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ABSTRACT

Zeng, Kaiyuan Ph.D., Purdue University, May 2019. Accurate and Efficient Methods
for Multiscale and Multiphysics Analysis. Major Professor: Dan Jiao.

Multiscale and multiphysics have been two major challenges in analyzing and de-

signing new emerging engineering devices, materials, circuits, and systems. When

simulating a multiscale problem, numerical methods have to overcome the challenges

in both space and time to account for the scales spanning many orders of magni-

tude difference. In the finite-difference time-domain (FDTD) method, subgridding

techniques have been developed to address the multiscale challenge. However, the

accuracy and stability in existing subgridding algorithms have always been two com-

peting factors. In terms of the analysis of a multiphysics problem, it involves the

solution of multiple partial differential equations. Existing partial differential equa-

tion solvers require solving a system matrix when handling inhomogeneous materials

and irregular geometries discretized into unstructured meshes. When the problem

size, and hence the matrix size, is large, existing methods become highly inefficient.

In this work, a symmetric positive semi-definite FDTD subgridding algorithm in

both space and time is developed for fast transient simulations of multiscale prob-

lems. This algorithm is stable and accurate by construction. Moreover, the method

is further made unconditionally stable, by analytically finding unstable modes, and

subsequently deducting them from the system matrix. To address the multiphysics

simulation challenge, we develop a matrix-free time domain method for solving ther-

mal diffusion equation, and the combined Maxwell-thermal equations, in arbitrary

unstructured meshes. The counterpart of the method in frequency domain is also

developed for fast frequency-domain analysis. In addition, a generic time marching



xiv

scheme is proposed for simulating unsymmetrical systems to guarantee their stability

in time domain.
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1. INTRODUCTION

1.1 Background of Multiscale and Multiphysics Analysis

A broad range of electromagnetic engineering problems rely on theoretical devel-

opments and computational techniques to solve problems spanning different scales or

physical properties, making multiscale and multiphysics two major challenges in ana-

lyzing and design new emerging engineering devices, materials, circuits, and systems.

The finite-difference time-domain (FDTD) method is widely used as time-domain

method for general electromagnetic analysis [1], [2]. It has the advantages as being

simple and matrix-free, namely, free of matrix solution. The stability analysis of

the conventional FDTD method is straightforward because the numerical system is

symmetric positive semi-definite (SPD) while a uniform orthogonal grid is required.

However, if there are fine features in a structure, a small space step must be utilized

in the discretization to capture the quick variance of the fields. Due to the uniform

orthogonal grid property, such small space step has to be applied to regions where

there are no fine features. This requirement increases the number of unknowns to be

solved, especially the global time step is also restricted by the smallest space step,

making the conventional FDTD method not efficient for solving multiscale problems.

Subgridding is an effective method to refine a grid locally in the FDTD method,

and this is especially useful when simulating a multiscale problem. Ideally, when

simulating a multiscale problem, a subgridding method in both space and time can

not only reduce the number of unknowns, but also permit the use of a local time step.

In other words, the time step in a base grid is not restricted by that in the subgrid

for a stable explicit time marching. Each grid region can be simulated stably using

its local time step, and hence greatly accelerating an FDTD simulation.
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The electrical-thermal co-analysis is of critical importance in advanced integrated

circuit (IC) design, where emerging interconnect solutions have been intensively pur-

sued to overcome the shortcoming of existing copper-based interconnects in perfor-

mance and reliability. The design of the new interconnect solutions typically involves

many physics such as circuits, electromagnetics, materials, electron transport, and

thermal diffusion in a broad band of frequencies. To understand the entire physical

process happening in an advanced IC design, a rigorous and efficient multiphysics

simulation is required.

The analysis of a multiphysics problem involves the solution of multiple partial

differential equations (PDEs). Existing solvers for solving PDEs generally cast the

original physical problem into a matrix equation of Ax = b to solve [3, 4], where

A can be either dense or sparse. The solution of such a matrix equation can be

computationally expensive, i.e., requiring prohibitively large memory and/or long

CPU runtime, in unstructured meshes, as system matrix A is, in general, not diagonal.

If a numerical method for solving PDEs can be made matrix-free, i.e., free of a matrix

solution, then much larger problems can be solved using the same computational

resources.

1.2 Recent Progress in Multiscale and Multiphysics Analysis

In an FDTD subgridding method, the fields at the interface between base grid

and subgrid are typically estimated through certain interpolation scheme. Such in-

terpolation can ruin the positive semi-definite property of the original FDTD system,

thus causing instability. Since the smallest space step comes from the fine grid part,

the allowed largest time step will be restricted by such fine feature, which makes the

whole simulation take a long time to finish due to the fact that this time step need to

be used in both base grid and subgrid to guarantee stability. Meanwhile, the space

interpolation between base grid and subgrid may result in a worse solution accuracy.

Especially for inhomogeneous materials, simple linear interpolation will suffer from
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accuracy issue since varying material property changes the fields distribution and

linear interpolation is not accurate enough.

In literature, extensive work has been done to tackle the FDTD subgridding prob-

lem. In [5], a variable step size method (VSSM) was developed, providing a direct

interpolation scheme to update fields in both base grid and subgrid. A mesh refine-

ment algorithm (MRA) was presented in [6], requiring less computational memory

and time. Accurate interpolation techniques can always be done to obtain the field

unknowns at the interface between a base grid and a subgrid. However, instability es-

pecially late-time instability has been observed in many of the subgridding algorithms.

Various methods have been proposed to fix the instability issue [7–10]. In [11–13],

enforcing reciprocity of the fields has been proposed to ensure stability, but accuracy

is compromised. In [14], the subgrid was arranged in a special way in order to ensure

the resultant numerical system to be symmetric.

Recently, in [15], an accurate unsymmetrical FDTD subgridding method is devel-

oped, whose stability is also guaranteed by a new time marching scheme. However,

the subgridding is only achieved in space not in time. A series expansion is also

involved in the time marching, which makes the computational cost higher than a

traditional explicit time marching. In [16], a systematic approach is developed to

make an FDTD subgridding algorithm symmetric positive semi-definite regardless of

the grid ratio and the grid arrangement, while retaining the FDTD’s second-order ac-

curacy. As a result, the resultant time marching is ensured to be stable and accurate.

In [16], a 3-D subgridding operator is demonstrated with a capability of local time

stepping. However, the solution of the base grid unknowns is decoupled from that

of the subgrid to make the resulting system matrix SPD. Such a scheme suffers from

inaccuracy when subgrid regions involve strong inhomogeneity. The 2-D subgridding

operator in [15] can handle inhomogeneous problems accurately, however, it is only

achieved in space, not in time. As a result, a local time stepping is not permitted,

and the time step in the base grid is restricted by that in the subgrid, and vice versa.
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For multiphysics analysis, a rigorous and efficient multiphysics simulation is re-

quired to understand the entire physical process happening in an advanced IC design.

However, existing methods all require a matrix solution, which limits their use in

large-scale design and analysis. The FDTD method has its merit in being simple and

free of a system matrix solution. However, it has been difficult to extend the FDTD to

arbitrary unstructured meshes [17]. Nonorthogonal FDTD methods [18–22] generally

require a dual mesh, which is not straightforward to construct for a primary mesh

that must capture arbitrarily shaped material discontinuities in 3-D settings. Other

different attempts have been developed to generalize the FDTD to other grid types

such as the curvilinear FDTD [23–25], the discrete integral equation (DSI) meth-

ods [26], and generalized Yee (GY) methods [27–30]. Unfortunately, as mentioned

in [31], those methods and similar methods can sometimes suffer from late time in-

stabilities. Interpolations and projections are often employed in these methods, and

stability and accuracy may not be simultaneously guaranteed. Recently, a matrix-free

time-domain method (MFTD) has been developed for solving Maxwell’s PDE equa-

tions in unstructured meshes [32–34]. This method has a naturally diagonal system

matrix independent of the element shape used for discretization, and hence the need

for numerically finding the matrix solution is completely eliminated. Despite the suc-

cess of solving Maxwell’s equations, however, a matrix-free time-domain method has

not been developed for thermal analysis as well as electrical-thermal co-design and

analysis.

In existing methods for thermal simulation and electrical-thermal co-simulation

[35–42], based on either static or full-wave Maxwell’s equations, a matrix solution

is required when dealing with unstructured meshes. These meshes are often nec-

essary in discretizing irregularly shaped geometries and materials. They also help

greatly reduce the number of unknowns as compared to a grid-based discretization.

Since the material property changes with time due to thermal effects, the system

matrix resulting from the discretization of Maxwell’s equations is time dependent

in an electrical-thermal co-simulation. As a result, at each time instant when the
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matrix changes, one has to re-factorize or solve the matrix, which is time consum-

ing especially in analyzing large-scale problems. Although the MFTD has a flexible

framework, it cannot be directly applied to perform a thermal analysis since it is

formulated for vectors while the thermal diffusion equation is a scalar equation. In

addition, the co-simulation of the coupled Maxwell’s and thermal equations results

in a nonlinear system of equations, the stability of which has not been investigated

in existing methods.

Another challenge is how to simulate the unsymmetrical systems in a stable way.

For subgridding problems, it has been shown in [15] that the root cause of the in-

stability is the unsymmetrical system matrix resulting from the various subgridding

schemes. And the underlying discretized curl-curl operator of the MFTD method

is unsymmetrical as well. For an unsymmetrical matrix, it has been proven that a

traditional leap-frog or central-difference based explicit time marching is absolutely

unstable [32, 43]. This is because an unsymmetrical matrix can support complex

eigenvalues, when these eigenvalues exist, no time step can be found to make the

explicit time marching stable. To overcome the stability problem while retaining

the advantage of a diagonal mass matrix, in [32], a backward difference scheme is

employed for time marching. This results in a system matrix to solve, which is an

implicit scheme. Although the inverse of the system matrix is made explicit in [32],

thus avoiding a matrix solution, the computation of a k-term series expansion is still

required, which is equivalent to k sparse matrix-vector multiplications. In contrast,

a truly explicit scheme only requires one matrix-vector multiplication.

The stability and accuracy of the aforementioned methods have always been two

competing factors. To explain, in order to ensure the accuracy of these methods, the

resultant system matrix, in general, cannot be made symmetric. As a result, there

is no theoretical guarantee of the stability of the resultant time-domain simulation.

If the imaginary part of the eigenvalues of the unsymmetrical system matrix are

negligible as compared to the real part such as a subgridding with few interface

unknowns, or nonuniform gridding in small local areas, an explicit time marching may
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manage to be stable within a certain time window. However, this is not the case when

the system matrix is highly unsymmetrical. For example, in the MFTD, we observe an

immediate divergence after starting the time marching if a traditional explicit scheme

is used. On the other hand, one can construct a symmetric numerical system to

guarantee stability, however, accuracy and flexibility are often sacrificed in the space

discretization of the curl operators. If we can find a systematic way to handle complex-

valued eigenvalues, and explicitly simulate an unsymmetrical numerical system with

guaranteed stability, then not only the MFTD method can be made truly explicit, but

also other unsymmetrical time-domain methods can be marched on in time explicitly

without the need for concerning about their stability.

1.3 Contribution of This Work

In Chap. 2, we propose a systematic approach to develop SPD FDTD subgrid-

ding operators in both space and time regardless of the grid settings, and accurate

for analyzing both 2- and 3-D inhomogeneous problems. This approach and resultant

2- and 3-D subgridding operators successfully remove the problems encountered in

existing SPD FDTD algorithms. The subgridding is achieved in both space and time,

and meanwhile it is accurate for solving inhomogeneous problems. We also provide

an explanation of the proposed operators in the original differencing equation based

FDTD, and show how to implement it in the original FDTD without using matrix

operators. This explanation provides many new insights of this work. Extensive nu-

merical experiments have been carried out, which demonstrate the accuracy, efficiency

and stability of the proposed work. It is also shown to outperform state-of-the-art

subgridding algorithms like [15, 16].

To further improve the efficiency, we develop a technique to make the aforemen-

tioned FDTD subgridding algorithm unconditionally stable. To do this, in Chap.

3, we first discuss how to deal with unstable modes in a conventional FDTD algo-

rithm in an efficient way. In existing explicit and unconditionally stable time-domain



7

methods, the root cause of instability has been identified to be the eigenmodes of the

governing system matrix whose eigenvalues are too high to be accurately simulated

by a given time step. The unstable modes have been found numerically, and subse-

quently deducted from the system matrix to permit an unconditionally stable time

marching, but such a numerical method may cost a very long time for solving large

scale problems. In our work, we show that such unstable modes as well as stable

modes can be found for the FDTD method in an analytical way, which can save a lot

of time compared to the numerical approach for finding unstable modes.

After finding the analytical unstable modes for the conventional FDTD algorithm,

we proceed to make the explicit and symmetric positive semi-definite FDTD subgrid-

ding algorithm unconditionally stable in Chap. 4. The unstable modes are identified

analytically using the method developed in Chap. 3, and removed from the numerical

system based on prescribed accuracy. The resultant explicit subgridding algorithm

not only permits a local time stepping in the base grid and the subgrid, but also is

unconditionally stable regardless of the space step in the fine subgrid.

To address the multiphysics simulation challenge and the shortcoming of existing

methods, we develop a matrix-free algorithm for solving full-wave Maxwell’s equa-

tions and the thermal diffusion equation simultaneously in Chap. 5. The proposed

new algorithm is made naturally free of matrix solutions. Hence, it has a potential of

being much more efficient in time and memory than solvers requiring solving matri-

ces. The matrix-free property of the proposed method is achieved regardless of the

element shape used for discretization, thus suitable for both regular grid-based dis-

cretizations and unstructured meshes. Although the matrix-free time-domain method

has a flexible framework, it cannot be directly applied to perform a thermal analysis

since it works on vectors while the thermal diffusion equation is a scalar equation.

In this work, we overcome this difficulty by proposing a vector representation of the

scalar-based temperature, and subsequently transforming the thermal diffusion equa-

tion into two equivalent vector equations. Thus, the thermal diffusion equation can

be solved in a matrix-free manner with the same ease as Maxwell’s equations. We
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then develop a matrix-free algorithm for solving full-wave Maxwell’s equations and

the thermal diffusion equation simultaneously in time domain. The stability of the

coupled nonlinear system of equations is also analyzed in detail, and found to be

ensured with a correct choice of time step in explicit time marching.

The counterpart of the matrix-free time-domain method in frequency domain is

also developed for fast frequency-domain analysis in Chap. 6. This method, having

a diagonal mass matrix, is developed for analyzing general electromagnetic problems

in arbitrary unstructured meshes in frequency-domain. The spectral radius of the

resultant system matrix is further made less than 1, by deducting the modes outside

of the unit circle from the system matrix. The condition number is also made con-

trollable by choosing which set of modes to remove. The property of the diagonal

mass matrix is utilized to efficiently find the modes to be deducted, and also compute

a fast iterative solution that converges in a small number of iterations.

The unsymmetrical numerical systems are commonly encountered in multiscale

and multiphysics problems, and for those systems, a traditional explicit time marching

is absolutely unstable because an unsymmetrical matrix can have complex-valued

eigenvalues, and no time step can be found to make its explicit time marching stable.

In Chap. 7, we overcome this barrier and successfully develop a generic truly explicit

time marching method and theoretically prove that this scheme is guaranteed to

be stable. With this approach, we are able to make the MFTD truly explicit, and

the advantage of the diagonal mass matrix is accentuated. Unsymmetric FDTD

subgridding method, having no theoretical guaranteed of the stability of a traditional

central-difference based time marching, can be stably simulated by using the proposed

method as well. As a result, we eliminate the need for a backward-difference-based

implicit scheme to support unsymmetrical system matrix, and thereby the series

expansion required for obtaining an explicit inverse of the system matrix, greatly

improving the computational efficiency of the simulation without compromising its

accuracy.
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2. SYMMETRIC POSITIVE SEMI-DEFINITE FDTD

SUBGRIDDING ALGORITHMS IN BOTH SPACE AND

TIME FOR ACCURATE ANALYSIS OF

INHOMOGENEOUS PROBLEMS

2.1 Introduction

Compared with the conventional finite-difference time-domain (FDTD) method,

FDTD subgridding is an effective method to locally refine a grid for solving multiscale

problems. However, such a scheme generally results in an unsymmetrical numerical

system to preserve accuracy for arbitrary subgrid settings. The resultant time-domain

simulation cannot be guaranteed in stability using conventional schemes. Symmetric

positive semi-definite (SPD) subgridding algorithms have been developed to address

the stability problem. However, existing SPD subgridding is generally achieved in

space, not in time; meanwhile the accuracy is also limited when handling general

inhomogeneous problems.

In this chapter, we develop a systematic approach to derive SPD FDTD subgrid-

ding operators in both space and time for analyzing general inhomogeneous problems

in an accurate fashion. The operators are symmetric positive semi-definite by con-

struction, which is also made truly independent of the grid ratio. The resultant

explicit time marching is guaranteed to be stable because such subgridding operators

have only nonnegative real eigenvalues. Furthermore, the use of a time step local to

the base grid and the subgrid is permitted without sacrificing stability and accuracy.

Moreover, the algorithm takes the subgrid information into account to accurately

analyze inhomogeneous problems. In addition, we provide an interpretation of the

proposed subgridding operators and show how to implement them in the original dif-

ference equation based FDTD framework. Surprisingly as it has not been attempted



10

before, to obtain the interface unknown in the base grid using the time step local to

the base grid, only a partial curl operation is performed using the field inside the base

grid. This yields one component of the interface unknown. The other component is

obtained from the subgrid using the time step local to the subgrid. Such a splitting of

the interface field allows for a subgridding in time in addition to space, whose stability

is also theoretically proved. Extensive numerical experiments involving both 2- and

3-D subgrids with various grid ratios have demonstrated the stability, accuracy and

efficiency of the proposed new SPD subgridding algorithms.

Part of the contents of this chapter has been extracted and revised from the fol-

lowing manuscript: Kaiyuan Zeng and Dan Jiao, ”Symmetric Positive Semi-Definite

FDTD Subgridding Algorithms in Both Space and Time for Accurate Analysis of

Inhomogeneous Problems,” submitted to the IEEE Transactions on Antennas and

Propagation.

2.2 Preliminaries

First, we provide a brief review of the patch-based single-grid FDTD formulation,

which is developed in [44]. It is used in this work to facilitate the development of

a generic SPD subgridding algorithm, as this formulation reveals clearly how the

equations in different regions are assembled in an FDTD to build a global system of

equations.

The formulation is valid for both 2- and 3-D grids. Let {e} be a global electric

field unknown vector of length Ne, and {h} being a global magnetic field unknown

vector of length Nh. The FDTD can be written into the following form:

Se{e} = −Dµ{ḣ}, (2.1)

Sh{h} = Dε{ė}+ Dσ{e}+ {j}, (2.2)

where a dot above a letter denotes the first-order time derivative, {j} represents a

current source vector, and Dµ, Dσ and Dε are diagonal matrices of permeability,

conductivity, and permittivity respectively.
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Based on the patch-based single-grid formulation, each row of Se in (2.1) corre-

sponds to one patch in the grid, and when multiplied by {e}, it produces the magnetic

field located at the patch center and normal to the patch. Take the i-th row of Se as

an example, it can be written as

S(i)
e = {− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

} ⊕ zeros(1, Ne), (2.3)

which has only four nonzero elements, and Li and Wi are the two side lengths of

the i-th patch. A reference normal direction is defined for every patch, which is also

H’s reference direction on the patch. Using the right hand rule, with the right thumb

pointing to the reference normal direction, if the electric field edge’s direction is along

the direction encircling the normal direction, then a plus sign is used; otherwise, a

negative sign appears in (2.3). The ⊕ denotes an extended addition by adding the

four nonzero elements upon a zero vector of length Ne, based on the global indexes

of the four electric field unknowns on the patch. Similarly, for the i-th patch, we

generate a column vector

S
(i)
h = {− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

}T ⊕ zeros(Ne, 1), (2.4)

which is nothing but the transpose of (2.3), thus

Sh = STe . (2.5)

As can be seen, a column i of Sh has also at most four nonzero entries, located at the

rows corresponding to the four electric fields of patch i.

Eliminating {h} from (2.1) and (2.2), we obtain

Dε{ë}+ Dσ{ė}+ S{e} = −{j̇}, (2.6)

where S can be represented as

S = ShDµ−1Se =

Nh∑
i=1

µ−1i (S
(i)
h )Ne×1(S

(i)
e )1×Ne , (2.7)

which is a sum of the rank-1 matrix S
(i)
h S(i)

e over all the patches.
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A leap-frog-based time marching of (2.1) and (2.2) is equivalent to a central-

difference-based explicit time marching of (2.6), which can be readily proved. The

stability of the resulting explicit marching is guaranteed if the following condition is

satisfied:

∆t ≤ 2√
λmax

, (2.8)

where λmax stands for the largest eigenvalue of D−1ε S [45]. In the conventional FDTD

for a uniform grid, S is symmetric positive semi-definite as evident from (2.7) and

(2.5). Since Dε is also symmetric positive definite, the eigenvalues of D−1ε S are

nonnegative real. As a result, a real valued time step can always be found to satisfy

(2.8). However, in an FDTD subgridding scheme, due to the mismatch between the

base grid and the subgrid. Various unsymmetrical interpolations are used to obtain

the unknown fields at the subgrid interface, making the resulting rank-1 matrix of

each patch not symmetric. As a result, S is unsymmetrical in general, which involves

complex or negative eigenvalues in nature. When such eigenvalues exist, a traditional

explicit time marching is absolutely unstable, which has been proved in [32], and that

is why many FDTD subgridding algorithms cannot ensure stability.

2.3 Systematic Approach for Developing SPD Subgridding Algorithms

in Both Space and Time

In this section, we present a systematic approach for developing SPD FDTD

subgridding algorithms in both space and time, which is SPD by construction. This

approach is also algebraic and generic, suitable for general subgridding settings in

both 2- and 3-D problems.

From (2.6) and (2.7), we can analyze how the equations in different domains are

assembled in the FDTD to simulate the entire problem. Consider two domains, (2.6)

can be rewritten as

Dε{ë}+ Dσ{ė} = −
[
Sh,1Dµ−1

1
Se,1 + Sh,2Dµ−1

2
Se,2

]
{e}, (2.9)
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where Sh,1(2) has all the column vectors generated from the patches in domain 1 (2),

and Se,1(2) comprises all the row vectors from the patches in domain 1 (2). Here, the

source term is omitted to focus on the assembling mechanism in the FDTD. As can

been seen, the total S is an addition of each domain’s S, which is the same as the

assembling procedure in a finite-element method (FEM). Each patch’s S is assembled

to obtain a global S based on the index of a global unknown vector. However, the

Dε and Dσ are not added up from each domain’s contribution. They are diagonal

matrices, whose entries are the permittivity or conductivity at the corresponding e’s

location. Shall they be assembled from each patch’s contribution like that in a finite-

element method, then the diagonal entry would be a multiple of the permittivity or

conductivity. This unique assembling procedure in the FDTD, originated from the

use of a dual grid, also renders its SPD subgridding scheme more difficult to develop,

as compared to the FEM in handling a nonconformal mesh.

Based on (2.9), we can express the electric filed unknown as the addition of two

contributions: one is from domain 1, expressed by the first term of the right hand

side of (2.9); the other is from domain 2, represented by the second term. Hence, we

can rewrite (2.9) as a two-row system:

Dε{ë}1 + Dσ{ė}1 = −Sh,1Dµ−1
1

Se,1{e} (2.10)

Dε{ë}2 + Dσ{ė}2 = −Sh,2Dµ−1
2

Se,2{e}, (2.11)

with

{e} = {e}1 + {e}2, (2.12)

which stitches the two domains together. Neither {e}1 nor {e}2 provides a complete

solution of {e}. This is because for an interface e unknown between domain 1 and

domain 2, (2.10) yields the curl of H from domain 1 patches, and (2.11) generates

the curl of H from domain 2 patches, and the addition shown in (2.12) is required to

complete the whole curl of H operation to produce the electric field on the interface.

If the two regions are a base grid, and a subgrid, respectively, the same principle

applies to add the equations from each region. In what follows, we denote the base-
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grid region by c, as a coarse mesh is often used in the base grid; and the subgrid

region by f , standing for a f iner mesh in the subgrid. As illustrated in Fig. 2.1 , we

use {efb}, {efi}, {ecb}, and {eci} to denote the electric field unknowns (edges) on the

subgrid boundary, inside the subgrid, on the base grid boundary that overlaps with

the subgrid boundary, and inside the base grid respectively. Obviously, one {ecb}

overlaps with multiple {efb}.

Fig. 2.1. Illustration of a subgrid embedded in a base grid, and dif-
ferent kinds of unknowns.

To maintain the field tangential continuity at the interface between the base grid

and the subgrid, we should use only one set of E unknowns between {ecb} and {efb}.

If we use {ecb} as the set, the global unknown E vector is composed of

{e}Ne×1 = {eci, efi, ecb}T , (2.13)

with a total number of E unknowns being

Ne = #eci + #efi + #ecb. (2.14)

If we use {efb}, we have the following {esub} being the global E vector:

{esub}Ne,sub×1 = {eci, efi, efb}T , (2.15)
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whose length is

Ne,sub = #eci + #efi + #efb. (2.16)

If the vector in (2.13) is used as a global unknown vector, the e’s solution con-

tributed from the base grid, defined as {e}p, can be expressed as

Dε{ë}p + Dσ{ė}p = −Sh,cDµ−1
c

Se,c{e}, (2.17)

where Se,c is obtained from all of the patches in the base grid, and Sh,c is the transpose

of Se,c. Similarly, the e’s solution contributed from the subgrid, defined as {e}m, can

be written into

Dε,sub{ësub}m + Dσ,sub{ ˙esub}m = −Sh,fDµ−1
f

Se,f{esub}, (2.18)

where Se,f is obtained from all of the patches in the subgrid, and Sh,f is its transpose.

To combine (2.17) and (2.18), we can represent {esub} in terms of {e}. Since only

the subgrid boundary unknowns need such a transformation, we can write

{efb} = Pfc{ecb}, (2.19)

where Pfc is used to interpolate {efb} from {ecb}. Subsequently, we can write

{esub}Ne,sub×1 = P{e}Ne×1, (2.20)

and P, whose size is Ne,sub ×Ne, has the following form

P =


(I)#eci×#eci 0 0

0 (I)#efi×#efi 0

0 0 (Pfc)#efb×#ecb

 , (2.21)

in which I denotes an identity matrix, and the subscripts denote matrix dimensions.

Using the above transformation, (2.18) can be rewritten as

Dε,subP{ë}m + Dσ,subP{ė}m = −Sh,fDµ−1
f

Se,fP{e}. (2.22)

To obtain a symmetric system of equations, we multiply both sides of (2.22) by PT ,

obtaining

PTDε,subP{ë}m + PTDσ,subP{ė}m = −PTSh,fDµ−1
f

Se,fP{e}. (2.23)
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Combining (2.23) and (2.17) with the following

{e} = {e}p + {e}m, (2.24)

we obtain the global system of equations for solving e when subgrids are present.

In [16], the 2-D subgridding algorithm does not permit a local time stepping, i.e.,

allowing for the use of a time step in the base grid local to the base grid regardless

of the subgrid. As a result, one has to use a smaller time step restricted by the finer

space step in the subgrid for the time marching in the base grid. To permit a local

time stepping, in this work, we propose to solve the following {e}p and {e}m systems

of equations instead of {e} directly: Dε 0

0 PTDε,subP

 ëp

ëm

+

 Dσ 0

0 PTDσ,subP

 ėp

ėm


+

 Scc Scc

PTSffP PTSffP

 ep

em

 = b, (2.25)

where

Scc = Sh,cDµ−1
c

Se,c

Sff = Sh,fDµ−1
f

Se,f . (2.26)

If the new system (2.25) can be stably simulated, we can prove the time step

for simulating {e}p is determined by the base grid, instead of the subgrid, as the

following. Rewriting (2.25) in frequency domain, we have −ω2Dε + Scc Scc

PTSffP −ω2Dε + PTSffP

 ep

em

 = b(ω). (2.27)

Eliminating {e}m, the {e}p satisfies

[−ω2Dε + Scc(I−A−1ff Sff )]ep = b, (2.28)

where I is an identity matrix and Aff = −ω2Dε + PTSffP. The S part in (2.28) is

Scc right multiplied by another matrix, and hence the field solution ep is still spanned
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in the space of Scc’s eigenvectors (from the base grid), which guarantees that the base

grid time step is not restricted by the subgrid region. Similarly it can be proven that

the subgrid can be simulated using the time step allowed for stably simulating the

Sff modes, thus local to the subgrid.

In our conference paper [46], we prove that the S-related matrix in (2.25) is

positive semi-definite. This is because the eigenvalues λ and the eigenvectors x of the

S-related matrix satisfy

Snewx =

 Scc Scc

PTSffP PTSffP

 x1

x2

 = λ

 x1

x2

 , (2.29)

hence, λ(x1 + x2) = (Scc + PTSffP)(x1 + x2). Since both Scc and PTSffP are

symmetric positive semi-definite, the Snew’s eigenvalues are also non-negative real.

However, this proof does not lead to the proof that the D−1newSnew also has non-

negative real eigenvalues, where Dnew is the block diagonal matrix in front of the

second and the first order time derivative of {e} in (2.25). Depending on the choice

of P and also the inhomogeneity of the problem being studied, the D−1newSnew may have

complex eigenvalues and the resulting explicit time marching would not be stable.

To systematically develop a subgridding algorithm which is SPD by construction,

we carried out the following analysis. First, we should realize that since efb and ecb

overlap, they share the same material parameter, and hence

PTDε,subP = PTPDε (2.30)

PTDσ,subP = PTPDσ. (2.31)

As a result, (2.23) can be rewritten as

Dε{ë}m + Dσ{ė}m = −(PTP)−1PTSh,fDµ−1
f

Se,fP{e}. (2.32)

Adding the above upon (2.17), the whole system of equations for solving {e} can be

written as

Dε{ë}+ Dσ{ė} = −
[
Scc + (PTP)−1PTSffP

]
{e}, (2.33)
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which can be written in short as

Dε{ë}+ Dσ{ė} = −Stotal{e}, (2.34)

where

Stotal = Scc + (PTP)−1PTSffP. (2.35)

The stability of (2.33), which is also that of (2.25), is governed by the property of

D−1ε Stotal. Since Dε is symmetric and positive definite, the stability is governed by the

property of Stotal. If Stotal is symmetric and positive semi-definite, then Dε and Stotal

form a SPD eigenvalue problem, whose eigenvalues are known to be nonnegative real.

Unfortunately, the Stotal shown in (2.35) is not symmetric for general P. However,

if P−1 = PT , then obviously, Stotal would become symmetric. Since P is not a

square matrix because the subgrid does not match the base grid, P−1 does not exist.

However, if we can make PTP be an identity matrix, or an identity matrix scaled by

a positive coefficient, then (2.35) is also symmetric and positive semi-definite. Let

PTP = dI, we have

Stotal = Scc + d−1PTSffP, (2.36)

which is symmetric and positive semi-definite.

The aforementioned provides a theoretical framework to develop an FDTD sub-

gridding algorithm that is SPD by construction. The only thing left for consideration

is accuracy, i.e., we have to make sure the field solution obtained from the resulting

system is accurate. Based on the ideas presented in this section, we successfully de-

velop 2- and 3-D SPD subgridding algorithms in both space and time, which are also

accurate, the details of which are presented in the following section.

2.4 Symmetric Positive Semi-Definite 2-D Subgridding Algorithm in Space

and Time

In this section, we first present an accurate 2-D SPD subgridding operator in space

and time, and then provide an interpretation of the operator in the original FDTD

framework.
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2.4.1 2-D Subgridding Operator

For 2-D cases, let the grid ratio be n, then there are n subgrid boundary unknowns

efb overlapping with the ecb from the base grid, as illustrated in Fig. 2.1.

We need to find a good choice of P that can result in a system matrix shown in

(2.36). The P in [16] satisfies this requirement after certain modifications. Specifi-

cally, the following Pfc is employed

Pfc = [1 1 1 ... 1]Tn×1. (2.37)

For such a choice of Pfc, (PTP)−1 is a diagonal matrix of

(PTP)−1 =


I#eci 0 0

0 I#efi 0

0 0 n−1I#ecb

 , (2.38)

where I denotes an identity matrix whose size is specified by the subscript, and #

denotes the cardinality of a set.

The aforementioned choice of P results in a clear geometrical meaning of (PTP)−1PT

in (2.33). For an ecb row of equation, the PT multiplication is to add the curl of H

from the n subgrid patches that have the n segments of the ecb, and the (PTP)−1,

which is 1/n, is to take the average of the sum of the curl of H contributed by the

n patches. Thus the (PTP)−1PT operation provides the curl of H from the subgrid

patches that share the ecb.

Although (2.38) is diagonal, it cannot be written as an identity matrix scaled by a

constant. However, we can change the diagonal block corresponding to the eci from I

to n−1I. This would not change (2.33) since the Sff term is zero in the rows/columns

corresponding to eci. In other words, Sff does not involve unknowns in the base

grid. We can also change the diagonal block corresponding to the efi from I to n−1I.

This will change the Sff term. However, we can scale the left hand side matrices

corresponding to the efi in the same way. As a result, the solution would not be

changed. After the modifications, we obtain the following system of equations

DDε{ë}+ DDσ{ė} = −
[
Scc + n−1PTSffP

]
{e}, (2.39)
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where D = diag{{1}#eci , {1/n}#efi , {1}#ecb}, a diagonal matrix made of the entries

shown in the braces. The above system is clearly SPD, whose solution is also the

same as (2.33), thus not changed.

Although (2.39) is SPD, we find it is not very accurate. This is because the cell

size is different for the subgrid patches and the base grid patches. We need to use an

average length to calculate the electric field of ecb from the curl of H. This is not an

issue for a conventional FDTD in a uniform grid, because the interface edge is shared

by the patches from different grids with the same grid size. However, this is not the

case when subgridding exists. To see this point clearly, consider one ecb unknown

whose global index is i, its corresponding row of equation in (2.39) can be written as

εiecb,i + σiecb,i = −

[
1

Lc
ḣbase −

1

nLf

n∑
j=1

ḣs,j

]
, (2.40)

in which εi and σi denote the permittivity, and conductivity respectively at the point

of ecb,i, Lc denotes the base grid cell size, and Lf is the subgrid one, the hbase is the

magnetic field at the base grid patch that owns the ecb,i, whereas hs,j denotes the j-th

subgrid patch with one edge falling onto the ecb,i. Since Lc is different from Lf , the

above is inaccurate in computing the curl of H to generate ecb,i.

For better accuracy, we should use an average length L2D,ave of the two patches

along the direction perpendicular to the ecb to evaluate the curl of H, which is

L2D,ave =
Lc + Lf

2
. (2.41)

To utilize the average length, the row entry of S
(i)
h of the patches involving ecb should

be changed from the original 1/Li (Li being Lc or Lf ) to 1/L2D,ave. We hence replace

1/Li by 1/L2D,ave for the rows corresponding to the ecb unknowns, obtaining

Stotal = D1

(
Scc +

Lf
nLc

PTSffP

)
, (2.42)

where

D1 = diag{{1}#eci , {1}#efi , {Lc/L2D,ave}#ecb}. (2.43)
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In this way, (2.40) becomes

εiecb,i + σiecb,i = −

[
1

L2D,ave

ḣbase −
1

nL2D,ave

n∑
j=1

ḣs,j

]
, (2.44)

which is accurate. However, since Sff also involves efi, the constant coefficient
Lf
nLc

=

1
n2 in (2.42) scales the right hand side corresponding to the efi as well, and hence the

equation is changed. Again, we can scale the left hand side of (2.39) in the same way

to make the equation correct.

As a result, (2.39) becomes

DsDε{ë}+ DsDσ{ė} = −Stotal{e}, (2.45)

in which

Ds = diag{{1}#eci , {1/n2}#efi , {1}#ecb}, (2.46)

and

Stotal = D1St, (2.47)

where

St = Scc + (1/n2)PTSffP. (2.48)

The stability of (2.45) is governed by the eigenvalues of D−1ε D−1s D1St. Since

D−1ε D−1s D1 is diagonal and symmetric positive definite, and St is symmetric positive

semi-definite, the eigenvalues of D−1ε D−1s D1St are non-negative real. As a result, the

resultant subgridding scheme is guaranteed to be stable. Meanwhile, the accuracy is

also ensured via the choice of P, and the use of average length across the base grid

and the subgrid.

To realize a local time stepping, we transform (2.45) to the following system: Dε 0

0 DsDε

 ëp

ëm

+

 Dσ 0

0 DsDσ

 ėp

ėm


+

 D1Scc D1Scc

n−2D1P
TSffP n−2D1P

TSffP

 ep

em

 = b. (2.49)
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An explicit time marching is then performed on the ep and em separately as follows:

Dεëp + Dσėp + D1Scc{e} = bc (2.50)

D−11 DsDεëm + D−11 DsDεėm + n−2PTSffP{e} = D−11 bf (2.51)

{e} = ep + em, (2.52)

which allows for a local time stepping without affecting stability.

2.4.2 Interpretation and Implementation in the Original FDTD Differ-

ence Equation Based Framework

The formulas provided in the section above may appear abstract since matrix

representations are used to derive the algorithm. However, if we do not use matrix

operators, one cannot see a system-level picture clearly. Indeed, it is difficult to see

how the change of one row of equation affects the stability of the whole numerical

system, if one stays in the original framework of FDTD composed of many differencing

equations. In contrast, once the SPD operator is developed, we can readily explain

it using the language of the original FDTD. Next, we provide an interpretation and

show the implementation of the proposed algorithm in the original FDTD. We do so

also for both global time stepping, i.e., the same time step (restricted by the finest

grid) is used in both base grid and subgrid; and local time stepping, i.e., each grid is

stably simulated using its own local time step.

Global time stepping

• For eci unknowns, which are inside the base grid, they are solved in the same

way as in the original FDTD. In other words, each eci at the current time step

is obtained from the curl of H operation using the two H fields at previous time

step located at the two patches that share the eci.

• For magnetic field unknowns inside the base grid, they are also solved in the

same way as in the original FDTD.
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• For ecb unknowns, which reside on the interface between the subgrid and the

base grid, we use the average of the H fields at the n subgrid patches adjacent

to the ecb, and the H field at the base grid patch having ecb, to perform a curl

of H operation. The length averaged from the base grid cell size and subgrid

cell size is used for better accuracy.

• The efb unknowns are obtained from Pfcecb, which is nothing but to set them

the same as the ecb where the efb unknowns reside.

• The efi and the magnetic field unknowns inside the subgrid are solved in the

same way as that in the original FDTD.

As can be seen, only the ecb and efb are different from the original FDTD in their

generation. The time step of the above scheme is restricted by the smallest space

step in the grid, which we term a global time step.

Local time stepping

For local time stepping, i.e., subgridding in time, all the unknowns, except for

ecb, are generated in the same way as above. For the ecb unknown, we should do

the following. At each time step of time marching, from the base grid, we know the

H field at previous time step at the patch having ecb, we use it to perform only a

partial curl of H operation, which is hbase/L2D,ave. In other words, we do not complete

the curl of H operation using the H fields from the subgrid. The partial curl of H

evaluated from the base grid only provides one component of the ecb, denoted by

ecb,p, but it allows all unknowns in the base grid to be generated using a large time

step. For the subgrid, we use the time step restricted by the subgrid space step, and

obtain the other half of the curl of H operation by evaluating the H fields in every

subgrid patch, and then taking the average of the n H fields on the n subgrid patches

adjacent to ecb. Let such an average field be hsub, we perform −hsub/L2D,ave to obtain

the other component of ecb, denoted by ecb,m. Then adding the ecb,p and ecb,m makes
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the total ecb. Since two different time steps are used, the addition is performed at the

time instants of the smaller time step, where ecb,p is interpolated to provide a value

at the desired time instants. Then the total ecb is also known for the time instants

of the larger time step. The time step ratio is the grid ratio, hence for one time step

marching in the base grid, n steps of marching are performed in the subgrid.

2.5 Symmetric Positive Semi-Definite 3-D Subgridding Algorithm in Space

and Time

2.5.1 3-D Subgridding Operator

Different from 2-D cases, in addition to {eci}, {ecb}, {efi} unknowns, there are

two sets of {efb} unknowns. One set is located along the edges that overlap with

{ecb}, which we denote by {efb,e}; and the other set are on the faces of the interface

between the base grid and the subgrid, which we denote by {efb,f}, as illustrated in

Fig. 2.2. This set of {efb,f} unknowns is unique for 3-D cases, which does not appear

in 2-D scenarios. Since {ecb} is tangential to the subgrid interface, the twelve ecb

unknowns on a subgrid interface make a complete set to interpolate both {efb,e} and

{efb,f} unknowns. Thus, we have

efb =

 efb,f

efb,e

 = Pfcecb, (2.53)

where

Pfc =

 Pfc,f

Pfc,e

 , (2.54)

with the upper part used to interpolate {efb,f}, and the lower part for interpolating

{efb,e}. If a linear interpolation is used, for an arbitrary grid ratio n, the i-th column
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of Pfc has the following nonzero entries located at the rows corresponding to the

{efb,f} and the {efb,e} unknowns interpolated from the i-th ecb

Pfc,i =[{(n− 1)/n}n, {(n− 2)/n}n, ..., {1/n}n︸ ︷︷ ︸
efb,f on face 1 of ecb and parallel to ecb

,

{(n− 1)/n}n, {(n− 2)/n}n, ..., {1/n}n︸ ︷︷ ︸
efb,f on face 2 of ecb and parallel to ecb

,

{1}n︸︷︷︸
efb,e that overlaps with ecb

]T , (2.55)

in which the subscript of each set denotes the number of entries in the set. For

example, the last set, {1}n is a set having n ones, each of which corresponds to one

fine edge unknown efb,e located along the ecb edge. This set is, in fact, the Pfc,e

in (2.54), which is the same as the Pfc in the 2-D scheme. The other two groups of

entries of (2.55) make the part of Pfc,f , yielding the efb,f located on the two faces that

share the ecb. The first group from {(n − 1)/n}n to {1/n}n corresponds to the efb,f

falling onto the first face and parallel to the ecb, while the second group corresponds

to the efb,f falling onto the second face and parallel to the ecb.

Fig. 2.2. Illustration of a subgrid embedded in a base grid in a 3-D grid.
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The P for 3-D problems is thus (2.21) but with the new 3-D Pfc shown in (2.55).

Different from 2-D settings, (PTP)−1 is not diagonal any more. In [16], we only use

PT
fc,e instead of a complete PT

fc to develop a 3-D subgridding algorithm. Although the

resulting PT
fc,ePfc,e is diagonal, the information inside the subgrid cannot be utilized

to solve the whole problem. In other words, the base grid solution is decoupled from

the subgrid solution, which is inaccurate when strong inhomogeneity exists in the

subgrid. Although the subgrid solution still depends on the base grid solution in the

3-D scheme of [16], the base grid solution is the same regardless of the content of the

subgrid, which is its source of inaccuracy.

Based on the findings in 2-D cases, the (PTP)−1 plays a role of averaging the

contribution from the multiple subgrid patches to produce an accurate curl of H to

generate ecb. Therefore, it is feasible that we modify (PTP)−1 to a diagonal matrix

that makes the final system matrix SPD, and meanwhile let it perform an accurate

operation of averaging. The details are as follows.

For each ecb unknown, there is one column vector in Pfc to interpolate the efb

unknowns. Consider the i-th ecb, thus, the i-th row of PTSffP. It can be written as

PT
i SffP = PT

i

[
S
F1(i)
ff,g1 + S

F1(i)
ff,g2 + S

F2(i)
ff,g1 + S

F2(i)
ff,g2

]
P, (2.56)

where the superscripts F1(i) and F2(i) denote face 1, and face 2 respectively that share

the i-th ecb, as illustrated in Fig. 2.3. Using our patch-based formulation, the Sff is

nothing but the summation of the rank-1 matrix of each patch in the subgrid region.

Hence, when evaluating (2.56), we only need to identify which patch is selected by the

row vector PT
i , i.e., involved in the multiplication with PT

i , and hence contributing to

the product of PT
i Sff . Based on the expression of Pfc,i shown in (2.55), clearly, all

patches that have an edge located on the two faces that share ecb, and also parallel

to the ecb, will be selected. In addition, these patches can also be classified into two

groups: one group falls onto the face 1 and face 2, while the other group of patches

are perpendicular to the face 1, and face 2 respectively. In Fig. 2.3, the first group

that falls onto face 2 (right face) of ecb is shown and colored in red; while in the second

group, the patches perpendicular to the face 1 of ecb are shown and colored in blue.
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The contribution from the first group of patches is denoted by Sff,g1, while the other

is denoted by Sff,g2 in (2.56). For each of the two faces where the ecb resides, both

contributions exist.

The Sff,g1 term can be evaluated on each face as the following:

PT
i Sff,g1P{e} = PT

i

[
(Sh,11ḣ11 + ...+ Sh,n1ḣn1)+

(Sh,12ḣ12 + ...+ Sh,n2ḣn2) + ...

(Sh,1nḣ1n + ...+ Sh,nnḣnn)
]
, (2.57)

in which the Sh are from the first group of patches, which are those falling onto the

face. For a grid ratio of n, it is evident that there are n2 such patches, each of which

is denoted by a row and a column index of the patch using subscripts. For example,

hn1 denotes the magnetic field on the patch located in the first column (closest to

the ecb,i) and the n-th row. Based on the expression of Pfc,i, (2.57) can be readily

evaluated and found as

PT
i Sff,g1P{e} =

∑n
i=1

∑n
j=1 ḣij

Lc
. (2.58)

Clearly, the numerator represents the sum of all of the normal magnetic fields at

the patches residing on the face. If we divide the above by n2, then the numerator

represents the average magnetic field located at the center of the face, i.e., the red

point shown in Fig. 2.4. Thus, we have

PT
i Sff,g1P{e} = n2 ḣ

F
cnt

Lc
, (2.59)

in which hFcnt stands for the magnetic field at the face center normal to the face, and

along the reference direction of the face.

Similarly, we can quantitatively evaluate the second group’s contribution in (2.56),

which is

PT
i Sff,g2P{e} = PT

i

[
(S⊥h,11ḣ

⊥
11 + ...+ S⊥h,n1ḣ

⊥
n1)+

(S⊥h,12ḣ
⊥
12 + ...+ S⊥h,n2ḣ

⊥
n2) + ...

(S⊥h,1,n−1ḣ
⊥
1,n−1 + ...+ S⊥h,n,n−1ḣ

⊥
n,n−1)

]
. (2.60)
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Here, the S⊥h is generated from patches that are perpendicular to the face, as those

colored in blue in Fig. 2.3. There are n − 1 columns of such patches on either of

the two faces sharing the ecb, and in each column there are n patches, and hence two

subscripts are used for h in the above to denote the patch’s, thus h’s location. Again,

based on the expressions of Pfc,i and Sh, we find the above to be

PT
i Sff,g2P{e} =

n− 1

nLf

n∑
i=1

ḣ⊥i1 +
n− 2

nLf

n∑
i=1

ḣ⊥i2 + ...

+
1

nLf

n∑
i=1

ḣ⊥i,n−1. (2.61)

If we divide the above by n(n−1)/2, then the summation can be viewed as an average

magnetic field in the direction perpendicular to the patches, thus parallel to the face

where the patches are attached. Since the patches involved in (2.61) are immediately

adjacent to the face, the resulting magnetic field after averaging can be viewed as

a field located at the point whose distance to the ecb is Lf/2, as shown by the blue

point in Fig. 2.4, and on the face parallel to the patch. Let this field be hsub. We

have

PT
i Sff,g2P{e} =

n(n− 1)

2Lf
ḣsub. (2.62)

Take face 2, occupied by all red patches shown in Fig. 2.3, as an example. On

this face, the first group of patches’ contribution, as shown in (2.59), after averaging,

produces a magnetic field located at the center of the face, and normal to the face.

This point is the red point shown in Fig. 2.4. The magnetic field along the same

direction is also produced by the second group of patches on face 1, i.e., PT
i S

F1(i)
ff,g2P{e}.

As shown in (2.62), this component, after averaging, can be viewed as the magnetic

field located at the point whose distance to the ecb is Lf/2, thus the blue point in

Fig. 2.4. We hence can use these two magnetic fields to do an average to obtain the

magnetic field located at the midpoint of the two fields, whose distance to the ecb is

Lf
′ = (Lf +Lc)/2. This magnetic field together with the magnetic field at the center

of the adjacent base grid patch, marked as a green point in Fig. 2.4, can then be
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Fig. 2.3. Illustration of one ecb (colored in black), the two faces sharing
ecb, and the two groups of subgrid patches whose magnetic fields are
used to generate ecb.

used to generate an accurate curl of H to produce ecb. Similar to the treatment in

2-D, we need to use the average length of Lc and Lf
′ to achieve a better accuracy in

computing the curl of H. Thus, the average length, Lave is

Lave =
Lc + Lf

′

2
=

3Lc + Lf
4

. (2.63)

Based on the aforementioned, we compute ecb in the following way

εiëcb,i + σiėcb,i =

−
[
αPT

i SccP + βPT
i Sff,g1P + γPT

i Sff,g2P
]
{e}, (2.64)

where

α =
Lc
Lave

, (2.65)

β =
Lc

2n2Lave
, (2.66)

and

γ =
Lf

n(n− 1)Lave
. (2.67)
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Substituting (2.59) and (2.62) into (2.64), it can be seen that (2.64) is nothing but

to compute

εiëcb,i + σiėcb,i =
ḣ
F1(i)
base − 0.5(ḣ

F1(i)
cnt + ḣ

F1(i)
sub )

Lave
+

ḣ
F2(i)
base − 0.5(ḣ

F2(i)
cnt + ḣ

F2(i)
sub )

Lave
, (2.68)

where the hbase is the magnetic field at the center of the base grid patch that has ecb,

and its superscript denotes the subgrid face that is on the same plane as the base

grid patch. Hence, (2.64) produces an accurate curl of H for generating ecb.

Fig. 2.4. Illustration of the magnetic field point corresponding to each
term, and the average length for different patches.

Based on (2.64), now we can write the whole system of equations for solving all

unknowns as

DsDε{ë}+ DsDε{ė} = −Stotal{e}, (2.69)

in which

Ds = diag{{1}#eci , {γ/α}#efi , {1}#ecb}, (2.70)

and

Stotal = D1

(
Sh,cDµ−1

c
Se,c +

β

α
PTSff,g1P+

γ

α
PT (Sff,g2 + Sff,g3)P

)
. (2.71)
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with

D1 = diag{{1}#eci , {1}#efi , {α}#ecb}. (2.72)

In (2.71), the subscript g3 denotes the third group of patches, which are inside the

subgrid. The Ds is used in (2.69), because when Sff,g2 term is scaled by γ
α

, the field

internal to the subgrid, i.e., efi, is also scaled by this coefficient. Hence, by left scaling

the entire system by Ds, we keep the solution of efi the same as before. It is obvious

that the matrix in the big parenthesis of (2.71) is symmetric positive semi-definite,

and hence the final numerical system remains to have nonnegative real eigenvalues.

Meanwhile, we have taken the accuracy into account in generating the ecb unknowns.

2.5.2 Interpretation and Implementation in the Original FDTD Differ-

ence Equation Based Framework

The proposed 3-D subgridding operator can be interpreted, and thereby imple-

mented in the original FDTD as follows.

Global time stepping

• For eci and magnetic field unknowns, which are inside the base grid, they are

solved in the same way as in the original FDTD.

• For an ecb unknown, we obtain the H fields at the n2 subgrid patches on one

face (for example, face 1) having the ecb, and then take its average. Let this be

hcnt. We then obtain the weighted sum of the magnetic fields shown in the right

hand side of (2.61) for the other face (face 2) that has ecb. Dividing the sum by

n(n− 1)/(2), we obtain hsub. Using the H field at the base grid patch that has

the ecb on the same plane as face 1, denoted by hbase, we can perform a curl of

H operation as shown in (2.68) to obtain ecb, together with the hcnt generated

on face 2, the hsub at face 1, and the hbase on the other base grid patch.

• The efb unknowns are obtained from Pfcecb.
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• The efi and the magnetic field unknowns inside the subgrid are solved in the

same way as that in the original FDTD.

Similar to 2-D, only the ecb and efb are generated differently.

Local time stepping

For local time stepping, i.e., subgridding in time, all the unknowns, except for ecb,

are generated in the same way as above. For the ecb unknown, we do the following. At

each time step of time marching, from the base grid, we know the H field at previous

time step at the two patches having ecb, we use it to perform only a partial curl of H

operation, which is (h1base + h2base)/Lave. In other words, we do not complete the curl

of H operation using the H fields from the subgrid. The partial curl of H evaluated

from the base grid only provides one component of the ecb, denoted by ecb,p, but it

allows all unknowns in the base grid to be generated using a large time step. For

the subgrid, we use the time step restricted by the subgrid space step, and obtain

the other half of the curl of H operation by evaluating the H fields in every subgrid

patch, and then obtaining hsub and hcnt on both faces inside the subgrid that has

ecb, using which we obtain the other component of ecb, ecb,m, which correspond to the

right hand side of (2.68) with the two base-grid fields excluded. Then adding the ecb,p

and ecb,m makes the total ecb.

2.5.3 An Unsymmetrical Subgridding Implementation

In 3-D case, we also tried an interpolation scheme based on the magnetic field in-

terpolation of the other patches from base grid to calculate {efb,f}, which is illustrated

in Fig. 2.5.

As is shown in Fig. 2.5, to calculate the interface edge on the interface patch, we

require magnetic field from an outside small patch which does not exist in either base

grid or subgrid. To obtain the most accurate h field, we do interpolations in all three
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Fig. 2.5. Illustration of interpolation of base grid patch magnetic field.

directions which involves eight patches in total. To explain this interpolation scheme,

let the magnetic field for these base grid patches to be Hi, where i rangers from 1 to

8. First we do interpolation for x direction:

H12 = (
x2
dx

H1 +
x1
dx

H2),

H34 = (
x2
dx

H3 +
x1
dx

H4),

H56 = (
x2
dx

H5 +
x1
dx

H6),

H78 = (
x2
dx

H7 +
x1
dx

H8), (2.73)
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where x1, x2 are distance labeled in Fig. 2.5, denoting distance between position of

base grid patch field Hi and position of h, and dx is the distance between two base

grid patches in x direction. Then we do interpolation for z direction:

H1234 = (
z2
dz

H12 +
z1
dz

H34),

H5678 = (
z2
dz

H56 +
z1
dz

H78),

(2.74)

where z1, z2 are distance labeled in Fig. 2.5, and dz is the distance between two base

grid patches in z direction. Finally, we consider interpolation in y direction:

h = (
y2
dy

H1234 +
y1
dy

H5678), (2.75)

where y1, y2 are distance labeled in Fig. 2.5, and dy is the distance between two

base grid patches in y direction. By introducing this interpolation, we can accurately

handle the inhomogeneous problem as well, but as a trade-off, the original symmetric

positive semi-definite property will be affected, and it has long term stability issue if

central-difference-based explicit time marching is used, making this implementation

not as good as the proposed SPD 3-D subgridding operator.

2.6 Numerical Results

In this section, we simulate a variety of 2- and 3-D examples with uniform or highly

inhomogeneous materials to examine the performance of the proposed subgridding

algorithms in stability, accuracy, and efficiency.

2.6.1 2-D Free-Space Wave Propagation

We first simulate a free-space wave propagation problem in a 2-D region of size

0.5 m by 0.5 m. The base grid size is Lc = 0.1 m, and the subgrid is located

at the center of the base grid. The grid ratio n ranges from 2, 5, 20, to 100. In

Fig. 2.6(a), the grid for a grid ratio of n = 5 is shown. The time step used in
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the base grid is dtc = 1.9 × 10−10 s, which is determined by Lc, and the time step

for the subgrid region allowed by the stability condition is dtf = dtc/n. The Einc is

ŷ2(t− t0−x/c)e(t−t0−x/c)
2/τ2 with c = 3×108 m/s, τ = 2×10−8 s and t0 = 4τ . All the

boundaries are terminated by exact absorbing boundary conditions, i.e., known fields

for the given problem. The entire solution error at each time step as compared to the

analytical solution, ‖{e} − {e}anal‖/‖{e}anal‖, is plotted versus time in Fig. 2.6(b)

for different grid ratios, where {e} denotes the vector of all electric field unknowns in

the grid. It is clear to see that the simulated fields agree with the analytical solution

very well. The center peak error is due to a comparison with zero. We also simulate

the same problem using the conventional FDTD method, and compare the CPU run

time of the two methods in Table 2.1 for different grid ratios. It is obvious that the

proposed method is more efficient since the number of unknowns to solve is greatly

reduced, and the time step used in the base grid is also significantly enlarged.

Table 2.1.
CPU Time Comparison of 2-D Example for Different Grid Ratios

Grid ratio 2 5 20 100

Time (s) of FDTD 0.0487 0.5458 37.8527 5522.14

Time (s) of this method 0.0324 0.0555 0.4359 38.47

Speedup 1.50 9.83 86.84 143.54

2.6.2 2-D PEC Cavity with Conducting Fins

Next, a PEC cavity with two conducting fins separated by a thin gap, as illustrated

in Fig. 2.7(a), is simulated. The conductivity of the fins is 5.8 × 107 S/m. A

current source is launched at the middle of the fin gap vertically, and with a Gaussian

derivative pulse of −τ 2exp(−(t − t0)2/τ 2), with τ = 2 × 10−12 s, and t0 = 4τ . The

coarse grid size is Lc = 0.1 mm, and the subgrid region, having a grid ratio of
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Fig. 2.6. Simulation of a 2-D wave propagation problem. (a) Grid (for
the case of n = 5). (b) Entire solution error versus time for different
grid ratios (n = 2, 5, 20, 100).
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Lc/Lf = 4, is located between the two fins. The time step used in the subgrid is

dtf = 4.2 × 10−14 s, which is determined by Lf . The fields simulated from this

method at two points, (1, 1.05) and (2.85, 1.5) mm, are plotted in Fig. 2.7(b) and

compared with the conventional FDTD results. Very good agreement is observed.

The conventional FDTD method, using a uniform grid, takes 6.68 s to finish the

simulation while the proposed subgridding method only takes 0.84 s.

2.6.3 3-D Free-Space Wave Propagation

The third example is a free-space wave propagation problem in a 3-D box. The

size of the computational domain in each direction is 0.5 m. Along all directions, the

coarse space step is Lc = 0.1 m. The subgrid is located at the center having a grid

ratio n ranging from 2, 4, 10, to 20, making the fine space step Lf = Lc/n. The Einc is

ŷ2(t− t0−x/c)e(t−t0−x/c)
2/τ2 with c = 3×108 m/s, τ = 2×10−8 s and t0 = 4τ . Again,

all of the boundaries are terminated by exact absorbing boundary conditions. In Fig.

2.8, we first plot the simulated electric fields at two observation points in comparison

with the analytical solution for grid ratio n = 4. Point 1 is at (0.1, 0.05, 0.1) m and

it is inside the base grid, while point 2 is at (0.225, 0.225, 0.2125) m, which is inside

the subgrid. As can be seen, the electric fields solved from the proposed method have

an excellent agreement with analytical results. We also plot the entire solution error

at each time step as compared to the analytical solution, ‖{e} − {e}anal‖/‖{e}anal‖,

versus time in Fig. 2.9 for different grid ratios. As can be observed, the proposed

method is not only accurate at selected observation points, but also accurate at all

other points. The center peak error is again due to a comparison with zero. In Fig.

2.10, we compare the accuracy of the proposed local time stepping with that of the

global one. A grid ratio of 4 is considered. Instead of using the smallest time step

dtf everywhere, we use dtc in the base grid, which is chosen to be 2, 3, and up to n

times larger of the dtf . As can be seen from Fig. 2.10, the stability is maintained,

and the accuracy is not sacrificed.
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Fig. 2.7. Simulation of a PEC cavity with conducting fins separated
by a thin gap. (a) Structure. (b) Simulated electric fields.

In this example, we also compare the difference between the proposed SPD op-

erator shown in (2.69) which has accuracy taken into account, and the preliminary

one shown in (2.33), where (PTP)−1 is kept as it is without modifications. We find
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Fig. 2.8. Simulated electric fields at two observation points in com-
parison with reference analytical solutions.

Fig. 2.9. Entire solution error versus time for different grid ratios.

complex eigenvalues such as 3.9384e19±1.6543e4i from (2.33), thus the stability can-

not be guaranteed although in this case the imaginary part is small. Meanwhile, the
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Fig. 2.10. Entire solution error versus time using local time stepping,
with different time steps in the base grid.

accuracy is not as good as (2.69), where (PTP)−1 is modified to perform an accurate

averaging for mismatched grid sizes. The accuracy comparison can be seen from Fig.

2.11.

2.6.4 3-D PEC Cavity with an Inhomogeneous Subgrid Region

Next, we simulate a 3-D cavity excited by a current source, which has an inhomo-

geneous subgrid region, to examine the accuracy of the proposed algorithms in such a

setting. The cavity is 1 cm long in all directions and terminated by a PEC boundary

condition. The base grid size along each direction is 1 mm, except for the small cube

centered at (4.5, 4.5, 4.5) mm, which is illustrated in Fig. 2.12. This center cube is 1

mm long in all directions and filled with inhomogeneous materials, while the base grid

has a dielectric constant of 3. The center cube is further subdivided with a grid size

of 0.2 mm. Such subgridding results in 125 fine cells. To examine the capability of

the proposed work in handling inhomogeneity, each subgrid cell’s dielectric constant
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Fig. 2.11. Accuracy comparison between using (2.69) and using (2.33).

is set as a random number in the range of 1 to 125. A current probe is placed at

(3, 3, 3.5) mm. The current has a Gaussian pulse whose waveform is ẑτe−(t−t0)
2/τ2

with τ = 2.0 × 10−11 s and t0 = 4τ . As a reference, we also simulate the same

problem using the method in [15], which is an unsymmetrical subgridding method

but can handle such inhomogeneous problems accurately. The time step allowed by

the method in [15] is dt = 3.8×10−13 s. In Fig. 2.13, the electric fields sampled at

Point 1 (2, 2, 1.5) mm and Point 2 (8, 8, 7.5) mm are plotted in comparison with the

reference solution generated using the method of [15] (labeled as Ref1 Fig. 2.13). It

can be seen that the accuracy of the proposed method is very good. This shows the

proposed new SPD method is able to handle inhomogeneous problems accurately. For

comparison, the symmetric semi-definite method in [16] is used to simulate the same

problem. As can be seen from Fig. 2.14, the results of [16] (labeled as Ref2) are not

as accurate as the proposed method when compared to the reference solution. This

is due to the fact that the electric fields shared by the base grid and the subgrid are
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solved from the base grid only in [16] to build an SPD system. This scheme can not

capture the variation of fields resulting from the inhomogeneous subgrid region.

Fig. 2.12. Structure details of a 3-D cavity excited by a current source.

0 1 2 3 4 5

Time (s) 10-10

-2

-1.5

-1

-0.5

0

0.5

1

E
le

c
tr

ic
 f
ie

ld
 (

V
/m

)

10-7

Point 1 (Proposed)

Point 2 (Proposed)

Point 1 (Ref1)

Point 2 (Ref1)

Fig. 2.13. Electric fields at two observation points using the proposed
method versus reference results.



43

0 1 2 3 4 5

Time (s) 10-10

-2

-1.5

-1

-0.5

0

0.5

1

E
le

c
tr

ic
 f
ie

ld
 (

V
/m

)

10-7

Point 1 (Ref2)

Point 2 (Ref2)

Point 1 (Ref1)

Point 2 (Ref1)

Fig. 2.14. Electric fields at two observation points using method in [16]
versus reference results.

2.6.5 Inhomogeneous 3-D Phantom Head beside a Wire Antenna

In this example, we simulate a large-scale phantom head beside a wire antenna,

which involves many inhomogeneous materials. The size of the phantom head is

28.16× 28.16× 17.92 cm. The permittivity distribution of the head at z = 2.8 cm is

shown in Fig. 2.15. All the boundaries are truncated by perfect magnetic conducting

conditions. The wire antenna is located at (3.52, 3.52, 2.52) cm, with a current pulse

of ẑ2(t− t0)e−(t−t0)
2/τ2 with τ = 5.0× 10−10 s and t0 = 4τ . The base grid size along

x-, y-, z-directions is 4.4, 4.4 and 5.6 mm, respectively. To capture fine tissues, the

base grid cell centered at (14.3, 14.3, 9.24) cm is subdivided into subgrid cells in all

directions with a grid ratio of 4, making the subgrid grid size along x-, y-, z-directions

is 1.1, 1.1 and 1.4 mm, respectively. Again, we use the unsymmetrical subgridding

method [15] as our reference. Due to the existence of the subgrid, the unsymmetrical

subgridding method [15] must use a time step of 2.2× 10−12 s across the whole grid

to ensure stability. In contrast, the proposed new method allows for a larger time



44

step dtc = 8.8 × 10−12 s in the base grid. In Fig. 2.16, the electric fields at two

observation points whose locations are (3.52, 3.52, 15.96) cm and (24.64, 3.52, 15.96)

cm are plotted in comparison with the reference results obtained using a global time

step. In Fig. 2.17, the electric fields obtained from a local time stepping at the same

observation points are plotted. It is clear that the two sets of results agree well.

The unsymmetrical subgridding method [15] uses 549 s to finish the simulation. In

contrast, the proposed subgridding method only costs 345 s using a global time step,

and 209 s when using a local time step.

Fig. 2.15. Relative permittivity distribution in a cross section of the phantom head.

2.7 Conclusion

In this chapter, a symmetric positive semi-definite FDTD subgridding method

in both space and time is developed for fast FDTD simulations. First, we provide

an algebraic method to systematically derive an SPD subgridding operator for the

FDTD in both space and time. This method yields a framework for developing a
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Fig. 2.16. Simulated electric fields at two observation points in com-
parison with reference results when a global time step is used.
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Fig. 2.17. Simulated electric fields at two observation points in com-
parison with reference results when a local time step is used.
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series of SPD subgridding operators. We then take the accuracy into account, and

develop 2- and 3-D subgridding algorithms which are not only SPD for arbitrary

grid ratios, but also accurate for analyzing general inhomogeneous problems. The

stability is guaranteed by construction, because the eigenvalues of the resulting SPD

system matrix are nonnegative real. Furthermore, the time step of each grid is de-

termined by the time step local to the grid. Thus, the base grid time step is not

restricted by the subgrid region, further accelerating the simulation. We also provide

an interpretation of the proposed algorithms in the original FDTD framework, and

show how to implement it easily. Numerous numerical experiments have been carried

out. Comparisons with both analytical solutions and state-of-the-art subgridding al-

gorithms have demonstrated the accuracy, efficiency, and stability of the proposed

new subgridding algorithms.
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3. EXPLICIT AND UNCONDITIONALLY STABLE FDTD

WITH ANALYTICAL METHOD FOR IDENTIFYING

UNSTABLE MODES

3.1 Introduction

As can be seen in Chap. 2, the stability of an explicit time marching requires

the time step be restricted by the space step (smallest subgrid size for subgridding

algorithm). The root cause of the instability has been identified in [47]. It is of our

interest to identify unstable modes and remove them so that we can use larger time

step. A new class of explicit yet unconditionally stable time-domain method has

been developed. In these methods, one finds either the stable modes, or the unstable

ones. Both of them, so far, have been computed numerically, whose cost can be

high for large-scale analysis. In this chapter, starting from the finite-difference time-

domain (FDTD) system of equations, we show that the eigenvalue solutions of the

conventional FDTD governing system in a uniform grid can be analytically obtained.

As a result, both unstable modes and the stable ones can be found analytically.

Numerical experiments have demonstrated the accuracy and efficiency of the proposed

method.

Part of the contents of this chapter has been extracted and revised from the

following publication: Kaiyuan Zeng and Dan Jiao, ”Explicit and Unconditionally

Stable FDTD with Analytical Method for Identifying Unstable Modes,” 2018 IEEE

International Symposium on Antennas and Propagation and USNC/URSI National

Radio Science Meeting [48].



48

3.2 Review of the FDTD Solution of Maxwell’s Equations

The FDTD solution of Maxwell’s equations can be written as

{h}n+
1
2 = {h}n−

1
2 −∆tSe{e}n (3.1)

{e}n+1 = {e}n + ∆tSh{h}n+
1
2 −∆tD 1

ε
{j}n+

1
2 , (3.2)

where superscripts n, n + 1, and n ± 1
2

denote time instants, ∆t represents time

step, {e} is the vector of electric field unknowns, while {h} is the vector of magnetic

field unknowns, and {j} represents a current source vector. The Se{e} denotes a

discretized 1
µ
∇×E operation, and Sh{h} stands for a discretized 1

ε
∇×H operation.

The D 1
ε

in (3.2) is diagonal and its diagonal entry is 1
ε
. By eliminating {h} from (3.1)

and (3.2), we can obtain a second-order equation in time for {e} as follows

{e}n+1 − 2{e}n + {e}n−1

∆t2
+ ShSe{e}n = {f}n, (3.3)

where {f}n denotes the terms moved to the right hand side when deriving (3.3).

Let S = ShSe. Based on [47], the eigenmodes of S, whose eigenvalues λi satisfy the

following condition, can always be stably simulated by the given time step ∆t

λi ≤ 4/∆t2. (3.4)

The root cause of instability is the eigenmodes whose eigenvalues λi are greater than

4/∆t2, which are termed unstable modes.

Here, we still build S by the patch-based approach based on [44] in a matrix

based form, to facilitate the eigenvalue problem analysis. Let the total number of E

unknowns be Ne, and the total number of H unknowns be Nh. We loop over all the

patches in a 2- or 3-D grid, for each patch, we generate a row vector, which is

S(i)
e =

1

µ
{ 1

Li
,− 1

Li
,− 1

Wi

,
1

Wi

} ⊕ zeros(1, Ne), (3.5)

which has only four nonzero elements with Li and Wi being the two side lengths of the

i-th patch. The ⊕ denotes an extended addition by adding the four nonzero elements
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Fig. 3.1. Illustration of a patch-based discretization.

upon a zero vector of length Ne, based on the global indexes of the four E unknowns

on the patch. Similarly, we generate a column vector

S
(i)
h =

1

ε
{ 1

Li
,− 1

Li
,− 1

Wi

,
1

Wi

}T ⊕ zeros(Ne, 1), (3.6)

which is nothing but the transpose of (3.5). The S is a sum of the rank-1 matrix

S
(i)
h S(i)

e over all the patches.

3.3 Proposed Analytical Method for Finding Unstable Modes

We find that the eigenvalue λt and eigenvector vt of St = SeSh can be found

analytically, from which the eigenvalue λ and eigenvector v of S can also be obtained

without any computation. According to (3.5) and (3.6), the ij-th element of St can

be calculated as

S
(ij)
t = S(i)

e S
(j)
h , (3.7)
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whose value is determined by the relation between the i-th and j-th patch as the

following

S
(ij)
t =

1

µε



2
L2 + 2

W 2 i = j

− 1
W 2 neighbors sharing edge of length L

− 1
L2 neighbors sharing edge of length W

0 i-th, j-th patches are isolated,

(3.8)

where L and W are the two side lengths of a cell.

The whole St matrix can be presented as a Kronecker sum of discrete Laplacians,

in which case all of its eigenvalues and eigenvectors can be explicitly calculated. For

example, in an n by n uniform grid with a PMC boundary condition, St can be

written as

St =
1

µε

[
I⊗T1 + T2 ⊗

(
− 1

L2

)
I

]
, (3.9)

where the ⊗ denotes a Kronecker product, I is an identity matrix, and

T1 =


2
L2 + 2

W 2 − 1
W 2 0 0

− 1
W 2

2
L2 + 2

W 2

. . . 0

0
. . . . . . − 1

W 2

0 0 − 1
W 2

2
L2 + 2

W 2


n×n

, (3.10)

T2 =


0 1 0 0

1 0
. . . 0

0
. . . . . . 1

0 0 1 0


n×n

. (3.11)

According to [49], tridiagonal matrices such as T1 and T2 have analytical eigen-

value solutions. If λT1 is an eigenvalue of T1, and (vT1,1, vT1,2, ..., vT1,n)T is its corre-

sponding eigenvector, then

λT1,k1 =

(
2

W 2
+

2

L2

)
− 2

1

W 2
cos

k1π

n+ 1
, (3.12)
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for k1 ∈ {1, 2, ..., n}, and the corresponding v
(k1)
T1,j1

is

v
(k1)
T1,j1

= sin
k1j1π

n+ 1
, j1 = 1, 2, ..., n. (3.13)

If λT2 is an eigenvalue of T2, and (vT2,1, vT2,2, ..., vT2,n)T is its corresponding eigen-

vector, then

λT2,k2 = 2 cos
k2π

n+ 1
, (3.14)

for k2 ∈ {1, 2, ..., n}, and the corresponding v
(k2)
T2,j2

is

v
(k2)
T2,j2

= sin
k2j2π

n+ 1
, j2 = 1, 2, ..., n. (3.15)

The St’s eigenvalue λt can then be obtained as

λt =
1

µε

[
λT1,k1 +

(
− 1

L2

)
λT2,k2

]
, (3.16)

with corresponding eigenvector vt as the vectorization of v
(k1)
T1

(v
(k2)
T2

)
T

. Next we show

that S also has an analytical eigenvalue solution.

If vt is an eigenvector of St = SeSh for a nonzero λt, then Shvt 6= 0, and

λt(Shvt) = Sh(λtvt) = Sh(SeShvt) = (ShSe)Shvt = S(Shvt), (3.17)

namely Shvt is an eigenvector for S = ShSe with the same eigenvalue λt.

Let Vh denote the matrix formed by all unstable modes. Then we use Vh to

directly change the original system matrix S to a new system matrix Sl

Sl = S−VhVh
TS, (3.18)

and perform a time marching on the updated new system Sl,

∂2{e}
∂t2

+ Sl{e} = {f} (3.19)

After obtaining en+1 at every step, we add the following treatment

en+1 = en+1 −VhVh
T en+1 (3.20)

to ensure the solution is free of Vh modes.
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Fig. 3.2. Two electric fields in comparison with analytical results.
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Fig. 3.3. Entire solution error versus time.

3.4 Numerical Results

3.4.1 2-D Free-Space Wave Propagation

A free-space wave propagation problem in a 2-D region of size 0.1 m by 0.1 m is

investigated, with smallest grid size of 0.02 m. The Einc is ŷ2(t−t0−x/c)e(t−t0−x/c)
2/τ2



53

with c = 3×108 m/s, τ = 2×10−8 s and t0 = 4τ . The unknown region is surrounded

by an exact absorbing boundary layer. The time step ∆t is 9.4 × 10−11 s with Vh

containing 21 high modes, otherwise ∆t has to be 4.8×10−11 s with the original system

matrix. The unstable modes are not required by accuracy, and hence they can be

deducted from the system matrix without affecting accuracy. In Fig. 3.2, the electric

fields at two randomly selected points are plotted in comparison with analytical data.

The entire solution error at each time step is compared to the analytical solution,

‖{e} − {e}anal‖/‖{e}anal‖, is plotted versus time in Fig. 3.3. To demonstrate the

efficiency of the proposed method for finding Vh, we also use numerical method

(MATLAB function eigs) to find Vh and compare the CPU time. The simulation

parameters are summarized in Table 3.1.

Table 3.1.
Comparison of CPU Time for Finding Vh

# of Nh 25 100 400 2500

Time (s) using eigs 0.0522 0.0737 0.4871 79.1175

Time (s) using this method 0.0043 0.0046 0.0075 0.0841

Speedup 12.14 16.02 64.95 940.75

3.4.2 2-D Grid with Current Source as Excitation

Another example with a current source excitation is investigated. The 2-D region

size is 0.1 m by 0.1 m, with smallest grid size of 0.02 m. A current source is provided

at one edge, and the Gaussian derivative pulse is 2(1−2(t−t0)2/τ 2)exp(−(t−t0)2/τ 2),

with τ = 2.4 × 10−8 s, and t0 = 4τ . Without Vh removal, the ∆t is 4.8 × 10−11 s

with the original system matrix. To double the time marching step, we remove 22

high modes to make the ∆t to be 9.6 × 10−11 s. Two random points are selected to

compare their electric field with large ∆t and small ∆t simulation, which is shown in



54

Fig. 3.4. 2-D grid with current source labeled by red edge.
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Fig. 3.5. Two electric fields with simulation of different time step.

Fig. 3.5. And the entire solution error between large ∆t and small ∆t simulation is

plotted in Fig. 3.6 as a function of time. Excellent agreement can be observed.
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Fig. 3.6. Entire solution error versus time for different time step.

3.5 Conclusion

In existing explicit and unconditionally stable time-domain methods, the root

cause of instability has been identified to be the eigenmodes of the governing system

matrix whose eigenvalues are too high to be accurately simulated by a given time

step. In this work, we show that such unstable modes as well as stable modes can

be found for the conventional FDTD method in an analytical way. Numerical results

have validated the proposed method.
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4. EXPLICIT UNCONDITIONALLY STABLE

SYMMETRIC POSITIVE SEMI-DEFINITE FDTD

SUBGRIDDING ALGORITHM WITH ANALYTICAL

REMOVAL OF UNSTABLE MODES

4.1 Introduction

In Chap. 2 we introduce a symmetric positive semi-definite subgridding algorithm,

which not only preserves stability and satisfies accuracy, but also permits the use of

a local time step. Nonetheless, the time step in a subgrid is still restricted by the

smallest space step inside the subgrid region. In Chap. 3, we show the time step of

a conventional explicit finite-difference time-domain (FDTD) method is restricted by

space step for stability, and we propose an analytical method to identify such unstable

modes.

In this chapter, by combining the two techniques, an explicit and symmetric posi-

tive semi-definite FDTD subgridding algorithm is made unconditionally stable for fast

FDTD simulations. The root cause of instability in a subgridding algorithm is found

to be the eigenmodes of the subgrid whose eigenvalues are too high to be accurately

simulated by a given time step. These unstable modes are then identified analytically

and removed from the numerical system based on prescribed accuracy. The resultant

explicit subgridding algorithm not only permits a local time stepping in the base grid

and the subgrid, but also is unconditionally stable regardless of space step in the fine

subgrid. Numerical experiments have validated the accuracy and efficiency of the

proposed method.

Part of the contents of this chapter has been extracted and revised from the fol-

lowing publication: Kaiyuan Zeng and Dan Jiao, ”Explicit Unconditionally Stable

Symmetric Positive Semi-Definite FDTD Subgridding Algorithm with Analytical Re-
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moval of Unstable Modes,” 2019 IEEE International Symposium on Antennas and

Propagation and USNC/URSI National Radio Science Meeting [50].

4.2 Proposed Method

Based on contents in Chap. 2, when subgrids exist, we solve Dε 0

0 PTDεP

 ëp

ëm

+

 Scc Scc

Sff Sff

 ep

em

 =

 b

0

 , (4.1)

where total solution {e} = {e}p + {e}m, P is used to connect subgrid interface un-

knowns with base grid unknowns, Scc = Sh,cDµ−1
c

Se,c is assembled from base grid,

Sff = PTDfSh,fDµ−1
f

Se,fP = PTDfSff localP is from subgrid, and Df is a diagonal

matrix of scaling factors for interface unknowns. The new system (4.1) can allow

local time stepping. However, the time step for simulating subgrid unknowns is still

restricted by the smallest space step in the subgrid.

The high eigenmodes (corresponding to the largest eigenvalues) of D−1ε S are iden-

tified as the root cause of stability [44], where S = Scc + Sff . Based on [44], the high

eigenmodes are localized in the fine region, and hence they can be found accurately

from the eigenmodes of Sff . Using this fact, in this work, we first find the eigenvec-

tors and eigenvalues of Sff . In [44], this is done numerically; in this work, we do it

analytically, and hence greatly saving CPU run time. We then develop a scheme to

determine which high modes can be removed without sacrificing prescribed accuracy.

The detailed procedure is as follows.

First, we find the eigenvalues λ and eigenvectors V of Sff local using the analytical

approach we developed in Chap. 3. The unstable modes correspond to the V whose

eigenvalues are the largest. Denoting such a mode by Vhi. We compute PTDfVhi

and then orthogonalize it to obtain Ṽhi. Not all Ṽhi can be removed, since not all

of them are accurate eigenvectors of the original global system. To determine which
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Ṽhi to remove, we develop the following criterion. Given an accuracy threshold ε, if

Ṽhi satisfies

εacc =
‖SṼhi − ṼhiṼ

T

hiSṼhi‖
‖SṼhi‖

< ε, (4.2)

it can be removed. This is because if Ṽhi is an accurate eigenvector of S, SṼhi ≈ Ṽhiy1

should satisfy. Writing

SṼhi = Ṽhiy1 + Ṽ
⊥
hiy2, (4.3)

where Ṽ
⊥
hi is orthogonal to Ṽhi, it can be seen that (4.2) is an effective measure of

whether the difference between SṼhi and Ṽhiy1 is sufficiently small.

To see this more clearly, we multiply Ṽ
T

hi on both sides of (4.3), the weight of Ṽhi,

y1, can be obtained as Ṽ
T

hiSṼhi because we have Ṽ
T

hiṼhi = I and Ṽ
T

hiṼ
⊥
hi = 0.

We then remove the identified unstable modes from the original system (4.1) by

formulating Dε 0

0 PTDεP

 ëp

ëm


+

 I 0

0 I− ṼhiṼ
T

hi

 Scc Scc

Sff Sff

 ep

em

 =

 b

0

 .
After obtaining en+1

m at every step, we add the following

en+1
m = en+1

m − ṼhiṼ
T

hie
n+1
m (4.4)

to ensure the solution is free of Ṽhi modes.

4.3 Numerical Results

4.3.1 2-D Free-Space Wave Propagation

First, a wave propagation problem in a 2-D region is considered. The details of

the grid are shown in Fig. 4.1. The base grid size is Lc = 0.1 m, and a subgrid region,

having a grid ratio of Lc/Lf = 4, is introduced to examine the unconditional stability
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of the proposed method. The incident field Einc is ŷ2(t− t0−x/c)e−(t−t0−x/c)
2/τ2 with

c = 3 × 108 m/s, τ = 2 × 10−8 s, and t0 = 4τ . The boundaries are terminated by

an exact absorbing boundary condition. Without removing unstable modes, the time

step allowed in the subgrid is dtf = 5.28× 10−11 s, which is determined by Lf .

In Table 4.1, we list the accuracy εacc as a function of the number of Ṽhi removed.

Clearly, as theoretically predicted, the modes having larger eigenvalues have better

accuracy.

0 0.5 1 1.5 2

X (m)

-0.5

0

0.5

1

Y
 (

m
)

Fig. 4.1. Grid of a 2-D wave propagation problem.

Table 4.1.
Accuracy as a Function of the Number of Removed High Modes

number of modes 1 10 30 50 80

εacc 0.0487 0.0594 0.0842 0.1038 0.1425
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Fig. 4.2. Entire solution error versus time of the wave propagation problem.

Based on Table 4.1, we remove 29 highest Ṽhi modes, the dtf is hence enlarged to

7.04× 10−11 s from the original 5.28× 10−11 s, while the time step in the base grid is

the same as before. The resultant entire solution error as compared to the analytical

solution, ‖{e} − {e}anal‖/‖{e}anal‖, is plotted versus time in Fig. 4.2, which reveals

good accuracy. The large error at early and late time is due to a comparison with zero

fields. Without removing unstable modes, it takes the subgridding method 0.40 s to

finish the simulation. In contrast, the proposed method only takes 0.21 s, including

the time for finding the unstable modes.

4.3.2 2-D PEC Cavity with Conducting Fins

Next, a PEC cavity with two conducting fins separated by a thin gap, as illustrated

in Fig. 4.3, is simulated. The conductivity of the fins is 5.8 × 107 S/m. A current

source is supplied at the middle of the fin gap vertically, with a Gaussian derivative

pulse of −τ 2exp(−(t− t0)2/τ 2), with τ = 2× 10−12 s, and t0 = 4τ . The base grid size

is Lc = 0.1 mm, and the subgrid region, having a grid ratio of Lc/Lf = 4, is located



61

Fig. 4.3. Geometry of a 2-D fin structure.
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Fig. 4.4. Simulated electric fields of the fin structure.

between the two fins. Without removing the unstable modes, the time step allowed

in the subgrid is dtf = 4.20 × 10−14 s, which is determined by Lf . By removing 32

high modes, dtf is enlarged to 8.40 × 10−14 s, while dtc is kept the same as before.

The fields simulated from this method at two points, (1, 1.05) and (2.85, 1.5) mm,
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are plotted in Fig. 4.4. They agree very well with the reference FDTD solution. The

reference FDTD method, using a uniform grid, takes 6.68 s to finish the simulation.

The subgridding method takes 0.84 s without high modes removal. The proposed

unconditionally stable method only takes 0.47 s including the time for finding the

unstable modes.

4.4 Conclusion

In this work, we analytically identify the unstable modes from the subgrid by

combining our previous work in Chap. 2 and Chap. 3. These unstable modes are

the root cause of the instability for an explicit time marching. We also develop an

error-controlled scheme to determine the number of modes to be removed without

sacrificing the accuracy required for time-domain simulation. These modes are then

eradicated from the system to enlarge the time step in the subgrid. With the enlarged

time step and the flexible local time stepping, the proposed subgridding algorithm can

be used to greatly accelerate FDTD simulations when analyzing multiscaled problems.
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5. MATRIX-FREE METHOD FOR TRANSIENT

MAXWELL-THERMAL CO-SIMULATION IN

ARBITRARY UNSTRUCTURED MESHES

5.1 Introduction

Existing multiphysics co-simulation methods require solving a system matrix when

handling inhomogeneous materials and irregular geometries discretized into unstruc-

tured meshes. In this chapter, a matrix-free method is developed for co-simulating

full-wave Maxwell’s equations and the thermal diffusion equation in time domain.

The method is free of matrix solutions regardless of the shape of the element used for

space discretization. A theoretical stability analysis is also developed for the coupled

electrical and thermal analysis, which is nonlinear in nature. Numerical experiments

on both unstructured tetrahedral and triangular prism element meshes have validated

the accuracy and efficiency of the proposed method.

The contents of this chapter have been extracted and revised from the follow-

ing publication: Kaiyuan Zeng and Dan Jiao, ”Matrix-Free Method for Transient

Maxwell-Thermal Co-Simulation in Arbitrary Unstructured Meshes,” IEEE Transac-

tions on Microwave Theory and Techniques, 2018 [51].

5.2 Equations Governing Electrical-Thermal Co-simulation

The electrical performance of a physical structure is governed by the Maxwell’s

equations from DC to high frequencies [32]:

∇× E = −µ∂H

∂t
, (5.1)

∇×H = ε
∂E

∂t
+ σE + J, (5.2)
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where E is electric field intensity, H is magnetic field intensity, J is input (supply)

current density, µ, ε, and σ are permeability, permittivity, and conductivity respec-

tively.

The thermal performance is dictated by the well-known thermal diffusion equation

[35]:

ρ̃cp
∂T

∂t
−∇ · (k∇T ) = Pjoule + P0, (5.3)

where k is the thermal conductivity, cp is the specific heat capacity, ρ̃ denotes the

mass density of the material, T is the temperature, Pjoule represents the heat source

Pjoule = J · E = σE2, (5.4)

and P0 denotes other heat sources. The conductivity is a function of temperature,

which obeys

σ =
σ0

1 + α(T − T0)
, (5.5)

in which σ0 is the conductivity at temperature T0, and α is the temperature coefficient

of the material.

Equations (5.1), (5.2), (5.3), and (5.5) can be co-simulated as follows to obtain

the electrical and thermal performance of a structure. Starting from an initial tem-

perature, and hence an initial conductivity of the material, (5.1) and (5.2) can be

solved to find electric field distribution in the entire structure. This will provide a

heat source Pjoule to (5.3). Eqn. (5.3) can then be simulated to find the tempera-

ture distribution. The temperature distribution is subsequently used to update the

conductivity of the material through (5.5). Eqns. (5.1) and (5.2) are then simulated

again with the updated σ. The entire simulation repeats until the desired time or a

steady state is reached.

5.3 Proposed Work

In this section, we present a matrix-solution free method for solving the coupled

electrical-thermal equations.
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5.3.1 Matrix-Free Time-Domain Method for Solving Maxwell’s Equa-

tions

Consider a physical structure discretized into either a regular grid or an unstruc-

tured mesh consisting of arbitrarily shaped elements. Based on [32], to discretize

Faraday’s law, we expand the electric field E in each element by vector bases, yield-

ing E =
∑m

j=1 ujNj, where uj is the j-th basis’s unknown coefficient, and m is the

basis number in each element. First-order vector bases are used as Nj such that they

can produce second-order accurate magnetic fields anywhere to facilitate an accurate

discretization of Ampere’s law (5.2). Substituting the expansion of E into Faraday’s

law (5.1), evaluating H at the point individuated by the distance vector rhi, and then

taking the dot product of the resultant with unit vector ĥi, we obtain

Se{u} = −diag ({µ}) ∂{h}
∂t

, (5.6)

where u denotes a global E-unknown vector of length Ne consisting of all uj coeffi-

cients, and Se is a sparse matrix whose ij-th entry is

Se,ij = ĥi · {∇ ×Nj}(rhi), (5.7)

and the h is a global H-unknown vector of length Nh, whose i-th entry is hi =

H(rhi) · ĥi. The number of nonzero elements in each row of Se is the number of

basis functions in each element, which is a small constant. The diag ({µ}) in (5.6)

is a diagonal matrix of magnetic permeability µ. The H-points and directions are

chosen along a rectangular loop perpendicular to each E-unknown, and centering the

E-unknown, as shown in Fig. 5.1. In this way, the resultant H fields can, in turn,

generate desired E accurately. Unlike the FDTD method, here, the H points and

directions do not form a dual mesh. Only a single mesh is needed. No interpolations

and projections are required either.

To discretize Ampere’s law, we apply the law at rei points, and then take the dot

product of the resultant with unit vector êi at each point, obtaining

Sh{h} = diag ({ε}) ∂{e}
∂t

+ diag ({σ}) {e}+ {j}, (5.8)
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in which Sh is a sparse matrix of size Ne by Nh. Each row of Sh has only four

nonzero elements, whose column index corresponds to the global index of the four

H-points associated with one E-unknown. In (5.8), the diag ({ε}) and diag ({σ}) are

the diagonal matrices of permittivity, and conductivity respectively.

With {u} = {e}, (5.6) and (5.8) are connected, and they can be solved in a

leapfrog way which is free of matrix solutions [1]. We can also eliminate H and solve

E as the following

∂2 {e}
∂t2

+ diag

({
1

ε

})
∂ {σe}
∂t

+ S {e} = −diag

({
1

ε

})
∂{j}
∂t

, (5.9)

where

S = diag

({
1

ε

})
Shdiag

({
1

µ

})
Se. (5.10)

In (5.9), σ is not taken out of the time derivative because it is time dependent in

an electrical-thermal co-simulation. Obviously, the matrices in front of the second-

and first-order time derivatives in (5.9) are both diagonal. Therefore, an explicit

marching of (5.9), such as a central-difference-based time marching [3], is free of

matrix solutions.

Fig. 5.1. H points and directions.
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5.3.2 Matrix-Free Time-Domain Method for Solving Thermal Diffusion

Equation

Although the thermal diffusion equation is a scalar equation, its matrix-free solu-

tion in unstructured meshes does not exist in open literature. Using the finite-element

method or other PDE methods, the resultant numerical system involves a sparse ma-

trix to solve. To develop a matrix-free solution of (5.3), we propose to first vectorize

the scalar-based (5.3). Although this approach appears to complicate the problem to

be solved, the end result is efficient as the number of temperature unknowns to solve

remains the same as before.

We append a direction to T , making it a vector T. For example, in (5.3), if we

attach a unit vector along z to the right-hand-side heat source Pjoule + P0, then the

T’s z-component solved from a vector-based (5.3) would be the real temperature. To

develop a matrix-free solution of (5.3), we also introduce an auxiliary vector Tc which

corresponds to the curl of the T vector. With the two vector variables, we transform

the original thermal diffusion equation (5.3) into the following two vector equations

to solve

k∇×T = −∂Tc

∂t
, (5.11)

∇×Tc = ρ̃cpT−
∫

(Pjoule + P0) dt. (5.12)

Next, we show the equivalency between (5.3) and the above two equations. Consider

a source-free region with uniform thermal constants for convenience. Starting from

(5.11) and (5.12), we have

ρ̃cp∇ ·T = ∇ · (∇×Tc) = 0. (5.13)

Using the curl of the curl property [52], we obtain

∇×∇×T = ∇ (∇ ·T)−∇2T = −∇2T. (5.14)

By taking a curl of (5.11) and substituting (5.12) into the resultant, we have

ρ̃cp
∂T

∂t
+ k∇×∇×T = Pjoule + P0. (5.15)
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The equation above is the same as (5.3) by utilizing the relationship of (5.14). As a

result, solving the two vector equations (5.11) and (5.12) simultaneously is equivalent

to solving (5.3).

Obviously, (5.11) has the same form as Faraday’s law, while (5.12) has a form

similar to Ampere’s law. Hence, the matrix-free time-domain method can be applied

to solve (5.11) and (5.12) without any need for solving a matrix equation. First, we

can expand Tc using a set of first-order vector bases, then evaluate (5.12) at rti along

direction ĥti (i = 1, 2, . . . , Nt). Therefore, (5.12) can be discretized as

Se{Tc} = diag ({ρ̃cp}) {T} − {P}, (5.16)

where {P} denotes the vector associated with heat source’s time integration. On the

other hand, we can discretize (5.11) as

diag ({k}) Sh{T} = −∂{Tc}
∂t

, (5.17)

the accuracy of which is guaranteed by (5.16), since the T therein is generated at the

points and along the directions that ensure the second-order accuracy of (5.17). In

(5.16) and (5.17), both Se and STh are sparse. Their sizes are Nt×Nc where Nt is the

number of T unknowns, while Nc is the number of Tc unknowns. The diag{k} and

diag{ρ̃cp} are diagonal matrices of ki, and ρ̃icpi respectively. Vector {T} contains all

the T unknowns, while vector {Tc} contains all the Tc unknowns.

Eqns. (5.16) and (5.17) can be solved without any matrix solution using a forward

difference scheme. We can also eliminate T and solve for Tc first as follows

∂{Tc}
∂t

+ Stc{Tc} = {b}, (5.18)

where

Stc = diag ({k}) Shdiag

({
1

ρ̃cp

})
Se (5.19)

{b} = −diag ({k}) Shdiag

({
1

ρ̃cp

})
{P}, (5.20)
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and (5.18) can be discretized in time as the following

{Tc}n+1 = {Tc}n −∆tStc{Tc}n + {b}n. (5.21)

Once {Tc} is solved at each time step, {T} can be obtained readily from (5.16).

Obviously, no matrix equation needs to be solved in (5.21), thus a linear (optimal)

complexity is achieved in computation. Alternatively, we can also eliminate Tc and

directly solve for T as follows

∂{T}
∂t

+ St{T} = diag

({
1

ρ̃cp

})
{Pjoule + P0}, (5.22)

where the i-th entry of {Pjoule +P0} is the heat source at the i-th temperature point,

and

St = diag

({
1

ρ̃cp

})
Sediag ({k}) Sh. (5.23)

The aforementioned approach obviously is very different from prevailing meth-

ods for solving the thermal equation, where the temperature unknown is expanded

into certain scalar basis functions, and then the equation is tested also by certain

basis functions. The resultant numerical system matrix is not diagonal, and hence

must be solved at each time step. In contrast, in the proposed matrix-free method,

by introducing a vector-based representation of temperature unknown, and its curl

vector, we can interleave the two unknowns in both time and space, and develop an

explicit time-domain solution of the thermal diffusion equation that is free of matrix

solutions. Apparently, by vectorizing T , we complicate the problem. In fact, the size

of the resulting numerical system for T , as shown in (5.22), is the same as before,

which is the number of temperature unknowns in the discretized structure.

As mentioned before, the real temperature is only obtained from the direction

which was attached to the right-hand-side heat source Pjoule + P0. A post processing

operation for temperature is needed to calculate the cell temperature, while the tem-

perature unknown T is generated at the points and along the directions that ensure

the second-order accuracy of (5.17). We pick amplitude of the temperature vector

along the defined direction as the real temperature in each cell, and we calculate such
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amplitude at the center position of each cell. Such cell temperature will affect the

cell conductivity to be used for solving maxwell’s equations in the next time step.

5.3.3 System for Electrical-Thermal Co-simulation and Stability Analysis

After using the proposed matrix-free time-domain method, we obtain the following

system of equations for electrical-thermal co-simulation

∂2 {e}
∂t2

+ diag

({
1

ε

})
∂ {σe}
∂t

+ S {e}=

− diag

({
1

ε

})
∂{j}
∂t

(5.24)

∂{T}
∂t

+ St{T} = diag

({
1

ρ̃cp

})
{σe2} (5.25)

σ =
σ0

1 + α(T − T0)
, (5.26)

where Pjoule is present as the heat source. The above equations are clearly coupled.

If we define a global vector of

x = {e h}T , (5.27)

and

y = {T−T0}, (5.28)

the coupled electrical-thermal system can be rewritten as

x′(t) = −

diag ({ε}) 0

0 diag ({µ})

−1
diag

(
{ σ0
1+αy
}
)
−Sh

Se 0

x+ f

y′(t) = −Sty +

[
diag

{
σ0

ρ̃cp(1 + αy)

}
0

]
x2, (5.29)

where superscript ′ denotes a time derivative, and f = {−j/ε 0}T is the source term.

Eqn. (5.29) constitutes a nonlinear system of equations. The stability of a non-

linear system can be analyzed by finding its Jacobian matrix at each solution point
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(xn, yn). Take the equilibrium point as an example, this is the point (x0, y0) at which

the right hand side of (5.29) becomes zero, when the source f is vanished. This point

can be readily found as x0 = 0, y0 = 0. Evaluating the Jacobian matrix of (5.29) at

(x0, y0), we obtain

J =

−
 diag ({σ0ε−1}) −diag ({ε−1}) Sh

diag ({µ−1}) Se 0

 0

0 −St

 . (5.30)

In a regular grid, St is positive semi-definite, as Sh = STe . As for the first diagonal

block in (5.30), its eigenvalues λ and eigenvectors v satisfy

−

 diag ({σ0ε−1}) −diag ({ε−1}) Sh

diag ({µ−1}) Se 0

v1
v2

 = λ

v1
v2

 . (5.31)

Substituting the second subsystem of equations of the above into the first, we obtain

λ2v1 + λdiag
({σ0

ε

})
v1 + Sv1 = 0, (5.32)

where S is the same as shown in (5.10).

In a regular gird, S is positive semi-definite. Since diag
({

σ0
ε

})
is positive semi-

definite as well, the eigenvalues of (5.32) have a non-positive real part. Hence, the

eigenvalues of the Jacobian matrix J have a non-positive real part. Therefore, based

on the stability theory of a nonlinear system [53], an explicit marching of (5.29) is

stable at (x0, y0).

The Jacobian matrix of (5.29) is time dependent. At an arbitrary solution point

(xn, yn), the Jacobian matrix of (5.29) can be written as

Jn=

−
 diag ({σnε−1}) −diag ({ε−1}) Sh

diag ({µ−1}) Se 0

 0

2
[
diag

{
σn
ρ̃cp

}
0
]
xn −St

 , (5.33)

in which σn, and xn represent the σ, and x at the n-th time step respectively. Since

the above matrix is triangular, the eigenvalues are determined by the eigenvalues of
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the diagonal blocks. Hence, the property of the eigenvalues is the same as that of

(5.30). Thus, an explicit time-marching is stable.

From (5.30) and (5.33), it can also be seen that the Maxwell’s subsystem and the

thermal one are governed by different eigenvalues, with the magnitude of the latter

much smaller. To see this point clearly, (5.29) can be split into the following two

subsystems at an arbitrary n-th time step

x′n = Jn(1, 1)xn + fn (5.34)

y′n = Jn(2, 2)yn +

[
diag

{
σn
ρ̃cp

}
0

]
x2n, (5.35)

where the eigenvalues of Jn(1, 1) (the first diagonal block of Jn) are related to

Maxwell’s equations, and the eigenvalues of Jn(2, 2) = −St are solely related to

the thermal equation. Hence, the choice of time step can be made different. In this

work, we employ a forward difference to discretize the thermal equation. Performing

a stability analysis of the forward differencing of (5.35), it can be readily found that

the time step should satisfy

∆tt <
2Re(λther)

|λther|2
, (5.36)

where λther is the eigenvalue of St whose magnitude is the largest. The |λther| can be

analytically estimated as

|λther| =
k

(ρ̃cp)× (4/∆2
min)

, (5.37)

where ∆min is the smallest space step.

In unstructured meshes, using the proposed matrix-free method, S is not symmet-

ric, however, with the time-marching method of [32], the explicit marching of (5.34)

is equally stable. The resulting time step, ∆tm, is the same as that used in a conven-

tional explicit time marching of Maxwell’s equations such as the CFL condition. It

satisfies

∆tm <
2√
|ξ|max

, (5.38)

where |ξ|max is the maximum magnitude of the eigenvalues of S, which is proportional

to the inverse of the square of the smallest space step. For the examples simulated
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in this chapter, it is found that ∆tt is much larger than ∆tm. Hence, the thermal

equation can be simulated using a much larger step, and the conductivity σ in between

the two time instants of the thermal equation is interpolated to obtain that at the

time instants for solving Maxwell’s equations.

The procedure of the co-simulation algorithm is illustrated in Fig. 5.2. The elec-

trical and thermal analyses are coupled through the temperature-dependent material

properties. When two different time steps are used, within one step of a thermal

simulation, there exist ratio = ∆tt/∆tm steps of electrical simulations, and ntotal

represents the predefined maximum number of simulation steps.

5.4 Numerical Results

In this section, we first validate the proposed method in performing a thermal

simulation as well as an electrical-thermal co-simulation. We then apply the proposed

method to solve a number of coupled electrical-thermal problems in a variety of

structures and meshes. Both FDTD and the time-domain finite element method

(TDFEM) are used as the reference methods for comparison.

The conductivity σ0 of copper is 5.8× 107 S/m. The heat conduction parameters

for copper are k = 398 W/(m · K), cp = 386 J(kg · K), ρ̃ = 8930 kg/m3 and α =

0.0039. All these simulations are conducted with Intel Xeon CPU E5-2690 v2 @ 3.00

GHz having 128 GB memory.

5.4.1 Thermal Analysis: Node Basis and Vector Basis

First, we examine the correctness of the proposed matrix-free method for thermal

analysis, which involves a vectorization of a scalar thermal equation. Three methods,

node basis based finite difference method, node basis based FEM method and vector

based FDTD method, are used as references. In this example, we consider a piece of

copper plane whose side length is 0.3 m. The temperature on one side of the plane

is 200 ◦C while being 100 ◦C on other sides. In Fig. 5.3(a), we plot the temper-
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Fig. 5.2. Flowchart of the co-simulation algorithm.

ature distribution across the whole plane at the steady state. In Fig. 5.3(b), the

temperatures generated from the proposed method and the three reference methods

at point (0.2443, 0.2443) m are plotted versus time. Clearly, the temperature at this

point gradually grows, and finally reaches its expected steady-state value. The results

from four different methods are on top of each other, validating the correctness of the

proposed vectorization of the thermal equation and its matrix-free solution.
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Fig. 5.3. Thermal simulation of a 2-D problem: (a) Temperature dis-
tribution at steady state. (b) Transient temperature at an observation
point with four different methods.
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5.4.2 Thermal Analysis in a Tetrahedral Mesh

We then simulate a heat conduction problem, which only requires solving the

thermal equation. A copper conductor of size 1 × 0.5 × 0.75 m3 is considered. It is

discretized into a tetrahedral mesh, which is illustrated in Fig. 5.4. The temperature

on the outermost boundary of the cube is set to be 100 ◦C. To guarantee the stability

of the proposed method, we choose a time step of ∆t = 0.8 s.

10

0.5

0.2

X (m)

0.5

0.4

Y (m)

Z
 (

m
)

0.6

0 0

Fig. 5.4. 3-D tetrahedron discretization of a copper conductor.

In Fig. 5.5(a), the temperature at point (0.4747, 0.2197, 0.6826) m is plotted ver-

sus time. Clearly, the temperature at this point gradually grows, and finally reaches

its expected steady-state value of 100 ◦C. It is also shown to agree well with the

temperature obtained from the TDFEM. In Fig. 5.5(b), we plot the entire solution

error as compared to the TDFEM, which is shown to be 2.78% when temperature

reaches the steady state. This error is measured by ‖{T}− {T}ref‖/‖{T}ref‖, where
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{T} contains the temperatures of all cells simulated from the proposed method, and

{T}ref is the reference solution from the TDFEM. As can be seen from Fig. 5.5(b),

the proposed method is accurate for solving the thermal diffusion equation in an

unstructured tetrahedral mesh. The larger difference at the early time is due to a

sudden jump from zero to nonzero in the source setup, the high frequency components

of which are captured by numerical methods in a different way. We also compare the

computational efficiency of the proposed method with the TDFEM whose discretiza-

tion results in a similar number of unknowns. It is shown that the proposed method

takes 0.53 s to finish the whole simulation, whereas the TDFEM costs 1.24 s.

5.4.3 Electrical-thermal Co-simulation of Copper Cube in Tetrahedral

Mesh

Next, we validate the proposed co-simulation method using the same copper con-

ductor illustrated in Fig. 5.4. The conductor is excited by a current source, whose

waveform is 2×104(t− t0)exp(−(t− t0)2/τ 2), with τ = 6.0×10−9 s, and t0 = 4τ . The

time step used in the Maxwell part of the co-simulation is ∆tm = 2.4× 10−11 s, while

that in the thermal part is ∆tt = 2.4 × 10−9 s = 100∆tm. The temperature on the

outermost boundary of the cube is set to be 0 ◦C. The simulated temperatures in all of

the tetrahedral elements are plotted versus time in Fig. 5.6(a). The relative error of

these temperatures, measured by ‖{T}−{T}ref‖/‖{T}ref‖, is plotted in Fig. 5.6(b),

where {T} contains the temperatures of all elements simulated from the proposed

method, and {T}ref is the reference TDFEM solution. Good accuracy is observed

across the entire window. In Fig. 5.7(a), we plot the electric field at an observation

point (0.1971, 0.0556, 0.0662) m obtained from the co-simulation in comparison with

the result obtained from a Maxwell-only simulation. It is clear that the thermal effect

is observable in this example, and the co-simulation is able to capture the combined

electrical-thermal effects. We also plot the TDFEM results in Fig. 5.7(a). Excellent

agreement is observed between TDFEM and the proposed method. Furthermore, we
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have compared the entire electric field solution with those of the TDFEM, by evalu-

ating the total error of ‖{e} − {e}ref‖/‖{e}ref‖. The {e} containing all ei unknowns

is from the proposed method, and {e}ref is from the TDFEM solution. The error is

shown in Fig. 5.7(b) as a function of time, validating the accuracy of the proposed

method for electrical-thermal co-simulation. Again, to demonstrate the efficiency of

the proposed method, we compare our matrix-free method with the TDFEM method.

In the co-simulation, TDFEM need to do LU factorization at each time when the ma-

terial properties are updated, while the proposed method has no factorization cost

since it is free of matrix solution. In contrast to the 81.39 s cost by TDFEM, the

proposed method only takes 6.85 s to finish the whole simulation.

5.4.4 U-type Conductor Discretized into Tetrahedral Elements

A 3-D u-type resistor is discretized into tetrahedral elements as shown in Fig.

5.8. These tetrahedral elements are generated from brick elements so that FDTD can

be used for comparison. The σ0 of all metal is 5.8 × 107 S/m, and the surrounding

material has relative permittivity of 4. The two ends of the conductor are excited

by a current source, which is depicted by the red line in Fig. 5.8. The bound-

ary conditions are PMC (perfect magnetic conductor) on the left, right, front, back

sides, and PEC (perfect electric conductor) on the top and at the bottom, with the

temperature set to be 0 ◦C. The source waveform is a Gaussian derivative pulse of

5.7 × 103(t − t0)exp(−(t − t0)
2/τ 2), with τ = 1 × 10−10 s, and t0 = 4τ . In Fig.

5.9, we plot the electric field at point (0.5, 0.75, 0.5) µm along a y-direction edge in

the conductor obtained with the Maxwell-thermal co-simulation versus that from a

Maxwell-only simulation. With peak cell temperature of 82.17 ◦C, the thermal effect

on electrical performance can be clearly observed. For validation purpose, the electric

field simulated at the same point along the same direction from the FDTD method

is also plotted in Fig. 5.9. Good agreement is observed.
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5.4.5 Electrical-thermal Co-simulation of Coaxial Cylinder in Prism Mesh

We have examined the capability of the proposed method in handling irregular

prism meshes as well. This example has an irregular triangular prism mesh, the

top view of which is shown in Fig. 5.10. The structure has two layers of triangular

prism elements (into the paper) with each layer being 0.05 m thick. The discretization

results in 3092 edges and 1038 triangular prisms. The conductor is excited by a current

source, whose waveform is 2.5× 104(t− t0)exp(−(t− t0)2/τ 2), with τ = 5.0× 10−8 s,

and t0 = 4τ . The temperature on both the innermost and the outermost boundary

is set to be 0 ◦C. The time step used in both the Maxwell part and the thermal part

of the co-simulation is ∆tm = 2.0× 10−10 s. In Fig. 5.11, we plot the electric field at

an observation point (0.1845, 0.7067, 0.0250) m obtained from the co-simulation in

comparison with the result obtained from a Maxwell-only simulation. The thermal

effect is clearly observable in this example, and the co-simulation is able to capture

the combined electrical-thermal effects. We also plot the TDFEM results in Fig. 5.11.

Excellent agreement is observed between TDFEM and the proposed method.

5.4.6 Lossy Package Inductor with Triangular Prism Elements

In this example, we simulate a package inductor made of lossy conductors of initial

conductivity 5.8 × 107 S/m, which is embedded in a dielectric material of relative

permittivity 3.4. Its geometry and material parameters are illustrated in Fig. 5.12.

The inductor is discretized into layers of triangular prism elements. The top view of

the mesh is shown in Fig. 5.13. The boundary conditions are PMC (perfect magnetic

conductor) on the left, right, front, back sides, and PEC (perfect electric conductor)

on the top and at the bottom, with the temperature set to be 0 ◦C. A current source

is launched at one end of the inductor, which is marked with blue color. The source

waveform is a Gaussian derivative pulse of 0.5 × 104(t − t0)exp(−(t − t0)2/τ 2), with

τ = 0.5×10−10 s, and t0 = 4τ . In Fig. 5.14, we plot the electric field along z-direction

at point (−600,−25, 37.5) µm in the inductor obtained with the Maxwell-thermal co-
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simulation versus that from a Maxwell-only simulation. With peak cell temperature

of 51.3 ◦C, the thermal effect on electrical performance can be clearly observed. For

validation purpose, the electric field simulated from the TDFEM is also plotted for

comparison. Good agreement is observed.

5.4.7 3-D On-Chip Power Grid Discretized into Tetrahedral Mesh

Next, we simulate a 3-D on-chip power grid, illustrated in Fig. 5.15(a) and 5.15(b).

The power grid is discretized into a tetrahedral mesh to model non-uniform materials

and process variations with fewer unknowns. The σ0 of all metal is 5.8 × 107 S/m,

and that of the silicon substrate is 104 S/m. The boundary conditions are PMC

(perfect magnetic conductor) on the left, right, front, back sides, and PEC (perfect

electric conductor) on the top and at the bottom, with the temperature set to be 0

◦C. The near end between a pair of power and ground wires in layer M1 is excited

by a current source, which is depicted by the red line in Fig. 5.15(a). The source

waveform is a Gaussian derivative pulse of 3.8 × 103(t − t0)exp(−(t − t0)2/τ 2), with

τ = 1 × 10−10 s, and t0 = 4τ . In Fig. 5.16, we plot the electric field along y-

direction at point (6, 0.75, 1.5) µm in M1 layer obtained with the Maxwell-thermal

co-simulation versus that from a Maxwell-only simulation. TDFEM results are also

shown for comparison. With peak cell temperature of 78.84 ◦C, the thermal effect

on electrical performance can be clearly observed. If using TDFEM to handle the

same tetrahedral mesh and using the same time step for the Maxwell and thermal

simulations, the TDFEM costs 47.1 s per time step, while the proposed method costs

0.29 s only. If using two different time steps for Maxwell and thermal simulations and

only update conductivity at thermal time step, the CPU time cost at one thermal time

step, which includes one thermal simulation and 100 steps of Maxwell’s simulations,

is 12.17 s in the proposed method, and 102.54 s for the TDFEM, demonstrating the

efficiency of the proposed method.
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5.5 Conclusion

In this work, we develop a matrix-free algorithm for solving full-wave Maxwell’s

equations and the thermal diffusion equation simultaneously in time domain. The

thermal equation is vectorized to develop a matrix-free solution without increasing the

problem size. The matrix-free property is achieved independent of the element shape

used for discretizing Maxwell’s or thermal equations. The stability of the coupled

nonlinear system of equations is also analyzed in detail, and found to be ensured

with a correct choice of time step in explicit time marching. Numerical experiments

have demonstrated the accuracy and efficiency of the proposed matrix-free method

for simulating thermal as well as coupled electrical-thermal problems.



82

0 500 1000 1500 2000

Time (s)

-20

0

20

40

60

80

100

120

T
e

m
p

e
ra

tu
re

 (
°
C

)

MF

TDFEM

(a)

0 500 1000 1500 2000

Time (s)

0.025

0.03

0.035

0.04

0.045

0.05

0.055

||
{T

c
e

ll}
-{

T
c
e

ll}
F

E
M

||
/|
|{

T
c
e

ll}
F

E
M

||

(b)

Fig. 5.5. Thermal simulation of a 3-D problem: (a) Transient tem-
perature at one observation point. (b) Entire solution error of the
transient temperature at all points.
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Fig. 5.6. Copper cube co-simulation: (a) Temperature v.s. time at
all points. (b) Entire T solution error as a function of time.
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Fig. 5.7. Copper cube co-simulation: (a) Simulated electric field at
one point. (b) Entire E solution error as a function of time.
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Fig. 5.8. 3-D view of a u-type resistor.
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Fig. 5.9. U-type conductor electrical-thermal co-simulation: electric
field at an observation point.
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Fig. 5.10. Top view of the triangular prism mesh of an coaxial cylinder structure.
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Fig. 5.11. Simulated electric field at one point in coaxial cylinder co-simulation.
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Fig. 5.12. Illustration of materials and geometry of a package inductor.

Fig. 5.13. Top view of the triangular prism element mesh.
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Fig. 5.14. Package inductor electrical-thermal co-simulation: electric
field at an observation point.
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Fig. 5.15. On-chip power grid: (a) 3-D view. (b) Geometry and
cross-sectional view.
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Fig. 5.16. Power grid electrical-thermal co-simulation: electric field
at an observation point.
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6. FREQUENCY-DOMAIN METHOD HAVING A

DIAGONAL MASS MATRIX IN ARBITRARY

UNSTRUCTURED MESHES FOR EFFICIENT

ELECTROMAGNETIC ANALYSIS

6.1 Introduction

In Chap. 5 we present how to use matrix-free time-domain method solving elec-

tromagnetic problems in time domain. In this chapter, as a counterpart, a new

frequency-domain method having a diagonal mass matrix is developed for analyzing

general electromagnetic problems. The matrix-free time-domain method is indepen-

dent of the element shape used for discretization, and it has a diagonal mass matrix

in nature. Although the mass matrix is only one component of a frequency-domain

system matrix, we show that the diagonal property of the mass matrix can be uti-

lized to develop a fast solution. Numerical results have validated the accuracy and

efficiency of the proposed new method.

Part of the contents of this chapter has been extracted and revised from the

following publication: Frequency-domain Method Having a Diagonal Mass Matrix in

Arbitrary Unstructured Meshes for Efficient Electromagnetic Analysis,” 2017 IEEE

International Symposium on Antennas and Propagation and USNC/URSI National

Radio Science Meeting [54].

6.2 Proposed Method

We first find the modes that make the spectral radius of the system matrix greater

than 1. We then deduct them directly from the system matrix. As a result, an

iterative solution of the updated system matrix can converge in a small number of
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iterations. The condition number can also be flexibly controlled by choosing which

set of modes to remove. Since the mass matrix is diagonal, no matrix solutions are

required in the whole solution procedure. Only a small number of sparse matrix-vector

multiplications need to be performed. After solving the updated system matrix, we

add the contribution from the deducted modes back to obtain the true solution, the

cost of which is negligible.

Consider a general electromagnetic problem discretized into arbitrarily shaped

elements. Based on [32], we have following equations in time-domain:

See = −diag({µ})h′, (6.1)

Shh = diag({ε})e′ + j, (6.2)

e′′ + S{e} = −diag({1/ε})j′, (6.3)

S = diag({1

ε
})Shdiag({ 1

µ
})Se, (6.4)

where e is a global vector of E-field unknowns whose length is Ne, and h is a global

vector of H-field unknowns, whose number is Nh. Eqn. (6.1) represents a discretiza-

tion of Faraday’s law, and (6.2) is a discretization of Ampere’s law. The superscript

′ denotes a time derivative, diag({µ}), diag({ε}) are, respectively, diagonal matrices

of permeability, and permittivity, and j is a current source vector. Eliminating h

unknowns, we can obtain a second-order equation (6.3) from (6.1) and (6.2) for e,

whose stiffness matrix is shown in (6.4). It is evident that the mass matrix in (6.3)

is naturally diagonal.

The aforementioned matrix-free method in time domain can be readily converted

to its counterpart in frequency domain as the following

(−ω2I + S)e = b, (6.5)

where ω is an angular frequency, I is an identity matrix, which is different from the

mass matrix in an FEM method, and S represents a discretized curl-curl operator.

Although the mass matrix is diagonal, the combined system matrix is not. To develop
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a fast solution to (6.5), we first did a theoretical study on the eigenvalue solution of

S since its eigenvectors constitute a complete space to represent the field solution.

In a general unstructured mesh, S resulting from the matrix-free method is unsym-

metrical. Hence, its eigenvalues can be both real- and complex-valued. The smallest

one is λmin = 0, and the largest eigenvalue magnitude, |λ|max, is proportional to

(π2c2)/smin
2, where smin is the smallest mesh size, and c is the speed of light. Since

generally the mesh size is chosen no greater than half of the wavelength in a full-wave

analysis, a relative relationship of λmin < ω2 < |λ|max can be deduced. For a typi-

cal choice of ten points per wavelength, |λ|max is approximately 25ω2. As a result,

the system shown in (6.5) is indefinite, whose spectral radius is greater than one.

The condition number can also be large, rendering an iterative solution difficult to

converge [55].

To develop a fast solution, firstly we rewrite (6.5) as

(−ω2
0I + S + ω2

0I− ω2I)e = b (6.6)

where ω2
0 is chosen to be slightly larger than |λ|max. The above can be denoted in

short as

(B−A)e = b (6.7)

with A = −S + ω2
0I,B = (ω2

0 − ω2)I. The solution of (6.7) is governed by a new

eigenvalue problem of

Ax = λnewBx = (ω2
0 − ω2)λnewx (6.8)

whose eigenvalues can be written as λnew = (ω2
0 − λ)/(ω2

0 − ω2). When |ω2
0 − λ| <

ω2
0 −ω2, 0 < |λnew| < 1; and when |ω2

0 −λ| > ω2
0 −ω2, |λnew| > 1. Hence, the original

smallest eigenvalues of S now become the largest ones. If we deduct the eigenmodes

whose |λnew| > 1 from (ω2
0 − ω2)−1A, the remaining eigenvalues of (ω2

0 − ω2)−1A

would satisfy 0 < |λnew| < 1, making the solution converge within a small number of

iterations. By (6.6), we flip the eigenvalue spectrum because the number of modes

is smaller in the range of |ω2
0 − λ| > ω2

0 − ω2. Hence, the number of modes to be
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deducted is smaller. Since the mass matrix is diagonal, and A is sparse, finding the

k largest eigenpairs of (6.8) only costs O(k) sparse matrix-vector multiplications.

Let the eigenmodes whose |λnew| > 1 be Uh. Since S is not symmetrical, the

eigenvectors of (ω2
0 − ω2)−1A are not orthogonal. We hence orthogonalize Uh to

obtain Vh. The complete solution e can be expanded as e = eh + el = Vhyh + Vlyl,

where Vl is orthogonal to Vh. Then we update (6.7) to the following new system of

equations

((ω2
0 − ω2)I−A + VhV

H
h A)el = b. (6.9)

After obtaining el from (6.9), we perform el = el − VhV
H
h el to ensure the solution

is free of Vh modes. To find eh, we multiply (6.5) by VH
h , then we obtain Qyh = b′,

where b′ = VH
h [b− (−ω2I + S)el], and Q = VH

h (−ω2I + S)Vh. This is a small system

of size k (the number of Vh modes). The total solution can then be obtained as

e = eh + el = Vhyh + el, which is the same as that obtained by solving (6.6) as it is.

To prove the field solution obtained from the proposed method is the same as that

of (6.7), we can substitute e = Vhyh + el into (6.7), and multiply the result by VH
l .

Since Vh is orthogonalized from eigenvector matrix Uh, VH
l ((ω2

0 − ω2)I−A)Vh = 0

is true. Hence, we obtain VH
l ((ω2

0 − ω2)I −A)el = VH
l b. Multiplying both sides by

Vl, and recognizing VlV
H
l = I−VhV

H
h , we obtain

((ω2
0 − ω2)I−A + VhV

H
h A)el = (I−VhV

H
h )b, (6.10)

which is the same solution as obtained from (6.9) and (3.20).

To prove (6.9) has a spectral radius less than 1, we can rewrite it as as (ω2
0 −

ω2)(I−Y0), where Y0 = VlV
H
l (ω2

0−ω2)−1A. Let the eigenvectors of (ω2
0−ω2)−1A be

U = [Uh,Ul]. Since (ω2
0 − ω2)−1A = UΛnewU−1, and VH

l Uh = 0, Y0 can be written

as Y0 = VlV
H
l [UhΛnew,h(U

−1)h + UlΛnew,l(U
−1)l] = VlV

H
l [UlΛnew,l(U

−1)l], where

(U−1)h/l denotes the rows of U−1 corresponding to the Λnew,h/l part. The spectral

radius of Y0 is bounded by that of Λnew,l, which satisfies |λnew| < 1. Furthermore, it

can be controlled by the choice of Vh.



94

To summarize, in the proposed method, we change the spectrum of the original

system (6.5) to a new representation (6.9), and then obtain the solution to the original

problem by adding back the contribution of the deducted components. One point

worth mentioning is that the original system matrix S has a nullspace whose size

can grow with unknown size N , and this nullspace can be bypassed in the GMRES

procedure. Specifically, the zero eigenvalue of (6.5) is related to the largest eigenvalue

ξ of (6.7), and the ξ is analytically known as (ω2
0)/(ω2

0 − ω2), which is slightly larger

than 1. Let λr be the largest magnitude of eigenvalue of Y0, which has been proved

to be less than 1. Therefore, we just need to deduct Vh modes whose magnitudes of

eigenvalues are between ξ and λr, and by controlling λr to a desired constant number,

we can efficiently solve the problem by GMRES in a small number of iterations.
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Fig. 6.1. Illustration of the tetrahedron mesh of the 3-D parallel plate.
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Fig. 6.2. S-parameters of the 3-D parallel plate.

6.3 Numerical Results

First, a 3-D parallel plate waveguide discretized into tetrahedral elements is simu-

lated. Fig. 6.2 shows the S12 computed from the proposed method when |λnew| > 0.99

modes are removed. Excellent agreement with the reference result from [32] is ob-

served. The iteration number of the proposed method is 39 to reach an accuracy of

1e-4. In contrast, a brute-force GMRES solution requires a large iteration number

of 1,815 for the same accuracy. To find Vh modes, a traditional FEM-based method

requires 77.27 s, while the proposed method only takes 5.23 s due to the diagonal

mass matrix. Next, a 2-mm-long microstrip line discretized into tetrahedral elements

is simulated, with |λnew| > 0.99 modes removed. Fig. 6.4 compares the simulated S12

with reference data. The proposed method has an iteration number of 40 to reach

1e-4 accuracy while a brute-force solution requires 11,801 iterations.

6.4 Conclusion

The matrix-free time-domain method has a diagonal mass matrix in nature. Al-

though the mass matrix is only one component of a frequency-domain system matrix,

in this chapter we show that the diagonal property of the mass matrix can be utilized
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to develop a fast solution. Numerical experiments have demonstrated the accuracy

and efficiency of the proposed new frequency-domain method for solving Maxwell’s

equations.

Fig. 6.3. Structure of a lossy microstrip line.
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Fig. 6.4. S-parameters of the microstrip line.
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7. A TRULY EXPLICIT MATRIX-FREE TIME-DOMAIN

METHOD IN UNSTRUCTURED MESHES AND ITS

APPLICATION TO EXPLICIT SIMULATION OF

GENERAL UNSYMMETRICAL NUMERICAL SYSTEMS

7.1 Introduction

In this chapter, we overcome the barrier of simulating an unsymmetrical numeri-

cal system whose traditional explicit simulation is known to be absolutely unstable,

and successfully develop a truly explicit matrix-free time-domain (MFTD) method,

requiring no matrix solution in arbitrary unstructured meshes. The core of this in-

novation is a new explicit time marching scheme for simulating an unsymmetrical

system, whose stability is theoretically guaranteed. Meanwhile, the accuracy of the

time marching is not sacrificed; and the time step size allowed by a traditional ex-

plicit method is not reduced to ensure the stability of the new explicit scheme. As a

result, we greatly improve the computational efficiency of the MFTD method without

compromising its accuracy. Extensive numerical experiments on both unstructured

triangular and tetrahedral meshes, and comparisons with the original MFTD method

and analytical results have validated the accuracy, efficiency, and stability of the

proposed new explicit MFTD method.

In addition to the MFTD, unsymmetrical numerical systems are also frequently

encountered in other numerical methods such as subgridding methods, non-orthogonal

FDTD methods, etc. In this work, we show the proposed new explicit method is a

general method for stably simulating unsymmetrical systems. Hence, it can be utilized

in other unsymmetrical methods to guarantee their stability in explicit time domain

simulation. Numerical results are provided to demonstrate this capability.
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Part of the contents of this chapter has been extracted and revised from the

following manuscript: Kaiyuan Zeng and Dan Jiao, ”A Truly Explicit Matrix-Free

Time-Domain Method in Unstructured Meshes and Its Application to Explicit Sim-

ulation of General Unsymmetrical Numerical Systems with Guaranteed Stability,”

submitted to the IEEE Transactions on Microwave Theory and Techniques.

7.2 Analysis of the Problem

In this section, we provide the background of this work, and also analyze the prob-

lem encountered in the transient simulation of an unsymmetrical numerical system.

We start from the MFTD in unstructured meshes, then proceed to a state-of-the-art

unsymmetrical FDTD subgridding method, and then general unsymmetrical methods

for solving Maxwell’s equations.

7.2.1 MFTD in Unstructured Meshes and Underlying Unsymmetrical

System

Given an irregular structure with inhomogeneous materials discretized into an

arbitrary unstructured mesh, based on [32], the electric field E in each element is

expanded into vector bases whose order is no less than one such that the resulting

curl E is not a constant in the element. As a result, the H field’s space dependence

in a single element can be captured, as its order would be higher than zero.

The expansion into vector bases yields E =
∑m

j=1 ejNj, where ej is the j-th basis’s

unknown coefficient, and m is the basis number in each element. Using the modfied

higher-order vector bases shown in [32], each ej denotes E(rej) · êj, i.e., E field at

point rei along the direction of unit vector êj. Substituting the expansion of E into

Faraday’s law, evaluating H at a point rhi, and then taking the dot product of the

resultant with a unit vector ĥi, we obtain

−diag ({µ}) ∂{h}
∂t

= Se{e}, (7.1)
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where e denotes a global E-unknown vector of length Ne consisting of all ej coeffi-

cients, Se is a sparse matrix denoting a discretized curl operation on E, and the h is

a global H-unknown vector of length Nh, whose i-th entry is hi = H(rhi) · ĥi. The

diag ({µ}) in (7.1) denotes a diagonal matrix of permeability µ.

Then we choose the H-points, rhi, and the H-directions, ĥi, along a rectangular

loop perpendicular to each E-unknown, and centering the E-unknown. In this way,

the resultant H fields can, in turn, generate E required in (7.1) accurately at next

time step, via the discretization of Ampere’s law as follows,

diag ({ε}) ∂{e}
∂t

+ {j} = Sh{h} (7.2)

in which {j} denotes a current source vector, Sh is a sparse matrix of size Ne by

Nh, representing a curl operation on H. Each row of Sh obviously has only four

nonzero elements, whose column index corresponds to the global index of the four

H-points associated with one E-unknown. In (7.2), the diag ({ε}) is a diagonal matrix

of permittivity. From (7.1) and (7.2), we can also eliminate H and solve E as the

following

diag ({ε}) ∂
2 {e}
∂t2

+ S {e} = −∂{j}
∂t

, (7.3)

where

S = Shdiag

({
1

µ

})
Se. (7.4)

.

When Se = STh , S is symmetrical and positive semi-definite, thus having non-

negative real eigenvalues only. Here, however, since the curl of E and the curl of H

are carried out in a completely different way, the Se 6= STh , and the resultant S is

highly unsymmetrical.

7.2.2 Unsymmetrical FDTD Subgridding

In [15], an unsymmetrical FDTD subgridding method is developed, which utilizes

the strength of an unsymmetrical discretization of curl operators in accuracy to build
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an accurate and flexible subgridding method for arbitrary grid ratios and subgrid

arrangements. In this method, a row vector is generated for every patch in the grid,

regardless of a 2- or 3-D grid. This row vector represents a curl of E operation in the

patch, which produces the time derivative of the normal H at the patch center. Let

this row vector be denoted by S
(i)
e for patch i. A column vector, denoted by S

(i)
h , is

also generated for every patch in the grid. It represents how the normal H field at the

patch center is used to generate the electric fields. The product of S
(i)
h and S

(i)
e makes

a rank-1 matrix. The sum of this rank-1 matrix divided by the µ of the patch over

all patches in the grid makes the total S. In a regular grid, S
(i)
e has only four nonzero

elements, and S
(i)
h = (S

(i)
e )T . Hence, the symmetric and positive semi-definiteness of

S is ensured.

However, when subgrids exist, as shown in [15], the S
(i)
h = (S

(i)
e )T is not satisfied.

For the subgridding method in [15], three irregular patch types, hence three irregular

kinds of S
(i)
e and S

(i)
h are identified. The first type of patches has one or multiple sides

residing on the interface between the base grid and the subgrid. For such a patch,

S
(i)
e has more than four nonzero elements, since the subgrid electric fields along the

base-grid sides are used to perform the curl of E to obtain the H field at the patch

center. Therefore, the number of nonzero entries in S
(i)
e is the number of base-grid and

subgrid electric fields along the loop of the i-th patch. The S
(i)
h has also more than

four nonzero elements. These entries are located at the rows corresponding to the

electric fields generated by the H at the i-th patch’s center. The value of each entry is

the coefficient of the H field used to generate the corresponding E field, which is not

the same as the coefficient of the E used to generate H. In addition, the H field at

patch i’s center is used to generate not only the E fields along the four sides of patch

i, but also some other E fields for interpolation accuracy. Therefore, the number of

nonzero elements in S
(i)
h is also different from that of S

(i)
e . As a result, the S

(i)
h is by

no means the transpose of S
(i)
e . The same is true for the other two irregular patch

types. The final system matrix S in [15] is again a sum of the rank-1 matrix over
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every patch, but now mixed with both symmetric and unsymmetric rank-1 matrices,

and hence being unsymmetrical.

7.2.3 General Unsymmetrical Systems Arising from Other Methods

The unsymmetrical system is also observed in many other methods such as the

non-orthogonal FDTD methods and other subgridding methods different from [15].

Although their ways of discretizing Maxwell’s equations are different, and hence the

resultant Se and Sh are different from those in the MFTD, they all can be cast in the

format of (7.1) and (7.2). As long as the two curl operations are not made reciprocal

of each other, which is the case to ensure the accuracy of the space discretization

in an nonorthogonal grid or a grid with subgrids, the resultant numerical system is

unsymmetrical.

In a second-order system where only one field unknown is solved, and in a single

mesh setup, like that in the finite element method, when the basis function for ex-

panding the field unknown is different from the testing function, the resulting system

matrix is also unsymmetrical.

The final second-order system of equations for solving Maxwell’s equations using

various methods can be written into the following form:

Dε
∂2 {e}
∂t2

+ S {e} = b(t), (7.5)

where Dε is associated with the permittivity, which can be either diagonal or nondi-

agonal, symmetric or unsymmetrical, depending on the method used for discretizing

Maxwell’s equations. The S represents a discretized ∇µ−1∇× operator. For an un-

symmetrical treatment of the curl of E and the curl of H, S is unsymmetrical. Using

different basis and testing functions, S is also unsymmetrical. Certainly, there exist

other scenarios such as non-reciprocal materials, which can make S unsymmetrical as

well.
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7.2.4 Stability Analysis of an Unsymmetrical System

The time marching of (7.1) and (7.2) is usually performed in a leap-frog way,

like the one in the FDTD method. This is, in fact, equivalent to a central-difference

based explicit time marching of (7.3) or (7.5). This point can be readily proved by

eliminating one field unknown from the leap-frog based time discretization of (7.1)

and (7.2). However, when S 6= ST , such an explicit time marching is absolutely

unstable. To see this clearly, we first discretize (7.5) using a central-difference based

explicit time marching, obtaining

Dε

(
{e}n+1 − (2{e}n − {e}n−1

)
+ ∆t2S{e}n = {b}n, (7.6)

where {f} represents the terms related to the excitation.

Removing the source term since it has nothing to do with the stability, and per-

forming a z-transform of (7.6), we obtain

z2 − (2−∆t2λ)z + 1 = 0, (7.7)

where ∆t is the time step, and λ is the eigenvalue of D−1ε S. If S is unsymmetrical,

the D−1ε S can have complex-valued and even negative eigenvalues. From (7.7), it can

be seen that the two roots satisfy

|z1z2| = 1 (7.8)

Since neither |z1| = 1 nor |z2| = 1 is satisfied for complex λ, because

z1,2 =
2−∆t2λ±

√
∆t2λ

(
∆t2λ− 4

)
2

, (7.9)

One of the roots must be greater than 1 in magnitude. As a result, the traditional

explicit scheme for simulating an unsymmetrical system is absolutely unstable.

To overcome this stability problem, in [32], a backward-difference based discretiza-

tion of (7.3) is performed, which requires a lower bound of the time step

∆t >
2
∣∣∣Im(
√
λ)
∣∣∣(∣∣∣√λ∣∣∣2) , (7.10)
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where Im(·) denotes the imaginary part of (·). To avoid solving a matrix in time

marching, a series expansion is used to derive an explicit inverse of the system matrix.

The {e} at the (n+ 1)th time step is hence computed as

{e}n+1 =
(
I− M̃ + M̃2 − · · ·+ (−M̃)k

)
{f}, (7.11)

where {f} = 2{e}n − {e}n−1 − ∆t2D−1ε bn+1 and M̃ = ∆t2D−1ε S. For the series

expansion to converge, an upper bound of the time step is imposed

∆t <
1√
‖D−1ε S‖

, (7.12)

which is similar to the time step used in a leap-frog scheme. However, such a series

expansion with k terms requires k sparse matrix-vector multiplications. Although k

is not large, which is, in general, around 10, the resulting time marching is not as

efficient as performing only one matrix-vector multiplication in the right hand side,

like that in a traditional explicit FDTD method.

7.3 New Explicit Method for Simulating Unsymmetrical Systems with

Guaranteed Stability

Based on the stability analysis in Section 7.2.4, it appears that there is no way

forward to make an explicit time marching stable for simulating an unsymmetrical

system. However, we found the following explicit method worked out.

The method can be used to solve both first-order Maxwell’s equations, and the

second-order one in a stable fashion. Consider the first-order system. We discretize

(7.1) in the following way:

Se(2{e}n − {e}n−1) = −diag ({µ}) {h}
n+ 1

2 − {h}n−
1
2

∆t
(7.13)

where we change the {e}n after Se used in a traditional explicit method to 2{e}n −

{e}n−1. Obviously, the discretization is explicit since we use the field solution at
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previous time step to obtain the field at current time step. As for the discretization

of the Ampere’s law, we keep it the same as before, and hence obtaining

Sh{h}n+
1
2 = diag ({ε}) {e}

n+1 − {e}n

∆t
+ {j}n+

1
2 , (7.14)

where the time instants for {e} and {h}, denoted by superscripts, are staggered by

half.

Consider the second-order system shown in (7.5). We perform the following time

discretization,

Dε

(
{e}n+1 − 2{e}n + {e}n−1

)
+

∆t2S
(
2{e}n − {e}n−1

)
= {f}n, (7.15)

where again the {e}n after S used in a traditional explicit method is replaced by

(2{e}n − {e}n−1). In the MFTD, Dε = diag ({ε}).

Now if we carry out a stability analysis, we find a totally different result! Setting

the excitation to be zero as it is irrelevant to stability, and performing a z-transform

of (7.15), we obtain

z2 − 2(1−∆t2λ)z + (1−∆t2λ) = 0 (7.16)

where λ are the eigenvalues of D−1ε S. Since S is unsymmetrical, λ can be either real

or complex.

However, comparing (7.16) with (7.7), now we have

|z1z2| = |1−∆t2λ|, (7.17)

which is not 1 any more, and it can be made less than 1 via an appropriate choice

of time step! Hence, it becomes feasible now to make the magnitude of both roots

less than 1, and therefore making the time marching stable. In the following, we

quantitatively derive a stability criterion for (7.15).

Denoting ∆t2λ by

∆t2λ = a+ jb, (7.18)
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where a is the real part, and b denotes the imaginary part:

a = ∆t2Re(λ)

b = ∆t2Im(λ). (7.19)

The two roots of (7.16) can be found as

z1 = 1− (a+ jb) +
√
−(a+ jb) + (a+ jb)2, (7.20)

z2 = 1− (a+ jb)−
√
−(a+ jb) + (a+ jb)2. (7.21)

Let

ξ = −(a+ jb) + (a+ jb)2. (7.22)

Using the property of

√
ξ =

√
|ξ|+ Re(ξ)

2
+ sign(Im(ξ))j

√
|ξ| − Re(ξ)

2
, (7.23)

we obtain

z1,2 = 1− (a+ jb)

±

(√
|ξ|+ Re(ξ)

2
+ sign(Im(ξ))j

√
|ξ| − Re(ξ)

2

)
. (7.24)

If the product of the two roots is greater than 1 in magnitude, then at least one of

the roots has a greater than 1 magnitude. Therefore, to ensure stability, the following

condition should be satisfied:

|z1z2| = |1−∆t2λ| = |1− (a+ jb)| < 1, (7.25)

which results in

2a− a2 − b2 > 0. (7.26)

We notice that in terms of z1 (associated with the plus sign), |z1|2 < 1 provides

2(1− a)

√
|ξ|+ Re(ξ)

2
− 2|b|sign(2a− 1)

√
|ξ| − Re(ξ)

2

< 2a− a2 − b2 − |ξ| . (7.27)
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In terms of z2 (associated with the minus sign), |z2|2 < 1 provides

− 2(1− a)

√
|ξ|+ Re(ξ)

2
+ 2|b|sign(2a− 1)

√
|ξ| − Re(ξ)

2

< 2a− a2 − b2 − |ξ| . (7.28)

In (7.27), when a < 1/2, both signs of the two terms on the left hand side are positive;

in (7.28), when a > 1, both signs of the two terms on the left hand side are positive.

Hence we obtain

2|1− a|
√
|ξ|+ Re(ξ)

2
+ 2|b|

√
|ξ| − Re(ξ)

2

< 2a− a2 − b2 − |ξ| , (7.29)

which is a general form for the maximum magnitude when a < 1/2 and a > 1. For a

in between 1/2 and 1, the two terms, coming from either (7.27) or (7.28)’s left hand

side, have opposite signs, which denote the difference between the two.

For the above to hold true, the right hand side must be greater than 0. Otherwise,

since the left hand side is positive, the above condition can never be satisfied. This

yields

2a− a2 − b2 > |ξ| , (7.30)

which results in the following condition:

b2 <
3a2 − 2a3

2a+ 1
. (7.31)

We then take a square operation on both sides of (7.29) to remove the square root

when a < 1/2 and a > 1, and we obtain

4(1− 2a+ a2)
|ξ|+ Re(ξ)

2
+ 4b2

|ξ| − Re(ξ)

2

+ 8|1− a||b|

√
|ξ|2 − |Re(ξ)|2

4

< 4a2 − 4a |ξ|+ |ξ|2 + a4 + b4 + 2a2b2 − 2(a2 + b2)(2a− |ξ|). (7.32)
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Realizing |Im(ξ)| =
√
|ξ|2 − |Re(ξ)|2 and grouping some terms, we can further sim-

plify the equation as:

− |ξ|2 + 2 |ξ|+ (2a2 − 2b2 − 4a+ 2)Re(ξ)

+ 4|1− a||b| |Im(ξ)|

< a4 + b4 − 4a3 − 4ab2 + 2a2b2 + 4a2. (7.33)

Utilizing |ξ|2 = (a2 − b2 − a)
2

+ b2(2a− 1)2, we obtain

2 |ξ|+ 4|1− a||b| |Im(ξ)| − 8a2b2 + a2 − 3b2 − 2a+ 12ab2 < 0. (7.34)

Based on (7.22), we replace |ξ| and |Im(ξ)| in terms of a and b. To determine the

sign of the term 4|1− a||b| |Im(ξ)|, either a < 1/2 or a > 1 yields 4|1− a||b| |Im(ξ)| =

−4b2(1− a)(2a− 1), and we obtain

2 |ξ| < 2a− a2 − b2. (7.35)

When a is in between 1/2 and 1, we take a square operation on both sides of (7.27)

or (7.28), and we obtain a similar expression as (7.34) except that the cross-talk term

is −4|1− a||b| |Im(ξ)|. This will lead to −4b2(1− a)(2a− 1) as well for 1/2 < a < 1,

namely for all cases, (7.35) is the condition to be satisfied. This will require the right

hand side of (7.35) to be positive and it is naturally satisfied based on (7.26). Taking

a square on both sides, we obtain

3a4 + 3b4 − 4a3 + 6a2b2 − 4ab2 + 4b2 < 0, (7.36)

which can be expressed in terms of the real part and the imaginary part of λ as

3(|Re(λ)|2 + |Im(λ)|2)2∆t4

− 4Re(λ)(|(Re(λ)|2 + |Im(λ)|2)∆t2 + 4|Im(λ)|2 < 0 (7.37)
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Solving the above inequality, we find that the time step needs to satisfy the following

condition√√√√2Re(λ)− 2
√
|Re(λ)|2 − 3|Im(λ)|2

3|λ|2
< ∆t

<

√√√√2Re(λ) + 2
√
|Re(λ)|2 − 3|Im(λ)|2

3|λ|2
. (7.38)

If |Re(λ)|2−3|Im(λ)|2 > 0 is not satisfied, then no real-valued time step can be found

to satisfy the above condition, and hence the scheme becomes unstable. Therefore,

the following condition is required:

b2 <
a2

3
, (7.39)

which is in general satisfied since the imaginary part of a complex eigenvalue is small

compared to the real part.

When the imaginary part is zero or negligible, the left hand side of (7.38) becomes

zero, thus this condition is naturally satisfied. However, when the imaginary part of

S’s eigenvalues cannot be ignored, (7.38) yields a lower bound of the time step, and

we need to go through all the complex eigenvalues to define such a bound. When

the imaginary part does not exist or is negligible for the largest eigenvalue, the right

hand side of (7.38) becomes

∆t <

√
4

3

1√
λmax

, (7.40)

where λmax is the largest eigenvalue of D−1ε S. This upper bound is, in fact, larger

than (7.12), thus a larger time step is allowed in the proposed method compared

with [32]. More importantly, this new time marching scheme is truly explicit. No

series expansion is required. Hence, the proposed method is more efficient than the

original MFTD method. Moreover, as can be seen from the aforementioned analysis,

the proposed method is applicable to other unsymmetrical methods to make them

stable, since the curl operations represented by Sh and Se in (7.13) and (7.14), and

the S in (7.15) can be arbitrary.
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One may wonder why we made a choice of using 2{e}n−{e}n−1 to replace {e}n, and

whether this choice is accurate or not, although it makes the time marching stable.

In fact, the 2{e}n − {e}n−1 constitutes an accurate approximation of {e}n+1, and

the {e}n+1 is the value used in a backward difference scheme. Since the backward

difference has been shown to be accurate in simulating an unsymmetrical system

[15, 32], the accuracy of the proposed explicit time marching is also ensured. In

a general differencing scheme, a backward or forward difference appears to be less

accurate than a central difference. However, each of the three difference schemes

produces the same result in a time interval where the field variation is at most linear,

as they all are equal to the slope of the field line in this time interval. This is indeed

the case in our time domain simulations, since the time step required by the sampling

theorem is 1/(2fmax), with fmax being the maximum frequency, while what is used in

practice is 1/(10fmax) or even smaller so that the accuracy is satisfactory. In such a

time interval, a backward difference produces the same result as a central difference.

7.4 Numerical Results

In this section, we first demonstrate the performance the proposed explicit MFTD

for simulating unstructured meshes. A number of irregular meshes are simulated,

and the accuracy and efficiency of the new method are compared with that of the

original MFTD. We then apply the proposed explicit method to the recently developed

unsymmetrical FDTD subgridding method [15] to make its explicit simulation stable.

All simulations are carried out on an Intel Xeon CPU E5-2690 v2 @ 3.00 GHz.

7.4.1 MFTD in a 2-D Irregular Triangular Mesh

The first example is a highly irregular 2-D mesh shown in Fig. 7.1. The discretiza-

tion results in 2,081 edges and 1,325 triangular patches. Due to the highly irregular

mesh, S is highly unsymmetrical which has many complex eigenvalues whose imagi-

nary parts are not small as compared to the real parts. In Table 7.1, we list some of
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Table 7.1.
Illustration of Complex Eigenvalues of the Triangular Mesh Example

1 2 3 4

Real 5.150e+27 1.314e+28 2.257e+28 4.781e+28

Imaginary ±1.235e+25 ±3.774e+25 ±1.282e+26 ±1.0542e+27

the representative eigenvalues of S. As can be seen, the imaginary part can be quite

significant as compared to the real part. Because of this, when we tried to perform a

leap-frog scheme directly on the MFTD system of equations, the simulation immedi-

ately becomes unstable. Hence, a new explicit method like the proposed is necessary

for simulating this example.

To investigate the accuracy of the proposed method in such a mesh, we set up

a free-space wave propagation problem so that an analytical solution is available

for comparison. Specifically, since E is known, we impose an analytical boundary

condition, i.e., the known value of tangential E, on the outermost boundary of the

mesh. We then numerically simulate the fields inside the mesh and correlate the

results with the analytical solution.

The incident E is set to be E = ŷf(t − x/c), where f(t) = 2(t − t0)exp(−(t −

t0)
2/τ 2), with τ = 2.0×10−12 s, and t0 = 4τ , and c denotes the speed of light. This is

also the total E in a free-space wave propagation problem. The time step used in the

proposed method is ∆t = 2.42× 10−16 s, which is determined by (7.40). Notice that

the S’s norm can be analytically estimated from the smallest space step, and (7.40)

has a good correlation with the CFL condition. In Fig. 7.2(a), we plot the electric

fields of the 6,811-th and 6,812-th entry randomly selected from the unknown {e}

vector, and compare them with analytical solutions as well as those from the original

MFTD method [32]. It can be seen clearly that the electric fields solved from the

proposed method have an excellent agreement with analytical results and the results

of [32]. To verify the accuracy everywhere in the computational domain, we evaluate
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the total solution error by calculating ‖{e} − {e}ana‖/‖{e}ana‖, where {e} contains

all ei unknowns solved from the proposed method, and {e}ana is from the analytical

solution. As can be seen from Fig. 7.2(a), the proposed method is not only accurate

at selected observation points as shown in Fig. 7.2(a), but also accurate at all other

points. The center peak error in Fig. 7.2(b) is due to the comparison with close-to-

zero fields. In addition, the error plot of the proposed method is on top of that of the

original MFTD method, thus the proposed method does not sacrifice the accuracy

of the original scheme. Furthermore, it greatly shortens the CPU run time, as the

method of [32] takes 88.05 s to finish the simulation, while the proposed method only

costs 15.02 s.
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)

10-5

Fig. 7.1. Irregular 2-D triangular mesh.

7.4.2 MFTD in a 3-D Box Discretized into Tetrahedral Mesh

The second example is a 3-D box discretized into tetrahedral elements shown

in Fig. 7.3. The discretization results in 544 edges and 350 elements. We set up

a free-space wave propagation problem in the given mesh to validate the accuracy
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Fig. 7.2. Simulation of a 2-D triangular mesh. (a) Simulated two
electric fields. (b) Entire E field solution error as a function of time.

of the proposed method against analytical results. The incident E has the same

form as that of the previous example, but with τ = 6.0 × 10−9 s in accordance with

the new 3-D structure’s dimension. The time step used in the proposed method is

∆t = 2.77× 10−11 s, which is determined from (7.40). This also correlates well with

the traditional CFL condition. In Fig. 7.4(a), we plot the electric fields of the 1st and

the 1,832-th entry from the unknown {e} vector, and compare them with analytical

solutions and the method of [32]. Excellent agreement can be observed. We also

plot the entire solution error shown in Fig. 7.4(b) versus time. It is evident that the

proposed method is not just accurate at certain points, but accurate at all points in

the computational domain for all time instants simulated. The center peak in Fig.

7.4(b) is due to the comparison with close to zero fields. It takes the proposed method

0.18 s only to finish the simulation without sacrificing accuracy, as can be seen from

Fig. 7.4(b), while the method of [32] takes five times longer.

7.4.3 3-D Sphere Discretized into a Tetrahedral Mesh

The third MFTD example is a sphere discretized into tetrahedral elements in free

space, whose 3-D mesh is shown in Fig. 7.5. The discretization results in 3,183 edges
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Fig. 7.4. Simulation of a 3-D box discretized into tetrahedral elements.
(a) Simulated two electric fields in comparison with analytical results.
(b) Entire E field solution error as a function of time.

and 1,987 tetrahedrons. Similar to previous examples, S is highly unsymmetrical

having many complex eigenvalues, for some of which the imaginary part is even

similar to the real part such as 9.672e+ 21± j1.923e+ 21. The traditional leap-frog

scheme is found to be absolutely unstable in simulating this example no matter how
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the time step is chosen. The structure is illuminated by a plane wave having the

same form as that in the first example but with τ = 2.0 × 10−9 s. The time step

used in the proposed method is ∆t = 3.12 × 10−12 s, which is selected to satisfy

(7.40). Two electric fields, whose indices in vector {e} are 1 and 2,942, respectively,

are plotted in Fig. 7.6(a) in comparison with analytical data. In Fig. 7.6(c), we

plot the entire solution error versus time, where the accuracy of the proposed method

is demonstrated. We also simulate this example using the method in [32], whose

∆t = 2.70 × 10−12 s, which is restricted by (7.12). It takes 16.58 s to finish the

simulation. In contrast, the proposed method only takes 3.37 s while achieving the

same accuracy as can be seen from Fig. 7.6(b). The original number of time step

for the simulation with the proposed time marching scheme is 5,132. We also run a

very long time by enlarging the number of time step to be 1,026,400. No late time

instability is observed.

-0.1

0.1

0

Z
 (

m
)

0.1

Y (m)

0

0.1

X (m)

0
-0.1 -0.1

Fig. 7.5. Tetrahedron mesh of a sphere.
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Fig. 7.6. Simulation of a 3-D sphere. (a) Simulated two electric fields.
(b) Entire E field solution error as a function of time.

7.4.4 Unsymemetric FDTD Subgridding: 2-D Grid with Multiple Sub-

grids

A 2-D wave propagation problem involving multiple subgrids is considered, whose

grid is shown in Fig. 7.7(a). The coarse grid size is Lc = 0.1 m, and the blue regions

are subdivided into fine grids where the grid ratio CR = Lc/Lf = 3. The Einc is

ŷ2(t− t0 − x/c)e(t−t0−x/c)
2/τ2 with c = 3× 108 m/s, τ = 2× 10−8 s and t0 = 4τ . All

the boundaries are terminated by an exact absorbing boundary condition. The time

step used is ∆t = 1/
√
‖S‖ = 4.4 × 10−11 s, which satisfies the stability criterion of

a traditional explicit method. In Fig. 7.7(b) we plot the electric fields the 1st and

340th entry. It can be seen that both traditional explicit method and the proposed

new explicit method can generate accurate results.

However, when we run a long time simulation, late time instability is observed

from the traditional explicit time marching, as shown in Fig. 7.8(a). This is because

of the existence of complex eigenvalues, and no ∆t can satisfy both |z1| = 1 and

|z2| = 1 as mentioned in (7.7). For example, the 102nd eigenvalue of the system

matrix is 1.5018e20 ± 2.1538e16i, making |z1| = 1.00004. Although the imaginary

part is small compared to the real part, as long as such a complex eigenvalue exists,
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the time domain simulation cannot be made stable. The instability can be clearly

observed when 1,818,000 time steps are simulated. In contrast, using the proposed

explicit method, no such instabilities are observed in the same late time simulation,

which can be clearly seen from Fig. 7.8(b).

7.4.5 Unsymemetric FDTD Subgridding: 3-D Cube with Two Subgrid-

ding Cells

The second subgridding example is a free-space wave propagation problem in a

3-D Cube. The size of the simulation domain in each direction is 1.0 m with the

coarse grid size is Lc = 0.1 m. Two cells which are centered at (0.15, 0.15, 0.15)

m, and (0.45, 0.45, 0.45) m respectively are subdivided into fine grids with a grid

ratio of CR = Lc/Lf = 3. The grid is shown with the blue subgrids in Fig. 7.9(a).

We apply the same incident field and boundary condition as those in the previous

example. The time step used is ∆t = 1/
√
‖S‖ = 3.5 × 10−11 s. In Fig. 7.9(b) we

plot the electric fields at the 1st and the 2,694th entry. It can be seen that both

the proposed new explicit method and the traditional explicit method agree very well

with the analytical solution.

However, similar to previous example, when we run a long time simulation, the

traditional explicit method is shown to be unstable, as shown in Fig. 7.10(a), where

the number of time steps is 1,142,750. Complex eigenvalue pairs are observed from

the unsymmetrical system matrix of the subgridding method. For example, the 965th

eigenvalue is 5.4851e21+2.0377e16i, making |z1| = 1.00005. In contrast, using the

proposed new method, no such instabilities are observed in the late time simulation,

and the results compared with the reference analytical data are shown in Fig. 7.10(b).

7.5 Conclusion

In this work, we develop a truly explicit time marching scheme for solving unsym-

metrical numerical systems in time domain. The proposed method is theoretically
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proved to be stable despite the unsymmetrical system matrix. Meanwhile, the ac-

curacy of the time marching is not sacrificed, and the time step size is not reduced.

As a result, we make the MFTD method truly matrix-free, and hence accentuating

its advantage of having a diagonal mass matrix irrespective of the element shape

used for discretization. We also successfully apply the proposed method to make the

explicit time marching of a state-of-the-art FDTD subgridding method stable. The

proposed method is generic, and hence it can be used in other unsymmetrical methods

to guarantee their stability in explicit time-domain simulation.
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Fig. 7.7. Simulation of a 2-D subgridding problem. (a) Grid de-
tails. (b) Simulated two electric fields in comparison with traditional
method and analytical results.
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Fig. 7.8. Long term simulation of a 2-D subgridding problem. (a)
Long term simulation using traditional central difference vs. analyt-
ical results. (b) Long term simulation using proposed method vs.
analytical results.



120

(a)

0 0.5 1 1.5

Time (s) 10-7

-2

-1

0

1

2

E
le

c
tr

ic
 f
ie

ld
 (

V
/m

)

10-8

Point 1 (Proposed)

Point 2 (Proposed)

Point 1 (Central)

Point 2 (Central)

Point 1 (Analytical)

Point 2 (Analytical)

(b)

Fig. 7.9. Simulation of a 3-D cube with subgridding cells. (a) Grid de-
tails. (b) Simulated two electric fields in comparison with traditional
method and analytical results.
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Fig. 7.10. Long term simulation of a 3-D cube with subgridding cells.
(a) Long term simulation using traditional central difference vs. ana-
lytical results. (b) Long term simulation using proposed method vs.
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8. CONCLUSIONS AND FUTURE WORK

In this dissertation, we focus on two major topics in solving new emerging engineering

problems: multiscale and multiphysics. First, we develop a symmetric positive semi-

definite finite-difference time-domain (FDTD) subgridding algorithm in both space

and time for fast transient simulations of multiscale problems. This algorithm is

stable and accurate by construction. To further improve the efficiency, we propose

an analytical method to identify the unstable modes in a uniform grid, and remove

such modes subsequently to make the subgridding method unconditionally stable.

To address the multiphysics simulation challenge, we develop a matrix-free time

domain method for solving thermal diffusion equation, and the combined Maxwell-

thermal equations in arbitrary unstructured meshes. Since the matrix-free time-

domain method has a diagonal mass matrix in nature, we take advantage of the

diagonal property of the mass matrix and develop a method for fast frequency-domain

analysis. Furthermore, we propose a new time marching scheme to make matrix-free

method truly explicit. And this scheme is generic, which can be used to stably

simulate other unsymmetrical systems as well.

To create these new methods, we have considered the following three aspects that

are equally important.

• Accuracy : No matter how fast the algorithm can be, accuracy should be guar-

anteed first. Since our subgridding algorithm involves both space and time, a

careful consideration is taken in implementing the subgridding framework. We

separate base grid from the subgrid, and the interpolation matrix connecting

these two parts is important to ensure the accuracy. Especially on a 3-D grid,

we have the challenge in calculating the electric field on the interface accurately.

Instead of directly using a linear interpolation from the base grid electric field,
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we take into account the contribution from both base grid and subgrid regions

to make sure that we can get accurate results.

While developing the method free of matrix solution to solve Maxwell and ther-

mal equations, accuracy must be ensured as well. As mentioned, when solving

Maxwell’s equations, the H field is sampled in such a way that E unknowns can

be accurately calculated from sampled H fields, which can be located at any

point inside the element. Therefore, to obtain these H fields accurately, we use

a first order basis when choosing the vector basis functions for E. And we solve

the thermal diffusion equation in a similar manner. The field/temperature at

any point along any direction can be obtained accurately.

• Efficiency : With the accuracy issue addressed, we need to come up with some

ideas to speed up the algorithm. First, the root cause of low efficiency of existing

methods is investigated, and our algorithm is designed in a way to remove the

root cause. In terms of multiscale problems, FDTD subgridding techniques

have been developed to address the multiscale challenge and they are faster

compared with conventional FDTD without subgrids. However, since we have

both the base grid and the subgrid, the time step is limited by the smallest

space in the fine feature. In the proposed symmetric positive semi-definite

FDTD subgridding algorithm, such a restriction is removed, and it permits the

use of a time step local to the base grid and the subgrid, thus the efficiency is

much improved.

In multiphysics problems, existing methods require solving a system matrix. As

a result, at each time instant when the matrix changes, one has to re-factorize

or solve the matrix, which is time consuming especially in analyzing large-scale

problems. To improve efficiency, we develop a matrix-free time-domain method

to solve Maxwell’s equations and the thermal diffusion equation simultaneously

in time domain. This method has a naturally diagonal system matrix, and hence

the need for numerically finding the matrix solution is completely eliminated.
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• Time marching stability : Even though very accurate interpolation techniques

can be developed to obtain the field unknowns at the interface in an FDTD

subgridding algorithm, the stability of the resultant time marching cannot be

guaranteed. The fundamental reason is that the system matrices with such in-

terpolations are unsymmetric. In our symmetric positive semi-definite FDTD

subgridding algorithm, stability issue is investigated and it is proved that al-

though there is a coupling between base grid and subgrid, our combined system

matrix is symmetric positive semi-definite, and hence the algorithm is stable by

construction.

The co-simulation of the coupled Maxwell’s and thermal equations results in a

nonlinear system of equations, and the stability of which has not been investi-

gated in existing methods. We rigorously analyze the stability of the coupled

nonlinear system of equations, and it is found to be ensured with a correct

choice of time step in explicit time marching.

Our new time marching scheme developed in the last chapter is a systematic

approach to overcome the absolute instability of the explicit simulating an un-

symmetrical numerical system. With this approach, we are able to remove the

need for using the backward difference and the series expansion to deal with

unsymmetrical systems.

The future research potentials of this work include but not limited to

• Unconditionally stable 3-D FDTD subgridding algorithm: In Chap. 4, we com-

bine the proposed symmetric positive semi-definite FDTD subgridding algo-

rithm with the analytical unstable modes removal technique in some 2-D exam-

ples. In fact, the analytical unstable modes removal technique can be readily

expanded to 3-D cases. As a result, the subgridding algorithm with the analyt-

ical unstable modes removal can have a broader application in 3-D analysis.

• Larger scale Maxwell-thermal co-simulation: The proposed matrix-free time-

domain method has been applied to solve examples with both tetrahedral meshes
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and layers of triangular prism elements. In the co-simulation, we can solve

Maxwell’s equations even faster by using the new time marching scheme devel-

oped in the last chapter. For a large signal and power integrity problem which

involves many more unknowns, to further improve the efficiency, an uncondi-

tional stable version of this method need to be considered to enlarge the time

step, in order to finish the whole simulation in a practical time.

• Extensions to other partial differential equations : The proposed matrix-free

time-domain method provides a flexible framework for solving multiphysics

problems, not only Maxwell’s equations, thermal diffusion equation, but also

other equations. For example, the Boltzmann equation is also a first-order par-

tial differential equation, and a similar treatment can be performed to avoid

solving a matrix equation at each time step suing the proposed matrix-free

method.
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