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ABSTRACT

Ghodgaonkar, Aditya Avinash M.S.M.E., Purdue University, May 2019. Numerical
Methods for Studying Self-similar Propagation of Viscous Gravity Currents. Major
Professor: Ivan C. Christov.

A strongly implicit, nonlinear Crank-Nicolson-based finite-difference scheme was

constructed for the numerical study of the self-similar behavior of viscous gravity cur-

rents. Viscous gravity currents are low Reynolds number flow phenomena in which a

dense, viscous fluid displaces a lighter (usually immiscible) fluid. Under the lubrica-

tion approximation, the mathematical description of the spreading of these fluids is

reduced to solving a nonlinear parabolic partial differential equation for the shape of

the fluid interface. This thesis focuses on the finite-speed propagation of a power-law

non-Newtonian current in a variable width channel-like geometry (a “Hele-Shaw cell”)

subject to a given mass conservation/balance constraint. The proposed numerical

scheme was implemented on a uniform but staggered grid. It is shown to be strongly

stable, while possessing formal truncation error that is of second-order in space and it

time. The accuracy of the scheme was verified by benchmarking it against established

analytical solutions, which were obtained via a first-kind self-similarity transforma-

tion. A series of numerical simulations confirmed that the proposed scheme accurately

respects the mass conservation/balance constraint. Next, the numerical scheme was

used to study the second-kind self-similar behaviour of Newtonian viscous gravity

currents flowing towards the end of a converging channel. Second-kind self-similar

transformations are not fully specified without further information from simulation

or experiment. Thus, using the proposed numerical scheme, the self-similar spreading

and leveling leveling of the current was definitively addressed. The numerical results

showed favorable comparison with experimental data.
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1. INTRODUCTION

Although most wave phenomena in classical continuum mechanics relate to a hyper-

bolic (wave) equation, one of the surprises of 20th century research into nonlinear

partial differential equations (PDEs) is that certain parabolic (diffusion) equations

also yield structures with finite speed of propagation. Two examples are (i) a linear

diffusion equation with a nonlinear reaction term [1, 2], and (ii) a diffusion equa-

tion that is nonlinear due to a concentration-dependent diffusivity [3].1 Indeed, it

is known that certain aspects of wave phenomena can be reduced to a problem of

solving a parabolic PDE, as illustrated by Engelbrecht [5, Ch. 6] through a series of

selected case studies; further examples include, but are not limited to: electromag-

netic waves along the earth’s surface [6], seismic waves [7], underwater acoustics [8],

and the classical theory of nerve pulses [5, Sec. 6.4.2], which nowadays has been up-

dated by Engelbrecht et al. [9] to a nonlinear hyperbolic (wave) model in the spirit

of the Boussinesq paradigm [10,11].

Of special interest to discussion presented in this thesis were physical problems

that are modeled by nonlinear parabolic PDEs. These nonlinear problems lack gen-

eral, all-encompassing solution methodologies. Instead, finding a solution often in-

volves methods that are specific to the nature of the governing equation or the phys-

ical problem it describes [12, Ch. 4] (see also the discussion in [13] in the context

of heat conduction). The classical examples of nonlinear parabolic PDEs admitting

traveling wave solutions come from heat conduction [14, Ch. X] (see also [15]) and

thermoelasticity [15, 16]. The sense in which these nonlinear parabolic PDEs admit

traveling-wave and ‘wavefront’ solutions now rests upon solid mathematical founda-

tions [17, 18].

1More specifically, Barenblatt [3] (see also [4, p. 13]) credits the observation of finite-speed of propa-
gation in nonlinear diffusion equations to a difficult-to-find 1950 paper by Zeldovich and Kompaneets.
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Another classical example of a nonlinear parabolic PDE governing the finite-speed

wave-like motion of a substance arises in the study of an ideal gas spreading in a

uniform porous medium [3]. A similar nonlinear parabolic equation can be derived

for the interface between a viscous fluid spreading horizontally underneath another

fluid of lower density (∆ρ > 0 between the fluids) [19]. The motion of the denser

fluid is dictated by a balance of buoyancy and viscous forces at a low Reynolds

number (viscous forces dominate inertial forces). Such viscous gravity current flows

are characterized by ‘slender’ fluid profiles i.e., they have small aspect ratios (Hc/L�

1, where Hc and L are typical vertical and horizontal length scales). Therefore, these

flows can be modeled by lubrication theory [20, Ch. 6]. A representation of the flow

geometry associated with typical gravity current flow in a thin channel like geometry

is shown in Figure 1.1. Generically, one obtains a nonlinear parabolic equation for

the gravity current’s shape h as a function of the flow-wise coordinate x and time t.

The case of the spreading of a fixed mass of Newtonian fluid was originally explored

contemporaneously by Didden [21] and Huppert [19].

Being governed by a parabolic (irreversible) equation, these currents ‘forget’ their

initial conditions at intermediate times; this is Barenblatt’s concept of intermediate

asymptotics [22, 23]. It follows that a universal current profile can be obtained by

a self-similarity transformation of the current shape h(x, t), which reduces the PDE

in Equation (2.1) to an ordinary differential equation (ODE). Since the similarity

variable can obtained by a scaling (dimensional) analysis, this kind of solution is

known as self-similarity of the first kind [23, Ch. 3]. Specifically, the transformation

is of the form h(x, t) = tβf(ζ), where ζ = x/(ηN t
δ) is the similarity variable, and f(ζ)

is the universal shape function to be determined by solving an ODE. The exponents

β and δ are obtained through scaling (dimensional analysis) of the original PDE, and

ηN is a constant that ensures ζ is dimensionless. An example of how this self-similar

transformation is performed is discussed in Appendix A.

First-kind self-similarity has been used to analyze the propagation of Newtonian

viscous gravity current flows in a variety of physical scenarios. For example, gravity
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h(x,t)
xf(t)

b(x)

Hc

x

y

g

(0,0)

L

Fig. 1.1. An example schematic representation of a gravity current
spreading in a thin channel-like geometry (a Hele-Shaw cell). The
channel width b(x) is allowed to be a function of the streamwise co-
ordinate x. The Hele-Shaw cell has a small vertical aspect ratio:
Hc/L � 1. A dense fluid flows along the bottom of the channel and
displaces a much lighter fluid (assumed to be air). Typically, the
current is released at an origin (x = 0), where the width vanishes
(b(0) = 0) and spreads in one direction only (here, to the right). Of
interest is the evolving shape of the fluid interface h(x, t) and the posi-
tion of the nose or ‘front’ of the current xf (t). Figure reproduced and
adapted with permission from [Zheng et al., Influence of heterogene-
ity on second-kind self-similar solutions for viscous gravity currents,
J. Fluid Mech., vol. 747, p. 221] © Cambridge University Press 2014.

currents arise in geophysical applications associated with flows through porous rocks

[24] such as in ground water extraction [25], during oil recovery [26, 27], and during

CO2 sequestration [28]. In these examples, the current shape h(x, t) represents an

interface between two immiscible fluids in the limit of large Bond number (gravity

dominates surface tension). There is now an extensive literature featuring a wealth of

exact and approximate analytical self-similar solutions for gravity currents in porous

media, e.g., [3, 29–38] among many others.

Moving beyond ‘simple’ fluids, one tractable model of non-Newtonian rheological

response is the power-law fluid ; this is also known as the Oswald–de Weale fluid [39].

In unidirectional flow, the power-law model simply dictates that fluid’s viscosity de-

pends upon a power of the shear rate (velocity gradient). Power-law fluid flow in
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Hele-Shaw cells has been of interest; for example, Di Federico et al. [40] general-

ized Huppert’s problem [19] to this case, although Gratton et al. [41, 42] had also

considered some related problems. Even earlier, Kondic et al. [43, 44] derived the

governing equations for power-law fluids in Hele-Shaw cells, under the lubrication

approximation, due to the interest in studying the Saffman–Taylor instability (collo-

quially termed ‘viscous fingering’ instability) associated with injection of a less viscous

fluid (typically air) into a non-Newtonian fluid. Such works have contributed to the

use of a modified Darcy law to model the flow non-Newtonian flow in porous media

under the Hele-Shaw analogy. Aronsson and Janfalk [45] were perhaps the first to

combine an effective Darcy law for a power-law fluid with the continuity equations to

obtain a single PDE, of the kind studied here, governing the gravity current’s shape.

Recently, Lauriola et al. [46] highlighted the versatility of this modeling approach

by reviewing and extending the existing literature to two-dimensional axisymmet-

ric currents spreading in media with uniform porosity but variable permeability. In

this thesis, emphasis is placed on the propagation of non-Newtonian gravity cur-

rents, specifically ones for which the denser fluid obeys a power-law rheology. These

flows are of interest because others have been exact analytical self-similar solutions

in closed form [41,47–50]. Specifically, the solution of Ciriello et al. [50] will be used

in Section 4.1 below to verify the truncation error of the proposed numerical method.

For a self-similar solution to exist, both the governing PDE and its boundary

conditions (BCs) must properly transform into an ODE in ζ with suitable BCs. A

number of studies have specifically shown that the volume of fluid within the domain

can be transient, varying as a power-law in time V(t) ∝ tα (α ≥ 0) and a self-

similar solution still exists (see, e.g., [3, 31, 33, 38, 48, 49] and the references therein).

However, the nonlinear ODE in ζ often cannot be integrated exactly in terms of a

known function, except for when α = 0. Section 2.2 below details the manner in

which a constraint of the form V(t) ∝ tα can be implemented numerically through

flux BCs at the computational domain’s ends.
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With increasing complexity of the flow physics incorporated in the model, finding

a self-similarity transformation may no longer be possibly simply by using scaling (di-

mensional) arguments in certain cases. Gratton and Minotti [51] classified a number

of such examples, including the so-called ‘focusing’ flows involving an axisymmetri-

cally converging fluid flow towards the origin on a flat planar surface. A more recent

study by Zheng et al. [52] extended this work to include a vertically leaky or perme-

able substrate over which the converging Newtonian viscous gravity current. Further

examples involving confined currents in channels with variable width, and/or gravity

currents in porous media whose permeability and porosity are functions of x, were

proposed by Zheng et al. [38] (see, e.g., Figure 2.1). Though a self-similar transfor-

mation cannot be obtained by scaling arguments in these cases, the gravity currents

nevertheless do enter a self-similar regime. This is because flows of this type involve

an additional length scale, the instantaneous location front or ‘nose’ of the fluid as it

approaches the origin. The appearance of this length scale in the global mass conser-

vation constraint makes this a nontrivial problem from a scaling point-of-view. Now,

the exponents β and δ in the transformation are unknown a priori. This situation

represents a self-similarity of the second kind [23, Ch. 4]. The governing nonlinear

parabolic PDE can be transformed to a nonlinear ODE, then a nonlinear eigenvalue

problem must be solved for β and δ through a phase plane analysis [51,53]. Alterna-

tively, experiments or numerical simulations are necessary to determine β and δ. For

example, early numerical simulations were performed to this end by Diez et al. [54].2

However, a ‘pre-wetting film’ ahead of the current’s sharp wavefront (x = xf (t) where

h
(
xf (t), t

)
= 0) was required to avoid numerical instabilities. The scheme therein was

also first-order accurate in time only. In this this thesis an attempt was made to utilize

a modern, high-order-accurate implicit numerical method to investigate the matter

of second-kind self-similarity in viscous-gravity currents.

2See also the work of Angenent and Aronson [55], which provided a more detailed mathematical
analysis of second-kind self-similarity in this flow.
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Specifically, a strongly implicit numerical scheme for one-dimensional nonlinear

parabolic PDEs arising in the study of gravity currents was developed and bench-

marked. Efforts were made to show the utility of proposed scheme in simulating the

spreading of one-dimensional non-Newtonian viscous gravity currents in variable ge-

ometries, and to show rigorous the sheme’s high accuracy and at low computational

expense. To this end, this thesis builds upon the work of Zheng et al. [38], which

introduced this type of finite-difference scheme for simulating the spreading of a finite

mass of Newtonian fluid in a variable-width Hele-Shaw cell. Specifically, experiments

from the latter study are reconsidered in the context of second-kind self-similarity.

Thus while most of the discussion of the numerical scheme development is about

power-fluids, the discussion of second-kind self-similarity is limited to the case of the

release of a fixed mass of Newtonian current in a completely porous HS cell of vari-

able width. Based on established mathematical theory, numerical simulations were

expected to be indicative of two distinct self-similar regimes for the case of a current

spreading towards the closed end of the variable width Hele-Shaw cell: a ‘pre-closure’

regime, during which a current spreads towards the channel end; and a ‘post-closure’

regime, which occurs once a current reached the end of the cell and begins to leveling.

This thesis is organized as follows. In Chapter 2, briefly summarizes existing mod-

els describing certain flows of viscous gravity currents. Following this, a convenient

general notation for such nonlinear parabolic PDEs is introduced. The derivation

of the BCs for the PDE, from the mass conservation constraint, is discussed in Sec-

tion 2.2. Then, the manner in which the nonlinear Crank–Nicolson scheme was con-

structed is detailed in Section 3.2 and the discretized form of the nonlinear flux BCs

are discussed in Section 3.3. In Section 3.1, the one-dimensional uniform, staggered

grid upon which the finite-difference scheme is implemented is introduced. Contin-

uing, Section 4.1 reports a study of scheme’s accuracy performed by comparing the

numerical solution provided by the finite-difference scheme (up to a specified physical

time) against an analytical solution obtained through a self-similar transformation of

the PDE. Specifically, this approach involves three validation cases: (i) a symmet-
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ric (about x = 0) lump of fixed fluid mass spreading in two directions (convergence

independent of BCs), (ii) a fixed fluid mass spreading away from the origin (x = 0)

(no fluid injection BCs), and (iii) a variable fluid mass being injected at the origin

spreading away from it (required careful implementation of the full nonlinear BCs).

In all three cases, the scheme can be shown to be capable of accurately computing

the gravity current shape and its spreading in time. In Section 4.2, the scheme’s con-

servation properties are analyzed by verifying numerically that it respected the mass

constraint V(t) ∝ tα. Two validation cases are considered: (i) release of a fixed fluid

mass (α = 0), and (ii) fluid mass injection into the domain (α > 0). In both cases,

there was a specific focus on the challenging case of a non-Newtonian (power-law)

displacing fluid in a variable-width channel. Thereafter, the second-kind self-similar

case of a Newtonian fluid spreading towards the origin of a variable-width HS cell is

studied, beginning with Section 5.2 in which the analytical self-similar transforma-

tion for second-kind self-similarity is summarized. Section 5.3 provides details and

observations on a previously conducted on the release of a fixed mass of a 95% glycerol-

water mixture in a shaped HS cell. Finally, numerical simulations using the proposed

scheme are used in Section 5.4 to provide better insight into the onset of two distinct

self-similar regimes during spreading (Section 5.4.1) and leveling (Section 5.4.2) of the

gravity current. The analytical, numerical and experimental results are compared and

contrasted to convincingly show the existence of second-kind self-similar behavior in

this flow. Finally, for completeness, the previously derived first-kind self-similar so-

lutions from the literature, which are used as benchmark solutions for the proposed

scheme, are summarized in Appendix A.
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2. PRELIMINARIES

In this chapter, the mathematical model for viscous gravity currents in a selected

set of applications involving Newtonian and non-Newtonian fluids is summarized.

Specifically, of interest is the spreading of a liquid in a fixed- or variable-width chan-

nel geometry (a “Hele-Shaw cell”), as well as flows in heterogeneous porous media

with independently variable permeability and porosity. Ultimately it is shown that

all these models can be concisely summarized by a single nonlinear parabolic PDE

supplemented with a set of nonlinear Neumann (flux) BCs.

2.1 Fluid Domain and Flow Characteristics

The flow domain is assumed to be long and thin. For example, it could be a

channel existing in the gap between two impermeable plates, i.e., a Hele-Shaw (HS)

cell, which may or may not have variable transverse (to the flow) width as shown in

Figure 2.1(a); or it could be uniformly thick slab of heterogeneously porous material,

as shown in Figure 2.1(c). The viscous gravity current considered consists of one fluid

displacing another immiscible fluid. Therefore, a sharp interface y = h(x, t) separates

the two fluids at all times. The present study considers the limit of negligible surface

tension (i.e., negligible surface forces); as mentioned above this is the limit of large

Bond number. The density difference ∆ρ between the two fluids is large compared

to the density of the lighter fluid, and the denser fluid flows along the bottom of the

cell which is a horizontal, impermeable surface. In doing so, the denser fluid displaces

the lighter fluid out of its way. Here, the geometry is considered to be vertically

unconfined so that the flow of the upper, lighter fluid is negligible.

Of interest is the evolution of the interface h(x, t) between the two fluids. Owing

to the vertically unconfined, long and thin geometry of the flow passage, the denser



9

top view side view
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m
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b(x)
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b(x)2
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xf(t)  
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Fig. 2.1. A summary of the gravity current flows and domains consid-
ered in this work. (a) Flow away from the origin in a completely
porous (φ = 1) HS cell of variable width given by b(x) = b1x

n

(b1 = const., 0 ≤ n < 1). (b) Flow in uniformly porous (φ =
φ1 = const. 6= 1) passage of variable width given by the same b(x)
as in (a). (c) Flow in a uniform-width slab (i.e., b(x) = b1 = const.)
with horizontally heterogeneous porosity and permeability given by
φ(x) = φ1x

m and k(x) = k1x
n respectively. The effective permeability

of the medium in (a) and (b) is set by the Hele-Shaw analogy via the
width: k(x) = [b(x)]2/(12µ). Figure reproduced and adapted with
permission from [Zheng et al., Influence of heterogeneity on second-
kind self-similar solutions for viscous gravity currents, J. Fluid Mech.,
vol. 747, p. 221] © Cambridge University Press 2014.

fluid has a slender profile (low aspect ratio) and its flow is described by lubrication

theory. The lubrication approximation also requires that viscous forces dominate

inertia forces; this is the limit of small Reynolds number. Therefore, in the regime,

the flow is governed by a balance of viscous forces and gravity. Furthermore, the

lubrication approximation allows for (at the leading order in the aspect ratio) the

variation of quantities across the transverse direction, as well as the vertical velocities

of the fluids to be neglected during the mathematical analysis of the flow.
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As shown in Figure 2.1(a), for the flow in a HS cell, the cell’s width varies as

a power-law of the streamwise coordinate x, i.e., b(x) = b1x
n, where n ≥ 0 is a

dimensionless exponent, and b1 > 0 is a dimensional consistency constant having

units m1−n. Non-unit porosity can also be modelled by filling the HS cell with beads

of fixed diameter as illustrated in Figure 2.1(b). Since the cell has a variable width,

it originates from a cell ‘origin,’ which is always taken to be x = 0 such that b(0) = 0.

As discussed in [38], in such a flow geometry, the lubrication approximation may fail

when b(x) is an increasing function of x i.e., db/dx = nb1x
n−1 > 1. In such quickly-

widening cells, the transverse variations of properties become significant. The validity

of the lubrication approximation, and models derived on the basis of it, is here ensured

by only considering n < 1 such that b(x) remains a decreasing function of x.

As shown in Figure 2.1(c), the present model could be expanded to also consider

a gravity current spreading horizontally in a porous slab of constant transverse width

(b(x) = b1 = const.) with heterogeneous porosity φ(x) = φ1x
m and permeability

k(x) = k1x
n, which vary in the streamwise coordinate (see, e.g., [38]). Here, m,n ≥ 0

are dimensionless exponents and φ1, k1 > 0 are dimensional constants needed for con-

sistency with the definitions of porosity and permeability, respectively; specifically

φ1 has units of units of m−m, and k1 has units of m2−n. These variations are illus-

trated by the streamwise changes of bead radii in Figure 2.1(c). Now, the point at

which the porosity and permeability vanishes becomes the origin of the cell. Another

interesting case, that of a medium with vertically heterogeneous porosity, has been

explored by Ciriello et al. [50]. In this thesis, modelling efforts are limited to flows in

a completely porous (i.e., unobstructed, φ = 1) HS cells of variable width as in Fig-

ure 2.1(a). However, the numerical scheme developed herein can readily treat any of

these cases, taking the appropriate parameter definitions from Table 2.2, as discussed

in Section 2.2.

The denser fluid is allowed to be a non-Newtonian fluid. Specifically, it is assumed

to obey the power-law rheology; this is also known as the Oswald–de Weale fluid [39].

In unidirectional flow, the shear stress is given by τ = µ(γ̇)γ̇, where the dynamic
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viscosity µ depends on the shear rate γ̇ as µ(γ̇) = µ0γ̇
r−1. Here, µ0 is the flow

consistency index (units of Pa·sr), and r (> 0) is the fluid rheological index. Fluids

having r < 1 are termed shear-thinning (e.g., blood), and fluids with r > 1 are termed

shear-thickening (e.g., dense particulate suspensions). In the special case of r = 1,

the power-law model reduces to the Newtonian fluid, and µ0 is precisely the ‘classical’

shear viscosity. As stated above, the nature of the displaced fluid is immaterial to the

dynamics of the viscous gravity current, as long as the viscosity and density contrast

is large. This condition was satisfied, for example, by assuming (for the purposes of

this chapter) that air is the displaced fluid.

Finally, the volume of the fluid in the cell itself may be either fixed (constant mass)

or vary with time (injection). Consistent with the literature, the instantaneous volume

of fluid in the cell is allowed to increase as a power law in t: V(t) = V0+Vint
α, where V0

is the initial volume of fluid in the HS cell (measured in m3), α ≥ 0 is a dimensionless

exponent, and Vin is an injection pseudo-rate (in units m3s−α), becoming precisely

the injection rate for α = 1. Section 2.2 discusses how this assumption lead to BCs

for the physical problem and for the numerical scheme.

2.2 Governing Equation, Initial and Boundary Conditions

The propagation of a viscous gravity current is described by a diffusion equation for

the interface h(x, t) between the fluids, which is also the shape of profile of the denser

fluid. The models are derived either from porous medium flow under Darcy’s law and

the Dupoit approximation [25, Ch. 8] or using lubrication theory with no-slip along

the bottom of the cell and zero shear stress at the fluid–fluid interface [20, Ch. 6-C].

The resulting velocity field is combined with a depth-averaged form of the continuity

equation to derive the nonlinear parabolic PDE for h(x, t). To summarize all gravity

current propagation along horizontal surfaces, a single ‘thin-film’ [56] equation is

proposed:
∂h

∂t
=
A

xp
∂

∂x

(
xqψ

∂h

∂x

)
. (2.1)
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According to Engelbrecht [57, Ch. 5], Equation (2.1) can be classified as an ‘evolu-

tion equation.’ The term in the parentheses on the right-hand side of Equation (2.1),

roughly, represents a fluid flux balanced by the change in height on the left-hand

side. The multiplicative factor A/xp arises due to (i) geometric variations of the flow

passage in the flow-wise direction, (ii) porosity variations in the flow-wise direction,

or (iii) from the choice of coordinate system in the absence of (i) or (ii). Here, A is a

dimensional constant depending on the flow geometry and domain, and fluid charac-

teristics. Additionally, p and q are dimensionless exponents that depend on the flow

geometry and fluid rheology. The quantity denoted by ψ represents specifically the

nonlinearity in these PDEs, thus it is necessarily a function of h, and possibly ∂h/∂x

for a non-Newtonian fluid (as in the second, third and fourth rows of Table 2.2).1

As stated in Section 1, several versions of Equation (2.1) were explored herein, in-

corporating geometric variations, porosity variations, non-Newtonian behavior. Sev-

eral classical cases of gravity currents in porous media are listed in Table 2.1, which

lists expressions for A, p, q and ψ. However, the crux of this thesis is the numerical

simulation of non-Newtonian gravity currents and some pertinent physical scenar-

ios that were tackled using the numerical scheme developed herein are presented in

Table 2.2.

In this study, the PDE (2.1) was solved on the finite space-time interval (x, t) ∈

[`, L] × [t0, tf ]. Here, t0 and tf represent the initial and final times of the numerical

simulation’s run, respectively. An initial condition (IC) h0(x) was specified at t = t0,

so that h(x, t0) = h0(x) was known. Meanwhile, ` is a small positive value (close to

0). Boundary conditions (BCs) are specified at x = ` and x = L. These involve some

combination of h and ∂h/∂x. The reason for taking x = ` 6= 0 will become clear

when these BCs are derived below.

1Interestingly, an ‘r-Laplacian’ PDE similar to Equation (2.1) for a power-law fluid in a HS cell
(second row of Table 2.2) arises during fluid–structure interaction between a power-law fluid and an
enclosing slender elastic tube [58]. This PDE can also be tackled by the proposed finite-difference
scheme.
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Having established the PDE (2.1) it is now pertinent to devise a suitable set

of BCs. The BCs are based on the imposed mass conservation/growth constraint.

Consider the case of a viscous gravity current in a porous slab with variable porosity

φ(x) = φ1x
m, and transverse width b1 = const. Then, the conservation of mass

constraint (see [38]) takes the form∫ L

`

h(x, t) b1 φ(x) dx = V0 + Vint
α, (2.2)

where α ≥ 0. In the parallel case of a HS cell with variable width, b(x) = b1x
n,

and porosity φ1 = const., which can either be set to 1 or absorbed into b1, the mass

constraint becomes ∫ L

`

h(x, t) b(x) dx = V0 + Vint
α. (2.3)

Taking a time derivative of Equation (2.3) and employing Equation (2.1), the following

is obtained

∂

∂t

∫ L

`

h(x, t)b1x
n dx =

∫ L

`

∂h

∂t
b1x

n dx =

∫ L

`

b1x
n A

xn
∂

∂x

(
xqψ

∂h

∂x

)
dx

= Ab1

(
xqψ

∂h

∂x

)∣∣∣∣x=L

x=`

by (2.3)
=

d(Vint
α)

dt
= αVint

α−1. (2.4)

Here, p = n in this case of interest, as described in Table 2.2, and Ab1 = const. Thus,

conditions relating xqψ∂h/∂x at x = ` and x = L to αVint
α−1 are obtained. These

conditions, if satisfied, automatically take into account the imposed volume constraint

from Equation (2.3). The calculation starting with Equation (2.2) is omitted here as

it is identical, subject to proper choice of p.

For the case of propagation away from the cell’s origin (i.e., any injection of mass

must occur near x = 0, specifically at x = `), to satisfy Equation (2.4), it follows that

(
xqψ

∂h

∂x

)∣∣∣∣
x=`

=


−αB

A
tα−1, α 6= 0,

0, α = 0,

(2.5a)

(
ψ
∂h

∂x

)∣∣∣∣
x=L

= 0 ⇐ ∂h

∂x

∣∣∣∣
x=L

= 0, (2.5b)
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where B = Vin/b1. The case of α > 0 represents mass injection into the system.

Although Equation (2.3) and Equations (2.5) are equivalent, the imposition of the

nonlinear BC in Equations (2.5a) must be approached with care. It should be clear

that to impose a flux near the origin (at x = 0),
(
xqψ∂h/∂x

)∣∣
x→0

must be finite.

Then, ψ∂h/∂x = O(1/xq) as x → 0. On the spatial domain x ∈ (0, L), such an

asymptotic behavior is possible for p = q = 0. However, for cases in a variable width

cell (p, q 6= 0), the local profile and slope as x → 0 blow up if they are to satisfy

ψ∂h/∂x = O(1/xq) as x → 0. To avoid this uncomputable singularity issue, the

computational domain was defined to be x ∈ (`, L), where ` is ‘small’ but > 0. The

BC from Equation (2.5a) at x = ` can then be re-written as(
ψ
∂h

∂x

)∣∣∣∣
x=`

= −αB
A`q

tα−1, α > 0. (2.6)

In the study of second-kind similarity in these flows it is also of interest to consider

the case of a gravity current released a finite distance away from the origin and then

spreading towards the origin. In this case, an additional length scale arises in the

problem: the initial distance of the current’s edge from the origin, say xf (0). The

existence of this extra length scale complicates the self-similarity analysis [23, Ch. 4],

as discussed in Section 1. However, the proposed numerical scheme can handle this

case without significant problem; in fact, it requires no special consideration, unlike

spreading away from the origin. Now, is permitted to simply take ` = 0 and consider

spreading on the domain (0, L) subject to the following BCs:(
xqψ

∂h

∂x

)∣∣∣∣
x→0

= 0 ⇐ ∂h

∂x

∣∣∣∣
x=0

= 0, (2.7a)

(
ψ
∂h

∂x

)∣∣∣∣
x=L

=


αB
ALq t

α−1, α 6= 0,

0, α = 0,

(2.7b)

which together satisfy Equation (2.4) and, thus, Equation (2.3).

The most significant advantage of defining nonlinear flux BCs, such as those in

Equations (2.5) or (2.7), is that a nonlinear nonlocal (integral) constraint, such as

that in Equation (2.2) or (2.3), no longer has to be applied onto the solution h(x, t).
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Furthermore, upon beginning the analysis with compact initial conditions, i.e., there

exists a nose location x = xf (t0) such that h
(
xf (t0), t0

)
= 0, following which the finite-

speed of propagation property of the nonlinear PDE (2.1) [17, 18] ensured that this

nose xf (t) existed for all t > t0 and h
(
xf (t), t

)
= 0 as well. The proposed fully-implicit

scheme naturally captures this feature of the PDE, without any numerical instability,

and is therefore always implemented the fixed domain x ∈ (`, L) instead of attempting

to rescale to a moving domain on which xf (t) is one of the endpoints. The latter

approach proposed by Bonnecazze et al. [59] (and used in more recent works [60] as

well) led to a number of additional variable-coefficient terms arising in the PDE (2.1),

due to the non-Galilean transformation onto a shrinking/expanding domain. From a

numerical methods point of view, having to discretize these additional terms is not

generally desirable.

Having defined a suitable set of BCs, the last remaining piece of information

required to close the statement of the mathematical problem at hand is the selection

of a pertinent IC. For the case of the release of a finite fluid mass (α = 0), an arbitrary

polynomial initial condition may be selected, as long as it has zero slope at the origin

(x = 0), leading to satisfaction of the no-flux boundary condition (2.5a). To this end,

the IC was selected to be represented by

h0(x) =


3
2
C0 (xγ0 − xγ) , x ≤ x0,

0, x > x0,

(2.8)

where x0 is a ‘release-gate’ location defining the initial position of the current’s nose,

i.e., x0 = xf (t0) and h
(
xf (t0), t0

)
≡ h0(x0) = 0. The constant γ > 1 is an arbitrary

exponent. Finally, C0 was set by normalizing h0(x) such that the initial volume of

fluid corresponds to the selected fluid volume, Vin, via Equation (2.3).

The case of the release of a finite mass of fluid is particularly forgiving in how

the IC is set, particularly with respect to its slope at x = 0. In fact, it is observed

that setting γ = 1 in Equation (2.8) resulted in the scheme providing an initial

flux of fluid at t = t+0 , with (∂h/∂x)x=0 thereafter. On the other hand, the case
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of mass injection (α 6= 0) governed by the nonlinear BC is not as forgiving. By

virtue of the ‘point-source’ mass injection at x = `, the slope at the origin sharply

rises from the moment of mass injection. This very sharp rise has a tendency to

introduce unphysical oscillations in the current profile when starting from the IC in

Equation (2.8). To avoid this, a ‘better’ IC was selected, which has a shape more

similar to the diverging solution near x = 0. Having tested a few different options, it

is found that an exponential function worked well:

h0(x) =


−a+ becx, x ≤ x0,

0, x > x0.

(2.9)

Here, a, b and c are positive constants, and x0 = 1
c

ln a
b

ensures that the IC has no

negative values and a sharp front.

Finally, it should be noted that the IC from Equation (2.8) was not used in the

convergence studies for finite initial mass (Section 4.1.1 and Section 4.1.2). Rather,

the IC was taken to be the exact self-similar solution of Ciriello et al. [50] for a

power-law non-Newtonian fluid in a uniform-width (n = 0) HS cell (see also Ap-

pendix A). The reasoning behind this particular choice of IC is further expounded

upon in Section 4.1.
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3. THE NUMERICAL SCHEME

The proposed numerical method is a one-dimensional finite-difference scheme using

the Crank–Nicolson approach toward implicit time-stepping. This presentation fol-

lows recent literature, specifically the construction in [38, Appendix B]. The proposed

scheme’s truncation error is formally of second order in both space and time, and the

scheme is expected to be unconditionally stable. Furthermore, the scheme is conser-

vative in the sense that it maintains the imposed time-dependency of the fluid volume

with high accuracy via a specific set of nonlinear BCs. This chapter is devoted to

discussing all these topics one by one.

3.1 Notation: Grids, Time Steps, and Grid Functions

The PDE (2.1) is solved on an equispaced one-dimensional grid of N + 1 nodes

with grid spacing ∆x = (L− `)/(N − 1). The solution values are kept on a staggered

grid of cell-centers, which are offset by ∆x/2 with respect to the equispaced grid

points. As a result, there is a node lying a half-grid-spacing beyond each domain

boundary. It follows that the location of the ith grid point on the staggered grid is

xi = ` + (i − 1/2)∆x, where i = 0, 1, 2, . . . , N . A representative grid with 12 nodes

is shown in Figure 3.1. The use of a staggered grid affords additional stability to the

scheme and allows the numerical discretization of Neumann BCs to be second-order

accurate by default, using only two cell-centered values (as the boundary now lies

half-way between two grid points).

As stated in Section 2.2, the PDE (2.1) is solved over a time period t ∈ (t0, tf ],

such that tf > t0 ≥ 0, where both the initial time t0 and the final time tf of the

simulation are user defined. The scheme thus performs M discrete time steps each

of size ∆t = (tf − t0)/(M − 1). The nth time step advances the solution to t = tn ≡
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x

i = 0 i = 11

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3.1. A sample twelve-node equispaced, staggered, one-
dimensional grid. The grid nodes are staggered by half a grid step
∆x/2 from the cell faces. The actual domain boundaries are marked
by x. Here, ` = 0 and L = 1.

t0 + n∆t, where n = 0, 1, . . . ,M − 1. Finally, it is pertinent to define the discrete

analog (‘grid function’) to the continuous gravity current shape, which is actually

solved for, by hni ≈ h(xi, t
n).

3.2 The Nonlinear Crank–Nicolson Scheme

The operator L denotes the continuous spatial operator acting on h on the right-

hand side of Equation (2.1), i.e.,

L[h] ≡ A

xp
∂

∂x

(
xqψ

∂h

∂x

)
. (3.1)

Since L is a second-order spatial operator and, thus, Equation (2.1) is a diffusion equa-

tion, there is an inclination to implement second-order-accurate time-stepping by the

Crank–Nicolson scheme [62]. The Crank–Nicolson approach makes the scheme fully

implicit, hence avoiding the stringent restriction (∆t . (∆x)2) suffered by explicit

time discretizations of diffusion equations [63, Ch. 6]. Then, the time-discrete version

of Equation (2.1) becomes

hn+1
i − hni

∆t
=

1

2

(
Ld
[
hn+1
i

]
+ Ld [hni ]

)
, (3.2)

where Ld is the discrete analog to the continuous spatial operator L defined in Equa-

tion (3.1). Based on the approach of Christov and Homsy [64], the discrete spatial
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operator is constructed via flux-conservative central differencing using two cell-face

values, while staggering the nonlinear terms:

Ld [hni ] =
A

xpi


(
xqi+1/2ψ

n+1/2
i+1/2

)
Sni+1/2 −

(
xqi−1/2ψ

n+1/2
i−1/2

)
Sni−1/2

∆x

 , (3.3a)

Ld
[
hn+1
i

]
=
A

xpi


(
xqi+1/2ψ

n+1/2
i+1/2

)
Sn+1
i+1/2 −

(
xqi−1/2ψ

n+1/2
i−1/2

)
Sn+1
i−1/2

∆x

 , (3.3b)

where S ≡ ∂h/∂x is the slope of the gravity current’s shape. Note that the nonlinear

terms, denoted by ψ, are evaluated the same way, i.e., at the mid-time-step n+ 1/2,

for both Ld [hni ] and Ld
[
hn+1
i

]
.

Substituting Equations (3.3) into Equation (3.2) results in a system of nonlinear

algebraic equations because ψ is evaluated at mid-time-step n+1/2 and, thus, depends

on both hni (known) and hn+1
i (unknown). This system has to be solved for the vector

hn+1
i (i = 0, . . . , N), i.e., the approximation to the gravity current’s shape at the next

time step. Solving a large set of nonlinear algebraic equations can be tedious and

computationally expensive. A simple and robust approach to obtaining a solution

of the nonlinear algebraic system is through fixed-point iterations, or ‘the method

of internal iterations’ [65]. Specifically, it is hence possible to iteratively compute

approximations to hn+1
i , the grid function at the new time step, by replacing it in

Equation (3.2) with hn,k+1
i , where hn,0i ≡ hni . Then, the proposed numerical scheme

takes the form:

hn,k+1
i − hni

∆t
=

A

2∆x

[
xqi+1/2

xpi
ψ
n+1/2,k
i+1/2 Sn,k+1

i+1/2 −
xqi−1/2

xpi
ψ
n+1/2,k
i−1/2 Sn,k+1

i−1/2

]

+
A

2∆x

[
xqi+1/2

xpi
ψ
n+1/2,k
i+1/2 Sni+1/2 −

xqi−1/2

xpi
ψ
n+1/2,k
i−1/2 Sni−1/2

]
.

(3.4)

The key idea in adopting the method of internal iterations is to evaluate the nonlinear

ψ terms from information known at iteration k and the previous time step n, while

keeping the linear slopes S from the next time step n + 1 at iteration k + 1. This

manipulation linearizes the algebraic system, at the cost of requiring iterations over

k. Upon convergence of the internal iterations, hn+1
i is simply the last iterate hn,k+1

i .



22

Prior to further discussing the iterations themselves or their convergence, it is now

necessary to establish discrete approximations for ψ and S.

The operator Ld is essentially a second derivative, and hence should be treated

along the lines of the standard way of constructing the three-point central finite-

difference formula for the second derivative [63]. Therefore, Si±1/2 can be discretized

using a two-point central-difference approximation on the staggered grid. For exam-

ple, at any time step:

Si+1/2 ≡
(
∂h

∂x

)
x=xi+1/2

≈ hi+1 − hi
∆x

. (3.5)

Next, following [38,66], ψ at xi±1/2 is evaluated by averaging the known values at

xi and xi+1 or xi and xi−1, respectively. Likewise, to approximate ψn+1/2, an average

of the known values: ψn at tn and ψn,k at the previous internal iteration is evaluated.

In other words, approximation of the nonlinear terms becomes

ψ
n+1/2,k
i+1/2 =

1

2

[
1

2

(
ψn,ki+1 + ψn,ki

)
︸ ︷︷ ︸

=ψn,k
i+1/2

+
1

2

(
ψni+1 + ψni

)︸ ︷︷ ︸
=ψn

i+1/2

]
, (3.6a)

ψ
n+1/2,k
i−1/2 =

1

2

[
1

2

(
ψn,ki + ψn,ki−1

)
︸ ︷︷ ︸

=ψn,k
i−1/2

+
1

2

(
ψni + ψni−1

)︸ ︷︷ ︸
=ψn

i−1/2

]
. (3.6b)

Equations (3.6) afford improved stability for nonlinear PDEs, while preserving the

conservative nature of the scheme (as will be shown in Section 4.2), as discussed by

Von Rosenberg [67] who credited the idea of averaging nonlinear terms across time

stages and staggered grid points to the seminal work of Douglas Jr. [68, 69]. The

scheme thus described is depicted by the stencil diagram in Figure 3.2.

Here, it is worthwhile noting that, while the classical Crank–Nicolson [62] scheme

is provably unconditionally stable [63] when applied to a linear diffusion equation,

it was suggested in [64] that the current approach provides additional stability to

this nonlinear scheme even at large time steps. Since the current problem is nonlin-

ear, some care has be taken in evaluating how large of a time step could be taken.
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Fig. 3.2. Representative stencil of the proposed scheme’s implemen-
tation on a staggered grid with internal iterations. After performing
k internal iterations, the nonlinear terms ψi±1/2 are evaluated at stage

“n+1/2, k” (highlighted blue) from the known quantities hni and hn,ki .
The unknown quantity hn,k+1

i at the next internal iteration, n, k + 1,
is found by solving the linear system in Equation (3.9). The process
continues until the convergence criterion from Equation (3.10) is met.

Nevertheless, it was still expected that the largest stable ∆t will be independent of

∆x.

In the context of this problem, the case of interest of a power-law non-Newtonian

viscous gravity current spreading in a variable width cell provides additional compli-

cations. Recalling Table 2.2, this model features ∂h/∂x in ψ, unlike the Newtonian

case. While the temporal accuracy of the scheme is ensured through the robust im-

plementation of the nonlinear Crank–Nicolson time-stepping, the spatial accuracy is

contingent upon the discretization of ∂h/∂x in ψ. A further consequence is that,

once ∂h/∂x is discretized, the discretization of ψ becomes nonlocal (i.e., it requires

information beyond the ith grid point). Nevertheless, the overall scheme only requires
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a three-point stencil for Ld. In particular, for interior grid points, it is possible to use

a central-difference formula, giving rise to the expression (at any time step):

ψi ≡

[
h

∣∣∣∣∂h∂x
∣∣∣∣(1−r)/r

]
x=xi

≈ hi

∣∣∣∣hi+1 − hi−1

2∆x

∣∣∣∣(1−r)/r . (3.7)

This choice of approximation ensures second-order accuracy at all interior grid nodes.

However, at the second (i = 1) and the penultimate (i = N − 1) nodes, the second-

order accurate approximation to ∂h/∂x in ψi±1/2 as defined in Equations (3.6) requires

the unknown values h−1 and hN+1, which lie outside the computational domain. To

resolve this difficulty, ‘biased’ (backward or forward) three-point difference approxi-

mations are used:

ψ0 ≈ h0

∣∣∣∣−3h0 + 4h1 − h2

2∆x

∣∣∣∣(1−r)/r , (3.8a)

ψN ≈ hN

∣∣∣∣3hN − 4hN−1 + hN−2

2∆x

∣∣∣∣(1−r)/r . (3.8b)

Finally, substituting the discretization for S from Equation (3.5) into Equa-

tion (3.4), it is possible to re-arrange the scheme into a tridiagonal matrix equation:[
− A∆t

2(∆x)2

xqi−1/2

xpi
ψ
n+1/2,k
i−1/2

]
︸ ︷︷ ︸

matrix subdiagonal coefficient

hn,k+1
i−1

+

[
1 +

A∆t

2(∆x)2

(
xqi+1/2

xpi
ψ
n+1/2,k
i+1/2 +

xqi−1/2

xpi
ψ
n+1/2,k
i−1/2

)]
︸ ︷︷ ︸

matrix diagonal coefficient

hn,k+1
i

+

[
− A∆t

2(∆x)2

xqi+1/2

xpi
ψ
n+1/2,k
i+1/2

]
︸ ︷︷ ︸

matrix superdiagonal coefficient

hn,k+1
i+1

= hni +
A∆t

2(∆x)2

[
xqi+1/2

xpi
ψ
n+1/2,k
i+1/2 (hni+1 − hni )−

xqi−1/2

xpi
ψ
n+1/2,k
i−1/2 (hni − hni−1)

]
(3.9)

for the interior grid points i = 1, . . . , N − 1. In Equation (3.9) the right-hand side

and the variable coefficients in brackets on the left-hand side are both known, based
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on hn,ki , at any given internal iteration k. Then, each internal iteration involved the

inversion of a tridiagonal matrix to solve for the grid function hn,k+1
i . The inversion of

this tridiagonal matrix can be performed efficiently with, e.g., ‘backslash’ in Matlab.

Subsequently, the coefficient matrix has to be recalculated for each internal iteration

because of the dependency of ψ
n+1/2,k
i±1/2 on hn,ki arising from Equations (3.6) and (3.7).

The iterations in Equation (3.9) are initialized with hn,0i = hni (i = 0, . . . , N)

and continued until an iteration k + 1 = K is reached at which a 10−8 relative error

tolerance is met. Specifically,

max
0≤i≤N

∣∣∣hn,Ki − hn,K−1
i

∣∣∣ < 10−8 max
0≤i≤N

∣∣∣hn,K−1
i

∣∣∣ . (3.10)

Typically only a small number (typically, less than a dozen) of internal iterations are

required at each time step, making the scheme, overall, quite efficient.

The algebraic system defined in Equation (3.9) applies to all interior nodes, i.e.,

i = 1, . . . , N − 1. To complete the system, the rows i = 0 and i = N have to

be defined, which arise from the proper numerical approximation of the nonlinear

BCs, which comes in Section 3.3. Upon completing the latter task successfully, hn,Ki

becomes the grid function at the next time step hn+1
i upon the completion of the

internal iterations, following which the time stepping proceeds.

3.2.1 The Special Case of Linear Diffusion

A special case of the proposed finite-difference scheme can be considered by setting

the dimensionless exponents p = q = 0 (i.e., no spatial variation of the diffusivity) and

ψ = 1 (linear diffusion). Accordingly, Equation (3.9) can be simplified and rearranged

in the form (i = 1, . . . , N − 1):[
1 +

A∆t

(∆x)2

]
hn+1
i =

A∆t

(∆x)2

(
hn+1
i−1 + hn+1

i+1 + hni−1 + hni+1

)
+

[
1 +

A∆t

(∆x)2

]
hni . (3.11)

If the grid function hni ≈ h(xi, t
n) represents the temperature field along a one-

dimensional rigid conductor situated on x ∈ [`, L], Equation (3.11) is then the original
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second-order (in space and time) numerical scheme proposed by Crank and Nicol-

son [62] to solve a linear (thermal) diffusion equation [63, Section 6.3]. As such, this

simplification helps illustrate the mathematical roots of the current scheme, and how

the classical work has been generalized.

3.3 Implementation of the Nonlinear Boundary Conditions

As discussed in section 2.2, the boundary conditions are a manifestation of the

global mass conservation constraint, Equation (2.2) or (2.3), imposed on Equation (2.1).

The BCs described in Equations (2.5) and (2.7) are defined at the ‘real’ boundaries

of the domain, i.e., at x = ` and x = L. The numerical scheme implements these

on the staggered grid. This allows for derivatives at x = ` and x = L to be con-

veniently approximated using central difference formulas using two nearby staggered

grid points. In this manner, the BC discretization maintains the scheme’s second

order accuracy in space and time. Accordingly, for the case of a current spreading

away from the cell’s origin, Equations (2.5) are discretized in a ‘fully-implicit’ sense

(to further endow numerical stability and accuracy to the scheme [66]) as follows:

ψ
n+1/2,k
1/2

1

∆x

(
hn,k+1

1 − hn,k+1
0

)
=


− αB
A`q
tα−1, α 6= 0,

0, α = 0,
(3.12)

1

∆x

(
hn,k+1
N − hn,k+1

N−1

)
= 0. (3.13)

Within the internal iterations, however, ψ
n+1/2,k
1/2 is known independently of hn,k+1

1

and hn,k+1
0 . Hence, the first (i = 0) and last (i = N) rows in the tridiagonal matrix,

whose interior rows are constructed from Equation (3.9), can now be expressed as

hn,k+1
1 − hn,k+1

0 =


− 4αBtα−1∆x

A`q(ψn0 + ψn1 + ψn,k0 + ψn,k1 )
, α 6= 0,

0, α = 0,

(3.14a)

hn,k+1
N − hn,k+1

N−1 = 0. (3.14b)
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Similarly, the discretized BCs for spreading of a current towards the origin when

released a finite distance away from the origin, can be derived from Equations (2.7).

Then, the first (i = 0) and last (i = N) rows in the tridiagonal matrix are expressed

as

hn,k+1
1 − hn,k+1

0 = 0, (3.15a)

hn,k+1
N − hn,k+1

N−1 =


4αBtα−1∆x

ALq(ψnN−1 + ψnN−2 + ψn,kN−1 + ψn,kN−2)
, α 6= 0,

0, α = 0.

(3.15b)
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4. CONVERGENCE AND CONSERVATION

PROPERTIES OF THE SCHEME

At this point, the numerical scheme and boundary conditions defined in Equations (3.9)

and (3.14) form a complete description of the numerical solution to the parabolic PDE

from Equation (2.1), for a gravity current propagating away from the origin. It has

been claimed that the finite-difference scheme is conservative (i.e., it accurately main-

tains the imposed time-dependency of the fluid volume described in Equation (2.3))

and has second-order convergence. These aspects of the scheme will be substantiated

in Section 4.1 and Section 4.2, respectively. The computational domain’s dimensions,

which are set by L and b1, and the properties of fluid being simulated are summa-

rized in Table 4.1. For definiteness, the fluid properties were taken to be those of 95%

glycerol-water mixture in air at 20°C (see [70,71]).

Table 4.1.
A summary of the simulation parameters used in convergence and
conservation studies. The fluid was assumed to be a 95% glycerol-
water mixture at 20°C. The width exponent n and fluid rheology index
r were varied on a case-by-case basis to simulate different physical
scenarios.

Parameter Value Units

Channel length L 0.75 m

Width coefficient b1 0.01732 m1−n

Total released mass w 0.3155 kg

Density ρ 1250.8 kg/m3

Consistency index (r 6= 1) or dy-

namic viscosity (r = 1) µ0

0.62119 Pa·sr
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4.1 Estimated Order of Convergence

First, the formal order of accuracy of the proposed scheme was justified through

carefully chosen numerical examples. To do so, successively ‘more complicated’ cases

from a numerical perspective were considered. First, the case of a centrally released

fixed mass of fluid propagating in two directions was simulated (Section 4.1.1). Sec-

ond, the unidirectional spreading of a fixed mass of fluid was simulated (Section 4.1.2).

Third, and last, the unidirectional spreading of a variable fluid mass was considered

(Section 4.1.3), i.e., injection of fluid at the boundary was taken into account.

In each of these three cases, there is a need for a reliable benchmark solution

against which the numerical solutions on successively refined spatial grids could be

compared. For the case of the release of a fixed mass of fluid, an exact self-similar

solution is provided by Ciriello et al. [50]. Specifically the solution considers a fixed

mass (α = 0) of a power-law fluid in uniform HS cell (n = 0). The derivation of

the self-similar solution is briefly discussed in the Appendix. This solution was used

as the benchmark. As mentioned in Section 1, parabolic equations ‘forget’ their IC

and the solution becomes self-similar after some time. However, for a general PDE,

it is difficult (if not impossible) to estimate how long this process takes. Therefore,

to ensure a proper benchmark against the exact self-similar solution, the simulation

was started with the exact self-similar solution evaluated at some non-zero initial time

(t0 > 0). Using the latter as the initial condition, the current was allowed to propagate

up to a final time tf , with the expectation that the current would thus remain in the

self-similar regime for all t ∈ (t0, tf ]. Comparing the final numerical profile with the

exact self-similar solution at t = tf then allowed for a proper benchmark.
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To quantify the error between a numerical solution hnum and a benchmark hexact

solution at t = tf , three standard function-space norms are used [12]:

‖hnum(x, tf )− hexact(x, tf )‖L∞ = max
x∈[`,L]

|hnum(x, tf )− hexact(x, tf )| , (4.1a)

‖hnum(x, tf )− hexact(x, tf )‖L1 =

∫ L

`

|hnum(x, tf )− hexact(x, tf )| dx, (4.1b)

‖hnum(x, tf )− hexact(x, tf )‖L2 =

√∫ L

`

|hnum(x, tf )− hexact(x, tf )|2 dx. (4.1c)

Using a second-order trapezoidal rule for the integrals, the integrals definitions in

Equations (4.1) are discretized and expressed in terms of the grid functions to define

the ‘errors’:

L∞error ≡ max
0≤i≤N

∣∣hMi − hexact(xi, tf )
∣∣ , (4.2a)

L1
error ≡ ∆x

{
1

2

[ ∣∣hM0 − hexact(x0, tf )
∣∣+
∣∣hMN − hexact(xN , tf )

∣∣ ]
+

N−1∑
i=1

∣∣hMi − hexact(xi, tf )
∣∣ } , (4.2b)

L2
error ≡

[
∆x

{
1

2

[∣∣hM0 − hexact(x0, tf )
∣∣2 +

∣∣hMN − hexact(xN , tf )
∣∣2]

+
N−1∑
i=1

∣∣hMi − hexact(xi, tf )
∣∣2}]1/2

,

(4.2c)

where M is the time step at which tM = tf .

Since the solution actually has a corner (derivative discontinuity) at the nose

(wavefront) xf (t) such that h
(
xf (t), t

)
= 0, the propagating gravity current is in fact

only a weak solution to the PDE [12]. Therefore, the L∞ norm is not expected to be

a good one to measure the error, and it is not expected the solution would ‘live’ in

this function space. Nevertheless, numerical results showed convergence in the L∞

norm. The natural functional space for solutions of Equation (2.1) is the space of

integrable functions, i.e., L1. Indeed, excellent second-order convergence is observed

in this norm. For completeness, the L2 norm (commonly the function-space setting

for parabolic equations [12, Ch. 7]) was considered as well. While convergence close
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to second order was observed in this norm as well, it was clearly not the ‘natural’ one

for these problems either.

For the estimated-order-of-convergence study, ∆x was successively halved on a

domain of fixed length, such that on the cth iteration of the refinement, the grid

spacing was ∆xc = ∆x0/2
c−1, where ∆x0 was the initial grid spacing. Doing so

ensured a set of common grid points (corresponding to the same physical locations)

between successively refined grids. The order-of-convergence was estimated from

the error in the three norms considered, based on the expectation that at the cth

refinement, the error Lerror is proportional to (∆xc)
p, where p represents the estimated

order-of-convergence to be determined. Hence, for any of the three Lerror functions

defined in Equations (4.2) above, it can be shown that

p =
1

c− 1
log2

[
Lerror(∆x0)

Lerror(∆xc)

]
, (4.3)

where Lerror(∆x) is the norm of the error evaluated on the grid with spacing ∆x.

In all studies in this section, a preliminary grid with N = 101 nodes was selected,

and would remain the coarsest grid for the refinement study. Given the (formally)

unconditionally stable nature of the scheme, ∆t = 2∆x was selected for the refinement

studies without loss of generality. From a computational standpoint, it is desirable

that time step and grid spacing are of the same order of magnitude in the estimated-

order-of-convergence study.

4.1.1 Central Release of a Fixed Fluid Mass (No Boundary Effects)

For this benchmark, a symmetric domain x ∈ [−L,+L] was considered. A fixed

mass of fluid (i.e., α = 0 in the volume constraint in Equation (2.3)) was released

with an initial shape that was symmetric about x = 0. The final simulation time

tf was such that the gravity current did not reach x = ±L for t ≤ tf . Since the

fluid mass was constant and the BCs are imposed at x = ±L (where h = 0 initially

and remained so for all t ≤ tf , by construction), their discretization simply reduces

to the simplest cases, i.e., Equations (3.15a) and (3.14b). Thus, the BCs for this
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Fig. 4.1. Estimated order-of-convergence of a ‘centrally released’ fixed
fluid mass propagating in both directions in a uniform-width HS cell
(n = 0) for the case of (a) a Newtonian fluid (r = 1), (b) a Shear-
thinning fluid (r = 0.7), and (c) a Shear-thickening fluid (r = 1.6).
The currents’ shapes are plotted from early times (purple/dark) to
late times (green/light). In all cases, the volume of fluid is fixed
V = 2.4902×10−5 m3 and b1 = 0.01739 m. The currents were released
at t0 = 1 s and spread until tf = 3.5 s.

study are simply linear Neumann (no flux or homogeneous) BCs, and they do not

influence the order of convergence of the overall scheme. Therefore, this study verifies

that the current approach to the treatment of the nonlinearity ψ, and its weighted

averages appearing in the spatially discretized operator Ld in Equation (3.3), delivered
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the desired second-order accuracy in space. Coupled with the Crank–Nicolson time-

stepping’s second-order accuracy in time, second order of convergence was expected

to be seen in this refinement study.

As stated above, the exact self-similar solution to Equation (2.1) provided by

Ciriello et al. [50] (and discussed in the Appendix) was evaluated at t = t0 and

mirrored about x = 0 as the IC. Upon evolving this IC numerically up to t = tf ,

the numerical profile was compared to the same exact solution now evaluated at

t = tf . Hence, in accordance with the assumptions required to obtain this exact

solution in [50], this first convergence study was limited to a uniform-width HS cell,

i.e., n = 0.

Figure 4.1 shows the propagation of constant-mass viscous gravity current of three

different fluids: (a) Newtonian, (b) shear-thinning and (c) shear-thickening power-law.

The simulations indicate that currents propagate symmetrically about the center of

the domain (x = 0). The sharp moving front xf (t) was accurately captured in these

simulations on fairly modest (i.e., coarse) grids, without any signs of numerical in-

stability or need for special treatment of the derivative discontinuity. The error was

computed as a function of ∆x during the grid refinement, and showed second-order

convergence. This numerical example thus indicates that the proposed approach to

treating the implicit nonlinear ψ terms, specifically their evaluation at n+1/2, is con-

sistent with the desired second-order accuracy. The estimated order-of-convergence,

calculated via Equation (4.3), is summarized in Table 4.2 for each of the above bench-

marks. As expected, while convergence is observed in all three norms, the L1 norm

consistently exhibits second-order convergence across all cases.

It should be noted that the restriction on tf , is necessary so that the current

does not reach the domain boundaries, is critical since the chosen benchmark exact

solution only describes the ‘spreading’ behavior of the current and not its ‘levelling’

(once it reaches the no-flux boundaries at x = ±L). Indeed, the levelling regime

possesses its distinct self-similar behavior (see, e.g., [54,72]), which will be simulated

and investigated in Section 5.4.2.
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Table 4.2.
Estimated order-of-convergence p for a ‘centrally released’ fixed fluid
mass propagating in both directions in a uniform-width HS cell (n =
0) for the case of (a) a Newtonian fluid (r = 1), (b) a Shear-thinning
fluid (r = 0.7), and (c) a Shear-thickening fluid (r = 1.6). Orders p
are evaluated between successive grid refinements via Equation (4.3),
from the data shown in Figure 4.1.

∆x L∞error order L1
error order L2

error order

7.5× 10−3 4.32× 10−5 – 1.38× 10−6 – 5.46× 10−6 –

3.75× 10−3 1.38× 10−5 1.64 4.37× 10−7 1.54 1.42× 10−6 1.94

1.875× 10−3 1.46× 10−5 0.78 9.78× 10−8 1.91 8.99× 10−7 1.30

9.375× 10−4 1.25× 10−6 1.70 1.47× 10−8 2.19 7.07× 10−8 2.09

4.6875×10−4 1.32× 10−6 1.26 5.54× 10−9 1.99 4.21× 10−8 1.76

(a)

∆x L∞error order L1
error order L2

error order

7.5× 10−3 5.01× 10−6 – 8.83× 10−7 – 1.39× 10−6 –

3.75× 10−3 1.39× 10−5 −1.47 2.26× 10−7 1.97 1.23× 10−6 1.76

1.875× 10−3 1.73× 10−6 0.77 3.86× 10−8 2.26 1.47× 10−7 1.62

9.375× 10−4 1.00× 10−6 0.77 1.06× 10−8 2.13 5.97× 10−8 1.51

4.6875×10−4 8.23× 10−7 0.65 3.37× 10−9 2.01 2.91× 10−8 1.39

(b)

∆x L∞error order L1
error order L2

error order

7.5× 10−3 2.12× 10−4 – 6.99× 10−6 – 2.69× 10−5 –

3.75× 10−3 3.36× 10−5 2.66 8.71× 10−6 3.00 3.73× 10−6 2.85

1.875× 10−3 1.72× 10−5 1.81 4.11× 10−7 2.04 1.39× 10−6 2.14

9.375× 10−4 1.05× 10−5 1.44 5.13× 10−8 2.36 5.10× 10−7 1.91

4.6875×10−4 6.64× 10−6 1.25 1.97× 10−8 2.12 2.13× 10−7 1.75

(c)
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4.1.2 Propagation of a Fixed Mass of Fluid in a Single Direction

To ascertain the accuracy of the discretization of the nonlinear BCs, a one-sided

domain x ∈ [`, L] with ` = 0 was considered once again. For the case of the current

spreading away from the origin, the BC at the ‘left’ end of the domain (from which the

fluid is released) is now non-trivial, and its proper discretization is key to the overall

order of the convergence of the scheme. Conveniently, for a fixed mass (α = 0), the

BCs still reduce to homogeneous Neumann conditions (recall Section 3.3), however,

h is no longer zero at the boundary (as was the case in Section 4.1.1). Now, this

successively ‘more complicated’ case was benchmarked.

Once again it was ensured that tf was such that the current did not reach the

downstream (x = L) domain end. Then, similar to Section 4.1.1, the exact solution

of Ciriello et al. [50] was used as the benchmark exact solution; again, this required

restricting to uniform-width HS cells (i.e., n = 0).

Figure 4.2 and the accompanying Table 4.3 show second-order estimated rate-of-

convergence in the L1 norm. This result indicates that the decision to implement

the scheme on a staggered grid, in which case the Neumann BCs (for α = 0) are

conveniently discretized using two-point central differences at the boundary, is indeed

the correct decision. Indeed, for the case of a Newtonian fluid, there is little to no

variations in the values of the three norms of the error for the current spreading

centrally in two directions versus in only one direction.

4.1.3 Propagation in a Single Direction with Mass Injection

Finally, the numerical scheme was subjected to its most stringent test yet. That

is, the estimated order of convergence under mass injection conditions (α 6= 0) was

computed. The injection occurs near the cell’s origin while the current propagates

away from this location. Since α 6= 0, the fully nonlinear forms of the BCs as given

in Equations (2.5) and (2.7) now come into play.
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Table 4.3.
Estimated order-of-convergence for a fixed fluid mass propagating in
a single direction in a uniform-width HS cell (n = 0) for the case of
(a) a Newtonian fluid (r = 1), (b) a Shear-thinning fluid (r = 0.5),
and (c) a Shear-thickening fluid (r = 1.5). Orders p are evaluated
between successive grid refinements via Equation (4.3), from the data
shown in Figure 4.2.

∆x L∞error order L1
error order L2

error order

7.5× 10−3 4.32× 10−5 – 6.84× 10−7 – 3.86× 10−6 –

3.75× 10−3 1.38× 10−5 1.64 2.36× 10−7 1.53 1.00× 10−6 1.87

1.875× 10−3 1.46× 10−5 0.78 4.88× 10−8 1.90 6.36× 10−7 1.27

9.375× 10−4 1.25× 10−6 1.70 7.32× 10−9 2.18 5.00× 10−8 2.07

4.6875× 10−4 1.32× 10−6 1.26 2.77× 10−9 1.99 2.97× 10−8 1.74

(a)

∆x L∞error order L1
error order L2

error order

7.5× 10−3 9.03× 10−6 – 2.98× 10−7 – 9.27× 10−7 –

3.75× 10−3 3.93× 10−6 1.20 5.66× 10−8 2.40 2.90× 10−7 1.68

1.875× 10−3 2.30× 10−6 0.99 1.78× 10−8 2.03 1.24× 10−7 1.45

9.375× 10−4 8.58× 10−7 1.13 4.81× 10−9 1.98 2.85× 10−8 1.67

4.6875×10−4 5.08× 10−7 1.04 1.01× 10−9 2.05 1.41× 10−8 1.51

(b)

∆x L∞error order L1
error order L2

error order

7.5× 10−3 4.35× 10−5 – 1.15× 10−6 – 5.37× 10−6 –

3.75× 10−3 2.15× 10−5 1.02 6.25× 10−7 0.88 2.17× 10−6 1.31

1.875× 10−3 1.18× 10−5 0.94 7.09× 10−8 2.01 7.22× 10−7 1.45

9.375× 10−4 5.96× 10−6 0.96 2.66× 10−8 1.81 2.57× 10−7 1.46

4.6875×10−4 3.22× 10−6 0.94 1.13× 10−8 1.67 9.31× 10−8 1.46

(c)
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Fig. 4.2. Estimated order-of-convergence study for the release of a
fixed fluid mass propagating in a single direction (away from cell’s ori-
gin) in a uniform-width HS cell (n = 0) for the case of (a) a Newtonian
fluid (r = 1), (b) a Shear-thinning fluid (r = 0.5), and (c) a Shear-
thickening fluid (r = 1.5). Once again, the currents were released at
t0 = 1 s and spread until tf = 3.5 s. The currents’ shapes are plotted
from early times (purple/dark) through late times (green/light). The
remaining model parameters for these simulations are the same as in
Figure 4.1.

Unlike the previously discussed cases of the release of a fixed fluid mass, a straight-

forward exact solution to the nonlinear ODE emerging from the self-similar analysis

is not available. For a variable mass, obtaining a benchmark solution from the self-
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Fig. 4.3. Estimated order-of-convergence study for a variable-mass
gravity current with injection at x = ` on the truncated domain x ∈
[`, L] with ` = ∆x0. Simulations are shown for the case of (a) a
Newtonian fluid in a uniform-width HS cell (r = 1, n = 0) with
injection exponent α = 1, and (b) a shear-thickening fluid in a variable
width cell (r = 0.6, n = 0.6) with injection exponent α = 1.5. The
remaining model parameters for these simulations were the same as
in Figure 4.1.

similar analysis is significantly more challenging, given that the nonlinear ODE had

be solved numerically (see the Appendix). Despite the availability of accurate stiff

ODE solvers, such as ode15s in Matlab, it is quite difficult to map the numerical

solution of the self-similar ODE onto the selected computational grid, while main-

taining the desired order of accuracy throughout this procedure. Therefore, in this

numerical study, it was easier to use a ‘fine-grid’ numerical solution as the bench-

mark solution. This benchmark solution was then compared against the solutions

on successively coarser grids to establish the estimated order of convergence of the

numerical scheme.

For this study, the simulation domain is x ∈ [`, L] with ` = ∆x0, so that xi=0 =

`−∆x0/2 and xi=N = L+∆x0/2, and the boundary points are at the same cell faces on

all grids during the refinement. The IC at t0 = 0 s is the one given in Equation (2.9)
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with a = 0.001, b = 0.35, c = 25. The solution was advanced numerically up to

tf = 1.5 s.

Figure 4.3 and the accompanying Table 4.4 show that the order of convergence of

the numerical method is second order in space and time in the L1 norm, as expected.

In this figure, to show some variety, two distinct but arbitrarily selected cases were

simulated: (a) a Newtonian fluid in a uniform-width HS cell (n = 0) with volume

growth exponent α = 1, and (b) a non-Newtonian (shear-thinning, r = 0.6) fluid in a

shaped HS cell (width exponent n = 0.6) with the volume growth exponent α = 1.5.

Second-order convergence was observed in both cases.

With this final numerical test, the formal truncation error of the proposed numer-

ical scheme is justified. This result is nontrivial because the PDE and the scheme are

both nonlinear, requiring subtle approximation on a staggered grid, across half-time

steps, and linearization of algebraic system via internal iterations.

4.2 Satisfaction of the Mass Constraint at the Discrete Level

Since the BCs derived in Section 2.2 (and discretized in Section 3.3) stem from the

mass conservation constraint (i.e., Equation (2.2) or Equation (2.3)), it is expected

that the proposed finite-difference scheme should produce a solution h(x, t) that sat-

isfies Equation (2.2) or Equation (2.3) to within O [(∆x)2 + (∆t)2] or better, if this

constraint is checked independently again after computing the numerical solution. To

verify this capability of the scheme, in this section, two cases are considered: (i) a

fixed fluid mass released near the origin (α = 0), and (ii) spreading subject to mass

injection (α > 0) near the origin. Both cases were studied on the domain x ∈ [`, L]

with ` = ∆x. The solution was evolved on the time interval t ∈ (t0, tf ], and the

volume error for each t was computed as∣∣∣∣∫ L

`

h(x, t)b(x) dx− (V0 + Vint
α)

∣∣∣∣ , (4.4)

where the x-integration was performed by the trapezoidal rule to O [(∆x)2] on the

staggered mesh, as before. It was expected that the volume error, as defined in Equa-
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Table 4.4.
Estimated order-of-convergence for a variable-mass gravity current
propagating in a single direction with injection at the origin of the
HS cell. Orders p are evaluated between successive grid refinements
via Equation (4.3), from the data shown in Figure 4.3. Orders are
tabulated for the case of (a) a Newtonian fluid in a uniform-width
HS cell (r = 1, n = 0) with injection exponent α = 1, and (b) a
shear-thickening fluid in a variable width cell (r = 0.6, n = 0.6) with
injection exponent α = 1.5.

∆x L∞error order L1
error order L2

error order

7.5× 10−3 1.63× 10−3 – 3.71× 10−4 – 7.41× 10−4 –

3.75× 10−3 7.98× 10−4 1.06 8.77× 10−5 2.08 2.50× 10−4 1.57

1.875× 10−3 3.82× 10−4 1.06 2.07× 10−5 2.08 8.44× 10−5 1.57

9.375× 10−4 1.78× 10−4 1.07 4.81× 10−6 2.09 2.77× 10−5 1.58

4.6875×10−4 7.60× 10−5 1.11 1.03× 10−6 2.12 8.39× 10−6 1.61

(a)

∆x L∞error order L1
error order L2

error order

7.5× 10−3 8.55× 10−2 – 7.27× 10−3 – 1.56× 10−2 –

3.75× 10−3 4.45× 10−2 0.94 1.56× 10−3 2.22 5.12× 10−3 1.60

1.875× 10−3 2.23× 10−2 0.97 3.47× 10−4 2.20 1.69× 10−3 1.60

9.375× 10−4 1.06× 10−2 1.00 7.74× 10−5 2.18 5.45× 10−4 1.61

4.6875×10−4 4.95× 10−3 1.05 1.62× 10−5 2.20 1.63× 10−4 1.64

(b)
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tion (4.4), was O [(∆x)2 + (∆t)2], the same as the overall scheme. In this numerical

study, the selection of the IC is no longer critical, as there is no comparison with an

exact self-similar solution. Accordingly, generic ICs from Equations (2.8) and (2.9)

were selected.

4.2.1 Fixed Mass Release (α = 0)

In this case, the IC was a cubic polynomial determined from Equation (2.8) with

γ = 3, x0 = 0.25 m. The error in the total fluid volume as a function of t was

compared with the initial one. Figure 4.4 shows that, while numerical error did build

up in the total volume, the initial volume remained conserved to within (or better

than) (∆t)2 = 10−6.

4.2.2 Mass Injection (α > 0)

A more stringent test of conservation properties of the proposed scheme was con-

ducted by applying the nonlinear BC associated with imposed mass injection at one

end. For this case, the IC was taken to be the function in Equation (2.9) with

a = 0.001 m, b = 0.35 m and c = 25 m−1 and x0 = 1
c

ln a
b
. A combination of n, r

and α values were considered to highlight the conservation properties across different

physical regimes. Figure 4.5 shows that, in all cases, the volume constraint was prop-

erly respected; while the volume error built up, it remained small (within or better

than (∆t)2 = 10−6).
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Fig. 4.4. Results of the conservation study for the release of a fixed
fluid mass. To highlight the scheme’s capabilities, each case features
a different combination of a power-law non-Newtonian fluid (r) and
HS cell (n): (a) r = 1, n = 0, (b) r = 0.7, n = 0.7, and (c) r =
1.5, n = 0.5. The currents were allowed to propagate from t0 = 0 s
up to tf = 2.5 s, through 2500 time steps (⇒ ∆t = 10−3 s). In all
cases, α = 0 and V0 = Vin = 2.4902× 10−5 m3. The remaining model
parameters for these simulations are the same as in Figure 4.1.
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Fig. 4.5. Results of the conservation study for mass injection. The
volume exponent α was varied through three separate cases: (a) α = 1
for a Newtonian fluid in uniform HS cell (r = 1, n = 0), (b) α = 1.5 for
a shear-thinning fluid in a variable width HS cell (r = 0.7, n = 0.7),
and (c) α = 2 for a shear-thickening fluid in a variable width HS cell
(r = 1.5, n = 0.5). In all cases, Vin, t0, tf , ∆t are as in Figure 4.4.
The remaining model parameters for these simulations are the same
as in Figure 4.1.
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5. SECOND-KIND SELF-SIMILARITY DURING

SPREADING AND LEVELING OF GRAVITY

CURRENTS IN SHAPED HELE-SHAW CELLS

Having established the convergence and conservation properties of the proposed im-

plicit, finite-difference scheme in Chapter 4, there is now an accurate numerical tool

with low computational overhead that can be used to study second-kind self-similarity

of viscous gravity current propagation. Specifically, of interest in the below discussion

is the case of the release of a fixed mass of Newtonian fluid. After being released at

a finite distance x0 away from the origin (i.e., xf (t = 0) = x0) in a variable-width

HS cell, the fluid spreads towards the channel origin as shown in Figure 5.1. In this

case, the emergence of an an extra length scale, x0 (in addition to the channel length,

L, where now ` = 0) complicates the dimensional analysis of the flow. This chapter

is dedicated to the development of the nonlinear eigenvalue problem emerging in the

analytical treatment of flows of this type, and the use of the numerical scheme from

Chapter 3 to understand the possible second-kind self-similar behaviors and further

elucidate previous experimental data.

5.1 Flow Domain and Characteristics

For the purposes of this chapter, the flow domain is a Hele-Shaw (HS) cell of

variable width in the x-direction. As before, the width of the HS cell is defined by a

power-law in x, i.e., b(x) = b1x
n with b1 > 0 and n ∈ (0, 1) being constant. The HS

cell is assumed to be either completely porous (φ = 1) or have a constant porosity

(φ = const.), which could be absorbed into the definition of the width function.

The HS cell is vertically unconfined and possesses an impermeable bottom surface.

Additionally, to compare with available experiments, the fluid is restricted to be



45
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h(x,t)

L – x0
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(0,0)

b(x) = b1 x
n

Fig. 5.1. Flow geometry associated with the study of a Newtonian
fluid (r = 1) in a variable-width HS cell. The location of lock gate,
x = x0, introduces an additional length scale into the mathematical
model. The HS cell is considered to be completely porous medium
(i.e., φ = 1). Figure reproduced and adapted with permission from
[Zheng et al., Influence of heterogeneity on second-kind self-similar
solutions for viscous gravity currents, J. Fluid Mech., vol. 747, p. 221]
© Cambridge University Press 2014.

Newtonian (r = 1). Accordingly, the dimensionless exponents p and q appearing in

the governing PDE (2.1) simplify to p = n, q = 3n (recall Table 2.2); this definition

of the exponents is directly inserted into the below mathematical model. Finally, the

fluid volume is kept constant, with no mass injection imposed at the boundaries, i.e.,

V(t) = Vin = const.

In line with experiments supplementing the discussion in this chapter, the fluid is

assumed to be initially contained behind a release- or lock-gate located at x = x0. As

depicted in Figure 5.1, upon opening the gate, the current immediately slumps and

begins to spread ‘leftwards’, in direction of the origin at x = 0 m, where the width

vanishes (b(0) = 0). Therefore, the nose of the current is initially at xf (0) = x0. The

current spreads until it reaches the origin at a time of ‘closure’, t = tc (also termed

‘touch-down’ time in prior literature [38]); this period t ∈ [0, tc]) is hereafter termed
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‘pre-closure’. Thereafter, the current levels at x = 0 until h(x, t→∞) = const.; this

period t ∈ [tc,∞) is hereafter referred to as ‘post-closure’.

5.2 Mathematical Model

The closure time tc can be determined numerically using the scheme developed

and benchmarked in previous chapters, or it can be obtained from experiments. This

additional time scale can be infinite, if the current never reaches the origin, but for

the present purposes it is assumed that tc if finite for reasons made clear below. Re-

gardless, tc, or equivalently x0, emerge as a extra time, or length, scale that makes

the use of of a scaling analysis alone to obtain a self-similar solution ambiguous. For

example, x0 now appears in the global mass conservation constraint Equation (2.3),

which is must be implemented over the portion of the domain behind the lock-gate,

i.e., x ∈ [x0, L]. Indeed, it is no longer that complete self-similarity with respect

to a single similarity variable can be observed [23]. Nevertheless, should any self-

similar behavior be expected or observed? The answer is ‘yes’. In this situation, the

phase-plane formalism can be used to obtain the latter answer; see, e.g., Gratton and

Minotti’s [51] application of this method, which is lucidly explained in the classical

book by Sedov [73]. The resulting analysis of the governing equations in an appropri-

ate phase plane can predict the existence of two self-similar regimes, one in pre- and

one in post-closure. It is expected that any self-similarity variable would explicitly

feature tc or x0. It is the goal of this chapter to confirm these theoretical predictions.

Regardless of the questions arising regarding the scaling analysis, the governing

thin-film equation (2.1) introduced in Section 2.2, in which the right-hand side corre-

sponds a fluid flux re-expressed in terms of the gradient of the fluid interface’s shape

(∂h/∂x) remains valid. For the situation in Figure 5.1, the nonlinearity conveniently

reduces to ψ(h) = h (recall Table 2.2). To apply the phase-plane analysis idea [51],

it is convenient to follow [38] (see also, e.g., [54]) and first re-write the governing

equation, which is second-order in x, as a system of two first-order equations. This
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mathematical manipulation has physical significance. Under the lubrication approxi-

mation, the pressure distribution was hydrostatic and Darcy’s law and the continuity

equation take the form

u = −Ax2n∂h

∂x
, (5.1a)

∂h

∂t
+

1

xn
∂

∂x
(xnhu) = 0, (5.1b)

where the constant A = (∆ρgb2
1)/(12µ0) retains its definition from Table 2.2, and u

is the Darcy (‘superficial’) velocity. Obviously, Equation (5.1a) can substituted into

Equation (5.1b) to yield the PDE (2.1) introduced in Section 2.2.

Assuming that tc < ∞, a shifted time τ = tc − t is introduced. This shifted

time represents the time left for the current to reach the origin, and its definition

necessitates the use of numerical simulations (or experiments) to determine the closure

time tc a priori. (In the case that tc → ∞, τ becomes indeterminate, and the

transformation and subsequent phase plane analysis become invalid. Of course, the

case of tc < ∞ is the most interesting one, and it allows for a discussion of both

spreading and leveling of the flow.) The next step in the phase-plane formalism is to

render Equations (5.1a) and (5.1b) dimensionless by using the independent variables

as dimensional scales. Specifically, through the transformations

u(x, t) =
x

τ
U(x, τ), (5.2a)

h(x, t) =
1

A

x2(1−n)

τ
H(x, τ), (5.2b)

the quantities U(x, τ) and H(x, τ) become the dimensionless analogs to the Darcy

velocity and current height, respectively. Note that since, u ≤ 0 for the current

moving towards origin, U ≤ 0 as well, while H ≥ 0 for the equal and opposite reason.

Substituting Equations (5.2a) and (5.2b) into Equations (5.1a) and (5.1b), the

governing equations are re-written in terms of H and U (see [38]):

x
∂H

∂x
+ 2(1− n)H + U = 0, (5.3a)

τ
∂H

∂τ
−H − x ∂

∂x
(HU)− (3− n)HU = 0. (5.3b)
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Anticipating a self-similar solution, a second-kind self-similar variable of the form

ξ = x/τ δ is introduced (not to be mistaken with the first-kind similarity variable η

emerging from scaling analysis which was discussed previously in Section 1 and the

Appendix A). Critically, δ is unknown here, and ξ explicitly features tc through τ .

The assumption of self-similarity now necessitates that H = H(ξ) and U = U(ξ).

This allows the governing Equations (5.3) to be reduced to a system of one-way

coupled ODEs:

dU

dH
=
H[(n+ 1)U − 2(1− n)δ + 1]− U(U + δ)

H[2(1− n)H + U ]
, (5.4a)

d ln |ξ|
dH

= − 1

U + 2(1− n)H
. (5.4b)

Equations (5.4a) represents an autonomous ODE for U(H) depending on a parameter

δ. Once U(H) is known, then Equation (5.4b) is used to find ξ(H), from which the

the self-similar profiles H(ξ) and U(ξ) can be reconstituted from U(H) (i.e., ‘re-

parameterized’ in terms of ξ). However, before any of these ODEs can be solved,

a suitable set of BCs must be specified. Note that the success of the self-similar

transformation to arrive at the system of Equations (5.4) already suggests that a

self-similar solution might exist. However, since δ is unknown, the problem becomes

an eigenvalue problem. With a suitable set of BCs, it is expected that both U(H)

and δ emerge as an ‘eigenpair’ solution to Equation (5.4a).

Since Equation (5.4a) is a planar ODE, it follows that BCs arise as beginning

and endpoints of integral curves in the (H,U) plane. In order to identify the integral

curves of physical significance in this (H,U) space, i.e., those solutions U(H) that

correspond to an observable self-similar behaviour, care must be taken. To identify

the potentially meaningful integral curves, first the ODE’s critical points in the phase

plane must be found. Following [38, 51], critical points are found by setting the

numerator and denominator in Equation (5.4a) to 0 simultaneously. Thus, the points
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denoted below as O, A and B are obtained. The final critical point D is obtained by

setting the denominator in Equation (5.4a) to ∞. In summary:

O : (H,U) = (0, 0), (5.5a)

A : (H,U) = (0,−δ), (5.5b)

B : (H,U) =

(
1

2(1− n)(3− n)
, − 1

3− n

)
, (5.5c)

D : (H,U) =

(
−∞, 2(1− n)δ − 1

n+ 1

)
. (5.5d)

Points A and D are a function of the eigenvalue δ, showing how the BCs will ‘conspire’

with the ODE to determine the appropriate eigenpair solution.

As described in [38], point O corresponded to the instant at which the current

reached the point of zero permeability (i.e., the point of ‘closure’ at the channel’s

origin, corresponding to x = 0 or ξ = 0). Meanwhile, point A corresponded to the

moving front of a spreading current (at x = xf (t) or ξ = ξN). Point B does not

have a physical interpretation in the present context. Point D corresponded to the

leveling (post-closure) behavior. The integral curves connecting O and A, and D and

O in a phase plane thus represent the sought self-similar solutions to the problem

during the pre-closure (t < tc) and post-closure (t > tc) regimes. Having identified

the integral curves of interest, the task of finding a self-similar solution has been

reduced to a nonlinear eigenvalue problem. Specifically, the question now is, given n,

what value(s) of δ allow for the existence of phase-plane curves that connect point

O to A and point D to O. The nonlinear eigenvalue problem can be solved using a

‘shooting’ procedure (for details see, [38, Section 2.1.2] or [51]). For instance, for the

case of n = 0.5, the value of δ was identified to single precision as δ ' 1.542269.

The corresponding phase-plane is depicted in Figure 5.2, verifying the existence of

the sought-after solutions.

In this manner, the existence of two distinct self-similar regimes was conclusively

proved and value of exponent δ was determined. To proceed with the current analy-

sis, it was desired to obtain the analytical height function H(ξ) which could then be
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Fig. 5.2. Phase-plane portrait of the ODE (5.4a) describing the self-
similar propagation of a Newtonian current in a shaped HS cell with
width exponent n = 0.5. The eigenvalue δ appearing in the definition
of the similarity variable ξ was calculated to be 1.542269 . . .. The
integral curves OA (solid) and DO (dashed) represent self-similar pre-
and post-closure solutions, respectively.

compared with numerical and experimental data. To derive this profile, both Equa-

tions (5.4a) and (5.4b) were broken into a system of ODEs. This system was subject

to the BCs defined in Figure 5.2 in the form of the slopes at the critical points.

It is inconvenient to go back and solve Equation (5.4b) for ξ(U), after solving

Equation (5.4a), and re-parametrizing U(ξ) and H(ξ). A mathematical ‘trick’ can be

used to avoid this inconvenience. First, the similarity variable ξ is scaled by its value

at the nose, i.e., ξN (denoted by ξf in [38]), then the channel origin is defined as the

point at which ξ/ξN = 0 and the moving front of the current is at ξ/ξN = 1. Then,

after some algebra, it is possible to rewrite Equations (5.4) as

d

d ln |ξ/ξN |

HU
 =

 −[2(1− n)H + U ](
−H[(n+ 1)U − 2(1− n)δ + 1] + U(U + δ)

)
/H

 , (5.6)
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where δ ≈ 1.5423 for n = 0.5 is already known. An analogous system of ODEs can

be derived for the case of the propagation of a power-law non-Newtonian fluid in a

variable-width Hele-Shaw cell [61]:

d

d ln |ξ/ξN |

HU


=

 −[(r + 1)(1− n)H + U |U |r−1](
−H[(n+ 1)U − (r + 1)(1− n)δ + 1] + U |U |r−1(U + δ)

)
/H

 . (5.7)

Similar to Equations (5.5), a set of critical points for the above ODE system can be

derived to determine integral curves of physical importance in the corresponding phase

plane. The critical points carry the same physical meanings as described previously,

but they are now given by

O : (H,U) = (0, 0), (5.8a)

A : (H,U) = (0,−δ), (5.8b)

D : (H,U) =

(
−∞, (1 + r)(1− n)δ − 1

n+ 1

)
. (5.8c)

The autonomous systems of ODEs (5.6) or (5.7) can be solved using a shooting

method, e.g., as described above (see also Appendix A).

Returning to the specific case of a Newtonian fluid (r = 1), for pre-closure, a

small perturbation is introduced to point A by taking H|A = 10−3, while the scaled

velocity is initialized using the linearization of the ODE at A as U |A = H|A · [(3 −

n)δ − 1]/(2δ) − δ via Equation (5.5b). Equation (5.6) is then be solved by shooting

‘backwards’ from A to O, using a stiff numerical integration algorithm (e.g., ode15s in

Matlab). Likewise, the post-closure solution is obtained by initializing the solution

at O: H|O = 10−3 was the small perturbation and using the linearization of the ODE

to set U |O = −H|A · [2(1− n)δ − 1]/δ.

At this point in the analysis, a self-similar solution to the governing PDE has been

obtained, albeit numerically. However, any additional analysis and interpretation

of this solution requires rescaling back to the physical variables, which require the
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Table 5.1.
A summary of experimental parameters for a 95% glycerol-water mix-
ture at 20°C used as the working fluid.

Quantity Value Units

Channel length L 0.75 m

Lock-gate location x0 0.4897 m

Width coefficient b1 0.01732 m1−n

Width exponent n 0.5 –

Total released mass w 0.3155 kg

Density ρ 1250.8 kg/m3

Dynamic viscosity µ0 0.62119 Pa·s

explicit knowledge of at least tc and a ‘pre-factor’ b, which is discussed in detail

in below sections. Therefore, the goal now is to determine these quantities using

the proposed finite-difference scheme, and to ascertain the physical validity of the

second-kind self-similar solution obtained from phase-plane analysis in this section.

5.3 Experimental Study of a 95% Glycerol-Water Mixture in a Converg-

ing Hele-Shaw Cell

An experiment replicating the flow depicted in Figure 5.1 was performed with

a 95% glycerol-water mixture in a horizontal HS cell of variable width by Zhong

Zheng (see also discussion in [38]). The experiment was conducted at 20°C, and

the corresponding fluid properties were determined using standard fits in [70, 71]. A

summary of the geometrical parameters and fluid properties necessary to analyze the

experiments are given in Table 5.1.

A constant volume of the mixture, which is assumed to behave as a Newtonian

fluid (r = 1) was released from behind a lock-gate gate and allowed to spread towards

the origin of the horizontal HS cell having a width exponent n = 0.5. As described
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46.5 s

47.6 s

48.5 s

50.8 s

55.3 s

74.7 s

44.0 s

15. 6 s

Fig. 5.3. Experimental time-lapse of a gravity current profile h(x, t)
leveling in a variable-gap Hele-Shaw cell. A 95% glycerol-water at
20°C was released into the cell and photographed during the pre- and
post-closure. The cell was of length L = 0.75 m, and the release
gate was located at x0 = 0.4897 m. Per experiments, tc ≈ 44.03
s, so most of the shown time-lapse represents the leveling process.
(Unpublished figure courtesy of Dr. Zhong Zheng, used and adapted
with permission.)

in [38, Section 3], the shape of the current was photographed intermittently using

a USB camera, yielding some example profiles shown in Figure 5.3. The fluid was

colored blue using food dye to make its digital post-processing convenient. The lock-

gate’s location x0 was kept comparable to the length of the cell L to provide a longer

distance over which the current’s spreading behavior could be observed. Additionally,

it was assumed that given a longer period of time to spread, the current would have

forgotten its initial condition (its ‘boxy’ shape as it sat behind the lock-gate for t ≤ 0)
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and entered its pre-closure self-similar regime as t → tc (or τ → 0+). (This notion

of ‘loss of memory’ and how it relates to the concept of self-similarity is discussed in

more detail in Section 5.4.) Obtaining accurate experimental data of the current as

it approaches the origin becomes challenging as the flow is accelerated in accordance

with the transversely converging nature of the HS cell. Nevertheless, experiments

suggest that the current’s closure time (i.e., the time it takes to the reach xf (tc) = 0

from xf (0) = x0) is tc ≈ 44.03 s. Thereafter, the current entered the leveling, or

post-closure, regime.

Before we can apply any theory based on Equation (2.1), it is critical to ensure

that the experiments fall within the assumptions the lubrication approximation, i.e.,

the reduced Reynolds number (defined as the product of the transverse aspect ratio

and Reynolds number) has to be small. Assuming the streamwise length scale to be

x0, the transverse length scale is b1x
n
0 . The velocity scale is then simply taken to

be x0/tc. The lubrication approximation requires that Re = (ρb2
1x

2n
0 )/(µ0tc) is small,

i.e., Re � 1. For the experiments conducted in accordance with the parameters in

Table (5.1), one can conclude that Re ≈ 6.7 × 10−3, ensuring that the lubrication

approximation is valid.

Figure 5.3 shows a series of current profiles. The height of the current h(x, t)

was sampled intermittently at some fixed moments of time tn and at discrete spatial

locations xi. Then, this discretized shape was transformed, through the scaling in-

troduced in Equation (5.2b), to the profile H(x, τ). Based on self-similarity analysis,

it is expected that the experimental shape function H plotted against ξ/ξN should

agree well with the second-kind self-similar profile computed from the ODE in Equa-

tion (5.6). This agreement is, of course, contingent upon the gravity current having

forgotten its initial condition. As discussed below, the memory of the IC plays a sig-

nificant role in the pre-closure regime. Here, it is thus hypothesized that there exists

yet another time scale, tsim(< tc) after which the current has forgotten its IC and has

‘truly’ entered into the pre-closure self-similar regime. This hypothesis is substanti-
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ated below, using numerical simulations performed via the proposed finite-difference

scheme, which are compared to the experimental results.

5.4 Numerical Study of Pre- and Post-closure Self-similarity

To supplement the above mathematical analysis and the prior experimental study

discussed, numerical simulations are now undertaken. The simulations allow for the

closure time tc and the time tsim at which self-similarity sets in to be calcuated with

some degree of confidence.

5.4.1 Pre-closure Self-similarity Analysis

From the discussion in Section 5.2 (see also [3, 38, 51]), it is expected that in

second-kind self-similarity, xf (t)/xf (0) ∝ (τ/tc)
δ. From this expectation it follow

that (now replacing xf (0) with x0):

xf (t)

x0

= b

(
τ

tc

)δ
=⇒ xf (t)

τ δ
=
bx0

tδc
. (5.9)

Here, b is a ‘pre-factor’, which must be obtained from numerical simulations and/or

experiments that are accurate enough to determine whether the current has entered

in the self-similar regime. Since ξN = xf/τ
δ by definition, it follows that

ξN =
bx0

tδc
, (5.10)

where all terms on the right hand side are constant, restating the assumption in the

self-similarity analysis that the similarity variable ξ maintains the constant value ξN

at the current’s front. It then follows that, during the initial adjustment from the

initial condition, Equation (5.10) would not hold true. However, by t = tsim (to be

determined numerically), the adjustment would be complete, allowing for the pre-

factor b to be determined as the slope of the planar curve corresponding to plotting

xf (t)/x0 versus (τ/tc)
δ.

A numerical simulation for the experimental conditions described in Section 5.3

was performed. The IC should ideally correspond to the shape of the profile just after
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Fig. 5.4. Numerical study of the pre-closure self-similar regime for
a Newtonian gravity current (r = 1) in an HS cell with n = 0.5
(⇒ δ ≈ 1.5423). Simulations were conducted based on experimental
conditions (see Table 5.1) to (a) determine the time tsim ≈ 43.55 s
required to forget the influence of IC (yielding pre-factor b ≈ 0.59237),
and (b) compare self-similar current shape profiles H(ξ/ξN) between
the predictions of mathematical analysis, numerical simulation and
experiments. The pre-factor b ≈ 0.59237 and closure time tc ≈ 44.05
s obtained from simulations were used to determine the value ξN .
Experimental data was only available at t = 15.6 and 24.1 s. In (b),
thin curves correspond to the profile from numerical simulations.

the lock-gate is opened. However, exact knowledge of this initial shape is difficult to

obtain as the fluid shape adjusted quickly in the experiment. Instead, as a reasonable

approximation, a ‘boxy’ polynomial was selected by setting γ = 3 in Equation (2.8)

and using said profile as the IC h(x, t = 0) for the simulations. While this choice

may cause some deviation from the ‘real’ experimental conditions, the validity of this

choice can be ascertained by verifying that the simulated value of tc agrees well with

the the experimental estimate. On the other hand, the choice of IC is expected to

have an effect of on the value of tsim, which represented time required for the IC to

be forgotten.

The simulation was performed on the domain x ∈ [0, L], where L = 0.75 m in

accordance with the experimental setup. The domain was discretized into N = 6001
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grid points. The simulation was run from t0 = 0 s up to tf = 55 s, over the course

of M = 5501 time steps. The remaining parameters such the volume of the current,

lock gate location, etc. were taken as specified in Table 5.1. The simulations yielded

a closure time of tc = 44.05 s, showing striking agreement with the experimental

measurement. As shown in Figure 5.4a, the IC takes approximately tsim = 43.55 s to

be forgotten. This observation is made by following trend of the scaled nose position

xf (t)/xf (0) against the scaled time (τ/tc)
δ. Requiring that these quantities become

approximately linearly related, the threshold value tsim was obtained. This numerical

calculation yielded the pre-factor value of b ≈ 0.59237.

Figure 5.4b shows the self-similar gravity current shape H(ξ/ξN) as obtained from

the mathematical analysis in Section 5.2, the numerical simulation of Equation (2.1)

and experimental measurements. The universal self-similar profile was obtained by

solving the ODE (5.6) using the procedure described in Section 5.2. The numerical

profiles were obtained by scaling the solution to Equation (2.1) using the transfor-

mation in Equation (5.2b) in the time period t ∈ [tsim, tc]. While the analytical and

numerical profiles show relatively good qualitative agreement, neither profiles agree

with experimental data available at t = 15.64 and 24.12 s. It is thus concluded that

the primary cause of this disagreement is the fact that the experimental data was

recorded at times much earlier than onset of self-similarity at tsim. Although it was

expected that the experimental results would show agreement with self-similar pro-

files (from either phase-plane analysis or numerical simulation), the present discussion

centering around tsim suggests this would not be possible as the IC was not forgotten.

In closing, it is to be noted that, as t→ tc (τ → 0+), the self-similar behavior of the

current rapidly breaks down as seen in Figure 5.4b, where the late-time green/light

profiles lie appreciable far apart from the rest of the early-time purple/dark self-similar

curves. This may indicate the existence of secondary self-similar regime, but this is

beyond the scope of the present research. It would also be of interest to determine

whether changing the HS cell geometry or initial lock-gate location might decrease

tsim. As it stands, for the experimental conditions detailed in Table 5.1, it is expected
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the current is fully in the pre-closure self-similarity regime for the extremely short

time period of t ∈ [tsim, tc] ≈ [43.55 s, 44.05 s].

5.4.2 Post-closure Self-similarity Analysis

The theory of the post-closure or leveling self-similar regime was firmly established

in Section 5.2. However, unlike during pre-closure, the position of the current’s front

xf (t) is now fixed throughout the period of interest; specifically, it remains at the

origin, i.e., xf (t > tc) = 0. This fact necessitates the replacement of xf (t) as a

dynamic length scale. Therefore, the height of the current at the origin of the channel,

h(0, t), which is positive, is used as the dynamic length scale. Now, the self-similar

behavior sought corresponded to integral curve connecting point D in the phase plane

to point O (recall Figure 5.2). Here, the exact value of U(ξ) = UD is already known

from solving the nonlinear eigenvalue problem in Section 5.2. Hence, substituting

u = (xUD)/τ in Equation (5.1b), we obtain

∂h

∂t
+

1

xn
∂

∂x

(
xn
x

τ
UDh

)
= 0 =⇒ ∂h

∂t
+
UD

τ

[
1

xn
∂

∂x

(
xn+1h

)]
= 0. (5.11)

Changing variables from t to τ , and considering just the limiting behavior of the

solution as x→ 0+ (i.e., at the leveling point), Equation (5.11) becomes

∂h

∂τ
≈ UD

τ
(n+ 1)h =⇒ h(0, τ) ≈ C|τ |κ, (5.12)

where the exponent is κ = (n + 1)UD. The constant of integration, C must be

obtained from numerical simulations. Introducing h∞ = limt→∞ h(0, t), it follows

that h(0, t)/h∞ ∝ (|τ |/tc)κ. Here, h∞ represented the height of the current when

leveling process is complete. Based on the mass conservation constraint, it is easy to

show that

h∞ =

∫ L
0
xnh(x, 0+) dx∫ L

0
xn dx

. (5.13)

In Equation (5.13), the numerator is equal to the total volume V0 of fluid released,

and the denominator represents the cross-sectional area of the variable-width HS cell.
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Fig. 5.5. Numerical study of the post-closure self-similar regime for
n = 0.5 (⇒ δ = 1.5423 and UD = 0.36151). Simulations were con-
ducted based on the experimental conditions in Table 5.1 to (a) de-
termine the pre-factor b during leveling of the current according to
Equation (5.12) for κ = 0.54227, and (b) compare self-similar current
shape profiles H(ξ/ξN) between the predictions of mathematical anal-
ysis, numerical simulation and experiments. Asymptotically, a third
pre-factor emerges during the final stages of the asymptotic leveling
of the current profile, which is not used in the present study. The
pre-factor b ≈ 1.5788 was computed for the leveling behavior after
the closure time tc ≈ 44.05 s (obtained in Section 5.4.1), from which
the value of ξN was computed. Experimental data was only available
at six moments of time in the post-closure regime.

A numerical simulation was performed over the spatial domain x ∈ [0, L] where

L = 0.75 m as before. The domain was discretized over N = 3001 points as discussed

in Section 3.1. The simulation was advanced from t0 = 0 s and up to tf = 270 s.

A closure time of tc ≈ 44.05 s was computed as mentioned earlier. The memory

of the current’s IC is not an issue in the post-closure self-similarity regime, as the

self-similar process ‘resets’ after the current reaches the origin, and the pre-closure

IC is thus irrelevant. Regardless, for completeness, it is to be noted that the IC for

simulations was selected to be the same one as in the pre-closure study (Equation (2.8)

with γ = 3). The remaining parameters were once again taken from Table 5.1.
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The trend of scaled current height at the origin plotted against the scaled time in

Figure 5.5a clearly indicates self-similarity as the current levels, yielding the pre-factor

b ≈ 1.5788. After some time, there is a transition from rising to an asymptotic ad-

justment as h(0, t)→ h∞. This latter regime is, however, a relatively straightforward

observation, and it is not a topic of further interest here.

During the leveling period, excellent agreement is observed between the self-similar

gravity current profiles, H(ξ/ξN), obtained from mathematical analysis, numerical

simulation and the experiment. The universal profile from theory established in

Section 5.2 was derived by once again by solving the ODE system (5.6). The numer-

ical profiles computed for h(x, t) were scaled via the self-similarity transformation in

Equation (5.2b). The experimental data comes from digitally sampling images of the

profile h(x, t) at six distinct times in the post-closure (i.e., t > tc) regime.

In conclusion, the finite-difference numerical simulations of the full governing equa-

tion of the gravity current shape were extremely useful in ascertaining when the cur-

rents enters into the self-similar behavior described by the discussion in Section 5.2.

Of particular use was the observation of the time tsim, after which the current entered

into pre-closure self-similarity. Obtain this result was easy once the simulation was

performed, and there was no need to guesswork.
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6. SUMMARY

In this thesis, a finite-difference numerical scheme for solving a family of nonlinear

parabolic PDEs with variable coefficients given by Equation (2.1) is developed and

benchmarked. A special feature of these nonlinear PDEs is that they possess solutions

that can propagate in a wave-like manner with a finite speed of propagation. This

study features an example from this family of PDEs for the one-dimensional spreading

(propagation) of a power-law (Oswald–de Weale) fluid in a horizontal, narrow fracture

with variable width. An emphasis is placed on designing a series of numerical tests

that show conclusively that the proposed scheme is second-order accurate in space and

time. Analytical self-similar solutions for special cases of the nonlinear parabolic PDE

considered were used to benchmark the numerical method. Furthermore, the fact that

a global mass conservation/injection constraint can be successfully reformulated into

a set of nonlinear boundary conditions, which are implemented with second-order

accuracy as well has been verified as well.

The main advantage of the finite-difference scheme discussed above is that it

is strongly implicit, generalizing the time-stepping suggested by Crank and Nicol-

son [62]. Therefore, the proposed scheme does not formally require a time-step re-

striction for stability. By using a staggered grid, along the lines of Christov and

Homsy [64], nonlinear terms can be handled within the same three-point stencil as

the classical Crank–Nicolson scheme. This choice of grid is particularly convenient for

the discretization of the nonlinear boundary conditions, allowing second-order accu-

racy to be achieved with just a two-point stencil near the domain boundaries. Using

fractional steps in time (‘internal iterations’), the nonlinear algebraic problem at each

time step is reformulated as a fixed-point iteration.

Self-similar transformations have been shown to be a powerful tool for the analysis

of viscous gravity currents. First-kind self-similar solutions can be obtained through
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scaling analysis of the mathematical models, and often reduce the governing PDE

to an exactly solvable ODE (in closed form), as summarized in Appendix A). In

this thesis, first-kind exact solutions were used to benchmark the numerical method

across a variety of flow problems. Consequently, the numerical simulations via the

proposed scheme can now be used as a tool for exploring the even further self-similar

behaviors.

Meanwhile, in flow regimes involving involving additional spatial (or temporal)

scales, a scaling (dimensional) analysis is insufficient to reduce the governing PDE

to a closed-form self-similar solution. Instead the problem requires, by phase-plane

analysis techniques, deriving the self-similar transformation requires solving a nonlin-

ear eigenvalue problem, as well as conducting numerical simulations (or experiments)

to provide certain numerical constants that allow the second-kind self-similar trans-

formation to be fully solved. Furthermore, in this case of second-kind self-similarity,

numerical simulations are needed to even determine whether such flow regimes, pre-

dicted by mathematical theory, are actually manifested in reality. Second-kind self-

similarity was explored in the context of the release of a fixed mass of Newtonian

fluid spreading towards the origin of a horizontal, shaped HS cell of variable width.

The self-similar transformation introduced, which involves the use of a self-similarity

variable depending on the extra length (or time) scale, requires the computation of an

unknown exponent δ, which is determined numerically as an eigenvalue. However, in

the determining whether a given gravity profile h(x, t) (found from either simulation

or experiment) woill collapse on the predicted self-similar solution H(ξ) (ξ being the

similarity variable) obtained by second-kind self-similarity analysis, knowledge of the

precise time period during which the current is expected to be in this self-similar

regime is needed.

Previous work had not addressed the question of ‘when’ self-similarity begins, and

it is indeed a difficult mathematical question in general. However, this time period

that must elapse before the system is in a self-similar state can be directly determined

by solving the governing PDE using the proposed numerical scheme. It turned out
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that this period is exceptionally short during the pre-closure (spreading) regime of

the gravity current, which leads to poor agreement with the experimental data, which

is available at only two specific moments of time in the pre-closure regime. Neverthe-

less, numerical simulations were able to shed some light on this regime, specifically

by conclusively showing the presence of two distinct self-similar regimes occurring

during spreading and then during leveling. In the latter post-closure (leveling) stage

of propagation, the gravity current shape profiles scaled via the second-kind self-

similar transformation showed good agreement with mathematical predictions and

experimental data.
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7. RECOMMENDATIONS

7.1 Extensions of the Scheme to Incorporate Further Physical Effects

Owing to its accuracy and stability, the finite-difference scheme from [38], which

was extended to non-Newtonian flows and benchmarked above, has been recently

applied by Alhashim and Koch [74] to study hydraulic fracturing of low-permeability

rock. This application is just one example of the potential utility of the proposed

scheme in other fluid mechanics problems. In future work, an interesting extension

to the proposed numerical scheme could be the inclusion of a generic source term of

the form S(x, t, h), added to the right-hand side of Equation (2.1). Such a term can

capture the effects of e.g., a leaky (porous) substrate over which a gravity current

propagates, in which case S(x, t, h) = −κh(x, t) for some drainage constant κ [52,75]

(see also [24, Section 9.2]). Then, the Crank–Nicolson disrectization in Equation (3.2)

could be modified by adding

1

2

[
S(xi, t

n+1, hn+1
i ) + S(xi, t

n, hni )
]

(7.1)

to the right-hand side. Here, it is assumed that ∂h/∂x does not appear in S but only

in L. Therefore, the discretization in Equation (7.1) (even if nonlinear) will, at most,

introduce a term in the matrix diagonal coefficient and a term on the right-hand side

of Equation (3.9). Another variation on this theme involves the spreading of an un-

confined viscous fluid above a deep porous medium into which it penetrates in a time-

dependent manner over a depth of l(x, t) [60]. Then, S(x, t, h) = −κ[1+h(x, t)/l(x, t)]

and an additional ODE for l(x, t) is coupled to Equation (2.1). This problem is an

interesting avenue for future extension of the proposed scheme, as the ODE would

have to be discretized for l(x, t) in the same Crank–Nicolson sense as Equation (2.1)

and add an extra equation (row) to the discrete problem in Equation (3.9).
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On the other hand, an inclination angle (recall that all geometries in Figure 2.1

were lying flat, so gravity was directed in the −y-direction) results in a term propor-

tional to ∂h/∂x being added to Equation (2.1) (for the case of a Newtonian fluid,

see, e.g., [29,32]). This additional term changes the nonlinear diffusion equation (2.1)

into a nonlinear advection–diffusion equation. Care must be taken in discretizing this

new advective term. A similar PDE arises in the segregation of bidisperse granular

mixtures [76, 77]. As discussed by Christov [78], a strongly implicit Crank–Nicolson

scheme can be successfully used for these problems. The scheme in [78] is so robust

that it performs well even in the singular vanishing-diffusivity limit of the advection-

diffusion equation. Considering a generic advection term ∂Ψ(h)/∂x, it can be handled

analogously to the nonlinearity in the diffusion term. Specifically, we approximate(
∂Ψ

∂x

)
x=xi

≈ 1

2

[(
Ψn+1
i+1 −Ψn+1

i−1

2∆x

)
+

(
Ψn
i+1 −Ψn

i−1

2∆x

)]
. (7.2)

Here, the advective term is discretized through a central difference formula involving

a local three-point stencil on all interior nodes (i = 1 to N − 1). At the boundary

nodes (i = 0 and i = N), one can use a three-point biased (forward or backward)

difference formula, as described in Equations (3.8). The now well-established idea of

staggering the nonlinear term across fractional time steps is carried forward (recall

Equations (3.6)). However, to properly linearize the advective term within the in-

ternal iterations, it must be possible to write Ψ(h) = Υ(h)h (the most obvious way

being Υ(h) ≡ Ψ(h)/h) so that

Ψn+1
i±1 ≈ Υ

n+1/2,k
i±1 hn+1,k

i±1 . (7.3)

Then, inserting Equation (7.3) into Equation (7.2) and adding the result to the left-

hand side of Equation (3.9), modifies the tridiagonal system by adding Υ
n+1/2,k
i±1 /(4∆x)

to the superdiagonal (i + 1) and subdiagonal (i − 1). The remaining terms from

Equation (7.2) are added to the right-hand side of the system.

Any of these potential extensions would have to be benchmarked against available

first-kind self-similar solutions in [24,29,32,60], however, no particular difficulties are

expected to arise.
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Another avenue of future work is as follows. Nowadays, high-order (i.e., greater

than second-order) nonlinear parabolic PDEs are found to describe a wealth of low

Reynolds number fluid phenomena: from the spreading and healing [72, 79] to the

rupture dynamics [80] of thin liquid films dominated by capillary forces (see also [20,

Ch. 6-C]). Typically, the spatial operator is of fourth order due to the inclusion of

surface tension effects (which depend upon the curvature of the planar curve rep-

resented by y = h(x, t)), making the PDE more challenging to solve numerically.

(Note that this is distinct from the inclusion of capillary effects in the context of

gravity currents propagating in porous media described above, see [81].) Even higher

(sixth) order thin film equations arise in dynamics of lubricated thin elastic mem-

branes [82, 83] dominated by elastic forces. To interrogate these complex interfacial

phenomena, there is a need for a robust and accurate numerical scheme to simulate

these flows with low computational overhead (e.g., without the prohibitive time step

stability restrictions of explicit schemes). In future work, it would be of interest to

generalize the scheme from this chapter to such problems. Additionally, non-uniform

(or adaptive) grids, which could be implemented along the lines of [66], can be used

to capture singularity formation during thin film rupture.

7.2 Second-kind Self-similarity of Non-Newtonian Fluids

With respect to the numerical study of second-kind self-similarity, the obvious

recommendation is to expand the analysis to the spreading and leveling of power-law

non-Newtonian viscous gravity currents flowing towards the origin in a variable-width

HS cell. It has been established that these kind of currents can be simulated with

ease using the proposed scheme. For example, preliminary results suggest that, for

the the case of a shear-thinning (r = 0.5) fluid in a HS cell having n = 0.5, the

nonlinear eigenvalue problem can solved again to yield δ ≈ 1.5836, as determined by

Longo [61]. However, it is expected that the phase-plane portrait for this case will

possess rather different integral curves due to the appearance of r 6= 1 in the ODE
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formulation of the second-kind self-similarity. Even though the integral curves will be

different, the ODE nevertheless has the same critical points, immediately indicating

existence of a pre- and post-closure self-similar regime for the non-Newtonian gravity

current.

As a proof of concept, without the need for any special considerations, a numerical

simulation was performed (with all parameters as in Table 5.1) to deduce the values of

pre-factor slopes, tsim and tc for this a shear-thinning power-law fluid in a shaped HS

cell (r = n = 0.5). The results are shown in Figure 7.1. The theoretical self-similar

profile was obtained by solving the ODE system (5.7) between the appropriate critical

points from Equations (5.8) via the shooting procedure described in Section 5.2 (and

Appendix A). The clear presence of linear behavior in pre- and post-closure in Figures

7.1(a,b), respectively, supports the existence of two distinct self-similar regimes for

power-law fluids, just as was the case for Newtonian fluids in Chapter 5. Thus, further

experiments and simulations should be undertaken in the future to build upon and

expand the understanding of this phenomenon. The most challenging aspect of future

work, however, remains the issue of finding HS cell geometries and flow conditions

that extend the range [tsim, tc] to some non-trivial length, so that the pre-closure

second-kind self-similar solution can be clearly observed.

In line with the above-proposed extension of the numerical scheme to a gravity

current flow over a leaky substrate, numerical simulations of second-kind self-similar

solutions of Newtonian and non-Newtonian flow over permeable surfaces can be un-

dertaken. Based on the models in Tables 2.1 and 2.2, the current scheme can be used

to complement the Newtonian-fluid studies of Zheng et al. [52] on two-dimensional

axisymmetric gravity currents focusing towards an origin, flows towards the origin of

shaped HS cells, or flows in horizontally heterogeneous porous media.
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Fig. 7.1. Numerical study of second-kind self-similarity during the
spreading and leveling of a power-law non-Newtonian fluid (r = 0.5)
in a variable-width Hele-Shaw cell (shear-thinning, n = 0.5). Here,
δ ≈ 1.5836 and κ = (n + 1)UD ≈ 0.1877. Simulations were per-
formed on a domain x ∈ [0, L], with L = 0.75 m and N = 4501
grid points. The profile was advanced from t0 = 0 s to tf = 1100
s through M = 6501 time steps. Experimental conditions in Ta-
ble 5.1 were adopted. From simulations, pre-factors during (a) spread-
ing b ≈ 0.1981, and (b) during leveling b ≈ 0.25205 were obtained.
Additionally, it was found that pre-closure self-similarity emerges in
[tsim, tc] ≈ [120, 126.26] s after the IC was forgotten. Adopting dy-
namic scaling suggested by [61], there is a relatively good collapse of
numerical profiles onto the universal theoretical solution derived from
solving the ODE system (5.7), in both (c) pre-closure (spreading) and
(d) post-closure (leveling).
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A. FIRST-KIND SELF-SIMILAR SOLUTIONS FOR A

POWER-LAW FLUID IN A SHAPED HELE-SHAW CELL

Viscous gravity currents exhibit self-similar propagation, meaning that the solution

(at sufficiently ‘long’ times [23]) depends solely upon a combined variable of x and t,

rather than on each independently. Self-similarity allows for the derivation of exact

analytical solutions to the governing Equation (2.1) against which numerical solutions

were benchmarked. Specifically, for the case of the release of a fixed mass of fluid

(α = 0 so that V(t) = Vin ∀t ∈ [t0, tf ]), a closed-form analytical self-similar solution

was used in Section 4.1 to test the order of convergence of the numerical scheme.

Following Di Federico et al. [49], the derivation of said self-similar solution for a

power-law non-Newtonian fluid spreading away from the origin (x = 0) of a HS cell of

uniform width b1 (n = 0)1 is summarized. First, the following dimensionless variables

(with ∗ superscripts) from [49] must be introduced:

x∗ =

(
B

Aα

)1/(α−2)

x, t∗ =

(
B

A2

)1/(α−2)

t,

h∗(x∗, t∗) =

(
B

Aα

)1/(α−2)

h(x, t), (A.1)

where A is the constant from Equation (2.1) (defined in Table 2.2) and B = Vin/b1.

Hereafter, the ∗ superscripts are dropped. Next, a suitable similarity variable η is

selected. As discussed in Section 1, a self-similar solution of the first kind has the

form h(x, t) = tβf(η) with η = x/tδ. Then, a scaling analysis of dimensionless version

of Equation (2.1) yields

h(x, t) = ηr+1
N tF2f(ζ), η =

x

tF1
, ζ =

η

ηN
. (A.2)

1While self-similar reductions are, of course, also possible for n > 0, they do not yield closed-form
analytical solutions.
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It can be shown that the constant ηN specifically corresponds to the value of η at the

nose of the current, i.e., ηN = xf (t)/t
F1 , where x = xf (t) is such that h

(
xf (t), t

)
= 0.

Here, ζ is a convenient rescaled similarity variable, and the exponents F1,2 are

F1 =
α + r

r + 2
, (A.3a)

F2 = α− F1. (A.3b)

The shape function f(ζ) represents the (universal) self-similar profile of the grav-

ity current. This function is determined by substituting Equations (A.2) into the

dimensionless version of Equation (2.1) to reduce the latter to a nonlinear ODE:

d

dζ

(
f

∣∣∣∣dfdζ

∣∣∣∣1/r
)

+ F2f − F1ζ
df

dζ
= 0, ζ ∈ [0, 1]. (A.4)

The second-order ODE in Equation (A.4) can be rewritten as a first-order system:

d

dζ

f1

f2

 =


f2

−r
f1f2|f2|(1−2r)/r

(
f2|f2|1/r + F2f1 − F1ζf2

)
 , (A.5)

where, for convenience, f1 = f . The system in Equation (A.5) is ‘stiff,’ and requires

use of an appropriate ODE solver, such as ode15s in Matlab, subject to appropriate

initial and/or boundary conditions at ζ = 0, 1.

A peculiarity of this self-similar analysis is that only a single BC for the ODE (A.4)

is known, namely f(1) = 0, i.e., this is the location of the gravity current’s nose

x = xf (t) at which ζ = η/ηN = 1 and h
(
xf (t), t

)
= 0. Since the ODE in Equa-

tion (A.5) requires a second initial or boundary condition, the ‘backwards-shooting’

idea introduced by Huppert [19] is used to provide a second condition near ζ = 1.

Then, the ODE in Equation (A.5) can be integrated ‘backwards’ from ζ = 1 to ζ = 0

subject to two ‘initial’ conditions at ζ = 1.

To this end, consider the asymptotic behavior of the current near the nose. By

assuming that f ∼ c1(1 − ζ)c2 as ζ → 1− and substituting this expression into
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Equation (A.4), c1 = F r
2 and c2 = 1 is obtained by balancing the lowest-order terms.

Now, two BCs are known (see also [49]):

f1(1− ε) = F r
2 ε, (A.6a)

f2(1− ε) = −F r
2 , (A.6b)

for a sufficiently small ε � 1. The system (A.5) can be solved subject to the ‘final’

conditions (A.6) on the interval ζ ∈ [0, 1− ε]. By convention, an ODE is solved with

initial, not final, conditions. Therefore, the transformation ζ 7→ 1 − ζ̂ is performed,

which leads to the right-hand-side of Equation (A.5) being multiplied by −1. Then,

the final conditions in Equations (A.6) become initial conditions at ζ̂ = ε, and the

first-oder system of ODEs is solved on the interval ζ̂ ∈ [ε, 1].

For certain special cases, a closed-form analytical solution to Equation (A.4) can

be obtained. For the case of the release of a fixed mass of fluid (α = 0), Ciriello et

al. [50] derived such an exact solution (can be verified by substitution):

f(ζ) =
rr

(r + 2)r(r + 1)

(
1− ζr+1

)
, (A.7)

which was used to benchmark the finite-difference scheme in Section 4.1. Finally,

to obtain the viscous gravity current profile given in Equation (A.2) ηN must be

computed. This value follows from imposing the mass conservation constraint in

dimensionless form:

ηN =

[∫ 1

0

f(ζ) dζ

]−1/(r+2)

≈
[∫ 1

ε

f(ζ̂) dζ̂

]−1/(r+2)

, (A.8)

where the second (approximate) equality is needed for the case in which Equa-

tion (A.4) has to be integrated numerically (no exact solution); ε � 1 is chosen

sufficiently small.

Finally Equations (A.7) and (A.8) are combined and inserted into Equation (A.2),

to analytically obtain the height profile over the fluid domain x at some time t. It

should be noted, however, that for this solution to apply, the current must be in its

self-similar regime, having forgotten any arbitrary initial condition from which it has

evolved.


