
EXPLORATION OF ENERGY EFFICIENT HARDWARE AND ALGORITHMS

FOR DEEP LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Syed Shakib Sarwar

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Kaushik Roy, Chair

Department of Electrical and Computer Engineering

Dr. Ananad Raghunathan

Department of Electrical and Computer Engineering

Dr. Vijay Raghunathan

Department of Electrical and Computer Engineering

Dr. Byunghoo Jung

Department of Electrical and Computer Engineering

Approved by:

Dr. Pedro Irazoqui

Head of the Departmental Graduate Program

iii

Dedicated to my wife and my parents for their unconditional love and support.

iv

ACKNOWLEDGMENTS

I want to thank my PhD supervisor, Prof. Kaushik Roy, who has become a role

model for me. He guided me in every possible way to make me a better researcher.

He was very patient and understanding while guiding me through tough periods with

my research. I am grateful for his advices and efforts in shaping me into a researcher.

His qualities as a supervisor as well as a person never cease to amaze me. I will

always remember the fruitful conversations and the time spent with him that helped

me throughout my PhD life.

I would also like to thank my PhD advisory committee members, Prof. Anand

Raghunathan, Prof. Byunghoo Jung and Prof. Vijay Raghunathan for their insightful

advice regarding my research. I also want to thank all the members of our research

group, Nanoelectronics Research Laboratory, for helping in every possible way. I

definitely had plenty of fun interacting with such a lively group of people.

I would like to take this opportunity to thank my family, and in particular, my

parents and my wife for their unconditional love and support. My mother has always

been the source of my inspiration. She always believed in me, even in the worst of

times. My father is the origin of my perseverance and devotion towards my work.

I always look up to him and take his advice. My wife has been a constant support

for me. She joined with me in the middle of my doctoral studies and halved my

struggle by sharing the load I faced in every aspect as a PhD student. Without her

unconditional support, this work would never have been possible.

This thesis has been possible due to the help and support of numerous people and

I want to apologize for not being able to list everyone here. I would like to express

my gratitude to everyone who has helped me in pursuing my dream and try to be a

better human being through my contribution to Science and Society.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Deep Learning and its Constraints . 3

1.2 Contribution and Organization of the Thesis 4

1.2.1 Improve Testing/Inference Energy-efficiency 4

1.2.2 Improve Training Energy-efficiency 5

2 BASICS OF NEURAL COMPUTING . 8

2.1 ANN . 8

2.2 SNN . 9

2.2.1 Fully-Connected Networks . 10

2.2.2 Convolutional Neural Networks 10

2.3 Training . 11

2.3.1 Back-propagation . 12

2.3.2 STDP . 12

2.4 Inference . 13

3 APPROXIMATE HARDWARE DESIGN FOR DNNS 14

3.1 Approximate Multiplier for DNNs . 14

3.1.1 Motivation: Computation Energy Consumption by Multiplier . 14

3.1.2 Alphabet Set Multiplier . 14

3.1.3 Computation Sharing Multiplication 17

3.1.4 Selection of Good Alphabets . 18

3.1.5 Design Approach & Methodology 19

vi

Page

3.1.6 Multiplier-less Neuron (MAN) 25

3.1.7 Realization . 26

3.1.8 Results . 27

3.2 Approximate Memory for DNNs . 29

3.2.1 Motivation: Total Energy Consumption Dominated by Memory
Access . 29

3.2.2 Effects of Voltage Scaling on 6T SRAM 29

3.2.3 8T-6T Hybrid Memory . 30

3.2.4 Design Technique and Realization 32

3.2.5 Results . 32

4 ALGORITHMIC LEVEL APPROXIMATIONS 36

4.1 Prunning of Synapses . 36

4.1.1 Prunning Methodology . 37

4.1.2 Results . 38

4.2 Low Complexity Networks . 40

4.2.1 Results . 41

5 COMBINATION OF APPROXIMATE TECHNIQUES 43

5.1 Optimized Baseline Deep Neural Networks 43

5.2 Approximate Multiplier, Pruning and Approximate Memory 44

5.2.1 Retraining to Mitigate Accuracy Loss 45

5.2.2 Results . 46

5.3 Comparing Approximate Networks . 47

5.4 Comparison with other Low Power DNNs 50

6 GABOR FILTER ASSISTED FAST AND EFFICIENT LEARNING FOR
CNN . 54

6.1 Gabor Filters . 55

6.2 Design Approach & Methodology . 56

6.2.1 Energy Model for CNN Training 56

6.2.2 Gabor Filters as Fixed Convolutional Kernels 57

vii

Page

6.3 Realization . 62

6.4 Results . 64

6.4.1 Accuracy Comparison . 64

6.4.2 Energy Consumption Benefits 65

6.4.3 Storage Requirement Reduction 67

6.4.4 Training Time Reduction . 68

6.4.5 Partial Training of Gabor Kernels for Accuracy Improvement . . 69

6.4.6 Applicability in Complex CNNs 70

7 INCREMENTAL LEARNING IN DEEP CONVOLUTIONAL NEURAL
NETWORKS USING PARTIAL NETWORK SHARING 72

7.1 Incremental Learning . 77

7.1.1 Advantages . 79

7.2 Design Approach . 80

7.2.1 Increasing Convolutional Kernels in the Last Layer 80

7.2.2 Adding Branch to Existing Network 83

7.2.3 Replacing Part of the Base Network with New Convolutional
Layers . 88

7.2.4 Training Methodology 1 . 92

7.2.5 Training Methodology 2 . 95

7.2.6 Training Methodology 3 . 98

7.2.7 Comparison of Different Training Methodologies 100

7.3 Evaluation Methodology . 100

7.4 Results and Discussions . 102

7.4.1 Energy-Accuracy Trade-off . 102

7.4.2 Training Time Reduction . 104

7.4.3 Storage Requirement and Memory Access Reduction 104

7.4.4 Results on ImageNet . 105

7.4.5 Comparison between Different Network Architectures 106

7.4.6 Comparison with Other Methods 110

viii

Page

8 ENABLING SPIKE-BASED BACKPROPAGATION IN STATE-OF-THE-
ART DEEP SPIKING NEURAL NETWORK ARCHITECTURES 114

8.1 The Components and Architecture of Spiking Neural Network 117

8.1.1 Spiking Neural Network Components 117

8.1.2 Deep Convolutional Spiking Neural Network 118

8.2 Supervised Training of Deep Spiking Neural Network 122

8.2.1 Spike-based Gradient Descent Backpropagation Algorithm . . 122

8.2.2 Dropout in Spiking Nerual Network 128

8.3 Experimental Setup . 129

8.3.1 Benchmarking Datasets . 131

8.3.2 Network Topologies . 132

8.3.3 ANN-SNN Conversion Scheme 134

8.3.4 Spike Generation Scheme . 135

8.3.5 Time-steps . 135

8.4 Results . 138

8.4.1 The Classification Performance 139

8.4.2 Accuracy Improvement with Network Depth 141

8.5 Discussion . 144

8.5.1 Comparison with Relevant works 144

8.5.2 Spike Activity Analysis . 145

8.5.3 Inference Speedup . 149

8.5.4 Complexity Reduction . 149

9 CONCLUSION . 155

9.1 Conclusion and Summary . 155

9.2 Future Work . 158

REFERENCES . 159

VITA . 170

ix

LIST OF TABLES

Table Page

3.1 Decomposition of Multiplication Operation 15

3.2 Benchmarks . 27

3.3 Synaptic sensitivity driven hybrid memory configuration 33

4.1 Low Complexity FCNs Trained on MNIST 41

4.2 Low Complexity CNNs Trained on CIFAR10 42

6.1 Comparison between Different CNN Configurations 59

6.2 Benchmarks . 63

6.3 CNN Architectures . 64

6.4 Comparison between different Training Configurations 71

7.1 Accuracy results for approach 1 . 82

7.2 Accuracy results for approach 2 . 86

7.3 Accuracy results for Training Methodology 1 92

7.4 Comparison of Different Training Methodologies 100

7.5 Benchmarks . 102

7.6 Accuracy results for ResNet34 trained on ImageNet 107

7.7 Qualitative Comparison with Other Methods 110

8.1 List of Notations . 118

8.2 Parameters used in the Experiments . 131

8.3 Benchmark Datasets . 131

8.4 The deep convolutional spiking neural network architectures for MNIST,
N-MNIST and SVHN dataset . 133

8.5 The deep convolutional spiking neural network architectures for a CIFAR-
10 dataset . 133

8.6 Comparison of the SNNs classification accuracies on MNIST, N-MNIST
and CIFAR-10 datasets. 140

x

Table Page

8.7 Comparison of Classification Performance 140

8.8 #Spikes per Image Inference . 148

8.9 Inference Speedup . 150

xi

LIST OF FIGURES

Figure Page

2.1 (a) Output of an artificial neuron is the weighted summation of its in-
puts passed through an activation function. (b) A network consisting of
artificial neurons has real numbers as inputs and outputs of each neuron. . 9

2.2 The inputs to SNNs are spike trains that propagate through the hidden
layers all the way to the output neurons. 10

2.3 Feedforward FCN, where each neuron in a layer is connected to all the
neurons in the following layer as shown by arrows. The different colored
arrows indicate that each input is multiplied by different weights. 11

2.4 Architecture of a deep CNN. 11

3.1 8 bit 4 alphabet ASM (modified from [28]). 16

3.2 4 alphabet ASMs using CSHM architecture (modified from [28]). 18

3.3 12 bit weight value decomposed into three quartets (modified from [28]). . 20

3.4 For 2 alphabets {1,3} ASM, rounding up/down the unsupported values
(a) 4 bit synapse, (b) 8 bit synapse. 22

3.5 Overview of the ANN design methodology (modified from [28]). 23

3.6 Flow diagram of the retraining process for an ASM based DNN. 24

3.7 8 bit 1 alphabet {1} ASM (MAN) (modified from [28]). 26

3.8 Energy/accuracy trade-off comparison between ASM based DNNs and
Conventional DNNs, for (a) MNIST dataset on FCN and (b) CIFAR 10
dataset on CNN. 12b: 12 bit synapse NN, 12b4: 12 bit synapse NN with
4 alphabet ASM, 12b2: 12 bit synapse NN with 2 alphabet ASM, 12b1:
12 bit synapse NN with 1 alphabet ASM. Similar notations for 8 bit and
4 bit NNs. 28

3.9 (a) Read access failure rate versus supply voltage and (b) Write failure
rate versus supply voltage, for a 6T bitcell. 30

3.10 Synaptic sensitivity driven hybrid 8T-6T memory architecture [30]. 31

xii

Figure Page

3.11 Comparison of total memory (a) read energy and (b) write energy, for
classification of one image under iso-accuracy condition. Accuracy for 12,
8 and 4 bit networks are ∼98.9%, ∼98.8% and ∼98.5%, respectively with
degradation up to 0.5% for 12 bit and 8 bit synapse, and ∼1.25% for 4 bit
synapse. 34

4.1 Synaptic weight distribution of a Deep FCN trained on MNIST: [784 1200
600 10] with 12 bit synaptic weights. 37

4.2 Effect of pruning on accuracy for a Deep FCN trained on MNIST: [784
1200 600 10] with 12 bit synaptic weights. 37

4.3 Energy/accuracy trade-off comparison, between pruned DNNs and con-
ventional DNNs, is shown for (a) MNIST trained on Deep FCN and (b)
CIFAR10 trained on Deep CNN, for different synapse sizes. 39

4.4 Overview of the NN training methodology for employing network approx-
imations. 40

5.1 Effect of bit precision scaling (with retraining) on benchmark applications. 44

5.2 Flow diagram of the proposed combined approximation process of a NN. . 45

5.3 Flow diagram of the proposed combined approximation process of a NN. . 46

5.4 Energy/accuracy trade-off comparison between Approximate DNNs and
Conventional DNNs, for (a) MNIST dataset on FCN and (b) CIFAR 10
dataset on CNN, where pruning of synapses, approximate multipliers and
approximate memory are used simultaneously. 12b: 12 bit synapse NN,
12b4pm: 12 bit synapse NN with 4 alphabet ASM with pruning and ap-
proximate memory. Similar notations for 8 bit and 4 bit NNs. 48

5.5 Energy/accuracy trade-off comparison between different approximate DNNs
and Conventional DNNs, for (a) MNIST dataset on FCN and (b) CI-
FAR 10 dataset on CNN. Here baseline for normalization is a 12 bit un-
approximated DNN. 53

6.1 (a) Trained kernels in 1st convolutional layer. (b) Fixed Gabor kernels
equally spaced in orientation. 57

6.2 Change in classification accuracy, energy savings, training time reduction
and storage requirement with different configurations of fixed Gabor ker-
nels in the 2nd convolutional layer. 61

6.3 (a) Trained kernels in 2nd convolutional layer and (b) Kernels of the pro-
posed half fixed/half trainable configuration in 2nd convolutional layer. . . 62

xiii

Figure Page

6.4 Comparison of accuracy between conventional CNN and Gabor kernel
based CNN for different applications. 65

6.5 Comparison of energy consumption during training, between conventional
CNN and Gabor kernel based CNN for different applications. 66

6.6 Energy consumption of different segments during training of a CNN with
MNIST dataset. 67

6.7 Comparison of storage requirements between conventional CNN and Ga-
bor kernel based CNN for different applications. 68

6.8 Comparison of training time requirements between conventional CNN and
Gabor kernel based CNN for different applications. 69

7.1 Incremental learning model: the network needs to grow its capacity with
arrival of data of new tasks (sets of classes). 78

7.2 Network structure for investigating incremental learning by retraining the
final convolutional layer. 84

7.3 Incremental training for accommodating (a) first and (b) second set of new
classes in the base network. The green blocks imply layers with frozen
parameters. The semi-transparent rectangle implies that the part is dis-
connected from training. 85

7.4 (a) Updated network after incrementally learning two sets of new classes.
(b) Modified NIN [51] architecture for training CIFAR-10 dataset with all
training samples (regular training). 87

7.5 The ResNet [39] network structure used for implementing large scale DCNN.
For simplicity, the input bypass connections of ResNet is not shown here. . 88

7.6 (a) Incremental training for accommodating new classes in the base net-
work. The parameters of the shared layers are frozen. The semi-transparent
rectangle implies that the part is disconnected from training. The new
convolutional layer is cloned from the base network and only that part is
retrained with the new data samples for the new classes, while the last
convolutional layer of the base network remain disconnected. (b) After
retraining the cloned layer, we add it to the existing network as a new
branch, and form the updated network. 89

7.7 (a) Updated network architecture for proposed training methodology. ‘%’
Sharing is the portion of trainable parameters which are frozen and shared
between the base and the new network. This quantity is decided from the
‘Accuracy vs Sharing’ curve shown in the inset. (b) It is an incrementally
trained network, without network sharing, used as baseline for comparison. 91

xiv

Figure Page

7.8 Overview of the DCNN incremental training methodology with partial
network sharing. 93

7.9 Incremental training methodology for task specific partial network sharing. 95

7.10 Updated network for task specific partial network sharing using similarity
score table. 97

7.11 Incremental training methodology for fine grain optimization. 98

7.12 Updated network trained with training methodology 3 for task order (a)
T0-T1-T2-T3 and (b) T0-T2-T1-T3 . 99

7.13 Comparison of (a) energy/accuracy trade-off and (b) training time re-
quirements, between incremental training with and without sharing con-
volutional layers, is shown for different sharing configurations. 103

7.14 Comparison of (a) storage and (b) memory access requirements, between
incremental training with and without sharing convolutional layers, is
shown for different sharing configurations. 105

7.15 Comparison between different network architectures trained on (a) CIFAR-
100 and (b) ImageNet, using proposed algorithm. For these experiments,
we used 1±0.5% accuracy degradation as a tolerance value for determining
the optimal sharing configuration. 109

7.16 Performance comparison of incremental learning approaches. 113

8.1 The operation of a Leaky Integrate and Fire (LIF) neuron. 117

8.2 Basic building blocks of (a) VGG and (b) ResNet architectures in deep
convolutional SNNs. 119

8.3 Illustration the two phases (forward propagation and backward propaga-
tion) of spike-based backpropagation algorithm in a LIF neuron. 124

8.4 Inference performance variation due to (a) #Training-Timesteps and (b)
#Inference-Timesteps. T# in (a) indicates number of time-steps used for
training. 137

8.5 Accuracy Improvement with Network Depth for (a) SVHN dataset and
(b) CIFAR-10 dataset. 143

8.6 Layer-wise spike activity in direct-spike trained SNN and ANN-SNN con-
verted network for CIFAR-10 dataset: (a) VGG9 (b) ResNet9 network.
The spike activity is normalized with respect to the input layer spike ac-
tivity which is same for both networks. 146

xv

Figure Page

8.7 The comparison of ‘accuracy vs latency vs #spikes/inference’ for ResNet11
architecture. 149

8.8 Inference computation complexity comparison between ANN, ANN-SNN
conversion and SNN trained with spike-based backpropagation. ANN com-
putational complexity is considered as baseline for normalization. 152

xvi

ABSTRACT

Sarwar, Syed Shakib Ph.D., Purdue University, May 2019. Exploration of Energy
Efficient Hardware and Algorithms for Deep Learning. Major Professor: Roy K.
Professor.

Deep Neural Networks (DNNs) have emerged as the state-of-the-art technique

in a wide range of machine learning tasks for analytics and computer vision in the

next generation of embedded (mobile, IoT, wearable) devices. Despite their success,

they suffer from high energy requirements both in inference and training. In recent

years, the inherent error resiliency of DNNs has been exploited by introducing ap-

proximations at either the algorithmic or the hardware levels (individually) to obtain

energy savings while incurring tolerable accuracy degradation. We perform a com-

prehensive analysis to determine the effectiveness of cross-layer approximations for

the energy-efficient realization of large-scale DNNs. Our experiments on recognition

benchmarks show that cross-layer approximation provides substantial improvements

in energy efficiency for different accuracy/quality requirements. Furthermore, we pro-

pose a synergistic framework for combining the approximation techniques. To reduce

the training complexity of Deep Convolutional Neural Networks (DCNN), we replace

certain weight kernels of convolutional layers with Gabor filters. The convolutional

layers use the Gabor filters as fixed weight kernels, which extracts intrinsic features,

with regular trainable weight kernels. This combination creates a balanced system

that gives better training performance in terms of energy and time, compared to

the standalone Deep CNN (without any Gabor kernels), in exchange for tolerable

accuracy degradation. We also explore an efficient training methodology and incre-

mentally growing a DCNN to allow new classes to be learned while sharing part of

the base network. Our approach is an end-to-end learning framework, where we focus

xvii

on reducing the incremental training complexity while achieving accuracy close to the

upper-bound without using any of the old training samples. We have also explored

spiking neural networks for energy-efficiency. Training of deep spiking neural networks

from direct spike inputs is difficult since its temporal dynamics are not well suited for

standard supervision based training algorithms used to train DNNs. We propose a

spike-based backpropagation training methodology for state-of-the-art deep Spiking

Neural Network (SNN) architectures. This methodology enables real-time training

in deep SNNs while achieving comparable inference accuracies on standard image

recognition tasks.

1

1. INTRODUCTION

The human brain is being studied for more than thousands of years. With the advent

of modern technology, researchers were very much tempted to try to harness the

amazing capabilities of the brain. In 1943, Warren McCulloch, a neurophysiologist,

and a young mathematician, Walter Pitts, wrote a paper on how neurons might

work [1]. This work is considered as the first step toward artificial neural networks.

They modeled a simple Neural Network (NN) with electrical circuits using available

electronic devices. As computers began to evolve from their infancy during the 1950s,

researchers were able to model the rudiments of these theories concerning human

brain. Nathaniel Rochester from the IBM research laboratories was the first person

to simulate a neural network [2]. However, during the same time period, traditional

computing began to flourish and, as it did, the emphasis in neural computing declined

but not diminished. In 1957, John von Neumann suggested imitating simple neuron

functions by using vacuum tubes or telegraph relays [3]. Also, Frank Rosenblatt, being

intrigued with the operation of the eye of a fly, started working on the Perceptron [4].

Major portion of the processing, which tells a fly when to flee, is done in its eye. The

Perceptron model resulted from this research was built in hardware. It is the oldest

neural network still in use today. A single perceptron computes a weighted sum of

the inputs, subtracts a threshold, and produces one of the two possible values as the

result. A single-layer perceptron was found to be suitable in classifying a continuous-

valued set of inputs into one of two classes. However, Minsky and Papert’s analysis

of perceptrons showed that a single layer perceptron cannot learn an XOR function,

since classes in XOR are not linearly separable [5]. They also argued that it had to

be done with multiple layers of perceptrons. Unfortunately, the perceptrons at that

time had very limited learning capacity as the existing training algorithm could train

only a single layer perceptron network [5].

2

In the early 1960s, ‘Backpropagation’ algorithm was developed by multiple re-

searchers. However, Paul Werbos was first to propose that it could be used for

training neural networks in his PhD Thesis in 1974 [6]. Then, in 1986, Rumelhart,

Hinton and Williams [7] showed experimentally that this method can generate useful

internal representations of incoming data in hidden layers of neural networks. How-

ever, further development of Neural Networks was heavily impeded till early 1990’s

due to another obstacle, lack of computing power.

The much needed boost for neural networks came in the year 1998, when the very

first Convolutional Neural Networks (CNN) was demonstrated that lifted the field of

Deep Learning. This pioneering work was named LeNet5 [8] after the lead researcher

Yann LeCun. The LeNet5 architecture was elementary in developing the insight that

image features are spatially distributed across the entire image. At that time, there

was no Graphical Processing Unit (GPU) to help training, and even Central Process-

ing Units (CPU) were slow. This work showed that convolutions are an effective way

to extract similar features at multiple locations at the expense of few parameters.

This was enormously useful considering the computation power limitations. LeNet5

is the origin of most of the recent architectures, and greatly inspired majority of the

researchers in the field. However, from 1998 till 2010, neural network research was

again in incubation due to lack of resources. During this period, most people did not

notice the increasing power of neural networks, while many other researchers slowly

progressed in the shadows. Data availability increased exponentially because of the

rise of cell-phone cameras and cheap digital cameras. Computing power was also on

the rise, CPUs were becoming faster, and GPUs became a general-purpose computing

tool. These trends helped neural network research to progress, although at a slow

rate. However, both increasing data and computing power allowed neural network to

tackle the tasks more powerfully and accurately.

In 2012, Alex Krizhevsky proposed AlexNet [9], which won the difficult ImageNet

[10] competition of classifying 1000 object classes by a large margin. AlexNet was

a deeper and much wider version of the LeNet. In AlexNet, the author up-scaled

3

the insights of LeNet into a much larger neural network that could be used to learn

much more complex objects and hierarchies. This also showed that GPUs can be

efficiently utilized to supply the enormous computing power required for realizing

deeper networks. From then on, a lot of new algorithms and network architectures

have emerged to uplift the Deep Learning research.

1.1 Deep Learning and its Constraints

Deep Neural Networks (DNNs) are a class of brain-inspired machine learning al-

gorithms that enable a computer to learn from observational data. Deep Learning

is the field where these DNNs are applied and investigated. DNNs have demon-

strated state-of-the-art results in a range of applications including image and speech

recognition, natural language processing, and video analysis [11,12]. Moreover, there

have been several instances in the recent past where DNNs have been shown to

outperform humans [13]. However, the memory and computational requirements of

such large-scale networks are quite high. With energy consumption becoming a pri-

mary concern across all computing platforms, from data centers to mobile devices,

energy-efficient realization of DNNs is of paramount interest. In fact, the vast energy

overhead of large-scale DNNs has led to multi-dimensional research efforts spanning

algorithms, architecture, circuits and devices, for the energy-efficient realization of

DNNs [14–18]. At the algorithmic level, novel network topologies and models are

being explored [15,16], while at the hardware level, emerging devices capable of mim-

icking the neuronal and synaptic dynamics have been proposed [17,18] to address the

energy challenges.

Further, the quest for computing efficiency has led to the emergence of an al-

ternate design paradigm, namely approximate computing, which exploits intrinsic

algorithmic error resiliency for energy savings [19]. Significant benefits in energy can

be obtained by judiciously approximating certain computations for negligible loss in

output quality [20–24]. Neural networks are known to be highly error resilient [25,26],

4

and are hence capable of tolerating approximations in the underlying computations.

Researchers have explored the possibility of introducing approximations at different

levels of DNN implementation in an effort to achieve energy efficiency for tolerable

degradation in accuracy [27–32]. These research efforts on approximate computing for

neural networks proposed and evaluated approximations at a single level of abstrac-

tion. For example, in [29,31,32], approximations were applied at the algorithmic level.

Examples of approximations to DNNs at the hardware level include [28, 30]. These

efforts have shown that some of the accuracy loss due to hardware approximations

can be recovered by re-training the networks [27–29]. Since different approximations

provide different energy-accuracy trade-offs, there is a need to compare these approx-

imations and further explore whether better energy-quality trade-offs can be achieved

through cross-layer approximation.

1.2 Contribution and Organization of the Thesis

The basic operation of Neural Networks consists of two phases, training and test-

ing/inference. The training process is usually carried out off-line or in the cloud. The

trained neural network is then used to process unseen data inputs. For large net-

works with millions of neurons, the testing process, although less compute-intensive

than training, nevertheless requires significant computation. In this work, we explore

and analyze approximations at different levels of abstraction and novel training algo-

rithms for achieving energy efficiency during both in testing/inference and training,

separately.

1.2.1 Improve Testing/Inference Energy-efficiency

To increase testing/inference energy-efficiency, we considered approximations at

both Algorithm and Hardware level. At the algorithmic level, we explore low-complexity

networks with fewer layers and/or neurons and perform pruning of synapses [32, 33].

At the hardware level, we utilize approximate multipliers [28] for neuronal compu-

5

tation, and approximate memory [30] for storing the synaptic weights. We system-

atically analyze the energy-accuracy trade-offs offered by different approximations in

DNNs. The key contributions of our work are:

• We introduce different algorithmic and hardware level approximations in DNNs

such as reduction in network complexity [for both Fully-Connected Networks

(FCNs) and Convolutional Neural Networks (CNNs)], synaptic weight prun-

ing, approximate multiplications [28, 34], and approximate read/write opera-

tions to memory [30]. We analyze the trade-offs between accuracy and energy

consumption for standard datasets. We additionally show that retraining the

approximate DNNs minimizes the accuracy degradation.

• We combine approximations at different levels to achieve improved energy ben-

efits. We compare different approximations and their combinations in a quest

for the best (lowest energy) configuration that meets a given accuracy specifi-

cation [35].

• We develop a circuit to system-level simulation framework to evaluate the classi-

fication accuracy and the energy consumption of different DNN approximations.

1.2.2 Improve Training Energy-efficiency

For training, we considered approximations at Algorithm level only. To reduce the

training complexity of Deep CNNs, we replace certain weight kernels of convolutional

layers with Gabor filters [29]. The convolutional layers use the Gabor filters as fixed

weight kernels, which extracts intrinsic features, with regular trainable weight kernels.

This combination creates a balanced system that gives better training performance in

terms of energy and time, compared to the standalone Deep CNN (without any Gabor

kernels), in exchange for tolerable accuracy degradation. We also explore an efficient

training methodology and incrementally growing a DCNN to allow new classes to

be learned while sharing part of the base network. Our approach is an end-to-end

6

learning framework, where we focus on reducing the incremental training complexity

while achieving comparable accuracy without using any of the old training samples.

Finally, we propose a spike-based backpropagation training methodology for state-of-

the-art deep Spiking Neural Network (SNN) architectures. This methodology enables

real-time training in deep SNNs while achieving comparable inference accuracies on

standard image recognition tasks.

The key contributions of our work are:

• We proposed the use of Gabor filters in different layers of the CNN to lower the

computational complexity of training CNNs [29]. The novelty of our work lies in

the fact that we introduced Gabor filters with regular trainable weight kernels

in the intermediate layers of the CNN. We designed several Gabor filter based

CNN configurations in order to get the best trade-off between accuracy and

other parameters of interest, especially energy consumption. We show that the

accuracy degradation can be mitigated by partially training the Gabor kernels,

for a small fraction of the total training cycles.

• We explore an efficient training methodology and incrementally growing a DCNN

to allow new tasks to be learned while sharing part of the base network [36].

We propose sharing of convolutional layers to reduce computational complexity

while training a network to accommodate a new set of classes without forget-

ting the old tasks. We developed a methodology to identify optimal sharing

of convolutional layers in order to get the best trade-off between accuracy and

other parameters of interest, especially energy consumption, training time and

memory access.

• We develop a spike-based supervised gradient descent BP algorithm that ex-

ploits a conditionally differentiable approximated activation function of LIF

neuron [37]. In addition, we leverage the key idea of the successful deep ANN

models such as LeNet5 [8], VGG [38] and ResNet [39] for efficiently constructing

state-of-the-art deep SNN network architectures. We also adapt dropout [40]

7

technique in order to better regularize deep SNN training. We demonstrate

the effectiveness of our methodology for visual recognition tasks on standard

character and object datasets and a neuromorphic dataset.

We show that our proposed methodologies leads to energy efficiency, reduction in

storage requirements and training time, with minimal degradation of classification

accuracy.

This dissertation is organized as follows. Chapter 2 describes the basics of neural

networks used in this work. Chapter 3 and 4 explains the approximations at hardware

and algorithm levels, respectively, for DNN inference. Chapter 5 discusses the combi-

nation of different approximations used to improve energy-efficiency during inference.

Chapter 6 describes the application of Gabor filters as fixed convolutional kernels in

deep CNNs. Chapter 7 explains an efficient training methodology of incrementally

growing a DCNN and its benefits. Chapter 8 describes spike-based supervised gradi-

ent descent BP algorithm that can be utilized to train deep SNNs with supervision

from direct spiking input. Finally, chapter 9 concludes the dissertation.

8

2. BASICS OF NEURAL COMPUTING

Neural Networks (NN) are a medium for neural computing. The basic operation

of NNs consists of two phases, training and testing/inference. NNs can be divided

into two major branches based on their operating principles, namely, Spiking Neural

Network (SNN) and Non-spiking or Artificial Neural Network (ANN). Both ANN

and SNN can be further divided in to sub-categories depending on their network

connectivity. In this work, we consider two basic types of feed forward networks,

fully-connected (FC) and convolutional neural networks (CNN) for studying multi-

level approximations in NNs. In this chapter, we will go through these fundamental

concepts.

2.1 ANN

The fundamental elements of an artificial neural network are neurons and synapses.

The output of an artificial neuron is a weighted sum of its inputs passed through an

activation function (Fig. 2.1). The activation function can be hard-limiting (e.g.

step function) or soft-limiting (e.g. logistic sigmoid function, tanh function). Soft-

limiting functions are preferred as they allow much more information to be commu-

nicated across neurons and greatly improve the neural network modeling capability

while reducing network complexity. A network consisting of artificial neurons has real

numbers as inputs and outputs of each neuron.

9

(a)

(b)

Fig. 2.1.: (a) Output of an artificial neuron is the weighted summation of its inputs

passed through an activation function. (b) A network consisting of artificial neurons

has real numbers as inputs and outputs of each neuron.

2.2 SNN

Spiking Neural Network (SNN), a third generation product of neural network

models, provides greater level of realism in a neural simulation. The inputs to SNNs

are spike trains (figure 2.2). One major feature of SNNs is the incorporation of

temporal data into their operating model in addition to neuronal and synaptic states.

The neurons in a SNN do not fire at each propagation cycle (as it happens with typical

ANNs), rather fire only when a membrane potential (an intrinsic quality of the neuron

10

Fig. 2.2.: The inputs to SNNs are spike trains that propagate through the hidden

layers all the way to the output neurons.

related to its membrane electrical charge) crosses a threshold. When a neuron fires,

it generates a spike signal which travels to other neurons. The membrane potential

of a spiking neuron is normally considered to be the neuron’s state, with incoming

spikes increasing its value, and then either firing or decaying over time. Inference in

SNNs is based on accumulating sparse spiking events over time.

2.2.1 Fully-Connected Networks

In FCNs, the neurons are connected in an acyclic (feed-forward) manner as il-

lustrated in Fig. 2.3. In such a NN, every neuron in a layer is connected to all the

neurons in the following layer via synapses with unique individual connection weights.

2.2.2 Convolutional Neural Networks

CNNs consist of a hierarchical arrangement of alternating convolutional and spa-

tial pooling layers followed by a fully-connected layer, with nonlinearity applied at

the end of each layer. A typical architecture of a deep CNN is shown in Fig. 2.4.

Convolutional layers extract complex high-level features, while spatial-pooling layers

are used for dimensionality reduction and fully-connected layers are used for infer-

ence. To improve generalization and to reduce the number of trainable parameters,

11

Fig. 2.3.: Feedforward FCN, where each neuron in a layer is connected to all the

neurons in the following layer as shown by arrows. The different colored arrows

indicate that each input is multiplied by different weights.

a convolution operation is exercised on small regions of input. One salient benefit of

CNNs is the use of shared weights in convolutional layers, implying that the same

filter (weight bank) is used for each pixel of the image; this reduces memory footprint

and enhances performance.

Fig. 2.4.: Architecture of a deep CNN.

2.3 Training

Neural networks have separate layers, connections, and directions of data propa-

gation. In order to train a neural network, training data is put into the first layer of

the network, and individual neurons are assigned a weighting to the input based on

12

how correctly the task is being performed or how much correlated the input is to the

output. There are two popular methods for training a NN:

2.3.1 Back-propagation

Back-propagation, short for ‘backward propagation of errors’, is an algorithm for

supervised learning using gradient descent [7]. Usually it is used for training artificial

neural networks. Given an ANN and a specific error function, this method calcu-

lates the gradient of the error function with respect to the synaptic weights. The

‘backwards’ part of the name originated from the fact that the calculation of the

gradients proceeds backwards through the network. i.e. The gradients of the final

layer of weights are calculated first and the gradients of the first layer of weights are

calculated last. Part of the computations of the gradients of one layer is reused in

the computation of the gradients for the immediate previous layer. This backwards

flow of the error information provides an efficient way of computing the gradients at

each layer compared to the naive approach of calculating the gradients of each layer

separately.

Back-propagation method’s popularity has experienced a resurgence due to the

widespread use of deep neural networks. It is considered as one of the most effi-

cient algorithms for Deep Learning, and modern implementations take advantage of

specialized GPUs to further improve its performance.

2.3.2 STDP

Spike-timing-dependent plasticity (STDP) is a biological process closely related

to the activity in brains. It refers to the adjustments of the strength of connections

between neurons in the brain. This method is mostly used for training SNNs. Based

on the relative timing of a particular neuron’s output and input spikes (or action

potentials), STDP process adjusts the connection strengths. This process partially

13

explains the activity-driven enhancement of nervous systems, especially the long-term

potentiation and long-term depression processes.

In the STDP process, if an input spike to a neuron tends (on average) to occur

immediately before that neuron’s output spike, then the connections to that particular

input is strengthened. If an input spike tends (on average) to occur immediately

after an output spike, then the connections to that particular input is weakened.

Hence it is called ‘spike-timing-dependent plasticity’ [41]. Thus, inputs that might

be exciting the post-synaptic neuron are made even more likely to contribute in the

future, whereas inputs that are generated after the post-synaptic spike are made less

likely to contribute in the future. The process continues until only a fraction of the

initial set of connections remain, while the influence of all others is diminished. When

many of its inputs occur within a brief period, a neuron produces an output spike.

Therefore, the fraction of connections with inputs that remain are those that tended

to be correlated in time. Furthermore, since the connections of the inputs that occur

before the output are strengthened, the inputs that provide the earliest indication of

correlation will eventually become the most significant input to the neuron.

2.4 Inference

Inference is the process of taking real-world data and quickly producing a pre-

diction about the class or correctness of the input. In neural networks, new unseen

data input is propagated forward through an already trained network to test the

performance (accuracy/quality) of the network.

In this work, we employ approximations at different levels of deep NNs (both Fully-

connected and Convolutional Neural Networks in ANN domain) for achieving energy

efficiency during inference/testing. These approximations are explained chapters 3-5.

14

3. APPROXIMATE HARDWARE DESIGN FOR DNNS

Neural networks are good candidates for approximate computing due to their inherent

error resiliency. Therefore, several approximation techniques have been proposed for

NNs. In this chapter, our focus is to explore approximations at the hardware levels.

3.1 Approximate Multiplier for DNNs

In this subsection, we discuss the approximations applied to the multiplication

operation in the neurons of a deep neural network.

3.1.1 Motivation: Computation Energy Consumption by Multiplier

A neuron is a fundamental computational unit of an NN. Typically, a neuron

performs a MAC operation (i.e., integrates the product of the incoming inputs and

synaptic weights) to obtain a weighted sum, followed by a non-linear activation on

the weighted sum, to produce the resultant output. The most power consuming oper-

ation among the neuronal computations is multiplication, which by far outweighs the

summation and activation operations. To address this issue, we used an approximate

Alphabet Set Multiplier (ASM) proposed in [20] that achieves significant reduction

in neuronal computation energy. In [28], computation sharing is used in conjunction

with ASM to design energy-efficient hardware for inference.

3.1.2 Alphabet Set Multiplier

A multiplication operation can be decomposed into simple shift and add oper-

ations. The decomposition is based on the multiplicand ‘W’, which in our case

15

represented by the synaptic weights. Sample decomposition of two multiplication

operations W 1 × I and W 2 × I, are shown in Table 3.1.

Table 3.1.: Decomposition of Multiplication Operation

Weights Decomposition of Product

W 1 = 011010112(10710) W 1 × I = 25.(0011).I + 20.(1011).I

W 2 = 010010102(7410) W 2 × I = 26.(0001).I + 21.(0101).I

Note that, in the table, few small bit sequences (00012, 01012, 00112, 10112) are

multiplied with the input ‘I’. These small bit sequences, ak are referred to as alphabets.

If I, 3I, 5I, 7I, 9I, 11I, 13I, and 15I are available, the entire multiplication is down

to a few shift and add operations. Based on this insight, instead of multiplying the

multiplier with the multiplicand, some lower order multiples of the input are shifted

and added in ASM [20]. An ASM consists of a pre-computer bank, an ‘adder’, and one

or more ‘select’, ‘shift’ and ‘control logic’ units. The pre-computer bank computes the

lower order multiples of the input which are the products of the input and some pre-

specified alphabets. These alphabets are collectively termed the alphabet set (denoted

by {1,3,5,. . . }). Overall, the ASM has four steps: i) generate the products of the

input and the alphabets ii) select a product iii) shift that product iv) add the shifted

products. In this work, synaptic weights are taken as 4 bit, 8 bit and 12 bit words

for neurons of equivalent bit precisions. For this section, we will consider only 8 bit

synapses for explaining the operation of ASMs. The 8 bit word is divided into two

quartets for the ASMs. This requires a final addition after select and shift operations.

Based on the multiplicand, different combinations of select, shift and addition will

occur, which will be controlled by a ‘control logic’ unit. For performing general

multiplication operation, all possible combinations must be covered. It has been

shown that to cover these combinations, 8 alphabets {1,3,5,7,9,11,13,15} are required

for bit sequence size of 4 bits [42]. It must be noted that the number of alphabets

being used in the pre-computer bank directly translates to power dissipation, while

16

the number of communication buses (out of the pre-computer) is also proportional to

the number of alphabets. However, in order to achieve lower routing complexity and

power consumption, use of reduced number (less than 8) of alphabets is proposed

in [28]. The reduction of number of alphabets is only possible owing to the error

resilience of neural computing. Using Fig. 3.1, the working principle of an 8 bit 4

alphabet ASM is explained next.

Fig. 3.1.: 8 bit 4 alphabet ASM (modified from [28]).

Multiplier ‘I’ is supplied to the pre-computer bank which generates products of

input and the alphabets. These products are realized by shift and add operations.

In this example, the alphabet set is {1,3,5,7}. Hence, the pre-computer bank will

generate 1I, 3I, 5I, 7I. Multiplicand ‘W’ is divided into two parts which will work as

inputs for the ‘control logic’ circuits. Based on the ‘W’, control signals for the ‘select’

and ‘shift’ units are generated by the respective ‘control logic’ circuits. The ‘select’

units select suitable products from the pre-computer bank and pass them to the ‘shift’

units. ‘Shift’ units shift the input by the required amount. Finally, the ‘adder’ unit

adds the two separate values to get the multiplication result. For instance, to realize

the multiplication of Y=100 (0110 01002) and X, we have to generate 01002 X (4X)

and 01102 X (6X) × 24 (shifted by 4 corresponding to the relative bit position),

17

and sum them up. Note that 4X and 6X can be generated by selecting 1X and 3X

from the pre-computer bank, and shifting them respectively by 2 bits and 1 bit. The

multiplication decomposition is demonstrated by the following equation:

011001002 ×X = (3X × 21)× 24 + (1X × 22)× 20

3.1.3 Computation Sharing Multiplication

Since these ASMs require pre-computing unit and control circuitry, they will only

be advantageous if they can be used in a distributed way with minimum number of

alphabets, i.e. share the product of input and alphabets with several multiplication

units. The CSHM [43] architecture can be used to serve that purpose. Fig. 3.2

illustrates a CSHM consisting of a common pre-computer bank, shared between a

number of ASM based multiplication units.

In a feedforward ANN, each input is multiplied by a number of different weights

to feed the different neurons (Figure 2.3). Therefore, the pre-computer bank can

be shared between the neurons that are processing the product of same input but

different weights in parallel. In this work, we used the processing unit implemented

in [28], which processed four neurons at a time, thus making it possible for four ASM

units to share the product of input and alphabets from a common pre-computer bank,

as illustrated in Fig. 3.2.

18

Fig. 3.2.: 4 alphabet ASMs using CSHM architecture (modified from [28]).

3.1.4 Selection of Good Alphabets

Use of reduced number (less than 8) of alphabets is proposed in [28] to reduce

power dissipation of the pre-computer unit. However, reduction of the number of

alphabets decreases flexibility of synapses during training, which in turns reduces

the network accuracy. Therefore, proper selection of alphabets is very important

to get maximum energy benefits with minimal loss of accuracy. While selecting

alphabets for an alphabet set, it must be ensured that the alphabet can support higher

number of bit shift operations to generate other bit quartets which are not in the

alphabet set. For example, bit shift operation can be applied on alphabet 1 (00012) to

generate 3 other bit quartets 2 (00102), 4 (01002) and 8 (10002). On the other hand,

alphabet 3 (00112) can produce 2 other bit quartets, 6 (01102) and 12 (11002), while

5 (01012) and 7 (01112) each can produce only one other bit quartet 10 (10102) and

14 (11102), respectively. It is difficult to use alphabets 9(11002), 11(10112), 13(11012)

and 15(11112), since they cannot generate any other bit quartets. Therefore, selection

priority of alphabets is: 1 > 3 > 5, 7 > 9, 11, 13, 15.

19

3.1.5 Design Approach & Methodology

The use of ASM to exploit error resilience, and sharing of alphabets are the bases

of proposed approximate neurons. This section outlines the key ideas behind the

proposed design methodology.

Application of Weight Constraints

To perform multiplication using ASM, ‘select’, ‘shift’ and ‘add’ operations in a

number of different combinations needs to be performed. The efficacy of ASM mostly

depends on the number of alphabets used to encompass the range of the combinations.

If the bit sequence size of 4 bits is used for the decomposition of the multiplication

operation, then an alphabet set of 8 alphabets {1,3,5,7,9,11,13,15} is sufficient to

produce any product using the select, shift and add operations.

To achieve higher energy savings, the number of alphabets used in the proposed

ASM is fewer than the quantity required for ideal (accurate) operation. As a result, it

may not support all the multiplication combinations, which leads to approximations

in multiplication. For example, when a 4 alphabet {1,3,5,7} ASM is used, we can

generate 12 (including 0 (00002)) out of 16 possible combinations of 4 bits by bit shift

operations (e.g. from 1 (00012) we get 2 (00102), 4 (01002) and 8 (10002)). It cannot

produce the products, 9I, 11I, 13I and 15I, with (9,11,13,15) being the quartets from

the synaptic weights. Therefore, we cannot generate the product 011010012×I with

any select, shift and add combinations, since the LSB 10012(910) is not supported by

the alphabet set. However, to guarantee proper functioning of the neural network,

it must be ensured that the unsupported multiplication combinations do not lead

to significant computational errors. To address this issue, we introduce constrained

training of the ANN so that these unsupported combinations never occur. Since ANN

applications are inherently error resilient, we can exploit this and get favorable set

of weights. For this purpose, the synaptic weights (9,11,13,15) are restricted to the

nearest supported values (8,10,12,14). This is similar in effect to quantization, which

20

drops some amount of information resulting in accuracy degradation. To salvage some

of the lost accuracy, the network needs to be retrained with the imposed constraints.

The retraining overhead is marginal compared to the original training.

In a NN, the synaptic weights can be either positive or negative, while regular

primary input, for example, image pixel value is usually non-negative. Also, if we

use non-negative activation function (‘sigmoid’ or ‘ReLU’ [44]), then the inter-layer

inputs will be non-negative too. For multiplication, we used the magnitude of the

synaptic weights. For storing the sign information of synaptic weights, one extra bit

is used. The sign bit also determines the sign of the multiplication output. If negative

input is also present, then one extra bit will be required to store that information and

the sign of the multiplication output will depend on both the input sign and synaptic

weight sign bits.

Next, as an example, the algorithm for constraining weights for 12 bit ASM is

explained. Here, we consider a 12 bit unsigned synaptic weight as a concatenated

version of 3 bit quartets P, Q and R, where P is the MSB and R is the LSB (shown in

Fig. 3.3). P, Q and R each can have 16 combinations, 0 (00002) to 15 (11112). If we

use 2 alphabets {1,3} only, the maximum number of supported combinations out of

the 16 is 8. In that case, we cannot support 516, 716, 916, A16, B16, D16, E16, F16 for P,

Q and R. Hence, we convert those unsupported values to the nearest supported value

ensuring minimum loss in precision. Algorithm 1 is the weight constraint mechanism

for 12 bit 2 Alphabets {1,3} Multiplier.

Fig. 3.3.: 12 bit weight value decomposed into three quartets (modified from [28]).

21

ALGORITHM 1: Weight constraint for 12 bit 2 Alphabets {1,3} Multiplier

Input: Absolute weight value PQR, list of unsupported quartets values {unsV}, sign

information of the weight value ‘s’.

Output: Updated Weight value PQRnew

1. If P={unsV}

2. If Q={unsV}

3. If R={unsV}, then round-down R,

4. based on Rnew round-up/down QR,

5. based on Qnew round-up/down PQR

6. Else based on R round-up/down QR,

7. based on Qnew round-up/down PQR

8. Else based on Q round-up/down PQR

9. Else if Q={unsV}

10. If R={unsV}, then round-down R,

11. based on Rnew round-up/down QR,

12. based on Qnew round-up/down PQR

13. Else based on R round-up/down QR,

14. based on Qnew round-up/down PQR

15. Else if R={unsV}, then round-down R,

16. based on Rnew round-up/down QR,

17. based on Qnew round-up/down PQR

18. If s=0, Return PQRnew

19. Else Return 2 ’s complement of PQRnew

Rounding Logic

For approximate multiplication operation, we must round-up/down an unsup-

ported value to the nearest supported value ensuring minimum loss of information.

For every two consecutive supported values, the average of them is considered as

the threshold point for rounding. For a 4 bit synapse, consider the two consecutive

supported values 816 and C16 (using only the alphabets {1,3}); then the threshold is

22

(816+ C16)/2=A16. If the unsupported value 916 comes up, we will convert it to 816,

else if A16 or B16 comes up, we will convert it to C16 (Fig. 3.4a).

(a) (b)

Fig. 3.4.: For 2 alphabets {1,3} ASM, rounding up/down the unsupported values (a)

4 bit synapse, (b) 8 bit synapse.

The threshold point for rounding is different for different unsupported values. If

the unsupported value is between two supported values, then based on the threshold

point it can be converted to appropriate supported value. But there are cases which

do not fall in this pattern. For example, if the unsupported value is E16, then it has

only one nearest supported value C16. If we use 4 bit synapse, then there is no option

other than converting E16 to C16. But if we use 8 bit or 12 bit synapse, then we can

take help from the upper 4 bits in this situation. This is shown in Fig. 3.4b. Here,

we have to consider the upper 4 bits as well for finding the nearest supported values

and threshold point.

Neural Network Design Methodology

With help of Fig. 3.5, algorithm 2 describes the overall NN training and test-

ing methodology. The inputs are a neural network (NN), its corresponding training

dataset (TrData), testing dataset (TsData), and a quality constraint (Q) that deter-

mines the minimum acceptable quality in the implementation. The quality specifica-

tions are application-specific.

23

Fig. 3.5.: Overview of the ANN design methodology (modified from [28]).

ALGORITHM 2: NN training and testing methodology

Input: Neural network: NN, Training dataset: TrData, Testing dataset: TsData, Quality

constraint: Q≤1.

Output: Retrained NN meeting the quality constraint.

1. Train the NN using TrData without any weight constraints till the training reaches

near saturation, i.e. minuscule improvement in recognition accuracy can be achieved

through more training.

2. Test the network using the TsData to get the network accuracy J. Create a restore

point.

3. Retrain the network imposing constraints for minimum number of alphabets (start with

1) on weight update with lower learning rate till it again reaches near saturation.

4. Test the retrained network to find the new network accuracy K and compare the

network accuracy using J, K and Q.

If accuracy is satisfactory, i.e. if K ≥ J ×Q, then end the training.

Else restart from the restore point created in 2 and repeat steps 3 and 4 with

increased number of alphabets.

24

Retraining

Retraining could effectively be used to mitigate the accuracy degradation incurred

due to approximations in multiplication. Adapting the learning rate is vital for effi-

ciently retraining the network with these approximations in place. The learning rate

is basically a multiplication factor in the weight update equation [45] that influences

the speed and quality of learning. Precise adjustment of the learning rate is needed,

when using the approximate multiplier, due to the non-uniformity in the distance

between the allowed weight levels. The non-uniformity is illustrated by the following

example. Let us consider a 2 alphabet {1,3} ASM, where the acceptable weight levels

are 0x, 1x, 2x, 3x, 4x, 6x, 8x, and 12x. It can be deduced that the distance between

the levels 8x and 12x is 4x, while that between 6x and 8x is 2x. In this scenario,

if the learning rate is too low, the updates might not be substantial enough for the

weights to overcome the distance barrier between certain allowed levels. This arises

the possibility of the weights getting stuck at a specific level (that may potentially

lead to non-convergence in training), which is unfavorable to the learning process.

On the contrary, too high a learning rate might cause the weights to widely oscil-

late between the different levels, which leads to accuracy deterioration. Hence, the

determination of the optimal learning rate for retraining the approximate NN is of

extreme importance.

Fig. 3.6.: Flow diagram of the retraining process for an ASM based DNN.

25

Fig. 3.6 illustrates the flow diagram of the retraining process. The retraining

begins with the highest learning rate that was used to start training the NN without

approximation. With the weight restrictions in place, if the accuracy improves, re-

training is carried on with the same learning rate for a few more iterations, until there

is no noticeable improvement in the accuracy. On the other hand, if the accuracy

does not improve, the learning rate is adjusted and the NN is further retrained. The

adjustment of learning rate is carried out by reducing it by some factor. The process

of adjusting the learning rate is continued until the accuracy improvement saturates.

Point to be noted here is that the overhead for retraining an approximate NN for few

epochs is negligible compared to the number of epochs required to train the original

NN (without approximations).

3.1.6 Multiplier-less Neuron (MAN)

From the accuracy results of ASM in artificial neurons, we observed that even

with only 1 alphabet {1} in all layers, we are able to achieve accuracy within ∼0.5%

of conventional implementation. The additional advantage of using only 1 alpha-

bet, specifically {1}, is that we do not have to generate any alphabet set, the input

only is sufficient for the 1 {1} alphabet requirement. That means we do not need

multiplication, only shifting and adding is enough. This eliminates the necessity of

the pre-computer bank and alphabet ‘select’ unit, leading to a ‘Multiplier-less’ neuron

(Fig. 3.7).

26

Fig. 3.7.: 8 bit 1 alphabet {1} ASM (MAN) (modified from [28]).

3.1.7 Realization

In this section, we discuss the circuit to system-level simulation framework that

we developed to analyze the effectiveness of the approximations on NNs. For the

approximate multiplication, we implemented the multiplier and adder units at the

Register-Transfer Level (RTL) in Verilog, and mapped the designs to the 45nm tech-

nology library using the Synopsys Design Compiler. We subsequently built a neuronal

energy computation model based on the number of MAC (multiply-accumulate) oper-

ations in the forward propagation of the NN algorithms (FCN and CNN). The power

and delay numbers of the individual adder and multiplier units obtained from the

Design Compiler are subsequently fed to the energy computation model to estimate

the total neuronal energy consumption.

At the system-level, the deep learning toolbox [45] and MatConvNet [46], which

are MATLAB based open source neural network simulators, are used to model the

approximations and evaluate the performance (classification accuracy) of the DNNs

under consideration. We implemented the fully connected and convolutional NNs

without data augmentation, batch normalization, and dropout features to primarily

27

single out the effects of different approximations. Details of the benchmarks used in

our experiments are listed in Table 3.2.

Table 3.2.: Benchmarks

Application Dataset NN Model
Training

Samples

Testing

Samples

Digit Recog. MNIST FCN 60000 10000

Object Recog. CIFAR 10 CNN 50000 10000

3.1.8 Results

We now present the computational energy-accuracy trade-offs offered by the ASM

based deep FCNs and CNNs, and perform a comparison with the conventional (un-

approximated) DNNs.

We observe from Fig. 3.8a that, ASM based FCNs (trained on MNIST) using

4 alphabets {1,3,5,7} do not provide much energy savings over conventional (un-

approximated) DNNs of 12, 8 and 4 bit neurons. On the other hand, 18-27% reduction

in energy consumption is achieved using only 2 {1,3} alphabets ASM based FCNs.

In the case of multiplier-less neurons (using only 1 alphabet {1}), 26-32% reduction

in energy consumption is achieved. The accuracy degradation is less than 0.40% for

ASM based DNNs compared to 12 bit conventional DNN baseline.

Fig. 3.8b shows that, 5-18% and 31-40% energy savings is achieved using 4 al-

phabet and 2 alphabet ASM based CNNs (trained on CIFAR10) respectively. Our

analysis further indicates that up to 44% energy savings is achieved using multiplier-

less neurons (using only 1 alphabet {1}). We note that although the 4-bit ASM based

CNNs offer the lowest energy consumption relative to other ASM configurations, they

lead to higher degradation in accuracy (up to 2.3%), which is undesirable. The higher

accuracy loss can be attributed mostly to lower bit precision. From the effect of bit

28

precision scaling, we found that a Deep CNN [1024× 3 (5× 5)192c 160fc 96fc (3×

3)mp (5 × 5)192c 192fc 192fc (3 × 3)mp (3 × 3)192c 192fc 10o] of 4 bit precision

trained on CIFAR10 can achieve only an accuracy of 86% compared to the baseline

(12 bit precision) of 87.3%. If hardware approximations are applied on this network,

further accuracy degradation is unavoidable.

12b 12b412b212b1 8b 8b4 8b2 8b1 4b 4b4 4b2 4b1

ASM Configuration (#Bits followed by the #Alphabets)

98.3

98.4

98.5

98.6

98.7

98.8

98.9

A
c
c
u

ra
c
y
 (

%
)

Accuracy

0.0

0.5

1.0

1.5

2.0

E
n

e
rg

y
 (
µ
J
)

DNN Energy

(a)

12b 12b412b212b1 8b 8b4 8b2 8b1 4b 4b4 4b2 4b1

ASM Configuration (#Bits followed by the #Alphabets)

80

82

84

86

88

90

A
c
c
u

ra
c
y
 (

%
)

Accuracy

0

1

2

3

4

5

6

7

E
n

e
rg

y
 (
µ
J
)

DNN Energy

(b)

Fig. 3.8.: Energy/accuracy trade-off comparison between ASM based DNNs and Con-

ventional DNNs, for (a) MNIST dataset on FCN and (b) CIFAR 10 dataset on CNN.

12b: 12 bit synapse NN, 12b4: 12 bit synapse NN with 4 alphabet ASM, 12b2: 12 bit

synapse NN with 2 alphabet ASM, 12b1: 12 bit synapse NN with 1 alphabet ASM.

Similar notations for 8 bit and 4 bit NNs.

29

3.2 Approximate Memory for DNNs

In this section, we discuss the approximations applied to weighted synapses inter-

connecting various layers of a deep neural network.

3.2.1 Motivation: Total Energy Consumption Dominated by Memory

Access

The overall energy consumption of NNs during inference/testing depends on the

system architecture, frequency of operation, bit precision, memory type and size, etc.

Usually memory access energy dominates the total energy consumption. Based on

our energy models, we observed that in FCNs, memory access consumes 5.34x more

energy than computation energy. However, in CNNs, dominance of memory access

energy is comparably less (2.5x of computation energy) due to weight sharing in the

convolutional layers.

Memory access power is dominated by the read and write accesses during infer-

ence/testing. We note that the number of synapses is typically two to three orders of

magnitude greater than the number of neurons. Hence, the on-chip synaptic memory,

conventionally designed using 6T SRAM, consumes significant amount of access and

leakage energy.

3.2.2 Effects of Voltage Scaling on 6T SRAM

The supply voltage of 6T SRAM based synaptic memory can potentially be scaled

to lower the energy consumption. However, 6T bitcells are susceptible to read-access

and write failures at scaled voltages. The failures are aggravated in scaled technology

nodes due to random process parameter variations [47–49]. The random variations

effectively change the relative strength of the transistors constituting the individual

bitcells. This negatively impacts the ability to read from (write into) a 6T bitcell

within the stipulated time duration, resulting in read-access (write) failures.

30

Neural networks, being inherently resilient to small perturbations in the synaptic

weights, enable the supply voltage of 6T SRAM based synaptic storage to be scaled

moderately. This reduces the energy consumption for a negligible loss in the classifi-

cation accuracy. We quantitatively analyzed the impact of supply voltage scaling on

the stability of 6T SRAM. First, we designed a robust 6T bitcell in 45nm technology

to operate at a nominal supply voltage of 0.9V and meet the static noise margin

specifications in [30]. The 6T bitcells in a 128 × 512 sub-array were then subjected

to random threshold voltage fluctuations to mimic the process parameter variations.

We note that the optimal sub-array configuration was obtained from CACTI [50] for

a memory size of 8KB. Finally, we performed Monte Carlo SPICE simulations to

estimate the read and write failures at different supply voltages.

(a) (b)

Fig. 3.9.: (a) Read access failure rate versus supply voltage and (b) Write failure rate

versus supply voltage, for a 6T bitcell.

3.2.3 8T-6T Hybrid Memory

Fig. 3.9 shows that 6T bitcell failures increase exponentially as the supply voltage

is scaled. Therefore, aggressive voltage scaling of 6T SRAM could potentially result

in unacceptable degradation in accuracy due to corruption of a large fraction of the

synaptic weights. Reference [30] explored a hybrid 8T-6T SRAM [21], where few

31

Most Significant Bits (MSBs) of the synaptic weights are protected in reliable 8T

bitcells while the relatively tolerant Least Significant Bits (LSBs) are stored in 6T

bitcells. The enhanced stability of an 8T bitcell at scaled voltages can principally be

attributed to decoupled read and write paths, leading to independent optimization for

the respective operations (read and write). Monte Carlo analysis of a similarly sized

sub-array of 8T bitcells yielded negligible failures in the voltage range of interest.

Therefore, a hybrid 8T-6T SRAM allows the supply voltage to be scaled aggressively,

which leads to improved energy efficiency at the expense of an added area penalty.

Hence, it is important to minimize the number of 8T bitcells in order to achieve the

best trade-off between classification accuracy, area, and energy consumption.

Fig. 3.10.: Synaptic sensitivity driven hybrid 8T-6T memory architecture [30].

For our analysis, we use the synaptic sensitivity driven hybrid memory architecture

proposed in [30] and illustrated in Fig. 3.10. It consists of multiple 8T-6T SRAM

banks, each of which stores the strength (weight) of synapses interconnecting a pair

of neural network layers. The number of 8T MSB cells in each bank is chosen based

on the sensitivity of the corresponding synapses to perturbation. For deep FCNs, we

32

find that the synapses interconnecting the input and the initial hidden layers have

a bigger impact on accuracy, and hence must use a higher number of 8T MSB cells.

Additionally, the synapses feeding into the output layer are significant since they

directly influence the classification performance. For deep CNNs, the convolutional

weight kernels ought to be stored in hybrid banks with greater number of 8T MSB

cells.

3.2.4 Design Technique and Realization

For the voltage-scaled approximate memory, the constituent 6T and 8T bitcells

were designed and subjected to Monte Carlo SPICE simulations to determine the

read-access and write failure probabilities at reduced voltages. The energy consump-

tion of the hybrid 8T-6T SRAM bank including the peripherals is obtained using

CACTI [50] for the 45nm process technology.

At the system-level, the deep learning toolbox [45] and MatConvNet [46], which

are MATLAB based open source neural network simulators, are used to model the

approximations and evaluate the performance (classification accuracy) of the DNNs

under consideration. We implemented the fully connected and convolutional NNs

without data augmentation, batch normalization, and dropout features to primarily

single out the effects of different approximations. Details of the benchmarks used in

our experiments are listed in Table 3.2.

3.2.5 Results

We scaled down the supply voltage of 6T SRAM based synaptic memory to achieve

energy efficiency by exploiting the intrinsic error resiliency of neural networks. Our

simulations on a deep FCN ([784 1200 600 10]) trained for MNIST digit recognition

showed that the supply voltage could be lowered till 0.85V from the nominal voltage

of 0.90V for negligible accuracy loss. Further reduction in voltage resulted in substan-

33

tial accuracy degradation. Therefore, we used the synaptic sensitivity driven hybrid

memory architecture for aggressive voltage scaling.

We explored three different hybrid memory configurations corresponding to a

synaptic precision of 12 bits, 8 bits, and 4 bits respectively. Each memory con-

figuration consists of three 8T-6T SRAM banks to store the weight of synapses in-

terconnecting every pair of layers of the deep FCN under investigation. The number

of 8T MSB cells in each bank (shown in Table 3.3) is determined based on synaptic

sensitivity as described in Section 3.2.3.

Table 3.3.: Synaptic sensitivity driven hybrid memory configuration

Synaptic

Precision

#8T MSBs

in Bank-1

#8T MSBs

in Bank-2

#8T MSBs

in Bank-3

12 bits 4 3 5

8 bits 3 2 3

4 bits 1 1 2

Our simulations indicate that the hybrid 8T-6T SRAM enable the voltage to

be scaled down to 0.80V, which offers improved memory access energy efficiency

compared to an all-6T SRAM that needs to be operated at 0.85V for negligible

accuracy degradation. This is corroborated by figure 3.11, which shows that the

deep FCN under consideration using the hybrid 8T-6T SRAM (operating at 0.80V)

consumes lower memory access energy relative to an all-6T SRAM (operating at

0.85V). However, the improvement in energy consumption decreases as the synaptic

precision is lowered from 12 bits to 4 bits. This can be attributed to a reduction

in the complexity of the memory peripheral (decoding and sensing) circuitry. The

reduced complexity minimizes the improvement in memory access energy achieved

by operating at 0.80V relative to that expended at 0.85V. We note that deep CNNs

(trained on CIFAR-10) also demonstrate a similar trend.

34

12 bits 8 bits 4 bits
Synapse Size

0.0E-6

2.0E-6

4.0E-6

6.0E-6

8.0E-6

1.0E-5

R
e
a
d

 E
n

e
rg

y
 (
µ
J
)

DNN (all 6T SRAM @ 0.90V)
DNN (all 6T SRAM @ 0.85V)
Approximate DNN (8T-6T SRAM @ 0.80V)

(a)

12 bits 8 bits 4 bits
Synapse Size

0.0E-9

2.0E-9

4.0E-9

6.0E-9

8.0E-9

1.0E-8

W
ri

te
 E

n
e
rg

y
 (
µ
J
)

DNN (all 6T SRAM @ 0.90V)
DNN (all 6T SRAM @ 0.85V)
Approximate DNN (8T-6T SRAM @ 0.80V)

(b)

Fig. 3.11.: Comparison of total memory (a) read energy and (b) write energy, for

classification of one image under iso-accuracy condition. Accuracy for 12, 8 and 4

bit networks are ∼98.9%, ∼98.8% and ∼98.5%, respectively with degradation up to

0.5% for 12 bit and 8 bit synapse, and ∼1.25% for 4 bit synapse.

35

Note that this approximation is non-deterministic, as a result of which retraining

cannot be used to retrieve portion of the lost accuracy. Therefore, we scale the

voltage down only till that point where the accuracy degradation is marginal (<0.5%

for 12 bit and 8 bit synapse, and ∼1.25% for 4 bit synapse), for a fair iso-accuracy

comparison with the conventional DNN. We additionally found that the accuracy

could occasionally improve (<1%) even after applying memory approximation due to

the non-deterministic nature of the approximation.

36

4. ALGORITHMIC LEVEL APPROXIMATIONS

In this chapter, we consider two algorithm level approximations, viz. lower complexity

networks and pruning.

4.1 Prunning of Synapses

Pruning has been shown to reduce the complexity of an NN tremendously [32,

33]. Essentially, the insignificant synaptic connections are eliminated (or pruned)

to achieve an order of magnitude reduction in the NN computations with minimal

impact on accuracy. Fig. 4.1 shows the distribution of the synaptic weights for a deep

FCN (with 784 input neurons, 2 hidden layers consisting of 1200, 600 neurons and 10

output neurons denoted as [784 1200 600 10]) trained on the MNIST dataset using a

precision of 12 bits. We observed that a substantial portion of the weights carry very

small values (experimentally determined to be below 0.04 for this application). Based

on our analysis, we found that these weights are insignificant and can be removed

(pruned) without having a significant impact on the accuracy. We observed that 8-bit

synapses follow a similar weight distribution as 12 bit synapses. Hence, pruning the

8 bit synapses (below 0.04) also had negligible impact on accuracy. For an NN with 4

bit synapses, the lower bit precision naturally truncates a majority of synaptic weight

values to 0. However, a synaptic precision of 4 bits, although more computationally

efficient than 8 or 12 bits, is not preferable, since it drastically degrades the accuracy.

The energy/accuracy trade-offs offered by NNs with different synaptic bit-precisions

will be discussed in subsection 4.1.2.

37

Fig. 4.1.: Synaptic weight distribution of a Deep FCN trained on MNIST: [784 1200

600 10] with 12 bit synaptic weights.

4.1.1 Prunning Methodology

Next, we describe the three-step process used to prune the synaptic weights. First,

we train the network to learn all the synaptic connections. Then, we remove (or prune)

the unimportant connections based on a pruning threshold that is determined from

the distribution of the learned synaptic weights. Finally, we retrain the network to

adjust the weights of the remaining connections to reclaim a significant portion of

the accuracy lost due to pruning. The percentage of the synaptic weights that can be

pruned is estimated by analyzing its impact on the network accuracy. Our analysis

(Fig. 4.2) indicates that almost 80% of the synaptic connections of a trained deep

FCN (for MNIST) can be pruned for negligible accuracy degradation.

0 20 40 60 80 100
Synapses Pruned (%)

0

20

40

60

80

100

N
o
rm

a
li
ze

d

 A
c
c
u

ra
c
y
 (

%
)

Fig. 4.2.: Effect of pruning on accuracy for a Deep FCN trained on MNIST: [784 1200

600 10] with 12 bit synaptic weights.

38

4.1.2 Results

We systematically pruned the synaptic weights using the procedure described in

sub-section 4.1.1. The energy-accuracy comparison between conventional DNN and

pruned DNNs is shown in Fig. 4.3. Our analysis on a deep FCN trained on the MNIST

dataset using 8-bit and 12-bit synapses showed that ∼80% of the synaptic connections

could be removed with minimal accuracy degradation, which leads to roughly 80%

savings in energy compared to the conventional (un-approximated) DNNs. We further

note that FCNs with 4-bit synapses allowed up to 84% of the connections to be pruned,

resulting in larger energy benefits. Fig. 4.3a shows that the accuracy degradation is

less than 0.20% for pruned DNNs across different bit-width configurations.

A similar analysis on a deep CNN trained on the CIFAR-10 dataset indicated

that 41.24%, 39.51% and 25.75% of the synaptic connections could be eliminated for

12-bit, 8-bit and 4-bit synapses, respectively, with negligible accuracy degradation.

It can be seen from Fig. 4.3 that pruned networks consistently provide better energy

consumption than conventional DNNs.

39

12 bits 8 bits 4 bits
Synapse Size

98.3

98.4

98.5

98.6

98.7

98.8

98.9

A
c
c
u

ra
c
y
 (

%
)

Conv. DNN Accuracy
Pruned DNN Accuracy

0.0

0.5

1.0

1.5

2.0

E
n

e
rg

y
 (
µ
J
)

Conv. DNN Energy
Pruned DNN Energy

(a)

12 bits 8 bits 4 bits
Synapse Size

80

82

84

86

88

90

A
c
c
u

ra
c
y
 (

%
)

Conv. DNN Accuracy
Pruned DNN Accuracy

0

1

2

3

4

5

6

7

E
n

e
rg

y
 (
µ
J
)

Conv. DNN Energy
Pruned DNN Energy

(b)

Fig. 4.3.: Energy/accuracy trade-off comparison, between pruned DNNs and conven-

tional DNNs, is shown for (a) MNIST trained on Deep FCN and (b) CIFAR10 trained

on Deep CNN, for different synapse sizes.

40

4.2 Low Complexity Networks

For a given baseline DNN, we train a low complexity network (containing lesser

number of layers and/or neurons per layer) in order to achieve a significant reduc-

tion in energy for a small reduction in accuracy. There are two basic approaches

that can be used to derive the lower complexity networks: i) reduce the number of

hidden/convolutional layers, or, ii) reduce the number of neurons/convolutional ker-

nels in the hidden/convolutional layers. We employ these network approximations

and thereafter evaluate the DNN’s classification accuracy. If the achieved accuracy is

above the target accuracy, then the network is further reduced and retrained. If the

network is slightly less than or equal to the target accuracy, then retraining is termi-

nated. Finally, the network is optimized by bit-precision scaling as explained below.

During bit-precision scaling, the input and synaptic bit width is reduced until the

point where accuracy starts to degrade so as to determine the optimal bit precision

for the network. The training methodology is depicted in Fig. 4.4.

Fig. 4.4.: Overview of the NN training methodology for employing network approxi-

mations.

41

4.2.1 Results

We evaluated lower complexity networks that were additionally precision-scaled

to reduce energy for a given accuracy. In this sub-section, we present results for lower

complexity NNs for the datasets under investigation.

First, we investigate low complexity FCNs, trained on the MNIST dataset, con-

sisting of a single hidden layer. We started with twice number of neurons in the only

hidden layer of the low complexity network compared to the number of neurons in

the first hidden layer of the deep FCN. The number of neurons in the hidden layer of

the low complexity network is decreased until the desired accuracy is achieved. Bit-

precision scaling is subsequently applied on the low complexity FCN to determine

the optimal synapse bit-width. For a baseline deep FCN [784 1200 600 10] trained on

MNIST, a few low complexity FCNs are listed in Table 4.1.

Table 4.1.: Low Complexity FCNs Trained on MNIST

#Hidden

Layer

Neuron

Bit

Precision

Accuracy

of NN (%)

Computation

Energy

Consumption (J)

Energy

Savings (%)

2400 9 98.88 1.82 5.35

2400 8 98.85 1.91 0.73

2100 8 98.85 1.40 27.07

1800 9 98.77 1.36 29.01

1550 9 98.73 1.17 38.87

800 9 98.64 0.61 68.45

650 12 98.52 0.60 69.00

425 7 98.36 0.25 86.80

400 10 98.22 0.32 83.23

Savings are computed by considering the conventional DNN (12bit) as standard.

42

Next, we explored low complexity CNNs on the CIFAR10 dataset, where we like-

wise begin with a single convolutional layer, and decrease the number of weight kernels

to attain desired accuracy. Our analysis showed that such a shallow (only one MLP-

Conv block) CNN failed to match the accuracy of a deep CNN (87.3%) even with

greatly increased number of kernels, with 78% being the maximum achievable accu-

racy. Therefore, we utilized two MLPConv blocks with equal to or lesser number

of kernels in each than the Deep CNN, to realize the low complexity CNNs. This

enabled the low complexity CNN to attain an accuracy of 86% for a precision of 8

bits and above, while the deep CNNs consistently delivered an accuracy of greater

than 87% for equivalent synaptic bit-widths. For a baseline deep CNN [1024× 3 (5×

5)192c 160fc 96fc (3×3)mp (5×5)192c 192fc 192fc (3×3)mp (3×3)192c 192fc 10o]

trained on CIFAR10, a few low complexity CNNs are listed in Table 4.2.

Table 4.2.: Low Complexity CNNs Trained on CIFAR10

#Neurons #Synapses
Accuracy

of NN (%)

Computation

Energy

Consumption (J)

Energy

Savings (%)

542762 538719 86.0 2.25 65.49

405546 379281 85.6 1.6 75.46

359466 324768 85.3 1.36 79.14

268330 223374 83.6 0.94 85.58

221226 171522 80.5 0.70 89.26

Savings are computed by considering the conventional DNN (12bit) as standard.

43

5. COMBINATION OF APPROXIMATE TECHNIQUES

5.1 Optimized Baseline Deep Neural Networks

Optimized DNNs are bit-precision scaled DNNs without any approximations. We

identify the DNN architecture that provides the best classification accuracy for a

given synaptic bit-precision. The DNN configuration thus determined is chosen as

the optimized network, which is then subjected to different approximations presented

in this work. We perform the analysis on deep FCNs trained on the MNIST digit

recognition dataset, and deep CNNs trained on the CIFAR-10 image recognition

dataset. Fig. 5.1 demonstrates the effect of bit precision scaling. Our experiments

indicate that a deep FCN (with 784 input neurons, 2 hidden layers consisting of 1200,

600 neurons and 10 output neurons, denoted as [784 1200 600 10]), offers the best

accuracy of 98.87% on the MNIST dataset for synaptic precision of 12 bits. The

accuracy degradation was found to be minimal (<0.5%) up to precision of 4 bits. For

the CIFAR-10 dataset, we implemented a CNN with 3 MLPConv [51] (combination of

convolutional and fully connected layers) blocks: [1024×3 (5×5)192c 160fc 96fc (3×

3)mp (5× 5)192c 192fc 192fc (3× 3)mp (3× 3)192c 192fc 10o]. The input layer is

32 × 32 × 3. All convolutional layers use 5 × 5 kernel size with different number of

feature maps. A 3× 3 max pooling window is used after each MLPConv block. The

final features from the last block are then fully-connected to a 10-neuron output layer.

This Deep CNN provided the maximum accuracy of 87.3%. There was reasonable

deterioration in the accuracy (<1.5%) for a precision of 4 bits.

Researchers have also shown networks with 1 bit synapse only, termed Binary

networks [52]. The 4 bit networks use 4 times the memory for each synapse and needs

multipliers for neuronal operation compared to binary networks where multiplication

44

1 2 4 8 16 32
Synapse and Input Width

0

20

40

60

80

100

N
o
rm

a
li
ze

d

 A
c
c
u

ra
c
y
 (

%
)

MNIST
CIFAR10

Fig. 5.1.: Effect of bit precision scaling (with retraining) on benchmark applications.

can be replaced with simple bitwise operations. However, such networks are much

larger compared to the networks used in this work.

5.2 Approximate Multiplier, Pruning and Approximate Memory

While each approximation technique, discussed earlier, independently provides

substantial energy benefits for a DNN, we combined the techniques into a synergistic

framework as illustrated in Fig. 5.2 to maximize the energy savings. First, we prune

the insignificant synaptic weights from the trained network. Next, we introduce

appropriate weight restrictions as necessitated by the approximate multipliers .

Then, we retrain the network to minimize the accuracy loss suffered due to the

aforementioned approximations. During retraining, only the non-zero weights are

updated while accounting for the weight constraints imposed by the approximate

multiplier topology.

Finally, we introduce bit-flips in the resultant synaptic weights to incorporate

the read-access and write failures of the voltage-scaled approximate memory ,

and estimate the network accuracy. Note that the memory failures are distributed

randomly. Therefore, retraining the network further will not help in regaining any

fraction of the accuracy lost due to voltage scaling. We would like to point out

that Lower complexity NN is not considered while combining different approximate

techniques. This is because, once this approximation is applied to a DNN, it becomes

45

Fig. 5.2.: Flow diagram of the proposed combined approximation process of a NN.

a shallower network with its ‘degrees of freedom’/flexibility diminished. These lower

complexity networks are very sensitive to weight perturbation since they have very

small number of learning parameters and therefore cannot cope with further hardware

approximations without significant accuracy degradation. Therefore, we consider

lower complexity networks separately from the remaining approximations.

5.2.1 Retraining to Mitigate Accuracy Loss

We had noted in chapter 3 and 4 that retraining is used to mitigate the accuracy

degradation incurred due to certain approximations including pruning and approxi-

mate multiplication. We now highlight the importance of adapting the learning rate

for efficiently retraining the network with these approximations in place. The learning

rate, which essentially is a multiplication factor in the weight update equation [45],

influences the speed and quality of learning. It needs to be precisely regulated while

using the approximate multiplier due to the non-uniformity in the distance between

the allowed weight levels which is explained in sub-section 3.1.5. Retraining also im-

proves accuracy which was lost due to the application of synaptic pruning. Hence, it

is necessary to utilize the optimal learning rate for retraining an approximate DNN.

Fig. 5.3 illustrates the flow diagram of the retraining process, which begins with the

highest learning rate that was used to originally train the DNN without approxima-

tion. If the accuracy improves, retraining is carried on with the same learning rate

46

for few more iterations, until there is no significant change in the accuracy. On the

other hand, if the accuracy does not improve, the learning rate is regulated (reduced

by a factor) and the approximate DNN is further retrained. This process of regu-

lating the learning rate is continued until the accuracy improvement saturates. The

initial high learning rate during retraining allows the synapses to compensate for the

weight perturbations despite the weight constraints still being applied. However, high

learning rate incurs oscillations and may not allow the retraining to converge to the

optimal solution. Therefore, learning rate is reduced based on the retrained network

performance. The low learning rate helps to dampen the oscillations and allow the re-

training to converge. We note that the retraining overhead for an approximate DNN

is negligible compared to the number of epochs required to train the original DNN

(without approximations). Also, retraining does not affect the energy consumption

during inference/testing.

Fig. 5.3.: Flow diagram of the proposed combined approximation process of a NN.

5.2.2 Results

Our results thus far indicate that approximate DNNs demonstrate improved en-

ergy efficiency compared to conventional DNNs both in terms of computation and

memory-access energy with minimal accuracy degradation. We then combined all

the approximation techniques together using the steps outlined in sub-section 5.2.1.

We found that, the all-inclusive approximate DNNs incurred greater accuracy loss

47

as expected. The memory approximation was the dominant factor for the accuracy

degradation since the accuracy lost due to voltage scaling could not be regained by

retraining the network. Approximate memory also gave rise to a good amount of

non-zero weight values which were previously pruned. This in turns reduced the

energy savings achieved in computation by pruning. Even with these setbacks, the

combined network provided good amount of energy savings both in computation and

memory access. This is illustrated in Fig. 5.4a, which shows that approximate DNNs

(FCN trained on MNIST) achieve significant amount of energy savings with synapse

pruning, approximate multiplication and approximate memory being applied simul-

taneously. They provide up to 7.85x improvement in the computation energy over

conventional DNNs of equivalent bit precision. Approximate Deep CNNs (trained on

CIFAR-10) also indicate a similar trend (Fig. 5.4b), and offer up to 2.76x reduction in

the computation energy consumption over conventional DNNs of equivalent bit pre-

cision. However, in Fig. 5.4a, all the energy consumption bars for the approximate

networks look similar as all of them have same memory access energy (for their re-

spective bit-precision), which dominates the total energy consumption. On the other

hand, in Fig. 5.4b, the energy consumption bars for the approximate networks are

distinct since the memory access energy is less dominant in CNNs. Both Approximate

DNNs (FCN and CNN) provide up to 19% read energy and 30% write energy savings

compared to DNNs operated at nominal voltage (Fig. 3.11).

However, it is not necessary to combine all the approximation techniques. Based

on the energy-quality requirements, one or more approximation techniques can be

applied. We experimented with different combinations of the three approximation

techniques. The results are discussed in the following sub-section.

5.3 Comparing Approximate Networks

Approximations cause accuracy degradations and it has an inverse relationship

with energy savings. The extent of accuracy degradation is mostly dependent on

48

12b 12b4pm12b2pm12b1pm 8b 8b4pm 8b2pm 8b1pm 4b 4b4pm 4b2pm 4b1pm

ASM Configuration (#Bits followed by the #Alphabets) with Pruning & Approximate Memory

96.5

97.0

97.5

98.0

98.5

A
c
c
u

ra
c
y
 (

%
)

Accuracy

0

2

4

6

8

10

12

14

E
n

e
rg

y
 (
µ
J
)

DNN Energy

(a)

12b 12b4pm12b2pm12b1pm 8b 8b4pm 8b2pm 8b1pm 4b 4b4pm 4b2pm 4b1pm

ASM Configuration (#Bits followed by the #Alphabets) with Pruning & Approximate Memory

80

82

84

86

88

90

A
c
c
u

ra
c
y
 (

%
)

Accuracy

0

5

10

15

20

25

E
n

e
rg

y
 (
µ
J
)

DNN Energy

(b)

Fig. 5.4.: Energy/accuracy trade-off comparison between Approximate DNNs and

Conventional DNNs, for (a) MNIST dataset on FCN and (b) CIFAR 10 dataset on

CNN, where pruning of synapses, approximate multipliers and approximate memory

are used simultaneously. 12b: 12 bit synapse NN, 12b4pm: 12 bit synapse NN with

4 alphabet ASM with pruning and approximate memory. Similar notations for 8 bit

and 4 bit NNs.

the intensity of approximations. At the same time bit-precision of the neurons and

synapses therefore plays an important part in controlling the energy-accuracy trade-

49

off. Different approximations provide varied energy-accuracy trade-offs. Depending

on the energy-accuracy specifications for a given application, different approximations

need to be employed. So far we have investigated 4 different kind of approximations at

two different levels of NN realization (algorithm and hardware). In this sub-section,

we will compare these approximations in an attempt to find out maximal beneficial

approximation method.

Fig. 5.5 shows energy-accuracy trade-off comparison between Conventional DNNs

and different approximate DNNs listed below:

i) Conventional DNN (un-approximated baseline)

ii) Pruned DNN (algorithm level approximation)

iii) Approximate Memory based DNN (hardware level approximation)

iv) Approximate Multiplier based DNN (hardware level approximation)

v) Low Complexity Network (algorithm level approximation)

vi) DNN with Approximate Multiplier and Memory

vii) DNN with Approximate Multiplier and Pruning

viii) DNN with Approximate Memory and Pruning

ix) Combined Approximated DNN (pruning, approximate multiplication and mem-

ory)

From Fig. 5.5a, we observe that the low complexity networks cannot match the

higher baseline accuracy. For high accuracy requirements, pruning and approximate

multiplier based DNNs provide better energy efficiency compared to low complex-

ity networks. For low accuracy requirements, low complexity networks are better

candidates, if we consider only computation energy consumption. Such substantial

deterioration in the accuracy of low complexity networks is not acceptable for practi-

cal purposes. Moreover, in Fig. 5.5a, we observe that memory approximated networks

provide better overall energy-efficiency compared to low complexity networks. We fo-

cus mostly on high accuracy regime of the energy-accuracy graph and do not consider

low complexity networks.

50

Approximate multiplier based DNNs provide good amount of computation energy

savings with minimal accuracy loss. Note, pruned DNNs provide better computation

energy efficiency than all other approximation techniques. Pruning of synapses along

with approximate multipliers can be used to achieve greater savings in computational

energy for less than 0.15% drop in accuracy. Note that the order of the approximations

(pruning after or before applying weight restrictions for approximate multiplier) does

not matter, since retraining is applied after employing both approximations. On

the other hand, Approximate memory based DNNs consume similar computation

energy as conventional DNNs with slightly lower classification accuracy. However,

they provide good amount of memory energy savings as discussed in section 3.

The combination of 3 approximation techniques (pruning, approximate multiplier

and memory) provides slightly lower computational energy efficiency than the combi-

nation of pruned and approximate multiplier based network. This can be attributed

to the fact that the memory approximation introduces bit corruption, which converts

some of the pruned weights to non-zero values, and thus reduces the computation

energy savings. However, memory approximation individually offer large amount of

savings in memory access energy as total energy consumption for a deep FCN is

greatly dominated by memory accesses.

In Fig. 5.5b, a similar trend can be observed in the case of deep CNN trained

on CIFAR10 dataset. One major difference is the comparatively lesser domination of

memory access energy on the total energy consumption due to weight sharing in the

convolutional kernels. Another distinctive feature is the less effectiveness of pruning

as most of the kernel values are non-zero.

5.4 Comparison with other Low Power DNNs

There are several other works that focused on low power NN hardware architec-

tures [27, 31, 53, 54]. In [27], resilient neurons are identified during training, then

precisions (bit-widths) of the input operands and the synapse weights corresponding

51

to those neurons are modulated based on their degree of resilience. The network is

retrained to compensate for the weight perturbations. The approximations applied on

the network is non-uniform as different neurons/synapses have different bit-precision.

In [31], resilient synapses are identified and are processed with reduced bit-precision.

Then computations with those synapses are done in an approximate processing en-

gine, containing approximate multiplier. On the contrary, in our work we apply

uniform approximation throughout the network. The approach [31] achieves ∼63.6%

computation energy savings with a shallow FCN ([784 144 100] for MNIST dataset),

while incurring ∼1.45% accuracy degradation compared to our shallow FCN ([784

120 100] for MNIST dataset) which achieves ∼50% computation energy savings with

∼1.34% accuracy degradation. Note however, the baseline in [31] is a 32 bit network,

while in our case the baseline is a 12 bit network.

Authors in [53] proposed a new framework that enables aggressive voltage scal-

ing for DNN accelerators without compromising classification accuracy. Aggressive

voltage scaling can cause timing errors. The authors in [53] show that with dynamic

voltage scaling and zero-skipping (pruning), they are able to achieve up to 89% com-

putation energy savings with ∼1% accuracy degradation for MNIST trained on a 4

layer FCN. In our work, we achieved best results using pruning and 4 bit 1 alphabet

based multiplier for training a 3 layer FCN with MNIST dataset. Using this network,

we achieved ∼95% computation energy savings with only ∼0.30% accuracy degra-

dation. Moreover, authors in [53] showed that maximum energy savings comes from

zero-skipping (pruning) which corroborates our results with synaptic pruning.

Authors in [54] proposed the use of voltage scaled dot-product-engines (DPE)

units, which operate in the near threshold voltage (NTV) regime. To mitigate the

timing error occurring due to the reduced operating voltage, they also proposed a

new statistical error correction (SEC) technique referred to as rank decomposed SEC

(RD-SEC). This technique is particularly well suited for low-cost error detection and

correction. This work showed that processors for DNNs can be operated at very

low voltage with these techniques beings appropriately applied. However, in [54], we

52

were unable to find necessary information (computation energy savings, classification

accuracy) which are required for a quantitative comparison.

Researchers have also shown networks with 1 bit synapses, termed Binary networks

[55, 56]. However, such networks are much larger in size compared to the networks

used in this work. Another important point to be noted here is that we apply bit

precision scaling to network inputs to take advantage of lower precision MAC units.

However, in binary networks, only synapses and activations are quantized. Authors

in [55] achieved∼99% accuracy with a deep FCN ([784 4096 4096 4096 100] for MNIST

dataset) using binary synapses, compared to our smaller FCN ([784 1200 600 100]

for MNIST dataset) which achieves ∼98.50% accuracy with 4 bit 1 alphabet based

multiplier (4 bit synapses) and pruning. Also in [55], for CIFAR10 dataset, ∼89.9%

accuracy was achieved with a very deep CNN (VGG [54]), compared to our simpler

CNN (NIN [47]) which achieves ∼86% accuracy with 8 bit 2 alphabet based multiplier

and pruning. Another work [56] employed approximate hardware (multiplier and

adder) in binary convolutional networks. The authors in [56] reported accuracy of

98.37% for MNIST trained on LeNet5 and 84.87% for CIFAR10 trained on VGG16

[38], which are less than the accuracies achieved by our proposed optimum network

configurations. Note, the networks are much larger compared to our networks. For

example, VGG16 has ∼10x more parameters and requires ∼12.5x more computations

than NIN architecture (deduced from [57]).

53

(a)

(b)

Fig. 5.5.: Energy/accuracy trade-off comparison between different approximate DNNs

and Conventional DNNs, for (a) MNIST dataset on FCN and (b) CIFAR 10 dataset

on CNN. Here baseline for normalization is a 12 bit un-approximated DNN.

54

6. GABOR FILTER ASSISTED FAST AND EFFICIENT

LEARNING FOR CNN

One of the major challenges for convolutional networks is the computational complex-

ity and time needed to train large networks. Training of CNNs requires state-of-the-

art accelerators like GPUs for extensive applications [58]. The large training overhead

has restricted the usage of CNNs to clouds and servers. However, an emerging trend

in IoT promises to bring the expertise of CNNs (image recognition and classification)

to mobile devices that may lack or have only intermittent online connectivity. To

ensure applicability of CNNs on mobile devices and widen the range of its applica-

tions, the training complexity must be reduced. Good amount of work has been done

on speeding-up the training process through parallel processing [59], but not much

work is found on improving the energy efficiency of CNN training. CNNs are trained

using the standard back-propagation rule with slight modification to account for the

convolutional operators [45]. The main power hungry steps of CNN training (back-

propagation) are gradient computation and weight update of the convolutional and

fully connected layers. In our proposed training, we achieve energy efficiency by elim-

inating a large portion of the gradient computation and weight update operations,

with minimal loss of accuracy or output quality.

Classification accuracy is a primary concern for researchers in the machine-learning

community. Different pre-processing models such as filters or feature detectors have

been employed to improve the accuracy of CNNs. In fact, recent works employed Ga-

bor filtering as a pre-processing step for training neural networks in pattern recogni-

tion applications [60,61]. Based on the human visual system, these filters are found to

be remarkably appropriate for texture representation and discrimination. In [62,63],

the authors have attempted to get rid of the pre-processing overhead by introducing

Gabor filters in the 1st convolutional layer of a CNN. In [62], Gabor filters replace the

55

random filter kernels in the 1st convolutional layer. The training is then limited to

the remaining layers of the CNN. The focus of such work was accuracy improvement.

However, these approaches may also lead to energy savings. In [63], the Gabor kernels

in the 1st layer were fine-tuned with training. In other words, the authors used Gabor

filters as a good starting point for training the classifiers, which helps in convergence.

In this work, we build upon the above works to propose a balanced CNN configura-

tion, where fixed Gabor filters are not only in the 1st convolutional layer, but also in

the latter layers of the deep CNN in conjunction with regular trainable convolutional

kernels. Using Gabor filters as fixed kernels, we eliminate a significant fraction of the

power-hungry components of the back-propagation training, thereby achieving con-

siderable reduction in training energy. The inherent error resiliency of the networks

allows us to employ proper blend of fixed Gabor kernels with trainable weight kernels

to lower the compute effort while maintaining competitive output accuracy.

6.1 Gabor Filters

Many pattern analysis applications such as character recognition, object recogni-

tion, and tracking require spatially localized features for segmentation. Gabor filters

are a popular tool for extracting these spatially localized spectral features [64]. Simple

cells in the visual cortex of mammalian brains can be modeled by Gabor functions [65].

Frequency and orientation representations of Gabor filters are similar to those of the

human visual system, and they have been found to be particularly appropriate for

texture representation and discrimination. A particular advantage of Gabor filters

is their degree of invariance to scale, rotation, and translation. In fact, [66] have

shown that deep neural networks trained on images tend to learn first layer features

resembling Gabor filters. This further corroborates our intuition of using pre-designed

Gabor filters as weight kernels in a CNN configuration.

An appropriately designed Gabor filter extracts useful features corresponding to an

input image. However, this would also require us to have separate uniquely designed

56

filters for every image that will be infeasible for large-scale problems. In order to have

a generic approach, we have used a systematic method where filters are generated

using a ‘filter bank’ [64–67]. The generated Gabor filters are then used to replace

the weight kernels in the CNN configuration. We have used real values of 2D Gabor

filters as weight kernels. Also, the filters used in our methodology are equally spaced

in orientation (for instance, θ = 0◦, 30◦, 60◦, 90◦ etc.) to capture maximum number

of characteristic textural features.

6.2 Design Approach & Methodology

The use of fixed Gabor kernels, to exploit error resiliency of CNN, is the main

concept of our proposed scheme. This section outlines the key steps of the proposed

design methodology.

6.2.1 Energy Model for CNN Training

To realize the effect of Gabor kernels on energy, we developed an energy model

to get the distribution of energy consumption for training the network. The energy

model is based on the number of Multiply and Accumulate (MAC) operations in the

training algorithm. The MAC circuits were designed in Verilog and mapped to 45

nm technology using Synopsys Design Compiler. Then the power and delay numbers

from the Design Compiler were fed to the energy computation model to determine

the distribution of energy consumption. From the energy distribution for training

a CNN, we found that in a conventional CNN denoted by [784 6c 2s 12c 2s 10o]

(2 convolutional layers (6c and 12c) each followed by a sub-sampling layer (2s), and

finally a fully connected output layer (10o)), the 2nd convolutional layer uses 27%

of the overall energy consumption during training, while the 1st convolutional layer

consumes 20%. We realized that, in order to achieve energy efficiency, the energy

spent on these layers needs to be minimized, and using Gabor filters as fixed kernels

is the key.

57

6.2.2 Gabor Filters as Fixed Convolutional Kernels

Gabor Filters in First Convolutional Layer

We designed a CNN, by replacing certain weight kernels with fixed Gabor filters.

The network has 2 convolutional layers each followed by a sub-sampling layer, and

finally a fully connected layer. The 1st convolutional layer has k kernels, while the

2nd convolutional layer has 2k kernels for each of the k feature maps of the 1st layer,

resulting in total of 2k2 kernels in the 2nd layer. In this specific example, we consider

k=6. Hence, for our example, the 1st convolutional layer consists of 6 kernels and

the 2nd convolutional layer consists of 72 kernels. The 12 feature maps from the 2nd

layer are used as feature vector inputs to the fully connected layer which produces

the final classification result. We used 6 Gabor kernels (5 × 5 sized), which are

equally spaced in orientation, (with θ = 0◦, 30◦, 60◦, 90◦ and 150◦) to replace the

regular kernels of the 1st convolutional layer. The network was trained on MNIST

dataset [8]. The regular trainable kernels of the 1st layer of the CNN after 100 epochs

and fixed Gabor kernels are shown in Fig. 6.1 to have a comparative view. The

results of this configuration are shown in Table 6.1 (Row 2 corresponding to Fixed

Gabor/Trainable CNN configuration).

(a)

(b)

Fig. 6.1.: (a) Trained kernels in 1st convolutional layer. (b) Fixed Gabor kernels

equally spaced in orientation.

58

From Row 2 in Table 6.1, it can be clearly observed that the Fixed Gabor/Trainable

CNN configuration has an accuracy comparable to the conventional CNN implemen-

tation with a marginal loss of 0.62% (baseline accuracy 99.09%). In addition, we

observe 20.7% reduction in energy consumption, and 9.47% decrease in training time.

The storage requirements for the networks trainable parameters remain unchanged.

Gabor Filters in Both Convolutional Layers

To achieve higher energy improvements, we turned the convolutional layers all

Gabor, i.e. all the kernels in both the convolutional layers of the CNN were replaced

with fixed Gabor filters. In the 2nd convolutional layer, there are 12 kernels for each

of the 6 output feature maps of the 1st convolutional layer, in total 72 kernels. We

used the same 6 Gabor kernels from sub-section 6.2.2, equally spaced in orientation,

in the 1st convolutional layer, and 12 Gabor kernels, equally spaced in orientation

(with θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, and 165◦), in the 2nd

convolutional layer. Considering the Gabor kernels as constants, 12 Gabor kernels

are sufficient to replace the 72 kernels (convolved output of which are summed to

produce 12 feature maps) of the 2nd layer. In this case, same set of 12 Gabor kernels

will convolve with each of the 6 output feature maps of 1st layer in every training

cycle. It is evident that the 6 kernels of the 1st layer are also present in the 2nd

layer. This actually helps to carry the integrity of the previous layer to the following

layer. The benefits observed from this Fixed Gabor/Fixed Gabor CNN configuration

can be seen from Row 3 in Table 6.1. The training time reduced by 53%, leading to

1.93x improvement in energy consumption; also the storage requirement is drastically

reduced. However, the big downside is the high accuracy degradation (5.85%), even

for a simple dataset like MNIST. The configuration leads to intolerable accuracy

degradation for more complex datasets.

59

Table 6.1.: Comparison between Different CNN Configurations

Configuration
Accuracy

Loss

Energy

Savings

Training Time

Reduction

Storage

Savings
1st Conv.

Layer Kernels

2nd Conv.

Layer Kernels

Trainable Trainable – – – –

Fixed Gabor Trainable 0.62% 20.70% 9.47% 0%

Fixed Gabor Fixed Gabor 5.85% 48.28% 53% 42.48%

Fixed Gabor
Half Fixed Gabor

& Half Trainable
1.14% 34.49% 22.30% 23.15%

*Accuracy loss, energy savings, training time reduction and storage savings are computed by

considering the conventional CNN results as baseline. The baseline accuracy is 99.09%.

Balanced Network Configuration for Maximum Benefits

As seen in sub-section 6.2.2, not training the 1st layer kernels incurs minor accu-

racy loss. However, we also observe that, fixing the 2nd layer reduces the accuracy

drastically, while it gives very high energy savings. In order to avoid such accuracy

degradation, we designed a blended CNN configuration where the 2nd convolutional

layer is partly trained with a combination of fixed Gabor filter kernels and regular

trainable weight kernels, while the 1st convolutional layer uses fixed Gabor kernels

only. However, there can be multiple CNN configurations for different number of

fixed and trainable kernels in the 2nd layer, each providing different amount of energy

savings for corresponding accuracy degradation. To obtain the optimal configuration,

we made an effort to balance the trade-off between accuracy and other parameters

of interest, especially energy consumption. We conducted an experiment where we

trained 5 configurations of blended CNN on MNIST dataset with i number of fixed

Gabor kernels in the 2nd layer where i= 0, 3, 6, 9, 12. Each of the configurations was

trained for 100 epochs. Fig. 6.2 shows the overall classification accuracy obtained

60

with the blended CNN configuration as we varied the number of trainable weight fil-

ters in the 2nd layer. Again, as in sub-section 6.2.2, Gabor kernels with equal spacing

in orientation were used. It can be clearly observed that the accuracy degrades with

the increase in the number of fixed Gabor filters. To select the optimal configuration,

we imposed a constraint of maximum 1% degradation in the classification accuracy.

In the plot (Fig. 6.2), the solid square corresponds to the accuracy for the Fixed

Gabor/Trainable CNN configuration (Row 2 of Table 6.1) and the solid circle is the

point where degradation in classification accuracy is 1%. This solid circle corresponds

to a half-half configuration where half of the kernels in the 2nd layer is fixed while the

other half is trainable. Fig. 6.2 also shows the energy savings, training time reduction

and storage requirement savings observed with different configurations. As expected,

the benefits (energy, training time, storage) increase as we fix more filters, beyond

the half-half point. However, the decrease in accuracy is significant. We observed

similar trend for CNNs trained on FaceDet and TiCH [68] datasets as well for this

LeNet architecture. Based on this, we used the half-half configuration to implement

the CNN for MNIST, FaceDet and TiCH, in order to get maximum benefits with

minimal degradation in accuracy. The results are described in the following section.

The half-half balanced configuration implies that we have 6 fixed and 6 trainable

kernels (in the 2nd layer) for each of the 6 feature maps from the 1st layer. Thus, total

trainable kernels are 36 (6× 6). Since the other 36 (6× 6) kernels, for each of the 6

feature maps from the 1st layer, are fixed, they can be replaced by 6 Gabor kernels

instead of 36. Again, the 6 fixed Gabor kernels used for the 2nd layer are same as the 6

Gabor kernels of 1st layer. Using the same kernels across the 1st and 2nd layer has two-

fold advantage: i) it helps to carry the integrity from the previous layer to the following

layer. This means, the network can learn new features in the 2nd layer on top of the

features it learned in the 1st layer, ii) the storage requirement is highly optimized.

We do not need any new Gabor kernel for the replacement of 36 weight kernels of

the 2nd layer. Using different Gabor kernels in the two layers gives slightly lesser

accuracy with a slightly higher storage requirement. Fig. 6.3 gives a comparative

61

Fig. 6.2.: Change in classification accuracy, energy savings, training time reduction

and storage requirement with different configurations of fixed Gabor kernels in the

2nd convolutional layer.

picture of the regular trainable kernels of the conventional CNN and half fixed/half

trainable kernels of the proposed balanced system, in the 2nd layer after 100 epochs

of training. The results of the Half Fixed/Half Trainable configuration are shown in

Row 4 of Table 6.1. It is evident that the accuracy loss is tolerable (1.14%). Also, we

see a significant reduction in energy, training time and storage requirements. From

this analysis, we observe that Half Fixed/Half Trainable configuration is optimal for

the network of this structure. However, other networks with different structures will

have different optimal configurations. Various combination of fixed-trainable Gabor

kernels can be used as a tuning knob in deeper networks to meet the energy-quality

requirements.

62

(a)

(b)

Fig. 6.3.: (a) Trained kernels in 2nd convolutional layer and (b) Kernels of the proposed

half fixed/half trainable configuration in 2nd convolutional layer.

6.3 Realization

This section describes the overall simulation framework. We used modified ver-

sions of open source MATLAB codes [45, 46] to implement multilayer CNNs for our

experiments. We trained the CNNs using the corresponding training datasets men-

tioned in Table 6.2, to get the accuracy and training time information, which were

used as a baseline for comparison. Then we introduced Gabor filters as weight kernels,

and modifications in the training algorithm were made, so that the advantage of Ga-

bor kernels can be realized. We used these newly formed CNNs for training with the

corresponding datasets and collected the accuracy and training time information. We

developed an energy computation model based on the number of MAC operations in

the training algorithm. We implemented multiplier and adder units at the Register-

63

Transfer Level (RTL) in Verilog and mapped them to the IBM 45nm technology in 1

GHz clock frequency using Synopsys Design Compiler. The power and delay numbers

from the Design Compiler were fed to the energy computation model to get energy

consumption statistics. We also computed storage requirements and memory access

energy for the overall network based on input size, number of convolutional layers,

number of kernels in each layer, size of fully connected layer, number of neurons in

the fully connected layer and number of output neurons. Details of the benchmarks

used in our experiments are listed in Table 6.2:

Table 6.2.: Benchmarks

Application Dataset
#Training

Samples

#Testing

Samples

Input

Size

1. Face Detection Face-Nonface 600 200 48× 48

2. Digit Recognition MNIST 60000 10000 28× 28

3.
Tilburg Character

Set Recog.
TICH 30000 10000 28× 28

4. Object Recognition CIFAR10 50000 10000 32× 32

CNN architectures used for the experiments are listed in Table 6.3:

64

Table 6.3.: CNN Architectures

Dataset Architecture Network

Face-Nonface

LeNet [8]

[784 (5× 5)6c 2s (5× 5)12c 2s 2o]

MNIST [784 (5× 5)6c 2s (5× 5)12c 2s 10o]

TICH [784 (5× 5)10c 2s (5× 5)20c 2s 36o]

CIFAR10 [69] NIN [51]

[10243 (5× 5)192c 160fc 96fc

(3× 3)mp (5× 5)192c 192fc 192fc

(3× 3)mp (3× 3)192c 192fc 10o]

*c: convolutional layer kernels, s: sub-samplingkernel,

fc: fully connected layer neurons, mp: max pooling layer kernel, o:output neurons.

6.4 Results

In this section, we present the benefits of our proposed design (with half-half bal-

anced configuration for FaceDet., MNIST and TiCH). The results of the conventional

CNN implementation, in which all the convolutional kernels are trainable, are con-

sidered as baseline for all comparisons. All the comparisons are done under iso-epoch

condition.

6.4.1 Accuracy Comparison

Fig. 6.4 shows the classification accuracy obtained after 100 epochs, using con-

ventional CNN and proposed Gabor kernel based CNN for various applications.

An interesting thing to note is that for FaceDet, the accuracy of the proposed

CNN is better than the baseline. This can be attributed to the fact that FaceDet is

a simpler detection task where we need to detect faces from a collection of face and

non-face images in the dataset. Gabor filters being edge detectors, further simplify

the face detection problem [61]. Thus, we observe better accuracy on FaceDet. In

contrast, other benchmarks are multi-object classification problems where we need to

65

Fig. 6.4.: Comparison of accuracy between conventional CNN and Gabor kernel based

CNN for different applications.

predict the class label from a collection of objects. Among the remaining benchmarks,

MNIST and TiCH are character recognition datasets. The accuracy baselines for the

datasets FaceDet., MNIST and TiCH are 95.5%, 99.09% and 91.98% respectively.

The accuracies reported in this work are obtained using test datasets, which are

separate from the training datasets for each of the benchmarks.

6.4.2 Energy Consumption Benefits

Fig. 6.5 shows the improvement in computational energy consumption achieved

(during training), using Gabor kernel based CNN for different applications. We

achieve 31-35% energy savings for training of CNNs for first three benchmarks men-

tioned in Table 6.2.

In Fig. 6.6, the pie chart represents a sample computational energy distribution

during training a CNN, across different segments. The CNN used for the analysis

contains two convolutional layers and two fully connected layers, and was trained on

MNIST dataset. It can be seen that computation of error, loss function [45], and back

66

Fig. 6.5.: Comparison of energy consumption during training, between conventional

CNN and Gabor kernel based CNN for different applications.

propagation of errors consume small fraction (< 1%) of the total energy. A sizable

portion of the energy consumption is captured by the forward propagation, gradient

computation and weight update at the convolutional and fully connected layers. Dur-

ing back-propagation, for the 1st convolutional layer this energy consumption is 20%

of the total energy consumption, while for the 2nd convolutional layer it is 27%. Con-

sidering that the 1st convolutional layer contains only fixed Gabor kernels, the entire

20% energy consumption, required for 1st convolutional layer during back-propagation

(as mentioned earlier), can be saved. Also in the 2nd convolutional layer, half of the

kernels is trainable. That means for the 2nd convolutional layer, we need 13.5% of

the training energy compared to the 27% energy requirement of a conventional CNN

implementation. Therefore, we can save up to 33.5% of the training energy in this

particular example. This is due to the fact that we do not have to perform gradient

computation or weight update for the fixed Gabor weight kernels. The amount of

energy benefit is dependent on the network structure. If the fully connected layer is

much larger than the convolutional layers with many hidden layers, then the energy

67

savings will be less. Again, if we have more convolutional layers with fixed Gabor

kernels, we will get larger energy savings. In case of a deep CNN with more than two

convolutional layers, the selection of the number of fixed kernels in different layers

will depend on several key factors such as network structure and size, complexity of

the dataset, quality requirements, among others.

Fig. 6.6.: Energy consumption of different segments during training of a CNN with

MNIST dataset.

6.4.3 Storage Requirement Reduction

Fig. 6.7 shows the storage requirement reduction obtained using proposed scheme

for different applications. We achieve 15-30% reduction of storage requirement across

the various benchmarks (Table 6.2). A large part of the training energy is spent on

the memory read/write operations. In forward propagation, each synaptic weight

requires one read operation and in back-propagation each weight update requires one

write operation. We assumed on-chip storage for the feature maps. Proposed Gabor

filter assisted training also provides savings in 1.2-1.3x memory access energy since

68

we do not need to write (update during back-propagation) the fixed kernel weights

during training.

Fig. 6.7.: Comparison of storage requirements between conventional CNN and Gabor

kernel based CNN for different applications.

6.4.4 Training Time Reduction

Since gradient computation and weight update is not required for the fixed Gabor

kernels, we achieve significant savings in computation time with our proposed scheme.

Fig. 6.8 shows the normalized training time per epoch for each application. We

observe 10-29% reduction in training time per epoch across the first three benchmarks

of Table 6.2. Point to be noted that the training time reduction is a by-product of

our proposed method. All trainings were given same number of epochs. Number of

epochs were determined ensuring that all trainings converge and reach saturation.

It is observed that both conventional CNN and Gabor kernel based CNN reaches

saturation in similar number of epochs. Therefore, the spare time for Gabor kernel

69

based CNN training cannot be used to recover accuracy loss by providing more epochs

to the training.

Fig. 6.8.: Comparison of training time requirements between conventional CNN and

Gabor kernel based CNN for different applications.

6.4.5 Partial Training of Gabor Kernels for Accuracy Improvement

Gabor kernel based CNN provides energy savings at a cost of some accuracy degra-

dation. For complex recognition applications, the accuracy degradation is higher.

Such problems can be mitigated by employing partial training of the Gabor kernels.

In the partial training, we start the CNN training with the Gabor kernels in respec-

tive positions, and then allow them to learn for first few iterations (say 20% of total

number of training cycles). Since Gabor kernels provide a good starting point for the

training, the kernels will learn quickly and reach near saturation within a small per-

centage of training cycles. Then we stop updating the partially learned Gabor kernels

for the remainder of the training cycles. Point to be noted here that partial training

introduces overhead, slightly increasing energy consumption, average training time,

memory access energy, and storage requirement compared to the Fixed Gabor ker-

70

nel based CNN implementation. Nevertheless, partial training provides substantial

energy saving over conventional CNN implementation, and can be a used as another

tuning knob for the deep CNNs to trade-off energy-quality.

6.4.6 Applicability in Complex CNNs

Employing fixed Gabor kernels is also beneficial for larger and more complex CNNs

containing more than two convolutional layers. To corroborate that, we implemented

a deep CNN: [1024x3 (5× 5)192c 160fc (3× 3)mp (5× 5)192c 192fc 192fc (3× 3)mp

(3×3)192c 192fc 10o] (c: convolutional layer kernels, fc: fully connected layer neurons,

mp: max pooling layer kernel) for CIFAR10 dataset using MatConvNet. The network

contained three MlpConv [51] blocks, each of which contained one convolutional layer,

two fully connected layers and one max-pooling layer. Using 128 (2
3
rd of the total

192) fixed Gabor filters as convolutional kernels in each of the convolutional layers,

we achieved 29% computational energy savings and 55.7% storage reduction, while

losing 3.5% classification accuracy compared to conventional CNN implementation.

Though the energy savings is impressive, nevertheless the accuracy degradation is

higher than desired. Therefore, we employed partial training to salvage fraction of

the dropped accuracy. The Gabor kernels of the 1st MlpConv block were kept fixed.

The Gabor kernels of the 2nd and 3rd MlpConv block were partially trained for (20-

30%) of total number of training cycles. This led to accuracy improvement of 1.5%,

while the overhead of partial training was not substantial. The results of such training

are listed in Table 6.4. Since we are training the 2nd and 3rd MlpConv block, all new

kernel weights need to be stored. However, 2nd and 3rd MlpConv block were partially

trained, which doesnt require heavy increase in memory access. Therefore, from 3rd

and 4th Row of Table 6.4, we observe that storage requirement saving is only 0.5%,

while memory access energy savings is 38-44%. So, the proposed scheme is scalable for

deeper networks and can be employed in variety of classification tasks. The energy-

71

accuracy trade-off heavily depends on network structure, task complexity, sensitivity

of convolutional layers, number of fixed kernels in different layers, among others.

Table 6.4.: Comparison between different Training Configurations

Configuration %

of total

Training

Cycles

Accuracy

Loss

Comp.

Energy

Savings

Storage

Req.

Savings

Memory

Access

Energy

Savings

2nd Block

Gabor

Kernels

3rd Block

Gabor

Kernels

Fixed Fixed 0% 3.34% 29.1% 55.2% 54.97%

Fixed Trained 20% 2.5% 28.94% 32.31% 50.55%

Trained Trained 20% 2.41% 25.7% 0.5% 44.19%

Trained Trained 30% 1.95% 24.04% 0.5% 38.71%

*Accuracy loss, energy savings, storage savings and memory access energy savings are computed

by considering the conventional CNN results as baseline. The baseline accuracy is 88.5%.

72

7. INCREMENTAL LEARNING IN DEEP

CONVOLUTIONAL NEURAL NETWORKS USING

PARTIAL NETWORK SHARING

Deep Convolutional Neural Networks (DCNNs) have achieved remarkable success

in various cognitive applications, particularly in computer vision [11]. They have

shown human like performance on a variety of recognition, classification and inference

tasks, albeit at a much higher energy consumption. One of the major challenges for

convolutional networks is the computational complexity and the time needed to train

large networks. Since training of DCNNs requires state-of-the-art accelerators like

GPUs [58], large training overhead has restricted the usage of DCNNs to clouds and

servers. It is common to pre-train a DCNN on a large dataset (e.g. ImageNet, which

contains 1.2 million images with 1000 categories), and then use the trained network

either as an initialization or a fixed feature extractor for the specific application [70].

A major downside of such DCNNs is the inability to learn new information since

the learning process is static and only done once before it is exposed to practical

applications. In real-world scenarios, classes and their associated labeled data are

always collected in an incremental manner. To ensure applicability of DCNNs in such

cases, the learning process needs to be continuous. However, retraining these large

networks using both previously seen and unseen data to accommodate new data, is

not feasible most of the time. The training samples for already learned classes may

be proprietary, or simply too cumbersome to use in training a new task. Also, to

ensure data privacy, training samples should be discarded after use. Incremental

learning plays a critical role in alleviating these issues by ensuring continuity in the

learning process through regular model update based only on the new available batch

of data. Nevertheless, incremental learning can be computationally expensive and

time consuming, if the network is large enough.

73

This work focuses on incremental learning on deep convolutional neural network

(DCNN) for image classification task. In doing so, we attempt to address the more

fundamental issue: an efficient learning system must deal with new knowledge that

it is exposed to, as humans do. To achieve this goal, there are two major chal-

lenges. First, as new data becomes available, we should not start learning from

scratch. Rather, we leverage what we have already learned and combine them with

new knowledge in a continuous manner. Second, to accommodate new data, if there

is a need to increase the capacity of our network, we will have to do it in an efficient

way. We would like to clarify that incremental learning is not a replacement of regular

training. In the regular case, samples for all classes are available from the beginning

of training. However, in incremental learning, sample data corresponding to new

tasks become available after the base network is already trained and sample data for

already learned task are no longer available for retraining the network to learn all

tasks (old and new) simultaneously. Our approach to incremental learning is similar

to transfer learning [71] and domain adaptation methods [72]. Transfer learning

utilizes knowledge acquired from one task assisting to learn another. Domain adap-

tation transfers the knowledge acquired for a task from a dataset to another (related)

dataset. These paradigms are very popular in computer vision. Though incremental

learning is similar in spirit to transfer, multi-task, and lifelong learning; so far, no

work has provided a perfect solution to the problem of continuously adding new tasks

based on adapting shared parameters without access to training data for previously

learned tasks.

There have been several prior works on incremental learning of neural networks.

Many of them focus on learning new tasks from fewer samples [73,74] utilizing transfer

learning techniques. To avoid learning new categories from scratch, Fei-Fei et al. [73]

proposed a Bayesian transfer learning method using very few training samples. By

introducing attribute-based classification the authors [74] achieved zero-shot learning

(learning a new class from zero labeled samples). These works rely on shallow models

instead of DCNN, and the category size is small in comparison. The challenge of

74

applying incremental learning (transfer learning as well) on DCNN lies in the fact that

it consists of both feature extractor and classifier in one architecture. Polikar et al. [75]

utilized ensemble of classifiers by generating multiple hypotheses using training data

sampled according to carefully tailored distributions. The outputs of the resulting

classifiers are combined using a weighted majority voting procedure. This method can

handle an increasing number of classes, but needs training data for all classes to occur

repeatedly. Inspired form [75], Medera and Babinec [76] utilized ensemble of modified

convolutional neural networks as classifiers by generating multiple hypotheses. The

existing classifiers are improved in [75, 76] by combining new hypothesis generated

from newly available examples without compromising classification performance on

old data. The new data in [75, 76] may or may not contain new classes. Another

method by Royer and Lampert [77] can adapt classifiers to a time-varying data

stream. However, the method is unable to handle new classes. Pentina et al. [78] have

shown that learning multiple tasks sequentially can improve classification accuracy.

Unfortunately, for choosing the sequence, the data for all tasks must be available to

begin with. Xiao et al. [79] proposed a training algorithm that grows a network

not only incrementally but also hierarchically. In this tree-structured model, classes

are grouped according to similarities, and self-organized into different levels of the

hierarchy. All new networks are cloned from existing ones and therefore inherit learned

features. These new networks are fully retrained and connected to base network. The

problem with this method is the increase of hierarchical levels as new set of classes

are added over time. Another hierarchical approach was proposed in [80] where the

network grows in a tree-like manner to accommodate the new classes. However, in

this approach, the root node of the tree structure is retrained with all training samples

(old and new classes) during growing the network.

Li and Hoiem [81] proposed ‘Learning without Forgetting’ (LwF) to incrementally

train a single network to learn multiple tasks. Using only examples for the new task,

the authors optimize both for high accuracy for the new task and for preservation

of responses on the existing tasks from the original network. Though only the new

75

examples were used for training, the whole network must be retrained every time

a new task needs to be learned. Recently, Rebuffi et al. [82] addressed some of

the drawbacks in [81] with their decoupled classifier and representation learning

approach. However, they rely on a subset of the original training data to preserve the

performance on the old classes. Shmelkov et al. [83] proposed a solution by forming

a loss function to balance the interplay between predictions on the new classes and a

new distillation loss which minimizes the discrepancy between responses for old classes

from the original and the updated networks. This method can be performed multiple

times, for a new set of classes in each step. However, every time it incurs a moderate

drop in performance compared to the baseline network trained on the ensemble of

data. Also, the whole process has substantial overhead in terms of compute energy

and memory.

Another way to accommodate new classes is growing the capacity of the network

with new layers [84], selectively applying strong per-parameter regularization [85].

The drawbacks to these methods are the rapid increase in the number of new param-

eters to be learned [84], and they are more suited to reinforcement learning [85].

Aljundi et al. [86] proposed a gating approach to select the model that can provide

the best performance for the current task. It introduces a set of gating auto-encoders

that learn a representation for the task at hand, and, at test time, automatically

forward the test sample to the relevant expert. This method performs very well on

image classification and video prediction problems. However, the training of autoen-

coders for each task requires significant effort. Incremental learning is also explored

in Spiking Neural Networks (SNN) domain. An unsupervised learning mechanism is

proposed by Panda et al. [87] for improved recognition with SNNs for on-line learning

in a dynamic environment. This mechanism helps in gradual forgetting of insignif-

icant data while retaining significant, yet old, information thus trying to address

catastrophic forgetting.

In the context of incremental learning, most work has focused on how to exploit

knowledge from previous tasks and transfer it to a new task. Little attention has

76

gone to the related and equally important problem of hardware and energy require-

ments for model update. Our work differs in goal, as we want to grow a DCNN with

reduced effort to accommodate new tasks (set of classes) by network sharing, without

forgetting the old tasks (set of classes). The key idea of this work is the unique ‘clone-

and-branch’ technique which allows the network to learn new tasks one after another

without any performance loss in old tasks. Cloning layers provides a good starting

point for learning a new task compared to randomly initialized weights. The kernels

learn quickly, and training converges faster. It allows us to employ fine-tuning in

the new branch, saving training energy and time compared to training from scratch.

On the other hand, branching allows the network to remember task specific weight

parameters, hence the network does not forget old tasks (in task specific scenario)

no matter how many new tasks it has learned. The novelty of this work lies in the

fact that we developed an empirical mechanism to identify how much of the network

can be shared as new tasks are learned. We also quantified the energy consump-

tion, training time and memory storage savings associated with models trained with

different amounts of sharing to emphasize the importance of network sharing from

hardware point of view. Our proposed method is unique since it does not require

any algorithmic changes and can be implemented in any existing hardware if addi-

tional memory is available for the supplementary parameters needed to learn new

classes. There is no overhead of storing any data sample or statistical information of

the learned classes. It also allows on-chip model update using a programmable in-

struction cache. Many of the state-of-the-art DNN accelerators support this feature.

However, FPGAs are the kind of hardware architecture that is best suited for the

proposed method. It offers highly flexible micro-architecture with reusable functional

modules and additional memory blocks in order to account for dynamic changes.

In summary, the key contributions of our work are as follows:

• We propose sharing of convolutional layers to reduce computational complexity

while training a network to accommodate new tasks (sets of classes) without

forgetting old tasks (sets of classes).

77

• We developed a methodology to identify optimal sharing of convolutional layers

in order to get the best trade-off between accuracy and other parameters of

interest, especially energy consumption, training time and memory access.

• We developed a cost estimation model for quantifying energy consumption of

the network during training, based on the Multiplication and Accumulation

(MAC) operations and number of memory access in the training algorithm.

• We substantiate the scalability and robustness of the proposed methodology

by applying the proposed method to different network structures trained for

different benchmark datasets.

We show that our proposed methodology leads to energy efficiency, reduction in stor-

age requirements, memory access and training time, while maintaining classification

accuracy without accessing training samples of old tasks.

7.1 Incremental Learning

A crude definition of incremental learning is that it is a continuous learning process

as batches of labeled data of new classes are gradually made available. In literature,

the term “incremental learning” is also referred to incremental network growing and

pruning or on-line learning. Moreover, various other terms, such as lifelong learning,

constructive learning and evolutionary learning have also been used to denote learning

new information. Development of a pure incremental learning model is important in

mimicking real, biological brains. Owing to superiority of biological brain, humans

and other animals can learn new events without forgetting old events. However, exact

sequential learning does not work flawlessly in artificial neural networks. The reasons

can be the use of a fixed architecture and/or a training algorithm based on minimizing

an objective function which results in “catastrophic interference”. It is due to the fact

that the minima of the objective function for one example set may be different from

the minima for subsequent example sets. Hence each successive training set causes

78

the network to partially or completely forget previous training sets. This problem is

called the “stability-plasticity dilemma” [88]. To address these issues, we define an

incremental learning algorithm that meets the following criteria:

i. It should be able to grow the network and accommodate new tasks (sets of classes)

that are introduced with new examples.

ii. Training for new tasks (sets of classes) should have minimal overhead.

iii. It should not require access to the previously seen examples used to train the

existing classifier.

iv. It should preserve previously acquired knowledge, i.e. it should not suffer from

catastrophic forgetting.

Fig. 7.1.: Incremental learning model: the network needs to grow its capacity with

arrival of data of new tasks (sets of classes).

In this work, we developed an efficient training methodology that can cover afore-

mentioned criteria. Let us comprehend the concept with a simple example. Assume

that a base network is trained with four classes of task 0 (C1 − C4), and all training

data of those four classes are discarded after training. Next, sample data for task

1 with two classes ((C5, C6)) arrive and the network needs to accommodate them

while keeping knowledge of the initial four classes. Hence, the network capacity has

to be increased and the network has to be retrained with only the new data of task

79

1 (of C5 and C6) in an efficient way so that the updated network can classify both

task’s classes (C1 − C6). If the tasks are classified separately, then it is a task spe-

cific classification. On the other hand, when they are classified together, then it is

called combined classification. We will primarily focus on the task specific scenario

while also considering the combined classification. Fig. 7.1 shows the overview of the

incremental learning model we use.

7.1.1 Advantages

There are several major benefits of incremental learning.

Enable training in low power devices

Training a deep network from scratch requires enormous amount of time and en-

ergy which is not affordable for low power devices (embeded systems, mobile devices,

IoTs etc.). Therefore, a deep network is trained off-chip and deployed in the edge

devices. When data for new task are available, it can not be used for learning in the

device because of two reasons; i) the device does not have access to sample data for

already learned tasks, ii) the device does not posses the capability to retrain the whole

network. However, the new tasks can be learned incrementally by reusing knowledge

from existing network without requiring data samples of old tasks. This enables the

low power devices to update the existing network by incrementally retraining it within

their power budget and hardware limitations.

Speed up model update

If knowledge from existing network can be reused while learning new tasks (with

new data samples only) without forgetting old tasks, then the updating process of an

existing network will be very fast.

80

Ensure data privacy

Incremental learning do not require access to old training data. Therefore, all

training samples can be discarded after each training session, which will disallow

misuse of private data.

Reduce storage requirements

Deep networks require humongous amount of data to train. Since training data

samples are not required to be stored for incremental learning, the storage requirement

for updating a network is greatly reduced.

The following section will describe the design approach of the proposed scheme.

7.2 Design Approach

The superiority of DCNNs comes from the fact that it contains both feature

extractor and classifier in the same network with many layers. ‘Sharing ’ convolutional

layers as fixed feature extractors is the base of our proposed training methodology.

‘Sharing ’ means reusing already learned network parameters/layers to learn new set

of classes. Note that in all cases, while learning new classes, only newly available

data is used. Also, we assume that new classes will have similar features as the old

classes. Therefore, we separate a single dataset into several sets so that they can be

used as old and new data while updating the network. All accuracies reported in this

work are test accuracies (training samples and test samples are mutually exclusive).

This section outlines the key ideas behind the proposed methodology.

7.2.1 Increasing Convolutional Kernels in the Last Layer

To accommodate more classes, the network must increase its capacity. The sim-

plest way to do that is widening the final softmax layer to output the extra probabili-

ties for the new classes. One obvious drawback of this approach is that the increment

81

of learning capacity is small [79]. For example, let us consider a small CNN with

two convolutional layers each containing 4 (5 × 5) convolutional kernels and a fully

connected layer to connect the feature vector output with the output neurons. If

the initial number of classes is 10, and 5 new classes are to be accommodated, then

the increase in trainable parameters is only 17.8% compared to 50% increase in the

number of classes. Since we do not want to forget the already learned classes, we

can only train the small percentage of trainable parameters with the new examples.

However, this does not result in a good inference accuracy for the new classes. For

a large network with many convolutional layers, the increment of learning capacity

reduces further and goes as low as less than 1%.

Therefore, it is prudent to widen the network by having more feature maps in

the convolutional layers. To investigate this idea, we trained the above-mentioned

network denoted by [784 (5 × 5)4c 2s (5 × 5)4c 2s 10o] (CNN containing 784 input

neurons, 2 convolutional layers (4c) each followed by a sub-sampling layer (2s), and

finally a fully connected layer with 10 output neurons (10o)), for 10 classes (digits

0-9 from TiCH dataset [68]). Then we added rest of the 26 classes (alphabets) to

the existing network in five installments. Each time we retrain the network for new

classes, we add two feature maps in the last convolutional layer. For example, when

we add first 5 classes (A-E) with the existing 10 classes, we retrain the network [784

(5× 5)4c 2s (5× 5)6c 2s 5o]. We only increment the concluding convolutional layer

since it has been shown by Yosinski et al. [66] that initial layers in a DCNN is more

generic while last layers are more specific. Therefore, we only focus on incrementing

and retraining the last few layers. Note that we added specifically 2 feature maps in

the last convolutional layer (for each addition of 5-6 classes) in order to increase the

model capacity while maintaining the existing class/filter ratio (∼2.5 classes/filter)

and prevent over-fitting. The new parameters are initialized using random numbers

which have distribution similar to the learned weights. Cloning weights from learned

filters provide similar results.

82

In the retraining process, only the 8 kernels corresponding to the 2 new feature

maps and connections to the 5 new output neurons are trained with the new examples.

Rest of the parameters are shared with the base network of 10 classes and as they

are frozen, we will not forget the previously learned 10 classes. The new network

becomes base network for the next 5 classes (F-J) to be added. That means, for any

new set of classes, the network will be [784 (5× 5)4c 2s (5× 5)8c 2s 5o], where only

the 8 kernels corresponding to the 2 new feature maps and connections to the 5 new

output neurons will be trained with the new examples. The accuracy achieved by

this approach is given in the Table 7.1.

Table 7.1.: Accuracy results for approach 1

Classes Network

Incremental Learning Accuracy (%)

With partial

network sharing

Without partial

network sharing

0-9 (base) [784 (5× 5)4c 2s (5× 5)4c 2s 10o] – 96.68

A-E [784 (5× 5)4c 2s (5× 5)6c 2s 5o] 98.50 98.82

F-J [784 (5× 5)4c 2s (5× 5)8c 2s 5o] 98.95 99.90

K-O [784 (5× 5)4c 2s (5× 5)10c 2s 5o] 98.03 98.14

P-T [784 (5× 5)4c 2s (5× 5)12c 2s 5o] 98.17 98.41

U-Z [784 (5× 5)4c 2s (5× 5)14c 2s 5o] 96.57 96.76

We can observe from Table 7.1 that the accuracy degradation due to ‘partial

network sharing’ is negligible compared to the network ‘without partial sharing’. Note

that ‘without partial network sharing’ is the case when new classes are learned using

all trainable parameters, none of which are shared with the already learned network

parameters. In the case of training ‘without partial network sharing’, the new layers

are initialized using the model with data A (old), and then fine-tuned with data B

(new) without freezing any parameters.

83

However, such an approach has scalability issues. If we keep on adding more classes

and continue increasing feature maps in the last convolutional layer, the network will

become inflated towards the end. And hence, there can be overfitting and convergence

issues while retraining for the new set of classes. We take care of this problem by

retraining the final convolutional layer completely, the details of which are described

in the following section.

7.2.2 Adding Branch to Existing Network

The approach presented in section 7.2.1 is a straight forward one and shown in

earlier related works. However, the limitations of such approach has motivated our

search for a robust scalable method.

To learn new set of classes, we clone and retrain the final convolutional layer and

subsequent layers. To clone a layer or layers, we create a new layer or layers with

the exact same number of neurons as in the original layer/layers and initialize the

new layer/layers with the same weight values so that both original and the cloned

layer/layers have exactly same synaptic connections. A new network is formed every

time we add new set of classes, which shares the initial convolutional layers with the

base network, and has a separate final convolutional layer and layers following it to

the output. The cloned and retrained layers of the new network thus become a branch

of the existing network. The advantage of cloning the final layers is that we do not

have to worry about the initialization of the new trainable parameters. Otherwise,

new kernels initialized with too big or too small a random value will either ruin the

existing model or make training tediously long. Another advantage of cloning is that

it maximizes the transfer of learned features.

To investigate this approach, we implemented a deep CNN: [1024× 3 (5× 5)128c

(1×1)100c (1×1)64c (3×3)mp (5×5)128c (1×1)128c (1×1)128c (3×3)mp (3×3)128c

(1× 1)128c (1× 1)10o] (c: convolutional layer kernels, mp: max pooling layer kernel,

o: output layer) for CIFAR-10 [69] dataset using MatConvNet [46]. The network

84

contained three MlpConv [51] blocks, each of which contained one convolutional layer

consisting of 5×5 or 3×3 kernels, two convolutional layers consisting of 1×1 kernels

and one max-pooling layer. The (1 × 1) convolutional layers can be considered as

fully-connected layers. Hence, ‘final convolutional layer’ implies the convolutional

layer in the last MlpConv block that contains 3× 3 kernels.

Fig. 7.2.: Network structure for investigating incremental learning by retraining the

final convolutional layer.

First, we separated the 10 classes of CIFAR-10 dataset to three sets of 4, 3 and

3 classes. The classes were chosen randomly. We trained the base network using

the set of 4 classes. Fig 7.2 shows the basic structure of the network. The last

layer of the final MlpConv block is shown separately in the figure to specify it as the

output layer. The max-pooling layers and final average pooling layer is not shown for

simplicity. After training this base network, we added rest of the two set of classes to

the existing network in two installments. Each time we retrain the network for new

classes, we clone the last MlpConv [51] block (highlighted in Table 7.2) and retrain

it using new examples for the new set of classes. During this retraining, the initial

two MlpConv blocks are shared from the base network which work as fixed feature

extractors (learning parameters are frozen) and minimize learning overhead for new

set of classes (Fig. 7.3). In Fig. 7.3a, the new MlpConv block is cloned from the base

network and only that part is retrained with the new data samples for the new classes,

while the last MlpConv block of the base network remains disconnected. Similarly,

another branch is trained for the next set of new classes as shown in Fig. 7.3b. After

85

(a)

(b)

Fig. 7.3.: Incremental training for accommodating (a) first and (b) second set of new

classes in the base network. The green blocks imply layers with frozen parameters.

The semi-transparent rectangle implies that the part is disconnected from training.

86

retraining, the new MlpConv block is added to the existing network as a new branch.

Fig. 7.4a shows the updated network after adding the two sets of new classes.

Table 7.2.: Accuracy results for approach 2

Classes Network

Incremental Learning Accuracy (%)

With partial

network sharing

Without partial

network sharing

10 (all classes) [1024× 3 (5× 5)128c (1× 1)

100c (1× 1)64c (3× 3)mp

(5× 5)128c (1× 1)128c (1× 1)

128c (3× 3)mp (3× 3) 128c

(1× 1)128c 4/3/3/10o]

– 88.90

4 (base) – 91.82

3 89.60 90.53

3 96.07 96.40

10 (updated) 58.72 60.49

We can observe from the Table 7.2 that the accuracy degradation due to partial

network sharing (Fig. 7.3) is negligible when we train for additional class sets. On

the other hand accuracy for updated network (Fig. 7.4a) of 10 classes suffers ∼1.8%

degradation compared to an incremental learning approach where we do not share

the first two MlpConv blocks for learning the new classes. In the case of learning

w/o sharing MlpConv blocks, each new branch is trained separately with 3 MlpConv

blocks rather than 1 final block.

We would like to mention that ∼89% (row 1, column 4 in Table 7.2) classification

accuracy can be achieved for CIFAR-10 dataset using slightly modified NIN [51]

architecture (Fig. 7.4b), if the training is done with all training samples applied

together as in regular training. This performance can be considered as the upper-

bound for incremental learning on this network, for this particular dataset. However,

for incremental learning, all training samples are not available together, hence it is

not possible to get that high accuracy even without any network sharing.

Note that freezing a set of parameters in a pre-trained convolutional network is a

standard practice for many applications involving knowledge transfer. But previous

87

(a)

(b)

Fig. 7.4.: (a) Updated network after incrementally learning two sets of new classes.

(b) Modified NIN [51] architecture for training CIFAR-10 dataset with all training

samples (regular training).

works [71] used this method to learn a different dataset using the frozen parameters

as fixed feature extractors. In such case, the new network can only classify the

new dataset, not previously learned dataset. On the other hand, in our proposed

methodology, both old and new learned classes can be classified together as well as

separately. However, one question is still unanswered: in a large DCNN with many

convolutional layers, is retraining the final convolutional layer enough? To answer

this question, we move to our third and final approach which will be described in the

next sub-section.

88

Fig. 7.5.: The ResNet [39] network structure used for implementing large scale DCNN.

For simplicity, the input bypass connections of ResNet is not shown here.

7.2.3 Replacing Part of the Base Network with New Convolutional Layers

A large DCNN usually has many convolutional layers followed by a fully connected

final classifier. To apply our approach in a large DCNN, we implemented ResNet [39]

for a real-world object recognition application. The network structure is depicted in

Fig. 7.5. CIFAR-100 [69] was used as the benchmark dataset. We trained a base

network (ResNet50), with 50 classes out of the 100 in CIFAR-100. Then we added rest

of the 50 classes to the existing network in three installments of 20, 20 and 10. The

classes for forming the sets were chosen randomly and each set is mutually exclusive.

Each time when we update the network for new tasks, we clone the last convolutional

layer and following classifier layers, while sharing the initial convolutional layers from

the base network, and retrain it using examples for the new set of classes only (Fig.

7.6a). After retraining the cloned branch, we add it to the existing network as a new

branch as shown in Fig. 7.6b. Note that, the initial part of the base network is shared

and frozen. After training the branch network for new task (additional classes), we

have the updated network that can do task specific classification as well as combined

classification. During task specific classification, only the task specific branch will be

active, while for combined classification all branches will be active at the same time.

Since during training the new branches, shared and old task specific parameters are

not altered, the network will not forget already learned tasks. However, training only 1

89

(a)

(b)

Fig. 7.6.: (a) Incremental training for accommodating new classes in the base net-

work. The parameters of the shared layers are frozen. The semi-transparent rectangle

implies that the part is disconnected from training. The new convolutional layer is

cloned from the base network and only that part is retrained with the new data sam-

ples for the new classes, while the last convolutional layer of the base network remain

disconnected. (b) After retraining the cloned layer, we add it to the existing network

as a new branch, and form the updated network.

conv layer and classifier layers is not enough to learn a new task properly. Hence, new

task performance suffers in this configuration. We compared the accuracies achieved

90

by this method with the accuracy of a network of same depth, trained without sharing

any learning parameter, and observed that there is an 8-12% accuracy degradation

for the former method. We also assessed the updated network accuracy for the all

100 classes by generating prediction probabilities from each of the separately trained

networks and selecting the maximum probability. Even for the updated network, we

observed about 10% accuracy degradation. To counter this accuracy degradation, we

developed a training methodology that will be described in the following subsection.

91

(a)

(b)

Fig. 7.7.: (a) Updated network architecture for proposed training methodology. ‘%’

Sharing is the portion of trainable parameters which are frozen and shared between

the base and the new network. This quantity is decided from the ‘Accuracy vs Sharing’

curve shown in the inset. (b) It is an incrementally trained network, without network

sharing, used as baseline for comparison.

92

7.2.4 Training Methodology 1

To mitigate the accuracy loss due to sharing, we reduced network sharing and

allowed more freedom for retraining the branch networks. By gradually reducing

sharing we observed improvement in the inference accuracy for both branch networks

and the updated network.

From Fig. 7.7a, we can observe that when we share ∼60% of the learning param-

eters in the convolutional layers (and corresponding batch normalization and ReLU

layers), we can achieve accuracy within ∼1% of baseline. The baseline is an incremen-

tally trained network, without network sharing (Fig. 7.7b). The accuracy results for

this network configuration is listed in Table 7.3. Note that ∼73% classification accu-

racy (row 1, column 4 in Table 7.3) can be achieved for CIFAR-100 using ResNet50,

which is the upper-bound for incremental learning on this network, if the training

is done with all training samples applied together. But for incremental learning, all

training samples are not available together, hence it is not possible to get that high

accuracy even without any network sharing. If we share more than 60% of the network

parameters, classification accuracy degrades drastically. Based on this observation we

developed the incremental training methodology for maximum benefits.

Table 7.3.: Accuracy results for Training Methodology 1

Classes Network

Incremental Learning Accuracy (%)

With partial

network sharing

Without partial

network sharing

100 (all classes) ResNet50 [39]:

43 Convolution,

40 Batch Normalization,

40 ReLU, 1 average pooling,

1 Output Prediction layer

– 73.95

50 (base) – 77.02

20 85.65 85.80

20 84.05 88.00

10 93.50 94.10

100 (updated) 59.51 61.00

93

Fig. 7.8.: Overview of the DCNN incremental training methodology with partial

network sharing.

We propose an incremental training methodology with optimal network sharing

as depicted in Fig. 7.8. The initially available set of classes are divided in to 2

sets. The larger or Core set is used to train a base network. Then the smaller set,

which we call a demo set, is used to train a cloned branch network with different

sharing configurations. From the training results, an Accuracy vs Sharing curve is

generated, from which the optimal sharing configuration for this application and this

network architecture is selected. This curve shows how much of the initial layers

from the base network can be shared without severe accuracy degradation on the new

task. An optimal sharing configuration is selected from the curve that meets quality

specifications. This optimal configuration is then used for learning any new set of

classes.

There is an overhead for determining the optimal sharing configuration from the

accuracy-sharing trade-off curve. This curve provides a tuning knob for trading ac-

curacy with energy benefits. However, we do not need to explore the entire search

space and we can apply heuristics based on network architecture, number of trainable

parameters, dataset complexity, number of training samples etc. to find the optimal

sharing configuration within few iterations of retraining the cloned network. Note

that training of cloned network is fast and low cost as the shared layers are not back-

94

propagated. In the following paragraph, we will describe the optimal sharing point

determination procedure.

To train a base network, we separate initially available classes in two sets: Core

set and Demo set. Then we train the base network with the core set and a separate

network with the demo set. Accuracy of this separate network will be used as reference

for determining the optimal sharing configuration. Next, we create a branch network

(that will share some initial layers from the base network) and train it for classes in

the demo set. This branch network is a cloned version of the trained base network.

The amount of the network sharing can be initially chosen based on the heuristics

discussed earlier. For instance, we chose to share 50% of ResNet50 parameters for

CIFAR-100 dataset. Then we train the branch network and compare its performance

with the reference accuracy. If the new accuracy is close to the reference, then we

increase sharing and train the branch again to compare. On the other hand, if the

new accuracy is less than the reference, then we decrease sharing and train again to

compare. After few iterations, we finalize the optimal sharing configuration based on

the required quality specifications. The optimal sharing point is the sharing fraction,

beyond which the accuracy degradation with increased sharing is higher than the

quality threshold. This leads to maximal benefits with minimal quality loss. Finally,

we can retrain the base network with both sets (core and demo) together to improve

the base network features (in the initial layers), since both sets (core and demo)

are available. This base network training and optimal sharing configuration analysis

should be done off-chip assuming that there is no energy constraint. Then this base

network can be deployed on energy-constrained device (edge) where new classes will

be learned. The overhead of optimal sharing configuration selection by generating

the accuracy-sharing curve is a onetime cost and it can be neglected since it will be

done off-chip.

For inference, under the separate task scenario, it will be a two stage network.

The multi-stage network will allow selective activation of a task specific branch [89]

while other branches will be inactive. For the combined classification scenario, all

95

branches will remain active at the same time. Note in Fig. 7.7a in the top layers,

there are branches for old and new set of classes. While retraining, and updating

the network for new set of classes, only the branch of top layers corresponding to the

new set of classes are retrained. Thus, the top layer filters keep information of their

respective set of classes and the network do not suffer from catastrophic forgetting.

In this work, we do not try to grow a model with classes from datasets of dif-

ferent domains since the base network have learned features from data samples of

a single dataset. For instance, if the base network is trained on object recognition

dataset CIFAR-10, then it will be able to accommodate new classes from CIFAR-100

dataset as both of the datasets have similar type of basic features (image size, color,

background etc.). However, the same base model should not be able to properly ac-

commodate new classes from character recognition dataset (MNIST) because MNIST

data has very different type of features compared to CIFAR-10 data.

7.2.5 Training Methodology 2

Fig. 7.9.: Incremental training methodology for task specific partial network sharing.

In training methodology 1, all branches of the updated network has equal number

of task specific parameters. However, it is not necessary to have this constraint while

learning a new task. We extend training methodology 1 to implement task specific

sharing configuration as shown in Fig. 7.9. In this case, we forward propagate few

samples of a new task through the trained base network. From classification results of

96

those samples, we generate a similarity score that approximately quantifies similarity

between the classes of base network and the new task. To generate the similarity

score we have used algorithm 3. We pass random samples of a class belonging to a

new task through the trained base network. From the classification results, we count

number of repeating classes as similarity points. We repeat this process for all the

different classes of the new task several times and take the average number as the

similarity score. This is a very simple way to measure similarity, however may not

be an ideal one. We employed this method considering its simplicity, so that the

overhead of measuring similarity score do not overtake the advantages of task specific

sharing.

ALGORITHM 3: Similarity score generation

Input: Trained Base network: Base NN, New task data: TnData.

Output: Similarity score of new task with respect to learned task: θn−base

1. Randomly sample 5 training examples for each new class in the new task and forward

propagate through the trained base network for classification.

2. Count number of repeating classes as similarity.

3. Repeat the steps 1 and 2, 3 times and average the results to get average similarity score.

Next, we estimate the sharing capacity of the base network from the optimal

sharing configuration of the base network and the similarity score of the demo set

that was used to generate the ‘Accuracy-sharing’ curve. Then we use equation 1 to

estimate task specific sharing configuration. The task that have higher similarity with

the base network, will be able to share more features from the base network. Note

that each network architecture has different sharing capacity. Hence, it is necessary

to estimate the sharing capacity of the base network using training methodology 1.

sharing for task ‘n′, Tn = γ × θn−base (1)

97

where, γ is the sharing capacity of the base network and θn−base is the similarity score

between the new task and the base network.

γ =
optimal sharing of base network

θbase
(2)

Plugging in the network learning capacity and similarity scores in equation 1,

we generate a look-up table from which sharing configuration for new task will be

determined. The updated network for CIFAR-100 shown in the Fig. 7.10 is the result

of this approach.

Fig. 7.10.: Updated network for task specific partial network sharing using similarity

score table.

98

7.2.6 Training Methodology 3

Fig. 7.11.: Incremental training methodology for fine grain optimization.

We can employ a more fine grain optimization by sharing not only from the base

network, but also from the trained branches. The training methodology is depicted

in Fig. 7.11. In this method, we have to generate similarity score of the new task

with all previously trained task classes using equation 3. New task branch will share

from the most similar branch.

sharing for task ‘n′, Tn = γ × maxθn−trained networks (3)

where, γ is the sharing capacity of the base network and maxθn−trained networks is the

maximum similarity score between new task and trained network branches.

Let us see an example (Fig. 7.12a). Assume that the base network is trained

with task 0. When data for task 1 becomes available, it has the only option to share

network with task 0. Then, data for task 2 arrives and it has two options, share

network with task 0 or task 1. From the similarity score table, we can observe that

task 2 has higher similarity with task 1 than task 0. So, branch network for task 2

shares network with task 1. For task 3, there are 3 options and it shares with task

1 since it has higher similarity score with task 1. Note that, task order plays an

important role in this approach. For instance, in this specific example, if task 2 is

available before task 1 or task 3, we will get a different updated network (Fig. 7.12b).

99

(a)

(b)

Fig. 7.12.: Updated network trained with training methodology 3 for task order (a)

T0-T1-T2-T3 and (b) T0-T2-T1-T3

100

7.2.7 Comparison of Different Training Methodologies

Table 7.4.: Comparison of Different Training Methodologies

Task
Method 1 Method 2 Method 3

Accuracy Avg. Sharing Accuracy Avg. Sharing Accuracy Avg. Sharing

T1 85.65 59.44% 86.45 46.70% 86.45 46.70%

T2 84.05 59.44% 82.30 72.20% 82.50 72.20%

T3 93.50 59.44% 93.80 46.70% 93.40 84.93%

T0-T1-T2-T3 59.51 59.44% 60.07 55.20% 60.58 67.94%

In Table 7.4, the task specific and combined classification accuracies are listed

with corresponding sharing ratios. For the first training method, we used fixed shar-

ing configuration for all new tasks. In the second training method, we utilized sim-

ilarity score and found that task 1 and 3 can share less with the base network than

task 2. This method reduced the average sharing while increasing the task specific

and combined classification accuracy. In method 3, task 2 and task 3 were able to

share higher amount with task 1 instead of task 0 while maintaining task specific

performance. The combined classification is slightly improved while average sharing

is also increased.

7.3 Evaluation Methodology

The proposed training approach reduces the number of kernels that would be

modified during the training of new tasks. Effectively, this reduces the number of

computations in the backward pass, namely layer gradients and weight gradient com-

putations, thereby leading to energy benefits. The reduction in the number compu-

tations is an outcome of the algorithmic optimization i.e. reduction in the number

of layers during the backpropagation for new tasks. Hence, the energy benefits are

not specific to any microarchitectural feature such as dataflow, data reuse etc. In

this work, we use a CMOS digital baseline based on the weight stationary dataflow

101

to analyze the energy consumption for DCNNs. Weight stationary has been agreed

to be an efficient dataflow for executing DNN workloads [90,91].

The baseline is a many-core architecture where each core maps a partition of the

DNN. Each core is comprised of one or more Matrix Vector Multiplication (MVM)

units which perform the MAC operations. An MVM unit consists of a 32KB memory

module with 1024 bit bus width and 32 MACs. Thus, all the weights (32-bit weight

and input) read in a single access from the local memory can be processed in the

MACs in one cycle leading to a pipelined execution. Subsequently, multiple MACs

within and across cores operate MVMs in parallel to execute the DNN. Note that

we do not consider the energy expended in off-chip data movement (movement of

weight from DRAM to local memory in cores) and inter-core data movement (over

network) as these can vary based on the layer configurations, chip size, network design

and several optimizations obtained from the software layers [92]. We focus only on

the compute and storage energy within cores to isolate the benefits derived from the

algorithmic features only. The multiplier and adder unit for MAC was implemented

at the Register-Transfer Level (RTL) in Verilog and mapped to IBM 32nm technology

using Synopsys Design Compiler, to obtain the energy number. The memory module

in our baseline was modelled using CACTI [50], in 32nm technology library, to

estimate the corresponding energy consumption.

At the algorithm level, the deep learning toolbox [45], MatConvNet [46], and

PyTorch [93], which are open source neural network simulators in MATLAB, C++,

and Python, are used to apply the algorithm modifications and evaluate the classifi-

cation accuracy of the DCNNs under consideration. The DCNNs were trained, tested

and timed using NVIDIA GPUs. In all experiments, previously seen data were not

used in subsequent stages of learning, and in each case the algorithm was tested on

an independent validation dataset that was not used during training. Details of the

benchmarks used in our experiments are listed in Table 7.5:

102

Table 7.5.: Benchmarks

Application Dataset DCNN Structure

Character Recog. TiCH 2 Convolutional and 1 Fully-connected Layer

Object Recog. CIFAR-10 Network in Network [51], ResNet50 [94]

Object Recog. CIFAR-100 ResNet18, ResNet34, ResNet50, ResNet101, DenseNet121 [95], MobileNet [96]

Object Recog. ImageNet ResNet34, DenseNet121, MobileNet

7.4 Results and Discussions

In this section, we present results that demonstrate the accuracy obtained, the

energy efficiency and reduction in training time, storage requirements and memory

access achieved by our proposed design. For these results, we have trained ResNet101

with CIFAR-100. The optimal sharing configuration is 80%.

7.4.1 Energy-Accuracy Trade-off

DCNNs are trained using the standard back-propagation rule with slight modifi-

cation to account for the convolutional operators [45]. The main power hungry steps

of DCNN training (back-propagation) are gradient computation and weight update

of the convolutional and fully connected layers [29]. In our proposed training, we

achieve energy efficiency by eliminating a large portion of the gradient computation

and weight update operations, with minimal loss of accuracy or output quality. The

normalized energy consumption per iteration for incremental training with and with-

out sharing convolutional layers is shown in Fig. 7.13a. The accuracies reported in this

work are obtained using test datasets, which are separate from the training datasets.

Based on the accuracy requirement of a specific application the optimal sharing point

can be chosen from the ‘Accuracy vs Sharing’ curve mentioned in section 7.2.4. The

optimal sharing configuration for CIFAR-100 is 80% in ResNet101. By sharing 80% of

the base network parameters, we can achieve 2.45x computation energy saving while

learning new tasks. The energy numbers slightly depend on number of classes in the

103

new tasks to be learned. However, it does not affect much since only the output layer

connections vary with the number of new classes, which is insignificant compared to

total connections in the network. Note that the energy mentioned in this comparison

is computation energy. Memory access energy is discussed in section 7.4.3.

0% 67% 80% 91% 99%
Sharing (%)

50

52

54

56

58

60

62

Ac
cu

ra
cy

 (
%

)
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Co
ns

um
pt

io
n

Energy Consumption

(a)

0% 67% 80% 91% 99%
Sharing (%)

50

52

54

56

58

60

62

Ac
cu

ra
cy

 (
%

)

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

Time

(b)

Fig. 7.13.: Comparison of (a) energy/accuracy trade-off and (b) training time require-

ments, between incremental training with and without sharing convolutional layers,

is shown for different sharing configurations.

104

7.4.2 Training Time Reduction

Since gradient computations and weight updates are not required for the shared

convolutional layers, we achieve significant savings in computation time with our pro-

posed approach. Fig. 7.13b shows the normalized training time per iteration for

learning a set of new classes. We observe 1.55-6× reduction in training time per

iteration for CIFAR-100 in ResNet101 [39] for different sharing configurations. As

a byproduct of the proposed scheme, convergence becomes faster due to inheriting

features from the base model. Note that the time savings cannot be used to im-

prove accuracy of the networks by providing more epochs to the training. One way

to improve accuracy is to retrain the networks with all the training samples (previ-

ously seen and unseen), which can be very time consuming and contradictory to the

incremental learning principle.

7.4.3 Storage Requirement and Memory Access Reduction

Fig. 7.14a shows the storage requirement reduction obtained using our proposed

scheme for CIFAR-100 in ResNet101 [39]. We achieve 67-99% reduction in storage

requirement since we are sharing initial convolutional layers from the base network

for the new branch networks. A large part of the training energy is spent on the

memory read/write operations for the synapses. Proposed partial network sharing

based training also provides 43-55% savings in memory access energy during training

for CIFAR-100 in ResNet101, since we do not need to write (update during back-

propagation) the fixed kernel weights during training. Fig. 7.14b shows the memory

access requirement reduction obtained using proposed approach.

105

50

52

54

56

58

60

62

Ac
cu

ra
cy

 (
%

)

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 S
to

ra
ge

 R

eq
ui

re
m

en
t

Storage

(a)

0% 67% 80% 91% 99%
Sharing (%)

50

52

54

56

58

60

62

Ac
cu

ra
cy

 (
%

)

Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
em

or
y

Ac
ce

ss

Memory Access

(b)

Fig. 7.14.: Comparison of (a) storage and (b) memory access requirements, between

incremental training with and without sharing convolutional layers, is shown for dif-

ferent sharing configurations.

7.4.4 Results on ImageNet

The ImageNet [10] (ILSVRC2012) is one of the most challenging benchmarks

for object recognition/classification. The data set has a total of ∼1.2 million la-

106

beled images from 1000 different categories in the training set. The validation and

test set contains 50,000 and 100,000 labeled images, respectively. We implemented

ResNet18, ResNet34 [39], DenseNet121 [95] and MobileNet [96], and trained them on

ImageNet2012 dataset. We achieved 69.73%, 73.88%, 74.23% and 66.2% (top 1) classi-

fication accuracy for ResNet18, ResNet34, DenseNet121 and MobileNet, respectively,

in regular training (all 1000 classes trained together), which are the upper-bounds

for the incremental learning on corresponding networks. Then we divided the dataset

into 3 sets of 500, 300 and 200 classes for the purpose of incremental learning. The

classes for forming the sets were chosen randomly and each set was mutually exclu-

sive. The set of 500 classes were used to train the base network. The other two sets

were used for incremental learning. Utilizing our proposed method, we obtained the

optimal sharing configuration. For ResNet18, we were able to share only ∼1.5% of the

learning parameters from the base network and achieve classification accuracy within

1 ± 0.5% of the baseline (network w/o sharing) accuracy. On the other hand, using

ResNet34, we were able to share up to 33% of the learning parameters from the base

network. The classification accuracy results for ResNet34 with ∼33% sharing configu-

ration are listed in Table 7.6. This implies that the amount of network sharing largely

depends on the network size and architecture. For instance, the DenseNet121 with

121 layers provides ∼57% sharing, while the MobileNet with only 25 layers provides

up to 34% sharing of the learning parameters (for similar accuracy specifications on

ImageNet dataset). Combined classification accuracy achieved on DenseNet121 and

MobileNet are ∼64% and ∼62%, respectively. The following sub-section analyses

the performance and corresponding benefits of proposed methodology on different

network architectures.

7.4.5 Comparison between Different Network Architectures

We observed that the optimal network sharing configuration depends on network

architecture. Therefore, careful consideration is required while selecting the network

107

Table 7.6.: Accuracy results for ResNet34 trained on ImageNet

#Classes
Accuracy(%) w/o sharing Accuracy(%) w/ sharing

Top 1% Top 5% Top 1% Top 5%

1000 (all classes) 73.88 91.70 - -

500 80.85 95.37 - -

300 74.3 90.67 71.25 89.2

200 75.83 92.61 76.6 93.12

1000 (updated) 66.99 87.4 65.85 86.65

for using proposed methodology. We experimented with ResNet networks of different

depths, DenseNet [95] and MobileNet [96]. The networks are trained on CIFAR-100

and ImageNet with class divisions in Table 7.3 and 7.6. For these experiments, we

used 1± 0.5% accuracy degradation as a tolerance value for determining the optimal

sharing configuration. Fig. 7.15a shows a comparison between four ResNets (18,

34, 50, 101), Densenet121 and MobileNet network trained with CIFAR-100, while

Fig. 7.15b shows a comparison between three networks (ResNet34, DenseNet121 and

MobileNet) trained for ImageNet dataset. We observed that deeper networks (>30

layers) provide more energy benefits for minimal accuracy degradation. However,

sharing ratio does not have a linear relation with the energy benefits and training time

savings. In Fig. 7.15, we can observe that for similar sharing configurations, different

networks achieve different amount of reduction in computational energy, memory

access and iteration time. For instance, sharing ∼33% of the learning parameters in

ResNet34, we reduced training time per iteration by 51% (Fig. 7.15b). On the other

hand, similar amount of sharing in MobileNet reduces training time per iteration by

62% (Fig. 7.15b).

For both CIFAR-100 and ImageNet dataset, MobileNet performs similar to ResNet34

in terms of parameter sharing and energy benefits, while DenseNet provides higher

amount of parameter sharing and energy benefits since it has much more depth. The

108

trend confirms that there are two prime conditions which need to be satisfied for

getting superior performance using the proposed algorithm. Firstly, the network has

to be deep enough so that enough layers from base network can be shared. Small net-

works have most of the weights in the final FC layers which cannot be shared. Larger

networks allow more learning parameters to be shared without performance loss. For

instance, we could share a lot more of the learning parameters from the base network

in ResNet34 compared to ResNet18 for ImageNet. Also for CIFAR-100, percentage

sharing is very high in ResNet101 (80%) compared to ResNet18 (24%) for an equiva-

lent accuracy degradation. It can also be seen that a small network (Table 7.2) does

not show efficient feature sharing as it is not deep enough. We did experiments with

CIFAR-10 using ResNet50 and achieved better results (∼74% accuracy on combined

classification, compared to ∼59% in Table 7.2) with ∼48% network sharing. Secondly,

the base network must contain a good number of features. The combined network

performance is best for ImageNet (Table 7.6) among other datasets and much closer

to the cumulatively trained network (which is the theoretical upper-bound). This is

due to the fact that in the case of ImageNet, the base network has learned sufficient

features since it was trained with large number of classes and examples. On the other

hand, accuracy is worst for CIFAR-10 (Table 7.2) as its base network learns only 4

classes and has significantly lower number of training samples.

109

ResNet18 ResNet34 ResNet50 ResNet101 DenseNet121 MobileNet
Network Architectures

0

20

40

60

80

100

Sh
ar

in
g

(%
)

Sharing (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ar

am
et

er
sNormalized MAC Operations

Normalized Memory Access
Normalized Iteration Time

(a)

ResNet34 DenseNet121 MobileNet
Network Architectures

0

20

40

60

80

100

Sh
ar

in
g

(%
)

Sharing (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ar

am
et

er
sNormalized MAC Operations

Normalized Memory Access
Normalized Iteration Time

(b)

Fig. 7.15.: Comparison between different network architectures trained on (a) CIFAR-

100 and (b) ImageNet, using proposed algorithm. For these experiments, we used

1±0.5% accuracy degradation as a tolerance value for determining the optimal sharing

configuration.

110

Table 7.7.: Qualitative Comparison with Other Methods

Performance Metric Fine Tuning Feature Extraction Cumulative Training Learning w/o Forgetting This Work

New Task Accuracy best medium best best good

Old Task Accuracy worst good best good best

Training Speed fast fast slow fast fastest

Inference Speed fast fast fast fast fast

Previous Data Required no no yes no no

Storage Requirement low medium highest low medium

7.4.6 Comparison with Other Methods

Table 7.7 presents a qualitative comparison between different methods for in-

cremental learning namely; fine tuning, feature extraction, joint training, Learning

without Forgetting [81] and our proposed method. Here, we considered that accuracy

for each task (old and new) is measured separately as reported in [81]. In fine tuning,

the entire network is retrained for a few epochs to learn the new task. It suffers

from catastrophic forgetting and forgets the old task since old task data is not used

during retraining. In feature extraction, a trained feature extractor is used to extract

features for the new task and then a separate classifier is trained on the extracted

features. Although it does not forget the old task, new task performance is lower since

the feature extractor is not explicitly trained to extract appropriate features for the

new task. Cumulative training achieves the best accuracy on new tasks without for-

getting the old tasks. However, it requires old task samples to be stored, which leads

to a higher memory requirement compared to the other approaches. Also cumulative

training is slower compared to other approaches since every retraining utilizes all data

samples from old and new tasks. ‘Learning without Forgetting’ (LwF) fine tunes the

network for new tasks while maintaining response of the new task samples on old task

specific neurons [81] . It achieves higher performance on the new task compared to

other approaches since the entire network is fine tuned for the new task. LwF training

is fast as it fine tunes the network with new samples only compared to training from

scratch using all the task samples. LwF adds the least number of parameters for the

111

new task [81], thereby enabling fast inference and lower memory requirements. LwF

aims to achieve energy efficient inference while learning new task with tolerable loss

in old task accuracy. However, a key drawback of LwF is the partial forgetting of

old task(s) during the fine-tuning process (learning new-task). For combined classifi-

cation, LwF suffers significant accuracy drop. For instance, ResNet32 incrementally

trained in two steps each having 50 classes of CIFAR-100 obtains a top 1 accuracy

of ∼52.5% with LwF [82]. In a similar setup, our proposed training obtains 62.1%

while reducing the computation energy (∼60%), memory access (∼48%) and iteration

time (∼57%) in training. Even with periodical utilization of old data samples, [82]

reaches 62% (top 1) accuracy. [82] also shows that with classes learned in more than

two installments, LwF may suffer from continuously degrading performance on old

tasks. On the contrary, we focus on achieving energy efficient training (for new tasks)

without tolerating any accuracy degradation in old tasks. To this effect, we consider

scenarios where learning the new task needs to be efficient. Consequently, we trade

minimal accuracy while achieving maximal energy benefit for the new task. Our pro-

posed methodology does not alter the task specific parameters (branch network) for

old tasks as well as the shared parameters during the learning of new tasks, thereby

not degrading performance for old tasks. Further, for the new task we only need to

fine-tune the small cloned branch, which makes the training faster compared to other

methods.

Task-specific inference cost (energy and time) remains similar for the proposed

approach compared to the baseline, as we can activate the specific branch only. The

combined classification (input can belong to any task) cost will grow sub-linearly as

we add more branches, since several branches share initial layer computations. An

alternative approach to learn new task(s) while retaining the previous task-accuracy

would require training separate networks with no weight sharing. Subsequently, the

inference cost will be maximum in the case of combined classification, as all separate

networks would have to be evaluated. Hence, higher sharing improves the efficiency

for both training and inference.

112

In a typical scenario, a model is used for a lot of inference tasks once it is (re-

)trained. Nonetheless, we focus on facilitating energy constraint training. With the

advent of emerging algorithms and technology, such scenario will become very popular

in near future if on-chip training is made energy-efficient. For example, cell phones

are increasingly employing on-chip facial and finger print recognition. In addition

to that, on-chip learning will alleviate the requirements to send the data to cloud,

thereby enhancing security. Similarly, drones can be employed to learn new tasks

on the fly without storing the data samples due to memory constraints. In such

applications, proposed training algorithm can be beneficial.

Next, we will quantitatively compare our approach of incremental learning with

two standard approaches in Fig. 7.16 for ImageNet dataset. The standard approaches

are:

1. Cumulative: In this approach the model is retrained with the samples of the

new classes and all the previous learned classes (all previous data must be available).

This is sort of an upper bound for ideal incremental learning. Since in incremental

learning, the old data samples are not available, it will remain an open problem until

an approach can match performance of the cumulative approach without using stored

data for already learned classes.

2. Näıve: In this approach, the network is completely retrained with the data

samples of new classes only. It suffers from catastrophic forgetting. This approach is

also termed as ‘Fine tuning’.

From Fig. 7.16, we can observe that the performance of our proposed method

is not very far from the cumulative approach. We also observe that our proposed

partial network sharing approach performs almost same as the approach without

partial network sharing. While the Näıve approach always performs well for the

new set of classes only since the network forgets the old classes due to catastrophic

forgetting.

113

Fig. 7.16.: Performance comparison of incremental learning approaches.

114

8. ENABLING SPIKE-BASED BACKPROPAGATION IN

STATE-OF-THE-ART DEEP SPIKING NEURAL

NETWORK ARCHITECTURES

Over the last few years, deep learning has made tremendous progress and has become

a prevalent tool for coping with various cognitive tasks such as object detection,

speech recognition and reasoning. Various deep learning techniques [8, 40, 97] enable

the effective optimization of deep ANNs by constructing multiple levels of feature

hierarchies and show remarkable results, which occasionally outperform human level

performance [9,13,39]. To that effect, deploying deep learning is becoming necessary

not only on large-scale computers, but also on edge devices (e.g. phone, tablet, smart

watch, robot etc.). However, the ever-growing complexity of the state-of-the-art deep

neural networks together with the explosion in the amount of data to be processed,

place significant energy demands on current computing platforms. For example, a

deep ANN model requires unprecedented amount of computing hardware resources

that often requires huge computing power of cloud servers and significant amount of

time to train.

Spiking Neural Networks (SNNs) are the leading candidates for overcoming the

constraints of neural computing and to efficiently harness the machine learning al-

gorithm in real-life (or mobile) applications [98, 99]. The concepts of SNN, which is

often regarded as the 3rd generation neural network [100], are inspired by biologi-

cally plausible Leaky Integrate and Fire (LIF) spiking neuron models [101] that can

efficiently process spatio-temporal information. The LIF neuron model is character-

ized by the internal state, called membrane potential, that integrates the inputs over

time and generates an output spike (or Dirac delta pulse) whenever it reaches the

neuronal firing threshold. This mechanism enables event-driven and asynchronous

computations across the layers on spiking systems, which makes it naturally suitable

115

for ultra-low power and low latency operation. Furthermore, recent works [102, 103]

have shown that these properties make SNNs significantly more attractive for deeper

networks in the case of hardware implementation. This is because the spike signals

become significantly sparser as the layer goes deeper, such that the number of re-

quired computations significantly reduces. In this context, several training strategies

can be applied to take full advantage of SNNs.

The general training strategy of SNNs can be categorized in two ways - ANN-

SNN conversion and direct spike-based training. First, there are studies which have

successfully deployed the ANN-SNN conversion technique that transforms off-line

trained ANN to SNN for efficient event-driven inference [102–106]. The main objec-

tive of ANN-SNN conversion scheme is to leverage the state-of-the-art ANN training

techniques, so that the transformed networks can mimic the competitive classification

performances of the ANNs. For instance, specialized SNN hardwares (such as SpiN-

Naker [107], IBM TrueNorth [98]) have exhibited greatly improved power efficiency

as well as the state-of-the-art performance for inferencing. However, it takes large

number of time-steps (latency) to resemble the input-output mapping of pre-trained

ANN counterpart. This is because, only Integrate-and-Fire (IF) spiking neuron can

be replaced with an ANN (ReLU) neuron, and hence, can not effectively capture the

temporal dynamics of spatio-temporal event-driven information. On the other hand,

it is still a difficult problem to directly train a deep spiking neural network using input

spike events and spike-based learning algorithm, mainly because of discontinuous and

non-differentiable spike generation function and discrete nature of spike events. To

that effect, unsupervised Spike-Timing-Dependent-Plasticity (STDP) learning algo-

rithm has been explored for training two-layer SNNs (consisting of input and output

layers) by considering the local correlations of pre- and post- neuronal spike tim-

ing. STDP-trained two-layer network (consisting of 6400 output neurons) has been

shown to achieve 95% classification accuracy on MNIST dataset. However, shallow

network structure limits the expressive power of neural network [108–112] and suffers

from scalability issues as the classification performance easily saturates. Layer-wise

116

STDP learning [113, 114] has shown the capabilities of efficient feature extraction

on multi-layer convolutional SNNs. Nevertheless, the performance gaps compared to

ANN models (trained with standard BP algorithm) are still significantly large. The

unsatisfactory classification performances of unsupervised local learning necessitate a

spike-based supervised learning rule such as gradient descent backpropagation (BP)

algorithm [7]. In the context of SNNs, the spike-based BP learning algorithm intro-

duced in [115,116] dealt with the membrane potential as a differentiable activation of

spiking neuron to train the synaptic weights. [117] apply BP based supervised train-

ing for the classifier after training the feature extractor layer by layer using auto-

encoder mechanism. By leveraging the best of both unsupervised and supervised

learning, [118] have shown that layer-wise STDP learning along with spike-based

BP have synergistic effect to improve the robustness, generalization ability as well

as acceleration of training speed. In this work, we take these prior works forward

to effectively train very deep SNNs using end-to-end spike-based gradient descent

backpropagation learning.

The main contributions of our work are specified as follows. First, we develop a

spike-based supervised gradient descent BP algorithm that exploits a conditionally

differentiable approximated activation function of LIF neuron. In addition, we lever-

age the key idea of the successful deep ANN models such as LeNet5 [8], VGG [38] and

ResNet [39] for efficiently constructing state-of-the-art deep SNN network architec-

tures. We also adapt dropout [40] technique in order to better regularize deep SNN

training. Next, we demonstrate the effectiveness of our methodology for visual recog-

nition tasks on standard character and object datasets (MNIST, SVHN, CIFAR-10)

and a neuromorphic dataset (N-MNIST). To the best of our knowledge, this work

achieves the best classification accuracy in MNIST, SVHN and CIFAR-10 datasets

through training deep SNNs. Lastly, we expand our efforts to quantify and ana-

lyze the advantages of spike-based BP algorithm compared to ANN-SNN conversion

techniques in terms of inference time and energy consumption.

117

Fig. 8.1.: The operation of a Leaky Integrate and Fire (LIF) neuron.

8.1 The Components and Architecture of Spiking Neural Network

8.1.1 Spiking Neural Network Components

The Leaky-Integrate-and-Fire (LIF) neurons [101] and plastic synapses are funda-

mental and biologically plausible computational elements for emulating the dynamics

of SNNs. The neurons in adjacent layers are massively inter-connected via each asso-

ciated plastic synapse whereas no connection exists within a layer. The spike input

signals always move in one direction, a way from the input layer through the hidden

layers and to the output layer. The dynamics of LIF spiking neuron can be formulated

as:

τ
dVmem
dt

= −Vmem +
nl∑
i=1

(wi ∗ θi(t− tk)) (1)

where Vmem means post-neuronal membrane potential, τ is the time constant for

membrane potential decay, nl indicates the number of pre-neurons, wi is the synaptic

weight connecting ith pre-neuron to post-neuron and θi(t− tk) denotes a spike event

from ith pre-neuron at time tk. The operation of a LIF neuron is presented in Fig. 8.1.

The impacts of each pre-spike, θi(t−tk), are modulated by the corresponding synaptic

weight (wi) to generate the current influx flowing into the post-neuron in the next

layer. The stimulus fed as current influx is integrated in the post-neuronal membrane

118

potential (Vmem) that leaks exponentially over time. The decay constant (τ) decides

the degree of membrane leakage over time and a smaller value of τ indicates stronger

membrane potential decay. When the accumulated membrane potential reaches or

exceeds a certain neuronal firing threshold (Vth), the corresponding neuron generates

a post-spike to the fan-out synapses and resets its own membrane potential to initial

value (zero). In Table 8.1, we list the annotations used in equations (1-14).

Table 8.1.: List of Notations

Notations Meaning

θ Spike

x Sum of spike events throughout the time

w Synaptic weight

Vmem Membrane potential

Vth Neuronal firing threshold

net Total (incoming) current influx throughout the time

a Activation of spiking neuron

E Loss function

δ Error gradient

8.1.2 Deep Convolutional Spiking Neural Network

Building Blocks

In this work, we develop a training methodology for convolutional SNN models

that consist of an input layer followed by intermediate hidden layers and a final output

layer. In the input layer, the pixel images are encoded as Poisson-distributed spike

trains, where the probability of spike generation is proportional to the pixel inten-

sity. The hidden layers consist of multiple convolutional (C) and spatial-pooling (P)

119

(a) (b)

Fig. 8.2.: Basic building blocks of (a) VGG and (b) ResNet architectures in deep

convolutional SNNs.

layers which are often arranged in an alternating manner. These convolutional (C)

and spatial-pooling (P) layers represent the intermediate stages of feature extractor.

The spikes from the feature extractor are combined to generate one dimensional vec-

tor input for the fully-connected (FC) layers to produce the final classification. The

convolutional and fully-connected layers contain trainable parameters (i.e. synaptic

weights), while the spatial-pooling layers are fixed a priori. Through the training

procedure, weight kernels in the convolutional layers can encode the feature repre-

sentations of the input patterns at multiple hierarchical levels. Therefore, through

convolution operation, the trained convolutional kernels can detect the spatially cor-

related local features in the input patterns. This inherently allows the network to be

invariant to translation (shift) in the object location. A convolutional layer is often

followed by a spatial-pooling layer. The spatial-pooling layer is used to downscale the

120

dimensions of the feature maps, produced by the previous convolutional layer, while

retaining the spatial correlation between neighborhood pixels in every feature map.

There are various choices for performing the spatial-pooling operation in the ANN

domain. The two major choices are max-pooling (maximum neuron output over the

pooling window) or average-pooling (two-dimensional average pooling operation over

the pooling window). In most of the state-of-the-art deep ANNs, max-pooling is con-

sidered as the most popular option. However, since the neuron activations are binary

in SNNs instead of analog values, max-pooling does not provide useful information to

the following layer. Therefore, we have used averaging mechanism for spatial-pooling.

In SNNs, average-pooling scheme is different than in ANN as an additional threshold-

ing is used after averaging to generate output spikes. For instance, a fixed 2×2 kernel

(each having a weight of 0.25) strides through a convolutional feature map without

overlapping and fires an output spike at the corresponding location in the pooled

feature map only if the sum of the weighted spikes of the 4 inputs within the kernel

window exceeds a designated threshold. The threshold for average-pooling has to be

carefully set, so that the spike propagation is not disrupted due to the pooling. If the

threshold is too low, then there will be too many spikes that can cause loss of spatial

location of the feature that was extracted from the previous layer. On the other hand,

if the threshold is too high, then there will not be enough spike propagation to the

deeper layers. We have used a threshold of 0.75 for a fixed (2×2) kernel (each having

a weight of 0.25) in the average pooling layers. This means that if there are at least 3

spikes in the (2×2) window, then 1 spike will be generated in the pooled map. For a

different kernel size, the threshold has to be properly adjusted maintaining a similar

ratio (0.75). The pooling operation provides several key benefits. First, it reduces size

of the convolutional feature maps and provides additional network invariance to in-

put transformations. Furthermore, the pooling operation enlarges the effective size of

convolutional kernels in the following layer as the feature maps are downscaled. This

allows consecutive convolutional layers to efficiently learn hierarchical representations

from low to high levels of abstractions. The number of pooled feature maps is the

121

same as the number of output feature maps of the previous convolutional layer. The

feature maps of the final pooling layer before the fully-connected layers are unrolled

into a 1-D vector to be used as input for a fully-connected layer. There are one or

more fully-connected layers eventually reaching to the output layer which produces

inference decisions. This final fully-connected part of the network acts as a classifier

to effectively incorporate the composition of features resulting from the alternating

convolutional and pooling layers into the final output classes.

Deep Convolutional SNN architecture: VGG and Residual SNNs

Deep network topologies are essential for recognizing complex input patterns so

that they can effectively learn hierarchical representations. To that effect, we inves-

tigate the state-of-the-art deep neural network architectures such as VGG [38] and

ResNet [39] in order to build deep SNN architectures. VGG [38] was one of the

first neural networks which used the idea of using small (3×3) convolutional kernels

uniformly throughout the network. The utilization of small (3×3) kernels enables

effective stacking of convolutional layers while minimizing the number of parameters

in deep networks. In this work, we build deep convolutional SNNs (containing more

than 5 trainable layers) by using ‘Spiking VGG Block’ which contains stack of con-

volutional layers using small (3×3) kernels. The Fig. 8.2a shows a ‘Spiking VGG

block’ containing two stacked convolutional layers with intermediate LIF neuronal

layer. Next, ResNet [39] introduced the skip connections throughout the network

that had large success in enabling successful training of significantly deeper networks.

In particular, ResNet addresses the degradation (of training accuracy) problem [39]

that occurs while increasing the number of layers in normal feedforward neural net-

work. We employ the concept of the skip connection to construct deep residual SNNs

whose number of trainable layers is 7-11. The Fig. 8.2b shows a ‘Spiking Residual

Block’ consisting of non-residual and residual paths. The non-residual path consists

of two convolutional layers with an intermediate LIF neuronal layer. The residual

122

path (skip connection) is composed of the identity mapping when the number of in-

put and output feature maps are the same, and 1×1 convolutional kernels when the

number of input and output feature maps are different. Both of the non-residual and

residual path outputs are integrated to the membrane potential in the last LIF neu-

ronal layer (LIF Neuron 2 in Fig. 8.2b) to generate output spikes from the ‘Spiking

Residual Block’. Within the feature extractor, a ‘Spiking VGG Block’ or ‘Spiking

Residual Block’ is often followed by an average-pooling layer to construct the alter-

nating convolutional and spatial-pooling structure. Note, in some ‘Spiking Residual

Blocks’, last convolutional and residual connections employ convolution with stride

of 2 to incorporate the functionality of the spatial-pooling layers. At the end of the

feature extractor, extracted features from the last average-pooling layer is fed to a

fully-connected layer as a 1-D vector input for initiating the classifier operation.

8.2 Supervised Training of Deep Spiking Neural Network

8.2.1 Spike-based Gradient Descent Backpropagation Algorithm

The spike-based BP algorithm in SNN is adapted from standard BP [7] in the

ANN domain. In standard BP, the network parameters are iteratively updated in

a direction to minimize the difference between the final outputs of the network and

target labels. The standard BP algorithm achieves this goal by back-propagating

the output error through the hidden layers using gradient descent method. However,

the major difference between ANNs and SNNs is the dynamics of neuronal output.

An artificial neuron (such as sigmoid, tanh, or ReLU) communicates via continu-

ous values whereas a spiking neuron generates binary spike outputs over time. In

SNNs, spatio-temporal spike trains are fed to the network as inputs. Accordingly, the

outputs of spiking neuron are spike events which are discontinuous and discrete (non-

differentiable) over time. Hence, the standard BP algorithm is incompatible to train

SNNs, as it can not back-propagate the gradient through non-differentiable neuronal

functions. We formulate the a differentiable (but approximated) activation of LIF

123

neuron that enables modulation of the network parameters using gradient descent

method in spiking system. The spike-based BP can be divided into three phases -

forward propagation, backward propagation and weight update. We now describe the

spike-based BP algorithm by going through each phase.

Forward Propagation

In forward propagation, spike trains representing input patterns and correspond-

ing output (target) labels are presented to the network. To generate the spike inputs,

the input pixel values are converted to Poisson-distributed spike trains and delivered

to the network. The input spikes are multiplied with synaptic weights to produce an

input current. The resultant current is accumulated in the membrane potential of

post neurons as indicated by equation (1). The post-neuron generates an output spike

whenever the respective membrane potential exceeds a neuronal firing threshold. Oth-

erwise, membrane potential decays exponentially with time. After the post-neuronal

firing, the membrane potential is reset, and the output spike is broadcast to be the

input to the subsequent layer. The post-neurons of every layer carry out this process

successively based on the weighted spikes received from the preceding layer. Over

time, the total weighted summations of the spike trains are integrated at the jth

post-neuron as formulated in equation (2). The sum of spike trains (denoted by xi(t)

for the ith input neuron) is weighted by inter-connecting synaptic weights, wij.

netl+1
j (t) =

nl∑
i=1

(wlij ∗ xi(t)), where xi(t) =
t∑

k=1

θi(t− tk) (2)

where netl+1
j (t) stands for the total (resultant) current influx received by jth post-

neuron throughout the time t, nl is the number of pre-neurons and θi(t− tk) is a spike

event from ith pre-neuron at time instant tk.

However, the neuronal firing threshold of the final layer is set to a very high value

such that the output neurons do not generate any spike output. In the final layer, the

weighted spikes from previous layer are accumulated in the membrane potential while

124

Fig. 8.3.: Illustration the two phases (forward propagation and backward propagation)

of spike-based backpropagation algorithm in a LIF neuron.

decaying over time. At the last time step, the accumulated membrane potential is

divided by the number of total time steps in order to quantify the output distribution

(output) as presented by equation (3).

output =
V L
mem

number of timesteps
(3)

Backward Propagation and Weight Update

Next, we formulate the gradient-based backward propagation [7] for SNNs. The

first step is to estimate the gradients of loss function at the output layer. The loss

function is a measure of discrepancy between target labels and outputs predicted

by the network. Then, the gradients are propagated backward all the way down to

the inputs through the hidden layers using recursive chain rule (equation 4). The

125

following equations (4-14) and Fig. 8.3 describe the detailed mathematical steps for

obtaining the partial derivatives of error with respect to weights.

The prediction error of each output neuron is evaluated by comparing the output

distribution (output) with the desired target label (label) of the presented input spike

trains as shown in equation (5). The corresponding loss function (E in equation (6)) is

defined as the sum of squared (final prediction) error over all the output neurons. To

calculate the ∂E
∂a

and ∂a
∂net

terms, we need to define the differentiable activation function

of LIF neuron. In SNN, the ‘activation function’ indicates the relationship between

weighted summation of pre-neuronal spike inputs and post-neuronal outputs over

time. For the output layer, we can use the output value from equation (3) as activation

since it is a continuous variable. Hence, ∂E
∂a

is equal to the final output error as

calculated in equation (7). Moreover, we consider the leak in the membrane potential

of the final layer neurons as noise so that the accumulated membrane potential is

approximated as equivalent to the (total) net input current (V L
mem ≈ net). Therefore,

the derivative of post-neuronal activation with respect to net input current (∂a
∂net

) is

calculated as 1
T

for the final layer. However, for the hidden layers, we have spike trains

as outputs. A spike output signal is non-differentiable since it is discrete and creates a

discontinuity (because of step jump) at the time instance of firing. Therefore, we need

to have an activation function that can be differentiated to apply the chain rule. To

get around this predicament, we define an ‘conditionally differentiable approximate

activation’ by low-pass filtering the individual post-spikes as formulated in equation

(8). To compute the activation, f(t), of a LIF neuron, the unit spikes (at time

instants tk) are temporally integrated and the resultant sum is decayed within the

time periods. The time constant (τ) determines the decay rate of the spiking neuronal

activation. It influences the temporal dynamics of the spiking neuron by accounting

for the exponential membrane potential decay and reset mechanisms. It is evident

that f(t) is continuous except for the time points where spikes occur and the activities

jump up [116]. Hence, f(t) is differentiable at t→ t+k . Note that, to capture the leaky

126

effect (exponential decay), it is necessary to compute derivative of f(t) at points in

between the spiking activities, not at the time of spiking.

∂E

∂wl
=
∂E

∂a

∂a

∂net

∂net

∂wl
(4)

Final output error, ej = outputj − labelj (5)

Loss function, E =
1

2

nL∑
j=1

ej
2 (6)

∂E

∂a
=

∂

∂output

1

2
(output− label)2 = output− label = e (7)

Activation of neuron, f(t) =
t∑

k=1

exp(−t− tk
τ

) (8)

∂a

∂net
= a′(net) =

1

Vth
(1 +

1

A
f ′(t)) =

1

Vth
(1 +

1

A

t∑
k=1

−1

τ
e−

t−tk
τ) (9)

To obtain a derivative for LIF neuronal activation with respect to net input cur-

rent, we take help of several approximations. We first estimate the derivative of an

‘Integrate and Fire’ (IF) neuron’s activation. Then, with the derivative of IF neuron’s

activation, we add the slope of the scaled LIF neuron activation (f(t)), to account

for the leak effect in the membrane potential. Since IF neuron activation is a step

function, we approximate it as a linear function with slope of unity value (assuming

the firing threshold is set to 1), using straight through estimation concept [119]. In

equation (9), the unity represents the approximate derivative for IF neuron activation.

Due to the leaky nature of a LIF neuron, f(t) has a negative slope measured at time

instance when the neuron is not spiking (t→ t+k). Hence, the combination of straight

through estimation (approximate derivative of IF neuron) and time derivative of ap-

proximate activation (scaled) of LIF neuron is less than 1. So far, we have assumed

that the firing threshold for both IF and LIF activation is set to unity value. However,

if the firing threshold is set to a low (high) value, the frequency of neuronal firing

would increase (decrease). Hence, the estimation of derivative for neuronal activation

is normalized by neuronal threshold in equation (9) to reflect the inverse relationship.

127

In summary, the three approximations applied to implement backpropagation in SNN

are as follows:

• We consider the leak in the membrane potential of the final (output) layer

neurons as noise so that the accumulated membrane potential is approximated

as equivalent to the (total) net input current (V L
mem ≈ net). Therefore, the

derivative of post-neuronal activation with respect to net input current (∂a
∂net

)

is calculated as 1
T

for the final layer.

• For hidden layers, we first approximate the activation of an IF neuron as a

linear function. Hence, we are able to estimate its derivative of IF neuron’s

activation [119] with respect to net input current.

• To capture the leaky effect of a LIF neuron (in hidden layers), we estimate the

scaled time derivative of the low pass filtered output spikes that leak over time,

using the function f(t) (equation 8). This function is continuous except for the

time points where spikes occur [116]. Hence, it is differentiable in the sections

between the spiking activities.

• We obtain a pseudo derivative for LIF neuronal activation (in hidden layers) as

a combination of two derivatives. The first one is the derivative of IF neuron’s

activation with respect to net input current. The second one is the derivative

(at t→ t+k) of f(t) with respect to time.

Based on these approximations, we have build a framework that can train SNNs

from direct spike inputs using backpropagation.

δL =
∂E

∂a

∂a

∂net
= e.

1

T
=
e

T
(10)

δh = ((wh)Tr ∗ δh+1).a′(neth) (11)

At the output layer, the error gradient, δL, represents the gradient of the output

loss with respect to the net input current received by the post-neurons. It can be

128

calculated by multiplying the final output error (e) with the derivative of the cor-

responding post-neuronal activation, a′(netL), with respect to its inputs as shown

in equation (10). Note that element-wise multiplication is indicated by . while ma-

trix multiplication is represented by * in the respective equations. At any hidden

layer, the local error gradient, δh, is recursively estimated by multiplying the back-

propagated gradient from the successive layer ((wh)Tr ∗ δh+1) with derivative of the

neuronal activation (a′(neth)) as presented in equation (11).

∂net

∂wl
=

∂

∂wl
(wl ∗

t∑
k=1

θl(t− tk)) =
t∑

k=1

θl(t− tk) (12)

4wl =
∂E

∂wl
= (

t∑
k=1

θl(t− tk)) ∗ (δl+1)Tr (13)

wlupdated = wl − ηBP4wl (14)

The derivative of net current with respect to weight is simply the total incoming

spikes throughout the time as derived in equation (12). The derivative of the output

loss with respect to the weights interconnecting the layers l and l+1 (4wl in equation

(13)) is determined by multiplying the transposed error gradient at l + 1 (δl+1) with

the input spikes from layer l. Finally, the calculated partial derivatives of loss function

are used to update the respective weights using a learning rate (ηBP) as illustrated

in equation (14). As a result, iterative updating of the weights over mini-batches

of input patterns leads the network state to a local minimum, thereby enabling the

network to capture multiple-levels of internal representations of the data.

8.2.2 Dropout in Spiking Nerual Network

Dropout [40] is one of the popular regularization techniques while training deep

ANNs. This technique randomly disconnects certain units with a given probability

(p) to avoid units being overfitted and co-adapted too much to given training data.

We employ the concept of dropout technique in order to effectively regularize deep

SNNs. Note, dropout technique is only applied during training and is not used when

129

evaluating the performance of the network through inference. There is a subtle dif-

ference in the way dropout is applied in SNNs compared to ANNs. In ANNs, each

epoch of training has several iterations of mini-batches. In each iteration, randomly

selected units (with dropout ratio of p) are disconnected from the network while

weighting by its posterior probability (1
1−p). However, in SNNs, each iteration has

more than one forward propagation depending on the time length of the spike train.

We back-propagate the output error and modify the network parameters only at the

last time step. For dropout to be effective in our training method, it has to be en-

sured that the set of connected units within an iteration of mini-batch data is not

changed, such that the neural network is constituted by the same random subset of

units during each forward propagation within a single iteration. On the other hand,

if the units are randomly connected at each time-step, the effect of dropout will be

averaged out over the entire forward propagation times within an iteration. Then,

the dropout effect would fade-out once the output error is propagated backward and

the parameters are updated at the last time step. Therefore, it is necessary to keep

the set of randomly connected units for entire time window within an iteration. In

the experiment, we use the SNN version of dropout technique with the probability (p)

of omitting units equal to 0.2-0.25. Note that the activation is much sparser in SNN

forward propagation compared to ANN, hence the optimal p for SNNs need to be less

than typical ANN dropout ratio (p=0.5). The details of SNN forward propagation

with dropout are specified in Algorithm 4.

8.3 Experimental Setup

The primary goal of our experiments is to demonstrate the effectiveness of the

proposed spike-based BP training methodology in a variety of deep network architec-

tures. We first describe our experimental setup and baselines. For the experiments,

we developed a custom simulation framework using the Pytorch [93] deep learning

package for evaluating our proposed SNN training algorithm. Our deep convolutional

130

ALGORITHM 4: Forward propagation with Dropout at each iteration in SNN

1. Input : Poisson input spike train (inputs), Dropout ratio (p), Total number of time

steps (#timesteps)

2. // Define the random subset of units (with a probability 1− p) at each iteration

3. for i← 1 to #net.layer do

4. mask[i] = generate random subset(probability = 1− p)

5. for t← 1 to #timesteps do

6. // Set input of first layer equal to spike train of a mini-batch data

7. net.layer[1].spike[t] = inputs;

8. for i← 2 to #net.layer do

9. // Integrate weighted sum of input spikes to membrane potential with decay

over time

10. net.layer[i].vmem = net.layer[i].vmem ∗ e
− 1
Tp + net.layer[i] :

forward(net.layer[i].spike[t]) . ∗ mask[i] / (1− p);

11. // Post-neuron fires if membrane potential is greater than neuronal threshold

12. net.layer[i+ 1].spike[t+ 1] = net.layer[i].vmem > net.layer[i].vth

13. // Reset the membrane potential if post-neuron fires

14. net.layer[i].vmem(net.layer[i+ 1].spike[t+ 1]) = 0

SNNs are populated with biologically plausible LIF neurons in which a pair of pre-

and post- neurons are interconnected by plastic synapses. At the beginning, the neu-

ronal firing thresholds are set to an unity value and the synaptic weights are initialized

with Gaussian random distribution of zero-mean and standard deviation of
√

α
nl

(nl:

number of fan-in synapses) as introduced in [120]. Note, the initialization constant

α differs by the type of network architecture. For instance, we have used α = 2

for non-residual network and α = 1 for residual network. For training, the synaptic

weights are trained with mini-batch spike-based BP algorithm in an end-to-end man-

ner as explained in section 8.2.1. For static datasets, we train our network models for

150 epochs using mini-batch stochastic gradient descent BP that reduces its learning

rate at 70th, 100th and 125th training epoch. For the neuromorphic dataset, we use

131

Adam [121] learning method and reduce its learnig rate at 40th, 80th and 120th train-

ing epoch. Please, refer to Table 8.2 for more implementation details. The datasets

and network topologies used for benchmarking, the spike generation scheme for event

driven operation and determination of the number of time-steps required for training

and inference are described in the following sub-sections.

Table 8.2.: Parameters used in the Experiments

Parameter Value

Decay Constant of Membrane Potential and Neuronal Activation (τ) 100 time-steps

BP Training Time Duration 50-100 time-steps

Inference Time Duration Same as training

Mini-batch Size 16-32

Spatial-pooling Non-overlapping Region/Stride 2×2, 2

Weight Initialization Constant (α) 2 (non-residual network), 1 (residual network)

Learning rate (ηBP) 0.002 - 0.003

Dropout Ratio (p) 0.2 - 0.25

Table 8.3.: Benchmark Datasets

Dataset Image #Training Samples #Testing Samples #Category

MNIST 28× 28, gray 60,000 10,000 10

SVHN 28× 28, color 73,000 26,000 10

CIFAR-10 32× 32, color 50,000 10,000 10

N-MNIST
34× 34× 32,

60,000 10,000 10
ON and OFF spikes

8.3.1 Benchmarking Datasets

We demonstrate the efficacy of our proposed training methodology for deep convo-

lutional SNNs on three standard vision datasets and one neuromorphic vision dataset,

namely the MNIST [8], SVHN [122], CIFAR-10 [69] and N-MNIST [123]. The MNIST

132

dataset is composed of gray-scale (one-dimensional) images of handwritten digits

whose sizes are 28 by 28. The SVHN and CIFAR-10 datasets are composed of color

(three-dimensional) images whose sizes are 32 by 32. The N-MNIST dataset is a

neuromorphic (spiking) dataset which is converted from static MNIST dataset using

Dynamic Vision Sensor (DVS) [124]. The N-MNIST dataset contains two-dimensional

images that include ON and OFF event stream data whose sizes are 34 by 34. The

ON (OFF) event represents the increase (decrease) in pixel brightness. Details of the

benchmark datasets are listed in Table 8.3. For evaluation, we report the top-1 clas-

sification accuracy by classifying the test samples (training samples and test samples

are mutually exclusive).

8.3.2 Network Topologies

We use various SNN architectures depending on the complexity of the benchmark

datasets. For MNIST and N-MNIST datasets, we used a network consisting of two

sets of alternating convolutional and spatial-pooling layers followed by two fully-

connected layers. This network architecture is derived from LeNet5 model [8]. Note

that Table 8.4 summarizes the layer type, kernel size, the number of output feature

maps and stride of SNN model for MNIST dataset. The kernel size shown in the

table is for 3-D convolution where the 1st dimension is for number of input feature-

maps and 2nd-3rd dimensions are for convolutional kernels. For SVHN and CIFAR-

10 datasets, we used deeper network models consisting of 7 to 11 trainable layers

including convolutional, spatial-pooling and fully-connected layers. In particular,

these networks consisting of 5 or more trainable layers are constructed using small

(3× 3) convolutional kernels. We term the deep convolutional SNN architecture that

includes 3 × 3 convolutional kernel [38] without residual connections as ‘VGG SNN’

and with skip (residual) connections [39] as ‘Residual SNN’. In Residual SNNs, some

convolutional layers convolve kernel with stride of 2 in both x and y directions, to

incorporate the functionality of spatial-pooling layers. Please, refer to Tables 8.4 and

133

8.5 that summarize the details of deep convolutional SNN architectures. In the results

section, we will discuss the benefit of deep SNNs in terms of classification performance

as well as inference speedup and energy efficiency.

Table 8.4.: The deep convolutional spiking neural network architectures for MNIST,

N-MNIST and SVHN dataset

4 layer network VGG7 ResNet7

Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride

Convolution 1×5×5 20 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1

Average-pooling 2×2 2 Convolution 64×3×3 64 2 Average-pooling 2×2 2

Average-pooling 2×2 2

Convolution 20×5×5 50 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1

Average-pooling 2×2 2 Convolution 128×3×3 128 2 Convolution 128×3×3 128 2

Convolution 128×3×3 128 2 Skip convolution 64×1×1 128 2

Average-pooling 2×2 2

Convolution 128×3×3 256 1

Convolution 256×3×3 256 2

Skip convolution 128×1×1 256 2

Fully-connected 200 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

Table 8.5.: The deep convolutional spiking neural network architectures for a CIFAR-

10 dataset

VGG9 ResNet9 ResNet11

Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride

Convolution 3×3×3 64 1 Convolution 3×3×3 64 1 Convolution 3×3×3 64 1

Convolution 64×3×3 64 1 Average-pooling 2×2 2 Average-pooling 2×2 2

Average-pooling 2×2 2

Convolution 64×3×3 128 1 Convolution 64×3×3 128 1 Convolution 64×3×3 128 1

Convolution 128×3×3 128 1 Convolution 128×3×3 128 1 Convolution 128×3×3 128 1

Average-pooling 2×2 2 Skip convolution 64×1×1 128 1 Skip convolution 64×1×1 128 1

Convolution 128×3×3 256 1 Convolution 128×3×3 256 1 Convolution 128×3×3 256 1

Convolution 256×3×3 256 1 Convolution 256×3×3 256 2 Convolution 256×3×3 256 2

Convolution 256×3×3 256 1 Skip connection 128×1×1 256 2 Skip convolution 128×1×1 256 2

Average-pooling 2×2 2

Convolution 256×3×3 512 1 Convolution 256×3×3 512 1

Convolution 512×3×3 512 2 Convolution 512×3×3 512 1

Skip convolution 256×1×1 512 2 Skip convolution 512×1×1 512 1

Convolution 512×3×3 512 1

Convolution 512×3×3 512 2

Skip convolution 512×1×1 512 2

Fully-connected 1024 Fully-connected 1024 Fully-connected 1024

Output 10 Output 10 Output 10

134

8.3.3 ANN-SNN Conversion Scheme

As mentioned previously, off-line trained ANNs can be successfully converted to

SNNs by replacing ANN (ReLU) neurons with Integrate and Fire (IF) spiking neu-

rons and adjusting the neuronal thresholds with respect to synaptic weights. It is

important to set the neuronal firing thresholds sufficiently high so that each spiking

neuron can closely resemble ANN activation without loss of information. In the liter-

ature, several methods have been proposed [102–106] for balancing appropriate ratios

between neuronal thresholds and synaptic weights of spiking neuron in the case of

ANN-SNN conversion. In this work, we compare various aspects of our direct-spike

trained models with one recent work [102], which proposed a near-lossless ANN-SNN

conversion scheme for deep network architectures. In brief, [102] balanced the neu-

ronal firing thresholds with respect to corresponding synaptic weights layer-by-layer

depending on the actual spiking activities of each layer using a subset of training

samples. Basically, we compare our direct-spike trained model with converted SNN

on the same network architecture in terms of accuracy, inference speed and energy-

efficiency. Please note that there are couple of differences on the network architec-

ture and conversion technique between [102] and our scheme. First, [102] always

uses average-pooling to reduce the size of previous convolutional output feature-map,

whereas our models interchangeably use average pooling or convolve kernels with

stride of 2 in convolutional layer. Next, [102] only consider identity skip connections

for residual SNNs. However, we implement skip connections using either identity

mapping or 1×1 convolutional kernel. Lastly, we used lower (0.75) threshold for avg-

pooling layer instead of 0.8 to ensure enough spike propagation on both direct-trained

and converted network models. Even in the case of ANN-SNN conversion scheme,

lower average-pooling threshold provides us slightly better classification performance

than [102].

135

8.3.4 Spike Generation Scheme

For the static vision datasets (MNIST, SVHN and CIFAR-10), each input pixel

intensity is converted to stream of Poisson distributed spike events that have equiv-

alent firing rates. The Poisson input spikes are fed to the network over time. This

rate-based spike encoding is used for a given period of time during both training and

inference. For color image datasets, we use image pre-processing techniques of random

cropping and horizontal flip before generating input spikes. These input pixels are

normalized to represent zero mean and unit standard deviation. Thereafter, we scale

the pixel intensities to bound them in the range [-1,1] to represent the whole spec-

trum of input pixel representations. The normalized pixel intensities are converted

to Poisson spike events such that the generated input signals are bipolar spikes. For

the neuromorphic version of dataset (N-MNIST), we use the original (unfiltered and

uncentered) version of spike streams to directly train and test the network in time

domain.

8.3.5 Time-steps

As mentioned in section 8.3.4, we generate stochastic Poisson spike train for each

input pixel intensity for event-driven operation. The duration of the spike train is very

important for SNNs. We measure the length of the spike train (spike time window)

in time-steps. For example, a 100 time-step spike train will have approximately 50

random spikes if the corresponding pixel intensity is half in a range of [0,1]. If the

number of time-steps (spike time window) is too less, then the SNN will not receive

enough information for training or inference. On the other hand, if the number of

time-steps is too high, then the latency will also be high and the spike stream will

behave more like a deterministic input. Hence, the stochastic property of SNNs

will be lost, the inference will become too slow, and the network will not have much

energy efficiency over ANN implementation. For these reasons, we experimented with

different number of time-steps to empirically obtain the optimal number of time-steps

136

required for both training and inference. The experimental process and results are

explained in the following subsections.

Optimal #time-steps for Training

A spike event can only represent 0 or 1 in each time step, therefore usually its

bit precision is considered 1. However, the spike train provides temporal data, which

is an additional source of information. Therefore, the spike train length (number of

time-steps) in SNN can be considered as its actual precision of neuronal activation. To

obtain the optimal #time-steps required for our proposed training method, we trained

a VGG9 network on CIFAR-10 dataset using different time-steps ranging from 10 to

120 (shown in Fig. 8.4a). We found that for only 10 time-steps, the network is

unable to learn anything as there is not enough information (input precision too low)

for the network to be able to learn. This phenomena is explained by the lack of

spikes in the final output. With the initial weights, the accumulated sum of the LIF

neuron is not enough to generate output spikes in the latter layers. Hence, none of

the input spikes propagates to the final output neurons and the output distributions

remain 0. Therefore, the computed gradients are always 0 and the network is not

updated. For 20-30 time-steps, some input spikes are able to reach the final layer,

hence the network starts to learn but do not converge. For 35-50 time-steps, the

network learns well and converges to a reasonable point. From 70 time-steps, the

network accuracy starts to saturate. At about 100 time-steps the network training

improvement completely saturates. This is consistent with the bit precision of the

inputs. It has been shown in [35] that 8 bit inputs and activations are sufficient to

achieve optimal network performance for standard image recognition tasks. Ideally,

we need 128 time-steps to represent 8 bit inputs using bipolar spikes. However, 100

time-steps proved to be sufficient as more time-steps provide marginal improvement.

We observe similar trend in VGG7, ResNet7, ResNet9 and ResNet11 SNNs as well,

while training for SVHN and CIFAR-10 datasets. Therefore, we considered 100 time-

137

steps as the optimal #time-steps for training in our proposed methodology. Moreover,

for MNIST dataset, we used 50 time-steps since the required bit precision is only 4

bits [35].

20 40 60 80 100 120
#epochs

0

20

40

60

80

100
In

fe
re

nc
e

Ac
cu

ra
cy

 (
%

)

Performance Variation due to #Training-Timesteps
T#10
T#20
T#25
T#30
T#35
T#50
T#70
T#85
T#100
T#120

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
#Time-steps

0

20

40

60

80

100

In
fe

re
nc

e
Ac

cu
ra

cy
 (

%
)

Inference Performance of VGG9
 Trained using 100 Time-steps

Proposed SNN
ANN-SNN

(b)

Fig. 8.4.: Inference performance variation due to (a) #Training-Timesteps and (b)

#Inference-Timesteps. T# in (a) indicates number of time-steps used for training.

138

Optimal #time-steps for Inference

To obtain the optimal #time-steps required for inferring an image utilizing a

network trained with our proposed method, we conducted similar experiments as de-

scribed in section 8.3.5. We first trained a VGG9 network for CIFAR-10 dataset using

100 time-steps (optimal according to experiments in section 8.3.5). Then, we tested

the network performances with different time-steps ranging from 10 to 4000 (shown

in Fig. 8.4b). We observed that the network performs very well even with only 10

time-steps, while the peak performance occurs around 100 time-steps. For more than

100 time-steps, the accuracy degrades slightly from the peak. This behavior is very

different from ANN-SNN converted networks where the accuracy keeps on improving

as #time-steps is increased (shown in Fig. 8.4b). This can be attributed to the fact

that our proposed spike-based training method incorporates the temporal information

well in to the network training procedure so that the trained network is tailored to

perform best at a specific spike time window when inferencing. On the other hand,

the ANN-SNN conversion schemes are unable to incorporate the temporal informa-

tion of the input in the trained network and therefore are heavily dependent on the

deterministic behavior of the input. Hence, the ANN-SNN conversion schemes require

much higher #time-steps for inference in order to resemble input-output mappings

similar to ANNs.

8.4 Results

In this section, we analyze the classification performance and efficiency achieved

by the proposed spike-based training methodology for deep convolutional SNNs com-

pared to the performance of the transformed SNN using ANN-SNN conversion scheme.

139

8.4.1 The Classification Performance

Most of the classification performances available in literature for SNNs are for

MNIST, N-MNIST and CIFAR-10 datasets. The popular methods for SNN training

are ‘Spike Time Dependent Plasticity (STDP)’ based unsupervised learning [108–112]

and ‘Spike-based Backpropagation’ based supervised learning [116, 125–128]. There

are a few works [113,118,129,130] which tried to combine the two approaches to get the

best of both worlds. However, these training methods were able to neither train deep

SNNs nor achieve good inference performance compared to ANN implementations.

Hence, ANN-SNN conversion schemes have been explored by researchers [102–106].

Till date, ANN-SNN conversion schemes achieved the best inference performance for

CIFAR-10 dataset using deep networks [102, 103]. Classification performances of all

these works are listed in Table 8.6 along with ours. To the best of our knowledge, we

achieved the best inference accuracy for MNIST using LeNet structured network. We

also achieved accuracy performance comparable with ANN-SNN converted network

[102] for CIFAR-10 dataset using much smaller network models, while beating all

other SNN training methods.

For a more extensive comparison, we compare inference performances of trained

networks using our proposed methodology with the state-of-the-art ANNs and ANN-

SNN conversion scheme, for same network configuration (depth and structure) side

by side in Table 8.7. We also compare with the previous best SNN training results

found in literature that may or may not have same network depth and structure as

ours. The ANN-SNN conversion scheme is a modified and improved version of [102].

We are using this modified scheme since it achieves better conversion performance

than [102] as explained in section 8.3.3. Note that all reported classification accuracies

are the average of the maximum inference accuracies for three independent runs with

different seeds.

After initializing the weights, we train the SNNs using spike-based BP algorithm

in an end-to-end manner with Poisson spike train inputs. Our evaluation on a MNIST

140

Table 8.6.: Comparison of the SNNs classification accuracies on MNIST, N-MNIST

and CIFAR-10 datasets.

Model Learning Method
Accuracy

(MNIST)

Accuracy

(N-MNIST)

Accuracy

(CIFAR-10)

Hunsberger et al. [106] Offline learning, conversion 98.37% – 82.95%

Esser et al. [131] Offline learning, conversion – – 89.32%

Diehl et al. [105] Offline learning, conversion 99.10% – –

Rueckauer et al. [103] Offline learning, conversion 99.44% – 88.82%

Sengupta et al. [102] Offline learning, conversion – – 91.55%

Kheradpisheh et al. [113] Layerwise STDP + offline SVM classifier 98.40% – –

Panda et al. [117] Spike-based autoencoder 99.08% – 70.16%

Lee et al. [116] Spike-based BP 99.31% 98.74% –

Wu et al. [126] Spike-based BP 99.42% 98.78% 50.70%

Lee et al. [118] STDP-based pretraining + spike-based BP 99.28% – –

Jin et al. [125] Spike-based BP 99.49% 98.88% –

Wu et al. [132] Spike-based BP – 99.53% 90.53%

This work Spike-based BP 99.59% 99.09% 90.95%

Table 8.7.: Comparison of Classification Performance

Inference Accuracy (%)

Dataset Model ANN ANN-SNN SNN [Previous Best] SNN [This Work]

MNIST LeNet 99.57 99.59 99.49 [125] 99.59

N-MNIST LeNet – – 99.53 [132] 99.09

SVHN
VGG7 96.36 96.30 – 96.06

ResNet7 96.43 95.93 – 96.21

CIFAR-10

VGG9 91.98 92.01

90.53 [132]

90.45

ResNet9 91.85 89.00 90.35

ResNet11 91.87 90.15 90.95

dataset yields a classification accuracy of 99.59% which is the best compared to any

other SNN training scheme and also our ANN-SNN conversion scheme. We achieve

∼96% inference accuracy on SVHN dataset for both trained non-residual and resid-

141

ual SNN which is very close to the state-of-the-art ANN implementation. Inference

performance for SNNs trained on SVHN dataset have not been reported previously

in literature.

We implemented three different networks, as shown in Table 8.5, for classifying

CIFAR-10 dataset using proposed spike-based BP algorithm. For the VGG9 network,

the ANN-SNN conversion scheme provides near lossless converted network compared

to baseline ANN implementation, while our proposed training method yields a classi-

fication accuracy of 90.45%. For ResNet9 network, the ANN-SNN conversion scheme

provides inference accuracy within 3% of baseline ANN implementation. However, our

proposed spike-based training method achieve better inference accuracy that is within

∼1.5% of baseline ANN implementation. In the case of ResNet11, we observe that the

inference accuracy improvement is marginal compared to ResNet9 for baseline ANN

implementation. However, ANN-SNN conversion scheme and proposed SNN training

show improvement of ∼0.5% for ResNet11 compared to ResNet9. Overall, for ResNet

networks, our proposed training method achieves better inference accuracy compared

to ANN-SNN conversion scheme.

8.4.2 Accuracy Improvement with Network Depth

One of the major drawbacks of STDP based unsupervised learning for SNNs is

that it is very difficult to train beyond 2 convolutional layers [113, 114]. Therefore,

researchers are leaning more towards gradient-based (BP) supervised learning for deep

SNNs.

In order to analyze the effect of network depth for direct-spike trained SNNs, we

experimented with networks of different depths while training for SVHN and CIFAR-

10 datasets. For SVHN dataset, we started with a small network derived from LeNet5

model [8] with 2 convolutional and 2 fully-connected layers. This network was able to

achieve inference accuracy of only 92.38%. Then, we increased the network depth by

adding 1 convolutional layer before the 2 fully-connected layers and we termed this

142

network as VGG5. VGG5 network was able to achieve significant improvement over

its predecessor. Similarly, we tried VGG6 followed by VGG7, and the improvement

started to become very small. We have also trained ResNet7 to understand how resid-

ual networks perform compared to non-residual networks of similar depth. Results

of these experiments are shown in Fig. 8.5a. We carried out similar experiments for

CIFAR-10 dataset as well. The results show similar trend (Fig. 8.5b). These results

ensure that network depth improves learning capacity of direct-spike trained SNNs

similar to ANNs. The non-residual networks saturate at certain depth and start to

degrade if network depth is further increased (VGG11 in Fig. 8.5b) due to the degra-

dation problem mentioned in [39]. In such scenario, the residual connections in deep

residual ANNs allows the network to maintain peak classification accuracy utilizing

the skip connections [39] as seen in Fig. 8.5b (ResNet9 and ResNet11).

143

LeNet VGG5 VGG6 VGG7 ResNet7
Networks of Different Depths

90

91

92

93

94

95

96

97

In
fe

re
nc

e
Ac

cu
ra

cy
 (

%
)

SVHN

(a)

LeNet VGG7 VGG9 VGG11 ResNet9 ResNet11

Networks of Different Depths

78

80

82

84

86

88

90

92

In
fe

re
nc

e
Ac

cu
ra

cy
 (

%
)

CIFAR-10

(b)

Fig. 8.5.: Accuracy Improvement with Network Depth for (a) SVHN dataset and (b)

CIFAR-10 dataset.

144

8.5 Discussion

8.5.1 Comparison with Relevant works

In this section, we compare our proposed supervised learning algorithm with other

recent spike-based BP algorithms. The spike-based learning rules primarily focus on

directly training and testing SNNs with spike-trains and no conversion is necessary for

applying in real-world spiking scenario. In recent years, there is a significant increase

in number of supervised gradient descent methods in spike-based learning. [117] de-

veloped spike-based auto-encoder mechanism to train deep convolutional SNNs. They

dealt with membrane potential as a differentiable signal and showed recognition ca-

pabilities in standard vision tasks (MNIST and CIFAR-10 datasets). [116] followed

the similar approach to explore a spike-based BP algorithm in an end-to-end man-

ner. In addition, [116] presented the error normalization scheme to prevent exploding

gradient phenomenon for training deep SNNs. [125] proposed hybrid macro/micro

level backpropagation (HM2-BP). HM2-BP is developed to capture the temporal ef-

fect of individual spike (in micro-level) and rate-encoded error (in macro-level). In

temporal encoding domain, [128] proposed an interesting temporal spike-based BP

algorithm by treating the spike-time as the differential activation of neuron. Tempo-

ral encoding based SNN has the potential to process spatio-temporal spike patterns

with small number of spikes. All of these works demonstrated spike-based learning in

simple network architectures and has large gap in classification accuracy compared to

deep ANNs. More recently, [132] presented a neuron normalization technique (called

NeuNorm) that calculates the average input firing rates to adjust neuron selectiv-

ity. NeuNorm enables spike-based training within relatively short time-window while

achieving competitive performances. In addition, they presented an input encoding

scheme that receives both spike and non-spike signals for preserving the precision of

input data.

There are several points that distinguish our work from the others. First, we

derived a conditionally differentiable (but approximated) activation of a LIF neuron

145

given the measured neuronal outputs (as defined in equation (3)). The activation of a

LIF neuron is formulated as ‘low-pass filtered output signal’ which is the accumulation

of leaky output spikes throughout the time. In back-propagating phase, the defined

activation of a LIF neuron enables us to calculate the neuronal pseudo-derivative

while accounting for the leaky behavior (as explained in equation (9)). Note that the

effect of leaky component has high impact on the dynamics of LIF spiking neuron. It

is worth mentioning here that the better approximation of LIF neuronal activation

function enables our network to achieve better performance than the other meth-

ods in the literature. Next, we construct our networks by leveraging state-of-the-art

deep architectures such as VGG [38] and ResNet [39]. To the best of our knowl-

edge, this is the first work that demonstrates spike-based supervised BP learning for

SNNs containing more than 10 trainable layers. Our deep SNNs obtain the supe-

rior classification accuracies in MNIST, SVHN and CIFAR-10 datasets in comparison

to the other networks trained with spike-based algorithm. Moreover, we present a

network parameter (i.e. weights and threshold) initialization scheme for a variety of

deep SNN architectures. In the experiment, we show that the proposed initialization

scheme appropriately initializes the deep SNNs facilitating training convergence for a

given network architecture and training strategy. In addition, as opposed to complex

error or neuron normalization method adopted by [116] and [132], respectively, we

demonstrate that deep SNNs can be naturally trained by only considering the spiking

activities of the network. As a result, our work paves the effective way for training

deep SNNs with spike-based BP algorithm.

8.5.2 Spike Activity Analysis

The most important advantage of event-driven operation of neural networks is

that the events are very sparse in nature. To verify this claim, we analyzed the

spiking activities of the direct-spike trained SNNs and ANN-SNN converted networks

in the following subsections.

146

Input Conv1Conv2AvgP1Conv3Conv4AvgP2Conv5Conv6Conv7AvgP3 Fc0
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ik

e
Ac

ti
vi

ty

Layer-wise Spiking Activity : VGG9

Proposed SNN
ANN-SNN

(a)

Input Conv1 AvgP1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Fc0
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ik

e
Ac

ti
vi

ty

Layer-wise Spiking Activity : ResNet9

Proposed SNN
ANN-SNN

(b)

Fig. 8.6.: Layer-wise spike activity in direct-spike trained SNN and ANN-SNN con-

verted network for CIFAR-10 dataset: (a) VGG9 (b) ResNet9 network. The spike

activity is normalized with respect to the input layer spike activity which is same for

both networks.

Spike Activity per Layer

The layer-wise spike activities of both SNN trained using our proposed method-

ology and ANN-SNN converted network for VGG9 and ResNet9 are shown in Fig.

147

8.6a and 8.6b, respectively. In the case of ResNet9, only first average pooling layer’s

output spike activity is shown in the figure as for the direct-spike trained SNN, the

other spatial-poolings are done by stride 2 convolutions. In Fig. 8.6, it can be seen

that the input layer has the highest spike activity that is significantly higher than any

other layer. The spike activity reduces significantly as the network depth increases.

We can observe from Fig. 8.6a and Fig. 8.6b that the average spike activity in

direct-spike trained SNN is much higher than ANN-SNN converted network. The

ANN-SNN converted network uses higher threshold compared to 1 (in case of direct-

spike trained SNN) since the conversion scheme applies layer-wise neuronal threshold

modulation. This higher threshold reduces spike activity in ANN-SNN converted

networks. However, in both cases, the spike activity decreases with increasing network

depth.

#Spikes/Inference

From Fig. 8.6, it is evident that average spike activity in ANN-SNN converted

networks is much less than in SNN trained with our proposed methodology. However,

for inference, the network has to be evaluated over a number of time-steps. There-

fore, to quantify the actual spike activity for an inference operation, we measured

the average number of spikes required for inferring one image. For this purpose, we

counted number of spikes generated (including input spikes) for classifying the test

set of a particular dataset for a specific number of time-steps and averaged the count

for generating the quantity ‘#spikes per image inference’. We have used two different

time-steps for ANN-SNN converted VGG networks; one for iso-accuracy comparison

and the other one for maximum accuracy comparison with the direct-spike trained

SNNs. Iso-accuracy inference requires less #time-steps than maximum accuracy in-

ference, hence has lower number of spikes per image inference. For ResNet networks,

the ANN-SNN conversion scheme always provides accuracy less than SNN (trained

with proposed algorithm). Hence, we only compare spikes per image inference in

148

maximum accuracy condition for ANN-SNN converted ResNet networks while com-

paring with direct-spike trained SNNs. We can quantify the spike-efficiency (amount

reduction in #spikes) from the #spikes/image inference. The results are listed in

Table 8.8 where, for each network, the 1st row corresponds to iso-accuracy and 2nd

row corresponds to maximum-accuracy condition.

Table 8.8.: #Spikes per Image Inference

Dataset Model
Spike/image Spike

EfficiencyANN-SNN SNN

MNIST LeNet
29094

55212
0.53x

73085 1.32x

SVHN

VGG7
10251782

5564306
1.84x

16615596 2.99x

ResNet7
–

4656760
–

20607244 4.43x

CIFAR-10

VGG9
2226732

1240492
1.80x

9647563 7.78x

ResNet9
–

4319988
–

8745271 2.02x

ResNet11
–

1531985
–

8116343 5.30x

Fig. 8.7 shows the relationship between inference accuracy, latency and #spikes/inference

for ResNet11 network trained on CIFAR-10 dataset. We can observe that #spikes/inference

is higher for direct-spike trained SNN compared to ANN-SNN converted network at

any particular latency. However, SNN trained with spike-based BP requires only

100 time-steps for maximum inference accuracy, whereas ANN-SNN converted net-

work requires about 3000 time-steps to reach maximum inference accuracy (which is

slightly less than direct-spike trained SNN accuracy). Hence, for maximum-accuracy

149

0 500 1000 1500 2000 2500 3000 3500 4000
#Time-steps (Latency)

0

20

40

60

80

100

In
fe

re
nc

e
Ac

cu
ra

cy
 (

%
)

Proposed SNN
ANN-SNN

0.0

0.2

0.4

0.6

0.8

1.0

#
Sp

ik
es

/In
fe

re
nc

e

1e8Inference Performance of ResNet11

Proposed SNN-#Spikes/Inference
ANN-SNN-#Spikes/Inference

Fig. 8.7.: The comparison of ‘accuracy vs latency vs #spikes/inference’ for ResNet11

architecture.

condition, direct-spike trained SNN requires much less #spikes/inference compared

to ANN-SNN converted network while achieving similar accuracy.

8.5.3 Inference Speedup

The time required for inference is almost linearly proportional to the #time-steps

(Fig. 8.7). Hence, we can also quantify the inference speedup for direct-spike trained

SNN compared to ANN-SNN converted network from the #time-steps required for

inference as shown in Table 8.9. For VGG9 network, we achieve 8x speedup for

iso-accuracy and up to 36x speedup in inference for maximum accuracy comparison.

Similarly, for ResNet networks we achieve up to 25x-30x speedup in inference.

8.5.4 Complexity Reduction

Deep ANNs struggle to meet the demand of extraordinary computational require-

ments. SNNs can mitigate this effort by enabling efficient event-driven computations.

To compare the computational complexity for these two cases, we first need to under-

150

Table 8.9.: Inference Speedup

Dataset Model
Timesteps Inference

SpeedupANN-SNN SNN

MNIST LeNet
200

50
4x

500 10x

SVHN

VGG7
1600

100
16x

2600 26x

ResNet7
–

100
–

2500 25x

CIFAR-10

VGG9
800

100
8x

3600 36x

ResNet9
–

100
–

3000 30x

ResNet11
–

100
–

3000 30x

stand the operation principle of both. An ANN operation for inferring the category

of a particular input requires a single feed-forward pass per image. For the same task,

the network must be evaluated over a number of time-steps in spiking domain. If reg-

ular hardware is used for both ANN and SNN, then it is evident that SNN will have

computation complexity in the order of hundreds or thousands more compared to

an ANN. However, there are specialized hardware that accounts for the event-driven

neural operation and ‘computes only when required’. SNNs can potentially exploit

such alternative mechanisms of network operation and carry out an inference oper-

ation in spiking domain much more efficiently than an ANN. Also, for deep SNNs,

we have observed the increase in sparsity as the network depth increases. Hence,

the benefits from event-driven hardware is expected to increase as the network depth

increases.

151

An estimate of the actual energy consumption of SNNs and comparison with ANNs

is outside the scope of this work. However, we can gain some insight by quantifying the

energy consumption for a synaptic operation and comparing the number of synaptic

operations being performed in the ANN versus the SNN trained with our proposed

algorithm and ANN-SNN converted network. We can estimate the number of synaptic

operations per layer of a neural network from the structure for the convolutional and

linear layers. In an ANN, a multiply-accumulate (MAC) computation is performed

per synaptic operation. While, a specialized SNN hardware would perform simply

an accumulate computation (AC) per synaptic operation only if an incoming spike

is received. Hence, the total number of AC operations in a SNN can be estimated

by the layer-wise product and summation of the average neural spike count for a

particular layer and the corresponding number of synaptic connections. We also have

to multiply the #time-steps with the #AC operations to get total #AC operation

for one image inference. Based on this concept, we estimated total number of MAC

operations for ANN, and total number of effective AC operations for direct-spike

trained SNN and ANN-SNN converted network, for VGG9, ResNet9 and ResNet11.

The ratio of ANN-SNN converted network AC operations to direct-spike trained SNN

AC operations to ANN MAC operations is 28.18:3.61:1 for VGG9 while the ratio is

11.94:5.06:1 for the ResNet9 and 7.26:2.09:1 for ResNet11 (for maximum accuracy

condition).

However, a MAC operation usually consumes an order of magnitude more energy

than an AC operation. For instance, according to [133], a 32-bit floating point MAC

operation consumes 4.6pJ and a 32-bit floating point AC operation consumes 0.9pJ

in 45nm technology node. Hence, one synaptic operation in an ANN is equivalent to

∼5 synaptic operations in a SNN. Moreover, 32-bit floating point computation can

be replaced by fixed point computation using integer MAC and AC units without

losing accuracy since the conversion is reported to be almost loss-less [134]. A 32-bit

integer MAC consumes roughly 3.2pJ, while a 32-bit AC operation consumes only

0.1pJ in 45nm process technology. Considering this fact, our calculations demon-

152

strate that the SNNs trained using proposed method will be 7.81x and 8.87x more

computationally energy-efficient compared to an ANN-SNN converted network and

an ANN, respectively, for the VGG9 network architecture. We also gain 3.47x(2.36x)

and 15.32x(6.32x) energy-efficiency, for the ResNet11(ResNet9) network, compared

to an ANN-SNN converted network and an ANN, respectively. Fig. 8.8 shows the

reduction in computation complexity for ANN-SNN conversion and SNN trained with

proposed methodology compared to ANNs.

VGG9 ResNet9 ResNet11
Network Architectures

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C

om
pu

ta
ti

on
 E

ne
rg

y ANN
ANN-SNN
Proposed SNN

Fig. 8.8.: Inference computation complexity comparison between ANN, ANN-SNN

conversion and SNN trained with spike-based backpropagation. ANN computational

complexity is considered as baseline for normalization.

It is worth noting here that as the sparsity of the spike signals increases with

increase in network depth in SNNs, the energy-efficiency is expected to increase al-

most exponentially in both ANN-SNN conversion network [102] and SNN trained

with proposed methodology compared to an ANN implementation. Hence, depth of

network is the key factor for achieving significant increase in the energy efficiency for

event-driven SNNs in contrast to ANNs.

Training complexity can also be easily estimated for proposed methodology as it

follows the steps in standard ANN backpropagation algorithm. In backpropagation

153

algorithm, training effort consists of two costs: i) Forward propagation cost and ii)

Backward propagation and weight update cost. Using simple cost estimation model

based on the number of synaptic operations, we observed that for ANN, backward

propagation and weight update cost is ∼2x more expensive compared to forward

propagation for a mini-batch size of one. Mini-batch size of one is chosen for simplicity.

To get an ANN-SNN converted network, first an ANN is trained using standard

backpropagation algorithm and then neuronal threshold modulation is applied to

convert it to a SNN. We can neglect the threshold modulation cost as it is a one

time cost while training can consist of many epochs. Hence, overall computational

complexity of training for ANN-SNN conversion network is similar to ANN. On the

other hand, for spike-based backpropagation training scheme, we back-propagate only

once in each mini-batch iteration which is computationally same as back-propagation

in an ANN. Therefore, the back-propagation and weight update cost for proposed

methodology is also same as an ANN. Considering these factors and combining the

forward propagation cost (as described earlier), backward propagation and weight

update cost, we can estimate the total computational complexity for training. Our

estimation shows that, for a mini-batch size of 1, proposed training methodology

is ∼1.4x computationally energy efficient compared to an ANN and an ANN-SNN

conversion network.

Most state-of-the-art DNN accelerators are focusing on exploiting the computa-

tion redundancy in DNN applications to reduce energy consumption. It has been

shown that 16 bit inputs, activations and weights achieves similar performance as 32

bit counterparts, while 8 bit inputs, activations and weights are sufficient to achieve

optimal quality performance [35]. To that effect, 16 bit and 8 bit multiplications for

synaptic operation are replacing the 32 bit multiplication. However, the accumulator

width is dependent on the network layer sizes and micro-architecture of the accel-

erator. Typically, 32 (20) bit accumulator is used for 16 (8) bit multiplication to

ensure no overflow in accumulation. Energy numbers for optimized 8 bit and 32 bit

fixed point multipliers and accumulators are available in literature for 45 nm process

154

technology [135]. We have used interpolation to estimate the energy numbers for 20

and 32 bit accumulators and 16 bit multiplier.

Assuming 16 bit multiplier and 32 bit accumulator being used for ANN MAC

operation, while 32 bit accumulator being used for SNN AC operation, the ratio of

energy consumption per synaptic operation between ANN and SNN will come down

to 10.20. Even with this bit precision scaling, the SNNs trained using proposed

method achieves up to 4.9x computational energy-efficiency compared to an ANN.

On the other hand, assuming 8 bit multiplier and 20 bit accumulator being used for

ANN MAC operation, while 20 bit accumulator being used for SNN AC operation,

the ratio of energy consumption per synaptic operation between ANN and SNN will

come down to 3.87. Our calculations demonstrate that in such case, the SNNs trained

using proposed method achieves up to 1.8x computational energy-efficiency compared

to an ANN, while converted networks perform worse than ANNs. However, for deeper

networks, performance of proposed SNN and converted networks are expected to

improve due to the increased sparsity shown in section 8.5.2 and [102].

155

9. CONCLUSION

9.1 Conclusion and Summary

The aim of this research is to explore energy-efficient hardware and algorithms for

Deep Learning. To that effect, we first considered the key limitations in the realization

of the existing Deep Learning Networks. The ever-growing complexity of the state-

of-the-art deep neural networks (DNNs) together with the explosion in the amount of

data to be processed, place significant energy demands on the computing platforms.

Therefore, improvement in both training and inference/testing is necessary to exploit

the full potential of this emerging paradigm. In the first part of this work, we focused

on improving the inference/testing energy-efficiency. In the second part, we aimed at

developing training methodologies to facilitate efficient learning.

Approximations at the algorithmic and hardware level can provide energy sav-

ings in the inference/testing phase while incurring tolerable accuracy degradation.

Retraining the approximate networks, with the approximations in place, helps in

mitigating the accuracy loss. We explored algorithmic and hardware level approx-

imations to determine their effectiveness in achieving energy improvements while

maintaining the output quality. In particular, we introduced three different ap-

proximations, namely, synapse pruning, approximate neuronal multiplication, and

voltage-scaled memory for synaptic storage, on DNNs. We also investigated lower

complexity networks to explore network approximations. We validated the efficacy of

the approximations by comparing the energy benefits with that of optimized DNNs

(without approximations). Algorithm (Pruning) and Hardware (Approximate Mul-

tiplication, Approximate Memory) level approximations are energy-efficient for high

accuracy requirements, while Lower complexity networks are beneficial for low accu-

racy requirements. Algorithm (Pruning) and Hardware (Approx. Multiplication and

156

Approx. Memory) level approximations can be combined to get higher energy sav-

ings while maintaining reasonable quality. On the contrary, low complexity networks,

even though energy efficient, incur severe accuracy loss. Our results clearly indicate

that employing properly selected approximations on DNNs leads to improved energy

efficiency with competitive classification accuracy.

In recent times, deep learning methods have outperformed traditional machine

learning approaches on virtually every single metric. CNNs are one of the chief

contributors to this success. To meet the ever-growing demand of solving more chal-

lenging tasks, the deep learning networks are becoming larger and larger. However,

training of these large networks requires high computational effort and energy require-

ments. In this work, we exploited the error resiliency of CNN applications and the

usefulness of Gabor filters to propose an energy efficient and fast training method-

ology for CNNs. We designed and implemented several Gabor filter based CNN

configurations to obtain the best trade-off between accuracy and energy. We pro-

posed a balanced CNN configuration, where fixed Gabor filters are not only used

in the 1st convolutional layer, but also in the latter convolutional layers in conjunc-

tion with regular weight kernels. Experiments across various benchmark applications

with our proposed scheme demonstrated significant improvements in computational

energy consumption during training, and also reduction in training time, storage

requirements, and memory access energy for negligible loss in the classification accu-

racy. Note, since our proposed Gabor kernel based CNN is faster and consumes less

energy during training, the cost of retraining the network, when new training data is

available, will be less compared to a conventional CNN. Also since fixed kernels are

used in 50-66.7% convolution operations, dedicated hardware can be designed to gain

more benefits not only in back-propagation, but also during forward-propagation in

the network.

Retraining large neural networks to accommodate new, previously unseen data

demands high computational time and energy requirements. Also, previously seen

training samples may not be available at the time of retraining. In this work, we

157

also explore an efficient training methodology and incrementally growing a Deep

Convolutional Neural Network (DCNN) to allow new tasks to be learned while sharing

part of the base network. Our methodology is inspired by transfer learning techniques,

although it does not forget previously learned tasks. An updated network for learning

new tasks is formed using previously learned convolutional layers (shared from initial

part of base network) with addition of few newly added convolutional kernels included

in the later layers of the network. Initial experiments show that the classification

accuracy achieved on several recognition applications by our approach is comparable

to the regular incremental learning approach (where networks are updated with new

training samples only, without any network sharing).

While DNNs are usually trained using well established back-propagation algo-

rithm, SNNs are typically trained using STDP based unsupervised process. However,

the typical shallow spiking network architectures trained using STDP have limited

capacity for expressing complex representations, while training a very deep spiking

network has not been successful so far. In this work, we propose a spike-based back-

propagation training methodology for state-of-the-art deep SNN architectures. This

methodology enables real-time training in deep SNNs while achieving comparable in-

ference accuracies on standard image recognition tasks. Our experiments show the

effectiveness of the proposed learning strategy on deeper SNNs by achieving the best

classification accuracies in MNIST, SVHN and CIFAR-10 datasets among other net-

works trained with spike-based learning till date. The performance gap in terms of

quality between ANN and SNN is substantially reduced by the application of our

proposed methodology. We can achieve 6.32x-15.32x energy-efficiency compared to

ANN counterparts as well as 2.36x-7.81x over ANN-SNN converted networks for in-

ference by exploiting our training methodology and applying the trained SNN on

neuromorphic hardware. Moreover, trained deep SNNs can infer 8x-36x faster than

ANN-SNN converted networks.

158

9.2 Future Work

Our aim is to develop novel techniques to improve training and inference of Deep

NNs further. To that effect, we are proposing several ideas to be explored in the

future.

Training deeper networks, with ever-increasing data samples, becoming a big chal-

lenge for even state-of-the-art computing platforms. In order to solve complex prob-

lems using limited resources (computation power, time, storage capacity etc.), re-

ducing the network size might not be an acceptable solution. However, there is a

potential opportunity of reducing the training-effort by intelligently using training

samples. May be not all training samples are equally important. Also not all training

samples are needed during the whole training process. Banking on these concepts, we

will explore sample importance based learning techniques to reduce training effort in

Deep Learning.

REFERENCES

159

REFERENCES

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp.
115–133, 1943.

[2] E. Reingold and J. Nightingale, “History of Neural Networks,” http://www.
psych.utoronto.ca/users/reingold/courses/ai/cache/neural4.html, [Online; ac-
cessed 21-April-2019].

[3] K. Strachnyi, “Brief History of Neural Networks,” https://medium.com/
analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec, 2019, [Online;
accessed 21-April-2019].

[4] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep., 1961.

[5] M. Minsky and S. Papert, “An introduction to computational geometry,” Cam-
bridge tiass., HIT, 1969.

[6] P. Werbos, “Beyond regression:” new tools for prediction and analysis in the
behavioral sciences,” Ph. D. dissertation, Harvard University, 1974.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal repre-
sentations by error propagation,” California Univ San Diego La Jolla Inst for
Cognitive Science, Tech. Rep., 1985.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[11] C. Rosenberg, “Improving Photo Search: A Step Across the
Semantic Gap,” http://googleresearch.blogspot.com/2013/06/
improving-photo-search-step-across.html, 2013, [Online; accessed 26-October-
2017].

[12] G. Dede and M. H. Sazlı, “Speech recognition with artificial neural networks,”
Digital Signal Processing, vol. 20, no. 3, pp. 763–768, 2010.

http://www.psych.utoronto.ca/users/reingold/courses/ai/cache/neural4.html
http://www.psych.utoronto.ca/users/reingold/courses/ai/cache/neural4.html
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec
https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec
http://googleresearch.blogspot.com/2013/06/improving-photo-search-step-across.html
http://googleresearch.blogspot.com/2013/06/improving-photo-search-step-across.html

160

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, 2016.

[14] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress,” Neurocomputing, vol. 74, no. 1, pp. 239–255, 2010.

[15] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“Neuflow: A runtime reconfigurable dataflow processor for vision,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer
Society Conference on. IEEE, 2011, pp. 109–116.

[16] R. V. Hoang, D. Tanna, L. C. J. Bray, S. M. Dascalu, and F. C. Harris Jr,
“A novel cpu/gpu simulation environment for large-scale biologically realistic
neural modeling,” Frontiers in neuroinformatics, vol. 7, 2013.

[17] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa,
and W. Lu, “A functional hybrid memristor crossbar-array/cmos system for
data storage and neuromorphic applications,” Nano letters, vol. 12, no. 1, pp.
389–395, 2011.

[18] C. D. Wright, P. Hosseini, and J. A. V. Diosdado, “Beyond von-neumann com-
puting with nanoscale phase-change memory devices,” Advanced Functional
Materials, vol. 23, no. 18, pp. 2248–2254, 2013.

[19] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approxi-
mate computing and the quest for computing efficiency,” in Proceedings of the
52nd Annual Design Automation Conference, San Francisco, CA, USA, June
7-11, 2015, 2015, pp. 120:1–120:6.

[20] J. Park, H. Choo, K. Muhammad, S. Choi, Y. Im, and K. Roy, “Non-adaptive
and adaptive filter implementation based on sharing multiplication,” in Acous-
tics, Speech, and Signal Processing, 2000. ICASSP’00. Proceedings. 2000 IEEE
International Conference on, vol. 1. IEEE, 2000, pp. 460–463.

[21] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6t/8t hybrid sram
architecture for aggressive voltage scaling in video applications,” IEEE trans-
actions on circuits and systems for video technology, vol. 21, no. 2, pp. 101–112,
2011.

[22] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar,
“Scalable effort hardware design: Exploiting algorithmic resilience for energy
efficiency,” in Proceedings of the 47th Design Automation Conference. ACM,
2010, pp. 555–560.

[23] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact:
imprecise adders for low-power approximate computing,” in Proceedings of the
17th IEEE/ACM international symposium on Low-power electronics and design.
IEEE Press, 2011, pp. 409–414.

[24] K. Muhammad, “Algorithmic and architectural techniques for low-power digital
signal processing,” 1999.

161

[25] C. H. Sequin and R. D. Clay, “Fault tolerance in artificial neural networks,” in
1990 IJCNN International Joint Conference on Neural Networks, June 1990,
pp. 703–708 vol.1.

[26] P. Panda, A. Sengupta, S. S. Sarwar, G. Srinivasan, S. Venkataramani,
A. Raghunathan, and K. Roy, “Cross-layer approximations for neuromor-
phic computing: From devices to circuits and systems,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2016, pp.
1–6.

[27] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn: energy-
efficient neuromorphic systems using approximate computing,” in Proceedings of
the 2014 international symposium on Low power electronics and design. ACM,
2014, pp. 27–32.

[28] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy, “Multiplier-
less artificial neurons exploiting error resiliency for energy-efficient neural com-
puting,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016. IEEE, 2016, pp. 145–150.

[29] S. S. Sarwar, P. Panda, and K. Roy, “Gabor filter assisted energy efficient
fast learning convolutional neural networks,” in 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), July 2017, pp.
1–6.

[30] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, and K. Roy, “Significance
driven hybrid 8t-6t sram for energy-efficient synaptic storage in artificial neural
networks,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016. IEEE, 2016, pp. 151–156.

[31] J. Kung, D. Kim, and S. Mukhopadhyay, “A power-aware digital feedforward
neural network platform with backpropagation driven approximate synapses,”
in Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM Interna-
tional Symposium on. IEEE, 2015, pp. 85–90.

[32] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power,
highly-accurate deep neural network accelerators,” in Proceedings of the 43rd
International Symposium on Computer Architecture. IEEE Press, 2016, pp.
267–278.

[33] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[34] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC), vol. 14, no. 2,
p. 16, 2018.

[35] S. S. Sarwar, G. Srinivasan, B. Han, P. Wijesinghe, A. Jaiswal, P. Panda,
A. Raghunathan, and K. Roy, “Energy efficient neural computing: A study of
cross-layer approximations,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2018.

162

[36] S. S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in deep con-
volutional neural networks using partial network sharing,” arXiv preprint
arXiv:1712.02719, 2017.

[37] C. Lee, S. S. Sarwar, and K. Roy, “Enabling spike-based backpropaga-
tion in state-of-the-art deep neural network architectures,” arXiv preprint
arXiv:1903.06379, 2019.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[41] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through
spike-timing-dependent synaptic plasticity,” Nature neuroscience, vol. 3, no. 9,
p. 919, 2000.

[42] S. Sivanantham, K. Jagannadha Naidu, S. Balamurugan, and D. Bhuvana Pha-
neendra, “Low power floating point computation sharing multiplier for signal
processing applications,” International Journal of Engineering and Technology,
vol. 5, no. 2, pp. 979–85, 2013.

[43] G. Karakonstantis and K. Roy, “An optimal algorithm for low power multiplier-
less fir filter design using chebychev criterion,” in Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on, vol. 2.
IEEE, 2007, pp. II–49.

[44] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on ma-
chine learning (ICML-10), 2010, pp. 807–814.

[45] R. B. Palm, “Prediction as a candidate for learning deep hierarchical models of
data,” Technical University of Denmark, vol. 5, 2012.

[46] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for mat-
lab,” in Proceedings of the 23rd ACM international conference on Multimedia.
ACM, 2015, pp. 689–692.

[47] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in Custom
Integrated Circuits, 2001, IEEE Conference on. IEEE, 2001, pp. 223–228.

[48] C. Visweswariah, “Death, taxes and failing chips,” in Proceedings of the 40th
annual Design Automation Conference. ACM, 2003, pp. 343–347.

[49] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,
“Parameter variations and impact on circuits and microarchitecture,” in Pro-
ceedings of the 40th annual Design Automation Conference. ACM, 2003, pp.
338–342.

163

[50] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool
to model large caches,” HP Laboratories, pp. 22–31, 2009.

[51] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[52] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks with
few multiplications,” arXiv preprint arXiv:1510.03009, 2015.

[53] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling ag-
gressive voltage underscaling and timing error resilience for energy efficient deep
neural network accelerators,” arXiv preprint arXiv:1802.03806, 2018.

[54] Y. Lin, S. Zhang, and N. R. Shanbhag, “Variation-tolerant architectures for
convolutional neural networks in the near threshold voltage regime,” in Signal
Processing Systems (SiPS), 2016 IEEE International Workshop on. IEEE,
2016, pp. 17–22.

[55] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: Training neural networks with low precision weights and
activations,” arXiv preprint arXiv:1609.07061, 2016.

[56] Y. Wang, J. Lin, and Z. Wang, “An energy-efficient architecture for binary
weight convolutional neural networks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 2, pp. 280–293, Feb 2018.

[57] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[58] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint
arXiv:1410.0759, 2014.

[59] T. Liu, S. Fang, Y. Zhao, P. Wang, and J. Zhang, “Implementation of training
convolutional neural networks,” arXiv preprint arXiv:1506.01195, 2015.

[60] G. S. Budhi, R. Adipranata, and F. J. Hartono, “The use of gabor filter and
back-propagation neural network for the automobile types recognition,” in 2nd
International Conference SIIT 2010, 2010.

[61] B. Kwolek, “Face detection using convolutional neural networks and gabor fil-
ters,” in International Conference on Artificial Neural Networks. Springer,
2005, pp. 551–556.

[62] A. Calderón, S. Roa, and J. Victorino, “Handwritten digit recognition using
convolutional neural networks and gabor filters,” Proc. Int. Congr. Comput.
Intell, 2003.

[63] S.-Y. Chang and N. Morgan, “Robust cnn-based speech recognition with ga-
bor filter kernels,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[64] A. K. Jain, N. K. Ratha, and S. Lakshmanan, “Object detection using gabor
filters,” Pattern recognition, vol. 30, no. 2, pp. 295–309, 1997.

164

[65] J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency,
and orientation optimized by two-dimensional visual cortical filters,” JOSA A,
vol. 2, no. 7, pp. 1160–1169, 1985.

[66] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” in Advances in neural information processing
systems, 2014, pp. 3320–3328.

[67] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Identification using en-
crypted biometrics,” in International Conference on Computer Analysis of Im-
ages and Patterns. Springer, 2013, pp. 440–448.

[68] L. Van der Maaten, “A new benchmark dataset for handwritten character recog-
nition,” Tilburg University, pp. 2–5, 2009.

[69] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[70] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2014, pp.
806–813.

[71] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[72] N. Patricia and B. Caputo, “Learning to learn, from transfer learning to domain
adaptation: A unifying perspective,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 1442–1449.

[73] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,”
IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 4,
pp. 594–611, 2006.

[74] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen
object classes by between-class attribute transfer,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009,
pp. 951–958.

[75] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An incremental
learning algorithm for supervised neural networks,” IEEE transactions on sys-
tems, man, and cybernetics, part C (applications and reviews), vol. 31, no. 4,
pp. 497–508, 2001.

[76] D. Medera and S. Babinec, “Incremental learning of convolutional neural net-
works.” in IJCCI, 2009, pp. 547–550.

[77] A. Royer and C. H. Lampert, “Classifier adaptation at prediction time,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1401–1409.

[78] A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning of mul-
tiple tasks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 5492–5500.

165

[79] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven incremental
learning in deep convolutional neural network for large-scale image classifica-
tion,” in Proceedings of the 22nd ACM international conference on Multimedia.
ACM, 2014, pp. 177–186.

[80] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A deep convolutional neural network
for lifelong learning,” arXiv preprint arXiv:1802.05800, 2018.

[81] Z. Li and D. Hoiem, “Learning without forgetting,” in European Conference on
Computer Vision. Springer, 2016, pp. 614–629.

[82] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert, “icarl: Incremental classifier
and representation learning,” arXiv preprint arXiv:1611.07725, 2016.

[83] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object detec-
tors without catastrophic forgetting,” arXiv preprint arXiv:1708.06977, 2017.

[84] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,”
arXiv preprint arXiv:1606.04671, 2016.

[85] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Over-
coming catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, p. 201611835, 2017.

[86] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning
with a network of experts,” arXiv preprint arXiv:1611.06194, 2016.

[87] P. Panda, J. M. Allred, S. Ramanathan, and K. Roy, “Asp: Learning to forget
with adaptive synaptic plasticity in spiking neural networks,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 51–64,
2018.

[88] M. Mermillod, A. Bugaiska, and P. Bonin, “The stability-plasticity dilemma:
Investigating the continuum from catastrophic forgetting to age-limited learning
effects,” Frontiers in psychology, vol. 4, 2013.

[89] P. Panda, A. Ankit, P. Wijesinghe, and K. Roy, “Falcon: Feature driven se-
lective classification for energy-efficient image recognition,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 12,
2017.

[90] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “Dadiannao: A machine-learning supercomputer,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2014, pp. 609–622.

[91] A. Ankit, I. El Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams,
P. Faraboschi, W.-m. Hwu, J. P. Strachan, K. Roy, and D. Milojicic, “PUMA: A
programmable ultra-efficient memristor-based accelerator for machine learning
inference,” in International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2019.

166

[92] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[93] A. Paszke, S. Gross, and S. Chintala, “Pytorch,” 2017.

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European Conference on Computer Vision. Springer, 2016, pp.
630–645.

[95] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2017, pp. 4700–4708.

[96] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[97] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[98] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A mil-
lion spiking-neuron integrated circuit with a scalable communication network
and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[99] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[100] W. Maass, “Networks of spiking neurons: the third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[101] P. Dayan and L. F. Abbott, Theoretical neuroscience: computational and math-
ematical modeling of neural systems. Cambridge, MA: MIT Press, 2001, vol.
806.

[102] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neu-
ral networks: Vgg and residual architectures,” arXiv preprint arXiv:1802.02627,
2018.

[103] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of
continuous-valued deep networks to efficient event-driven networks for image
classification,” Frontiers in neuroscience, vol. 11, p. 682, 2017.

[104] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks
for energy-efficient object recognition,” International Journal of Computer Vi-
sion, vol. 113, no. 1, pp. 54–66, 2015.

[105] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci, “Conversion
of artificial recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware,” in Rebooting Computing (ICRC), IEEE International
Conference on. IEEE, 2016, pp. 1–8.

167

[106] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif neurons,”
arXiv preprint arXiv:1510.08829, 2015.

[107] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Tem-
ple, and A. D. Brown, “Overview of the spinnaker system architecture,” IEEE
Transactions on Computers, vol. 62, no. 12, pp. 2454–2467, 2013.

[108] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,” Frontiers in computational neuroscience,
vol. 9, p. 99, 2015.

[109] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang, “Feedforward
categorization on aer motion events using cortex-like features in a spiking neural
network,” IEEE transactions on neural networks and learning systems, vol. 26,
no. 9, pp. 1963–1978, 2015.

[110] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics,” Neural computation, vol. 19,
no. 11, pp. 2881–2912, 2007.

[111] G. Srinivasan, P. Panda, and K. Roy, “Spilinc: Spiking liquid-ensemble comput-
ing for unsupervised speech and image recognition,” Frontiers in Neuroscience,
vol. 12, p. 524, 2018.

[112] ——, “Stdp-based unsupervised feature learning using convolution-over-time in
spiking neural networks for energy-efficient neuromorphic computing,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 14,
no. 4, p. 44, 2018.

[113] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-
based spiking deep neural networks for object recognition,” arXiv preprint
arXiv:1611.01421, 2016.

[114] C. Lee, G. Srinivasan, P. Panda, and K. Roy, “Deep spiking convolutional
neural network trained with unsupervised spike timing dependent plasticity,”
IEEE Transactions on Cognitive and Developmental Systems, 2018.

[115] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in tempo-
rally encoded networks of spiking neurons,” Neurocomputing, vol. 48, no. 1-4,
pp. 17–37, 2002.

[116] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016.

[117] P. Panda and K. Roy, “Unsupervised regenerative learning of hierarchical fea-
tures in spiking deep networks for object recognition,” in Neural Networks
(IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp. 299–306.

[118] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking convolu-
tional neural networks with stdp-based unsupervised pre-training followed by
supervised fine-tuning,” Frontiers in Neuroscience, vol. 12, p. 435, 2018.

[119] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradi-
ents through stochastic neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

168

[120] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[121] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[122] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in NIPS workshop
on deep learning and unsupervised feature learning, vol. 2011, no. 2, 2011, p. 5.

[123] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static
image datasets to spiking neuromorphic datasets using saccades,” Frontiers in
neuroscience, vol. 9, p. 437, 2015.

[124] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15µs latency
asynchronous temporal contrast vision sensor,” IEEE journal of solid-state cir-
cuits, vol. 43, no. 2, pp. 566–576, 2008.

[125] Y. Jin, P. Li, and W. Zhang, “Hybrid macro/micro level backpropagation for
training deep spiking neural networks,” arXiv preprint arXiv:1805.07866, 2018.

[126] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation
for training high-performance spiking neural networks,” Frontiers in neuro-
science, vol. 12, 2018.

[127] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven random
back-propagation: Enabling neuromorphic deep learning machines,” Frontiers
in neuroscience, vol. 11, p. 324, 2017.

[128] H. Mostafa, “Supervised learning based on temporal coding in spiking neural
networks,” IEEE transactions on neural networks and learning systems, 2017.

[129] A. Tavanaei and A. S. Maida, “Bio-inspired spiking convolutional neural
network using layer-wise sparse coding and stdp learning,” arXiv preprint
arXiv:1611.03000, 2016.

[130] ——, “Multi-layer unsupervised learning in a spiking convolutional neural net-
work,” in 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2017, pp. 2023–2030.

[131] S. Esser, P. Merolla, J. Arthur, A. Cassidy, R. Appuswamy, A. Andreopoulos,
D. Berg, J. McKinstry, T. Melano, D. Barch et al., “Convolutional networks
for fast, energy-efficient neuromorphic computing. 2016,” Preprint on ArXiv.
http://arxiv. org/abs/1603.08270. Accessed, vol. 27, 2016.

[132] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Direct training for spiking neural
networks: Faster, larger, better,” arXiv preprint arXiv:1809.05793, 2018.

[133] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” in Advances in neural information processing
systems, 2015, pp. 1135–1143.

[134] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep con-
volutional networks,” in International Conference on Machine Learning, 2016,
pp. 2849–2858.

169

[135] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),”
in 2014 IEEE international solid-state circuits conference digest of technical
papers (ISSCC). IEEE, 2014, pp. 10–14.

VITA

170

VITA

Syed Shakib Sarwar Received the B.Sc. and M.Sc. degrees in electrical and

electronic engineering from the Bangladesh University of Engineering and Technology

(BUET), Dhaka, Bangladesh, in 2012 and 2014, respectively. Since 2014, he has

been pursuing a Ph.D. degree in Electrical and Computer Engineering at Purdue

University, under the guidance of Prof. Kaushik Roy. In Summer 2018, he worked as

research intern in Facebook Reality Labs, where he developed optimization techniques

for machine learning applications.

His primary research focus is energy efficient algorithms and hardware imple-

mentation for neuromorphic circuits (Deep Learning) based on CMOS and emerging

devices. His research interests also include approximate computing in the field of

‘Deep Learning’.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Deep Learning and its Constraints
	Contribution and Organization of the Thesis
	Improve Testing/Inference Energy-efficiency
	Improve Training Energy-efficiency

	BASICS OF NEURAL COMPUTING
	ANN
	SNN
	Fully-Connected Networks
	Convolutional Neural Networks

	Training
	Back-propagation
	STDP

	Inference

	APPROXIMATE HARDWARE DESIGN FOR DNNS
	Approximate Multiplier for DNNs
	Motivation: Computation Energy Consumption by Multiplier
	Alphabet Set Multiplier
	Computation Sharing Multiplication
	Selection of Good Alphabets
	Design Approach & Methodology
	Multiplier-less Neuron (MAN)
	Realization
	Results

	Approximate Memory for DNNs
	Motivation: Total Energy Consumption Dominated by Memory Access
	Effects of Voltage Scaling on 6T SRAM
	8T-6T Hybrid Memory
	Design Technique and Realization
	Results

	ALGORITHMIC LEVEL APPROXIMATIONS
	Prunning of Synapses
	Prunning Methodology
	Results

	Low Complexity Networks
	Results

	COMBINATION OF APPROXIMATE TECHNIQUES
	Optimized Baseline Deep Neural Networks
	Approximate Multiplier, Pruning and Approximate Memory
	Retraining to Mitigate Accuracy Loss
	Results

	Comparing Approximate Networks
	Comparison with other Low Power DNNs

	GABOR FILTER ASSISTED FAST AND EFFICIENT LEARNING FOR CNN
	Gabor Filters
	Design Approach & Methodology
	Energy Model for CNN Training
	Gabor Filters as Fixed Convolutional Kernels

	Realization
	Results
	Accuracy Comparison
	Energy Consumption Benefits
	Storage Requirement Reduction
	Training Time Reduction
	Partial Training of Gabor Kernels for Accuracy Improvement
	Applicability in Complex CNNs

	INCREMENTAL LEARNING IN DEEP CONVOLUTIONAL NEURAL NETWORKS USING PARTIAL NETWORK SHARING
	Incremental Learning
	Advantages

	Design Approach
	Increasing Convolutional Kernels in the Last Layer
	Adding Branch to Existing Network
	Replacing Part of the Base Network with New Convolutional Layers
	Training Methodology 1
	Training Methodology 2
	Training Methodology 3
	Comparison of Different Training Methodologies

	Evaluation Methodology
	Results and Discussions
	Energy-Accuracy Trade-off
	Training Time Reduction
	Storage Requirement and Memory Access Reduction
	Results on ImageNet
	Comparison between Different Network Architectures
	Comparison with Other Methods

	ENABLING SPIKE-BASED BACKPROPAGATION IN STATE-OF-THE-ART DEEP SPIKING NEURAL NETWORK ARCHITECTURES
	The Components and Architecture of Spiking Neural Network
	Spiking Neural Network Components
	Deep Convolutional Spiking Neural Network

	Supervised Training of Deep Spiking Neural Network
	Spike-based Gradient Descent Backpropagation Algorithm
	Dropout in Spiking Nerual Network

	Experimental Setup
	Benchmarking Datasets
	Network Topologies
	ANN-SNN Conversion Scheme
	Spike Generation Scheme
	Time-steps

	Results
	The Classification Performance
	Accuracy Improvement with Network Depth

	Discussion
	Comparison with Relevant works
	Spike Activity Analysis
	Inference Speedup
	Complexity Reduction

	CONCLUSION
	Conclusion and Summary
	Future Work

	REFERENCES
	VITA

