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GLOSSARY

Some terms most commonly used in this document are:

Intrusion Detection System: A system that monitors the traffic flowing through a

particular network and tries to identify any malicious traffic coming to the network

by any external parties.

Generative Adversarial Network: A system of neural networks that aims to generate new

data which resembles the input.

Wasserstein Generative Adversarial Network: A type of GAN that provides some

improvement over the basic GAN and makes it easy to train.
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ABSTRACT

Author: Sakhala, Nidhi N. M.S.
Institution: Purdue University
Degree Received: May 2019
Title: Generation of Cyber Attack Data using Generative Techniques
Major Professor: John Springer

The presence of attacks in day-to-day traffic flow in connected networks is considerably

less compared to genuine traffic flow. Yet, the consequences of these attacks are

disastrous. It is very important to identify if the network is being attacked and block these

attempts to protect the network system. Failure to block these attacks can lead to loss of

confidential information and reputation and can also lead to financial loss. One of the

strategies to identify these attacks is to use machine learning algorithms that learn to

identify attacks by looking at previous examples. But since the number of attacks is small,

it is difficult to train these machine learning algorithms. This study aims to use generative

techniques to create new attack samples that can be used to train the machine learning

based intrusion detection systems to identify more attacks. Two metrics are used to verify

that the training has improved and a binary classifier is used to perform a two-sample test

for verifying the generated attacks.
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CHAPTER 1. INTRODUCTION

Machine Learning (ML) has seen success in multiple fields, ranging from image

identification and classification to text analysis and speech conversion to sound

recognition. Various algorithms have been developed over time to accommodate the range

of available data. Researchers have then applied these algorithms for cybersecurity data to

reap the benefits of machine learning and identified some problems as to why machine

learning does not give good results with cybersecurity as compared to other domains.

Sommer and Paxson (2010), discuss the shortcomings of ML for Intrusion Detection

Systems (IDS). One of the problems discussed is that of not having enough data to train a

machine learning model. Even though we have lots of traffic data, the percentage of attack

data within it is very small. Machine learning algorithms learn by analyzing examples; the

more examples on which we train, the better is the classification accuracy of attacks from

non-attacks. But due to insufficient data, we cannot provide enough examples of attack

data, and thus the models cannot be trained accurately. Generative Adversarial Networks

(GANs) are a new suite of algorithms that help create new samples based on the input

samples of such quality that they are indistinguishable from each other (Goodfellow et al.,

2014). Using this technique, we can generate new attack data having properties

resembling the input data and hence generating more samples of attack data on which to

train the machine learning algorithms.

1.1 Significance

With the growth of computer networking, e-commerce applications and

web-services, information security has become a global issue of serious concern. Due to

the accessibility and openness of the Internet, an increasing number of users are utilizing

it for almost all of their needs, including shopping, socializing, storing information,

banking, etc. This leads to a large number of transactions with some involving financial

transactions between servers. The secure exchange of personal information is very vital to

the user as organizations and/or individuals with evil intent can listen on these transactions



2

and steal confidential information. This is known as a cyber attack. Uma and Padmavathi

(2013) provide a listing of various types of cyber attacks by classifying them based on

various criteria such as purpose, scope, terminology, and the type of network which is

being attacked.

For businesses, network attack can cause major damage because it has a huge

impact on the financial expenditures as well as on the customer’s trust in the business.

Walters (2014) discusses the cyber attacks on big corporations including restaurant chains,

hotels, technology companies, government portals, and financial institutions. The

attackers stole the user’s login credentials, payment details, and personal information. The

users whose information is stolen are susceptible to attacks like hacking, fishing, cyber

bullying, or identity thefts; their payment information can be used by attackers for illegal

transactions and thus encouraging more crime. This leads to the users losing their trust in

a company and the company losing its customer base that in extreme cases could lead to

the company going out of business and shutting down entirely. The cyber attacks have

also caused huge financial losses to the companies (Cashell, Jackson, Jickling, & Webel,

2004) in terms of investigation costs, shareholder losses, attack mitigation costs, etc. All

the above cases show that studying and implementing information and network security is

imperative.

This thesis will help in the reduction of the cost attached to investigation of cyber

attacks as well as to help prevent the networks from the dangers of these attacks. The

generative approach will be used to generate more samples of the attack dataset, thereby

making available enough training dataset for the classifier, and this will increase the

efficiency of the machine learning tools in detecting intrusions. This tool can be used as

an automated intrusion detector for any network, hence decreasing the human efforts

involved in capturing traffic, identifying, and analyzing malicious traffic targeting their

network. More importantly, this thesis will contribute towards reducing the number of

unidentified attacks.
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1.2 Scope

Imbalanced class distribution affects the performance of the IDS as the classifier

tends to favor the majority class (Hido, Kashima, & Takahashi, 2009). Insufficient attack

dataset makes it difficult to train the classifier, and this affects the accuracy of the result.

With a balanced set, it will be possible to train the machine learning algorithms to detect

attacks better. This thesis focuses on generating new attack samples in an effort to balance

the dataset by using GANs. The scope of this thesis is restricted to generating the samples

for Denial of Serivce (DoS) attacks only, as they are one of the most widespread attack

types.

1.3 Research Question

Will the addition of new samples created using generative techniques to balance

the dataset, decrease the false negatives, and improve the detection rate for a pre-trained

machine learning classifier that identifies attack data from regular traffic flow?

1.4 Assumptions

The assumptions for this study include:

• The simulated attacks are representative of the actual attacks that could infiltrate the

system.

• The new generated attacks will cover all the variations possible for DoS.

1.5 Limitations

The limitations for this study include:

• There is no quantitative way to judge the quality of samples created. This will pose

a challenge to validate the samples generated as good attack samples.
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• The dataset is of approximately 163 gigabytes. The data was sampled to a

manageable size of 2 gigabytes. This sample represents data of only 1 week.

1.6 Delimitations

The delimitations for this study include:

• The attack and regular traffic flow discussed throughout the document are

constrained to the traffic flows in the 1 week of sampled dataset.

• The dataset contains traffic flow information only about Denial of Serivce attacks.

Hence, the generative model will create new samples similar to these attacks, and

the classifier trained on this data will be able to better identify these attacks. This

does not increase the classifier’s ability to detect other kinds of attacks.

• The results of this thesis are only applicable for the classifier built in this thesis.

These results can vary for classifiers built using different algorithms or different

architectures.

1.7 Summary

This chapter provided the scope, significance, research question, assumptions,

limitations and delimitations for the research project.
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CHAPTER 2. REVIEW OF LITERATURE

Network attacks can cause a major damage to the business, in terms of finance,

customer popularity, or loss of confidential information. This section highlights the types

of attacks and the ways previously developed to identify and prevent these attacks.

Furthermore, the use of generative techniques is suggested to help improve the same.

2.1 Types of Cyber Attacks

A network can be infiltrated in many ways, some with the help of human

interaction, and some without the user even knowing about it. As an example, a user

downloads some files from an unknown website where one of the files contains private

information and sends it over the internet. In other methods, the attacker pretends to be

someone whom the user trusts and then gains private information from the user. In both

these cases, there is some interaction with the user. But there are other types of attack that

take place without user involvement. These attacks are directly on the network, and look

as normal traffic flows. They are known as network attacks and are of two types: active

and passive.

Passive attacks are those in which the attacker just monitors the victim’s network,

by listening to the network traffic flow, or by scanning for ports that are open. This helps

the attacker get information about which ports are highly used and which are idle. The

main purpose of passive attacks is to collect information about the target system. They do

not intend to harm the normal functioning of the systems because they want to go

unnoticed while stealing information. This might also include sensitive information like

passwords. Attackers use different techniques like eavesdropping and sniffing network

traffic to expose a user’s sensitive information. Many times, passive attacks set up the path

for active attacks. Active attacks are those in which the attacker is actively interfering in

the flow of data on a network. They are intended for harming the machine by introducing

a virus or malware that disrupts the working of the system, consumes system memory and

bandwidth by self-replication, or leaks important information to the attacker. Denial of
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Service (DoS) attack is an example of an active attack. In this attack, the attacker occupies

the bandwidth of the target system and keeps it busy so that it cannot service requests by

other machines. This creates a huge problem for businesses because they lose out on

customers that leads to a loss in revenue. For example, 48 percent of data center operators

say that customer retention and gathering new customers is a significant problem after an

attack (Whalen, 2018, Consequences). The same report also states that companies have

lost between $10,100 and $100,000 in 2017. A variation of DoS is the Distributed Denial

of Service (DDoS) attack, where multiple attackers target the same system from different

IP addresses and different locations. With the growth of Internet of Things (IoT), the

threat of DDoS attacks is even more widespread. In his report, Whalen (2018) mentions,

“According to the data from NETSCOUT Arbor’s Active Threat Level Analysis System,

which covers approximately one-third of global internet traffic, there were 7.5 million

DDoS attacks in 2017 alone.” The same article mentions that 57% of enterprises and 45%

of data center operators that were surveyed saw their internet bandwidth saturated due to

DDoS attacks. Various techniques were developed to prevent networks from these attacks.

The most common of them is Intrusion Detection Systems (IDS).

2.2 Intrusion Detection Systems

A wide range of security technologies such as information encryption, access

control, and firewalls are used to protect network-based systems, but there are still many

undetected intrusions. The most popular way to detect intrusions is by examining the

network traffic and distinguishing anomalous traffic from normal traffic using an IDS. An

IDS can be compared with a burglar alarm. For example, your home is protected by a lock

system which is unlocked with a key. But if a burglar breaks into your house by forcing

open the lock, the burglar alarm will detect that the lock has been broken and alerts the

user about the intrusion. Similarly, the IDS monitors all traffic flow to the user, and if it

identifies any anomalous activity, it will alert the user. Therefore, an IDS is a security

system that monitors computer systems and network traffic and analyzes the traffic for

possible hostile attacks (Scheidell, 2009). According to the simple model proposed by



7

Scheidell (2009), a network administrator sets rules for every user, which guide the traffic

flow in the network. If there is any traffic outside this set of rules, it alerts the network

administrator. Using this model as the base, many variants of IDS were developed. The

most common types of intrusion detection systems are network-based systems and

host-based systems. Network-based intrusion detection systems are deployed at points on

the network itself so that they can monitor the incoming and outgoing traffic to detect

intrusions. Host-based intrusion detection systems run on computers or devices in the

network, which get access to the internet. There are two major methodologies of intrusion

detection, namely misuse detection and anomaly detection. Misuse detection identifies

intrusions based on the patterns of known intrusions. Such systems monitor the network

packets and compare them against the database of known attacks. While misuse detection

can be very efficient in detecting the attacks whose patterns are known to the system, it is

not possible to discover all the possible attacks that could occur (Ryan, Lin, &

Miikkulainen, 1998); It usually fails in detecting zero-day attacks. Anomalies are

deviations from normal behavior and anomaly detection detects intrusions based on the

observed abnormal activity. Detection of anomaly patterns is computationally expensive

because of the overhead of maintaining and updating several system profiles since

behavior patterns and system usage vary from system to system and from user to user.

2.2.1 Machine Learning based Intrusion Detection Systems

Until now, many soft computing approaches have been implemented for intrusion

detection. These approaches can be classified as statistics-based, pattern-based,

rule-based, state-based, and heuristic-based (Liao, Lin, Lin, & Tung, 2013).

Statistics-based approaches focus on predefined mean and standard deviation as well as

probabilities to identify intrusions. Pattern-based detections focus on detecting known

attacks through string matching. State-based methods use finite state machine derived

from network behaviors to identify attacks. All these methods require us to have

knowledge about the data we wish to identify. But when it comes to zero-day attacks, this

is the exact information we are missing, making these methods ineffective for the cause
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we are trying to achieve. The heuristic-based approach is inspired by artificial intelligence

techniques, which attempt to learn the differences between the classes of classification.

Many data mining approaches have been proposed for intrusion detection. Sangkatsanee,

Wattanapongsakorn, and Charnsripinyo (2011) implemented different machine learning

techniques for intrusion detection like decision tree, RIPPER rule, back-propagation

neural network, radial basis function neural network, Bayesian Network, and naı̈ve

Bayesian model. The experimental results of this paper show that decision trees provide

higher detection rates as compared to other algorithms, and hence the authors developed a

new real-time IDS based on decision trees. This new real-time IDS succeeded to

efficiently detect intrusions with improved speed and lesser CPU consumption and

memory. All the above techniques were evaluated on two datasets KDDCup 1999 and

NSL-KDD.

In spite of this widespread use of machine-learning based algorithms for intrusion

detection, there are some disadvantages that come along with these.

2.2.2 Problems with ML based IDS

Sommer and Paxson (2010) discuss why the domain of cybersecurity does not

align with the requirements of machine learning. Two of the problems that they discuss

are very relevant here: the high cost of errors and the lack of training data.

In machine learning vocabulary, misclassified instances are known as False

Positives (FP) and False Negatives (FN). False positives are those traffic flows that the

system identifies as an attack even though it is a valid activity. For alarms raised by false

positives, the network operator has to investigate it only to find out it was a false alarm.

This wastes investigation time and creates a false scare. This makes it difficult to trust the

system to identify attacks if it also alerts for valid traffic flows. On the other hand, false

negatives are indeed anomalous traffic flows, but the IDS fails to raise an alarm and allows
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that traffic to pass. This is very dangerous as the system is being attacked, making the IDS

inefficient. This shows us that misclassification is more highly penalized in the cyber

security domain than others. Just a high accuracy number is not enough; but we need to

aim for lower misclassification rates.

Another problem discussed in this domain is about the dearth of attack data for

training these algorithms. ML algorithms are developed to find similarities, and anything

which is not similar is an outlier. This approach does not work well with the cybersecurity

data because not all traffic flow can be described in set rules. There is no fixed structure to

the attacks that the machine learning algorithms can learn. Even if they do, attackers can

easily change their methods and bypass the IDS. The existing datasets do not have enough

variety in attack examples for the machine learning algorithms to learn them all. Out of all

traffic data available, only a small percentage consists of attack data. This is known as

data imbalance and makes it difficult to train machine learning algorithms. This small

amount of data is considered as random noise or as outliers by the algorithms and they

don’t learn to classify it.

2.3 Data Imbalance

The problem of an unbalanced dataset in machine learning and data science is a

scenario where class distribution is not uniform among the classes. There are usually two

classes: the majority class and the minority class. In real-world applications, there are

multiple datasets that are highly skewed (Hido et al., 2009). For example, the number of

fraudulent actions is much smaller than legitimate transactions in credit card datasets. The

number of patients is much smaller than the number of healthy people in normal medical

usage data. Again, the number of attack data is smaller than normal data in network usage

data. The result of this imbalance in intrusion detection can be seen in the work by

Sabhnani and Serpen (2003). They implemented various classifiers including a multilayer

perceptron neural network, an incremental radial basis function neural network, a gaussian

classifier, a K-means classifier, a nearest neighbor classifier, a C4.5 decision tree, a fuzzy

ARTMAP classifier, a leader cluster, and a hypersphere algorithm. Each classifier was
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trained using the KDD training dataset and tested using the KDD testing dataset. There

were a total of 1,074,991 records out of which 75.61% data is normal traffic, 23% is DDoS

attack, 1.3% is Probe attack, 0.093% is R2L and only 0.004% is U2R attack. This depicts

the imbalance in the available dataset. When this was used to train the above-mentioned

algorithms, the probability of detection varied for each of the attacks. DDoS had

approximately 97.2% probability and probe has 88.7% whereas U2R and R2L had

detection probabilities 13.2% and 5.6% respectively. This shows us that if there are more

training examples of a particular attack in the dataset, the probability of the algorithm

learning to identify it is higher. Because of this, many attempts have been made to increase

the minority class dataset. These approaches to the problem of an unbalanced dataset can

be broadly classified into algorithmic level approaches and data level approaches.

2.3.1 Techniques to handle Data Imbalance

At the algorithm level, a modification is made to the algorithm to accommodate

the problem of an unbalanced dataset. Sukhanov, Merentitis, Debes, Hahn, and Zoubir

(2015) proposed an ensemble approach to solving the unbalanced dataset problem at

varying levels by using bootstrap-based SVM aggregation methods. Bagging is used to

reduce the variance, then sampling is performed only on the majority class data, and

minority samples are combined with the bagged samples to form balanced sets, that are

then used to train different SVMs. This method allows to discover more minority dataset

but does not improve the overall accuracy of the machine learning algorithm. On the other

hand for the data level approach, the dataset is re-balanced either by under-sampling,

oversampling, or random sampling before making it available to the classifier as input.

Japkowicz et al. (2000) examined the effect of imbalance in a dataset using data level

approaches. She proposed two methods, under-sampling and resampling, and a

recognition-based induction scheme. The researcher applied the concept of artificial ID

data to measure and construct concept complexity. For the resampling method, two

variants were explored: random and focused resampling. Random resampling consisted of

resampling the minority class at random until it has as many samples as the majority class
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while focused resampling consisted of resampling only those minority examples that

occurred on the boundary between the minority and majority classes. But random

under-sampling can result in loss of important information, and random over-sampling

can lead to the problem of overfitting. SMOTE algorithm is one of the most popular

oversampling methods. Chawla, Bowyer, Hall, and Kegelmeyer (2002) proposed SMOTE

(Synthetic Minority Over-sampling Technique). This approach generates synthetic

samples for the minority dataset. Each minority class data is taken, and a synthetic

example is introduced along the line segments joining the minority class sample to its

nearest neighbors, helping to augment the dataset. Douzas and Bacao (2017) presents Self

Organizing Map Oversampling (SOMO), a two- dimensional representation of the input

space and based on it, applies the SMOTE procedure to generate intra-cluster and

inter-cluster artificial data that preserve the underlying structure. However, SMOTE has

the disadvantage of generating noisy samples because of the unclear separation between

the majority class and the minority class clusters (Chen & He, 2009). To overcome this,

Sáez, Luengo, Stefanowski, and Herrera (2015) extends the SMOTE algorithm with an

Iterative Partitioning Filter (SMOTE-IPF model). A new attribute was added to the

original SMOTE model, an iterative ensemble-base noise filter that removes the noisy and

borderline examples in imbalanced datasets. Also, S. Hu, Liang, Ma, and He (2009)

presented the MSMOTE technique, in which the samples of the minority classes are

divided into 3 types: security samples, border samples, and latent noise, and they are dealt

with differently. This helps to identify more minority samples than the simple SMOTE

algorithm and can help generate samples similar to the border samples as well. But even

this algorithm had limitations because it could not consider the distribution of various

features. SMOTE works by introducing noise to the existing distribution, thereby

changing the actual distribution of the feature space.

Douzas and Bacao (2018) suggests that the data generated by SMOTE based

techniques is localized to some of the minority class samples, and we need techniques

which can generate data based on the data distribution. They conducted experiments with

71 datasets with varying imbalance ratios and concluded that Generative Adversarial

Networks (GANs) work better in generating minority class data.
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2.4 Generative Adversarial Networks

Generative Adversarial Networks (GANs) introduced a new way of data creation.

Since their development, they have been used in various applications. GANs are a

relatively newer class of neural networks developed by Goodfellow et al. (2014) that learn

from the given data and use that knowledge to generate something similar. A standard

Generative Adversarial Network consists of two neural networks, a generator, and a

discriminator, that are trying to win against each other. The generator is similar to a con

artist, who creates fake currency. The generator is trained to create new data from a

random noisy space, but this new data should be similar to some pre-defined input. The

discriminator acts like a detective who can identify fake currency from the real one. The

discriminator is trained to identify the difference between the pre-defined data and the

generated new data. Both the generator and the discriminator are trained simultaneously

such that the generator gets better at generating fake data whereas the detective learns to

identify the differences to the smallest details. The network is considered to be trained

when the generator’s fake data is so genuine that the detective is confused about its

credibility. This data can then be considered as training data for machine learning

algorithms.

GANs are used widely in image processing for generating new paintings. Zhu,

Park, Isola, and Efros (2017) used this technique for image to image translation. They

could change a photograph to look like a painting or generate a painting by Monet in Van

Gogh’s style. Ledig et al. (2017) used GANs to create a high resolution picture from a

lower resolution picture. Kuefler, Morton, Wheeler, and Kochenderfer (2017)

demonstrated the use of GAN for imitating the behavior of drivers on highways, which

can be used in the development of self-driving cars. In cybersecurity, Kim, Bu, and Cho

(2018) used the concept of generative networks for malware detection. They use a

combination of autoencoders and GANs for better learning. First, the autoencoder

reconstructs the given input, and in doing so learns important features about the data.

Using this knowledge, they train a GAN to generate various malware examples. Using

these generated examples, they can train a neural net to identify malware attacks that have
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not been seen yet. W. Hu and Tan (2017) developed GANs for generating new malware.

They considered existing malware detection models as black-box models, and they aimed

to generate malware that could attack these black-box models. They report almost zero

detection rate, meaning that the attack samples generated could not be detected by the

black-box models and hence validating their quality. Yin, Zhu, Liu, Fei, and Zhang (2018)

used GANs for detecting botnet attacks. They developed a neural network architecture to

identify if the data is a normal activity or botnet attack. They then expanded the dataset by

adding the newly generated samples, and the discriminator was used as a classifier to

identify normal samples, attack samples, and fake samples. By this method, they

improved the accuracy of the earlier architecture from 69.3% to 70-71%.

These above approaches show that GANs have a potential in the network security

area as well. This aims to use this technique to generate synthetic network attacks.

Malwares have a structured pattern within the codes in which they are hidden that the

GANs can learn and recreate. However, for network attack data, there is more variability.

Lin, Shi, and Xue (2018) created a model called IDSGAN where they used Wasserstein

GANs to generate fake network data from NSL-KDD dataset. This thesis follows the same

workflow as the research presented in the given paper and builds upon it. Lin et al. (2018)

generate data for DoS and U2R&R2L and compare the performance of various machine

learning models like support vector machines, naı̈ve-Bayes classifier, perceptron, logistic

regression, decision tree, random forest, and k-nearest neighbor. All of these models are

considered as black box models, meaning that the IDS can be made up of any of these

models. Doing this generalizes the results irrespective of the model used. The metric used

by them is called detection rate that shows how good the model is in identifying attacks

out of all the attacks. They suggest that the data generated is only as good as the black box

model used. If the detection rate of the model reduces after addition of GAN samples, it

means we have successfully created attack data. In this project, we take this idea and add

to it by saying if these attack samples are then used to retrain the model, the detection rate

of the model should in fact increase and give us a better intrusion detection model.
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2.5 Summary

This chapter provided a review of the literature in support of the research question

mentioned earlier. This section highlights the problem of unbalanced datasets and why

they are a problem for training machine learning algorithms. This section also tells us

about the applications of Generative Adversarial Networks (GANs) and how they have

been used to combat imbalance in other datasets. But they have not yet been used to

address the data imbalance for network data, hence this thesis generates attack data using

this technique.
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CHAPTER 3. METHODOLOGY

This chapter provides the detailed methods and algorithms used in this thesis.

First, information about the dataset used is given, then the workflow is explained, later the

models used are explained, and lastly, the metrics of evaluation are highlighted.

3.1 Dataset

The most common dataset used for intrusion detection is the KDD dataset, but

according to the work of Sommer and Paxson (2010), they are no longer applicable. This

is because it is a very old dataset, synthetically generated, and so widely studied that any

results from this dataset is not considered important. Hence, the dataset used in this study

is the UGR’16 dataset that is developed for the study of cyclostationarity based network

intrusion detection systems. This dataset is chosen because it does not consist of just the

simulated attack flows like previous cyber attack datasets, but also real traffic flow. The

data collection process ranges from March 2016 to August 2016, giving a wide range of

traffic with which to work. They have filtered this traffic through existing IDS and

identified attacks on the network in this time duration. Additionally, they have inserted

attacks into the network at pre-decided times during the last 6 weeks of the data collection

process. This helps with the labeling of the traffic flows. Since the attacks are simulated

for only 6 weeks out of 6 months, the imbalance ratio is significant. This imbalance makes

this database a suitable candidate for this study. The dataset is provided as CSV files with

the following fields:

• Timestamp of end of flow

• Duration of the flow

• Source IP address

• Destination IP address

• Source port
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• Destination port

• Protocol

• Flags

• Forwarding Status

• Type of Service

• Number of packets exchanged in the flow

• Number of bytes exchanged

• label of the flow - background flow / type of attack

Out of all the attacks conducted for the collection of this dataset, this study focuses

only on Denial of Service (DoS) attacks due to the widespread of DoS and its variants

(Whalen, 2018, Threat Landscape).

3.1.1 Data Extraction and Cleaning

The attacks were induced during 6 weeks of data collection, from July, week 5 to

August, week 5 of 2016, out of which DoS attacks were implemented in the first 3 weeks.

Out of these 3 weeks of DoS data, data only from the 1st week is considered for the

further process. This was done solely due to the sheer size of the data. The complete data

of July, week 5 is of 52G, which consists of 530 million entries of normal traffic flow and

7.5 million attack data. This 7.5 million includes approximately 3 million DoS, 2 million

ssh-scan, and 60,000 botnet attacks along with some filtered traffic due to blacklisted IPs

and spams (approximately 2 million) . This huge dataset was then cleaned by using a

regular expression, which filtered out inconsistencies and missing data. It also filtered out

other attack types, leaving us with only DoS traffic and normal traffic.
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Figure 3.1. Data composition

This file was too large with which to be able to work, so the data was scaled down

to a manageable size. This was done by randomly sampling a tenth of the attack data and

50 times the normal data. The final dataset used in all the methods ahead has a 1:50

imbalance ratio as seen in Figure 3.1. This was done to mimic the imbalance in the

original data.

3.1.2 Data Transformation

The attacks were executed in batches for creating the database. For a certain

number of days, a particular attack was induced in the network at a certain time. To make

sure that the black box machine learning models are not learning this schedule based

pattern to identify attacks, the time stamp information was not completely used.

Timestamp was reported in the format “2016-07-27 13:43:21.” The year, month and day

information was filtered out, and only the hour, month, and seconds information was

preserved for the next tasks.
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Next, the IP addresses which were stored as strings in the CSV file were converted

to IPs using the IP address library in Python. For further processing, they were converted

to their integer representations by using type casting. While collecting the traffic flows for

creating the dataset, the authors anonymized the IP addresses by changing the last octet.

Still, the IPs are within a fixed range and for a fixed number of machines, so it is possible

that the black box machine learning models learn to identify these IPs in a particular

pattern. To see the effect of IPs, the analysis has been done in two ways, once considering

the IPs and once without the IPs. The performance in both cases is measured.

The flags are stored as a string of 6 characters with every character signifying the

work of that traffic flow. For example, A means awaiting ACK, S means initial SYN. Each

of these 6 characters was split into 6 columns, and each of those was converted to their

ASCII values. For classification in machine learning, generally labels 0 and 1 are used

with 1 being the desired class of classification. Hence, the attack samples were labeled as

1 and normal samples as 0. All the other columns were kept as they are.

As a final step towards preparing the data for the models, a MinMaxScaler was

used to normalize the data to a smaller range (usually 0 to 1). As every column in the data

has a different range of data, computations get too space and time consuming for the

machine learning models. To reduce this burden, the data is represented in a standard

scale by changing the values from the original scale to 0 to 1 scale. This is done by the

following:

Xnew =
X−Xmin

Xmax−Xmin

This scaled data is then used for classification by neural network and support vector

machine. Decision tree is a scale-invariant algorithm, so unscaled data was provided for it.
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3.2 Experiment Design

A black box model is an algorithm, whose functioning is not known to the outer

system. In this case, the IDS can consist of any algorithm, thus being a black box to the

user. This study aims to generate data irrespective of the model used. After the data is

clean and prepared, the following steps are followed for every black box model:

1. Split the cleaned dataset into training and testing sets.

2. Train the black box model on the training set.

3. Note the metrics on the testing set.

4. Filter out only the attack information of the dataset and use it to train the WGAN.

5. Collect the data generated by the WGAN that is identified as an attack by the black

box model.

6. Retrain the black box model by adding the generated data with the previous training

data.

7. Note the metrics on the same test data as before and compare.

3.2.1 Performance Metrics

This study compares the performance of the black box model before and after

adding the new samples. To compare the performance, 2 metrics are used: False Negatives

(FN) and Detection Rate (DR). To measure both of them, a classification matrix is used.

This is a tabular representation of the actual number of samples in the training set and the

number of samples classified by the model in the 2 classes as seen in Table 3.1.

In the confusion matrix, TP and TN stand for True Positives and True Negatives

respectively that are the correctly classified samples. FN and FP stand for False Negatives

and False Positives, respectively and are misclassified instances.
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Table 3.1. Confusion Matrix
Predicted Background Predicted Attack

Actual Background TN FP
Actual Attack FN TP

False negatives are the attacks that are classified as normal traffic by an IDS. These

traffic flows are not blocked and they continue down their path in the network, causing the

harm they were intending. These flows can be fatal to the network and are best avoided.

Hence, we measure the number of false negatives before and after adding the generated

samples.

The second metric used is known as Detection Rate, which is a measure of how

good the model is at detecting the class of interest, in this case, the attacks. The detection

rate is calculated as a ratio of the number of attacks detected by the total number of attacks

present(Lin et al., 2018). Lower detection rates indicate that the model is failing at

identifying attacks.

With these definitions in mind, a good model is one with the lower number of false

negatives and a higher detection rate.

3.3 Models used

The final dataset was then trained on 3 different models that take as input the

unbalanced dataset and return the classified results. The metrics mentioned above are

measured. The attack part of this dataset is then given to the WGAN to generate more

attack examples, which are then combined with the original dataset. This combined

dataset is then retrained on the 3 machine learning models, and the metrics are measured

again. The architectures of all these models are explained in the next section.

3.3.1 Machine Learning models

Any machine learning algorithm is completed in 5 steps:
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• Normalization

• Train-test split

• Fitting the model on the training data

• Use the fitted model for prediction on testing data

• See the classification report

These steps are followed in this study as well. Min-Max normalization has been used for

all the algorithms except decision trees. The training testing split ratio used is 80:20. A

classification matrix is printed for every algorithm and detection rate is calculated.

3.3.1.1 Decision Tree

A decision tree classifier uses rules to classify the samples. Based on the samples

given, it identifies all the values a particular attribute can take and learns the best

identification of class from the attribute value. The algorithm learns which is the best

attribute on which to split the data by calculating 2 values known as entropy and

information gain. Entropy is a measure of the randomness in the subset of the data, and

information gain is a measure of the degree to which the split helps to classify the samples

of the dataset. Hence the best attribute on which to split will be the one with the low

entropy and the high information gain.

Figure 3.2 is an example of how a decision tree algorithm works. The algorithm

found X to be the best in splitting the data into the 2 classes, based on the condition.

Depending on which branch the next sample follows, the next node will be the next

criteria of the decision, so on and on. Continuing this process, a decision tree forms rules

like “IF X ≤ 10, then next action,” etc. Then for the testing set, each sample just follows

the formed rules and its class is decided.

In this study, the depth of the tree was restricted to 5 to make sure only the most

relevant features are used for classification. Tables 3.2 and 3.3 show the confusion

matrices for the original data, once when trained with the IP attributes, and once without.

Figure 3.3 highlights the rules that the classifier has learned after training on the original
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Figure 3.2. Decision Tree

data. The root node shows that source IP is the most important feature for this

classification. But in real world, one would not know all the IPs that can attack a system.

Hence, the classifier should not learn to identify attacks based on the IPs. This led us to

train the classifier without the IP information as well. Figure 3.4 shows us the new rules of

classification.

Table 3.2. Decision Tree Confusion Matrix for Original Data (with IP)
Predicted Background Predicted Attack

Actual Background 3134372 1
Actual Attack 0 63080

Table 3.3. Decision Tree Confusion Matrix for Original Data (without IP)
Predicted Background Predicted Attack

Actual Background 3126710 7663
Actual Attack 20 63060
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Figure 3.3. Decision Tree rules for original data (with IP)

Figure 3.4. Decision Tree rules for original data (without IP)
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3.3.1.2 Support Vector Machine

A Support Vector Machine is a model that separates the classes by finding a

boundary that can separate the two classes geometrically. In the perfect case, all samples

on one side of said boundary are of one class and all samples on the other side, are from a

different class. When the distribution of samples in the dataset is such they can be

separated by a linear equation, a linear kernel can be used for classification. For example,

if all samples of one class satisfy the constraint ax+by+ c > 0 and all samples of the

other class satisfy the constraint ax+by+ c < 0, then the plane ax+by+ c is a valid

candidate for being a separating hyperplane. The final choice is made by calculating that

plane that has the maximum margin between the plane and the data points.

However, a linear hyperplane can only be used when the data set is linearly

separable. When the distribution of data is such that there cannot be a straight line

separating the two classes, a linear kernel cannot give correct results, since there will

always be misclassified samples. In these cases, we can sometimes use non-linear kernels.

They transform data from lower dimensions to higher dimensions while separating the

samples in a way that their representation in the higher dimension can have a hyperplane

that will cut through the dataset properly. One such non-linear kernel is a Gaussian kernel,

also known as the Radial Basis Function (RBF). This study uses the RBF kernel for

classification. By design, a hard margin SVM algorithm (C=1.0) keeps finding the best

plane to separate the classes iteratively. If the samples of the dataset are very close to each

other and it’s impossible to classify them perfectly, the algorithm does not complete. To

avoid this, a soft margin classifier is implemented (C=0.8) to allow some room for

misclassifications but still being able to perform well as a classifier. Also, a hard limit is

set on the number of iterations (10,000) after which the classification at that stage is

reported. Another important point to note is that SVM does not perform well for datasets

with overlapping samples of both classes because that makes it difficult to find even one

way to separate the two distributions.

Tables 3.4 and 3.5 show the confusion matrices when SVM is trained on original

data, once with the IP attributes, and once without. High misclassification is seen,

especially when IP information is not considered for classification.
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Table 3.4. SVM Confusion Matrix for Original Data (with IP)
Predicted Background Predicted Attack

Actual Background 3133195 1178
Actual Attack 813 62267

Table 3.5. SVM Confusion Matrix for Original Data (without IP)
Predicted Background Predicted Attack

Actual Background 3095491 38882
Actual Attack 7526 55554

3.3.1.3 Neural Network

A Neural Network (NN) is a model inspired by the human brain where

information is communicated using units called neurons. In a neural network, the neurons

are arranged in layers with a minimum of 2 layers for input and output, and there can be 1

or more hidden layers. The model learns by passing information through the network in

batches, comparing its output with the expected output and trying to reduce the offset

between the two values by a process called backpropagation. For training this model,

multiple hyper-parameters have to be explored; this study varied the number of layers, the

number of nodes within the layers, the type of activation function, the learning rate, and

the number of epochs to build a high accuracy classifier.

Various architectures and hyperparameters were tested before finalizing on this

architecture. For all the analysis here, a 3 layer neural network was used: 19 nodes in the

input layer (17 for non-IP data), 64 nodes in the hidden layer, and 1 for the output layer.

ReLU activation function was used for the input and hidden layer while a sigmoid was

used for the output layer. These activation functions were chosen because the output of the

model was preferred to be a number between 0 and 1 since the labels in the dataset were 0

and 1. This architecture was chosen because it was the simplest one with good results;

architectures with more number of layers gave similar results. The model was trained for

20 epochs. Tables 3.6 and 3.7 show the confusion matrices when this neural network was

trained on the original data, once considering the IP attributes and once without them.

Once again, better results are seen with the IP information considered for classification.
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Table 3.6. Neural Network Confusion Matrix for Original Data (with IP)
Predicted Background Predicted Attack

Actual Background 3133958 415
Actual Attack 70 63010

Table 3.7. Neural Network Confusion Matrix for Original Data (without IP)
Predicted Background Predicted Attack

Actual Background 3132218 2155
Actual Attack 610 62470

3.3.2 Generative Adversarial Network models

Neural networks have been in use for a variety of applications. They have been in

use for understanding context in natural language, in identifying images, and in detecting

and responding to surrounding information, and we have seen these applications in our

daily activities. The Generative Adversarial Networks (GANs) were invented with the aim

of using neural networks to learn this information and construct something new

(Goodfellow et al., 2014). For examples, construct new images which are similar to

existing images, like new dog images, or creating new music. This technique has opened

up a whole new avenue for researchers to explore.

A standard GAN consists of two neural networks, a generator and a discriminator,

that are trying to win against each other. The generator is similar to a con artist who

creates fake currency. The generator is trained to create new data from a random noisy

space, but this new data should be similar to some pre-defined input. The discriminator

acts like a detective who can identify fake currency from the real one. The discriminator is

trained to identify the difference between the pre-defined data and the generated new data.

Both the generator and the discriminator are trained simultaneously such that the

generator gets better at generating fake data whereas the detective learns to identify the

differences to the smallest details. The network is considered to be trained when the

generator’s fake data is so genuine that the detective is confused about its credibility. This
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Figure 3.5. Pictorial Representation of GAN working

is done by considering the generator and discriminator as players of a min-max game with

value function as follows:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

In the above equation, G stands for the Generator network, D for Discriminator network, x

is actual data of which we wish to generate more, and z is the noise vector. To achieve this

value function, the binary cross entropy loss (BCE loss) of a neural network is used. It is

represented as -

∑ li, li =−wi(yilog(vi)+(1− yi)log(1− vi))

In this, wi is the weight matrix of the neural network, y represents the labels of the data,

and v are the inputs. Both the generator and the discriminator contribute to this loss

function. If we give label 1 for real data and label 0 for generated data to the

discriminator, it learns in a way that it wants to generate data with label 1. While training,

the discriminator loss comes to a constant of 0.5, which means that it is no longer able to

identify the data as real or fake. The generated data at this stage could be considered as

good data.
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Figure 3.6. GAN generator and discriminator loss plot

However, training GANs is extremely unstable. It is very common to see one

model overpowering the other. In either case, the whole model learns nothing, and it is

very difficult to diagnose this situation. As can be seen from Figure 3.6, the discriminator

is easily identifying everything as fake, completely overpowering the generator. Hence,

the generator learns nothing, and its loss value remains constant or increases instead of

converging. A solution to this is suggested in the form of Wasserstein GAN (Arjovsky,

Chintala, & Bottou, 2017).

3.3.3 Wasserstein Generative Adversarial Network

The basic GANs try to learn the probability distribution of data from the given set

of data points. This is based on the distance metric Kullback-Leibler (KL) divergence.

Consider the real distribution (Pr) is what we want to learn and parametric

distribution (pθ ) is like a man in disguise, trying to adjust its parameters so it looks like

the real distribution. KL divergence attempts to reduce the closeness between the real and

the parametric distributions. In other words, it means the closer the generated data is to the

real data, the lower would be the KL divergence.

KL(Pr,Pg) =
∫

log(
Pr(x)
Pg(x)

)Pr(x)dµ(x)
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The problem with KL divergence arises due to the log terms in the equation. If the

distribution of generated data is far off from real data, the log term of the real samples

become ∞, making log 0, which is not defined. To avoid this problem, an advised solution

is to add noise to the data. However, adding noise for multiple features is computationally

heavy and pointless. Also, adding noise during training produces noisy samples. So,

GANs leverage another property to deal with this issue, i.e, there is a low-level

representation for every high-level representation.

Hence Arjovsky et al. (2017) suggest to learn the parameters such that generated

data can belong to the distribution of data in higher dimensions. In other words, learn the

mapping in order to bring the distributions close in original space. This is based on the

property of continuity distribution that if θ1 and θ2 are close, the distributions of θ1 and θ2

should not vary drastically. To measure the distance in the 2 distributions, another metric

called Earth Movers distance is used.

W (Pr,Pg) = inf
γ∈∏(Pr,Pg)

E(x,y)∼γ [||x− y||]

In the above equation, also known as Wasserstein Distance, γ(x,y) indicates how

much mass must be transported from x to y in order to transform the distributions Pr into

Pg. The discriminator in the GAN network is replaced with a critic who aims to minimize

this Wasserstein distance. In training the models of WGANs, the critic needs to be trained

more than the generator. This is done because it is important for the critic to be good in its

job before generating data. Also, for WGANs, the weights of the network are clipped. We

constrain the weights to be in the range -0.01 to 0.01. The general architecture is adapted

from Lin et al. (2018), various generator and critic architectures were tried before

finalizing this. This architecture was chosen because it trained the critic to output distance

as 0 (seen in Figure 3.7) as this means that the critic is successfully trained. Other

architectures had critic outputs oscillating around 0.

The hyperparameters used for this training are:

• Generator Architecture - Linear(100,128,128,19)

• Critic Architecture - Linear(19,128,128,1)
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• Actiavtion Function - ReLU

• Optimization Function - RMSProp

• Epochs - 500000 for generator

• Learning rate - 0.00005

Figure 3.7. WGAN critic and generator loss plot

3.4 Hypotheses

By using the Wasserstein GAN, this study aims to generate more attack data that

helps to balance the dataset for better attack identification. GANs generate data that are in

the same distribution as the input data. Hence, we use a two sample test to check whether

the generated samples come from the same distribution as the original samples.

Lopez-Paz and Oquab (2016) suggest the use of a binary classifier for conducting

a two sample test for GANs. They consider the original dataset space to be P and the

generated dataset to be Q. Based on this, the null and alternative hypotheses are as follows:

H0: The generated samples come from the same distribution as the original

attack samples.

P = Q



31

Hα : The generated samples do not come from the same distribution as the

original attack samples.

P 6= Q

To test this hypothesis, a neural network is used as a classifier with 20 hidden layer

neurons (with ReLU activation) and 1 output layer neuron (with sigmoid activation). This

network is trained for 100 epochs. A sample set of 10,000 is randomly chosen from the

original attack data and the generated attack data, respectively. The original attack

samples are labeled 0, and the generated ones are labeled as 1. The 2 sample sets are

combined, shuffled, and then split into training and testing sets. The classifier is then

trained on the training set, and accuracy is measured for the testing set.

If the samples come from the same distribution, the classifier should ideally not be

able to classify them, thereby resulting in a low test accuracy. If the testing accuracy is

represented by t, according to the work done by the authors (Lopez-Paz & Oquab, 2016),

the null and alternative hypotheses can be rewritten as the following:

H0 : t = 0.5

Hα : t = 0.5+δ

3.5 Summary

This chapter described the experiment design followed in this study. It also

explained the models used in this study, the metrics measured, and the hypothesis that will

be tested.
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CHAPTER 4. EXPERIMENT RESULTS AND CONCLUSION

This chapter provides the results of the experiments. The first section details the

result when 19 features were used for the dataset while the second section details the

results for 17 features (without IPs). Table 4.1 summarizes these results and shows the

percentage difference in the metrics, number of false negatives, and detection rates with

values measured on the original dataset and on the balanced dataset.

Table 4.1. Change in the model metrics by adding the generated samples.
Model With IP Without IP

Black-box Model 4FN (%) 4DR (%) 4FN (%) 4DR (%)
Decision Tree 0 0 -45 0.013

SVM -19.31 0.252 145.26 -19.68
Neural Network -72.86 0.081 -98.03 0.96

4.1 Results with IP

First, only the year, month and day information were removed, and all models

were trained on the remaining 19 features. Figure 4.1 shows the difference in the number

of False Negatives, and Figure 4.2 shows the difference in Detection Rate.

Table 4.2. Decision Tree Confusion Matrix for Combined Data (with IP)
Predicted Background Predicted Attack

Actual Background 3133911 462
Actual Attack 0 63080

Table 4.3. SVM Confusion Matrix for Combined Data (with IP)
Predicted Background Predicted Attack

Actual Background 3133123 1250
Actual Attack 656 62424
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Figure 4.1. Difference in the number of False Negatives (with IP)

Table 4.4. Neural Network Confusion Matrix for Combined Data (with IP)
Predicted Background Predicted Attack

Actual Background 3133379 994
Actual Attack 19 63061

Figure 4.2. Difference in the detection rate of models (with IP)
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4.1.1 Result Analysis

For Support Vector Machines (SVMs), there is a reduction of 19.3% in the number

of false negatives, while there is a reduction of 72.86% for the neural network. In both

these models, there was a notable increase in the detection rate of the attacks (0.252% and

0.081%, respectively), but the percentage of increase is very small. This small increase

could be because of a pretty high detection rate( ≥ 90%) with the original data itself. In

spite of reduction in the number of false negatives, a large increase is also seen in the

number of false positives. This is not good as this misclassification increases time spent

by experts in analysing the traffic, but it is not as harmful as false negatives.

Decision trees have been the most successful in detecting the attacks with

absolutely no misclassifications in the original data itself. The test with generated data

was still conducted to see if there is an increase in the number of false negatives due to

potential over-fitting. But even after the addition of new samples, the model still had a

100% attack detection rate.

4.2 Results without IP

The same set of experiments was also done for the dataset by removing the IP

information. This resulted in a different set of observations. Figure 4.3 shows the

difference in the number of False Negatives, and Figure 4.4 shows the difference in

Detection Rate.

Table 4.5. Decision Tree Confusion Matrix for Combined Data (without IP)
Predicted Background Predicted Attack

Actual Background 3124166 10207
Actual Attack 11 63069
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Figure 4.3. Difference in the number of False Negatives (without IP)

Table 4.6. SVM Confusion Matrix for Combined Data (with IP)
Predicted Background Predicted Attack

Actual Background 2511312 623061
Actual Attack 18458 44622

Table 4.7. Neural Network Confusion Matrix for Combined Data (with IP)
Predicted Background Predicted Attack

Actual Background 3073080 61293
Actual Attack 12 63068

4.2.1 Result Analysis

The first thing to observe here is that it is difficult for Neural Network and Support

Vector Machine to identify attacks in this scenario. This means that they were learning

IP-based information to identify attacks, which could mislead the learning. The decision

tree also suffered, but the impact was not as much. Its detection rate with the unbalanced

data is still almost 100%.
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Figure 4.4. Difference in the detection rate of models (without IP)

For Decision Tree and Neural Network, the earlier trend still follows. There is a

reduction in the number of False Negatives as well as a small increase in the Detection

Rate. However, the Support Vector Machine’s performance worsened greatly. This could

have happened because the new data samples could have overlapped with the normal

samples, making it difficult for the algorithm to find a proper separating boundary.

4.3 Evaluation of the results

The above numbers tell us that there certainly is a reduction in the number of False

Negatives. To check if the generated data is similar to the attack data in the original

dataset, a two sample test using a binary classifier was used.

H0 : t = 0.5

Hα : t = 0.5+δ

t̂ = 0.9165

As t̂ > 0.5, we reject the null.
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Thus we conclude that the attacks generated by the Wasserstein GANs are not

similar to the original attacks as expected. To understand these results, a Principal

Component Analysis (PCA) plot was generated for the attack datasets. The original attack

data was combined with the generated attack data. The PCA algorithm identified the top

two eigen vectors to classify these two attack sets. Using these vectors as axes, Figure 4.5

was generated. Here, the green dots represents the attacks created by GANs, and the

yellow dots are the original attacks. There are more green points than yellow because 12

million attacks were generated from the original 300 thousand attacks. Figure 4.5 shows

Figure 4.5. PCA plot of original attacks and generated attacks

the distribution of the two attack datasets. The yellow dots are distinguishable from the

green ones, implying that they can be classified.
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4.4 Summary

In this chapter,the results of all experiments are compared. Figures 4.1, 4.2, 4.3,

and 4.4 show the numerical differences in the metric values for all the tests, and Table 4.1

summarizes these changes. Also, this section helps reach the conclusion that our

hypothesis is not satisfied and the generated attacks are not similar to the original attacks.
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CHAPTER 5. DISCUSSION AND FUTURE PLAN

5.1 Discussion

The earlier chapter concluded that the attacks generated were not from the same

distribution as the attacks in the original distribution. Figure 4.5 shows that the attacks

generated are in the area surrounding the original attacks, but they are still easily

distinguishable. There could be a few reasons why this could be happening.

• The generated data was only checked to be similar to the attack data, without given

any information about the normal traffic flow. The plot in Figure 5.1 shows the

distribution of attack data and normal data. If this information is provided to the

GAN, it might perform differently.

Figure 5.1. PCA plot of data distribution in the original file
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• To ease computation, initially the data was sampled in 1:50 ratio of attack to normal

traffic. This could have changed the actual distribution of the data, resulting in

learning the wrong distribution. Different data structures and more hardware can be

used to accommodate the complete dataset as is.

• There is no fixed metric to measure the quality of GAN generated data. Most of the

research in this field is done on images, giving us metrics like Inception Score and

Fréchet Inception Distance. The problem with these metrics is that they work well

with images trained on ImageNet, but beyond that, these methods fail to accurately

test other images (Barratt & Sharma, 2018). Thus looking into these methods for

non-image data is not reliable. The method used in this study is one of the newer

attempts to generalize GAN testing methodologies. Even in the original paper by

Lopez-Paz and Oquab (2016), they tested their method against image dataset and it

failed. Only when they changed their binary classifier to a ResNet (image

identification model) did they get desired results. All these works focus on the

quality assessment in human terms, by trying to assess the quality of the generated

image as a human critic would judge it. But in the case of attack data, there is no

human perception to it. So it does not make sense to use those methods to judge this

data. Borji (2019) studied 29 different GAN evaluation metrics, which can be

further studied and a better technique can be found for this application.

5.2 Future Work

• Other GAN models such as Conditional GANs can be used to generate attack data

with the context of normal data.

• Parallel and scalable ML packages, such as dask, can be used to process the whole

dataset and not just samples.
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• Different hypothesis testing methodology that is more suited for this dataset can be

applied. The comparative study by Barratt and Sharma (2018) can help to choose

the appropriate method.

• In the UGR’16 dataset, DoS attack is majorly collected. Because of the

comparatively higher volume of data, its original detection rate is high. The same

study can be done with other attack types, which have a lower detection rate to

begin with.

• The sampled dataset in this study had a ratio of 1:50 for attack data and normal data.

Even with this imbalance, the classification accuracy was high. So, generating data

to make this ratio 1:1 isn’t really necessary. Different numbers of data can be

generated and the performance of the IDS can be compared for these different

batches. This can help identify the trend in classification accuracy and number of

generated samples.

5.3 Summary

This chapter explains how the research conducted in this thesis can be expanded

further. The future work section highlights the research fronts in this topic.
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APPENDIX A. CODES

All the codes are mentioned in this appendix. First the codes for the machine

learning models are written, then the code for the WGAN.

A.1 Data Cleaning

This shows the script used to clean the dataset as mentioned in 3.1.1.
1 import argparse
2 import platform , logging , os
3 import re
4 import csv
5 import ipaddress
6

7 REG_EXPR = ’^2016 -0[78] -\d{2} \d{2}:\d{2}:\d{2},
8 \d+\.\d+,\d+\.\d+\.\d+\.\d+,\d+\.\d+\.\d+\.\d+,
9 \d+,\d+,[A-Z]+,[A-Z\.]{6} ,\d+,\d+,\d+,\d+,.+[sd]$’

10

11 def convert(line):
12 outrow = []
13 row = line.split(’,’)
14 #print("type of row:",type(row),row)
15 d, t = row [0]. split(’ ’)
16 # split the date: 2016 -08 -01 into 3 columns
17 for val in d.split(’-’):
18 outrow.append(val)
19

20 # split the time: 07:59:46 into 3 columns
21 for val in t.split(’:’):
22 outrow.append(val)
23 outrow.append(row [1])
24

25 # convert IP adresses to integer value
26 outrow.append(int(ipaddress.ip_address(row [2])))
27 outrow.append(int(ipaddress.ip_address(row [3])))
28 outrow.append(row [4])
29 outrow.append(row [5])
30

31 # convert: TCP -> 1 ; UDP -> 2 ; SCTP -> 3 & rest -> 4
32 if row [6] == ’TCP’:
33 outrow.append (1)
34 elif row [6] == ’UDP’:
35 outrow.append (2)
36 elif row [6] == ’SCTP’:
37 outrow.append (3)
38 else:
39 outrow.append (4)
40

41 # convert Flags to ASCII value & split it into different columns
42 for ch in row [7]:
43 outrow.append(ord(ch))
44
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45 outrow.append(row [8])
46 outrow.append(row [9])
47 outrow.append(row [10])
48 outrow.append(row [11])
49

50 # convert dos -> 0 & rest -> 1
51 if row [12] == ’background\n’:
52 outrow.append (0)
53 elif row [12] == ’dos\n’:
54 outrow.append (1)
55 else:
56 print ("type -",row [12])
57 return 0
58 return outrow
59

60

61 def main(infile , outfile):
62

63 if outfile == "":
64 outfile = ’/dos1.csv’
65 if infile == "":
66 infile = ’data/original/file1.csv’
67 with open(infile) as f:
68 with open(outfile , ’w’,newline=’’) as csvfile:
69 writer = csv.writer(csvfile)
70 r = re.compile(REG_EXPR)
71

72 line = f.readline ()
73 while line:
74 if r.match(line):
75 if (convert(line) == 0):
76 pass
77 else:
78 writer.writerow(convert(line))
79 else:
80 pass
81

82 line = f.readline ()
83

84 if __name__ == "__main__":

Listing A.1: Data cleaning script

A.2 Decision Tree

86 import pandas as pd
87 import numpy as np
88 np.random.seed (5)
89 from sklearn.tree import DecisionTreeClassifier
90 from sklearn.metrics import confusion_matrix
91

92 #read data
93 mydt = pd.read_csv("original_data.csv")
94 print("original data -",mydt.shape)
95 columns =[’year’,’month’,’day’,’hour’,’minute ’,’second ’,’duration ’,
96 ’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,’flag1’,
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97 ’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,’stos’,’pkt’,’byt’]
98

99 #preparation
100 X = mydt.iloc[:, 3:22]. values
101 y = mydt.iloc[:, 22]. values
102 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size
103 = 0.2, random_state =5)
104 print("for normal -",sum(y_train ==0))
105 print("for attack -",sum(y_train ==1))
106

107 #Model
108 clf_entropy = DecisionTreeClassifier(criterion = "entropy",
109 random_state = 5,max_depth = 5, min_samples_leaf = 5)
110

111 print("Results using Entropy")
112 clf_entropy.fit(X_train ,y_train)
113 y_pred_entropy = clf_entropy.predict(X_test)
114 print("Confusion matrix \n",confusion_matrix(y_test ,y_pred_entropy))

Listing A.2: Decision Tree classifier

A.3 Support Vector Machine

117 import pandas as pd
118 import numpy as np
119 np.random.seed (5)
120 from sklearn.preprocessing import MinMaxScaler
121 from sklearn.svm import SVC
122 from sklearn.metrics import confusion_matrix
123 from sklearn.model_selection import train_test_split
124

125 #data
126 mydt = pd.read_csv("original_data.csv")
127 columns =[’year’,’month’,’day’,’hour’,’minute ’,’second ’,’duration ’,
128 ’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,
129 ’flag1’,’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,
130 ’stos’,’pkt’,’byt’]
131

132 # convert the columns value of the dataset as floats
133 float_array = mydt.values.astype(float)
134

135 # create a min max processing object
136 min_max_scaler = MinMaxScaler ()
137 scaled_array = min_max_scaler.fit_transform(float_array)
138

139 # convert the scaled array to dataframe
140 mydt_normalized = pd.DataFrame(scaled_array)
141

142 # Create matrix of features and matrix of target variable
143 X = mydt_normalized.iloc[:, 3:22]. values
144 y = mydt_normalized.iloc[:, 22]. values
145

146 X_train , X_test , y_train , y_test = train_test_split(X, y,
147 test_size = 0.2, random_state =5)
148

149 #model
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150 svclassifier=SVC(C=0.8, kernel=’rbf’,max_iter =10000 , random_state =0)
151 svclassifier.fit(X_train ,y_train)
152 y_pred = svclassifier.predict(X_test)
153

154 print ("For SVM - ")
155 print (confusion_matrix(y_test ,y_pred))

Listing A.3: Support Vector Machine

A.4 Neural Network

157 print(hash("keras"))
158 import numpy as np
159 np.random.seed (2)
160 import tensorflow as tf
161 tf.set_random_seed (2)
162 from sklearn.preprocessing import StandardScaler
163 from sklearn.metrics import confusion_matrix
164 import pandas as pd
165 import keras
166 from keras.models import Sequential
167 from keras.layers import Dense
168 from keras import optimizers
169 import matplotlib
170 matplotlib.use(’agg’)
171 import matplotlib.pyplot as plt
172 from keras.models import model_from_json
173

174 #data
175 mydt = pd.read_csv("original_data.csv")
176 columns =[’year’,’month’,’day’,’hour’,’minute ’,’second ’,’duration ’,
177 ’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,
178 ’flag1’,’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,
179 ’stos’,’pkt’,’byt’]
180

181 # convert the columns value of the dataset as floats
182 float_array = mydt.values.astype(float)
183

184 # create a min max processing object
185 min_max_scaler = MinMaxScaler ()
186 scaled_array = min_max_scaler.fit_transform(float_array)
187

188 # convert the scaled array to dataframe
189 mydt_normalized = pd.DataFrame(scaled_array)
190

191 # Create matrix of features and matrix of target variable
192 X = mydt_normalized.iloc[:, 3:22]. values
193 y = mydt_normalized.iloc[:, 22]. values
194

195 X_train , X_test , y_train , y_test = train_test_split(X, y,
196 test_size = 0.2, random_state =5)
197

198 #Initializing Neural Network
199 classifier = Sequential ()
200 # Adding the input layer and the first hidden layer
201 classifier.add(Dense(output_dim = 64, init = ’uniform ’,
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202 activation = ’relu’, input_dim = 19))
203 # Adding the second hidden layer
204 classifier.add(Dense(output_dim = 1, init = ’uniform ’,
205 activation = ’sigmoid ’))
206 # Compiling Neural Network
207 adm = optimizers.Adam(lr =0.001)
208 old_model = classifier.compile(optimizer = adm ,
209 loss = ’binary_crossentropy ’, metrics = [’accuracy ’])
210 # Fit the model
211 history = classifier.fit(X_train , y_train ,shuffle=False ,
212 epochs =20, batch_size =10000 , validation_data =(X_val ,y_val))
213

214 #testing
215 y_pred = classifier.predict(X_test)
216 y_pred = (y_pred > 0.5)
217 cm = confusion_matrix(y_test , y_pred)
218 print ("confusion_matrix for test data\n",cm)
219

220 #save model
221 model_json = classifier.to_json ()
222 with open("IP_model.json","w") as json_file:
223 json_file.write(model_json)
224 classifier.save_weights("IP_model.h5")

Listing A.4: Neural Network

A.5 Wasserstein GAN

227 import torch
228 import torch.nn
229 import torch.nn.functional as nn
230 import torch.autograd as autograd
231 import torch.optim as optim
232 import numpy as np
233 import matplotlib
234 matplotlib.use(’agg’)
235 import matplotlib.pyplot as plt
236 import matplotlib.gridspec as gridspec
237 import os
238 from torch.autograd import Variable
239 import pandas as pd
240 from sklearn.preprocessing import MinMaxScaler
241 import torch.utils.data as Data
242

243 #data
244 df = pd.read_csv("original_data.csv")
245

246 #hyperparameters
247 mb_size = 64
248 z_dim = 100
249 X_dim = 19
250 y_dim = 1
251 h_dim = 128
252 cnt = 0
253 lr = 0.00005
254
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255 #data preparation
256 criteria0 = df[’label ’] == 1 #just attack data
257 data0 = df[criteria0]
258 float_array = data0.values.astype(float)
259 min_max_scaler = MinMaxScaler ()
260 scaled_array = min_max_scaler.fit_transform(float_array)
261 dt = pd.DataFrame(scaled_array)
262 dt.columns =[’year’,’month’,’day’,’hour’,’minute ’,’second ’,
263 ’duration ’,’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,
264 ’protocol ’,’flag1’,’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,
265 ’fwd’,’stos’,’pkt’,’byt’,’label’]
266 dt=dt.drop(dt.index [0:132])
267 print(dt[’label ’]. value_counts ())
268

269 train_target = torch.tensor(dt[’label’]. values.astype(np.float32))
270 train = torch.tensor(dt.drop([’year’,’month ’,’day’,’label ’],
271 axis = 1).values.astype(np.float32))
272 train_tensor = Data.TensorDataset(train , train_target)
273 train_loader = torch.utils.data.DataLoader(dataset =
274 train_tensor , batch_size = mb_size , shuffle = True)
275

276 #define models
277 G = torch.nn.Sequential(
278 torch.nn.Linear(z_dim , h_dim),
279 torch.nn.ReLU(),
280 torch.nn.Linear(h_dim , h_dim),
281 torch.nn.ReLU(),
282 torch.nn.Linear(h_dim , X_dim),
283 torch.nn.Sigmoid ()
284 )
285

286 D = torch.nn.Sequential(
287 torch.nn.Linear(X_dim , h_dim),
288 torch.nn.ReLU(),
289 torch.nn.Linear(h_dim , h_dim),
290 torch.nn.ReLU(),
291 torch.nn.Linear(h_dim , 1),
292 )
293 G.cuda()
294 D.cuda()
295

296 def reset_grad ():
297 G.zero_grad ()
298 D.zero_grad ()
299

300 #initialize optimizers and dataholders
301 G_solver = optim.RMSprop(G.parameters (), lr=lr)
302 D_solver = optim.RMSprop(D.parameters (), lr=lr)
303 G_losses = []
304 D_losses = []
305 data_iter = iter(train_loader)
306

307 #training
308 d_iter = 2
309 for it in range (500000):
310 if it <100:
311 d_iter = 50
312 else:
313 d_iter = 2
314 for _ in range(d_iter):



52

315 # Sample data
316 z = Variable(torch.randn(mb_size , z_dim)).cuda()
317 try:
318 X, _ = data_iter.next()
319 except StopIteration:
320 data_iter = iter(train_loader)
321 X, _ = data_iter.next()
322 #X = Variable(torch.from_numpy(X))
323 X = X.cuda()
324 # Dicriminator forward -loss -backward -update
325 G_sample = G(z)
326 D_real = D(X)
327 D_fake = D(G_sample)
328

329 D_loss = -(torch.mean(D_real) - torch.mean(D_fake))
330

331 D_loss.backward ()
332 D_solver.step()
333

334 # Weight clipping
335 for p in D.parameters ():
336 p.data.clamp_ (-0.01, 0.01)
337

338 D_losses.append(D_loss.data.cpu().numpy ())
339

340 # Housekeeping - reset gradient
341 reset_grad ()
342

343 # Generator forward -loss -backward -update
344 #X = Variable(torch.from_numpy(X))
345 z = Variable(torch.randn(mb_size , z_dim)).cuda()
346

347 G_sample = G(z)
348 D_fake = D(G_sample)
349

350 G_loss = -torch.mean(D_fake)
351

352 G_loss.backward ()
353 G_solver.step()
354

355 # Housekeeping - reset gradient
356 reset_grad ()
357

358 G_losses.append(G_loss.data.cpu().numpy ())
359

360 # Print and plot every now and then
361 if it % 1000 == 0:
362 print(’Iter -{}; D_loss: {}; G_loss: {}’
363 .format(it , D_loss.data.cpu().numpy (),
364 G_loss.data.cpu().numpy()))
365

366 #plot losses
367 plt.figure(figsize =(10 ,5))
368 plt.title("Generator and Discriminator Loss During Training")
369 plt.plot(G_losses ,label="G")
370 plt.plot(D_losses ,label="D")
371 plt.xlabel("iterations")
372 plt.ylabel("Loss")
373 plt.legend ()
374 plt.savefig(’losses.png’)
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375

376 #save model
377 torch.save({’modelG_state_dict ’: G.state_dict (),
378 ’modelD_state_dict ’: D.state_dict (),
379 ’optimizerG_state_dict ’: G_solver.state_dict (),
380 ’optimizerD_state_dict ’: D_solver.state_dict (),
381 ’G_loss ’:G_losses ,
382 ’D_loss ’:D_losses
383 }, "wgan_3layer_model.pth")

Listing A.5: Wasserstein GAN

A.6 Data generation

385 import numpy as np
386 np.random.seed (2)
387 import tensorflow as tf
388 tf.set_random_seed (2)
389 import torch
390 import torch.nn
391 import torch.nn.functional as nn
392 import torch.autograd as autograd
393 import torch.optim as optim
394 import matplotlib
395 matplotlib.use(’agg’)
396 import matplotlib.pyplot as plt
397 import matplotlib.gridspec as gridspec
398 import os
399 from torch.autograd import Variable
400 import pandas as pd
401 from sklearn.preprocessing import MinMaxScaler
402 from sklearn.metrics import confusion_matrix
403 import torch.utils.data as Data
404 import keras
405 from keras.models import Sequential
406 from keras.layers import Dense
407 from keras import optimizers
408 from keras.models import model_from_json
409

410 mb_size = 64
411 z_dim = 100
412 X_dim = 19
413 y_dim = 1
414 h_dim = 128
415 print (X_dim ,y_dim)
416

417 #this loaded model will vary for each black box model.
418 #Only NN used here.
419 json_file = open("model.json","r")
420 loaded_model_json = json_file.read()
421 json_file.close ()
422 loaded_model = model_from_json(loaded_model_json)
423 loaded_model.load_weights("model.h5")
424

425 G = torch.nn.Sequential(
426 torch.nn.Linear(z_dim , h_dim),
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427 torch.nn.ReLU(),
428 torch.nn.Linear(h_dim , h_dim),
429 torch.nn.ReLU(),
430 torch.nn.Linear(h_dim , X_dim),
431 torch.nn.Sigmoid ()
432 )
433

434 checkpoint = torch.load("wgan_3layer_model.pth")
435 G.load_state_dict(checkpoint[’modelG_state_dict ’])
436

437 G.eval()
438 G.cuda()
439

440 final_Data = pd.DataFrame(columns = [’hour’,’minute ’,’second ’,
441 ’duration ’,’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,
442 ’protocol ’,’flag1’,’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,
443 ’fwd’,’stos’,’pkt’,’byt’,’label’])
444 print("empty df",final_Data)
445 it =0
446

447 while(final_Data.shape [0] <12000000):
448 it+=1
449 z = Variable(torch.randn (3000 , z_dim)).cuda()
450 with torch.no_grad ():
451 data = G(z)
452 data = data.cpu().numpy()
453 fake = pd.DataFrame(data)
454

455 newy = np.ones((fake.shape [0],))
456 #this is the model which changes
457 new_pred = loaded_model.predict(fake)
458 new_pred = (new_pred > 0.5)
459 cm = confusion_matrix(newy ,new_pred)
460 #print (" confusion_matrix for new data with deeper model\n",cm)
461

462 combined_data = np.concatenate ((fake ,new_pred),axis =1)
463 combined_data = pd.DataFrame(combined_data)
464 combined_data.columns =[’hour’,’minute ’,’second ’,’duration ’,
465 ’source_ip ’,’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,
466 ’flag1’,’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,
467 ’stos’,’pkt’,’byt’,’label’]
468 criteria1 = combined_data[’label ’] == 1 #just attack data
469 data1 = combined_data[criteria1]
470 #print ("only attack data - ",data1.shape)
471 final_Data = final_Data.append(data1 , ignore_index = True)
472 print("final data for iteration ",it, "- ",final_Data.shape)
473

474 final_Data.to_csv("generated_data.csv",index=False ,header=False)

Listing A.6: Generating data from saved GAN model

A.7 Combining datasets

476 newdt = np.genfromtxt("generated_data.csv",delimiter=’,’)
477 new_data = newdt[:, 0:19]
478 newy = newdt[:, 19]
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479 combined_X = np.concatenate ((X_train ,new_data),axis =0)
480 combined_y = np.concatenate ((y_train ,newy),axis =0)

Listing A.7: combining original and generated datasets

A.8 Hypothesis Testing

481

482 import pandas as pd
483 import numpy as np
484 import keras
485 from keras.models import Sequential
486 from keras.layers import Dense
487 from sklearn.model_selection import train_test_split
488 from keras import optimizers
489 from sklearn.preprocessing import MinMaxScaler
490 from sklearn.metrics import confusion_matrix
491 import matplotlib
492 matplotlib.use(’agg’)
493 import matplotlib.pyplot as plt
494

495

496 df1 = pd.read_csv("unbalanced_dos.csv")
497 df2 = pd.read_csv("original_data.csv")
498 df3 = pd.read_csv("generated_Data.csv")
499 columns =[’hour’,’minute ’,’second ’,’duration ’,’source_ip ’,
500 ’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,’flag1’,
501 ’flag2’,’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,’stos’,’pkt’,’byt’]
502 new_columns =[’hour’,’minute ’,’second ’,’duration ’,’source_ip ’,
503 ’dest_ip ’,’source_port ’,’dest_port ’,’protocol ’,’flag1’,’flag2’,
504 ’flag3’,’flag4’,’flag5’,’flag6’,’fwd’,’stos’,’pkt’,’byt’,’label’]
505

506 df1 = df1.drop([’year’,’month’,’day’],axis =1)
507 df2 = df2.drop([’year’,’month’,’day’,’label’],axis =1)
508

509 criteria = df1[’label ’] == 1
510 data1 = df1[criteria]
511 data1 = data1.drop([’label ’],axis =1)
512 df3 = df3.iloc[:, 0:19]
513 print("df1 - ",df1.shape)
514 print("df2 - ",df2.shape)
515 print("df3 - ",df3.shape)
516

517 frac = 10000/ data1.shape [0]
518 data_original = data1.sample(frac=frac)
519 print("df1 sampled - ",data_original.shape)
520

521 df_all = data_original.merge(df2.drop_duplicates (),
522 on=columns , how=’left’, indicator = True)
523 print("merged - ",df_all.shape)
524

525 data_original = df_all[df_all[’_merge ’] == ’left_only ’]
526 data_original = data_original.drop([’_merge ’],axis = 1)
527 print("final sampled data of original= ",data_original.shape)
528

529 float_array = data_original.values.astype(float)
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530 min_max_scaler = MinMaxScaler ()
531 scaled_array = min_max_scaler.fit_transform(float_array)
532 data_original = pd.DataFrame(scaled_array)
533 data_original.columns=columns
534 data_original[’label ’] =pd.DataFrame
535 (np.zeros (( data_original.shape [0],)),dtype=int)
536

537 print("label values: ", data_original[’label ’]. value_counts ())
538

539 frac = data_original.shape [0]/ df3.shape [0]
540 data_fake = df3.sample(frac=frac)
541 print("final sampled data of generated= ",data_fake.shape)
542 zer = pd.DataFrame(np.zeros(( data_fake.shape [0],)),dtype=int)
543 data_fake.columns = columns
544 data_fake[’label ’] = 1
545

546 final_Data = pd.concat ([ data_original ,data_fake],
547 ignore_index = True ,axis =0)
548 final_Data = final_Data.sample(frac =1.0)
549

550 print("label values: ", final_Data[’label ’]. value_counts ())
551

552 X = final_Data.iloc[:, 0:19]. values
553 y = final_Data.iloc[:, 19]. values
554 X_train , X_test , y_train , y_test = train_test_split(X, y,
555 test_size = 0.2, random_state =5)
556

557 print("class 0 -",sum(y_train ==0))
558 print("class 1 -",sum(y_train ==1))
559

560 model = Sequential ()
561 model.add(Dense(output_dim = 20, init = ’uniform ’,
562 activation = ’relu’, input_dim = 19))
563 model.add(Dense(output_dim = 1, init = ’uniform ’,
564 activation = ’sigmoid ’))
565

566 adm = optimizers.Adam()
567 new_model = model.compile(optimizer = adm ,
568 loss = ’binary_crossentropy ’, metrics = [’accuracy ’])
569 history = model.fit(X_train , y_train ,shuffle=False ,
570 epochs =100, batch_size =1000)
571

572 y_pred = model.predict(X_test)
573 y_pred = (y_pred > 0.5)
574 cm = confusion_matrix(y_test , y_pred)
575 print ("confusion_matrix for test data\n",cm)

Listing A.8: Hypothesis testing script

A.9 PCA plots

578 from sklearn.decomposition import PCA as sklearnPCA
579

580 pca = sklearnPCA(n_components =2)
581 transformed = pd.DataFrame(pca.fit_transform(X_train))
582
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583 plt.scatter(transformed[y_train ==0][0] , transformed[y_train ==0][1] ,
584 label=’original ’, c=’red’)
585 plt.scatter(transformed[y_train ==1][0] , transformed[y_train ==1][1] ,
586 label=’generated ’, c=’blue’)
587

588 plt.legend ()
589 plt.savefig("pca_significance.png")

Listing A.9: Script for plotting PCA plots


