe 10.5 pkat/µg protein [34]

Vmax PAL4 Phe 9.9 pkat/µg protein [34]

Km PAL1 Phe 68 µM [34]

Km PAL2 Phe 64 µM [34]

Km PAL4 Phe 71 µM [34]

kcat C4H CA 102.9 min−1 [235]

Km C4H CA 0.5 µM [235]

Vmax 4CL1 pCA 1251.1 nkat/mg proteina [29]

Vmax 4CL1 KA 337.8 nkat/mg proteina [29]

Vmax 4CL1 FA 663.1 nkat/mg proteina [29]

Km 4CL1 pCA 38 µM [29]

Km 4CL1 KA 11 µM [29]

Km 4CL1 FA 199 µM [29]

Vmax 4CL2 pCA 310 nkat/mg protein [236]

Vmax 4CL2 KA 158 nkat/mg protein [236]

Km 4CL2 pCA 233 µM [236]

Km 4CL2 KA 24 µM [236]

Vmax 4CL4 pCA 100 nkat/mg protein [30]

Vmax 4CL4 KA 187 nkat/mg protein [30]

Vmax 4CL4 FA 153 nkat/mg protein [30]

Vmax 4CL4 SA 105 nkat/mg protein [30]

Km 4CL4 pCA 432 µM [30]

Km 4CL4 KA 186 µM [30]

Km 4CL4 FA 26 µM [30]

Km 4CL4 SA 20 µM [30]

continued on next page
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Table C.1.: continued

Parameter Type Enzyme Metabolite Value Reference

Vmax CSE KASK 9.3 pkat/µg protein [21]

Km CSE KASK 96.5 µM [21]

kcat C3’H pCASK 612 min−1 [237]

Km C3’H pCASK 7 µM [237]

kcat CCR pCACoA 1.63 min−1 [37]

kcat CCR KACoA 2.18 min−1 [36]

kcat CCR FACoA 1.9 min−1 [37]

kcat CCR SACoA 1.67 min−1 [37]

Km CCR pCACoA 2.27 µM [37]

Km CCR KACoA 12.5 µM [36]

Km CCR FACoA 0.42 µM [37]

Km CCR SACoA 0.55 µM [37]

Vmax COMT KA 14.6 pkat/µg protein [41]

Vmax COMT 5FA 30.1 pkat/µg protein [41]

Vmax COMT KAld 35.9 pkat/µg protein [41]

Vmax COMT 5CAld 66.2 pkat/µg protein [41]

Vmax COMT KAlc 35.3 pkat/µg protein [41]

Vmax COMT 5CAlc 51.9 pkat/µg protein [41]

Km COMT KA 24.2 µM [41]

Km COMT 5FA 32.0 µM [41]

Km COMT KAld 19.7 µM [41]

Km COMT 5CAld 17.9 µM [41]

Km COMT KAlc 51.5 µM [41]

Km COMT 5CAlc 31.6 µM [41]

Vmax F5H FA 4 pkat/mg protein [40]

Vmax F5H CAld 5 pkat/mg protein [40]

Vmax F5H CAlc 6 pkat/mg protein [40]

continued on next page
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Table C.1.: continued

Parameter Type Enzyme Metabolite Value Reference

Km F5H FA 1000 µM [40]

Km F5H CAld 1 µM [40]

Km F5H CAlc 3 µM [40]

kcat CAD5 pCAld 14.52 s−1 [33]

kcat CAD5 KAld 7.3 s−1 [33]

kcat CAD5 CAld 12.19 s−1 [33]

kcat CAD5 5CAld 8.28 s−1 [33]

kcat CAD5 SAld 13.72 s−1 [33]

Km CAD5 pCAld 13 µM [33]

Km CAD5 KAld 68 µM [33]

Km CAD5 CAld 35 µM [33]

Km CAD5 5CAld 22 µM [33]

Km CAD5 SAld 20 µM [33]

kcat CAD4 pCAld 3.44 s−1 [33]

kcat CAD4 KAld 1.33 s−1 [33]

kcat CAD4 CAld 2.10 s−1 [33]

kcat CAD4 5CAld 2.52 s−1 [33]

kcat CAD4 SAld 0.72 s−1 [33]

Km CAD4 pCAld 47 µM [33]

Km CAD4 KAld 87 µM [33]

Km CAD4 CAld 65 µM [33]

Km CAD4 5CAld 85 µM [33]

Km CAD4 SAld 274 µM [33]

kcat CAD3 pCAld 1.65 s−1 [33]

kcat CAD3 KAld 0.80 s−1 [33]

kcat CAD3 CAld 0.39 s−1 [33]

kcat CAD3 5CAld 1.47 s−1 [33]

continued on next page
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Table C.1.: continued

Parameter Type Enzyme Metabolite Value Reference

kcat CAD3 SAld 0.74 s−1 [33]

Km CAD3 pCAld 292 µM [33]

Km CAD3 KAld 581 µM [33]

Km CAD3 CAld 362 µM [33]

Km CAD3 5CAld 534 µM [33]

Km CAD3 SAld 629 µM [33]

Vmax ALDH pCAld 310 pkat/mg protein [38]

Vmax ALDH CAld 560 pkat/mg protein [38]

Vmax ALDH SAld 1700 pkat/mg protein [38]

Km ALDH pCAld 19 µM [38]

Km ALDH CAld 43 µM [38]

Km ALDH SAld 150 µM [38]

aEstimated by matching measurements of 4CL2 Vmax in [29] and [236];
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Table C.2.: List of parameters estimated by the hierarchical

model.

Parameter identity Reference valuea Estimated valueb Unit

αC4H - 5.29±0.52 nmol g FW−1 min−1 FPKM−1

α4CL - 76.10±7.52 nmol g FW−1 min−1 FPKM−1

αCSE - 80.07±7.99 nmol g FW−1 min−1 FPKM−1

αHCT - 7.92±0.80 nmol g FW−1 min−1 FPKM−1

αC3′H - 94.22±9.36 nmol g FW−1 min−1 FPKM−1

αCCoAOMT - 52.47±5.25 nmol g FW−1 min−1 FPKM−1

αCCR - 40.58±4.06 nmol g FW−1 min−1 FPKM−1

αCOMT - 12.85±1.26 nmol g FW−1 min−1 FPKM−1

αF5H - 0.44±0.04 nmol g FW−1 min−1 FPKM−1

αCAD - 99.99±9.94 nmol g FW−1 min−1 FPKM−1

αALDH - 0.02±0.01 nmol g FW−1 min−1 FPKM−1

[CoA]t0 9.65±2.81c 0.007±0.001 nmol g FW−1

[SK]t0 6.22±1.24d 1.13±0.11 nmol g FW−1

[Phe]t0 26.22±1.24 21.27±2.11 nmol g FW−1

kKASKcat, HCT

kpCACoAcat, HCT

- 56.35±5.57 Unitless

KHCT
m, pCACoA - 0.012±0.002 nmol g FW−1

KHCT
m, pCASK - 0.29±0.04 nmol g FW−1

KHCT
m, KASK - 0.002±0.000 nmol g FW−1

KHCT
m, KACoA - 0.44±0.06 nmol g FW−1

KHCT
m, CoA - 0.76±0.08 nmol g FW−1

KHCT
m, SK - 0.0003±0.0000 nmol g FW−1

K4CL
m, CoA - 0.002±0.000 nmol g FW−1

KCCoAOMT
m, KACoA - 0.005±0.001 nmol g FW−1

Influx 3.44 3.44±0.34 nmol g FW−1 min−1

Klignin - 1.85±0.18 min−1

Kacid - 0.067±0.007 min−1

continued on next page
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Table C.2.: continued

Parameter identity Reference value Estimated value Unit

KKFB - 0.071±0.007 nmol g FW−1 min−1 FPKM−1

aReference values obtained from Wang et al., (2019);

bEstimated with 1,000 MCMC samples;

cSumming from pCACoA, KACoA, FACoA and free CoA pools;

dSumming from pCASK, KASK and free SK pools.
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D. SUPPLEMENTARY MATERIALS FOR COMBINING

GENE REGULATORY NETWORK AND KINETIC

MODELING OF LIGNIN BIOSYNTHESIS IN

ARABIDOPSIS

D.1 Mass balances for the kinetic model of lignin biosynthesis

d[Pheplastid]

dt
= vADT − vPCAT (D.1)

d[Phecytosol]

dt
= vPCAT − vPAL1 − vPAL2 − vPAL4 (D.2)

d[CA]

dt
= vPAL1 + vPAL2 + vPAL4 − vC4H − vacidsink, CA (D.3)

d[pCA]

dt
= vC4H + vALDH, pCAld − v4CL1, pCA − v4CL2, pCA − v4CL4, pCA

− vacid sink, pCA (D.4)

d[KA]

dt
= vCSE − v4CL1, KA − v4CL2, KA − v4CL4, KA − vCOMT, KA

− vacid sink, KA (D.5)

d[FA]

dt
= vCOMT, KA + vALDH, CAld − v4CL1, FA − v4CL4, FA − vF5H, FA

− vacid sink, FA (D.6)

d[5FA]

dt
= vF5H, FA − vCOMT, 5FA − vacid sink, 5FA (D.7)

d[SA]

dt
= vCOMT, 5FA + vALDH, SAld − v4CL4, SA − vacid sink, SA (D.8)

d[pCASK]

dt
= vHCT, pCACoA − vC3′H (D.9)

d[KASK]

dt
= vC3′H − vHCT, KASK − vCSE (D.10)

d[SK]

dt
= vHCT, KASK + vCSE, KASK − vHCT, pCACoA (D.11)
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d[pCACoA]

dt
= v4CL1, pCA + v4CL2, pCA + v4CL4, pCA − vHCT, pCACoA

− vCCR, pCACoA (D.12)

d[KACoA]

dt
= v4CL1, KA + v4CL2, KA + v4CL4, KA + vHCT, KASK − vCCoAOMT

− vCCR, KACoA (D.13)

d[FACoA]

dt
= v4CL1, FA + v4CL4, FA + vCCoAOMT − vCCR, FACoA (D.14)

d[SACoA]

dt
= v4CL4, SA − vCCR, SACoA (D.15)

d[CoA]

dt
= vHCT, pCACoA + vCCR, pCACoA + vCCR, KACoA + vCCR, FACoA

+ vCCR, SACoA − v4CL1, pCA − v4CL2, pCA − v4CL4, pCA − v4CL1, KA

− v4CL2, KA − v4CL4, KA − v4CL1, FA − v4CL4, FA − v4CL4, SA

− vHCT, KASK (D.16)

d[pCAld]

dt
= vCCR, pCACoA − vALDH, pCAld − vCAD3, pCAld − vCAD4, pCAld

− vCAD5, pCAld − vlignin sink, pCAld (D.17)

d[KAld]

dt
= vCCR, KACoA − vCOMT, KAld − vCAD3, KAld − vCAD4, KAld

− vCAD5, KAld − vlignin sink, KAld (D.18)

d[CAld]

dt
= vCCR, FACoA + vCOMT, KAld − vALDH, CAld − vCAD3, CAld

− vCAD4, CAld − vCAD5, CAld − vlignin sink, CAld (D.19)

d[5CAld]

dt
= vF5H, CAld − vCOMT, 5CAld − vCAD3, 5CAld − vCAD4, 5CAld

− vCAD5, 5CAld − vlignin sink, 5CAld (D.20)

d[SAld]

dt
= vCCR, SACoA + vCOMT, 5CAld − vALDH, SAld − vCAD3, SAld

− vCAD4, SAld − vCAD5, SAld − vlignin sink, SAld (D.21)

d[pCAlc]

dt
= vCAD3, pCAld + vCAD4, pCAld + vCAD5, pCAld − vlignin sink, pCAlc (D.22)
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d[KAlc]

dt
= vCAD3, KAld + vCAD4, KAld + vCAD5, KAld − vCOMT, KAlc

− vlignin sink, KAlc (D.23)

d[CAlc]

dt
= vCAD3, CAld + vCAD4, CAld + vCAD5, CAld + vCOMT, KAlc

− vF5H, CAlc − vlignin sink, CAlc (D.24)

d[5CAlc]

dt
= vCAD3, 5CAld + vCAD4, 5CAld + vCAD5, 5CAld + vF5H, CAlc

− vCOMT, 5CAlc − vlignin sink, 5CAlc (D.25)

d[SAlc]

dt
= vCAD3, SAld + vCAD4, SAld + vCAD5, SAld + vCOMT, 5CAlc

− vlignin sink, SAlc (D.26)
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D.2 Rate equations for the kinetic model of lignin biosynthesis

vADT =
V apparent
ADT

1 +
[Pheplastid]

KADT
i, Phe

(D.27)

vPCAT = Vmax, PCAT
[Pheplastid]

KPCAT
m, Phe(1 +

[Phecytosol]

KPCAT
i, Phe

) + [Pheplastid]
(D.28)

vPAL1 = Vmax, PAL1
[Phecytosol]

KPAL1
m, Phe + [Phecytosol]

(D.29)

vPAL2 = Vmax, PAL2
[Phecytosol]

KPAL2
m, Phe + [Phecytosol]

(D.30)

vPAL4 = Vmax, PAL4
[Phecytosol]

KPAL4
m, Phe + [Phecytosol]

(D.31)

vC4H = Vmax, C4H
[CA]

KC4H
m, CA + [CA]

(D.32)

v4CL1, pCA = V pCA
max, 4CL1

[pCA][CoA]

K4CL1
m, pCAK

4CL
m, CoA

1 + [pCA][CoA]

K4CL1
m, pCAK

4CL
m, CoA

+ [pCA]

K4CL1
m, pCA

+ [KA]

K4CL1
m, KA

+ [FA]

K4CL1
m, FA

(D.33)

v4CL1, KA = V KA
max, 4CL1

[KA][CoA]

K4CL1
m, KAK

4CL
m, CoA

1 + [KA][CoA]

K4CL1
m, KAK

4CL
m, CoA

+ [pCA]

K4CL1
m, pCA

+ [KA]

K4CL1
m, KA

+ [FA]

K4CL1
m, FA

(D.34)

v4CL1, FA = V FA
max, 4CL1

[FA][CoA]

K4CL1
m, FAK

4CL
m, CoA

1 + [FA][CoA]

K4CL1
m, FAK

4CL
m, CoA

+ [pCA]

K4CL1
m, pCA

+ [KA]

K4CL1
m, KA

+ [FA]

K4CL1
m, FA

(D.35)

v4CL2, pCA = V pCA
max, 4CL2

[pCA][CoA]

K4CL2
m, pCAK

4CL
m, CoA

1 + [pCA][CoA]

K4CL2
m, pCAK

4CL
m, CoA

+ [pCA]

K4CL2
m, pCA

+ [KA]

K4CL2
m, KA

(D.36)

v4CL2,KA = V KA
max, 4CL2

[KA][CoA]

K4CL2
m, KAK

4CL
m, CoA

1 + [KA][CoA]

K4CL2
m, KAK

4CL
m, CoA

+ [pCA]

K4CL2
m, pCA

+ [KA]

K4CL2
m, KA

(D.37)

v4CL4, pCA = V pCA
max, 4CL4

[pCA][CoA]

K4CL4
m, pCAK

4CL
m, CoA

1 + [pCA][CoA]

K4CL4
m, pCAK

4CL
m, CoA

+ [pCA]

K4CL4
m, pCA

+ [KA]

K4CL4
m, KA

+ [FA]

K4CL4
m, FA

+ [SA]

K4CL4
m, SA

(D.38)
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v4CL4, KA = V KA
max, 4CL4

[KA][CoA]

K4CL4
m, KAK

4CL
m, CoA

1 + [KA][CoA]

K4CL4
m, KAK

4CL
m, CoA

+ [pCA]

K4CL4
m, pCA

+ [KA]

K4CL4
m, KA

+ [FA]

K4CL4
m, FA

+ [SA]

K4CL4
m, SA

(D.39)

v4CL4, FA = V FA
max, 4CL4

[FA][CoA]

K4CL4
m, FAK

4CL
m, CoA

1 + [FA][CoA]

K4CL4
m, FAK

4CL
m, CoA

+ [pCA]

K4CL4
m, pCA

+ [KA]

K4CL4
m, KA

+ [FA]

K4CL4
m, FA

+ [SA]

K4CL4
m, SA

(D.40)

v4CL4, SA = V SA
max, 4CL4

[SA][CoA]

K4CL4
m, SAK

4CL
m, CoA

1 + [SA][CoA]

K4CL4
m, SAK

4CL
m, CoA

+ [pCA]

K4CL4
m, pCA

+ [KA]

K4CL4
m, KA

+ [FA]

K4CL4
m, FA

+ [SA]

K4CL4
m, SA

(D.41)

vHCT, pCACoA = V pCACoA
max, HCT

[pCACoA][SK]

KHCT
m, pCACoAK

HCT
m, SK

− kpCASKcat, HCT [pCASK][CoA]

kpCACoAcat, HCTK
HCT
m, pCASKK

HCT
m, CoA

1 + [pCACoA]

KHCT
m, pCACoA

+ [pCASK]

KHCT
m, pCASK

+ [KACoA]

KHCT
m, KACoA

+ [KASK]

KHCT
m, KASK

+ [pCACoA][SK]

KHCT
m, pCACoAK

HCT
m, SK

+ [pCASK][CoA]

KHCT
m, pCASKK

HCT
m, CoA

+ [KACoA][SK]

KHCT
m, KACoAK

HCT
m, SK

+ [KASK][CoA]

KHCT
m, KASKK

HCT
m, CoA

(D.42)

vHCT, KASK = V pCACoA
max, HCT

[KASK][CoA]

KHCT
m, KASKK

HCT
m, CoA

− kKACoAcat, HCT [KACoA][SK]

kKASKcat, HCTK
HCT
m, KACoAK

HCT
m, SK

1 + [pCACoA]

KHCT
m, pCACoA

+ [pCASK]

KHCT
m, pCASK

+ [KACoA]

KHCT
m, KACoA

+ [KASK]

KHCT
m, KASK

+ [pCACoA][SK]

KHCT
m, pCACoAK

HCT
m, SK

+ [pCASK][CoA]

KHCT
m, pCASKK

HCT
m, CoA

+ [KACoA][SK]

KHCT
m, KACoAK

HCT
m, SK

+ [KASK][CoA]

KHCT
m, KASKK

HCT
m, CoA

(D.43)

vC3′H = Vmax, C3′H
[pCASK]

KC3′H
m, pCASK + [pCASK]

(D.44)

vCSE = Vmax, CSE
[KASK]

KCSE
m, KASK + [KASK]

(D.45)

vCCoAOMT = Vmax, CCoAOMT
[KACoA]

KCCoAOMT
m, KACoA + [KACoA]

(D.46)
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vCOMT, KA = V KA
max, COMT

[KA]

KCOMT
m, KA

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.47)

vCOMT, 5FA = V 5FA
max, COMT

[5FA]

KCOMT
m, 5FA

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.48)

vCOMT, KAld = V KAld
max, COMT

[KAld]

KCOMT
m, KAld

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.49)

vCOMT, 5CAld = V 5CAld
max, COMT

[5CAld]

KCOMT
m, 5CAld

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.50)

vCOMT, KAlc = V KAlc
max, COMT

[KAlc]

KCOMT
m, KAlc

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.51)

vCOMT, 5CAlc = V 5CAlc
max, COMT

[5CAlc]

KCOMT
m, 5CAlc

1 + [KA]

KCOMT
m, KA

+ [5FA]

KCOMT
m, 5FA

+ [KAld]

KCOMT
m, KAld

+ [5CAld]

KCOMT
m, 5CAld

+ [KAlc]

KCOMT
m, KAlc

+ [5CAlc]

KCOMT
m, 5CAlc

(D.52)

vCCR, pCACoA = V pCACoA
max, CCR

[pCACoA]

KCCR
m, pCACoA

1 + [pCACoA]

KCCR
m, pCACoA

+ [KACoA]

KCCR
m, KACoA

+ [FACoA]

KCCR
m, FACoA

+ [SACoA]

KCCR
m, SACoA

(D.53)

vCCR, KACoA = V KACoA
max, CCR

[KACoA]

KCCR
m, KACoA

1 + [pCACoA]

KCCR
m, pCACoA

+ [KACoA]

KCCR
m, KACoA

+ [FACoA]

KCCR
m, FACoA

+ [SACoA]

KCCR
m, SACoA

(D.54)
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vCCR, FACoA = V FACoA
max, CCR

[FACoA]

KCCR
m, FACoA

1 + [pCACoA]

KCCR
m, pCACoA

+ [KACoA]

KCCR
m, KACoA

+ [FACoA]

KCCR
m, FACoA

+ [SACoA]

KCCR
m, SACoA

(D.55)

vCCR, SACoA = V SACoA
max, CCR

[SACoA]

KCCR
m, SACoA

1 + [pCACoA]

KCCR
m, pCACoA

+ [KACoA]

KCCR
m, KACoA

+ [FACoA]

KCCR
m, FACoA

+ [SACoA]

KCCR
m, SACoA

(D.56)

vALDH, pCAld = V pCAld
max, ALDH

[pCAld]

KALDH
m, pCAld

1 + [pCAld]

KALDH
m, pCAld

+ [CAld]

KALDH
m, CAld

+ [SAld]

KALDH
m, SAld

(D.57)

vALDH, CAld = V CAld
max, ALDH

[CAld]

KALDH
m, CAld

1 + [pCAld]

KALDH
m, pCAld

+ [CAld]

KALDH
m, CAld

+ [SAld]

KALDH
m, SAld

(D.58)

vALDH, SAld = V SAld
max, ALDH

[SAld]

KALDH
m, SAld

1 + [pCAld]

KALDH
m, pCAld

+ [CAld]

KALDH
m, CAld

+ [SAld]

KALDH
m, SAld

(D.59)

vF5H, FA = V FA
max, F5H

[FA]

KF5H
m, FA

1 + [FA]

KF5H
m, FA

+ [CAld]

KF5H
m, CAld

+ [CAlc]

KF5H
m, CAlc

(D.60)

vF5H, CAld = V CAld
max, F5H

[CAld]

KF5H
m, CAld

1 + [FA]

KF5H
m, FA

+ [CAld]

KF5H
m, CAld

+ [CAlc]

KF5H
m, CAlc

(D.61)

vF5H, CAlc = V CAlc
max, F5H

[CAlc]

KF5H
m, CAlc

1 + [FA]

KF5H
m, FA

+ [CAld]

KF5H
m, CAld

+ [CAlc]

KF5H
m, CAlc

(D.62)

vCAD3, pCAld = V pCAld
max, CAD3

[pCAld]

KCAD3
m, pCAld

1 + [pCAld]

KCAD3
m, pCAld

+ [KAld]

KCAD3
m, KAld

+ [CAld]

KCAD3
m, CAld

+ [5CAld]

KCAD3
m, 5CAld

+ [SAld]

KCAD3
m, SAld

(D.63)

vCAD3, KAld = V KAld
max, CAD3

[KAld]

KCAD3
m, KAld

1 + [pCAld]

KCAD3
m, pCAld

+ [KAld]

KCAD3
m, KAld

+ [CAld]

KCAD3
m, CAld

+ [5CAld]

KCAD3
m, 5CAld

+ [SAld]

KCAD3
m, SAld

(D.64)
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vCAD3, CAld = V CAld
max, CAD3

[CAld]

KCAD3
m, CAld

1 + [pCAld]

KCAD3
m, pCAld

+ [KAld]

KCAD3
m, KAld

+ [CAld]

KCAD3
m, CAld

+ [5CAld]

KCAD3
m, 5CAld

+ [SAld]

KCAD3
m, SAld

(D.65)

vCAD3, 5CAld = V 5CAld
max, CAD3

[5CAld]

KCAD3
m, 5CAld

1 + [pCAld]

KCAD3
m, pCAld

+ [KAld]

KCAD3
m, KAld

+ [CAld]

KCAD3
m, CAld

+ [5CAld]

KCAD3
m, 5CAld

+ [SAld]

KCAD3
m, SAld

(D.66)

vCAD3, SAld = V SAld
max, CAD3

[SAld]

KCAD3
m, SAld

1 + [pCAld]

KCAD3
m, pCAld

+ [KAld]

KCAD3
m, KAld

+ [CAld]

KCAD3
m, CAld

+ [5CAld]

KCAD3
m, 5CAld

+ [SAld]

KCAD3
m, SAld

(D.67)

vCAD4, pCAld = V pCAld
max, CAD4

[pCAld]

KCAD4
m, pCAld

1 + [pCAld]

KCAD4
m, pCAld

+ [KAld]

KCAD4
m, KAld

+ [CAld]

KCAD4
m, CAld

+ [5CAld]

KCAD4
m, 5CAld

+ [SAld]

KCAD4
m, SAld

(D.68)

vCAD4, KAld = V KAld
max, CAD4

[KAld]

KCAD4
m, KAld

1 + [pCAld]

KCAD4
m, pCAld

+ [KAld]

KCAD4
m, KAld

+ [CAld]

KCAD4
m, CAld

+ [5CAld]

KCAD4
m, 5CAld

+ [SAld]

KCAD4
m, SAld

(D.69)

vCAD4, CAld = V CAld
max, CAD4

[CAld]

KCAD4
m, CAld

1 + [pCAld]

KCAD4
m, pCAld

+ [KAld]

KCAD4
m, KAld

+ [CAld]

KCAD4
m, CAld

+ [5CAld]

KCAD4
m, 5CAld

+ [SAld]

KCAD4
m, SAld

(D.70)

vCAD4, 5CAld = V 5CAld
max, CAD4

[5CAld]

KCAD4
m, 5CAld

1 + [pCAld]

KCAD4
m, pCAld

+ [KAld]

KCAD4
m, KAld

+ [CAld]

KCAD4
m, CAld

+ [5CAld]

KCAD4
m, 5CAld

+ [SAld]

KCAD4
m, SAld

(D.71)

vCAD4, SAld = V SAld
max, CAD4

[SAld]

KCAD4
m, SAld

1 + [pCAld]

KCAD4
m, pCAld

+ [KAld]

KCAD4
m, KAld

+ [CAld]

KCAD4
m, CAld

+ [5CAld]

KCAD4
m, 5CAld

+ [SAld]

KCAD4
m, SAld

(D.72)

vCAD5, pCAld = V pCAld
max, CAD5

[pCAld]

KCAD5
m, pCAld

1 + [pCAld]

KCAD5
m, pCAld

+ [KAld]

KCAD5
m, KAld

+ [CAld]

KCAD5
m, CAld

+ [5CAld]

KCAD5
m, 5CAld

+ [SAld]

KCAD5
m, SAld

(D.73)
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vCAD5, KAld = V KAld
max, CAD5

[KAld]

KCAD5
m, KAld

1 + [pCAld]

KCAD5
m, pCAld

+ [KAld]

KCAD5
m, KAld

+ [CAld]

KCAD5
m, CAld

+ [5CAld]

KCAD5
m, 5CAld

+ [SAld]

KCAD5
m, SAld

(D.74)

vCAD5, CAld = V CAld
max, CAD5

[CAld]

KCAD5
m, CAld

1 + [pCAld]

KCAD5
m, pCAld

+ [KAld]

KCAD5
m, KAld

+ [CAld]

KCAD5
m, CAld

+ [5CAld]

KCAD5
m, 5CAld

+ [SAld]

KCAD5
m, SAld

(D.75)

vCAD5, 5CAld = V 5CAld
max, CAD5

[5CAld]

KCAD5
m, 5CAld

1 + [pCAld]

KCAD5
m, pCAld

+ [KAld]

KCAD5
m, KAld

+ [CAld]

KCAD5
m, CAld

+ [5CAld]

KCAD5
m, 5CAld

+ [SAld]

KCAD5
m, SAld

(D.76)

vCAD5, SAld = V SAld
max, CAD5

[SAld]

KCAD5
m, SAld

1 + [pCAld]

KCAD5
m, pCAld

+ [KAld]

KCAD5
m, KAld

+ [CAld]

KCAD5
m, CAld

+ [5CAld]

KCAD5
m, 5CAld

+ [SAld]

KCAD5
m, SAld

(D.77)

vacid sink, CA = Kacid[CA] (D.78)

vacid sink, pCA = Kacid[pCA] (D.79)

vacid sink, KA = Kacid[KA] (D.80)

vacid sink, FA = Kacid[FA] (D.81)

vacid sink, 5FA = Kacid[5FA] (D.82)

vacid sink, SA = Kacid[SA] (D.83)

vlignin sink, pCAld = Klignin[pCAld] (D.84)

vlignin sink, KAld = Klignin[KAld] (D.85)

vlignin sink, CAld = Klignin[CAld] (D.86)

vlignin sink, 5CAld = Klignin[5CAld] (D.87)

vlignin sink, SAld = Klignin[SAld] (D.88)

vlignin sink, pCAlc = Klignin[pCAlc] (D.89)

vlignin sink, KAlc = Klignin[KAlc] (D.90)

vlignin sink, CAlc = Klignin[CAlc] (D.91)

vlignin sink, 5CAlc = Klignin[5CAlc] (D.92)

vlignin sink, SAlc = Klignin[SAlc] (D.93)


