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ABSTRACT

Yang, Qingyu Master, Purdue University, May 2019. Barcode Detection and Decod-
ing in On-line Fashion Image. Major Professor: Jan P. Allebach.

A barcode is the representation of data including some information related to

goods, offered for sale which frequently appears in markets. Especially in the on-

line fashion market such as the buy and sell market, barcodes on the tags of the sale

items support identified information including producer, manufacturer, etc. The mar-

ket need a system to automatically detect and decode barcode in real time. However,

the existing method has a limitation in detecting 1-D barcode in some backgrounds

such as tassels, stripes, and texture in fashion images. In this research, a focus is on

identifying the barcode and distinguishing a barcode from its similarities. It is accom-

plished by adding a post-processing technique after morphological operations in the

traditional method based on the hand-crafted features. Convolution Neural Network

(CNN) is applied to solve this typical objective detection problem. The proposed al-

gorithm has been validated using several examples. In addition, the performance and

the results of the proposed algorithm have been compared with the other methods

presented in the literature.

To decode a barcode, a Python-supported package including the existing common

types of decoding schemes is widely used to decode the barcode. However, this

commonly-used package has limitations in decoding the skewed barcodes. A pre-

processing transformation step is added to process the strongly skewed barcode images

in order to improve the probability of decoding success.
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1. INTRODUCTION

Barcodes always carry essential information for their corresponding products in man-

ufacture. Different types of barcode are used for various industries. In general, there

are two types of barcode1-D barcode and 2-D barcode (Fig. 1.1). 2-D barcodes such

as QR code and PDF 417 are developed based on the 1-D barcodes. The 2-D bar-

codes represent data by the shape and symbols. Also, each region in a 2-D barcode

carries more information than the information in the 1-D barcode. In this project,

we only focus on the 1-D barcode since it has a more extensive history and is more

commonly used in industries. For the 1-D barcode, there are many types such as

EAN-13, CODE 39, etc. The shapes of the typical 1-D barcodes are rectangles and

consist of black and white stripes. Only minority barcodes include colored stripes.

All 1-D barcodes record data by a variety of widths and spacings in parallel lines.

The decoding scheme and detecting algorithms are based on these characteristics as

well.

Fig. 1.1.: Examples of barcode types
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1.1 Motivation

With the significance and a variety of applications, detecting and decoding bar-

code is much useful for online shopping platforms. As a result, they need to process a

tremendous amount of images containing barcodes. Also, it would be labor-intensive

to label and decode barcodes manually. The system of detecting and decoding bar-

codes has widely used in market and software development. However, the current

system still has some limitations with skewed, small and rotated barcodes. For ex-

ample, scanning always fails when the detecting device is far away from the barcode.

Thus, getting more accurate on detecting and decoding barcodes becomes a useful

question. In this project, we focus on the identification of barcode in online fashion

images and decoding it. The goal is developing a robust automatic system to detect

and decode barcodes. There are some common patterns used in fashion design such

as tassels, brands logos, cells and stripes misclassified as barcodes in fashion images.

For facing this challenge, we focus on distinguishing barcode and its similarities.

1.2 Related Work

1. Barcode detection in traditional method work

According to the characteristics of a 1-D barcode, Adrian Rosebrock realized the

detection by implement the image processing method. The general idea of this work is

based on edge detection to get the gradient image which represents the intensity of the

image. The region that has concentrated parallel lines in an image will have the largest

intensity. Then the morphological transformation will be used to detect the region

that has the largest intensity. The detected region corresponds to the localization of

the barcode in the original image. For obscure barcodes, many previous works add

preprocessing in detection to get better results. Although the localization of barcode

can be realized in this method, it has limitations when the image does not include a

barcode. Alternatively, if the image has complex backgrounds, the results would be

wrong.
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2. Barcode detection in deep learning approach

CNN models which can extract more features from an image can largely improve

the accuracy in object detection task. In 2015, Faster R-CNN [1] has been proposed

in NeuralPS by S. Ren, etc. In 2017, J. Li, etc. implement Faster R-CNN to detect

1-D barcode and get higher accuracy [2]. However, their work based on the dataset

which includes at least one barcode and clear backgrounds in each image. In other

words, trivial scenes contain much more complicated backgrounds and bring detection

task into a more challenging phase.

3. Barcode Decoding with Pyzbar

There are different barcode decoding packages in Matlab. For example, Aygun

Baltaci developed the decoding solution for Code 39. Based on the scheme of different

barcode types, the decoding solution is generated by transferring the number of pixels

of parallel lines to a digital number. In addition, there is an online open source

Pyzbar in Python package developed by Lawrence Hudson. This package can decode

common types of barcodes. Also, lightly skewed and occluded images can also be

decoded directly without any pre-processing.

1.2.1 The Proposed Solution

To detect and decode barcodes, the system will be constructed as two major

parts as shown in Fig. 1.2. The first part is barcode detection. Then we use the

detected result to crop the barcode region and apply our decoding part to generate

the information in real time. Since stripes and barcodes share a lot of similar features,

many stripe patterns will be mistakenly recognized as barcodes with the previous

detecting system. Except for the influence of various background, small, obscure

and occluded barcodes in the background also fail the system. We developed the

traditional method based on hand-crafted features and implement a CNN model to

reduce the limitations in previous detecting system. In the decoding part, we use

a Pyzbar package to decode the common types of barcodes. Also, for the strongly
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skewed barcode images, we propose the algorithm of perspective transformation that

can warp barcode images to the unskewed position.

Fig. 1.2.: Overall structure of barcode detection and decoding system
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2. BARCODE DETECTION SYSTEM

2.1 Barcode Detection with hand-crafted traditional method

The first development is the barcode detection system. Based on the previous

work on detecting barcode, we implement both traditional method and deep learning

approach to increase our detecting accuracy. According to the characteristics of

general 1-D barcode, the classification of the barcode image and the non-barcode

image has been realized. The first part will introduce the traditional method based

on hand-crafted features. Then the second part will be the implement of using deep

learning approach to extract features for identifying barcodes.

2.1.1 Construction of the detection system

The general idea of detecting barcode is using edge detection and morphological

transformation [3] to figure out a cluster in an image most likely to be a barcode. Then

we add post-processing to identify if the selected cluster corresponds to a barcode in

the original image. The flowchart in Fig. 2.1 shows a general structure of the detecting

system in the traditional method. After morphological transformation, the largest

foreground cluster will be treated to have the largest possibility of corresponding

to a barcode. In this system, the cluster is represented as Cmax. We add a post-

processing step to identify the pattern of matching Cmax by setting multi-thresholds.

The identifying system shows the results by bounding the detected barcode region.

Fig. 2.1 displays an example of the detecting system. The original image is generated

from Poshmark website.



6

Fig. 2.1.: Structure and example of detecting barcode with hand-crafted traditional

method

2.1.2 Edge Detection

A barcode consists of many parallel lines. The small edges between the lines can

be detected by edge detection. For a 2-D color image, the first step to detect edge is

changing color space from RGB space to grayscale (Ig) space by combining R, G, and

B channels to a single channel using equation (2.1). In order to detect edges in the

input image, we compute gradient image [4] to realize it. Because the gradient image

represents the changing of intensities at each pixel. Sobel operator [5] is applied to

the grayscale image to get gradient value in x and y direction at each pixel. The

pixel in the gradient image is presented as G. Equation 2.2 shows the convolution of

getting gradient image by 3 × 3 Sobel operator. According to a visible barcode has
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smaller edges, a 9 x 9 Sobel operator is used in this method. But if we use a 3 x 3

Sobel operator, the gradient image will include more details which are not expected.

Ig = 0.299 ×R + 0.587 ×G + 0.114 ×B (2.1)

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

 ∗ Ig and Gy =


+1 +2 +1

0 0 0

−1 0 −2

 ∗ Ig
G =

√
G2

x + G2
y

(2.2)

Fig. 2.2 shows an example of edge detection. The gradient image is describing

the intensity of our input image. It is obvious that the cluster corresponding to a

barcode has been described based on the rapid change of intensities. Then the binary

image splits the foregrounds and backgrounds. A tested threshold (T) which equals

to 225 is used to get the binary image. If the pixel is larger than 225, we set the

corresponding pixel to 1 in the binary image. Otherwise, we set it to 0. Before the

threshold, an averaging filter [6] with 9×9 kernel is added to blur the gradient image

for smoothing out the high-frequency noise. The results of the edge detection are

binary images including some clusters. White pixels represent the foregrounds, and

black pixels represent the background.
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Fig. 2.2.: Structure and example of edge detection for barcode

2.1.3 Closing Gaps

After edge detection, we apply morphological transformation to fill out the narrow

gaps between the white-pixel clusters in binary image. Morphological transformation

includes several operations such as dilation, erosion, opening and closing to process the

input images and get the output images with the same dimensions. Those operations

are based on the neighboring pixels around the anchor pixels. The dilation and erosion

operators [7] are applied for the binary image after detecting edges. erosion operates

the object to make the size to be smaller. The algorithm in binary image is setting a

pixel to 0 if any of the neighboring pixels have the value 0. In general, dilation makes

the anchor clusters more visible and connect the neighboring clusters. So we use it

to fill out the small spacings in the foreground clusters. In the binary image, white

pixel is set to 1 and black pixel is 0. The dilation is setting the value of the anchor

pixel to 1 if any neighboring pixels in the kernel have the value 1.
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We construct a series of erosion and dilation to close the gaps of the foreground

cluster in our binary image. The 21×7 kernel is applied to implement the operations.

Because the kernel including larger width to better close the gaps between the parallel

lines in vertical. With this specified kernel, erosion is used to remove the noises of

white pixels. Then we use dilation to remove the small black pixel in the gaps and

extend the larger white region. The final binary image is constructed by four erosion

operations and four dilation operations.

The largest foreground cluster (Cmax) after applying the morphological operations

will be treated as the region that has the largest probability of corresponding to a

barcode. For testing the algorithm without post-processing, we randomly download

200 fashion images from online shopping platforms. The region corresponding to the

largest foreground cluster in image is labeled by green box. Without post-processing,

Fig. 2.3 shows some examples for successful detection that correctly localize the

barcodes. Fig. 2.4 displays some failure cases that the bounding regions are corre-

sponding to stripes, grids which is similar to barcodes. But the labeled regions are

not actually barcodes.

Fig. 2.3.: Successful cases from traditional method without post-processing
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Fig. 2.4.: Failure cases from traditional method without post-processing

2.1.4 Post-processing

Fig. 2.4 displays the processing can figure out the region including the most stripes

in the image. However, it does not achieve our goal that identify if any barcode is

included in the image. Thus, we add a post-processing subsystem after finding the

largest foreground cluster (Cmax). The region with corresponding to Cmax in in-

put image is represented as Ci here. The post-processing is constructed by 4 steps to

check if Ci matches the features in regular barcodes. Fig. 2.5 displays the construction.

Through the comparison of 4 hand-crafted features (feature1, feature2, feature3, feature4)

extracted from Ci and the defined thresholds (T1, T2, T3, and T4), Ci has been pre-

dicted as a barcode or not. All the conditions are based on the features from typical

1-D barcode. The following describes the four conditions for checking Ci.
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Fig. 2.5.: Structure of algorithm in post-processing

• Area of Barcode T1

From the 200 testing results, some failure cases in the images without a barcode

have a small bounding box. Thus, the feature which represents the dimension

of the largest foreground cluster is used to check if Cmax corresponds to a visible

barcode. As Equation 2.3, if the number of pixels in Cmax is larger than T1, the

Ci will pass the first check.

feature1 = # of pixels in Cmax (2.3)

• Shape of Barcode T2

It is visible that the contours of typical barcodes are similar to a rectangle. With

the general shape of barcode, we select the second threshold based on the com-

parison between the shape of Cmax and a rectangle. We use implementation in

OpenCV to calculate the area of the minimum bounding box of Cmax. feature2



12

is calculated by the radio of the number of pixels in bounding rectangular area

and the number of pixels in Cmax to be the second checking value (Equation

2.4). The number of T2 is identified by testing 200 images.

feature2 =
# of pixels in Cmax

# of pixels in bounding rectangle
(2.4)

• Corners in Barcode T3

A barcode is formed by black-and-white lines with different spacing and width.

Because each line includes 4 corners, a barcode includes dozens of corners. Thus,

detecting corners also helps us to identify if Ci is a barcode. We check this by

applying Harris corner detection [8]. In addition, as the barcodes have different

size in an image. The radio of the number of detected corners and the number

of pixels in Ci is set to be checked (Equation 2.5). If Ci includes the enough

corners that feature3 larger than T3, it will pass third check.

feature3 =
# of corners in Cmax

# of pixels in Cmax

(2.5)

• Color Information in Barcode T4

Typical image of barcode is a binary image which only includes black and white

pixels. Grayscale image uses pixel value which is a single number to represent

the brightness of each pixel. The pixel values have a range from 0 to 255. 0

is taken to be black and 255 is taken to be white. In real world, barcodes

shown in images always be 2-D color images which have three Channel R, G

and B due to the effect of illumination, background when capturing picture.

But it always looks similarly to the typical barcodes that we can identify the

barcode by visual perception. Fig. 2.6 displays that real barcode region has

smaller difference between R, G and B values than colorful stripes. Thus, we

can use calculated averaging difference between R, G and B channels shown in

Equation(2.6) to approximate the color information of Ci.
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Fig. 2.6.: RGB values in colorful stripes and barcode region

feature4 =

∑N
i=1 ((R−G) + (R−B) + (G−B))

N
,N = # (2.6)

To select the values of four thresholds, we test 200 images to obtain the specific

numbers for higher accuracy. Table 2.1 displays the selected number.

Table 2.1.: Selected Values for thresholds in Post-processing

Value Requirement

Area of Cluster (T1) 800 > T1

Shape of Cluster (T2) 0.6 < T2

Corners in Cluster (T3) 0.001 > T3

Color Information in Cluster (T4) 70 < T4
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2.1.5 Test Performance

To test the performance of our algorithm, 1000 images are randomly downloaded

from Poshmark (an online shopping) website. Fig. 2.7 displays some examples of our

testing images. The barcode in each image are expected to be bounded. Otherwise,

there will be no bounding box in the image. In the results, the system will make the

testing images to 2 classes. One is the image including at least one barcode, the other

one is the image without any barcode. The detecting system is expected to bound

barcode region. If the image does not have any barcodes, the system is expected to

be no labels.

Fig. 2.7.: Examples of training dataset

In typical objective detection problem, true positives, true negatives, false posi-

tives and false negatives are used to show the performance of our classification sys-

tem [9]. In this case, they are defined as the following:
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• True Positives (TP): Image includes at least one barcode; The system detects

the barcode in image.

• False Positives (FP) Image does not have any barcode; The system detects a

wrong barcode in image.

• True Negatives (TN): Image does not have any barcode; The system does not

label any region

• False Negatives (FN): Image includes at least one barcode; The system does

not detect the barcode and it does not label any region

From analysis the results of 1000 testing images, the overall accuracy (Acc) is

82.69% and the testing process takes 44.52 seconds. Accuracy is calculated by equa-

tion 2.7. NTP represents the number of true-positive cases. Also, NFP , NTN and

NFN are in similar. According to these values, the confusion matrix [10] which gives

a visualization of algorithm performance is displayed in Fig. 2.8

Acc =
TN + TP

# of total images
(2.7)

Fig. 2.8.: Confusion matrix of testing 1000 images with traditional method
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Fig. 2.9 and Fig. 2.10 display examples the true positives and the true negatives.

Fig. 2.9.: True positives with traditional method

Fig. 2.10.: True negatives with traditional method

Fig. 2.11 displays some false negatives. Some barcodes shows small and unclear

in the images, the system cannot detect it. Also, if the backgrounds includes more

obvious stripes than the barcode, the system cannot label the exact barcode region.

Because the traditional method is based-on the intensities of images, unclear barcode

region is hard to be detected. Fig. 2.12 shows examples of false positives. The

method of threshold in post-processing still have limitations. Using single number to

threshold cannot cover all the different conditions in fashion images.



17

Fig. 2.11.: False negatives with traditional method

Fig. 2.12.: True Positives with traditional method

2.2 Barcode Detection with deep learning method

2.2.1 Network: Faster R-CNN

In recent year, as the developing of deep learning, Convolutional Neural Networks

(CNNs) [11] reach significant success in image classification task. Based on this suc-

cess, many groups around the world try to use CNNs to solve image image recognition

task and many of them already achieved impressive performances. In this project, we

adopt Faster R-CNN [1] and modify it for fitting better in our task.

Before introducing the Faster R-CNN, we first illustrate the CNNs structure and

functions. As shown in Fig. 2.13, the input will be did ”convolution” operation with
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the kernel. In practice, it is actually a cross-correlation operation. Therefore, it is

a linear operation to the input. After ”convolution”, an non-linear active function

will be applied to the output. The combination of ”convolution” and active function,

can non-linear transfer the input image to the feature spaces. And this non-linear

transformation can be used to extract high-level features in images.

Fig. 2.13.: Convolution Operation

Barcode detection is a simplified image recognition task. In this case, we only

need to localize and identify one kind of object: barcode. As shown in Fig. 2.14,

Faster R-CNN consists of convolutional layers, Region Proposal Network(RPN), and

classifier. The convolutional layer is used to extract many useful high-level feature in

image. These features will be quantified to numbers and used by RPN and classifier.

There are many different CNN models in image classification task. Since those CNN

models have very good performances in image classification, the convolutional layers

of them have strong ability to extract features in images. Therefore, we use the

convolutional layers in inception-v2 [12] in our Faster R-CNN for barcode detection.
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Fig. 2.14.: Faster R-CNN

In Faster R-CNN, the RPN is a one-layer network for region proposal. And the

classify is a networks for identify the barcode. After convolutional layers, our system

maps the input image to a high-dimension feature space, the feature map. The func-

tion of the RPN is selecting regions which contain barcode features. For each feature

map, RPN will propose 9 different size sliding-windows, as shown in Fig. 2.15. Those

selected region in feature map will remapped back to image. Therefore, thousands of

bounding boxes will be generated in the input image. For each region, classifier will

assign a score to them. The score is more like the probability of containing barcode in

this region. There are thousands of bounding boxes generated, as shown in Fig. 2.16,

which is a face detection example. Many regions around face will also be assign a

very high score. In this case, we only need one bounding box. We used Non Max-

imum Suppression (NMS) to deal with this problem. As shown in Fig. 2.17, if the
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Intersection over Union (IoU) is larger than the threshold, the regions with smaller

score will be removed.

Fig. 2.15.: Different Anchor Size

Fig. 2.16.: NMS Example in Face Detection
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Fig. 2.17.: Intersection over Union

The classifier in Faster R-CNN is quite similar to the structure of other CNN

model for image classification task. It is fully-connected layer. In our case, we only

have one class, it is like a regression process that regress all those features in the

region to one number. In our project, we also add an extra class to our network later,

which will be illustrated in section 2.2.2

2.2.2 Adding New Class as Hard Negative Samples

In our experiment, we found that though the CNN model is powerful and get a

good result. It still has large space for improving. After analyzing the false pos-

itive result, the selected regions do not have barcode, we found that our networks

sometimes treat the clothes that containing stripe patterns as barcode. The reason is

stripe pattern and barcode share many similar visual features. In other words, stripe

patterns are hard negative samples. We should let our network pay more attention

to this. To help our networks, Faster R-CNN, to focus more on the different fea-

tures between barcode and stripe pattern. We modify the networks to recognize both

barcode and stripe pattern and only draw bounding box for barcode regions. Based

on this design, the classifier should focus on a classification task. The feature space

should also contain more features to help classify barcode and stripe pattern.
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2.2.3 Dataset Preparation

The total number of images in training dataset is 700. 500 images include barcodes

and 200 images include stripes. For better matching our goal which is detecting

barcode in fashion images. The data set is generated by taking pictures containing

barcodes with varying backgrounds at fashion stores. The backgrounds include kinds

of element in fashion stores such as clothes, floors, packages, etc. It also includes

small, rotated and occluded barcode with different photographing angles and varying

illumination.

We would like to obtain a model that can better distinguish the stripes and bar-

codes. The stripes will be treated as hard negative samples in our experiment. Thus,

200 online images with clear and colorful stripes are added to our training dataset.

The ground truth of the 700 training data is created by manual labeling. We use

an open source toolbox to draw bounding boxes to label barcode regions and stripes

with two different classes in each training image. Fig. 2.18 shows the GUI of our

labeling tool. After using labeling tool, an extensible markup language (XML) data

file recording the coordinates of labeling rectangular boxes will be generated for each

training image. Fig. 2.19 shows some examples in our training images with barcodes.

Fig. 2.20 shows some examples of images with stripes in the training dataset.
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Fig. 2.18.: GUI of labeling tool

Fig. 2.19.: Examples of training dataset of ”barcode” class with deep learning ap-

proach.
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Fig. 2.20.: Examples of training dataset of ”stripes” class with deep learning approach

2.2.4 Faster R-CNN Parameter Settings

Before we training our Faster R-CNN, we need to select hyperparameters. Choose

good hyperparameters can help the model to get better performance.

• Learning rate: Since the convolutional layers are from the pre-trained model.

The learning rate should be small. In our case, we select it as 0.0002.

• Batch size: As described in [13], large batch size may cause poor generalization.

The result may too specify to our dataset. However, if batch size is small, it

takes more time for computation. Since our dataset is small, computation time

is not an issue. We set batch size as 1. The images are fed to our system

one-by-one.

• Number of global steps: Each global step is a batch. The number should be

large enough to let the training process converging. In our training process,

there are 13000 steps for converging.
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• The threshold of confidence value: Only the regions assigned with high confi-

dence score can be selected. We set it as 93% to get better result.

2.2.5 Test Performance

As the above description said, the training set is generated with two classes:

barcode and stripes. We use the 700 training images to create our detecting model

with Faster R-CNN network. The performance is tested in 1000 fashion images which

are downloaded from Poshmark website. For comparison, the testing dataset with

the traditional method which is described in section 2.1.5. Because the network can

extract more abstract features than hand-crafted traditional method, deep learning

approach is able to get higher accuracy. Some obscure and occluded barcodes can

also be detected in the fashion images in this method. Examples of true positives

and true negatives are displayed in Fig. 2.21 and 2.22. Only green box will be focus

to be our detected barcode region.

Fig. 2.21.: True positives with the developed deep learning method
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Fig. 2.22.: True negatives with the developed deep learning method

For better comparison our development and previous work, we also repeat the

training process without ”stripes” ground truth images. Fig. 2.23 displays some

failure case in previous work and successful results in our development with the same

testing images.

Fig. 2.23.: Comparison of results with the previous and the developed deep learning

method

In addition, the confusion matrix of previous works and our development has been

shown in Fig. 2.24. It is obviously that adding new class ”stripes” helps to decrease
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false positives. The accuracy is calculated in the equation 2.7 in section 2.1.5. The

accuracy with only one training class is 92.4%/ Our developed accuracy is 96.7%

which is higher than the accuracy with previous one.

Fig. 2.24.: Confusion matrices with the previous and the developed deep learning

method.

Table 2.2 shows a clear comparison of these three method. The traditional method

takes the shortest time, but it has lower accuracy. The deep learning method requires

GPU. Also, the deep model takes longer time. But the deep learning approach gives

us a higher accuracy to detect barcode.

Table 2.2.: Comparison of three detecting methods

Method Acc Run time

Traditional Method 82.8% 44.52 s

Previous Method with Deep Learning 92.4% 143.86 s

New Method with Deep Learning 96.7% 169.23 s
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Even though our development based-on deep learning approach largely improves

the accuracy, there are some limitations. Fig. 2.25 displays the wrong detection with

barcode. Regular black-white stripes share much similar pattern with barcode, our

system is confused with these cases. Much obscure texts collection on the tags also

seems like the pattern of barcode, our model is confused to distinguish it. We also try

to add the third class for obscure texts, but this class attack the previous model. The

possible reason is obscure text share so many features with barcode that the network

cannot detect it.

The most false negatives are due to the small barcode such as Fig. 2.26. The red

circle in the figure is the manual label for failure detecting results. The dimensions

of the barcodes in the figure are around 8× 57 and 10× 40. In the process of labeling

ground truth, the dimension of bounding box need larger than 32 × 32 after resizing

the image to 224 × 224. It results the limitation for detecting very small barcode.

These limitations need to be solve in the future.

Fig. 2.25.: False positives in the developed deep learning method.
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Fig. 2.26.: False negatives in the developed deep learning method
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3. BARCODE DECODING SYSTEM

3.1 Barcode Decoding System

To obtain the information from the barcode, a decoding system is added after

barcode detection. The bounded region will be cropped to be the input of the decoding

system. Decoding barcode bases on its encoding. The general idea of decoding

is generating the information from the spacings and widths of parallel lines in the

barcode.

3.1.1 General Method for Decoding 1-D Barcode

A traditional method to decode a 1-D barcode is using edge detection to detect

lines and correct the barcode image [14]. Then the specific information of spacings

and widths are converted to a string of numbers according to the schemes. Fig. 3.1

displays a flowchart and an example to decode a typical EAN-13 barcode. Firstly,

the 2-D color image is transferred to grayscale image. Then a threshold is used to get

a binary image. Before threshold, an averaging filter is used to denoise the grayscale

image to reduce high-frequency information. Then we apply Hough transformation

to correct image with vertical lines. Based on the binary image after preprocessing,

we use 0 and 1 to represent each width and spacing. According to different schemes,

the binary array will be converted to a decimal code.
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Fig. 3.1.: Structure of general method for decoding 1-D barcode.

3.1.2 Pyzbar Package to Decode Barcode

The Pyzbar package in Python is used to decode common types of barcodes.

This package is set up with different decoding schemes, barcode correlation and pre-

processing before decoding. Thus, even though the barcode is lightly skewed, it can

also be straightly detected with the Pyzbar package. Also, it can extract the type of

input barcode and decode the information. Fig. 3.2 displays two examples of results

generated from this package.
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Fig. 3.2.: Decoding results from Pyzbar package

3.1.3 Strongly Skewed Decoding System

For some strongly skewed images, Pzybar cannot decode it directly. The most

current software on our mobile phone also cannot decode it. We use perspective

transformation [15] by four corners points on the barcode to warp it. Fig. 3.3 shows

the process.

Fig. 3.3.: Process of warping strongly skewed image

The perspective transformation projects an original image to a new projective

plane. It realized by matrix calculation (equation 3.1) of the coordinates. [u, v]T

represents the coordinates in original image, and [x, y]T represents the coordinates
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in projective mapping. Matrix (H) represents the general projective transform. Let

h33 equal to 1.

h11 h12

h21 h22

 is the matrix of linear transformation including scaling,

shearing and rotation. Due to linear transformation, [h31 h32] is set to zero. [h13 h23]
T

represents translations. The coordinates of labeled corners is applied to generate the

H matrix.


x

′

y
′

w
′

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33

×


u

v

1

 x =
x

′

w′ y =
y

′

w′ (3.1)

3.2 Barcode Decoding Results

The following Fig. 3.4 displays some successful examples from the detecting and

decoding system.

Fig. 3.4.: Results of decoding lightly skewed images

A strongly skewed image can be detected with warping image is shown in Fig. 3.5
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Fig. 3.5.: Results of decoding strongly skewed images
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4. SUMMARY

The developed system can be desirable to identify images of fashion items that con-

tain barcode, and to decode those barcodes. Also, the challenge that fashion items

frequently contain strips that can be confused with barcodes has been solved in the

development. We explicitly consider stripes as detection class, along with barcodes.

In this work, the three approaches to barcode detection has been developed: the tra-

ditional approach uses hand-crafted features; the deep learning approaches with and

without an explicit class for stripes, respectively. As a result, adding post-processing

in hand-crafted traditional method solves some failure cases in false positives. In

addition, the algorithms of deep learning approach are trained on a large corpus of

photographs of fashion items acquired in retail outlets, and tested on images from the

Poshmark website. From testing performance, the comparison is observed for those

three methods in run time and accuracy. The proposed method with the explicit class

for stripes with deep learning approach achieves the highest accuracy of 96.7%. To

decode the significantly skewed barcodes, the Pyzbar package has been applied after

warping the barcode image.
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[3] P. Bodnár and L. G. Nyúl, “Improving barcode detection with combination
of simple detectors,” in 2012 Eighth International Conference on Signal Image
Technology and Internet Based Systems. IEEE, 2012, pp. 300–306.

[4] D. Wang, “A multiscale gradient algorithm for image segmentation using water-
shelds,” Pattern recognition, vol. 30, no. 12, pp. 2043–2052, 1997.

[5] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge
detection filter using the sobel operator,” IEEE Journal of solid-state circuits,
vol. 23, no. 2, pp. 358–367, 1988.

[6] H. G. Nash and J. R. Linford, “Low pass digital averaging filter,” Mar. 11 1980,
uS Patent 4,193,118.

[7] S. Simanovsky, I. M. Bechwati, M. Hiraoglu, and C. R. Crawford, “Apparatus
and method for detecting objects in computed tomography data using erosion
and dilation of objects,” May 23 2000, uS Patent 6,067,366.

[8] C. G. Harris, M. Stephens et al., “A combined corner and edge detector.” in
Alvey vision conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–5244.

[9] A. S. Glas, J. G. Lijmer, M. H. Prins, G. J. Bonsel, and P. M. Bossuyt, “The
diagnostic odds ratio: a single indicator of test performance,” Journal of clinical
epidemiology, vol. 56, no. 11, pp. 1129–1135, 2003.

[10] J. T. Townsend, “Theoretical analysis of an alphabetic confusion matrix,” Per-
ception & Psychophysics, vol. 9, no. 1, pp. 40–50, 1971.

[11] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A
convolutional neural-network approach,” IEEE transactions on neural networks,
vol. 8, no. 1, pp. 98–113, 1997.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2818–2826.



37

[13] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On
large-batch training for deep learning: Generalization gap and sharp minima,”
arXiv preprint arXiv:1609.04836, 2016.

[14] A. S. Dhua and M. Delgadillo, “Decoding barcodes,” Apr. 9 2013, uS Patent
8,413,903.

[15] J. Mezirow, “Perspective transformation,” Adult education, vol. 28, no. 2, pp.
100–110, 1978.


