
INFERENCE OF RESIDUAL ATTACK SURFACE UNDER MITIGATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kyriakos K. Ispoglou

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mathias Payer, Chair

Department of Computer Science

Dr. Byoungyoung Lee

Department of Computer Science

Dr. Samual Wagstaff

Department of Computer Science

Dr. Benjamin Delaware

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu

Head of the Department Graduate Program

iii

To my dad, Konstantinos.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Mathias Payer, for his astonishing

work, his invaluable guidance and the –not so easy– task of advising me. I would also like

to thank my co-authors Trent Jaeger, Bader AlBassam, Daniel Austin, and Vishwath Mohan

for helping me with my research projects. I have to admit that this PhD would not be done

without the continuous support and motivation from my family; my parents Konstantinos

and Parthena and my siblings Alexandra and George. Last but not least, I would like to

thank my two wonderful friends Eugenia Kontopoulou and Marios Papamichalis for the

nice memories that I had with them in West Lafayette. I will be forever grateful.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 The three phases of an attack . 2

1.1.1 Discovering a vulnerability . 4
1.1.2 Exploiting a vulnerability . 6
1.1.3 Persisting on the compromised system 8

1.2 Dissertation Statement . 9
1.3 Dissertation Organization . 12

2 FUZZGEN: AUTOMATIC FUZZER GENERATION 13
2.1 Introduction . 13
2.2 The case for API-aware fuzzer construction 18
2.3 Background and Related Work . 20
2.4 Design . 22

2.4.1 Inferring the library API . 23
2.4.2 Abstract API Dependence Graph (A2DG) construction 24
2.4.3 Argument flow analysis . 28
2.4.4 Fuzzer stub synthesis . 32

2.5 Implementation . 32
2.6 Evaluation . 36

2.6.1 Consumer Ranking . 37
2.6.2 Measuring code coverage . 37
2.6.3 Android evaluation . 38
2.6.4 Case Study: Out Of Bounds Read in libhevc 44

2.7 Discussion and future work . 44
2.8 Conclusion . 46

3 BLOCK ORIENTED PROGRAMMING: AUTOMATING DATA ONLY ATTACKS47
3.1 Introduction . 48
3.2 Background and Related Work . 50

3.2.1 Control Flow Integrity . 51

vi

Page
3.2.2 Shadow Stacks . 52
3.2.3 Data-only Attacks . 52

3.3 Assumptions and Threat Model . 53
3.4 Design . 54

3.4.1 Expressing Payloads . 57
3.4.2 Selecting functional blocks . 58
3.4.3 Finding BOP gadgets . 59
3.4.4 Searching for dispatcher blocks 60
3.4.5 Stitching BOP gadgets . 62

3.5 Implementation . 63
3.5.1 Binary Frontend . 65
3.5.2 SPL Frontend . 65
3.5.3 Locating candidate block sets . 66
3.5.4 Identifying functional block sets 68
3.5.5 Selecting functional blocks . 69
3.5.6 Discovering dispatcher blocks . 69
3.5.7 Synthesizing exploits . 71

3.6 Evaluation . 72
3.7 Case Study: nginx . 77

3.7.1 Spawning a shell . 77
3.7.2 Infinite loop . 78
3.7.3 Conditional statements . 80

3.8 Discussion and Future Work . 82
3.9 Conclusion . 83

4 X-CAP: ASSESSING EXPLOITATION CAPABILITIES 84

5 MALWASH: WASHING MALWARE TO EVADE DYNAMIC ANALYSIS . . . 88
5.1 Introduction . 88
5.2 Background and Related Work . 90
5.3 Design . 93
5.4 Implementation . 96

5.4.1 Phase 1: Chopping the binary . 98
5.4.2 Phase 2.a: Loading emulators 101
5.4.3 Phase 2.b: Executing the binary 102
5.4.4 Recovering terminated instances 105

5.5 Evaluation . 106
5.5.1 malWASH resilience . 106
5.5.2 Case Study: Remote Keylogger 107
5.5.3 Discussion . 110

5.6 Conclusion . 112

6 RELATED & FUTURE WORK . 114
6.0.1 Library Fuzzing . 114

vii

Page
6.0.2 Data-Only and Control Flow Bending attacks 115
6.0.3 Distributed malware detection 115

7 CONCLUSION . 117

APPENDIX . 119
7.1 Determining exploitability is undecidable 119
7.2 Extended Backus-Naur Form of SPL 121
7.3 Stitching BOP Gadgets is NP-Hard . 122
7.4 SPL is Turing-complete . 124
7.5 CFG of nginx after pruning . 125
7.6 Detailed overview of the BOPC implementation 127

BIBLIOGRAPHY . 137

viii

LIST OF TABLES

Table Page

2.1 Set of possible attributes inferred during the argument value-set analysis 34

2.2 Codec Libraries and Consumers used for evaluation 39

2.3 Results from fuzzer evaluation on codec libraries 40

3.1 Examples of SPL payloads . 57

3.2 Counterexample that shows inaccurate functional block proximity 62

3.3 Semantic matching of SPL statements to basic blocks 67

3.4 Vulnerable applications for BOPC evaluation 73

3.5 SPL payloads for BOPC evaluation . 74

3.6 Feasibility of executing SPL payloads on vulnerable applications 75

3.7 Performance metrics for BOPC on nginx . 77

5.1 Supported properties by design and implemented in the current prototype 97

5.2 Block statistics of malware samples . 106

5.3 Statistics from running the Octane 2.0 JavaScript benchmark 109

ix

LIST OF FIGURES

Figure Page

1.1 The three phases of an attack . 3

1.2 A visual representation of a crash, a bug and a vulnerability 5

1.3 The interconnection of dissertation’s three main components 10

2.1 The main intuition behind FuzzGen . 16

2.2 Code snippet to initialize an MPEG2 decoder object 18

2.3 The complete workflow of FuzzGen. 25

2.4 FuzzGen implementation overview. 31

2.5 Code coverage over time for libhevc . 41

2.6 Code coverage over time for libavc. 42

2.7 Code coverage over time for libmpeg2. 42

2.8 Code coverage over time for libopus. 43

2.9 Code coverage over time for libgsm. 43

3.1 Overview of BOPC’s design. 54

3.2 BOP gadget structure . 56

3.3 Visualisation of BOP gadget volatility . 59

3.4 Imprecision of existing shortest path algorithms 60

3.5 High level overview of the BOPC implementation 64

3.6 CFG of nginx’s ngx_signal_handler and payload for an infinite loop . . . 79

3.7 A delta graph instance for an ifelse payload for nginx 80

4.1 Code snippet that shows computation island disconnectivity 86

5.1 A comparison between normal infection and malWASH 91

5.2 Translation of a return instruction. 99

5.3 An instance of duptab . 104

5.4 CPU usage among infected (idle) processes 107

x

Figure Page

5.5 CPU usage of Firefox and Chrome under malWASH infection 108

5.6 Thwarting detection based on shared memory correlation 112

7.1 An delta graph instance . 122

xi

ABBREVIATIONS

ABI Application Binary Interface

A2DG Abstract API Dependence Graph

API Application Programming Interface

ARP Arbitrary Read Primitive

ASLR Address Space Layout Randomization

AWP Arbitrary Write Primitive

AV Anti-Virus

BID Block IDentifier

BOP Block Oriented Programming

BOPC Block Oriented Programming Compiler

CFG Control-Flow Graph

CFI Control-Flow Integrity

CPU Central Processing Unit

CVE Common Vulnerability and Exposure

DEP Data Execution Prevention

DFI Data-Flow Integrity

IDS Intrusion Detection System

IPC Inter Process Communication

IPS Intrusion Prevention System

IR Intermediate Representation

JOP Jump Oriented Programming

LLVM Low Level Virtual Machine

ROP Return Oriented Programming

SPL SPloit Language

xii

ABSTRACT

Ispoglou, Kyriakos K. PhD, Purdue University, May 2019. Inference of Residual Attack
Surface under mitigations. Major Professor: Mathias Payer.

Despite the broad diversity of attacks and the many different ways an adversary can

exploit a system, each attack can be divided into different phases. These phases include the

discovery of a vulnerability in the system, its exploitation and the achieving persistence on

the compromised system for (potential) further compromise and future access. Determining

the exploitability of a system –and hence the success of an attack– remains a challenging,

manual task. Not only because the problem cannot be formally defined but also because

advanced protections and mitigations further complicate the analysis and hence, raise the

bar for any successful attack. Nevertheless, it is still possible for an attacker to circumvent

all of the existing defenses –under certain circumstances.

In this dissertation, we define and infer the Residual Attack Surface on a system. That

is, we expose the limitations of the state-of-the-art mitigations, by showing practical ways

to circumvent them. This work is divided into four parts. It assumes an attack with three

phases and proposes new techniques to infer the Residual Attack Surface on each stage.

For the first part, we focus on the vulnerability discovery. We propose FuzzGen, a tool

for automatically generating fuzzer stubs for libraries. The synthesized fuzzers are target

specific, thus resulting in high code coverage. This enables developers to expose and fix

vulnerabilities (that reside deep in the code and require initializing a complex state to trigger

them), before they can be exploited. We then move to the vulnerability exploitation part and

we present a novel technique called Block Oriented Programming (BOP), that automates

data-only attacks. Data-only attacks defeat advanced control-flow hijacking defenses such

as Control Flow Integrity. Our framework, called BOPC, maps arbitrary exploit payloads

into execution traces and encodes them as a set of memory writes. Therefore an attacker’s

xiii

intended execution “sticks” to the execution flow of the underlying binary and never departs

from it. In the third part of the dissertation, we present an extension of BOPC that presents

some measurements that give strong indications of what types of exploit payloads are not

possible to execute. Therefore, BOPC enables developers to test what data an attacker would

compromise and enables evaluation of the Residual Attack Surface to assess an application’s

risk. Finally, for the last part, which is to achieve persistence on the compromised system,

we present a new technique to construct arbitrary malware that evades current dynamic

and behavioral analysis. The desired malware is split into hundreds (or thousands) of little

pieces and each piece is injected into a different process. A special emulator coordinates and

synchronizes the execution of all individual pieces, thus achieving a “distributed execution”

under multiple address spaces. malWASH highlights weaknesses of current dynamic and

behavioral analysis schemes and argues for full-system provenance.

Our envision is to expose all the weaknesses of the deployed mitigations, protections

and defenses through the Residual Attack Surface. That way, we can help the research

community to reinforce the existing defenses, or come up with new, more effective ones.

1

1 INTRODUCTION

As computer systems evolve, they become a prominent target for all kinds of attacks. Some

attacks such as control-flow hijacking, can have devastating effects as they force the system

to execute arbitrary, attacker chosen, code. Hence, a plethora of defense mechanisms

have been proposed to mitigate the impact, or even prevent those attacks. This started an

arms race, with the attackers finding new ways to circumvent the existing protections and

mitigations, and defenders reinforcing their defenses and creating new ones [1]. However,

as defenses evolve, attacks become sophisticated, more subtle and harder to successfully

execute.

Despite the stunning success of the applied defenses, they all have some form of

limitation or weakness that in some cases, an adversary can leverage. This is sufficient to

leave some small space for a successful attack. Nevertheless, most attacks remain infeasible,

thus significantly raising the bar against successful compromise.

Therefore, given all these protections and mitigations applied on a system, what are

the remaining options for an attacker? This dissertation defines this as the Residual Attack

Surface i.e., the attack possibilities for an adversary on a system where a set of mitigations

and protections are applied.

This dissertation focuses on defining and inferring the Residual Attack Surface. Ideally, to

precisely measure the Residual Attack Surface, one has to identify all possible vulnerabilities

in the system, determine which ones are exploitable, and try to execute each exploitable

vulnerability to get unauthorized access to the system. Finally, if the attacker does not

have the desired privileges on the system, or she wants to utilize the system as a pivot to

attack other systems, she needs to repeat these steps for each target. Clearly, each of the

aforementioned steps requires an enumeration of all potential inputs to the system, which are

uncountable. Furthermore the problem of determining whether a vulnerability is exploitable

or not is undecidable (see Appendix 7.1).

2

Hence, to infer the Residual Attack Surface, we use the following approach: First, we

show that the Residual Attack Surface does exist and it is nonzero. We find vulnerability

locations and we present new techniques that circumvent all of the deployed state-of-the-art

mitigations (either combined or alone). Second, we find “upper bounds” on attacker’s

capabilities. That is, we aim to identify the limits of exploitation, i.e., what an adversary is

capable of doing in the best case scenario for her (which is also the worst case scenario for

the system).

However, there are some concerns with our approach. Due to the large number of

potential attacks, the inference of the Residual Attack Surface becomes complicated. For

instance, there can be uncountable ways to break into a system, as each system is different.

This implies that creating general techniques is challenging, as each system can have its

own Residual Attack Surface.

To deal with this challenge, we divide an attack into distinct phases and we infer the

Residual Attack Surface in each phase. Despite the large diversity of the potential attacks,

these phases are common in most attacks. Furthermore, dividing an attack into distinct

phases has several advantages from a defender’s point of view. First, defenses become more

targeted (and therefore more effective) as they aim to protect only one part of the system.

Second, multiple defenses, orthogonal to each other, can be applied together at different

phases. This multi-layered approach implies that the adversary has to defeat several layers

of protection before she breaks into the system, so any attack becomes significantly more

complicated. Although there can be multiple ways to divide an attack into phases, this

dissertation assumes a three phase, coarse grained separation.

1.1 The three phases of an attack

As stated above, this dissertation divides an attack into three distinct phases as shown in

Figure 1.1. We do not state that this is the only way to divide an attack; more fine-grained

divisions may exist. However, the seperation suits the needs of inference of the Residual

Attack Surface. These three phases are:

3

Persist on the
Compromised

System

Exploit a
Vulnerability

Discover a
Vulnerability

Figure 1.1.: The three phases of an attack.

• The discovery of a vulnerability

• The exploitation of a vulnerability

• The persistence on the compromised system

An attack starts with reconnaissance. That is, the adversary first gets some knowledge

on the system, how its components operate, what their weaknesses are and what the potential

points to attack are. The goal of this step, is for attacker to find a way to get the system into

a state that it is not designed to be in. That is, to find out “what could go wrong” in the

system. This is called a bug (or flaw).

In the second phase, the attacker is looking for a way to leverage this bug in order

to compromise the system. That is, taking advantage of the bug, to force the system to

perform actions on the attacker’s behalf (e.g., execute the attacker’s indented code). This is

commonly referred to as exploitation.

Although in some scenarios it is sufficient to – successfully – exploit a bug, this may

not be enough to complete an attack, so a third phase is required. For instance, the attacker

may be able to execute her own code, but with low privileges. Thus, the attacker needs to

establish herself on the compromised system and repeat the same process. This “persistence”

on the compromised system is a crucial, as it allows the attacker to continue attacking further.

4

This is done by either using the compromised system as a pivot to reach other systems

that are not otherwise reachable, or to further compromise another component on the same

system and elevate her privileges.

1.1.1 Discovering a vulnerability

In the first phase of the attack the adversary analyzes the target system and tries to trigger

“abnormal” behavior, which indicates that the system has reached an undefined state. An

undefined state, is a state that the system is not supposed or designed to be in. This usually

happens, when the system accepts unexpected input it cannot handle properly. Then the

attacker can abuse this behavior to start manipulating the system state.

For instance, consider a system that plays blackjack. A player gives a bet as input to the

system and the game starts. When the player wins, the bet is added to her balance. When

the player loses, the bet is subtracted from her balance. Now consider a situation where

the player gives a negative bet and loses intentionally. Let us assume that the designers

of the system did not consider this case –as it is not feasible in reality to bet a negative

amount of money– and hence, they did not sanitize the input properly. However the system

continues to operate normally, so when the player loses, the system subtracts the (negative)

bet from player’s balance. The result is that player’s balance is increased as the subtraction

of a negative number results in an addition. Hence, an evil player can abuse this system to

always win.

Technically, this behavior is referred as crash, bug, flaw, or vulnerability. Although each

of these terms indicates that the system has reached an “undefined” state, they all describe

different situations.

A crash indicates that the system has stopped working. The root cause for it is usually

an access violation or a segmentation fault. For instance when the system tries to do some

operations on a pointer that does not point to valid memory address, the underlying operating

system, throws an exception which results in program termination.

5

Bug
Crash

Vulnerability

Figure 1.2.: A visual representation of a crash, a bug and a vulnerability.

A bug, may cause a crash. Segmentation faults and memory errors are types of bugs that

can crash the system. However, a bug is also anything that results in an undefined behavior

in the system. For example, if an attacker can manipulate a timeout parameter on a system,

she can cause the system to hang, by supplying a very large value. Although the program

still continues to work, it stops responding, which in practice means that it is dead. Back in

our blackjack example, the system has a bug that does not cause any crashes. A player can

bet negative amounts of money while the system continues to operate normally.

A flaw is a special type of bug that is created during sysstem design and carried into its

implementation. It is usually referred as logic error. For instance, a system that implements

a weak access control policy and allows low privileged users to access functionality from

super users has a design flaw. Although the system does not crash, the results can be

devastating.

Finally, a vulnerability is a bug that allows the attacker to manipulate the system. That

is, a vulnerability allows unintended state changes on the system that are controlled by the

attacker. Therefore, a vulnerability is a bug that the attacker can leverage to control the

program’s state. As an example, if a system tries to access a pointer that points to an invalid

location, this is a bug. However, if an attacker can first control this pointer and make it point

to a memory region that contains executable code instead of crashing, the system will start

executing code that it is not supposed to execute (this type of attack is called control-flow

hijacking). Figure 1.2 shows a visual representation of a crash, a bug, and a vulnerability.

6

From the aforementioned types of issues, an adversary is interested in finding vulnera-

bilities as it is the basic requirement to get unauthorized access to the system. Nevertheless,

there are some scenarios that the attackers can leverage bugs to cause Denial of Service

(DoS) attacks and compromise the availability of the system.

Finding vulnerabilities has been an interesting problem for the research community

for several years. During that time many techniques have been developed for finding

vulnerabilities. One of the oldest and most effective methods is fuzzing. Fuzzing is the

process of supplying random and unexpected input to program and looking for abnormal

behavior (i.e., crashes or hangs). Although fuzzing is based on a simple and “naive” concept,

it turned out to be much more efficient in practice than other sophisticated approaches

that involve symbolic execution [2] or SMT [3] solvers. Despite its simplicity, making

fuzzing efficient is challenging. Some bugs reside deep in the code and it is hard to craft

proper input to trigger them. Discovering new techniques to improve fuzzing (in both

directions of performance and effectiveness) has received significant attention from the

research community. Over the last years there is a lot of great work in the area, such as

TFuzz [4]. Recent work of Klees et al. [5] compares and evaluates the 32 most recent

fuzzing techniques, showing their effectiveness in bug finding.

Although attackers utilize fuzzing to find vulnerabilities, fuzzers are also used with great

success as defense mechanisms. Finding and eliminating bugs is important as it protects

against their potential exploitation. While an attacker only needs to find a single bug to

exploit, defenders need to find all bugs before attackers. However, defenders have the

advantage of knowing the source code and deployment, which is beneficial for fuzzing.

1.1.2 Exploiting a vulnerability

Given a bug on the target system, an attacker needs to find a way to turn it into a

vulnerability and synthesize an exploit that gives her unauthorized access to the system.

However, determining if a bug is exploitable is a challenging, manual task. Despite the great

effort [6, 7] that has been done towards automating exploit generation, this problem remains

7

unsolved. Furthermore, the wide deployment of mitigations against control-flow hijacking

attacks such as Data Execution Prevention (DEP), Address Space Layout Randomization

(ASLR), stack canaries, Control Flow Integrity (CFI), and shadow stacks, further complicate

this task.

One of the oldest techniques to exploit a vulnerability is code injection. The attackers

supply arbitrary code to the program and force it to execute this code through a vulnerability.

Data Execution Prevention (DEP) [8] stops code injection by leveraging memory page

permissions to make pages that contain contain data non-executable. An attacker is still able

to inject code, but when control is transfered to it, a segmentation fault occurs.

However, injecting new code into a program is not always necessary. Most of the times,

the program itself contains sufficient code that it is possible for an attacker to reuse it and

synthesize the desired payload. This idea started with the return-to-libc [9] attacks and

extended to its general form, called Return Oriented Programming (ROP) [10]. In addition

to ROP, some variations have been proposed, with Jump Oriented Programming [11] and

ROP without returns [12] being two of them.

To defeat code reuse attacks, one has to look into the execution flow of an attacker’s

payload. Code reuse attacks, execute small pieces of code called gadgets, chained together.

However, this style of execution violates the benign control flow of the program. Control

Flow Integrity (CFI) [13] prevents code reuse attacks, by sanitizing the target address of each

indirect control flow transfer. CFI leverages the program’s Control Flow Graph (CFG) to

identify the forward edges and inserts additional instrumentation code to check the integrity

of the runtime target address. Similarly, Shadow Stacks [14] assure the integrity of the

backward edges. Even though CFI significantly raises the bar for successful exploitation,

it still suffers from some weaknesses. First, CFI overapproximates the allowed target set,

thus giving some freedom to an attacker [15]. Furthermore, Data-Only attacks [16, 17] are

also feasible as they do not violate a program’s CFG. However those attacks violate the

program’s Data Flow Integrity (DFI) [18]. Unfortunately, proposed DFI mechanisms have

high overhead, which prevents them from being deployed.

8

Another orthogonal mitigation is Address Space Layout Randomization (ASLR) [19].

ASLR randomizes the various sections of a program when loaded in memory. Thus, the

attacker does not know the exact address of the desired code to execute and hence, she

cannot transfer control to it. It is possible for the attacker to guess the correct address, but

the probability is negligible for realistic scenarios. The main limitation here, is that the

system randomizes whole sections of the program. Thus, if an attacker knows one address

from a section, it can compute the relative offset and find the exact address of her code [20].

Therefore, an attacker only needs to find an information leak (i.e., leak an address). Although

there are some improvements on ASLR, such as ASLR-Guard [21] that aims to prevent

information leaks, it is still remains vulnerable to information leaks.

1.1.3 Persisting on the compromised system

At this point the attacker has unauthorized access (i.e., she is able to execute her own

code) to the –compromised– system. In many cases this is not what the attacker really

wants, as code may run with limited privileges. Hence, the attacker needs to find a robust

and reliable way to “establish” herself on the system. That is, to install some backdoor to

ease future access. This enables the attacker to either: i) utilize system as a pivot to launch

new attacks on other systems that are not directly accessible otherwise, ii) attack different

components on the same system to elevate privileges, or iii) simply have access for any

potential future use. Therefore, attacker needs to install code with malicious indention on

the system. This code is referred as malicious software or malware for short.

Detecting malware and inferring whether a program performs malicious actions or not,

is an open problem with a lot and interesting ongoing research. Recent work on malware

detection [22, 23] makes the task of evading detection challenging. Detection is based on two

main approaches: static and dynamic. Special monitoring programs such as AnitVirus (AV),

Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS), run – with high

privileges – on the system and inspect it for any suspicious activity. However, AV software

nowadays is reinforced with IDS and IPS capabilities, so there is not clear distinction on

9

them. AntiVirus software focuses on detecting malicious files. It periodically scans the

filesystem and inspects executable files that are about to run. This is done either by statically

analyzing the file, or using emulators to run the program in a virtual environment and

carefully monitor its activity. Intrusion Detection/Prevention Systems focus on monitoring

and inspecting the behavior of the applications running on the system.

Static detection methods [23, 24, 25] analyze programs without executing them. One of

the oldest –and most successful– techniques is signature detection. In signature detection,

AV extracts “patterns” and computes special “signatures” 1 from the target program, which

uses them to lookup in a huge database of all known malware. Furthermore, AV performs a

sequence of various analyses on the file looking for notorious system calls, self-modifying

or obfuscated code, and so on. However, attackers can defeat static detection through meta-

morphic [26] malware. Metamorphic malware modifies itself each time it gets propagated.

That is, the same malware can have an infinity amount of different instances thus thwarting

signature detection.

Dynamic detection methods [22, 27, 28, 29, 30, 31, 32, 33, 34, 35] on the other hand,

focus on malware’s behavior instead. They let the malware run until it reveals its real

indentions. The main limitation of static detection is that it is easy for an attacker to thwart

analysis by obfuscating the code, applying anti-disassembly [36] tricks or creating meta-

morphic instances. The intuition behind this concept is that even though two instances of

a metamorphic malware are very different they still have the exact same behavior. Nev-

ertheless there are some techniques to evade dynamic detection [37, 38, 39] which keeps

malware detection an interesting, open research problem.

1.2 Dissertation Statement

This dissertation infers the Residual Attack Surface at each of the three phases of an

attack. It presents state-of-the-art techniques that a defender can utilize in her analysis to

defend. Although it is hard to precisely measure the Residual Attack Surface, its objective is

1A signature comes in the form of a hash.

10

Discovery Exploitation Persistence

FuzzGen BOPC malWASHVulnerability Code Execution

Backdoor Access

Figure 1.3.: The interconnection of dissertation’s three main components.

to expose weaknesses in existing mitigations and assist the research community to improve

existing, or come up with new, stronger defenses. The dissertation statement is shown

below:

The wide and successful deployment of mitigations led to the development of

highly sophisticated attacks that are challenging to orchestrate. The Residual

Attack Surface consists of the set of attacks that remain feasible and practical.

It provides strong indications on what an adversary is capable of, thus assisting

defenders in exposing the limitations of existing protections.

The dissertation consists of three major components. Each part demonstrates a new,

practical technique that an adversary can utilize in each phase of an attack as described in

Section 1.1. The interconnection of these components is shown in Figure 1.3.

The first part of the dissertation focuses on finding memory corruption vulnerabilities,

by using target-specific fuzzing. This is done through an automatic fuzzer generation

framework, called FuzzGen. FuzzGen, leverages the source code of a given application

library, to automatically generate a fuzzer for it. The resulting fuzzers achieve deep code

coverage, thus exposing bugs that are otherwise, hard to reach. Furthermore, large scale

fuzzing becomes simple, as we automatically create specific fuzzers for every application

that we want to fuzz. FuzzGen assists defenders to quickly find bugs that are potentially

exploitable, and prevent attackers from exploiting them.

11

In the second part (vulnerability exploitation), we propose a novel technique called Block

Oriented Programming (BOP) [17] which automates data-only attacks. BOP, leverages a

memory corruption vulnerability (found in the previous step), to automatically generate

arbitrary and Turing-complete, data-only exploit payloads. BOP comes with a framework,

called BOPC (BOP Compiler) that demonstrates proof-of-concept exploits for several

vulnerable applications, protected through state-of-the-art control flow hijacking defenses

such as CFI and shadow stacks. BOP can help software developers to highlight payloads

that an attacker is still capable of executing under a heavily protected (and constrained)

environment. For instance, defenders can test whether a bug at a particular statement enables

a practical code reuse attack in the program.

The last part, focuses on achieving persistence in the compromised system without

triggering any alarms or suspicious behavior. To evade detection and show that Residual

Attack Surface does exists, a new technique is proposed capable of constructing arbitrary

malware that evades all kinds of dynamic and behavioral analysis. Attacker’s payload is

“chopped” into hundreds of little pieces with each piece injected into the address space of

a different process. A special process, called emulator, coordinates and synchronizes the

execution of all individual pieces, thus achieving a “distributed execution” under multiple

address spaces. Our framework, called malWASH [37] automates this process. malWASH,

reveals a new direction on stealthy malware. So far, malware detection mechanisms do not

consider a distributed malware execution and operate on a single process. Malware analysts

can utilize malWASH framework to evaluate and reinforce their detection mechanisms so

they can detect that kind of dangerous malware.

Finally, this dissertation closes with a discussion of future work. There are many

unexplored dimensions on the area of Residual Attack Surface while this dissertation only

shines some light on it. The aim of this dissertation is to assist the research community to

make existing defense mechanisms stronger and come up with new ones, by exposing the

weaknesses of the existing mitigations and protections.

12

1.3 Dissertation Organization

This dissertation presents the work on inferring the Residual Attack Surface. The overall

organization is shown below:

• Chapter 1 has introduced the attack phases, the intuition behind the Residual Attack

Surface and why it is useful as long the main approaches to infer it.

• Chapter 2 describes FuzzGen, a new technique to find vulnerabilities in library code

through automatic fuzzer synthesis.

• Chapter 3 provides a detailed explanation behind the concept of Block Oriented

Programming, and provides the design, implementation and evaluation of BOPC, a

framework built on BOP that automates data-only attacks.

• Chapter 4 is an ongoing work, that extends BOPC to assess exploitation capabilities.

Our tool, X-Cap provides strong indications on the exploit payloads that an attacker

can execute on a vulnerable application through Block Oriented Programming.

• Chapter 5 presents a new technique to evade dynamic and behavioral analysis, through

distributed malware execution.

• Chapter 6 discusses the related research –which is the motivation to this work– as

well as some of the new directions that this research can continue.

• Chapter 7 concludes the dissertation.

13

2 FUZZGEN: AUTOMATIC FUZZER GENERATION

Fuzzing is a testing technique to discover unknown vulnerabilities in software. While

the core idea remains unchanged (supplying random input to the software and checking

for crashes), it is non-trivial to apply fuzzing to complex environments, such as libraries.

Libraries cannot run as standalone programs, but instead are invoked through another appli-

cation. Triggering code deep in the library remains challenging. A factor that contributes to

this challenge is the interface diversity of libraries. Each library has a unique interface and

hence requires a unique fuzzer, so far written by a human analyst.

We present FuzzGen, a tool for automatically synthesizing fuzzers for complex libraries

in a given environment. FuzzGen leverages a whole system analysis to infer the library’s

interface and synthesizes fuzzers specifically for that library. FuzzGen requires no human

interaction and can be applied to a wide range of libraries. Furthermore, the generated

fuzzers leverage the LibFuzzer engine to achieve a better coverage and expose bugs that

reside deep in the library.

We evaluated FuzzGen on the Android AOSP ecosystem selecting 5 libraries to generate

fuzzers for. So far, we found 10 previously unpatched vulnerabilities, with CVE-2017-13187

and duplicate CVE-2017-0858 being two of them. Apart from crashes, the generated fuzzers

expose 60.63% code coverage on average, demonstrating the effectiveness and the generality

of our technique.

2.1 Introduction

Modern software distributions like Debian, Ubuntu, or Android AOSP are large and

complex ecosystems with many different software components. Debian consists of a base

system with hundreds of libraries, system services and their configuration, and a customized

Linux kernel. Similarly, Android consists of the ART virtual machine, Google’s support

14

libraries, as well as several hundred of third party components such as open source libraries

or vendor specific code. While Google has been increasing efforts to vet open this code from

vulnerabilities through, e.g., OSS-Fuzz [40, 41], code in these repositories does not always

go through a rigorous code review process. All these components in the Android source

tree may therefore contain vulnerabilities that jeopardise the security of Android systems.

Given the vast amount of code and high complexity, fuzzing is a simple yet effective way of

uncovering unknown vulnerabilities [42, 43]. Discovering and fixing new vulnerabilities is

a crucial factor in improving the overall security and reliability of Android.

Automated generational grey-box fuzzing, e.g., based on AFL [44] or any of the more

recent advances over AFL such as AFLfast [45], AFLGo [46], collAFL [47], Driller [48],

VUzzer [49], T-Fuzz [4], QSYM [50], or Angora [51] are highly effective at finding bugs in

program by mutating inputs based on execution feedback and code coverage [5]. Programs

implicitly generate legal complex program state as fuzzed input covers different program

paths. Illegal paths quickly result in an error state that is either gracefully handled by the

program or results in true crash. Coverage is therefore an efficient indication of fuzzed

program state.

While such greybox-fuzzing techniques achieve great results regarding code coverage

and number of discovered crashes in programs, their effectiveness does not transfer to

fuzzing libraries. Libraries expose an API without dependency information between indi-

vidual functions. Functions must be called in the right sequence with the right arguments to

build complex shared state that is shared between calls. These implicit dependencies be-

tween library calls are often mentioned in the documentation but are generally not formally

specified. Calling random exported functions with random arguments is unlikely to result

in an efficient fuzzing campaign. For example, libmpeg2 requires an allocated context that

contains the current encoder/decoder configuration and buffer information. This context

is passed to each subsequent library function. Random fuzzing input is unlikely to create

this context and correctly pass it to later functions. Quite the contrary, random fuzzing will

generate large amounts of false positive crashes when library dependencies are not enforced,

e.g., the configuration function may set the length of the allocated decode buffer in the

15

internal state that is passed to the next function. A fuzzer that is unaware of this length field

may supply a random length, resulting in a spurious buffer overflow. Alternatively, “invalid

state checks” in library functions will likely detect dependency violations and terminate

execution early, resulting in a waste of fuzzing performance. To effectively fuzz libraries, a

common approach is therefore to manually write small programs which build up state and

call API functions in a “valid” sequence. This allows the fuzzer to build up the necessary

state to trigger functionality deep in the library.

libFuzzer [52] facilitates library fuzzing through the help of an analyst. The analyst

writes a small “fuzzer stub”, a function that (i) calls the required library functions to set

up the necessary state and (ii) leverages random input to fuzz state and control-flow. The

analyst must write such a stub for each tested component. Determining interesting API calls,

API dependencies, and fuzzed arguments is at the sole discretion of the analyst. While this

approach mitigates the challenge of exposing the API, it relies on deep human knowledge

of the underlying API and its usage. Hence, scaling this approach to many libraries is

infeasible.

We follow the intuition that existing code on the system utilizes the library in many

different aspects. Abstracting the graph of possible library dependencies allows us to infer

the complex API. We then test different aspects of the API by automatically generating

custom fuzzer stubs based on the inferred API. The automatically generated fuzzers will

execute sequences of library calls that are similar to those in real programs without the

“bloat” of real programs, removing any computation that is not necessary yet still building

complex state to enable efficient fuzzing of complex library functions. These fuzzers will

achieve deep coverage, improving over fuzzers written by an analyst as they consider real

deployments and API usage.

On one hand, many libraries contain test files that exercise simple aspects of the library.

On the other hand, programs that utilize a library’s API build up deep state for certain

functions. Leveraging only individual test cases for fuzzing is often too simplistic and

building on complex programs results in low coverage as all the program functionality is

executed alongside the target library. Test cases are too simple to expose deep bugs and full

16

Library
Consumers

Target
Library

Generated
LibFuzzer

API Inference

A2DG Construction

Figure 2.1.: The main intuition behind FuzzGen. To synthesize a fuzzer, FuzzGen performs
a whole system analysis to extract all valid API interactions.

programs are too complex. Having an automated mechanism to build arbitrarily complex test

cases of deep API interactions with the corresponding program state allows us to sufficiently

test complex API functions. We observe that the set of all test cases and programs which

use a library covers all API relevant invocations and contains code to set up the necessary

complex state to execute API calls. The vast amount of different library usages implicitly

defines an Abstract API Dependence Graph (A2DG). Based on this A2DG it is possible to

automatically create fuzzer stubs that test different aspects of a library (Figure 5.1).

To address the challenges of fuzzing complex libraries, we propose FuzzGen. FuzzGen

consists of three parts: an API inference, a mechanism that builds an A2DG, and a fuzzer

generator that leverages the A2DG to produce a custom libFuzzer “fuzzer stub”. The API

inference component builds an A2DG based on all test cases and programs on a system

17

that use a given library. The A2DG is a graph that records all API interactions including

parameter and parameter flow, i.e., what kind of parameter ranges are supported and possible

interactions thereof. Our analysis therefore infers how a library is used and constructs

a generic A2DG based on those interactions. The fuzzer generator then creates fuzzer

stubs that build up complex state, leveraging fuzz input to trigger faults deep in the library.

FuzzGen automates the manual process of the analyst in creating custom-tailored fuzzers

for libraries and specific library functions. The key contribution of FuzzGen is an automatic

way to create new libFuzzer [52] stubs, enabling broad and deep library fuzzing.

FuzzGen performs a whole system analysis, iterating over all programs and libraries

that use the target library to infer the A2DG. Then it automatically generates fuzzer

stubs (ranging from 1, 000 to 10, 000 LoC) that encodes the A2DG and leveraging random

input from libFuzzer to fuzz individual API components. We build FuzzGen on top of

LLVM/Clang [53] and evaluate it on the Android AOSP framework [54].

Our preliminary work found CVE-2017-13187 [55] and –duplicate– CVE-2017-0858 [56],

a high (and a medium, respectively) severity vulnerabilities in Android media framework.

Finding and eliminating vulnerabilities in these components is crucial to prevent potential

attacks such as StageFright [57] exploits. Furthermore, FuzzGen discovered 10 new vulner-

abilities in Android native libraries.The discovered bugs cover a wide range from timeouts,

to stack buffer overflows, as shown in Section 3.6.

Overall we make the following contributions:

• We propose a whole system analysis that infers valid API interactions for a given

library based on existing programs and libraries that use the target library – abstracting

the information into an Abstract API Dependence Graph (A2DG);

• Based on the A2DG we develop a mechanism that creates libFuzzer functions that

construct complex program state to expose vulnerabilities in deep library functions,

fuzzers are generated without human interaction;

18

1 /* 1. Obtain available number of memory records */
2 iv_num_mem_rec_ip_t num_mr_ip = { ... };
3 iv_num_mem_rec_op_t num_mr_op = { ... };
4 impeg2d_api_function(NULL, &num_mr_ip, &num_mr_op);
5

6 /* 2. Allocate memory & fill memory records */
7 nmemrecs = num_mr_op.u4_num_mem_rec;
8 memrec = malloc(nmemrecs * sizeof(iv_mem_rec_t));
9

10 for (i=0; i<nmemrecs; ++i)
11 memrec[i].u4_size = sizeof(iv_mem_rec_t);
12

13 impeg2d_fill_mem_rec_ip_t fill_mr_ip = { ... };
14 impeg2d_fill_mem_rec_op_t fill_mr_op = { ... };
15 impeg2d_api_function(NULL, &fill_mr_ip, &fill_mr_op);
16

17 nmemrecs = fill_mr_op.s_ivd_fill_mem_rec_op_t
18 .u4_num_mem_rec_filled;
19

20 for (i=0; i<nmemrecs; ++i)
21 memrec[i].pv_base = memalign(memrec[i].u4_mem_alignment,
22 memrec[i].u4_mem_size);
23

24 /* 3. Initalize decoder object */
25 iv_obj_t *iv_obj = memrec[0].pv_base;
26 iv_obj->pv_fxns = impeg2d_api_function;
27 iv_obj->u4_size = sizeof(iv_obj_t);
28

29 impeg2d_init_ip_t init_ip = { ... };
30 impeg2d_init_op_t init_op = { ... };
31 impeg2d_api_function(iv_obj, &init_ip, &init_op);
32

33 /* 4. Decoder is ready to decode headers/frames */

Figure 2.2.: Code snippet to initialize an MPEG2 decoder object, low level details such as
struct field initializations, variable declarations, or casts are omitted for brevity.

• Evaluation of our prototype on Android AOSP demonstrates the effectiveness of

our technique. Generating fuzzers for 5 libraries, FuzzGen discovered 10 bugs.

Furthermore, the generated fuzzers achieve 60.63% code coverage on average.

A note on responsible disclosure: we work with the Google Android security team. All

bugs have been responsibly disclosed, several of them have been reproduced and fixes have

been pushed to the corresponding projects. The source code of our prototype will be made

open source at the publication of this paper to allow other researchers to reproduce our

results and to extend our automatic fuzzer generation technique.

2.2 The case for API-aware fuzzer construction

19

Writing an effective API-aware fuzzer requires an in-depth understanding of the target

library and pinpointing the interesting components for fuzzing. Consider the libmpeg2

library which provides, e.g., encoding and decoding functions for MPEG2 video streams.

The library contains several functions to build up a per-stream context that other functions

take as a parameter. This approach of encapsulating state is common in libraries. Figure 2.2

shows a code snippet for properly initializing an MPEG2 decoding object. A fully initialized

decoder object is required to decode a video frame. Without this decoder object, frames

cannot be decoded.

While a target-agnostic fuzzer (invoking all functions with random arguments in a ran-

dom order) may find simple issues, deep bugs will likely be missed due to their dependence

on complex state. Furthermore, naive fuzzers are prone to false positives due to lack of API

awareness. Consider a fuzzer that targets frame decoding. If the context does not contain a

valid length with a pointer to an allocated decode buffer then the fuzzer will trigger a false

positive crash when the decoded frame is written to unallocated memory. However, this is

not a bug in the decode function but simply improper initialization that may not happen in

reality. Orthogonally, by supplying random values to arguments, such as function pointers

or sizes, a fuzzer may trigger memory errors. These crashes do not correspond to actual

bugs or vulnerabilities as such an illegal context cannot be generated through any possible

execution of a benign use of the library. Inferring API dependencies (such as generating a

common context, initializing the necessary buffers, and preparing it for usage) is challenging

because dependencies are not encoded as part of the library specification.

However, by observing a module that utilizes libmpeg2 (i.e., a library consumer), we

could observe the dependencies between the API calls and infer the correct order of context

initialization calls. Such dependencies come in the form of (a) control flow dependencies

and (b) shared arguments (variables that are passed as arguments in more than one API

call). Furthermore, arguments that hold the state of the library (e.g., the context), should

not be fuzzed, but instead they should be passed, without intermediate modification, from

one call to the next. Note that this type of information is usually not formally specified. The

libmpeg2 library exposes a single API call, impeg2d_api_function, that dispatches

20

to a large set of internal API functions. However it does not make the state machine of API

dependencies explicit in code.

2.3 Background and Related Work

Early fuzzers focuses on generating random parameters to test resilience of code against

illegal inputs. Different forms of fuzzers exist depending on how the generate input, handle

crashes, or process information. Generational fuzzers, e.g., PROTOS [58], SPIKE [59], or

PEACH [60], generate inputs based on a format specification, while mutational fuzzers, e.g.,

AFL [44], honggfuzz [61], or zzuf [62], synthesize inputs through random mutations on

existing inputs, according to some criterion (e.g., code coverage). Typically, increasing code

coverage and number of unique crashes is correlated with fuzzer effectiveness.

Mutational fuzzers have become the de-facto standard for fuzzing due to their efficiency

and ability to adapt input. The research community developed additional metrics to classify

fuzzers, based on their “knowledge” about the target program. Blackbox fuzzers, have no

information about the program under test. That is, they treat all programs equally, which

allows them to target arbitrary applications. Whitebox fuzzers are aware of the program

that they test and are target-specific. They adjust inputs based on some information about

the target program, targeting more “interesting” parts of the program. Although whitebox

fuzzers are often more effective in finding bugs (as they focus on a small part of the program)

and therefore have lower complexity, they require manual effort and analysis and allow only

limited reuse across different programs (the whitebox fuzzer for program A cannot be used

for program B). Greybox fuzzers attempt to find a balance between blackbox and whitebox

fuzzing by inferring information about the program and feeding that information back to

guide the fuzzing process.

Code coverage is often used in greybox fuzzers as a criterion if an input is worth to

evaluate further. The intuition is that the more code a given input can reach the more likely

is to expose bugs that reside deep in the code. Fuzzers are limited by the so-called coverage

wall. Either due to limitations of the model, input generation, or other constraints, the

21

fuzzer stops making progress and no longer increases coverage. Any newly generated input

will only cover code that has already been tested. Several recent extensions of AFL have

tried to address the coverage wall using symbolic or concolic execution techniques [2]

and constraint solving. Driller [48] detects if the fuzzer no longer increases coverage and

leverages program tracing to collect constraints along paths. Driller then uses a constraint

solver to construct inputs that trigger new code paths. Driller works well on CGC binaries

but the constraint solving cost can become high for larger programs. VUzzer [49] leverages

static and dynamic analysis to infer control-flow of the application under test, allowing it to

generate application-aware input. T-Fuzz [4] follows a similar idea but instead of adding

constraint solving to the input generation loop, it rewrites the binary to bypass hard checks.

If a crash is found in the rewritten binary, constraint solving is used to see if a crash along

the same path can be triggered in the original binary. FairFuzz [63] increases code coverage

by prioritizing inputs that reach “rare” (i.e., triggered by very few inputs) areas of the

program, preventing mutations on checksums or strict header formats. FuzzGen addresses

the coverage wall by generating multiple different fuzzers with different API interactions.

The A2DG allows FuzzGen to quickly generate alternate fuzz drivers that explore other

parts of the library under test.

Although the aforementioned fuzzing approaches are quite effective in exposing un-

known vulnerabilities, they assume that the target program has a well defined interface to

supply a random input and observe for crashes. However, these methods cannot be extended

to deal with libraries. The major issue here is the interface diversity of the libraries. That

is, each library provides a different interface through its own set of exported API calls.

DIFUZE [64] was the first approach for interface-aware fuzzing of kernel drivers. Kernel

drivers follow a well-defined interface (through ioctl) allowing DIFUZE to reuse common

structure across drivers. FuzzGen on the other hand infers how an API is used from existing

use cases and generates fuzzing functions based on existing usage.

SemFuzz [65], used natural-language processing to process the CVE descriptions and

extract the location of the bug. Then it uses this information to synthesize inputs that target

this specific part of the vulnerable code.

22

Finally, evaluating a fuzzer is not a easy task and it has been shown [5] that all of

the existing experimental evaluations in fuzzing have problems, that in turn can result in

misleading results. To alleviate this problem, we follow the proposed guidelines [5] to

perform a precise and thorough evaluation.

Beside fuzzing, there are several approaches to infer API usage and specification. One

way to infer API specifications [66, 67] is through dynamic analysis. This approach collects

runtime traces from an application, analyzes objects and API calls and produces Finite

State Machines (FSMs) that describe valid sequences of API calls. However, the set of

API specifications is solely based on dynamic analysis. Producing rich execution traces

that utilize many different aspects of the library depends on the abilitiy to generate proper

inputs to the program. Similarly, API Sanitizer [68] finds violation of API usages. APISan

infers correct usages of an API from other uses of the API and ranks them probabilistically,

without relying on whole-program analysis. APISan leverages symbolic execution to create

a database of (symbolic) execution traces and statistically infers valid API usages. Although

powerful, APISan suffers from the limitations of symbolic execution. Furtherome, it is not

complete as it has false positives. SSLint [69] represents the SSL/TLS applications and

the correct API usage as graphs and leverages graph mining techniques to infer the correct

API interactions and misuses. MOPS [70] uses rules of safe programming and encodes

them as safety properties that used for source code auditing. Rieck et. al [71] present a

technique that mines common vulnerabilities from source code and represents them as a

code property graph. This representation eases modeling of vulnerability templates that

used against source code to find bugs.

2.4 Design

To synthesize customized fuzzer stubs for a library, FuzzGen requires both the library

and code that exercises the library (referred to as library consumer). FuzzGen leverages a

whole system analysis to infer the library API. The analysis detects all valid library usage,

e.g., valid sequences of API calls and possible argument ranges for each call. This additional

23

information is essential to create reasonable fuzzer stubs and is not available in the library

itself.

By leveraging real uses of API sequences, FuzzGen synthesizes fuzzer code that follows

valid API sequences, comparable to real programs. Based on the library usage, FuzzGen

explores code paths that are close to those that the attacker can trigger. Our analysis of

the usage of libraries allows FuzzGen to generate fuzzer stubs that are similar to what a

human analyst would generate after learning the API and learning how the API is used

in practice. FuzzGen improves over a human analyst in several ways: First it leverages

real-world usage and builds fuzzer stubs that are close to real API invocations; second, it is

complete and leverages all uses of a library on a system (compared to an analyst who may

forget some usage scenario of the library); and third, FuzzGen scales to full systems due to

its automation without requiring human interaction.

At a high level, FuzzGen consists of three distinct phases, as shown in Figure 5.1.

First, FuzzGen analyzes the target library and collects all code on the system that utilize

functions from this library to infer the basic API. Second, FuzzGen builds the Abstract API

Dependence Graph (A2DG), which captures all valid API interactions. Third, it synthesizes

fuzzer stubs based on the A2DG.

2.4.1 Inferring the library API

FuzzGen leverages the source files from the consumers to infer the library’s exported

API. First, the analysis enumerates all declared functions in the target library, Flib. Then,

it identifies all functions that are declared in all included headers of all consumers, Fincl.

Then, the set of potential API functions, FAPI is:

FAPI ← Flib ∩ Fincl (2.1)

Our analysis relies on the Clang framework during the library and consumer compilation

to extract this information. To deal with over-approximation of inferred library functions

(e.g., identification of functions that belong to another library that is used by the target

24

library), FuzzGen can apply progressive library inference. Iteratively compiling a test

program linked with the target library, we test each potential API function. If linking fails

we know that the function is not part of the library. Under-approximations are generally not

a problem as functions that are exported but never used in practice are not reachable through

attacker-controlled code.

2.4.2 Abstract API Dependence Graph (A2DG) construction

FuzzGen searches for library consumers that invoke API calls from the target library and

leverages them to infer valid API interactions. Essentially, it builds the abstract layout of any

program using the library’s API which is then used to construct fuzzer stubs following that

layout. Recall that FuzzGen fuzzer stubs try to follow an API flow similar to that observed

in real programs to build up complex state. FuzzGen fuzzer stubs allow some flexibility as

some API calls may execute in random order at runtime, depending on the fuzzer’s random

input. The aim of the A2DG is to expose the complicated interactions and dependencies

between API calls, allowing the fuzzer to satisfy these dependencies. For instance, the

A2DG exposes which functions are invoked first (initialization), which are invoked last (tear

down), and which are dependent to each other.

The A2DG encapsulates two types of information: control dependencies, and data

dependences. Control dependencies indicate how the various API calls should be invoked,

while data dependencies describe the potential dependencies between arguments and return

values in the API calls (e.g., if the return value of an API call is passed as an argument in a

subsequent API call).

The A2DG is a directed graph of API calls, similar to a coarse-grained Control-Flow

Graph (CFG) that expresses sequences of valid API calls in the target library. In addition,

edges are annotated with valid parameter ranges to further improve fuzzing effectiveness as

discussed in the following sections. Each node in the A2DG corresponds to a single call to

some API function, while each edge to the control flow between two API calls. The A2DG

encodes the control flow across the various API calls and describes which API calls are

25

(e
)

op
us
_d
ec
od
er
_c
tl

op
us
_d
ec
od
e op

us
_d
ec
od
e

op
us
_d
ec
od
er
_d
es
tro
y

op
us
_p
ac
ke
t_
ge
t_
ba
nd
w
id
th

op
us
_p
ac
ke
t_
ge
t_
nb
_c
ha
nn
el
s

op
us
_d
ec
od
er
_c
re
at
e

op
us
_g
et
_v
er
si
on
_s
tri
ng

op
us
_d
ec
od
er
_c
re
at
e

op
us
_g
et
_v
er
si
on
_s
tri
ng

op
us
_d
ec
od
e

op
us
_d
ec
od
er
_d
es
tro
y

op
us
_g
et
_v
er
si
on
_s
tri
ng

op
us
_d
ec
od
er
_c
tl

op
us
_d
ec
od
e op
us
_d
ec
od
e

op
us
_d
ec
od
er
_d
es
tro
y

op
us
_g
et
_v
er
si
on
_s
tri
ng

op
us
_p
ac
ke
t_
ge
t_
ba
nd
w
id
th

op
us
_p
ac
ke
t_
ge
t_
nb
_c
ha
nn
el
s

op
us
_d
ec
od
er
_c
re
at
e op
us
_d
ec
od
eop
us
_g
et
_v
er
si
on
_s
tri
ng

op
us
_g
et
_v
er
si
on
_s
tri
ng

P
ar
se
To
c

op
us
_p
ac
ke
t_
ge
t_
ba
nd
w
id
th

op
us
_p
ac
ke
t_
ge
t_
nb
_c
ha
nn
el
s

LL
V
M
Fu
zz
er
Te
st
O
ne
In
pu
t

P
ar
se
To
c

op
us
_d
ec
od
er
_c
re
at
e

op
us
_d
ec
od
er
_d
es
tro
y

op
us
_d
ec
od
er
_c
tl

op
us
_d
ec
od
e

op
us
_d
ec
od
e

(a
)

#1
: o
pu
s_
pa
ck
et
_g
et
_b
an
dw

id
th
, o
pu
s_
ge
t_
ve
rs
io
n_
st
rin
g

#2
: o
pu
s_
pa
ck
et
_g
et
_n
b_
ch
an
ne
ls
, o
pu
s_
ge
t_
ve
rs
io
n_
st
rin
g

#3
: o
pu
s_
de
co
de
r_
cr
ea
te

#4
: o
pu
s_
de
co
de
r_
ct
l,
op
us
_d
ec
od
er
_d
ec
od
e

#5
: o
pu
s_
de
co
de
r_
de
co
de

#6
: o
pu
s_
de
co
de
r_
de
co
de

#7
: o
pu
s_
de
co
de
r_
de
st
or
y

#8
: o
pu
s_
ge
t_
ve
rs
io
n_
st
rin
g

(c
)

(b
)

(d
)

Fi
gu

re
2.

3.
:T

he
co

m
pl

et
e

w
or

kfl
ow

of
Fu

zz
G

en
.F

ir
st

Fu
zz

G
en

st
ar

ts
w

ith
a

C
FG

(a
).

T
he

n
it

ex
tr

ac
ts

its
co

rr
es

po
nd

in
g
A

2
D
G

(b
).

O
n

(c
)i

s
an

ot
he

rA
2
D
G

fr
om

an
ot

he
re

xt
er

na
lm

od
ul

e.
T

he
tw

o
A

2
D
G

gr
ap

hs
ar

e
co

al
es

ce
d

to
ge

th
er

to
gi

ve
(d

).
Fi

na
lly

th
e

fin
al

fu
nc

tio
n

or
de

ri
s

sh
ow

n
in

(e
).

T
he

se
gr

ap
hs

ge
ne

ra
te

d
au

to
m

at
ic

al
ly

by
Fu

zz
G

en
.

26

reachable from a given API call. Figure 2.3 (a) shows an instance of the CFG from a libopus

consumer. The corresponding A2DG is shown in Figure 2.3 (b).

Building the A2DG is two step process. First, a set of basic A2DGs is constructed, one

A2DG for each root function in each consumer. Second, the A2DGs of all consumers are

coalesced into a single A2DG.

Constructing a basic A2DG. To build a basic A2DG, FuzzGen starts from the CFG of a

consumer (more specifically from the entry basic block of function) and iteratively removes

every basic block that does not contain any call instructions to an API call. When a

basic block calls a non API function, FuzzGen recursively calculates the A2DG for the

callee and the results are integrated with the caller’s A2DG. If the same function is invoked

multiple times, it is marked as a repeating function in the graph. The algorithm to create

the A2DG is shown in algorithm 1. A call stack prevents unbounded loops when analyzing

recursive functions. After A2DG construction, each node presents a single API call. The

A2DG allows FuzzGen to isolate the flows between API calls, and exposes their control

dependencies. Note that basic A2DG construction is a static analysis which results in

some over-approximation during CFG construction due to indirect function calls. FuzzGen

leverages an LLVM LTO analysis pass to extract this information.

Coalescing A2DG graphs. After generating basic A2DGs for each consumer, FuzzGen

merges all basic graphs into a single A2DG. Coalescing A2DGs is challenging task, as it

essentially “merges” distinct and different control flows. FuzzGen uses the following merge

algorithm:

FuzzGen selects any two A2DG graphs and tries to coalesce them together. This process

repeats until there are no two A2DG that can be coalesced together.

To coalesce two A2DGs they must have at least one common node. Two nodes are

“common” when they invoke the same API call, with the same arguments having the same

type (however they can have different attributes). FuzzGen starts from the root and selects

the first common node. Then, FuzzGen removes the node from one graph and migrates all

children (along with their sub trees) to the other A2DG, continuously merging common

27

Algorithm 1: Recursive A2DG construction algorithm. We use a call stack CS to
prevent unbounded recursions. CS is cleared before the first call to make_AADG.
The algorithm utilizes the LLVM-generated CFG. We assume that basic blocks do
not end with call instructions.

Input: Function F to start build A2DG
Output: The corresponding A2DG

1 Function make_AADG(Function F)
2 if F ∈ CS then return ∅ else CS ∪ {F}
3 GA2DG ← (VA2DG, EA2DG)
4 foreach basic block B ∈ CFGF do
5 u← ∅, VA2DG ∪ {u}, M [B]← u

6 Q← {entry_block(F)} . single entry point
7 while Q is not empty do
8 remove basic block B from Q
9 v ←M [B]

10 foreach call instruction ci ∈ B do
11 if ci.callee ∈ FAPI then
12 if v is empty then v ← ci
13 else
14 u← ci, VA2DG ∪ {u}, EA2DG ∪ {(u, v)}, v ← u

15 else
16 AADG′ ← make_AADG(ci)
17 sink ← ∅
18 VA2DG ∪ VA2DG′ ∪ {sink},
19 EA2DG ∪ EA2DG′

20 foreach leaf vl ∈ AADG′ do
21 EA2DG ∪ {(vl, sink)}
22 foreach root vr ∈ AADG′ do
23 EA2DG ∪ {(v, vr)}

24 foreach unvisited successor block Badj of B do
25 add Badj to Q
26 EA2DG ∪ {(M [B], M [Badj])}

27 . Drop empty nodes from AADG
28 foreach empty node v ∈ AADG do
29 foreach predecessor p of v do
30 foreach successor s of v do
31 EA2DG ∪ {(p, s)}

32 remove v and its edges from VA2DG

33 CS − {F}
34 return GA2DG

28

nodes. A common node is a requirement, as placing the nodes from the second A2DG at

random positions, will likely result in illegal target states. If there are no common nodes,

FuzzGen keeps the A2DGs separate, synthesizing two different fuzzers.

Figure 2.3 (d) shows an example of the A2DG produced after coalescing the two

A2DGs in Figure 2.3 (b) and (c). The nodes with function opus_decoder_destroy

are coalesced (as the argument is a handle, which has the same type), but other nodes like

opus_decoder_ctl are not coalesced as the arguments are different.

Our experiments showed that it may be feasible to coalesce twoA2DGswithout common

nodes, by backward-slicing and locating function usages that invoke the API call. We leave

this along with other heuristics to coalesce A2DGs into a single one, for future work.

Precision of A2DG construction. The current FuzzGen A2DG construction has two

sources of imprecision: the static analysis and the merging. First, the static analysis results

in an over-approximation of paths that may result in false positives due to illegal API

sequences that would not be observable in real programs. Second, the merging process may

over-eagerly merge two A2DGs with different or slightly different parameters, resulting in

illegal API sequences. We will discuss these sources of false positives in Section 3.8.

2.4.3 Argument flow analysis

To create effective fuzzers, the A2DG requires both control and data dependencies. So

far, the A2DG contains control dependencies. To construct the data dependencies between

API calls FuzzGen leverages two analyses: argument value-set inference (what values are

possible) and argument dependence analysis (how are individual variables reused).

Argument value-set inference. The goal of the argument value-set inference is to answer

two questions: which arguments to fuzz and how to fuzz these arguments. Supplying arbitrary

random values (i.e., “blind” fuzzing) to every argument imposes significant limitations both

in the efficiency and the performance of fuzzing. Contexts, handles, or file/socket descriptors

are examples that result in large numbers of false positives. Supplying random values for

29

a descriptor in an API call results in shallow coverage as there are sanity checks at the

beginning of the function call. Furthermore, some arguments present diminishing returns

when being fuzzed. Consider for instance an argument that is used to hold output (i.e., a

destination buffer), or an argument that is part of a switch statement. In both cases, a

fuzzer will waste cycles generating large inputs, where only a few values are meaningful.

To better illustrate this, consider a fuzzer for memcpy:

void *memcpy(void *dest, const void *src, size_t n);

Supplying arbitrary values to n makes it inconsistent with the actual size of src, which

results in a segmentation fault. However this crash does not correspond to a real bug.

Furthermore fuzzer invest many cycles generating random values for the dest argument,

which is never read by memcpy() 1.

Our analysis classifies arguments into two categories according to their type: primitive

arguments (e.g., char, int, float, or double) and composite arguments (e.g., pointers,

arrays, structs, function pointers). The transitive closure of composite arguments are a

collection of primitive arguments – pointers may have multiple layers (e.g., double indirect

pointers), structures may contain nested structures, arrays and so on – and therefore they

cannot be fuzzed directly. That is, they cannot be assigned a random (i.e., fuzz) value, upon

the invocation of the API call but require layout-aware construction. For instance, consider

an API call that takes a pointer to an integer as the first argument. Clearly, fuzzing this

argument results in segmentation faults, as the function attempts to dereference that (invalid)

pointer. Instead, the pointer should point to some integer (i.e., have a valid address). The

pointed-to address (i.e., the integer) can be safely fuzzed. FuzzGen performs a data-flow

analysis in the target library for every function for every argument, to infer the possible

values that an argument could get.

Argument dependence analysis. Data-flow dependencies are as important as control-

flow dependencies. A fuzzer must not only follow the intended sequence of API calls but

1 When source and destination arguments overlap, it may affect memcpy, but we do not consider these cases
here.

30

must also provide matching data flow. For example, after creating a context it must be

passed to the following API calls. Instead supplying an illegal (new) context would likely

result in a violation of a state check or in a spurious memory corruption.

The A2DG must therefore also encode data-flow dependencies. Data-flow dependencies

can be intra-procedural and inter-procedural. First, FuzzGen identifies data dependencies

through static per-function alias analysis of the code using libraries, tracking arguments and

return values across API calls. Static alias analysis has the advantage of being complete, i.e.,

allowing any valid data-flow combinations but comes at the disadvantage of imprecision.

For example, if two API calls both leverage a parameter of type struct libcontext

then our static analysis may be unable to disambiguate if the parameters point to the same

instance or to different instances. This over-approximation can result in spurious crashes.

FuzzGen leverages backward and forward slicing on a per-method basis to reduce the

imprecision due to basic alias analysis.

Second, FuzzGen identifies dependencies across functions: For each edge in the A2DG,

FuzzGen performs another data flow analysis for each pair of arguments and return values

to infer whether whether they are dependent on each other.

Two alternative approaches could either (i) leverage concrete runtime executions of

the example code which would result in an under-approximation with the challenge of

generating concrete input for the runtime execution or (ii) leverage an inter-function alias

analysis that would come at high analysis cost. Our approach works well in practice and we

leave exploration of alternate approaches to data-flow inference as future work.

The A2DG (i.e., API layout) exposes the order and the dependencies between the

previously discovered API calls. However, the arguments for the various API calls may

expose further dependencies. The task of this part is twofold: First, it finds dependencies

between arguments. For example, if an argument corresponds to a context that is passed

to multiple consecutive API calls it should likely not be fuzzed between calls. Second,

it performs backward slicing to analyze the data flow for each this argument. This gives

FuzzGen some indication on how to initialize arguments.

31

A
PI

In

fe
re

nc
e

In
te

rn
al

A

rg
um

en
t

Va
lu

e-
Se

t
In

fe
re

nc
e

A
rg

um
en

t
Va

lu
e-

Se
t

M
er

gi
ng

A
2 D

G

C
on

st
ru

ct
io

n

Ex
te

rn
al

A

rg
um

en
t

Sp
ac

e
In

fe
re

nc
e

D
ep

en
de

nc
e

A
na

ly
si

s

A
2 D

G
 C

oa
le

sc
in

g

Fu
zz

er

Sy
nt

he
si

s

Fu
zz

G
en

 P
re

pr
oc

es
so

r

Li
br

ar
y

C
on

su
m

er
s

Li
bF

uz
ze

r
So

ur
ce

Ta
rg

et

Li
br

ar
y

A
2 D

G

Fl
at

te
ni

ng

Fa
ilu

re
 H

eu
ris

tic
s

Fi
gu

re
2.

4.
:F

uz
zG

en
im

pl
em

en
ta

tio
n

ov
er

vi
ew

.

32

2.4.4 Fuzzer stub synthesis

Finally, FuzzGen creates fuzzer stubs for the different API calls and its arguments

through the now complete A2DG. An important challenge when synthesizing the fuzzer

stubs is to trade-off between depth and breadth of the A2DG exploration. For example, due

to loops, a fuzzer stub could continuously call the same API function without making any

(real) fuzzing progress.

Instead of generating hundreds (or thousands) of fuzzer stubs for each A2DG we create

a single stub that leverages the fuzzer’s entropy to traverse the A2DG. At a high level, we

create a stub that encodes all possible paths (to a certain depth) through the A2DG. The

first bits of the fuzzer input encode the path through the API calls of the A2DG. Note

that FuzzGen only encodes the sequence of API calls through the bits, not the complete

control flow through the library functions themselves. The intuition is that an effective

fuzzer will “learn” that if certain input encodes an interesting path, mutating later bits to

explore different data-flow along that path. As soon as the path is well-explored, the fuzzer

will flip bits to follow an alternate path.

2.5 Implementation

Our open source prototype is written in about 18,000 lines of C++ code, consisting

of LLVM/Clang [53] passes that implement the analyses and the corresponding plumb-

ing to generate the fuzzers. To maximize bug finding effectiveness, FuzzGen generated

fuzzers leverage the libFuzzer [52] engine and fuzzer/library are compiled with Address

Sanitizer [72].

FuzzGen starts with a target library and performs a whole system analysis to discover all

consumers of the library. For Android, we leverage the AOSP distribution. The library and

all consumers are then compiled to LLVM bitcode as our passes work on top of LLVM IR.

Figure 2.4 shows a high level overview of the different FuzzGen phases.

The output of FuzzGen is a collection (one or more) of C++ source files. Each file is a

fuzzer stub that utilizes libfuzzer [52] to fuzz the target library.

33

Target API inference. FuzzGen infers the library API by intersecting the functions that

are implemented in the target library and those that are declared in the header files of the

consumers.

A2DG construction. FuzzGen constructs a per-consumer A2DG by filtering out all non-

API calls from each consumer’s CFG, starting from the root functions. For program

consumers, the root function is main. To support libraries as consumers, root functions

are functions with no incoming edges (using a backwards data-flow analysis to reduce the

imprecision through indirect control-flow transfers).

Internal Argument Value-Set inference. Based on a per-function data-flow analysis, we

define the possible values and their types for the function arguments. FuzzGen assigns

different attributes to each argument based on these observations. These attributes allow the

fuzzer to better explore the data space of the library. Note that this process is imprecise due

to aliasing. Table 2.1 shows the set of possible attributes. For example, if an argument is only

used in a switch statement, we can encode the set of predefined values. Similarly, if the first

access to an argument is a write, the argument is used to output information. Arguments that

are not modified (such as file descriptors or buffer lengths) receive the invariant attribute.

External Argument Value-Set inference. Complementing the internal argument value-

set inference, we perform a backward slice from each API call through all consumers,

assigning the same attributes to the arguments.

Argument Value-Set Merging. Due to imprecision in the analysis or potential misuses

of the library, the attributes of the arguments may differ. We need to carefully consolidate

the different attributes for each argument when merging the attributes. Generally, we

prefer the external arguments as they provide real use-cases of the function. If we discover

internal assignments that give us concrete values, we use those to complement the externally

observed values. Value-set merging is based on heuristics and may be adjusted in future

work.

34

Table 2.1.: Set of possible attributes inferred during the argument value-set analysis.

Attribute Description
dead Argument is not used
invariant Argument is not modified
predefined Argument takes a constant value from a set
random Argument takes any (random) value
array Argument is an array (pointers only)
array size Argument represents an array size
output Argument holds output (destination buffer)
by value Argument is passed by value
NULL Argument is a NULL pointer
function pointer Argument is a function pointer
dependent Argument is dependent on another argument

Dependence analysis. Knowing the possible values for each argument is not enough, the

fuzzer must additionally know when to reuse the same variable across multiple functions.

The dependence analysis infers when to reuse variables and when to create new ones between

function calls. FuzzGen performs a per-consumer data-flow analysis using precise intra-

procedural and coarse-grained inter-procedural tracking to connect multiple API calls. While

a coarse-grained inter-procedural analysis may result in imprecision, it remains tractable and

scales to large consumers. The analysis records any data flow between two API functions in

the A2DG. Similarly to other steps, aliasing may lead to further imprecision.

Failure Heuristics. To handle some corner cases, FuzzGen uses a heuristic to discard

error paths and dependencies. Many libraries contain ample error checking. Arguments

are checked between API calls and, if an error is detected, the program signals an error.

The argument analysis will detect theses checks as argument constraints. Instead of adding

these checks to the A2DG, we discard them. FuzzGen detects functions that terminate the

program or pass on errors and starts the detection from there.

A2DG Coalescing. After initial A2DG construction, each consumer results in a set of

at least one A2DG. To create fuzzers that explore more state, FuzzGen tries to coalesce

35

different A2DG. Starting from an A2DG node where an API call shares the exact same

argument types and attributes, FuzzGen continuously merges the nodes or adds new nodes

that are different. If the two graphs cannot be merged, i.e., there is a conflict for an API call

then FuzzGen returns two A2DGs. If desired, the analyst can override merging policies

based on the returned A2DGs.

A2DG Flattening. So far, the A2DG may contain complex control flow and loops. To

create simple fuzzers, we “flatten” the A2DG before synthesizing a fuzzer. Our flattening

heuristic is to traverse the A2DG and to visit each API call at least once by removing

backward edges (loops) and then applying a (relaxed) topological sort on the acyclic A2DG

to find a valid order for API calls. While a topological sort would provide a total order of

functions (and therefore result in an overly rigid fuzzer), we relax the sorting. At each step

our algorithm removes all API functions of the same order and places them in a group of

functions that may be called in random order.

Fuzzer Synthesis. Based on a flattened A2DG, FuzzGen translates nodes into API calls

and lays out the variables according to the inferred data flow. The fuzzer leverages some

fuzz input to decode a concrete sequence for each group of functions of the same order,

resulting in a random sequence at runtime. Before compiling the fuzzer, FuzzGen must also

include all the necessary header files. During the consumer analysis, FuzzGen records a

dependence graph of all includes and, again, uses a topological sort to find the correct order

for all the header files.

FuzzGen Preprocessor. The source code to LLVM IR translation process is lossy. To

include information such as header declarations, dependencies across header files, pointer

arguments, array types, argument names, and struct names we build a FuzzGen preprocessor

that records this information for our analysis.

36

2.6 Evaluation

Evaluating fuzzing is challenging due to its inherent non-determinism. Even similar

techniques may exhibit vastly different performance characteristics due to the randomness

in input generation. Hicks. et al [5] set out guidelines and recommendations on how to

properly compare different fuzzing techniques. Key to a valid comparison are a sufficient

number of test runs to assess the distribution using a statistical test, a sufficient length for

each run, and standardized seeds.

Following these guidelines, we run our fuzzers four (4) times each, with twelve (12)

hour timeouts. As the results from a single run can be misleading, we perform a statistical

test to ensure our results are significant. During our evaluation we observed that after few

hours coverage stabilizes, and any further changes are small (see Figure 2.5). Therefore

setting longer timeouts does not have a large effect on the results.

The effectiveness of a fuzzer depends on the number of discovered bugs. However,

code coverage is a complementing metric that reflects a fuzzer’s effectiveness to generate

inputs that cover large portions of the program. Performance is an orthogonal factor as more

executed random tests broadly increase the chances of discovering a bug.

Due to the lack of extensive previous work on previous library fuzzing, we cannot

compare FuzzGen to other automatic library fuzzers. As mentioned in Section 3.1, the

primary method for library fuzzing is to (manually) write a fuzzer stub that leverages the

libFuzzer [52] engine. We evaluate our FuzzGen prototype on Android and we compare

it against libFuzzer stubs written by a human analyst. A second method, is to find a

library consumer (which is a standalone application) and use any of the established fuzzing

techniques. We forfeit the second method as the selection of the standalone application will

be arbitrary and highly influence the results. There is no good metric on how an analyst

would select the “best” standalone application.

37

2.6.1 Consumer Ranking

A key question when synthesizing fuzzers is how to select consumers and which con-

sumers to select. Fuzzers based on more consumers tend to include more functionality with

new API calls and transitions between API functions. These new potential API transitions

increase the complex search space. An efficient fuzzer must balance the amount of API calls

and the underlying complexity, i.e., how much state should be constructed before fuzz input

is injected into the process or how many API calls should be used in a single fuzzer to target

a particular aspect of the library. During our evaluation we discovered that some consumers

unnecessarily increase the complexity of the A2DG without increasing the API diversity or

covering new functionality. Restricting the analysis to a few consumers likely results in a

more representative A2DG. Too many consumers will simply blow up A2DG complexity

without resulting in more interesting paths. The hard question is which consumers will

provide a representative set of API calls?

We rank the “quality” of consumers (from a fuzzer perspective) and create fuzzers from

high quality consumers. Our intuition is that the number of API calls per lines of consumer

code (i.e., the fraction of API calls in a consumer) selects consumers that have a relatively

high usage of the target API. Based on this simple heuristic we include and merge up to four

consumers during the FuzzGen construction. We do not claim that our heuristic is superior

over other heuristics. It merely selects the consumers that frequently use the target API

for fuzzer generation. In future work we plan to explore other heuristics or even random

selections of consumers to construct A2DGs. Formally, our heuristic is called consumer

density, Dc, and defined as follows:

Dc ←
distinct API calls

Total lines of real code
(2.2)

2.6.2 Measuring code coverage

As stated at the beginning of this section, code coverage is important for fuzzer evaluation.

Code coverage measures the amount of code executed when the program runs on a given

38

input. There are several techniques that measure code coverage at a different levels of

granularity (instruction, basic block, edge, function, and so on), but the most widely deployed

approach is to measure coverage at the edge level (both AFL and libFuzzer utilize it). The

advantage of edge coverage compared to statement coverage is that it measures edge

transitions, i.e., a loop that contains multiple break statements may have full statement

coverage but not every break statement may have been executed.

For our evaluation, we leverage SanitizerCoverage [73], a feature that is available in

Clang. During compilation, SanitizerCoverage adds instrumentation functions between CFG

edges to trace Program Counters (PCs) during program execution. To optimize performance

(an important factor for fuzzing), SanitizerCoverage does not add instrumentation functions

on every edge as many edges are considered redundant. Therefore the total number edges

that are available for instrumentation during fuzzing do not correspond to the total number

of edges in the CFG.

2.6.3 Android evaluation

To evaluate FuzzGen, we select a set of 5 widely deployed codec libraries to fuzz. There

are two main reasons for selecting codec libraries. First, codec libraries have a broad

attack surface as they can be reached from web browsers, apps, or even baseband (through

Multimedia Messaging Service, or MMS for short) as demonstrated in StageFright [57]

attacks. Second, codec libraries must support a wide variety of encoding formats. Thus, they

consist of complex (parsing) code which is likely to contain more bugs and vulnerabilities.

Table 2.2 shows the libraries that we used in the evaluation. One thing worth mentioning

is that libhevc, libavc and libmpeg2 libraries have a single API call (see Figure 2.2 for

an example) that acts as a dispatcher to a large set of internal functions. To select the

appropriate operation, program initializes a command field of a special struct which is

passed to the function.

Although it is feasible to run fuzzers such as AFL on Android and fuzz StageFright

framework [74, 75, 76], this part focuses on libFuzzer and edge coverage. To compare

39

Ta
bl

e
2.

2.
:

C
od

ec
L

ib
ra

ri
es

an
d

C
on

su
m

er
s

us
ed

fo
re

va
lu

at
io

n.
L

ib
ra

ry
In

fo
rm

at
io

n:
Sr

c
Fi

le
s=

N
um

be
ro

fs
ou

rc
e

fil
es

,T
ot

al
L

oC
=

To
ta

ll
in

es
of

co
de

(w
ith

ou
tc

om
m

en
ts

an
d

bl
an

k
lin

es
),

Fu
nc

tio
ns

=
N

um
be

ro
ff

un
ct

io
ns

fo
un

d
in

th
e

lib
ra

ry
,A

PI
=

N
um

be
r

of
A

PI
fu

nc
tio

ns
.

C
on

su
m

er
In

fo
rm

at
io

n:
To

ta
l=

To
ta

ln
um

be
ro

f
lib

ra
ry

co
ns

um
er

s
on

th
e

sy
st

em
,U

se
d

=
L

ib
ra

ry
co

ns
um

er
s

in
cl

ud
ed

in
th

e
ev

al
ua

tio
n,

To
ta

lL
oC

=
To

ta
ll

in
es

of
co

de
of

al
ll

ib
ra

ry
co

ns
um

er
s

(w
ith

ou
tc

om
m

en
ts

an
d

bl
an

k
lin

es
),

Av
g
D
c

=
A

ve
ra

ge
co

ns
um

er
de

ns
ity

,U
se

d
A

PI
=

N
um

be
ro

fA
PI

fu
nc

tio
ns

us
ed

in
th

e
co

ns
um

er
s.

Fi
na

lA
2
D
G

:T
ot

al
nu

m
be

ro
fn

od
es

an
d

ed
ge

s
in

th
e

fin
al
A

2
D
G

.

L
ib

ra
ry

In
fo

rm
at

io
n

C
on

su
m

er
In

fo
rm

at
io

n
Fi

na
lA

2
D
G

N
am

e
Ty

pe
Sr

c
Fi

le
s

To
ta

lL
oC

Fu
ct

io
ns

A
PI

To
ta

l
U

se
d

To
ta

lL
oC

Av
g
D
c

U
se

d
A

PI
N

od
es

E
dg

es
lib

he
vc

vi
de

o
30

3
11

30
49

31
4

1
2

2
38

80
0,

00
2

1
29

58
lib

av
c

vi
de

o
19

0
83

94
2

58
1

1
2

2
40

64
0,

00
2

1
29

53
lib

m
pe

g2
vi

de
o

11
8

19
82

8
17

9
1

2
2

42
30

0,
00

1
1

30
56

lib
op

us
au

di
o

31
5

50
98

3
27

6
65

23
4

10
79

0,
07

4
12

24
30

lib
gs

m
sp

ee
ch

41
61

45
31

8
9

4
39

6
0,

06
0

7
57

88

40

Ta
bl

e
2.

3.
:

R
es

ul
ts

fr
om

fu
zz

er
ev

al
ua

tio
n

on
co

de
c

lib
ra

ri
es

.W
e

ru
n

ea
ch

fu
zz

er
4

tim
es

an
d

w
e

pr
ov

id
e

st
at

is
tic

al
nu

m
be

rs
.T

ot
al

L
oC

=
To

ta
ll

in
es

of
fu

zz
er

co
de

,E
dg

e
C

ov
er

ag
e
%

=
ed

ge
co

ve
ra

ge
(m

ax
im

um
co

va
ra

ge
fr

om
be

st
ru

n,
av

er
ag

e
co

ve
ra

ge
fr

om
al

lr
un

s,
an

d
co

ve
ra

ge
st

an
da

rd
de

vi
at

io
n)

,B
ug

sf
ou

nd
=

N
um

be
ro

ft
ot

al
an

d
un

iq
ue

bu
gs

fo
un

d,
E

xe
c/

Se
c

=
A

ve
ra

ge
ex

ec
ut

io
ns

pe
r

se
co

nd
(f

ro
m

al
lr

un
s)

,D
iff

er
en

ce
=

T
he

di
ff

er
en

ce
be

tw
ee

n
Fu

zz
G

en
an

d
m

an
ua

lf
uz

ze
rs

(u
ni

qu
e

bu
gs

an
d

m
ax

im
um

ed
ge

co
ve

ra
ge

).
*T

he
ex

ec
ut

io
ns

pe
rs

ec
on

d
ar

e
to

o
lo

w
be

ca
us

e
al

lo
ft

he
91

bu
gs

w
er

e
tim

eo
ut

s.

L
ib

ra
ry

M
an

ua
lf

uz
ze

r
in

fo
rm

at
io

n
Fu

zz
G

en
fu

zz
er

in
fo

rm
at

io
n

D
iff

er
en

ce
To

ta
l

L
oC

E
dg

e
C

ov
er

ag
e

(%
)

B
ug

sF
ou

nd
E

xe
c/

se
c

To
ta

l
L

oC
E

dg
e

C
ov

er
ag

e
(%

)
B

ug
sF

ou
nd

E
xe

c/
se

c
C

ov
B

ug
s

M
ax

Av
g

St
d

To
ta

l
U

ni
qu

e
M

ax
Av

g
St

d
To

ta
l

U
ni

qu
e

lib
he

vc
30

8
54

.9
2

52
.3

4
3.

20
12

46
10

15
9

11
70

70
.3

4
63

.7
1

5.
39

22
92

4
23

5
+1

5.
42

-6
lib

av
c

30
6

45
.5

1
16

.0
7

21
.8

5
91

1
*6

11
55

70
.2

3
66

.6
0

3.
09

0
0

32
7

+2
4.

72
-1

lib
m

pe
g2

45
7

49
.8

5
47

.4
4

3.
68

19
78

6
25

12
04

56
.6

5
55

.5
1

1.
64

29
01

3
26

+6
.8

0
-3

lib
op

us
12

5
15

.9
7

15
.8

8
0.

07
0

0
20

8
62

4
38

.5
7

33
.7

8
3.

28
48

2
10

2
+2

2.
60

+2
lib

gs
m

12
1

67
.2

0
67

.2
0

0
0

0
15

16
9

49
0

75
.5

5
75

.5
5

0
6

1
15

3
+8

.3
5

+1

41

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr
Time (in hours)

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
de

 C
ov

er
ag

e
(in

 e
dg

es
)

Manual Fuzzer
FuzzGen Fuzzer
Total Coverage

Figure 2.5.: Code coverage over time for libhevc. The green line shows the total number of
basic blocks in the library. The blue line shows the maximum edge coverage from manual
fuzzers and the orange line shows the maximum edge coverage from FuzzGen fuzzers.

FuzzGen, we manually analyzed each library and we wrote fuzzer stubs for each (except

for libopus, as it already provided a fuzzer in the test directory). Some libraries such as

libmpeg2 have complicated interface (see Section 2.2), so it took us several weeks to write

all fuzzers. Orthogonally, FuzzGen takes at most 5 minutes to generate a fuzzer given the

LLVM IR of the library and the consumers.

Table 2.3 shows the results from fuzzing execution. The first observation, is that manual

fuzzers are smaller in size as they target a specific part of the library (e.g., decoding routines).

Table also reflects this statement, as the manual fuzzer are more targeted and can expose

more bugs compared to FuzzGen fuzzers. On the other hand, FuzzGen fuzzers are broader

and achieve a higher code coverage as they encode more API interactions. This however

imposes a performance overhead, as it reduces the executions per second.

To get a better intuition on the evolution of the fuzzing process, we visualize the edge

coverage over time as shown in Figure 2.5, Figure 2.6, Figure 2.7, Figure 2.8 and Figure 2.9.

As you can see, in all cases FuzzGen fuzzers achieve higher coverage. A case that is worth

to mention is the libopus (Figure 2.8) library where the total coverage stays low (38.57%).

42

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr
Time (in hours)

0

1000

2000

3000

4000

5000

6000

7000

Co
de

 C
ov

er
ag

e
(in

 e
dg

es
)

Manual Fuzzer
FuzzGen Fuzzer
Total Coverage

Figure 2.6.: Code coverage over time for libavc.

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr
Time (in hours)

0

500

1000

1500

2000

2500

Co
de

 C
ov

er
ag

e
(in

 e
dg

es
)

Manual Fuzzer
FuzzGen Fuzzer
Total Coverage

Figure 2.7.: Code coverage over time for libmpeg2.

This is because the selected consumers focus on the decoding part of libopus. You can also

infer from Table 2.2, as fuzzer includes only 12 API calls while API exposes 65 functions.

However a different selection of library consumers that utilize more aspects of the library

43

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr
Time (in hours)

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
de

 C
ov

er
ag

e
(in

 e
dg

es
)

Manual Fuzzer
FuzzGen Fuzzer
Total Coverage

Figure 2.8.: Code coverage over time for libopus.

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10hr 11hr 12hr
Time (in hours)

0

200

400

600

800

1000

Co
de

 C
ov

er
ag

e
(in

 e
dg

es
)

Manual Fuzzer
FuzzGen Fuzzer
Total Coverage

Figure 2.9.: Code coverage over time for libgsm.

(e.g., encoding functionality), would result in higher coverage. Hence, the selection of

library consumers is crucial for fuzzing.

44

2.6.4 Case Study: Out Of Bounds Read in libhevc

Unfortunately we cannot disclose yet any of the 10 vulnerabilities that we have found.

However, we can focus one of the discovered vulnerabilities that our preliminary work found,

which is CVE-2017-13187 [55], a high severity vulnerability in High Efficiency Video

Coding (HEVC) [77] library on Android. The vulnerability is an out of bounds read –which

can cause remote Denial of Service (DoS) attacks– and resides inside ihevcd_nal_unit,

in the decoding unit. Below is the vulnerable code snippet:

1 IHEVCD_ERROR_T ihevcd_nal_unit(codec_t *ps_codec)
2 {
3 IHEVCD_ERROR_T ret = (IHEVCD_ERROR_T)IHEVCD_SUCCESS;
4

5 /* NAL Header */
6 nal_header_t s_nal;
7

8 ret = ihevcd_nal_unit_header(&ps_codec->s_parse.s_bitstrm,
9 &s_nal);

10

11 RETURN_IF((ret != (IHEVCD_ERROR_T)IHEVCD_SUCCESS), ret);
12

13 if(ps_codec->i4_slice_error)
14 s_nal.i1_nal_unit_type = // Crash. OOB read. --->
15 ps_codec->s_parse.ps_slice_hdr->i1_nal_unit_type;

By supplying a malformed slice packet to the decoder, we can trigger an invalid memory

access.

2.7 Discussion and future work

Our prototype focuses on showcase and hence, is implemented in the simplest form.

However there are some parts that can be improved or redesigned. Below are some potential

improvements for FuzzGen.

Maximum code coverage Although FuzzGen generates fuzzers that achieve higher cov-

erage (60.63% on average), it remains open whether this coverage is considered as good

for fuzzing and how much of the gap between achieved and total coverage we can cover.

Although it is impossible to have a 100% coverage (this would require the use of symbolic

execution [2] to find the proper input to execute code on every condition), there are other

45

factors preventing this. For instance if there are if-else conditions, it is impossible to

generate a single input that covers both statements. Thus, no matter what input fuzzer

generates, there will always a part of the program left uncovered. Furthermore libraries

contain special code (such as error handling) that is almost never executed. We leave the

problem of determining the maximum possible coverage that a fuzzer can achieve with a

single inputfor future work.

Improved analysis. FuzzGen is based on LLVM framerwork to perform several analyses

to generate the fuzzers. However analysis sometimes is imprecise and results in fuzzers

with a higher rate of false positives. For instance, we noticed that the dataflow analysis that

FuzzGen performs to infer argument attributes, is imprecise in some cases that assigning

the constant attributes to an argument instead of random. Although the generated fuzzer

runs without any issues, the code coverage is lower. Furthermore, FuzzGen can perform

additional analyses, such as Alias Analysis, Taint Analysis or SCEV (SCalar EVolution) to

produce more accurate fuzzers.

Single library focus. For now, FuzzGen focuses on a single target library and does not

consider interactions between libraries. FuzzGen could be extended to support multiple

libraries and interactions between libraries. This extension poses the interesting challenge

of complex inter-dependencies but will allow the exploration of such inter-dependencies

through an automated fuzzer. We consider this extension future work.

Coalescing dependence graphs into a unifying A2DG. When multiple library con-

sumers are available, FuzzGen has to either coalesce all generated A2DG into a single

one, or generate a separate fuzzer of each library consumer (fuzzer family). While the first

approach can expose deeper dependencies and therefore achieve a deeper coverage, the

latter approach increases parallelism, as different clusters can fuzz different aspects of the

library.

46

False positives. Imprecision in the static analysis and the A2DG coalescing may result

in spurious paths that results in false positives. Fuzzing libraries is inherently challenging

as the API dependencies are not known. On one hand, our analysis could trace benign

executions and extract benign API sequences to construct the A2DG. This would result in

an under-approximation of all valid API sequences. On the other hand, the static analysis

combined with A2DG coalescing results in an over-approximation. We argue that the over-

approximation results in additional freedom for the fuzzer to generate more interesting path

combinations, allowing FuzzGen to trigger deep bugs at the cost of a small false positive

rate. We show in the evaluation, that our approach results in reasonably few false positives

2.8 Conclusion

Despite their effectiveness in vulnerability discovery, the existing fuzzing techniques do

not transfer well to libraries. Libraries cannot run as standalone applications and fuzzing

them requires either a manually written libFuzzer stub that utilizes the library, or to fuzz the

library through a library consumer. The wide diversity of the API and the interface of various

libraries further complicates this task. To address this challenge, we presented FuzzGen,

a framework that automatically infers API interactions from a library and synthesizes a

target-specific fuzzer for it. FuzzGen leverages a whole system analysis to collect library

consumers and builds an Abstract API Dependence Graph (A2DG) for them.

We evaluated FuzzGen on 5 codec libraries –which are notorious for having a compli-

cated interface-and in all cases, the generated fuzzers were able to discover 10 previously

unknown vulnerabilities and a high and a medium severity CVEs.

47

3 BLOCK ORIENTED PROGRAMMING: AUTOMATING DATA ONLY ATTACKS

With the widespread deployment of Control-Flow Integrity (CFI), control-flow hijacking

attacks, and consequently code reuse attacks, are significantly more difficult. CFI limits

control flow to well-known locations, severely restricting arbitrary code execution. Assessing

the remaining attack surface of an application under advanced control-flow hijack defenses

such as CFI and shadow stacks remains an open problem.

We introduce BOPC, a mechanism to automatically assess whether an attacker can

execute arbitrary code on a binary hardened with CFI/shadow stack defenses. BOPC

computes exploits for a target program from payload specifications written in a Turing-

complete, high-level language called SPL that abstracts away architecture and program-

specific details. SPL payloads are compiled into a program trace that executes the desired

behavior on top of the target binary. The input for BOPC is an SPL payload, a starting point

(e.g., from a fuzzer crash) and an arbitrary memory write primitive that allows application

state corruption. To map SPL payloads to a program trace, BOPC introduces Block Oriented

Programming (BOP), a new code reuse technique that utilizes entire basic blocks as gadgets

along valid execution paths in the program, i.e., without violating CFI or shadow stack

policies. We find that the problem of mapping payloads to program traces is NP-hard, so

BOPC first reduces the search space by pruning infeasible paths and then uses heuristics to

guide the search to probable paths. BOPC encodes the BOP payload as a set of memory

writes.

We execute 13 SPL payloads applied to 10 popular applications. BOPC successfully

finds payloads and complex execution traces – which would likely not have been found

through manual analysis – while following the target’s Control-Flow Graph under an ideal

CFI policy in 81% of the cases.

48

3.1 Introduction

Control-flow hijacking and code reuse attacks have been challenging problems for ap-

plications written in C/C++ despite the development and deployment of several defenses.

Basic mitigations include Data Execution Prevention (DEP) [8] to stop code injection,

Stack Canaries [78] to stop stack-based buffer overflows, and Address Space Layout Ran-

domization (ASLR) [19] to probabilistically make code reuse attacks harder. These mit-

igations can be bypassed through, e.g., information leaks [20, 79, 80, 81] or code reuse

attacks [10, 11, 82, 83, 84].

Advanced control-flow hijacking defenses such as Control-Flow Integrity (CFI) [13, 85,

86, 87] or shadow stacks/safe stacks [14, 88] limit the set of allowed target addresses for

indirect control-flow transfers. CFI mechanisms typically rely on static analysis to recover

the Control-Flow Graph (CFG) of the application. These analyses over-approximate the

allowed targets for each indirect dispatch location. At runtime, CFI checks determine if the

observed target for each indirect dispatch location is within the allowed target set for that

dispatch location as identified by the CFG analysis. Modern CFI mechanisms [85, 86, 89, 90]

are deployed in, e.g., Google Chrome [91], Microsoft Windows 10, and Edge [92].

However, CFI still allows the attacker control over the execution along two dimensions:

first, due to imprecision in the analysis and CFI’s statelessness, the attacker can choose any of

the targets in the set for each dispatch; second, data-only attacks allow an attacker to influence

conditional branches arbitrarily. Existing attacks against CFI leverage manual analysis to

construct exploits for specific applications along these two dimensions [15, 93, 94, 95, 96].

With CFI, exploits become highly program dependent as the set of reachable gadgets is

severely limited by the CFI policy, so exploits must therefore follow valid paths in the

CFG. Finding a path along the CFG that achieves the exploit goals is much more complex

than simply finding the locations of gadgets. As a result, building attacks against advanced

control-flow hijacking defenses has become a challenging, predominantly manual process.

We present BOPC (Block Oriented Programming Compiler) , an automatic framework

to evaluate a program’s remaining attack surface under strong control-flow hijacking miti-

49

gations. BOPC automates the task of finding an execution trace through a buggy program

that executes arbitrary, attacker-specified behavior. BOPC compiles an “exploit” into a

program trace, which is executed on top of the original program’s CFG. To express the

desired exploits flexibly, BOPC provides a Turing-complete, high-level language: SPloit

Language (SPL). To interact with the environment, SPL provides a rich API to call OS

functions, direct access to memory, and an abstraction for hardware registers. BOPC takes

as input an SPL payload and a starting point (e.g., found through fuzzing or manual analysis)

and returns a trace through the program (encoded as a set of memory writes) that encodes

the SPL payload.

The core component of BOPC is the mapping process through a novel code reuse

technique we call Block Oriented Programming (BOP). First, BOPC translates the SPL

payload into constraints for individual statements and, for each statement, searches for basic

blocks in the target binary that satisfy these constraints (called candidate blocks). At this

point, SPL abstracts register assignments from the underlying architecture. Second, BOPC

infers a resource (register and state) mapping for each SPL statement, iterating through

the set of candidate blocks and turning them into functional blocks. Functional blocks

can be used to execute a concrete instantiation of the given SPL statement. Third, BOPC

constructs a trace that connects each functional block through dispatcher blocks. Since the

mapping process is NP-hard, to find a solution in reasonable time BOPC first prunes the

set of functional blocks per statement to constrain the search space and then uses a ranking

based on the proximity of individual functional blocks as a heuristic when searching for

dispatcher gadgets.

We evaluate BOPC on 10 popular network daemons and setuid programs, demonstrating

that BOPC can generate traces from a set of 13 test payloads. Our test payloads are both

reasonable exploit payloads (e.g., calling execve with attacker-controlled parameters) as

well as a demonstration of the computational capabilities of SPL (e.g., loops and condition-

als). Applications of BOPC go beyond an attack framework. We envision BOPC as a tool

for defenders and software developers to highlight the residual attack surface of a program.

50

For example, a developer can test whether a bug at a particular statement enables a practical

code reuse attack in the program. Overall, we present the following contributions:

• Abstraction: We introduce SPL, a C dialect with access to virtual registers and an

API to call OS and other library functions, suitable for writing exploit payloads. SPL

enables the necessary abstraction to scale to large applications.

• Search: Development of a trace module that allows execution of an arbitrary payload,

written in SPL, using the target binary’s code. The trace module considers strong

defenses such as DEP, ASLR, shadow stacks, and CFI alone or in combination. The

trace module enables the discovery of viable mappings through a search process.

• Evaluation: Evaluation of our prototype demonstrates the generality of our mechanism

and uncovers exploitable vulnerabilities where manual exploitation may have been

infeasible. For 10 target programs, BOPC successfully generates exploit payloads and

program traces to implement code reuse attacks for 13 SPL exploit payloads for 81%

of the cases.

3.2 Background and Related Work

Initially, exploits relied on simple code injection to execute arbitrary code. The deploy-

ment of Data Execution Prevention (DEP) [8] mitigated code injection and attacks moved

to reusing existing code. The first code reuse technique, return to libc [9], simply reused

existing libc functions. Return Oriented Programming (ROP) [10] extended code reuse to a

Turing-complete technique. ROP locates small sequences of code which end with a return

instruction, called “gadgets.” Gadgets are connected by injecting the correct state, e.g., by

preparing a set of invocation frames on the stack [10]. A number of code reuse variations

followed [11, 12, 97], extending the approach from return instructions to arbitrary indirect

control-flow transfers.

Several tools [98, 99, 100, 101] seek to automate ROP payload generation. However,

the automation suffers from inherent limitations. These tools fail to find gadgets in the target

51

binary that do not follow the expected form “inst1; inst2; ... retn;” as they

search for a set of hard coded gadgets that form pre-determined gadget chains. Instead of

abstracting the required computation, they search for specific gadgets. If any gadget is not

found or if a more complex gadget chain is needed, these tools degenerate to gadget dump

tools, leaving the process of gadget chaining to the researcher who manually creates exploits

from discovered gadgets.

The invention of code reuse attacks resulted in a plethora of new detection mechanisms

based on execution anomalies and heuristics [102, 103, 104, 105, 106] such as frequency of

return instructions. Such heuristics can often be bypassed [107].

While the aforementioned tools help to craft appropriate payloads, finding the vulner-

ability is an orthogonal process. Automatic Exploit Generation (AEG) [6] was the first

attempt to automatically find vulnerabilities and generate exploits for them. AEG is limited

in that it does not assume any defenses (such as the now basic DEP or ASLR mitigations).

The generated exploits are therefore buffer overflows followed by static shellcode.

3.2.1 Control Flow Integrity

Control Flow Integrity [13, 85, 86, 87] (CFI) mitigates control-flow hijacking to arbitrary

locations (and therefore code reuse attacks). CFI restricts the set of potential targets that are

reachable from an indirect dispatch. While CFI does not stop the initial memory corruption,

it validates the code pointer before it is used. CFI infers an (overapproixmate) CFG of the

program to determine the allowed targets for each indirect control-flow transfer. Before

each indirect dispatch, the target address is checked to determine if it is a valid edge in the

CFG, and if not an exception is thrown. This limits the freedom for the attacker, as she can

only target a small set of targets instead of any executable byte in memory. For example, an

attacker may overwrite a function pointer through a buffer overflow, but the function pointer

is checked before it is used. Note that CFI targets forward edges, i.e., virtual dispatchers for

C++ or indirect function calls for C.

52

With CFI, code reuse attacks become harder, but not impossible [15, 93, 94, 95]. De-

pending on the application and strength of the CFI mechanism, CFI can be bypassed with

Turing-complete payloads, which are often highly complex to comply with the CFG. So far,

these code-reuse attacks rely on manually constructed payloads.

Deployed CFI implementations [85, 86, 89, 90, 108] use a static over-approximation

of the CFG based on method prototypes and class hierarchy. PittyPat [109] and PathAr-

mor [110] introduce path sensitivity that evaluates partial execution paths. Newton [111]

introduced a framework that reasons about the strength of defenses, including CFI. New-

ton exposes indirect pointers (along with their allowed target set) that are reachable (i.e.,

controllable by an adversary) through given entry points. While Newton displays all usable

“gadgets,” it cannot stitch them together and effectively is a CFI-aware ROP gadget search

tool that helps an analyst to manually construct an attack.

3.2.2 Shadow Stacks

While CFI protects forward edges in the CFG (i.e., function pointers or virtual dispatch),

a shadow stack orthogonally protects backward edges (i.e., return addresses). Shadow stacks

keep a protected copy (called shadow) of all return addresses on a separate, protected stack.

Function calls store the return address both on the regular stack and on the shadow stack.

When returning from a function, the mitigation checks for equivalence and reports an error

if the two return addresses do not match. The shadow stack itself is assumed to be at a

protected memory location to keep the adversary from tampering with it. Shadow stacks

enforce stack integrity and protect the binary from any control-flow hijacking attack against

the backward edge.

3.2.3 Data-only Attacks

While CFI mitigates code-reuse attacks, CFI cannot stop data-only attacks. Manipulating

a program’s data can be enough for a successful exploitation. Data-only attacks target the

program’s data rather than its control flow. E.g., having full control over the arguments

53

to execve() suffices for arbitrary command execution. Also, data in a program may

be sensitive: consider overwriting the uid or a variable like is_admin. Data Oriented

Programming (DOP) [16] is the generalization of data-only attacks. Existing DOP attacks

rely on an analyst to identify sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the program and apply

Data Flow Integrity (DFI) [18] to it. However, to the best of our knowledge, there are no

practical DFI-based defenses due to prohibitively high overhead of data-flow tracking.

In comparison to existing data-only attacks, BOPC automatically generates payloads

based on a high-level language. The payloads follow the valid CFG of the program but not

its Data Flow Graph.

3.3 Assumptions and Threat Model

Our threat model consists of a binary with a known memory corruption vulnerability

that is protected with the state-of-the-art control-flow hijack mitigations, such as CFI along

with a Shadow Stack. Furthermore, the binary is also hardened with DEP, ASLR and Stack

Canaries.

We assume that the target binary has an arbitrary memory write vulnerability. That is,

the attacker can write any value to any (writable) address. We call this an Arbitrary memory

Write Primitive (AWP). To bypass probabilistic defenses such as ASLR, we assume that the

attacker has access to an information leak, i.e., a vulnerability that allows her to read any

value from any memory address. We call this an Arbitrary memory Read Primitive (ARP).

Note that the ARP is optional and only needed to bypass orthogonal probabilistic defenses.

We also assume that there exists an entry point, i.e., a location that the program reaches

naturally after completion of all AWPs (and ARPs). Thus BOPC does not require code

pointer corruption to reach the entry point. Determining an entry point is considered to be

part of the vulnerability discovery process. Thus, finding this entry point is orthogonal to

our work.

54

Note that these assumptions are in line with the threat model of control-flow hijack

mitigations that aim to prevent attackers from exploiting arbitrary read and write capabilities.

These assumptions are also practical. Orthogonal bug finding tools such as fuzzing often

discover arbitrary memory accesses that can be abstracted to the required arbitrary read

and writes, placing the entry point right after the AWP. Furthermore, these assumptions

map to real bugs. Web servers, such as nginx, spawn threads to handle requests and a bug

in the request handler can be used to read or write an arbitrary memory address. Due to

the request-based nature, the adversary can repeat this process multiple times. After the

completion of the state injection, the program follows an alternate and disjoint path to trigger

the injected payload.

These assumptions enable BOPC to inject a payload into a target binary’s address space,

modifying its memory state to execute the payload. BOPC assumes that the AWP (and/or

ARP) may be triggered multiple times to modify the memory state of the target binary. After

the state modification completes, the SPL payload executes without using the AWP (and/or

ARP) further. This separates SPL execution into two phases: state modification and payload

execution. The AWP allows state modification, BOPC infers the required state change to

execute the SPL payload.

3.4 Design

Figure 3.1 shows how BOPC automates the analysis tasks necessary to leverage AWPs

to produce a useful exploit in the presence of strong defenses, including CFI. First, BOPC

usable “gadgets,” it cannot stitch them together and effectively is a
CFI-aware ROP gadget search tool that helps an analyst to manually
construct an attack.

2.2 Shadow Stacks
While CFI protects forward edges in the CFG (i.e., function pointers
or virtual dispatch), a shadow stack orthogonally protects backward
edges (i.e., return addresses). Shadow stacks keep a protected copy
(called shadow) of all return addresses on a separate, protected
stack. Function calls store the return address both on the regular
stack and on the shadow stack. When returning from a function,
the mitigation checks for equivalence and reports an error if the
two return addresses do not match. The shadow stack itself is
assumed to be at a protected memory location to keep the adversary
from tampering with it. Shadow stacks enforce stack integrity and
protect the binary from any control-flow hijacking attack against
the backward edge.

2.3 Data-only Attacks
While CFI mitigates code-reuse attacks, CFI cannot stop data-only
attacks. Manipulating a program’s data can be enough for a success-
ful exploitation. Data-only attacks target the program’s data rather
than its control flow. E.g., having full control over the arguments to
execve() suffices for arbitrary command execution. Also, data in a
program may be sensitive: consider overwriting the uid or a vari-
able like is_admin. Data Oriented Programming (DOP) [34] is the
generalization of data-only attacks. Existing DOP attacks rely on
an analyst to identify sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the
program and apply Data Flow Integrity (DFI) [8] to it. However, to
the best of our knowledge, there are no practical DFI-based defenses
due to prohibitively high overhead of data-flow tracking.

In comparison to existing data-only attacks, BOPC automatically
generates payloads based on a high-level language. The payloads
follow the valid CFG of the program but not its Data Flow Graph.

3 ASSUMPTIONS AND THREAT MODEL
Our threat model consists of a binary with a known memory cor-
ruption vulnerability that is protected with the state-of-the-art
control-flow hijack mitigations, such as CFI along with a Shadow
Stack. Furthermore, the binary is also hardened with DEP, ASLR
and Stack Canaries.

We assume that the target binary has an arbitrary memory
write vulnerability. That is, the attacker can write any value to
any (writable) address. We call this an Arbitrary memory Write
Primitive (AWP). To bypass probabilistic defenses such as ASLR, we
assume that the attacker has access to an information leak, i.e., a
vulnerability that allows her to read any value from any memory
address. We call this an Arbitrary memory Read Primitive (ARP).
Note that the ARP is optional and only needed to bypass orthogonal
probabilistic defenses.

We also assume that there exists an entry point, i.e., a location
that the program reaches naturally after completion of all AWPs
(and ARPs). Thus BOPC does not require code pointer corruption
to reach the entry point. Determining an entry point is considered

to be part of the vulnerability discovery process. Thus, finding this
entry point is orthogonal to our work.

Note that these assumptions are in line with the threat model of
control-flow hijack mitigations that aim to prevent attackers from
exploiting arbitrary read and write capabilities. These assumptions
are also practical. Orthogonal bug finding tools such as fuzzing
often discover arbitrary memory accesses that can be abstracted to
the required arbitrary read and writes, placing the entry point right
after the AWP. Furthermore, these assumptions map to real bugs.
Web servers, such as nginx, spawn threads to handle requests and a
bug in the request handler can be used to read or write an arbitrary
memory address. Due to the request-based nature, the adversary
can repeat this process multiple times. After the completion of the
state injection, the program follows an alternate and disjoint path
to trigger the injected payload.

These assumptions enable BOPC to inject a payload into a tar-
get binary’s address space, modifying its memory state to execute
the payload. BOPC assumes that the AWP (and/or ARP) may be
triggered multiple times to modify the memory state of the target
binary. After the state modification completes, the SPL payload
executes without using the AWP (and/or ARP) further. This sepa-
rates SPL execution into two phases: state modification and payload
execution. The AWP allows state modification, BOPC infers the
required state change to execute the SPL payload.

4 DESIGN
Figure 1 shows how BOPC automates the analysis tasks necessary
to leverage AWPs to produce a useful exploit in the presence of
strong defenses, including CFI. First, BOPC provides an exploit
programming language, called SPL, that enables analysts to define
exploits independent of the target program or underlying architec-
ture. Second, to automate SPL gadget discovery, BOPC finds basic
blocks from the target program that implement individual SPL
statements, called functional blocks. Third, to chain basic blocks
together in a manner that adheres with CFI and shadow stacks,
BOPC searches the target program for sequences of basic blocks
that connect pairs of neighboring functional blocks, which we call
dispatcher blocks. Fourth, BOPC simulates the BOP chain to produce
a payload that implements that SPL payload from a chosen AWP.

The BOPC design builds on two key ideas: Block Oriented Pro-
gramming and Block Constraint Summaries. First, defenses such as
CFI impose stringent restrictions on transitions between gadgets,
so an exploit no longer has the flexibility of setting the instruc-
tion pointer to arbitrary values. Instead, BOPC implements Block
Oriented Programming (BOP), which constructs exploit programs
called BOP chains from basic block sequences in the valid CFG of
a target program. Note that our CFG encodes both forward edges
(protected by CFI) and backward edges (protected by shadow stack).

(1) SPL Payload (2) Selecting
functional blocks

(3) Searching for
dispatcher blocks

(4) Stitching
BOP gadgets

Figure 1: Overview of BOPC’s design.Figure 3.1.: Overview of BOPC’s design.

55

provides an exploit programming language, called SPL, that enables analysts to define

exploits independent of the target program or underlying architecture. Second, to automate

SPL gadget discovery, BOPC finds basic blocks from the target program that implement

individual SPL statements, called functional blocks. Third, to chain basic blocks together in

a manner that adheres with CFI and shadow stacks, BOPC searches the target program for

sequences of basic blocks that connect pairs of neighboring functional blocks, which we

call dispatcher blocks. Fourth, BOPC simulates the BOP chain to produce a payload that

implements that SPL payload from a chosen AWP.

The BOPC design builds on two key ideas: Block Oriented Programming and Block

Constraint Summaries. First, defenses such as CFI impose stringent restrictions on transi-

tions between gadgets, so an exploit no longer has the flexibility of setting the instruction

pointer to arbitrary values. Instead, BOPC implements Block Oriented Programming (BOP),

which constructs exploit programs called BOP chains from basic block sequences in the

valid CFG of a target program. Note that our CFG encodes both forward edges (protected

by CFI) and backward edges (protected by shadow stack). For BOP, gadgets are chains of

entire basic blocks (sequences of instructions that end with a direct or indirect control-flow

transfer), as shown in Figure 3.2. A BOP chain consists of a sequence of BOP gadgets

where each BOP gadget is: one functional block that implements a statement in an SPL

payload and zero or more dispatcher blocks that connect the functional block to the next

BOP gadget in a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual instructions into Block Con-

straint Summaries, enabling blocks to be employed in a variety of different ways. That is,

a single block may perform multiple functional and/or dispatching operations by utilizing

different sets of registers for different operations. That is, a basic block that modifies a

register in a manner that may fulfill an SPL statement may be used as a functional block,

otherwise it may be considered to serve as a dispatcher block.

BOPC leverages abstract Block Constraint Summaries to apply blocks in multiple

contexts. At each stage in the development of a BOP chain, the blocks that may be employed

next in the CFG as dispatcher blocks to connect two functional blocks depend on the block

56

Functional
Dispatcher

BOP
Gadget

Figure 2: BOP gadget structure. The functional part consists
of a single basic block that executes an SPL statement. Two
functional blocks are chained together through a series of
dispatcher blocks, without clobbering the execution of the
previous functional blocks.

For BOP, gadgets are chains of entire basic blocks (sequences of
instructions that end with a direct or indirect control-flow transfer),
as shown in Figure 2. A BOP chain consists of a sequence of BOP
gadgets where each BOP gadget is: one functional block that imple-
ments a statement in an SPL payload and zero or more dispatcher
blocks that connect the functional block to the next BOP gadget in
a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual in-
structions into Block Constraint Summaries, enabling blocks to be
employed in a variety of different ways. That is, a single block
may perform multiple functional and/or dispatching operations by
utilizing different sets of registers for different operations. That is,
a basic block that modifies a register in a manner that may fulfill
an SPL statement may be used as a functional block, otherwise it
may be considered to serve as a dispatcher block.

BOPC leverages abstract Block Constraint Summaries to apply
blocks in multiple contexts. At each stage in the development of
a BOP chain, the blocks that may be employed next in the CFG
as dispatcher blocks to connect two functional blocks depend on
the block summary constraints for each block. There are two cases:
either the candidate dispatcher block’s summary constraints indi-
cate that it will modify the register state set and/or the memory
state by the functional blocks, called the SPL state, or it will not,
enabling the computation to proceed without disturbing the effects
of the functional blocks. A block that modifies a current SPL state
unintentionally, is said to be a clobbering block for that state. Block
summary constraints enable identification of clobbering blocks at
each point in the search.

An important distinction between BOP and conventional ROP
(and variants) is that the problem of computing BOP chains is NP-
hard, as proven in Appendix B. Conventional ROP assumes that
indirect control-flows may target any executable byte in memory
while BOP must follow a legal path through the CFG for any chain
of blocks, resulting in the need for automation.

4.1 Expressing Payloads
BOPC provides a programming language, called SPloit Language
(SPL) that allows analysts to express exploit payloads in a com-
pact high-level language that is independent of target programs

Simple loop Spawn a shell
void payload () {

__r0 = 0;

LOOP:

__r0 += 1;

if (__r0 != 128)

goto LOOP;

returnto 0x446730;

}

void payload () {

string prog = "/bin/sh\0";

int64 *argv = {&prog , 0x0};

__r0 = &prog;

__r1 = &argv;

__r2 = 0;

execve(__r0 , __r1 , __r2);

}

Table 1: Examples of SPL payloads.

or processor architectures. SPL is a dialect of C. Compared to min-
DOP [34], SPL allows use of both virtual registers and memory for
operations and declaration of variables/constants. Table 1 shows
some sample payloads. Overall, SPL has the following features:
• It is Turing-complete;
• It is architecture independent;
• It is close to a well known, high level language.

Compared to existing exploit development tools [30, 52, 54], the
architecture independence of SPL has important advantages. First,
the same payload can be executed under different ISAs or operat-
ing systems. Second, SPL uses a set of virtual registers, accessed
through reserved volatile variables. Virtual registers increase flex-
ibility, which in turn increases the chances of finding a solution:
virtual registers may be mapped to any general purpose register
and the mapping may be changed dynamically.

To interact with the environment, SPL defines a concise API
to access OS functionality. Finally, SPL supports conditional and
unconditional jumps to enable control-flow transfers to arbitrary
locations. This feature makes SPL a Turing-complete language, as
proven in Appendix C. The complete language specifications are
shown in Appendix A in Extended Backus–Naur form (EBNF).

The environment for SPL differs from that of conventional lan-
guages. Instead of running code directly on a CPU, our compiler
encodes the payload as a mapping of instructions to functional
blocks. That is, the underlying runtime environment is the target
binary and its program state, where payloads are executed as side
effects of the underlying binary.
4.2 Selecting functional blocks
To generate a BOP chain for an SPL payload, BOPC must find a
sequence of blocks that implement each statement in the SPL pay-
load, which we call functional blocks. The process of building BOP
chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL state-
ment to determine if the block can implement the statement. How-
ever, blocks are in terms of machine code and SPL statements are
high-level program statements. To provide flexibility for matching
blocks to SPL statements, BOPC computes Block Constraint Sum-
maries, which define the possible impacts that the block would
have on SPL state. Block Constraint Summaries provide flexibility
in matching blocks to SPL statements because there are multiple
possible mappings of SPL statements and their virtual registers to
the block and its constraints on registers and state.

The constraint summaries of each basic block are obtained by
isolating and symbolically executing it. The effect of symbolically

Figure 3.2.: BOP gadget structure. The functional part consists of a single basic block that
executes an SPL statement. Two functional blocks are chained together through a series of
dispatcher blocks, without clobbering the execution of the previous functional blocks.

summary constraints for each block. There are two cases: either the candidate dispatcher

block’s summary constraints indicate that it will modify the register state set and/or the

memory state by the functional blocks, called the SPL state, or it will not, enabling the

computation to proceed without disturbing the effects of the functional blocks. A block that

modifies a current SPL state unintentionally, is said to be a clobbering block for that state.

Block summary constraints enable identification of clobbering blocks at each point in the

search.

An important distinction between BOP and conventional ROP (and variants) is that the

problem of computing BOP chains is NP-hard, as proven in Section 7.3. Conventional ROP

assumes that indirect control-flows may target any executable byte in memory while BOP

must follow a legal path through the CFG for any chain of blocks, resulting in the need for

automation.

57

Table 3.1.: Examples of SPL payloads.

Simple loop Spawn a shell

void p a y l o a d () {
__r0 = 0 ;

LOOP:
__r0 += 1 ;
i f (__r0 != 128)

goto LOOP;

r e t u r n t o 0 x446730 ;
}

void p a y l o a d () {
s t r i n g prog = " / b i n / sh \ 0 " ;
i n t 6 4 * a rgv = {&prog , 0x0 } ;

__r0 = &prog ;
__r1 = &argv ;
__r2 = 0 ;

execve (__r0 , __r1 , __r2) ;
}

3.4.1 Expressing Payloads

BOPC provides a programming language, called SPloit Language (SPL) that allows

analysts to express exploit payloads in a compact high-level language that is independent of

target programs or processor architectures. SPL is a dialect of C. Compared to minDOP [16],

SPL allows use of both virtual registers and memory for operations and declaration of

variables/constants. Table 3.1 shows some sample payloads. Overall, SPL has the following

features:

• It is Turing-complete;

• It is architecture independent;

• It is close to a well known, high level language.

Compared to existing exploit development tools [98, 99, 100], the architecture indepen-

dence of SPL has important advantages. First, the same payload can be executed under

different ISAs or operating systems. Second, SPL uses a set of virtual registers, accessed

through reserved volatile variables. Virtual registers increase flexibility, which in turn

increases the chances of finding a solution: virtual registers may be mapped to any general

purpose register and the mapping may be changed dynamically.

To interact with the environment, SPL defines a concise API to access OS functionality.

Finally, SPL supports conditional and unconditional jumps to enable control-flow transfers

58

to arbitrary locations. This feature makes SPL a Turing-complete language, as proven in

Appendix 7.4. The complete language specifications are shown in Appendix 7.2 in Extended

Backus–Naur form (EBNF).

The environment for SPL differs from that of conventional languages. Instead of running

code directly on a CPU, our compiler encodes the payload as a mapping of instructions to

functional blocks. That is, the underlying runtime environment is the target binary and its

program state, where payloads are executed as side effects of the underlying binary.

3.4.2 Selecting functional blocks

To generate a BOP chain for an SPL payload, BOPC must find a sequence of blocks that

implement each statement in the SPL payload, which we call functional blocks. The process

of building BOP chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL statement to determine if

the block can implement the statement. However, blocks are in terms of machine code

and SPL statements are high-level program statements. To provide flexibility for matching

blocks to SPL statements, BOPC computes Block Constraint Summaries, which define the

possible impacts that the block would have on SPL state. Block Constraint Summaries

provide flexibility in matching blocks to SPL statements because there are multiple possible

mappings of SPL statements and their virtual registers to the block and its constraints on

registers and state.

The constraint summaries of each basic block are obtained by isolating and symbolically

executing it. The effect of symbolically executing a basic block creates a set of constraints,

mapping input to the resultant output. Such constraints refer to registers, memory locations,

jump types and external operations (e.g., library calls).

To find a match between a block and an SPL statement the block must perform all the

operations required for that SPL statement. More specifically, the constraints of the basic

block should contain all the operations required to implement the SPL statement.

59

(a) (b) (c)

Figure 3.3.: Visualisation of BOP gadget volatility, rectangles: SPL statements, dots:
functional blocks (a). Connecting any two statements through dispatcher blocks constrains
remaining gadgets (b), (c).

3.4.3 Finding BOP gadgets

BOPC computes a set of all potential functional blocks for each SPL statement or halts

if any statement has no blocks. To stitch functional blocks, BOPC must select one functional

block and a sequence of dispatcher blocks that reach the next functional block in the payload.

The combination of a functional block and its dispatcher blocks is called a BOP gadget,

as shown in Figure 3.2. To build a BOP gadget, BOPC must select exactly one functional

block from each set and find the appropriate dispatcher blocks to connect to a subsequent

functional block.

However, dispatcher paths between two functional blocks may not exist either because

there is no legal path in the CFG between them, or the control flow cannot reach the next

block due to unsatisfiable runtime constraints. This constraint imposes limits on functional

block selection, as the existence of a dispatcher path depends on the previous BOP gadgets.

BOP gadgets are volatile: gadget feasibility changes based on the selection of prior

gadgets for the target binary. This is illustrated in Figure 3.3. The problem of selecting

a suitable sequence of functional blocks, such that a dispatcher path exists between every

possible control flow transfer in the SPL payload, is NP-hard, as we prove in Appendix 7.3.

Even worse, an approximation algorithm does not exist.

60

(a) (b) (c)

Figure 3: Visualisation of BOP gadget volatility, rectangles:
SPL statements, dots: functional blocks (a). Connecting any
two statements through dispatcher blocks constrains re-
maining gadgets (b), (c).

executing a basic block creates a set of constraints, mapping input
to the resultant output. Such constraints refer to registers, memory
locations, jump types and external operations (e.g., library calls).

To find a match between a block and an SPL statement the block
must perform all the operations required for that SPL statement.
More specifically, the constraints of the basic block should contain
all the operations required to implement the SPL statement.

4.3 Finding BOP gadgets
BOPC computes a set of all potential functional blocks for each
SPL statement or halts if any statement has no blocks. To stitch
functional blocks, BOPC must select one functional block and a
sequence of dispatcher blocks that reach the next functional block
in the payload. The combination of a functional block and its dis-
patcher blocks is called a BOP gadget, as shown in Figure 2. To build
a BOP gadget, BOPC must select exactly one functional block from
each set and find the appropriate dispatcher blocks to connect to a
subsequent functional block.

However, dispatcher paths between two functional blocks may
not exist either because there is no legal path in the CFG between
them, or the control flow cannot reach the next block due to un-
satisfiable runtime constraints. This constraint imposes limits on
functional block selection, as the existence of a dispatcher path
depends on the previous BOP gadgets.

BOP gadgets are volatile: gadget feasibility changes based on the
selection of prior gadgets for the target binary. This is illustrated in
Figure 3. The problem of selecting a suitable sequence of functional
blocks, such that a dispatcher path exists between every possible
control flow transfer in the SPL payload, is NP-hard, as we prove
in Appendix B. Even worse, an approximation algorithm does not
exist.

As the problem is unsolvable in polynomial time in the general
case, we propose several heuristics and optimizations to find solu-
tions in reasonable amounts of time. BOPC leverages basic block
proximity as a metric to “rank” dispatcher paths and organizes this
information into a special data structure, called a delta graph that
provides an efficient way to probe potential sequences of functional
blocks.

4.4 Searching for dispatcher blocks
While each functional block executes a statement, BOPC must
chain multiple functional blocks together to execute the SPL pay-
load. Functional blocks are connected through zero or more basic

Function_1:
<instructions >

...

call Function_2 Function_2:
<insn_after_call > <prologue >

... ...

B:

<instructions > <instructions >

A:

<nop_sled > ...

call Function_2 retn

<insn_after_call >

retn
1

4

2 3

Figure 4: Existing shortest path algorithms are unfit to mea-
sure proximity in the CFG. Consider the shortest path from
A to B. A context-unaware shortest path algorithmwill mark
the red path as solution, instead of following the blue arrow
upon return from Function_2, it follows the red arrow (3).

blocks that do not clobber the SPL state computed thus far. Finding
such non-clobbering blocks that transfer control from one func-
tional statement to another is challenging as each additional block
increases the constraints and path dependencies. Thus, we propose
a graph data structure, called the delta graph, to represent the state
of the search for dispatcher blocks. The delta graph stores, for each
functional block for each SPL statement, the shortest path to the
next candidate block. Stitching arbitrary sequences of statements is
NP-hard as each selected path between two functional statements
influences the availability of further candidate blocks or paths, we
therefore leverage the delta graph to try likely candidates first.

The intuition behind the proximity of functional blocks is that
shorter paths result in simpler and more likely satisfiable con-
straints. Although this metric is a heuristic, our evaluation (Sec-
tion 6) shows that it works well in practice.

The delta graph enables quick elimination of sets of functional
blocks that are highly unlikely to have dispatcher blocks and thus
constitute a BOP gadget. For instance, if there is no valid path in the
CFG between two functional blocks (e.g., if execution has to traverse
the CFG “backwards”), no dispatcher will exist and therefore, these
two functional blocks cannot be part of the solution.

The delta graph is a multi-partite, directed graph that has a set
of functional block nodes for every payload statement. An edge
between two functional blocks represents the minimum number
of executed basic blocks to move from one functional block to the
other, while avoiding clobbering blocks. See Figure 7 for an example.

Indirect control-flow transfers pose an interesting challenge
when calculating the shortest path between two basic blocks in a
CFG: while they statically allow multiple targets, at runtime they
are context sensitive and only have one concrete target.

Our context-sensitive shortest path algorithm is a recursive ver-
sion of Dijkstra’s [11] shortest path algorithm that avoids all clob-
bering blocks.. Initially, each edge on the CFG has a cost of 1. When
it encounters a basic block with a call instruction, it recursively
calculates the shortest paths starting from the calling function’s en-
try block, BE (a call stack prevents deadlocks for recursive callees).
If the destination block, BD , is inside the callee, the shortest path
is the concatenation of the two individual shortest paths from the
beginning to BE and from BE to BD . Otherwise, our algorithm finds

Figure 3.4.: Existing shortest path algorithms are unfit to measure proximity in the CFG.
Consider the shortest path from A to B. A context-unaware shortest path algorithm will mark
the red path as solution, instead of following the blue arrow upon return from Function_2,
it follows the red arrow (3).

As the problem is unsolvable in polynomial time in the general case, we propose several

heuristics and optimizations to find solutions in reasonable amounts of time. BOPC leverages

basic block proximity as a metric to “rank” dispatcher paths and organizes this information

into a special data structure, called a delta graph that provides an efficient way to probe

potential sequences of functional blocks.

3.4.4 Searching for dispatcher blocks

While each functional block executes a statement, BOPC must chain multiple functional

blocks together to execute the SPL payload. Functional blocks are connected through zero

or more basic blocks that do not clobber the SPL state computed thus far. Finding such

non-clobbering blocks that transfer control from one functional statement to another is

challenging as each additional block increases the constraints and path dependencies. Thus,

we propose a graph data structure, called the delta graph, to represent the state of the

search for dispatcher blocks. The delta graph stores, for each functional block for each SPL

statement, the shortest path to the next candidate block. Stitching arbitrary sequences of

61

statements is NP-hard as each selected path between two functional statements influences

the availability of further candidate blocks or paths, we therefore leverage the delta graph to

try likely candidates first.

The intuition behind the proximity of functional blocks is that shorter paths result in

simpler and more likely satisfiable constraints. Although this metric is a heuristic, our

evaluation (Section 3.6) shows that it works well in practice.

The delta graph enables quick elimination of sets of functional blocks that are highly

unlikely to have dispatcher blocks and thus constitute a BOP gadget. For instance, if there is

no valid path in the CFG between two functional blocks (e.g., if execution has to traverse

the CFG “backwards”), no dispatcher will exist and therefore, these two functional blocks

cannot be part of the solution.

The delta graph is a multi-partite, directed graph that has a set of functional block nodes

for every payload statement. An edge between two functional blocks represents the minimum

number of executed basic blocks to move from one functional block to the other, while

avoiding clobbering blocks. See Figure 3.7 for an example.

Indirect control-flow transfers pose an interesting challenge when calculating the shortest

path between two basic blocks in a CFG: while they statically allow multiple targets, at

runtime they are context sensitive and only have one concrete target.

Our context-sensitive shortest path algorithm is a recursive version of Dijkstra’s [112]

shortest path algorithm that avoids all clobbering blocks.. Initially, each edge on the CFG

has a cost of 1. When it encounters a basic block with a call instruction, it recursively

calculates the shortest paths starting from the calling function’s entry block, BE (a call stack

prevents deadlocks for recursive callees). If the destination block, BD, is inside the callee,

the shortest path is the concatenation of the two individual shortest paths from the beginning

to BE and from BE to BD. Otherwise, our algorithm finds the shortest path from the BE to

the closest return point and uses this value as an edge weight for that callee.

After creation of the delta graph, our algorithm selects exactly one node (i.e., functional

block) from each set (i.e., payload statement), to minimize the total weight of the resulting

62

Table 3.2.: A counterexample that demonstrates why proximity between two functional
blocks can be inaccurate. Left, we can move from point A to point B even if they are 5
blocks apart from each other. Right, it is much harder to satisfy the constrains and to move
from A to B, despite the fact that A and B are only 1 block apart.

Long path with simple constraints Short path with complex constraints

a , b , c , d , e = i n p u t () ;
/ / p o i n t A
i f (a == 1) {

i f (b == 2) {
i f (c == 3) {

i f (d == 4) {
i f (e == 5) {

/ / p o i n t B

a = i n p u t () ;

X = s q r t (a) ;
Y = l o g (a * a * a − a)

/ / p o i n t A
i f (X == Y) {

/ / p o i n t B

induced subgraph 1. This selection of functional blocks is considered to be the most likely

to give a solution, so the next step is to find the exact dispatcher blocks and create the BOP

gadgets for the SPL payload.

3.4.5 Stitching BOP gadgets

The minimum induced subgraph from the previous step determines a set of functional

blocks that may be stitched together into an SPL payload. This set of functional blocks has

minimal distance to each other, thus making satisfiable dispatcher paths more likely.

To find a dispatcher path between two functional blocks, BOPC leverages concolic

execution [113] (symbolic execution along a given path). Along the way, it collects the

required constraints that are needed to lead the execution to the next functional block.

Symbolic execution engines [114, 115] translate basic blocks into sets of constraints and use

Satisfiability Modulo Theories (SMT) to find satisfying assignments for these constraints;

symbolic execution is therefore NP-complete. Starting from the (context sensitive) shortest

path between the functional blocks, BOPC guides the symbolic execution engine, collecting

the corresponding constraints.

1The induced subgraph of the delta graph is a subgraph of the delta graph with one node (functional block) for
each SPL statement and with edges that represent their shortest available dispatcher block chain.

63

To construct an SPL payload from a BOP chain, BOPC launches concolic execution

from the first functional block in the BOP chain, starting with an empty state. At each

step BOPC tries the first K shortest dispatcher paths until it finds one that reaches the

next functional block (the edges in the minimum induced subgraph indicate which is the

“next” functional block). The corresponding constraints are added to the current state. The

search therefore incrementally adds BOP gadgets to the BOP chain. When a functional

block represents a conditional SPL statement, its node in the induced subgraph contains

two outgoing edges (i.e., the execution can transfer control to two different statements).

However during the concolic execution, the algorithm does not know which one will be

followed, it clones the current state and independently follows both branches, exactly like

symbolic execution [114].

Reaching the last functional block, BOPC checks whether the constraints have a sat-

isfying assignment and forms an exploit payload. Otherwise, it falls back and tries the

next possible set of functional blocks. To repeat that execution on top of the target binary,

these constraints are concretized and translated into a memory layout that will be initialized

through AWP in the target binary.

3.5 Implementation

Our open source prototype, BOPC, is implemented in Python and consists of approx-

imately 14,000 lines of code. The current prototype focuses on x64 binaries, we leave

the (straightforward) extension to other architectures such as x86 or ARM as future work.

BOPC requires three distinct inputs:

• The exploit payload expressed in SPL,

• The vulnerable application on top of which the payload runs,

• The entry point in the vulnerable application, which is a location that the program

reaches naturally and occurs after all AWPs have been completed.

64

B
in
ar
y

Fr
on

te
nd

B
in
ar
y

SP
L

Fr
on

te
nd

SP
L

pa
yl
oa
d

Fi
nd

C
an

di
da

te
B
lo
ck
s

Fi
nd

Fu
nc
ti
on

al
B
lo
ck
s

B
ui
ld

D
el
ta

G
ra
ph

M
in
im

um
In
du

ce
d

Su
bg

ra
ph

s
Si
m
ul
at
io
n

O
ut
pu

t
(a

dd
r,

va
lu

e)

(a
dd

r,
va

lu
e)

(a
dd

r,
va

lu
e)

..
.

(a
dd

r,
va

lu
e)

N
K

P
L

C
F
G
A

IR

R
G

V
G

C
B

F
B

M
A
d
j

δ
G

H
k

C
w

Fi
gu

re
5:

H
ig
h
le
ve

lo
ve

rv
ie
w

of
th
e
B
O
PC

im
pl
em

en
ta
ti
on

.T
he

re
d
ar
ro
w
s
in
di
ca
te

th
e
it
er
at
iv
e
pr

oc
es
s
up

on
fa
il
ur

e.
C
F
G
A
:

C
FG

w
it
h
ba

si
c
bl
oc

k
ab

st
ra
ct
io
ns

ad
de

d,
IR
:C

om
pi
le
d
SP

L
pa

yl
oa

d
R
G
:R

eg
is
te
r
m
ap

pi
ng

gr
ap

h,
V
G
:A

ll
va

ri
ab

le
m
ap

pi
ng

gr
ap

hs
,C

B
:S

et
of

ca
nd

id
at
e
bl
oc

ks
,F

B
:S

et
of

fu
nc

ti
on

al
bl
oc

ks
,M

A
d
j:
A
dj
ac
en

cy
m
at
ri
x
of

SP
L
pa

yl
oa

d,
δ
G
:D

el
ta

gr
ap

h,
H
k
:I
nd

uc
ed

su
bg

ra
ph

,C
w
:C

on
st
ra
in
t
se
t.
L
:M

ax
im

um
le
ng

th
of

co
nt
in
uo

us
di
sp

at
ch

er
bl
oc

ks
,P

:U
pp

er
bo

un
d
on

pa
yl
oa

d
“s
hu

ff
le
s”
,N

:U
pp

er
bo

un
d
on

m
in
im

um
in
du

ce
d
su

bg
ra
ph

s,
K
:U

pp
er

bo
un

d
on

sh
or
te
st

pa
th
s
fo
r
di
sp

at
he

rs
.

Th
is
re
su
lts

in
a
se
to

fe
qu

iv
al
en
tp

ay
lo
ad
st
ha
ta

re
pe
rm

ut
at
io
ns

of
th
e
or
ig
in
al
.O

ur
go

al
is
to

fin
d
a
so
lu
tio

n
fo
ra

ny
of

th
em

.

5.
3

Lo
ca
ti
ng

ca
nd

id
at
e
bl
oc

k
se
ts

SP
L
is
a
hi
gh

le
ve
ll
an
gu

ag
e
th
at

hi
de
st
he

un
de
rly

in
g
A
BI
.T

he
re
-

fo
re
,B

OP
C
lo
ok

sf
or

po
te
nt
ia
lw

ay
st
o
“m

ap
”t
he

SP
L
en
vi
ro
nm

en
t

to
th
e
un

de
rly

in
g
A
BI
.T

he
ke
y
in
sig

ht
in

th
is
st
ep

is
to

fin
d
al
l

po
ss
ib
le
w
ay
st
o
m
ap

th
e
in
di
vi
du

al
el
em

en
ts
fro

m
th
e
SP

L
en
vi
-

ro
nm

en
tt
o
th
e
A
BI

(th
ou

gh
ca
nd

id
at
e
bl
oc
ks
)a

nd
th
en

ite
ra
tiv

el
y

se
le
ct
in
g
va
lid

su
bs
et
sf
ro
m

th
eA

BI
to

“s
im

ul
at
e”

th
ee

nv
iro

nm
en
t

of
th
e
SP

L
pa
yl
oa
d.

O
nc
e
th
e
C
F
G
A
an
d
th
e
IR

ar
e
ge
ne
ra
te
d,

BO
PC

se
ar
ch
es

fo
r

an
d
m
ar
ks

ca
nd

id
at
e
ba
sic

bl
oc
ks
,a
sd

es
cr
ib
ed

in
Se
ct
io
n
4.2

.F
or

a
bl
oc
k
to

be
a
ca
nd

id
at
e,
it
m
us
t“
se
m
an
tic

al
ly

m
at
ch
”w

ith
on

e
(o
r

m
or
e)
pa
yl
oa
d
st
at
em

en
ts
.T

ab
le
3
sh
ow

st
he

m
at
ch
in
g
ru
le
s.
N
ot
e

th
at

va
ria

bl
ea

ss
ig
nm

en
ts
,u
nc
on

di
tio

na
lj
um

ps
,a
nd

re
tu
rn
sd

o
no

t
re
qu

ire
a
ba
sic

bl
oc
k
an
d
th
er
ef
or
e
ar
e
ex
cl
ud

ed
fro

m
th
e
se
ar
ch
.

A
ll
st
at
em

en
ts
th
at

as
sig

n
or

m
od

ify
re
gi
st
er
sr

eq
ui
re

th
e
ba
sic

bl
oc
kt

oa
pp

ly
th
es

am
eo

pe
ra
tio

n
on

th
es

am
e,
as

ye
tu

nd
et
er
m
in
ed
,

ha
rd
w
ar
er

eg
ist
er
s.
Fo
rf
un

ct
io
n
ca
lls
,t
he

re
qu

ire
m
en
tf
or

th
eb

as
ic

bl
oc
k
is
to

in
vo
ke

th
es

am
ec

al
l,e

ith
er

as
as

ys
te
m
ca
ll
or

as
al
ib
ra
ry

ca
ll
(if

th
e
ar
gu

m
en
ts
ar
e
di
ffe

re
nt
,t
he

bl
oc
k
is
cl
ob
be
rin

g)
.N

ot
e

th
at

th
e
ca
lli
ng

co
nv

en
tio

n
ex
po

se
st
he

re
gi
st
er

m
ap
pi
ng

.
Up

on
a
su
cc
es
sf
ul

m
at
ch
in
g,

BO
PC

bu
ild

s
th
e
fo
llo

w
in
g
da
ta

st
ru
ct
ur
es
:

•
R
G
,t
he

Re
gi
st
er

M
ap
pi
ng

G
ra
ph

w
hi
ch

is
a
bi
pa
rt
ite

un
di
-

re
ct
ed

gr
ap
h.
Th

en
od

es
in

th
et

w
o
se
ts
re
pr
es
en
tt
he

vi
rtu

al
an
d
ha
rd
w
ar
er

eg
ist
er
sr
es
pe
ct
iv
el
y.
Th

ee
dg

es
re
pr
es
en
tp

o-
te
nt
ia
la
ss
oc
ia
tio

ns
be
tw

ee
n
vi
rtu

al
an
d
ha
rd
w
ar
e
re
gi
st
er
s.

•
V
G
,t
he

Va
ri
ab
le
M
ap
pi
ng

G
ra
ph

,w
hi
ch

is
ve
ry

sim
ila
rt
o

R
G
,b
ut

in
st
ea
d
as
so
ci
at
es

pa
yl
oa
d
va
ria

bl
es

to
un

de
rly

in
g

m
em

or
y
ad
dr
es
se
s.
V
G
is
un

iq
ue

fo
re

ve
ry

ed
ge

in
R
G
i.e
.:

∀(
r α
,r
eд
γ
)∈

R
G
∃!
V
α
γ

G

•
D
M
,t
he

M
em

or
y
D
er
ef
er
en
ce

Se
t,
w
hi
ch

ha
sa

ll
m
em

or
y
ad
-

dr
es
se
s
th
at

ar
e
de
re
fe
re
nc
ed

an
d
th
ei
r
va
lu
es

ar
e
lo
ad
ed

in
to

re
gi
st
er
s.
Th

os
e
ad
dr
es
se
sc

an
be

sy
m
bo

lic
ex
pr
es
sio

ns
(e
.g
.,
[r

bx
+

rd
x*

8]
),
an
d
th
er
ef
or
e
w
e
do

no
tk

no
w

th
e

co
nc
re
te

ad
dr
es
st
he
y
po

in
tt
o
un

til
ex
ec
ut
io
n
re
ac
he
st
he
m

(se
e
Se
ct
io
n
5.6

).

Af
te
rt
hi
ss

te
p,
ea
ch

SP
L
st
at
em

en
th

as
a
se
to

fc
an
di
da
te

bl
oc
ks
.

N
ot
e
th
at

a
ba
sic

bl
oc
k
ca
n
be

ca
nd

id
at
e
fo
rm

ul
tip

le
st
at
em

en
ts
.

If
fo
rs

om
e
st
at
em

en
tt
he
re

ar
e
no

ca
nd

id
at
e
bl
oc
ks
,t
he

al
go

rit
hm

ha
lts

an
d
re
po

rts
th
at

th
e
pr
og

ra
m

ca
nn

ot
be

sy
nt
he
siz

ed
.

5.
4

Id
en

ti
fy
in
g
fu
nc

ti
on

al
bl
oc

k
se
ts

Af
te
rd

et
er
m
in
in
g
th
es

et
of

ca
nd

id
at
eb

lo
ck
s,
C
B
,B

OP
C
ite
ra
tiv

el
y

id
en
tifi

es
,f
or

ea
ch

SP
L
st
at
em

en
t,
w
hi
ch

ca
nd

id
at
eb

lo
ck
sc

an
se
rv
e

as
fu
nc
tio

na
lb

lo
ck
s,
i.e
.,
th
e
bl
oc
ks

th
at

pe
rf
or
m

th
e
op

er
at
io
ns
.

Th
is
st
ep

de
te
rm

in
es

fo
re

ac
h
ca
nd

id
at
eb

lo
ck

if
th
er
ei
sa

re
so
ur
ce

m
ap
pi
ng

th
at

sa
tis
fie

st
he

bl
oc
k’
sc

on
st
ra
in
ts
.

BO
PC

id
en
tifi

es
th
ec

on
cr
et
e
se
to

fh
ar
dw

ar
er

eg
ist
er
sa

nd
m
em

-
or
y
ad
dr
es
se
st
ha
te
xe
cu
te
th
ed

es
ire

d
st
at
em

en
t.
A
su
cc
es
sfu

lm
ap
-

pi
ng

id
en
tifi

es
ca
nd

id
at
eb

lo
ck
st
ha
tc
an

se
rv
ea

sf
un

ct
io
na
lb

lo
ck
s.

To
fin

dt
he

ha
rd
w
ar
e-
to
-v
irt
ua
lr
eg
ist
er
as
so
cia

tio
n,
BO

PC
se
ar
ch
es

fo
ra

m
ax
im

um
bi
pa
rt
ite

m
at
ch
in
g
[1
1]

in
R
G
.I
fs
uc
h
a
m
ap
pi
ng

do
es

no
te

xi
st
,t
he

al
go

rit
hm

ha
lts
.T

he
se
le
ct
ed

ed
ge
si
nd

ic
at
e
th
e

se
to

fV
G
gr
ap
hs

th
at

ar
e
us
ed

to
fin

d
th
e
m
em

or
y
m
ap
pi
ng

,i
.e.
,

th
e
va
ria

bl
e-
to
-a
dd

re
ss

as
so
ci
at
io
n
(se

e
Se
ct
io
n
5.3

,t
he
re

ca
n
be

a
V
G
fo
re

ve
ry

ed
ge

in
R
G
).
Th

en
fo
re

ve
ry

V
G
th
ea

lg
or
ith

m
re
pe
at
s

th
e
sa
m
e
pr
oc
es
st
o
fin

d
an
ot
he
rm

ax
im

um
bi
pa
rti
te

m
at
ch
in
g.

Th
is
st
ep

de
te
rm

in
es
,f
or

ea
ch

st
at
em

en
t,
w
hi
ch

co
nc
re
te

re
gi
s-

te
rs

an
d
m
em

or
y
ad
dr
es
se
sa

re
re
se
rv
ed
.M

er
gi
ng

th
is
in
fo
rm

at
io
n

w
ith

th
e
se
to

fc
an
di
da
te

bl
oc
ks

co
ns
tr
uc
ts
ea
ch

bl
oc
k’
sS

PL
st
at
e,

en
ab
lin

g
th
e
re
m
ov
al
of

ca
nd

id
at
e
bl
oc
ks

th
at

ar
e
un

sa
tis
fia

bl
e.

H
ow

ev
er
,t
he
re

m
ay

be
m
ul
tip

le
ca
nd

id
at
e
bl
oc
ks

fo
re

ac
h
SP

L
st
at
em

en
t,
an
d
th
us

th
e
m
ax
im

um
bi
pa
rt
ite

m
at
ch

m
ay

no
t
be

un
iq
ue
.T
he

al
go

rit
hm

en
um

er
at
es

al
lm

ax
im

um
bi
pa
rti
te
m
at
ch
es

[6
2]
,

tr
yi
ng

th
em

on
e
by

on
e.
If
no

m
at
ch

le
ad
st
o
a
so
lu
tio

n,
th
e
al
go

-
rit
hm

ha
lts
.

5.
5

Se
le
ct
in
g
fu
nc

ti
on

al
bl
oc

ks
G
iv
en

th
e
fu
nc
tio

na
lb

lo
ck

se
tF

B
,t
hi
ss

te
p
se
ar
ch
es

fo
ra

su
bs
et

th
at

ex
ec
ut
es

al
lp

ay
lo
ad

st
at
em

en
ts
.T

he
go

al
is
to

se
le
ct
ex
ac
tly

on
e
fu
nc
tio

na
lb

lo
ck

fo
re

ve
ry

IR
st
at
em

en
ta

nd
fin

d
di
sp
at
ch
er

bl
oc
ks

to
ch
ai
n
th
em

to
ge
th
er
.B

O
PC

bu
ild

s
th
e
de
lta

gr
ap
h
δ
G
,

de
sc
rib

ed
in

Se
ct
io
n
4.4

.
On

ce
th
ed

el
ta
gr
ap
h
is
ge
ne
ra
te
d,
th
is
st
ep

lo
ca
te
st
he

m
in
im

um
(in

te
rm

so
ft
ot
al
ed
ge

w
ei
gh

t)
in
du

ce
d
su
bg
ra
ph

,H
k 0
,t
ha
tc
on

ta
in
s

Fi
gu

re
3.

5.
:H

ig
h

le
ve

lo
ve

rv
ie

w
of

th
e

B
O

PC
im

pl
em

en
ta

tio
n.

T
he

re
d

ar
ro

w
s

in
di

ca
te

th
e

ite
ra

tiv
e

pr
oc

es
s

up
on

fa
ilu

re
.C

F
G
A

:
C

FG
w

ith
ba

si
c

bl
oc

k
ab

st
ra

ct
io

ns
ad

de
d,
I
R

:C
om

pi
le

d
SP

L
pa

yl
oa

d
R
G

:R
eg

is
te

rm
ap

pi
ng

gr
ap

h,
V
G

:A
ll

va
ria

bl
e

m
ap

pi
ng

gr
ap

hs
,

C
B

:S
et

of
ca

nd
id

at
e

bl
oc

ks
,F

B
:S

et
of

fu
nc

tio
na

lb
lo

ck
s,
M

A
dj

:A
dj

ac
en

cy
m

at
ri

x
of

SP
L

pa
yl

oa
d,
δG

:D
el

ta
gr

ap
h,
H
k
:I

nd
uc

ed
su

bg
ra

ph
,C

w
:C

on
st

ra
in

ts
et

.L
:M

ax
im

um
le

ng
th

of
co

nt
in

uo
us

di
sp

at
ch

er
bl

oc
ks

,P
:U

pp
er

bo
un

d
on

pa
yl

oa
d

“s
hu

ffl
es

”,
N

:U
pp

er
bo

un
d

on
m

in
im

um
in

du
ce

d
su

bg
ra

ph
s,
K

:U
pp

er
bo

un
d

on
sh

or
te

st
pa

th
s

fo
rd

is
pa

th
er

s.

65

The output of BOPC is a sequence of (address, value, size) tuples that describe how

the memory should be modified during the state modification phase (Section 3.3) to execute

the payload. Optionally, it may also generate some additional (stream, value, size) tuples

that describe what additional input should be given on any potentially open “streams” (file

descriptors, sockets, stdin) that the attacker controls during the execution of the payload.

A high level overview of BOPC is shown in Figure 3.5 (a detailed implementation

overview is shown in Appendix 7.6). Our algorithm is iterative; that is, in case of a failure,

the red arrows, indicate which module is executed next.

3.5.1 Binary Frontend

The Binary Frontend uses angr [115] to lift the target binary into the VEX intermediate

representation to expose the application’s CFG. Operating directly on basic blocks is

cumbersome and heavily dependent on the Application Binary Interface (ABI). Instead, we

translate each basic block into a block constraint summary. Abstraction leverages symbolic

execution [2] to “summarize” the basic block into a set of constraints encoding changes in

registers and memory, and any potential system, library call, or conditional jump at the end

of the block – generally any effect that this block has on the program’s state. BOPC executes

each basic block in an isolated environment, where every action (such as accesses to registers

or memory) is monitored. Therefore, instead of working with the instructions of each basic

block, BOPC utilizes its abstraction for all operations. The abstraction information for every

basic block is added to the CFG, resulting in CFGA.

3.5.2 SPL Frontend

The SPL Front end translates the exploit payload into a graph-based Intermediate

Representation (IR) for further processing. To increase the flexibility of the mapping

process, statements in a sequence can be executed out-of-order. For each statement sequence

we build a dependence graph based on a customized version of Kahn’s topological sorting

algorithm [116], to infer all groups of independent statements. Independent statements in a

66

subsequence are then turned into a set of statements which can be executed out-of-order.

This results in a set of equivalent payloads that are permutations of the original. Our goal is

to find a solution for any of them.

3.5.3 Locating candidate block sets

SPL is a high level language that hides the underlying ABI. Therefore, BOPC looks for

potential ways to “map” the SPL environment to the underlying ABI. The key insight in this

step is to find all possible ways to map the individual elements from the SPL environment to

the ABI (though candidate blocks) and then iteratively selecting valid subsets from the ABI

to “simulate” the environment of the SPL payload.

Once the CFGA and the IR are generated, BOPC searches for and marks candidate basic

blocks, as described in Section 3.4.2. For a block to be a candidate, it must “semantically

match” with one (or more) payload statements. Table 3.3 shows the matching rules. Note

that variable assignments, unconditional jumps, and returns do not require a basic block and

therefore are excluded from the search.

All statements that assign or modify registers require the basic block to apply the same

operation on the same, as yet undetermined, hardware registers. For function calls, the

requirement for the basic block is to invoke the same call, either as a system call or as a

library call (if the arguments are different, the block is clobbering). Note that the calling

convention exposes the register mapping.

Upon a successful matching, BOPC builds the following data structures:

• RG, the Register Mapping Graph which is a bipartite undirected graph. The nodes

in the two sets represent the virtual and hardware registers respectively. The edges

represent potential associations between virtual and hardware registers.

67

Ta
bl

e
3.

3.
:

Se
m

an
tic

m
at

ch
in

g
of

SP
L

st
at

em
en

ts
to

ba
si

c
bl

oc
ks

.
A

bs
tr

ac
tio

n
in

di
ca

te
s

th
e

re
qu

ir
em

en
ts

th
at

th
e

ba
si

c
bl

oc
k

ab
st

ra
ct

io
n

ne
ed

s
to

ha
ve

to
m

at
ch

th
e

SP
L

st
at

em
en

ti
n

th
e

Fo
rm

.
U

po
n

a
m

at
ch

,t
he

ap
pr

op
ri

at
e

A
ct

io
ns

ar
e

ta
ke

n.
r α

,
r β

:
V

ir
tu

al
re

gi
st

er
s,
re
g γ

,r
eg
δ
:H

ar
dw

ar
e

re
gi

st
er

s,
C

:C
on

st
an

tv
al

ue
,V

:S
PL

va
ri

ab
le

,A
:M

em
or

y
ad

dr
es

s,
R
G

:R
eg

is
te

rm
ap

pi
ng

gr
ap

h,
V
G

:V
ar

ia
bl

e
m

ap
pi

ng
gr

ap
h,
D
M

:D
er

ef
er

en
ce

d
A

dd
re

ss
es

Se
t,
I
j
k
_
C
a
l
l

:A
ca

ll
to

an
ad

dr
es

s,
I
j
k
_
B
o
r
i
n
g

:A
no

rm
al

ju
m

p
to

an
ad

dr
es

s.

St
at

em
en

t
Fo

rm
A

bs
tr

ac
tio

n
A

ct
io

ns
E

xa
m

pl
e

R
eg

is
te

r
A

ss
ig

nm
en

t
r α

=
C

re
g γ
←

C

R
G
∪
{ (r

α
,r
eg
γ
)}

–
m
o
v
z
x
r
a
x
,
7
h

re
g γ
←
∗A

D
M
∪
{A
}

m
o
v
r
a
x
,
d
s
:
f
d

r α
=

&
V

re
g γ
←

C
,
C
∈
R
∧
W

V
α
γ

G
∪
{ (V,

A
)}

–
l
e
a
r
c
x
,
[
r
s
p
+
2
0
h
]

re
g γ
←
∗A

D
M
∪
{A
}

m
o
v
r
d
x
,
[
r
s
i
+
1
8
h
]

R
eg

is
te

r
M

od
ifi

ca
tio

n
r α
�
=
C

re
g γ
←

re
g γ
�
C

R
G
∪
{ (r

α
,r
eg
γ
)}

d
e
c
r
s
i

M
em

or
y

R
ea

d
r α

=
∗
r β

re
g γ
←
∗r
eg
δ

R
G
∪
{ (r

α
,r
eg
γ
),

(
r β
,r
eg
δ
)}

m
o
v
r
a
x
,
[
r
b
x
]

M
em

or
y

W
ri

te
∗
r α

=
r β

∗r
eg
γ
←

re
g δ

m
o
v
[
r
a
x
]
,
[
r
b
x
]

C
al

l
ca
ll
(
r α
,

r β
,
..
.)

I
j
k
_
C
a
l
l

to
ca
ll

R
G
∩
{ (r

α
,%
rd
i)
,
(
r β
,%
rs
i)
,
..
.}

c
a
l
l
e
x
e
c
v
e

C
on

di
tio

na
lJ

um
p

if
(
r α
�
=

C
)

g
ot
o
L
O
C

I
j
k
_
B
o
r
i
n
g
∧

co
n
d
it
io
n
=
re
g γ
�
C

R
G
∪
{ (r

α
,r
eg
γ
)}

t
e
s
t
r
a
x
,
r
a
x

j
n
z
L
O
O
P

68

• VG, the Variable Mapping Graph, which is very similar to RG, but instead associates

payload variables to underlying memory addresses. VG is unique for every edge in

RG i.e.:

∀(rα, regγ) ∈ RG ∃!V αγ
G

• DM , the Memory Dereference Set, which has all memory addresses that are derefer-

enced and their values are loaded into registers. Those addresses can be symbolic

expressions (e.g., [rbx + rdx*8]), and therefore we do not know the concrete

address they point to until execution reaches them (see Section 3.5.6).

After this step, each SPL statement has a set of candidate blocks. Note that a basic

block can be candidate for multiple statements. If for some statement there are no candidate

blocks, the algorithm halts and reports that the program cannot be synthesized.

3.5.4 Identifying functional block sets

After determining the set of candidate blocks, CB , BOPC iteratively identifies, for each

SPL statement, which candidate blocks can serve as functional blocks, i.e., the blocks that

perform the operations. This step determines for each candidate block if there is a resource

mapping that satisfies the block’s constraints.

BOPC identifies the concrete set of hardware registers and memory addresses that

execute the desired statement. A successful mapping identifies candidate blocks that can

serve as functional blocks.

To find the hardware-to-virtual register association, BOPC searches for a maximum

bipartite matching [112] in RG. If such a mapping does not exist, the algorithm halts. The

selected edges indicate the set of VG graphs that are used to find the memory mapping, i.e.,

the variable-to-address association (see Section 3.5.3, there can be a VG for every edge in

RG). Then for every VG the algorithm repeats the same process to find another maximum

bipartite matching.

69

This step determines, for each statement, which concrete registers and memory addresses

are reserved. Merging this information with the set of candidate blocks constructs each

block’s SPL state, enabling the removal of candidate blocks that are unsatisfiable.

However, there may be multiple candidate blocks for each SPL statement, and thus the

maximum bipartite match may not be unique. The algorithm enumerates all maximum

bipartite matches [117], trying them one by one. If no match leads to a solution, the

algorithm halts.

3.5.5 Selecting functional blocks

Given the functional block set FB , this step searches for a subset that executes all payload

statements. The goal is to select exactly one functional block for every IR statement and

find dispatcher blocks to chain them together. BOPC builds the delta graph δG, described

in Section 3.4.4.

Once the delta graph is generated, this step locates the minimum (in terms of total

edge weight) induced subgraph, Hk0 , that contains the complete set of functional blocks to

execute the SPL payload. If Hk0 , does not result in a solution, the algorithm tries the next

minimum induced subgraph, Hk1 , until a solution is found or a limit is reached.

If the resulting delta graph does not lead to a solution, this step “shuffles” out-of-order

payload statements, see Section 3.5.2, and builds a new delta graph. Note that the number

of different permutations may be exponential. Therefore, our algorithm sets an upper bound

P on the number of tried permutations.

Each permutation results in a different yet semantically equivalent SPL payload, so the

CFG of the payload (called Adjacency Matrix, MAdj) needs to be recalculated.

3.5.6 Discovering dispatcher blocks

The simulation phase takes the individual functional blocks (contained in the minimum

induced subgraph Hki) and tries to find the appropriate dispatcher blocks to compose the

70

BOP gadgets. It returns a set of memory assignments for the corresponding dispatcher

blocks, or an error indicating un-satisfiable constraints for the dispatchers.

BOPC is called to find a dispatcher path for every edge in the minimum induced subgraph.

That is, we need to simulate every control flow transfer in the adjacency matrix, MAdj of

the SPL payload. However, dispatchers are built on the prior set of BOP gadgets and their

impact on the binary’s execution state so far, so BOP gadgets must be stitched with the

respect to the program’s current flow originating from the entry point.

Finding dispatcher blocks relies on concolic execution. Our algorithm utilizes functional

block proximity as a metric for dispatcher path quality. However, it cannot predict which

constraints will take exponential time to solve (in practice we set a timeout). Therefore

concolic execution selects the K shortest dispatcher paths relative to the current BOP chain,

and tries them in order until one produces a set of satisfiable constraints. It turns that this

metric works well in practice even for small values of K (e.g., 8). This is similar to the

k-shortest path [118] algorithm used for the delta graph.

When simulation starts it also initializes any SPL variables at the locations that are

reserved during the variable mapping (Section 3.5.4). These addresses are marked as

immutable, so any unintended modification raises an exception which stops this iteration.

In Table 3.3, we introduce the set of Dereferenced Addresses, DM , which is the set of

memory addresses whose contents are loaded into registers. Simulation cannot obtain the

exact location of a symbolic address (e.g., [rax + 4]) until the block is executed and the

register has a concrete value. Before simulation reaches a functional block, it concretizes any

symbolic addresses from DM and initializes the memory cell accordingly. If that memory

cell has already been set, any initialization prior to the entry point cannot persist. That

is, BOPC cannot leverage an AWP to initialize this memory cell and the iteration fails. If

a memory cell has been used in the constraints, its concretization can make constraints

unsatisfiable and the iteration may fail.

Simulation traverses the minimum induced subgraph, and incrementally extends the

SPL state from one BOP gadget to the next, ensuring that newly added constraints remain

satisfiable. When encountering a conditional statement (i.e., a functional block has two

71

outgoing edges), BOPC clones the current state and continues building the trace for both

paths independently, in the same way that a symbolic execution engine handles conditional

statements. When a path reaches a functional block that was already visited, it gracefully

terminates. At the end, we collect all those states and check whether the constraints of all

these paths are satisfied or not. If so, we have a solution.

3.5.7 Synthesizing exploits

If the simulation module returns a solution, the final step is to encode the execution

trace as a set of memory writes in the target binary. The constraint set Cw collected during

simulation reveals a memory layout that leads to a flow across functional blocks according to

the minimum induced subgraph. Concretizing the constraints for all participating conditional

variables at the end of the simulation can result in incorrect solutions. Consider the following

case:

a = input();
if (a > 10 && a < 20) {

a = 0;
/* target block */

}

The symbolic execution engine concretizes the symbolic variable assigned to a upon

assignment. When execution reaches “target block”, a is 0, which is contradicts the

precondition to reach the target block. Hence, BOPC needs to resolve the constraints during

(i.e., on the fly), rather than at the end of the simulation.

Therefore, constraints are solved inline in the simulation. BOPC carefully monitors

all variables and concretizes them at the “right” moment, just before they get overwritten.

More specifically, memory locations that are accessed for first time, are assigned a symbolic

variable. Whenever a memory write occurs, BOPC checks whether the initial symbolic

variable still exists in the new symbolic expression. If not, BOPC concretizes it, adding the

concretized value to the set of memory writes.

72

There are also some symbolic variables that do not participate in the constraints, but are

used as pointers. These variables are concretized to point to a writable location to avoid

segmentation faults outside of the simulation environment.

Finally, it is possible for registers or external symbolic variables (e.g., data from stdin,

sockets or file descriptors) to be part of the constraints. BOPC executes a similar translation

for the registers and any external input, as these are inputs to the program that are usually

also controlled by the attacker.

3.6 Evaluation

To evaluate BOPC, we leverage a set of 10 applications with known memory corruption

CVEs, listed in Table 3.4. These CVEs correspond to arbitrary memory writes [15, 16,

129], fulfilling our AWP primitive requirement. Table 3.4 contains the total number of

all functional blocks for each application. Although there are many functional blocks,

the difficulty of finding stitchable dispatcher blocks makes a significant fraction of them

unusable.

Basic block abstraction is a time consuming process – especially for applications with

large CFGs – but these results may be reused across iterations. Thus, as a performance

optimization, BOPC caches the resulting abstractions of the Binary Frontend (Figure 3.5) to

a file and loads them for each search, thus avoiding the startup overhead listed in Table 3.4.

To demonstrate the effectiveness of our algorithm, we chose a set of 13 representative

SPL payloads 2 shown in Table 3.5. Our goal is to “map and run” each of these payloads on

top each of the vulnerable applications. Table 3.6 shows the results of running each payload.

BOPC successfully finds a mapping of memory writes to encode an SPL payload as a set

of side effects executed on top of the applications for 105 out of 130 cases, approximately

81%. In each case, the memory writes are sufficient to reconstruct the payload execution by

strictly following the CFG without violating a strict CFI policy or stack integrity.

2Results depend on the SPL payloads and the vulnerable applications. We chose the SPL payloads to showcase
all SPL features, other payloads or combination of payloads are possible. We encourage the reader to play
with the open-source prototype.

73

Ta
bl

e
3.

4.
:V

ul
ne

ra
bl

e
ap

pl
ic

at
io

ns
.T

he
P

ri
m

.c
ol

um
n

in
di

ca
te

s
th

e
pr

im
iti

ve
ty

pe
(A
W

=
A

rb
itr

ar
y

W
ri

te
,F
M
S

=
Fo

rM
at

St
ri

ng
).

Ti
m

e
is

th
e

am
ou

nt
of

tim
e

ne
ed

ed
to

ge
ne

ra
te

th
e

ab
st

ra
ct

io
ns

fo
re

ve
ry

ba
si

c
bl

oc
k.

F
un

ct
io

na
lb

lo
ck

s
sh

ow
th

e
to

ta
ln

um
be

rf
or

ea
ch

of
th

e
st

at
em

en
ts

(R
eg

Se
t=

R
eg

is
te

rA
ss

ig
nm

en
ts

,R
eg

M
od

=
R

eg
is

te
rM

od
ifi

ca
tio

ns
,M

em
R

d
=

M
em

or
y

L
oa

d,
M

em
W

r
=

M
em

or
y

St
or

e,
C

al
l=

sy
st

em
/li

br
ar

y
ca

lls
,C

on
d

=
C

on
di

tio
na

lJ
um

ps
).

N
ot

e
th

at
th

e
nu

m
be

r
of

ca
ll

st
at

em
en

ts
is

sm
al

lb
ec

au
se

w
e

ar
e

ta
rg

et
in

g
a

pr
ed

efi
ne

d
se

to
fc

al
ls

.A
ls

o
no

te
th

at
M

em
R

d
st

at
em

en
ts

ar
e

a
su

bs
et

of
R

eg
Se

ts
ta

te
m

en
ts

.

Vu
ln

er
ab

le
A

pp
lic

at
io

n
C

FG
Ti

m
e

(m
:s

)
To

ta
ln

um
be

r
of

fu
nc

tio
na

lb
lo

ck
s

Pr
og

ra
m

Vu
ln

er
ab

ili
ty

Pr
im

.
N

od
es

E
dg

es
R

eg
Se

t
R

eg
-

M
od

M
em

R
d

M
em

W
r

C
al

l
C

on
d

To
ta

l

Pr
oF

T
Pd

C
V

E
-2

00
6-

58
15

[1
19

]
A

W
27

,0
87

49
,8

62
10

:0
8

40
,1

43
38

7
1,

59
2

19
9

77
3,

02
9

45
,4

27
ng

in
x

C
V

E
-2

01
3-

20
28

[1
20

]
A

W
24

,1
69

44
,6

45
12

:3
6

31
,4

97
1,

16
8

1,
52

2
27

9
35

33
75

37
,8

76
su

do
C

V
E

-2
01

2-
08

09
[1

21
]

FM
S

3,
39

9
6,

26
7

01
:1

4
5,

16
2

26
15

7
18

45
30

7
57

15
or

zh
ttp

d
B

ug
tr

aq
ID

41
95

6
[1

22
]

FM
S

1,
35

4
2,

16
3

00
:2

7
2,

31
7

9
39

8
11

89
24

73
w

uf
td

p
C

V
E

-2
00

0-
05

73
[1

23
]

FM
S

8,
89

9
17

,0
92

03
:2

2
14

,1
01

62
27

4
11

94
92

1
15

,4
63

nu
llh

ttp
d

C
V

E
-2

00
2-

14
96

[1
24

]
A

W
1,

48
8

2,
70

1
00

:2
7

2,
32

7
77

54
7

19
12

5
2,

60
9

op
en

ss
hd

C
V

E
-2

00
1-

01
44

[1
25

]
A

W
6,

68
8

12
,4

87
01

:5
3

8,
80

0
98

21
4

19
63

55
8

9,
75

2
w

ir
es

ha
rk

C
V

E
-2

01
4-

22
99

[1
26

]
A

W
74

,1
86

16
2,

11
1

29
:4

1
12

,4
05

3
63

9
1,

73
6

19
3

10
0

45
55

13
12

76
ap

ac
he

C
V

E
-2

00
6-

37
47

[1
27

]
A

W
18

,7
90

34
,2

05
10

:2
2

33
,6

15
21

2
49

0
66

12
7

1,
76

8
36

,2
78

sm
bc

lie
nt

C
V

E
-2

00
9-

18
86

[1
28

]
FM

S
16

6,
08

1
35

1,
30

9
82

:2
5

26
5,

98
0

1,
48

1
6,

79
1

95
1

11
9

28
,7

05
30

4,
02

7

74

Table 3.5.: SPL payloads. Each payload consists of |S| statements. Payloads that produce
flat delta graphs (i.e., have no jump statements), are marked with 3. memwr payload
modifies program memory on the fly, thus preserving the Turing completeness of SPL (recall
from Section 3.3 that AWP/ARP-based state modification is no longer allowed).

Payload Description |S| flat?
regset4 Initialize 4 registers with arbitrary values 4 3

regref4 Initialize 4 registers with pointers to arbitrary memory 8 3

regset5 Initialize 5 registers with arbitrary values 5 3

regref5 Initialize 5 registers with pointers to arbitrary memory 10 3

regmod Initialize a register with an arbitrary value and modify it 3 3

memrd Read from arbitrary memory 4 3

memwr Write to arbitrary memory 5 3

print Display a message to stdout using write 6 3

execve Spawn a shell through execve 6 3

abloop Perform an arbitrarily long bounded loop utilizing regmod 2 7

infloop Perform an infinite loop that sets a register in its body 2 7

ifelse An if-else condition based on a register comparison 7 7

loop Conditional loop with register modification 4 7

Table 3.6 shows that applications with large CFGs result in higher success rates, as they

encapsulate a “richer” set of BOP gadgets. Achieving truly infinite loops is hard in practice,

as most of the loops in our experiments involve some loop counter that is modified in each

iteration. This iterator serves as an index to dereference an array. By falsifying the exit

condition through modifying loop variables (i.e., the loop becomes infinite), the program

eventually terminates with a segmentation fault, as it tries to access memory outside of the

current segment. Therefore, even though the loop would run forever, an external factor

(segmentation fault) causes it to stop. BOPC aims to address this issue by simulating the

same loop multiple times. However, finding a truly infinite loop requires BOPC to simulate

it an infinite number of times, which is infeasible. For some cases, we managed to verify

that the accessed memory inside the loop is bounded and therefore the solution truly is an

infinite loop. Otherwise, the loop is arbitrarily bounded with the upper bound set by an

external factor.

For some payloads, BOPC was unable to find an exploit trace. This is is either due to

imprecision of our algorithm, or because no solution exists for the written SPL payload.

We can alleviate the first failure by increasing the upper bounds and the timeouts in our

configuration. Doing so, makes BOPC search more exhaustively at the cost of search time.

75

Ta
bl

e
3.

6.
:F

ea
si

bi
lit

y
of

ex
ec

ut
in

g
va

ri
ou

s
SP

L
pa

yl
oa

ds
fo

re
ac

h
of

th
e

vu
ln

er
ab

le
ap

pl
ic

at
io

ns
.A

n
3

m
ea

ns
th

at
th

e
SP

L
pa

yl
oa

d
w

as
su

cc
es

sf
ul

ly
ex

ec
ut

ed
on

th
e

ta
rg

et
bi

na
ry

w
hi

le
a

7
in

di
ca

te
s

a
fa

ilu
re

,w
ith

th
e

su
bs

cr
ip

td
en

ot
in

g
th

e
ty

pe
of

fa
ilu

re
(7

1
=

N
ot

en
ou

gh
ca

nd
id

at
e

bl
oc

ks
,7

2
=

N
o

va
lid

re
gi

st
er

/v
ar

ia
bl

e
m

ap
pi

ng
s,

7
3

=
N

o
va

lid
pa

th
s

be
tw

ee
n

fu
nc

tio
na

lb
lo

ck
s

an
d

7
4

=
U

n-
sa

tis
fia

bl
e

co
ns

tr
ai

nt
s

or
so

lv
er

tim
eo

ut
).

N
ot

e
th

at
in

th
e

fir
st

tw
o

ca
se

s
(7

1
an

d
7

2)
,w

e
kn

ow
th

at
th

er
e

is
no

so
lu

tio
n

w
hi

le
,i

n
th

e
la

st
tw

o
(7

3
an

d
7

4)
,a

so
lu

tio
n

m
ig

ht
ex

is
ts

,b
ut

B
O

PC
ca

nn
ot

fin
d

it,
ei

th
er

du
e

to
ov

er
-a

pp
ro

xi
m

at
io

n
or

tim
eo

ut
s.

T
he

nu
m

be
rs

ne
xt

to
th

e
3

in
ab

lo
op

,i
nfl

oo
p,

an
d

lo
op

co
lu

m
ns

in
di

ca
te

th
e

m
ax

im
um

nu
m

be
ro

fi
te

ra
tio

ns
.T

he
nu

m
be

rn
ex

tt
o

th
e

pr
in

tc
ol

um
n

in
di

ca
te

s
th

e
nu

m
be

ro
fc

ha
ra

ct
er

su
cc

es
sf

ul
ly

pr
in

te
d

to
th

e
st

do
ut

.

Pr
og

ra
m

SP
L

pa
yl

oa
d

re
gs

et
4

re
gr

ef
4

re
gs

et
5

re
gr

ef
5

re
gm

od
m

em
rd

m
em

w
r

pr
in

t
ex

ec
ve

ab
lo

op
in

flo
op

ife
ls

e
lo

op

Pr
oF

T
Pd

3
3

3
3

3
3

3
3

3
2

7
1

3

1
2
8
+

3 ∞
3

3
3

ng
in

x
3

3
3

3
3

3
3

7
4

3
3

1
2
8
+

3 ∞
3

3
1
2
8

su
do

3
3

3
3

3
3

3
3

3
7

4
3

1
2
8
+

7
4

7
4

or
zh

ttp
d

3
3

3
3

3
3

3
7

4
7

1
7

4
3

1
2
8
+

7
4

7
3

w
uf

td
p

3
3

3
3

3
3

3
3

7
1

3

1
2
8
+

3

1
2
8
+

7
4

7
3

nu
llh

ttp
d

3
3

3
3

3
3

7
3

7
3

3
3 3
0

3 ∞
7

4
7

3

op
en

ss
hd

3
3

3
3

3
3

7
4

7
4

7
4

3 5
1
2

3

1
2
8
+

3
3

9
9

w
ir

es
ha

rk
3

3
3

3
3

3
3

3
4

7
1

3

1
2
8
+

3
7

3
3

8

ap
ac

he
3

3
3

3
3

3
3

7
4

7
4

3 ∞

3

1
2
8
+

3
7

4

sm
bc

lie
nt

3
3

3
3

3
3

3
3

1
7

1
3

1
0
5
7

3

1
2
8
+

3
3

2
5
6

76

The failure to find a solution exposes the limitations of the vulnerable application. This

type of failure is due to the “structure” of the application’s CFG, which prevents BOPC

from finding a trace for an SPL payload. Hence, a solution may not exist due to one the

following:

1. There are not enough candidate blocks or functional blocks.

2. There are no valid register / variable mappings.

3. There are no valid paths between functional blocks.

4. The constraints between blocks are unsatisfiable or symbolic execution raised a

timeout.

For instance, if an application (e.g., ProFTPd) never invokes execve then there are no

candidate blocks for execve SPL satements. Thus, we can infer from the execve column

in Table 3.6 that all applications with a 71 never invoke execve.

In Section 3.3 we mention that the determination of the entry point is part of the

vulnerability discovery process. Therefore, BOPC assumes that the entry point is given.

Without having access to actual exploits (or crashes), the locations of entry points are

ambiguous. Hence, we have selected arbitrary locations as the entry points. This allows

BOPC to find payloads for the evaluation without having access to concrete exploits. In

practice, BOPC would leverage the given entry points as starting points. We demonstrate

several test cases where the entry points are precisely at the start of functions, deep in the

Call Graph, to show the power of our approach. Orthogonally, we allow for vulnerabilities

to exist in the middle of a function. In such situations, BOPC would set our entry point to

the location after the return of the function.

The lack of the exact entry point complicates the verification of our solutions. We

leverage a debugger to “simulate” the AWP and modify the memory on the fly, as we reach

the given entry point. We ensure as we step through our trace that we maintain the properties

of the SPL payload expressed. That is, blocks between the statements are non-clobbering in

terms of register allocation and memory assignment.

77

3.7 Case Study: nginx

We utilize a version of the nginx web server with a known memory corruption vulnerabil-

ity [120] that has been exploited in the wild to further study BOPC. When an HTTP header

contains the “Transfer-Encoding: chunked” attribute, nginx fails to properly bounds check

the received packet chunks, resulting in stack buffer overflow. This buffer overflow [15]

results in an arbitrary memory write, fulfilling the AWP requirement. For our case study

we select three of the most interesting payloads: spawning a shell, an infinite loop, and a

conditional branch. Table 3.7 shows metrics collected during the BOPC execution for these

cases.

Table 3.7.: Performance metrics (run on Ubuntu 64-bit with an i7 processor) for BOPC on
nginx. Time = time to synthesize exploit, |CB| = # candidate blocks, Mappings = # concrete
register and variable mappings, |δG| = # delta graphs created, |Hk| = # of induced subgraphs
tried.

Payload Time |CB| Mappings |δG| |Hk|
execve 0m:55s 10,407 142,355 1 1
infloop 4m:45s 9,909 14 1 1
ifelse 1m:47s 10,782 182 4 2

3.7.1 Spawning a shell

Function ngx_execute_proc is invoked through a function pointer, with the second

argument (passed to rsi, according to x64 calling convention), being a void pointer that is

interpreted as a struct to initialize all arguments of execve:

mov rbx, rsi
mov rdx, QWORD PTR [rsi+0x18]
mov rsi, QWORD PTR [rsi+0x10]
mov rdi, QWORD PTR [rbx]
call 0x402500 <execve@plt>

78

BOPC leverages this function to successfully synthesize the execve payload (shown

on the right side of Table 3.1) and generate a PoC exploit in less than a minute as shown in

Table 3.7.

Assuming that rsi points to some writable address x, BOPC produces the follow-

ing (address, value, size) tuples: ($y, $x, 8), ($y + 8h, 0, 8), ($x, /bin/sh, 8), ($x +

10h, $y, 8), ($x+ 18h, 0, 8), were $y is a concrete writable addresses set by BOPC.

3.7.2 Infinite loop

Here we present a payload that generates a trace that executes an infinite loop. The

infloop payload is a simple infinite loop that consists of only two statements:

void payload() {
LOOP:

__r1 = 0;
goto LOOP;

}

We set the entry point at the beginning of ngx_signal_handler function which is

a signal handler that is invoked through a function pointer. Hence, this point is reachable

through control-flow hijacking. The solution synthesized by BOPC is shown in Figure 3.6.

The box on the top-left corner demonstrates how the memory is initialized to satisfy the

constraints.

Virtual register __r0 was mapped to hardware register r14, so ngx_signal_-

handler contains three candidate blocks, marked as octagons. Exactly one of them

is selected to be the functional block while the others are avoided by the dispatcher blocks.

The dispatcher finds a path from the entry point to the first functional block, and then finds a

loop to return back to the same functional block (highlighted with blue arrows). Note that

the size of the dispatcher block exceeds 20 basic blocks while the functional block consists

of a single basic block.

The oval nodes in Figure 3.6 indicate basic blocks that are outside of the current function.

At basic block 0x41C79F, function ngx_time_sigsafe_update is invoked. Due to

79

41cb6c

41cbaa

41cae2

41cafa

41ca27

41ca2c

41cc5f

41cc79

41cb0b

41cb10

41c791

41c79f

41ca50

41cb46 41ca60

41cc48

41cc52

41c994

41c9ac

41c9ea

41c9fb

41ca18

41cbac

41cbbd

41cbe6

41c910

41c91e41c9a1

41ccc3

41cce7

41c9bd

41c9e5

41c783

41c787

41c900

41cb09 41cacd

41cced

41c7bf

41c8f2 41c96d

41ca40

41ca4b

41ca84

41ca8f

41ca97

41ccad

41ccb2

41c7cd

41cac8

41c8f7

41cc8c

41cc95

41cb50

41cb5b

41c7a4

41c7b141c7c4

41ca7c

4027d0

41c93f41cc39

41ca22

41c750

41c765

402220

41c97a

41cc7f

41ca9b

41c778

41c79a

41c77c

41cc0f

41cbed

41cab0

41cb3f

41cbfe

40e10f

41cb36

41caff

41ca77

41c793

41c956

1000038

40e223

1000308

 41C765: signals.signo == 0
 40E10F: ngx_time_lock != 0
 41C7B1: ngx_process 3 > 1
 41C9AC: ngx_cycle = $alloc_1
 $alloc_1>log = $alloc_2
 $alloc_2>log_level <= 5
 41CA18: signo == 17
 41CA4B: waitpid() return value != {0, 1}
 41cA50: ngx_last_process == 0
 41CB50: *($stack 0x03C) & 0x7F != 0
 41CB5B: $alloc_2>log_level <= 1
 41CBE6: *($stack 0x03C + 1) != 2
 41CC48: ngx_accept_mutex_ptr == 0
 41CC5F: ngx_cycle>shared_memory.part.elts = 0
 __r0 = r14 = 0
 41CC79: ngx_cycle>shared_memory.part.nelts <= 0
 41CC7F: ngx_cycle>shared_memory.part.next == 0

In function

Out of function

Functional block

Dispatcher path

Figure 3.6.: CFG of nginx’s ngx_signal_handler and payload for an infinite loop
(blue arrow dispatcher blocks, octagons functional blocks) with the entry point at the
function start. The top box shows the memory layout initialization for this loop. This graph
was created by BOPC.

80

Statement #12

Statement #2

Statement #0

Statement #4

Statement #16

Statement #6

41eb23

403d4b

8

403d6c

10

404d5a

13

407887

36

407a1c

40

41dfe3

4

41e02a

11

403cdb

INF INF INF INF INF 1 INF

403e4e

10

403fd9

2

403e4e

10

403ebb

19

403fb4

6

403fd9

2

 -1

0 0 0 0 0 0

Figure 3.7.: A delta graph instance for an ifelse payload for nginx. The first node is the entry
point. Blue nodes and edges form the minimum induced subgraph, Hk. Statement #4 is a
conditional, execution branches into two statements. Note that BOPC created this graph.

the shortest path heuristic, BOPC, tries to execute as few basic blocks as possible from this

function. In order to do so BOPC sets ngx_time_lock a non-zero value, thus causing

this function to return quickly. BOPC successfully synthesizes this payload in less than 5

minutes.

3.7.3 Conditional statements

This case study shows an SPL if-else condition that implements a logical NOT. That is,

if register __r0 is zero, the payload sets __r1 to one, otherwise __r1 becomes zero. The

execution trace starts at the beginning of ngx_cache_manager_process_cycle.

This function is called through a function pointer. A part of the CFG starting from this

function is shown in Appendix 7.5. After trying 4 mappings, __r0 and __r1 map to rsi

and r15 respectively. The resulting delta graph is the shown in Figure 3.7.

81

As we mentioned in Section 3.5.6, when BOPC encounters a functional block for a

conditional statement, it clones the current state of the symbolic execution and the two

clones independently continue the execution. The constraints up to the conditional jump are

the following:

0x41eb23 : $rdi = ngx_cycle_t* cycle
0x40f709 : *(ngx_event_flags + 1) == 0x2
0x41dfe3 : __r0 = rsi = 0x0
0x403cdb : $r15 = 0x1

ngx_module_t ngx_core_module.index = 0
$alloca_1 = *cycle
ngx_core_conf_t* conf_ctx =

*$alloca_1 + ngx_core_module.index * 8
0x403d06 : test rsi, rsi (__r0 != 0)
0x403d09 : jne 0x403d1b <ngx_set_environment+64>

If the condition is false and the jump is not taken, the following constraints are also

added to the state.

0x403d0b : conf_ctx->environment != 0
0x403fd9 : __r1 = *($stack - 0x178) = 1;

When the condition is true, the execution trace will follow the “taken” branch of the trace.

In this case the shortest path to the next functional block is 403d1b→ 403d3d→ 403d4b→

403d54→ 403d5a→ 403fb4 with a total length 6. Unfortunately, this cannot be used as a

dispatcher block, due to an exception that is raised at 403d4b. The register rsi, is 1 and

therefore when we attempt to execute the following instruction: cmp BYTE PTR [rsi],

54h, we essentially try to dereference address 1. BOPC is aware of this exception, so it

discards the current path and tries with the second shortest path. The second shortest path

has length 7 and avoids the problematic block: 403d1b→ 403d8b→ 4050ba→ 40511c→

40513a→ 403d9c→ 403da5→ 403fb4. This results in a new set of constraints as shown

below:

82

0x403d1b : conf_ctx->env.elts = &elt (ngx_array_t*)
conf_ctx->env.nelts == 0

0x4050ba : conf_ctx->env.nelts != $alloca_2->env.nalloc
0x40511c : conf_ctx->env.nelts += 1
0x40513a : $ret = conf_ctx->env.elts +

conf_ctx->env.nelts*conf_ctx->env.size
0x403d9c : $ret != 0
0x403da5 : conf_ctx->env.nelts != 0
0x403fb4 : __r1 = r15 = 0

3.8 Discussion and Future Work

Our prototype demonstrates the feasibility and scalability of automatic construction of

BOP chains through a high level language. However, we note some potential optimizations

that we will consider for future versions of BOPC.

BOPC is limited by the granularity of basic blocks. That is, a combination of basic

blocks could potentially lead to the execution of a desired SPL statement, while individual

blocks might not. Take for instance an instruction that sets a virtual register to 1. Assume

that a basic block initializes rcx to 0, while the following block increments it by 1; a

pattern commonly encountered in loops. Although there is no functional block that directly

sets rcx to 1, the combination of the previous two has the desired effect. BOPC can be

expanded to address this issue if the basic blocks are coalesced into larger blocks that result

in a new CFG.

BOPC sets several upper bounds defined by user inputs. These configurable bounds

include the upper limit of (i) SPL payload permutations (P), (ii) length of continuous

blocks (L), (iii) of minimum induced subgraphs extracted from the delta graph (N), and (iv)

dispatcher paths between a pair of functional blocks (K). These upper bounds along with

the timeout for symbolic execution, reduce the search space, but prune some potentially

valid solutions. The evaluation of higher limits may result in alternate or more solutions

being found by BOPC.

83

3.9 Conclusion

Despite the deployment of strong control-flow hijack defenses such as CFI or shadow

stacks, data-only code reuse attacks remain possible. So far, configuring these attacks relies

on complex manual analysis to satisfy restrictive constraints for execution paths.

Our BOPC mechanism automates the analysis of the remaining attack surface and syn-

thesis of exploit payloads. To abstract complexity from target programs and architectures,

the payload is expressed in a high-level language. Our novel code reuse technique, Block

Oriented Programming, maps statements of the payload to functional basic blocks. Func-

tional blocks are stitched together through dispatcher blocks that satisfy the program CFG

and avoid clobbering functional blocks. To find a solution for this NP-hard problem, we

develop heuristics to prune the search space and to evaluate the most probable paths first.

The evaluation demonstrates that the majority of 13 payloads, ranging from typical

exploit payloads to loops and conditionals are successfully mapped 81% of the time across

10 programs. Upon acceptance, we will release the source code of our proof of concept

prototype along with all of our evaluation results. The prototype is available at https:

//github.com/HexHive/BOPC.

https://github.com/HexHive/BOPC
https://github.com/HexHive/BOPC

84

4 X-CAP: ASSESSING EXPLOITATION CAPABILITIES

In Chapter 3 we introduced a novel technique, called Block Oriented Programming (BOP),

to automate data-only attacks. The main intuition behind Block Oriented Programming is,

given an exploit payload, to find a sequence “gadgets” that perform useful computations

(called functional gadgets), and stitch them together through a sequence of dispatcher

gadgets. The purpose of a dispatcher gadget is twofold: First, it assures the smooth

transition between two functional gadgets, without clobbering the the execution state (or

context) that functional gadgets build. Second, it ensures that program’s execution flow

abides with Control Flow Graph (CFG) and therefore never violates Control Flow Integrity

(CFI).

However, the problem of stitching functional gadgets is NP-hard as it reduces from

K-Clique problem (see Section 7.3 for a detailed proof). Furthermore, it also involves the use

of symbolic execution and constraint solving, two problems that reduce from 3-SAT [130],

the original NP-complete problem. Hence, despite the extensive effort that our framework,

BOPC [17], puts to stitch all functional gadgets together, there is no guarantee that such a

solution will exist, as shown in Section 3.6.

A closer look at the cases were BOPC fails, reveals an interesting problem: Inferring the

root cause of the failures. BOPC has inherent limitations as it deals with NP-hard problems.

Therefore, it may not be capable of finding a solution all the times. But what if a solution

does not exist at all? In this chapter we aim to formulate this problem and determine under

which circumstances it is infeasible to stitch two functional gadgets together. Our analysis

results in three possible outcomes:

• It is possible to stitch two functional gadgets together, as BOPC has found a solution

(proven connectivity).

85

• It is impossible to stitch two functional gadgets together, because gadgets are either

too far apart or they have unsatisfiable constraints (proven disconnectivity).

• We have good indications that it may not be possible to stitch two functional gadgets

together. BOPC did not find a solution because either a timeout was raised during

concolic execution, or a potential solution pruned from the search space. (potential

dis-connectivity).

Although we can reduce the probability of falling in the last case by repeating the

experiment with longer timeouts and a more extensive search, there is no guarantee that we

can avoid it, as the execution time and the search space can be exponential. Nevertheless,

BOPC has the ability to distinguish between the last two cases.

Therefore, we can leverage the second outcome (proven disconnectivity) to solve the

inverse problem: Finding which functional gadgets are impossible to stitch together. This

is an interesting outcome, because if we know that it is infeasible to stitch two functional

gadgets together, we can infer that it is not possible to be part of the same payload. That is,

we know what payloads an adversary, is not capable of executing on a vulnerable application.

We can formalize the previous statement and assess the exploitation capabilities on a

vulnerable application. Our tool, X-Cap, leverages BOPC to find functional gadgets that

impossible to stitch together and functional gadgets that is feasible to stitch together. X-Cap

encodes this information in a directed graph, called capability graph. In this graph each

node represents functional gadget and each edge the potential connectivity between two

gadgets. An interesting property of this graph is that it constitutes from several, disconnected

components, called islands and they essentially represent gadget reachability.

By analyzing the capability graph we can infer that if two functional gadgets belong to

different computation islands then it is impossible to coexist in the same exploit payload.

However when two functional gadgets belong to the same computation island it does

not necessary mean that we can always stitch them together. For instance consider three

functional gadgetsA,B andC, as shown in Figure 4.1, that reside on the same computational

island. Although it is possible to stitch A with B, B with C and A with C together, it is

86

1 /* declare a guard variable */
2 var_a = input();
3

4 /* code that executes gadget A */
5 gadget_A();
6

7

8 if (var_a == 0) {
9 /* code that executes gadget B */

10 gadget_B();
11 }
12

13 if (var_a == 1) {
14 /* code that executes gadget C */
15 gadget_C();
16 }

Figure 4.1.: Code snippet that shows computation island disconnectivity. Here, we have
three functional gadgets A, B and C. Although it is possible to stitch A with B, A with C
and B with C together (so all of A, B and C, belong to the same computation island), it is
impossible to stitch all of them together as this requires var_a to be 0 and 1 at the same
time. This is because the path constrains contradict and therefore become unsatisfiable.

impossible to stitch A, B and C all together. This is because their imposed constrains that

are built along the path contradict: The prerequisite to stitch A and B requires specific a

memory address to be zero, while the prerequisite to stitch B and C is the same memory

address to be nonzero.

Therefore, the computation islands give us upper bounds. That is, they indicate the

largest set of functional gadgets that can be on the same payload, in the best case scenario

that all constrains are satisfiable. This allows X-Cap to infer properties regarding the

composition of the exploit payloads that can be executed under a vulnerable application.

In Chapter 3, we described how BOPC indicates whether the Residual Attack Surface is

non-zero or not, by finding an exploit payload that can be executed under binaries hardened

with advanced mitigations, such as CFI and shadow stacks. Here, X-Cap identifies sets of

exploit payloads that can successfully be executed on top of a (given) vulnerable application.

We refer to this term as application’s capability and essentially encapsulates all “properties”

that an exploit payload should carry to be successful executed.

Large applications likely contain vulnerabilities so our tool, X-Cap, allows for an

assessment of the exploitability of a vulnerable application. X-Cap follows a similar

87

approach with BOPC and therefore it reuses a large portion from it. It finds all potential

(individual) SPL statements that the vulnerable application is capable of executing and

builds the proximity graph, which provides strong indications on which SPL statements

together can be stitched together. X-Cap is an ongoing work.

88

5 MALWASH: WASHING MALWARE TO EVADE DYNAMIC ANALYSIS

Hiding malware processes from fingerprinting is challenging. Current techniques like

metamorphic algorithms and diversity generate different instances of a program, protecting

it against static detection. Unfortunately, all existing techniques are prone to detection

through behavioral analysis – a runtime analysis that records behavior (e.g., through system

call invocations), and can detect executing diversified programs like malware.

We present malWASH, a dynamic diversification engine that executes an arbitrary

program without being detected by dynamic analysis tools. Target programs are chopped

into small components that are then executed in the context of other processes, hiding

the behavior of the original program in a stream of benign behavior of a large number of

processes. A scheduler connects these components and transfers state between the different

processes. The execution of the benign processes is not impacted. Furthermore, malWASH

ensures that the executing program remains persistent, complicating the removal process.

5.1 Introduction

Malware (and fighting malware) is an important aspect of computer security. Mal-

ware by itself does not exploit security vulnerabilities but is the payload that is executed

post-exploitation. Consequently, malware is only successful if it is stealthy and remains

undetected. Sophisticated, undetectable malware is therefore a required asset for attackers.

Anti Virus systems (AV) are based on signature detection and static analysis. Although

this method has limitations, it is well-proven, reliable, and accurate. The AV identifies

malware by looking for known patterns or characteristics. Due to its simplicity and accuracy,

signature-based detection remains widely used.

Malware authors bypass signature-based detection by using metamorphic [26] algorithms

and diversity. These techniques generate instances of the same binary that have different

89

signatures, while maintaining the functionality of the binary. Defenders quickly realized

that all generated instances have the same functionality, and started to identify the behavior

of the malware instead of the signature [22]. Dynamic analysis executes the malware to

reveal its behavior. This method is simple but effective, e.g., a typical keylogger repeatedly

performs a sequence of specific system calls. No matter how obfuscated the binary is, these

system calls are repeated in the same order, making the keylogger easily detectable.

A simple technique to bypass behavior based detection would be to insert bogus system

calls (i.e., system calls that do not affect the original execution) between real ones. An

analysis can likely filter out bogus system calls, thereby mitigating this naive technique. We

propose a sophisticated, novel mechanism to hide malware from behavior-based analysis.

Rather than executing the program in a single process, we automatically distribute the

program across a set of pre-existing, benign processes. Our approach is based on a simple

observation: although we cannot modify the executing system calls and their order of

execution in a binary, we can hide them within the stream of system calls that are performed

on the entire system.

To spread our system calls across the stream of calls for the entire system we propose

injecting our system calls into a set of existing processes on the system. To do this, the

original binary is chopped into small chunks. Each individual chunk only contains limited

functionality and therefore executes few system calls. These small chunks and an “emulator”

are then injected into multiple running processes and blend into the stream of executed

system calls. Each emulator then selects the individual chunks to run, captures state, and

coordinates with the other emulators who continues execution.

Detection tools that observe behavior based on a per-process analysis no longer see the

complete sequence of system calls that the program executes. Each injected system call is

hidden in a set of benign system calls and the program functionality is spread across a set

of benign processes, executing benign code (in addition to the injected one). Tracking the

system calls of all applications globally and trying to look for malicious patterns is a strictly

harder problem, as system calls from the injected binary are spread out in the stream of

90

system calls for the entire system. Consequently, methods like [29] which search for short

sequences of malicious system calls fail.

Prior obfuscation techniques such as [131, 132] guarantee that the actual computation

remains the same, which is a required, fundamental property that enabled behavioral analysis.

malWASH guarantees equal functionality, while bypassing behavioral analysis. The design

of our “malware” engine allows chopping and executing arbitrary programs. To keep our

Windows-based prototype implementation general but simple, we constrain the execution

environment, and assume that the binary has some specific properties (defined in Section 5.4).

We evaluate our malWASH prototype implementation with samples from different malware

categories and show that our implementation successfully chops and executes the programs.

Beyond stealthiness, malWASH offers another interesting property: resilience. The

malware is distributed as it is injected into multiple benign processes and executes as part of

them. Therefore, killing a single process does not stop the execution of the malware as it

can reinstantiate itself from any remaining emulator. The only way to stop malWASH is to

kill all infected processes at the same time, before any process reinfects a new process.

The contributions of malWASH are:

• Design of an execution engine that thwarts behavioral and dynamic analysis.

• Creation of fully persistent malware that continues executing as long as at least one

emulator remains.

Furthermore, the design of malWASH, has some very interesting properties. First, even

if malWASH is detected, the actual binary remains obfuscated in a plethora of processes,

complicating reverse engineering. An analyst would first have to correctly reassemble the

binary. Second, all of the existing obfuscation and diversity techniques can be used with

malWASH.

5.2 Background and Related Work

Over the last decade, many techniques have been proposed to enable obfuscation and

diversity, with the goal of hiding malware from AV systems. One of the oldest methods

91

U
s
e

r
S

p
a

c
e

P
ro

c
e

s
s

I

P
ro

c
e

s
s

II

P
ro

c
e

s
s

II
I

P
ro

c
e

s
s

IV

P
ro

c
e

s
s

V

K
e

rn
e

l
S

p
a

c
e

(a
)S

ys
te

m
un

de
rn

or
m

al
in

fe
ct

io
n

U
s
e

r
S

p
a

c
e

P
ro

c
e

s
s

I

P
ro

c
e

s
s

II

P
ro

c
e

s
s

II
I

P
ro

c
e

s
s

IV

P
ro

c
e

s
s

V

S
h

a
re

d
 M

e
m

o
ry

I

S
h

a
re

d
 M

e
m

o
ry

II

S
h

a
re

d
 M

e
m

o
ry

II
I

S
h

a
re

d
 M

e
m

o
ry

IV

K
e

rn
e

l
S

p
a

c
e

(b
)S

ys
te

m
un

de
rm

al
W

A
SH

in
fe

ct
io

n

=
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

(c
)C

on
ce

pt
ua

lly
,a

ll
th

e
sm

al
l(

an
d

be
ni

gn
)i

nj
ec

te
d

pa
rt

s
ar

e
eq

ua
lw

ith
th

e
or

ig
in

al
m

al
w

ar
e

Fi
gu

re
5.

1.
:A

co
m

pa
ri

so
n

be
tw

ee
n

no
rm

al
in

fe
ct

io
n

an
d

m
al

W
A

SH

92

to detect whether a given binary is malicious or not is to use static analysis detection

[23, 25]. Anti-disassembly mechanisms [36, 132, 133] allow malware authors to bypass

static analysis and companies to protect their IP against, e.g., illegal distribution. Although

powerful, anti-disassembly techniques are infamous; benign programs have no reason to

obfuscate their code as obfuscation may impact performance, stability, and the ability to

reproduce crashes. Even though analysis of binaries protected by anti-disassembly is hard,

it is straight-forward to check whether such protections were applied, e.g., detecting an

encrypted PE header [24]. An AV can exploit this fact and flag a binary as malicious without

trying to analyze it, as using such obfuscation is a strong indication that the binary is actually

malicious.

Furthermore, these mechanisms have to eventually reveal their payloads and execute

it. Techniques like dynamic analysis and sandboxes, analyze the malware and compare

the behavior against well-known patterns. Anti-debugging techniques [39, 131] along with

VM-detection [38] are used to change a program’s behavior when a sandbox or a debugger is

detected. All these methods share that the actual execution of the malware, when not being

debugged, remains constant (this is a guaranteed property). Consequently, observing the

behavior of the executing malware always yields the same observation (e.g., same system

calls in the same order).

Improved obfuscation mechanisms were proposed, notably using Return Oriented Pro-

gramming (ROP) to hide a malware within a benign program [134, 135]. Although effective,

a ROP-style execution can easily be detected [102, 103, 104, 105, 106]. Another interesting

obfuscation technique is movfuscator [136], which compiles a program using only mov

instructions. This makes analysis extremely hard, but detecting that movfuscator is applied

to a given binary is trivial. Any use of movfuscator is an indication that a binary is malicious,

even if there is no information on what the binary does.

The concept behind the previous approaches, was to hide a malicious payload within

a program. Another approach is to “get rid” of the malicious payload, by forcing another

program to execute it for you. Metasploit’s meterpreter [137] uses DLL and Reflective DLL

[138] injection, to inject a malicious payload into another process’s address space.

93

The common property of all the aforementioned protections is that any malicious action

happens within the context of a single process. Here is where dynamic analysis [27] takes

place. This is a powerful method that tries to classify a program or a process as malicious

by observing its behavior (e.g., system calls, involved files, or network connections). Using

dynamic analysis, it is possible to detect new, unknown malware just by matching the

behavior of the binary.

Many dynamic analysis methods have been proposed to detect malware. Methods based

on execution tracing [22, 28, 29, 30, 31, 32], inspect executing traces, looking for malicious

patterns of system calls. However, when a binary runs under malWASH, is significantly

complicated due to the distributed nature of our approach: (i) the execution trace of a

process, contains only a small and out-of-order subset of system calls, and (ii) any sequence

of system calls of the original binary is distributed among multiple processes, because each

quantum given to malWASH, contains only a few system calls (e.g., 1 or 2).

The most recent malware detection methods use machine learning techniques to classify

a binary as malicious or not [33, 34, 35, 139, 140]. However, these methods all assume that

the malware runs in a single process and that only malicious system calls are executed by a

process.

Even though the original binary is well hidden and protected, defenders could try to

detect the malWASH emulator itself and not the binary it emulates. However, the idea of

malWASH can also be used to protect malWASH itself. As we show in Section 5.5.3, the

use of sub-emulators (small emulators that emulate the original emulator) along with other

hardening methods in emulator, makes detection challenging.

5.3 Design

The design of malWASH follows a simple concept: breaking a program into small pieces

and hiding these pieces in benign processes (see Figure 5.1). Conceptually, malWASH works

as an emulator that (i) executes individual instructions of the program and (ii) coordinates

with the other active emulators to create a correct flow of execution.

94

Behavioral malware detection is carried out per process (or per thread). After analysis,

an individual process can be flagged as malicious. We believe that scaling behavioral

analysis to a group of processes or threads is hard due to the exponential explosion of

possible combinations of system calls across processes. malWASH introduces an emulator

that allows the execution of a target program in a set of host processes. In the most stealthy

mode of malWASH, a host process executes a single instruction of the emulated program

per time slice. Detecting this one instruction within the millions of instructions that get

executed by the process is highly unlikely.

malWASH takes as input a binary file and produces a C++ source file that embeds all

the required parts of the binary along with all malWASH components. Using a source file as

output enables further binary obfuscation processes (e.g., metamorphism). This means that

all the existing protection methods against static analysis and signature detection work on

top of malWASH.

malWASH operates in two phases. In the first phase, the original program binary is

“chopped” into hundreds of small pieces and all the required information is extracted from

the binary (segments, loaded libraries, relocations, global data and thread information). All

these components (including those from malWASH) are encoded as character arrays and

packed into a single C++ source file.

Chopping the binary into components is challenging as control-flow transfer instructions

(e.g., jcc, jmp, call, and ret) may transfer control of the execution to a point that is

not in the current address space. Therefore, the initial chopping is done at the basic block

level. This way we know that only the last instruction transfers control to other locations.

Using an emulator lookup function, we can replace the original instruction with a set of

instructions that recover control-flow (possibly signaling another process to continue). Once

we finish chopping on basic blocks, we can further chop the basic blocks themselves into

new, smaller blocks, or start coalescing basic blocks to larger blocks.

Splitting opens a trade-off between efficiency and stealthiness. Using smaller blocks,

malware signatures disappear and dynamic analysis detection tools fail to observe malicious

behavior in the block. On the other hand, because there is a lot of overhead to transition

95

between executed blocks (capturing state, selecting the next block to execute, and scheduling

which process should execute the next block), fewer blocks will lead to less overhead from

the emulator.

Once the source file is compiled, the program is ready to execute. The second phase of

malWASH takes place when it starts execution. The first component is the loader, which

looks for a set of “suitable” processes. The amount of emulators used is flexible and user-

configurable. A good candidate is, e.g., the Google Chrome browser as it spawns many

communicating processes that are perfect candidates for injection. A process is suitable

when it allows another process to inject and execute code into its address space. Obviously,

these instances need to cooperate, so a stealthy, reliable communication channel is needed.

For this reason the loader also initializes a small set of shared memory regions for use by all

the malWASH emulators. These shared regions contain data segments, stack, heap and all

metadata that emulators are needed in order to cooperate and execute the blocks. Instead of

shared memory, other communication mechanisms can be used such as pipes, files, network

ports, or even covert channels.

Using shared memory regions has several advantages over process messages: (i) message

may get lost and (ii) someone may observe messages between processes that are irrelevant

to each other. If the emulator from process A communicates with the emulator from process

B, it writes to the shared region that emulator of process B is waiting to read. Someone

may still observe that there are new shared regions between processes, but as we show in

Section 5.5.3, this information is of limited use.

Emulation of the malware begins after the loader terminates. Control is transferred to the

first emulator (there is no central scheduling emulator) which executes its basic block, and

then transfers control to the next emulator. At any time, exactly one emulator runs a piece

of the original program (except for multi-threading programs where multiple emulators can

execute different blocks of the program as long these blocks belong to different threads).

Semaphores and Mutexes synchronize the emulators and ensure that no more than two

processes will execute blocks from the same thread at each time.

96

When an emulator successfully takes the semaphore, it executes the next block of the

malware. Before executing the next block, a context switch is performed and all memory

accesses and imported function addresses are properly relocated. During the execution,

current instructions within a block are executed transparently, without knowing of the

emulation. After the block is executed, a context switch is performed, saving the current

state of the program in the shared region and the emulators will coordinate to find which

one will execute the next block. Note that different scheduling policies can be implemented

to select which emulator executes the next block, we use a simple race. This distribution of

emulators results in an address space independent execution.

When a process that contains an emulator terminates, the other emulators can continue

the execution and the malware will continue to execute. The other emulators can detect

the missing component and invoke the loader to reinitialize the missing emulator in a new

process, keeping the total number of emulators constant. This means that as long as there is

at least one emulator running it can recover from killed instances. Removing or stopping

the malware requires that all emulators must be killed at the same time. The emulators run

exclusively in memory, making it harder to detect as there are no persistent files.

5.4 Implementation

malWASH takes a binary program and distributes its execution across a set of benign

processes, coordinating the global state of the program and the scheduling between the

individual components. In the most fine-grained configuration, each instruction of the target

program is a different entity. The Windows-based implementation of malWASH draws

ideas from several areas: binary analysis to chop the program into individual components,

binary translation to manipulate the control execution of each block, to coordinate between

individual blocks and to orchestrate scheduling, and snapshotting to capture and synchronize

program state across the different processes.

Our malWASH prototype implementation (available at https://github.com/

HexHive/malWASH) consists of an offline and an online component. The offline compo-

https://github.com/HexHive/malWASH
https://github.com/HexHive/malWASH

97

Table 5.1.: List of supported properties by design and implemented in the current prototype.

Prototype
Property Implementation Design

Obfuscated No Depends

Self Modifying No Yes

Polymorphic /
Metamorphic No Yes

Packed No Yes

Anti disassembly No Yes

Anti debugging (Yes) (Yes)

Non PIE Depends Yes

Use Heap Yes Yes

Multi Threading Yes Yes

W+X sections No Yes

Non x86 No Yes

Statically linked Depends Depends

nent runs the binary analysis, chops the program into individual components, and prepares

the emulator. The online component includes the loader that injects components into dif-

ferent processes and the emulator which orchestrates and coordinates the execution of the

program among all the different host processes.

By extracting the components offline, we can fall back on existing tools for the under-

lying binary analysis and, more importantly, our emulator does not require disassembly

functionality. To keep the implementation prototype simple, we have restricted the (im-

plemented) functionality of the emulator. Our emulator supports the full x86 instruction

set (with a special focus of the control transfer instructions). Anti debugging features of

the original binary can be mitigated by our translation and analysis process. The current

implementation does not support x86-64 code and obfuscated or any form of self-modifying

code (a design and engineering decision as otherwise the emulator would require its own

binary analysis framework and disassembly functionality, vastly increasing the size of the

emulator). Table 5.1 highlights the design trade-offs.

98

5.4.1 Phase 1: Chopping the binary

malWASH uses an IDA pro plugin to “chop” the binary. If IDA fails to analyse the

binary, our tool will fail as well. Our plugin uses a Depth First Search (DFS) to disassemble

the program from its entry point. This disassembly phase recursively follows control-flow

transfer instructions and thereby recovers the Control-Flow Graph (CFG) of the binary,

assigning a Block IDentifier (BID) to each basic block. These initial basic blocks can further

be chopped into smaller pieces, depending on the configuration:

BBS (Basic Block Split) mode: the basic blocks are used as is.

BAST (Below AV Signature Threshold) mode: basic blocks are chopped so that each

block is below a configurable threshold (we used 16 bytes for our experiments).

Paranoid mode: basic blocks are chopped to include only a single instruction.

Control-Flow Transfers

After binary analysis, each basic block ends with a control flow transfer instruction

(e.g., jcc, jmp, call, or return and their variants). In BAST or Paranoid modes we have to

insert additional transfer instructions to connect the newly chopped basic blocks. These

instructions are replaced with a set of instructions that execute a lookup of the target block,

transferring execution to another process if necessary. By convention, our binary analysis

rewrites the basic block so that the target BID is in the ebx register (spilling the register

if necessary). This is not optimal from a binary translation perspective but the context

switching overhead to another process will dominate overhead and lookup efficiency is not

a key concern.

Indirect control-flow transfer instructions like indirect jumps, indirect calls, or return

instructions are harder to handle as the target BID is usually not statically known. For

switch statements, IDA Pro can often recover the actual targets and replace them with the

corresponding BIDs. For all remaining indirect control-flow transfer instructions we have to

execute an online lookup that translates a target address to a BID. This lookup can use a

99

; if retn is used
xchg [esp], ebx ; backup ebx

; if retn NN is used
mov [esp+ARG], ebx ; retn NN, ARG = NN*4
mov ebx, [esp] ; get return address

; code for both cases
cmp ebx, $_RET_1
jz TARGET_1
cmp ebx, $_RET_2
jz TARGET_2
...
mov ebx, ffffffffh ; ERROR
jmp END

TARGET_1:
mov ebx, $_ID_1
jmp END

TARGET_2:
mov ebx, $_ID_2
jmp END
...

END:
nop

; if retn NN is used, remove all-1 args
add esp, MM ; MM = NN - 4

Figure 5.2.: Translation of a return instruction.

table of all target locations, or, e.g., in the case of return instructions, we can use the CFG to

identify all possible call sites and encode the return targets directly in the code as follows

(see Figure 5.2).

These replacements ensure that the control flow transfers are translated correctly and

allow the emulator to keep executing the target binary. Any calls back to the emulator

request a new target in ebx and dispatch to the next block.

100

Block relocations

All external references within a block must be relocated at runtime. External references

can either be functions from imported modules or constant references to segments (e.g.,

data, or rdata). Our block metadata keeps the offset of the addresses that need runtime

relocation, according with the type of relocation. In cases of indexed array accesses, or

constant pointers that point to constant addresses, all we have to do is to relocate the base

address.

Heap manipulation

Heap manipulation is a challenge when injecting a process into a set of benign processes

as all access to the heap must be coordinated, simulating a single target address space among

different host address spaces. If a block allocates memory using any of the standard heap

functions, this memory will be valid only under the address space that blocks is executed.

To overcome this problem we provide our own heap manipulation API, that will allocate

shared memory regions at the same base address for all processes. This can be done by

calling MapViewOfFileEx() with a non-NULL lpBaseAddress.

During the translation we check for heap management functions like malloc(),

calloc(), LocalAlloc(), or HeapAlloc() and replace the call with an emulator-

local alternative that is aware of the translation. Similar work is done for other heap

management functions, like LocalFree() or MapViewOfFile().

Socket descriptors and HANDLEs

The biggest challenge for the malWASH implementation is to transparently support

HANDLEs, HKEYs (essentially a HANDLE), sockets descriptors and FILE* pointers

(called “descriptors” for simplicity). Descriptors are unique per-process. If process A

creates a socket, process B cannot use that socket, even if it knows the socket descriptor.

However there are two functions provided by the Windows API, DuplicateHandle()

101

and WSADuplicateSocket() that duplicate a HANDLE and a socket respectively.

Unfortunately, there is no native support for duplicating FILE* pointers. We discuss support

for FILE pointers in Section 5.4.3.

Descriptor support has both an offline and an online component. Our IDA Pro plugin

searches for calls to descriptor functions (complete function declaration is proviced) and

marks them and their parameters for further analysis.

If a block creates, duplicates, or deletes a descriptor, this information is propagated to all

other emulators using the corresponding calls. The emulator includes runtime functionality

to coordinate this information.

5.4.2 Phase 2.a: Loading emulators

The loader is the first part of malWASH that executes. It initializes the required shared

memory regions (administrator privileges are required to set up shared memory, obtaining

these privileges is orthogonal to malWASH) and finds up to N processes to inject the emulator.

The standard code injection involves four functions: OpenProcess, VirtualAllocEx,

WriteProcessMemory, and CreateRemoteThread. Calling these functions in that

order is suspicious.

Although we cannot avoid to call these functions in that order, we make detection harder

in two ways. The first is to recursively use the chopping idea of malWASH: the loader

spawns 3 new processes. Each of these processes calls exactly one of the four functions and

informs the next one to continue. HANDLEs can be duplicated using DuplicateHandle() and

shared with any Inter Process Communication (IPC) mechanism. This does not solve the

problem but it adds one more layer of indirection. The second way we make detection more

difficult is to use equivalent undocumented functions from the NT API: ZwOpenProcess,

ZwAllocateVirtualMemory, ZwWriteVirtualMemory, and NtCreateThreadEx.

Both CreateThread (a benign function) and CreateRemoteThread (a notorious

function), internally call NtCreateThreadEx. Thus a detection tool has to check the

function arguments to decide if a call is malicious or not, resulting in performance overhead.

102

If these mitigations are not enough, the loader can spawn new processes, instead of

infecting existing ones, or infect non-running processes using one of the existing methods

viruses use for injection [141]. These approaches are not a panacea against detection and

we assume that the loader is, for now, trusted.

5.4.3 Phase 2.b: Executing the binary

After the loader finishes, it exits, and the emulator starts executing the individual pieces

of program code, emulating a regular process environment. The emulator runs under a

foreign process, like a parasite, and has no knowledge of the environment during start up.

This makes the development of the emulator an extremely challenging process. Written in

pure assembly, the emulator consists of 5,500 lines of assembly code (less than 14 kB of

compiled code) and can execute all the blocks in the correct order.

Core environment

When the emulator starts executing it must first establish its execution environment.

By reading the Process Environment Block (PEB), the emulator finds the entry point of

kernel32.dll and the address of LoadLibrary() and GetProcAddress(), allowing

us to find all other addresses in the system. The emulator then queries for a (randomly)

named shared memory region that contains the emulator state and the shared heap.

To get to an executable state, constant addresses to segments must be relocated to shared

regions and functions must be resolved to actual addresses, except some special functions

(e.g., those in Section 5.4.1) that are redirected to internal functions of the emulator.

The emulator keeps “virtual registers” that the original binary will use. Context switching

is done before and after block execution. In each iteration the emulator waits on a semaphore

to get a mutual lock to execute the next block. When it takes the lock it copies the next

block into a local buffer. Eventually, the emulator will start executing the block using the

virtual registers. When the block finishes, the ebx register will contain the next BID and

control returns to the emulator to dispatch the next block.

103

There is also a special shared region, called Shared Control Region. This region coordi-

nates all emulators and contains (among other fields) the virtual registers. Stack is handled

like other segments. During startup, the emulator sets the virtual esp and ebp, with the

value of the shared stack, so the malware will not see any difference and will use the shared

stack instead. The loader prepares any command line arguments of the original program on

the stack.

Advanced Components

So far, the emulator can execute a program under multiple address spaces but there are

many small details that may cause the execution to fail. Here we discuss and address these

problems.

All emulators need to communicate. We therefore reserve some space in the shared

control region and use it as a mailbox. Emulators communicate by sending messages, each

message consists of a header followed by the data (a message looks like an UDP packet).

Emulators check their mailboxes (e.g., they simply read the value of the mail counter) and

process any messages, before execution of each block.

Section 5.4.1 discussed the challenge of duplicating descriptors between emulators. The

offline part replaces the use of the descriptors with calls into the emulator. Here, we discuss

the implementation of these functions. We allocate a table (called Duplication Table or

“duptab”) with function pointers for each of the internal descriptor functions and dispatch

the functions accordingly. An instance of duptab is shown in Figure 5.3.

Duptab contains one row for each descriptor that the original binary uses. Each row

contains the original value, the type (socket, HANDLE, or HKEY) of the descriptor, and the

value of the duplicated descriptor for each host process. The emulator functions then use

this table to translate a descriptor to the local descriptor.

Unfortunately, there is no mechanism to duplicate FILE* pointers. We solve this problem

by using an alternative approach: We provide our API replacements for functions that use

FILE* pointers. These replacements are simple wrappers of equivalent functions that use

104

mailbox for process I

duptab (duplication table)

original

value
type

rese

rved
P1 handle P2 handle Pn handle...

0x000004c8 SOCK 0 0x000004c8 0x000006c8 0x000008c8...

0x00000504 HDL 0 0x000004bc 0x00000504 0x000008c0...

0x0000060c SOCK 0 0x0000060c 0x00000700 0x000009a8...

……….

cmd
rese

rved
handle reserved2[0] reserved2[1] data

0x01 0 0 0 0 0

0x02 0 0 0 0 LPWSAPROTOCOL

CMD_WSASTARTUP

CMD_DUPSOCKINIT

0x06 0 0 base address size shared region name CMD_ALLOCMEM

0x05 0 original handle 0 0 0 CMD_DUPHANDLECLOSE

Figure 5.3.: An instance of duptab

HANDLEs (which we can duplicate). E.g., fopen(), is a wrapper for CreateFileW(),

fprintf() is a wrapper for sprintf() and WriteFile() and so on.

Beyond FILE* functions, several other functions need replacement. For instance, if

the original binary calls ExitProcess(), we terminate all emulators (instead of ter-

minating the current process). The emulator keeps a list of such special functions and

replaces them with the internal implementations during startup. Other types of func-

tions that need replacements are: functions that perform per-process specific actions (e.g.,

SetCurrentDirectory()) or functions that keep internal state (e.g., , strtok()).

In both cases, the emulator has to replicate the information across all emulator instances.

There are some sequences of functions, that must be executed in the same address space,

e.g., {bind, listen, accept} and {GetStartupInfo, CreateProcess}.

If listen() is executing in a different address space than bind(), even though the

socket is successfully duplicated, an WSAEINVAL error will be returned (this is a Windows

bug). Our emulator uses a call cache to address this issue. Each function in a chain is

marked as push while the last one is marked as sweep. Replacements are provided for these

functions to include the push-sweep functionality. An emulator does not execute a push

function; instead it pushes the function (with its arguments) on the call cache and returns a

fake successful value. When an emulator finds a sweep function it executes all functions

105

from the call cache along with the last one, flushing the call cache. Although not perfect,

this approach works well in practice.

The distributed design of malWASH allows us to handle multi-threaded programs

by creating a shared stack and virtual registers for each thread. Each thread contains

its own semaphore and its own variable that indicates the next block. Each emulator

uses a round-robin algorithm to execute blocks from all “RUNNING” threads. Simple

replacements are also provided for thread management functions: CreateThread() and

ResumeThread() mark and emulated thread as “RUNNING”, ExitThread() marks

it as “UNUSED” and SuspendThread() marks it as “SUSPENDED”.

The job of the emulator is twofold; it executes the emulated binary and keeps itself

stealthy. Emulators can “ping” other emulators to see if all of them are alive. When an

emulator detects that some are missing, it could invoke the loader to inject the missing

emulator into a new process.

5.4.4 Recovering terminated instances

The core functionality of malWASH is to ensure that the original binary executes as

if being run in a regular environment. In addition, malWASH also ensures resilience and

recovery against “attacks”.

Resilience, is enforced as a side effect of malWASH’s distributed nature. We may

run into the problem that an analyst kills all but one emulator instances to simplify the

analysis process. Therefore, malWASH also needs a recovery mechanism. We already have

a communication mechanism between emulators (Section 5.4.3) and as we mentioned in

Section 5.3, the total number of running emulators is constant and known to all emulators.

Thus, checking whether an emulator was killed is straight forward: each emulator periodi-

cally sends heartbeat messages to all emulators. If an emulator stops receiving heartbeats, it

can invoke the loader process again, to respawn the missing emulators.

106

Table 5.2.: Block statistics of malware samples.

Sample name Type ## Instructions Blocks Generated
BBS BAST Paranoid

Trojan.Win32.Keylogger.Gen keylogger 2957 347 541 1484
Trojan.Win32.Invader.aa backdoor 6359 118 233 782
Gen:Heur.Bodegun.8 backdoor 1326 112 195 496
Virus.Win32.FileInfector virus 1739 98 183 772
TrojanSpy:Win32/Keylogger.BZ keylogger 1380 89 178 546
Trojan-Spy.Win32.DiabloII.a trojan-spy 162 62 86 162
W32/S-ac5b79f0!Eldorado trojan 1837 67 141 431
W32/SelfStarterInternetTrojan!M trojan-backdoor 3391 107 209 576

5.5 Evaluation

We evaluate malWASH by targeting a set of malware samples that we inject into the

most popular browsers (Google Chrome v50.0.2661.94, Mozilla Firefox 6.0.1 32 bit, Opera

12.16 and Safari 5.1.7) as victim processes under the Windows 8.1 Pro x64 operating system.

Chrome’s security feature of separating each tab as its own process comes in handy and

allows malWASH to inject a different set of chunks into each per-tab process and shared

memory regions across Chrome instances will not raise alarms.

Table 5.2 shows details of the malware samples we evaluate. The total number of

instructions is not equal to the number of blocks in paranoid mode as malWASH omits

code before and after main() as the malWASH loader component sets up the process

environment and not the initialization code in the executable.

We inject malWASH into 1, 2, 4, and 8 Chrome processes, executing the samples in the

different modes. In all cases both the host processes and the emulated process run without

error. The host process continues without measurable performance degradation.

5.5.1 malWASH resilience

Due to the distributed nature and the shared state of malWASH, killing an emulated

process is hard. In Figure 5.4 we inject a sample into 8 idle processes (so any CPU usage will

come from malWASH) and start measuring their CPU usage using Microsoft Performance

107

Figure 5.4.: CPU usage among infected (idle) processes

Monitor. Initially, all host processes execute roughly the same number of blocks, so the

CPU per host process stays low. As we kill off individual host processes, the remaining

emulators end up executing more blocks, increasing their CPU usage. If additional stealth is

required, the emulators can throttle execution of the target process and add sleep intervals

between block executions.

5.5.2 Case Study: Remote Keylogger

For malWASH we assume that the target process is not CPU intensive. For CPU intensive

workloads, the emulator may be an issue as there is overhead between executed blocks.

Our emulator works well for programs that require stealthiness with little computation.

Examples of such programs are keyloggers or host-based backdoors. In this section we

focus on a remote keylogger to demonstrate the effectiveness of malWASH.

The remote keylogger works a follows: it opens a TCP connection to a remote host

and sends captured keystrokes to the host. For the evaluation, the keystrokes were sent to a

different process on the same machine. The target program is repeatedly checking whether

the foreground window contains keywords from a whitelist (e.g., Facebook, GMail, Hotmail,

or Twitter). And if so, it starts keylogging by checking the state of each key.

108

Figure 5.5.: CPU usage of Firefox and Chrome under malWASH infection

We measured performance impact by using the Octane 2.0 JavaScript benchmark on the

host browsers’ processes. In this benchmark we inject malWASH into the browser process

that runs the benchmark for each experiment. Table 5.3 shows the average and standard

deviation of the benchmark scores for five runs, the low standard deviation shows that the

results are stable. The difference of the performance results across injected and non-injected

version is in the noise and will make intrusion detection based on performance results hard.

Figure 5.5 shows a second scenario where we inject the keylogger under malWASH

in one Firefox process and four Chrome processes (Chrome has four running processes

even with a single open tab), measuring their CPU usage using the Microsoft Performance

Monitor. During normal browsing we observe some spikes due to regular browsing activity.

Then we stop browsing (browsers are idle) and inject malWASH. At this point there is a

small peak due to malWASH startup. As browsing continues, the keylogger now runs inside

the host processes and captures keystrokes. After some time we close Chrome and the

emulator inside Firefox now has to execute all blocks, showing a slight increase in CPU

usage for the Firefox process.

This benchmark shows that we can distribute the load of the emulator across several

processes. With an increasing amount of host processes, the overhead for each individual

host process through the injected process is reduced.

109

Ta
bl

e
5.

3.
:S

ta
tis

tic
s

fr
om

ru
nn

in
g

th
e

O
ct

an
e

2.
0

Ja
va

Sc
rip

tb
en

ch
m

ar
k

fiv
e

tim
es

in
ea

ch
of

th
e

m
os

tp
op

ul
ar

br
ow

se
rs

,“
w

/o
”

sh
ow

s
ex

ec
ut

io
n

w
ith

ou
ti

nj
ec

tio
n,

“S
td

”
sh

ow
s

a
ke

yl
og

ge
rt

ha
ts

ca
ns

fo
rk

ey
w

or
ds

fo
rh

al
fo

ft
he

tim
e

an
d

ca
pt

ur
es

an
d

se
nd

s
ke

ys
tr

ok
es

fo
rt

he
re

st
of

th
e

tim
e,

w
hi

le
“F

ul
l”

sh
ow

s
th

e
ke

yl
og

ge
rc

ap
tu

ri
ng

an
d

se
nd

in
g

ke
ys

tr
ok

es
10

0%
of

th
e

tim
e.

Av
er

ag
e

sc
or

es
fr

om
O

ct
an

ce
2.

0
Ja

va
sc

ri
pt

B
en

ch
m

ar
k

G
oo

gl
e

C
hr

om
e

M
oz

ill
a

Fi
re

fo
x

O
pe

ra
Sa

fa
ri

M
od

e
w

/o
St

d
Fu

ll
w

/o
St

d
Fu

ll
w

/o
St

d
Fu

ll
w

/o
St

d
Fu

ll
Av

er
ag

e
19

,5
41

15
,7

62
11

,2
26

16
,2

59
12

,1
46

10
,3

56
6,

04
8

4,
83

2
3,

98
8

3,
16

3
2,

32
8

2,
04

1
St

.D
ev

31
6

75
4

1,
43

1
94

7
2.

72
7

65
0

20
1

25
0

13
6

99
15

3
38

110

5.5.3 Discussion

Detecting programs running under malWASH through static or dynamic analysis is

difficult. Static analysis is complicated because the original binary is chopped into many

small pieces, likely below the signature threshold. The (tiny) emulator itself can also be

protected using existing (automated) diversity techniques. Dynamic analysis is challenging

as the behavior of the target program is hidden under the infected processes, making it hard

to observe a sequence of calls of the target program. Therefore, defenders will likely move

towards detecting malWASH instead of the target program. This by itself has the advantage

of hiding the true functionality of the emulated program.

Protecting the emulators

Although existing detection methods will have a hard time detecting the original binary,

they can be used for detecting the emulators. We argue that behavioral analysis of emulator

is challenging because: (i) the emulator is very small (14kB), (ii) the emulator uses only

a tiny set of system calls (for shared memory management) which will appear benign,

and, most importantly, (iii) these system calls are well mixed with a subset of system calls

from the emulated binary. In addition, the emulator can leverage any existing obfuscation

techniques to make analysis harder.

An issue that the emulator faces is that it uses dedicated threads with similar behavior.

Thus, instead of a per-process analysis, a defender could look at the actual threads and

try to identify emulator threads. However, this situation is somewhat similar to the status

quo: malware uses a dedicated process within the system. One option would be to chop

the emulator itself into small components, injecting them into different threads of the

same process. This would lead to yet another (smaller) sub-emulator. Sub-emulators

are much simpler because they run under the same address space and thus they lack the

aforementioned problems that malWASH tries to solve. No shared memory is required, just

a form of synchronization (e.g., spin locks or covert channels), hardening the options for

behavioral analysis and spreading the emulator across several threads.

111

Fixing any abnormal system behavior

The performance overhead for malWASH is small for non-CPU intensive workloads

(see Figure 5.4). A possible detection mechanism could spread “honeypot” processes that

are idling on the system. As soon as the emulator is injected into these processes they will

start to execute some computation and the malWASH injection can be detected. malWASH

can try to mitigate by scanning for active processes by making the loader more complex

(and therefore more detectable).

Careful selection of host processes, hides potential behavioral discrepancies of a process,

e.g., no alarms are raised for an emulator that opens a remote connection if it is running in a

browser. Process selection is an open problem and we leave it as a future work. In short,

malWASH could observe the behavior of a process, and if suitable, do the injection.

Another opportunity to detect malWASH is the shared memory regions. A detection

mechanism may correlate host processes through their shared memory regions. On one hand

correlation is challenging, due to the large amount of shared memory regions that are active

across all processes on windows systems. In addition, malWASH does not require a star-like

mapping where the same shared memory region is mapped among all processes (even for

heap allocated shared regions) but can also use duplicated regions as shown in Figure 5.6.

With duplicated regions, we maintain multiple copies of the same shared mapping, and

we force at most two processes to share the same region. Each region could then use a

disjoint encryption key to avoid correlation between shared regions. In order to keep these

shared regions consistent, some “external” processes are needed. Each external process

is responsible for keeping the subset of shared regions consistent. External processes

communicate with each other to keep their subsets consistent. This communication is done

using covert channels or by reading/writing regions to temporary files to avoid “circles” of

processes connected by shared memory.

In case that usage of shared memory is a problem by itself, it can safely replaced by

different (and admittedly slower) mechanisms like files, pipes, or covert channels.

112

Process

I

Process

II

Process

III

Process

IV

Shared Region #1

External

Process V

External

Process VI

Covert

Channel

Shared Region #2 Shared Region #3

Figure 5.6.: Thwarting detection based on shared memory correlation. Here processes I
through IV used to share the same mapping. We create 3 replicas for the shared mapping
with two processes attached each.

Also, the distributed nature of malWASH does not require all the blocks and program’s

state to be present in memory during execution: the emulator could request the next block

and the current program’s state from a remote host which is controlled by the bot of the

attacker.

As discussed in Section 5.4.2, the loading is the most exposed part of malWASH. If our

proposed obfuscation approach is not stealthy enough, additional emulator processes can be

spawned on demand, further obfuscating the loader.

We do not claim that this section covers all methods to detect malWASH and other ways

may exist. The current prototype of malWASH is not complete but focuses on showcasing

the technique. Overall, malWASH is a new technique to hide a target program in a set of

benign processes.

5.6 Conclusion

Hiding processes in an execution environment is a challenging problem. While static

detection is straight-forward to evade using metamorphism [26] and diversity, dynamic

detection can single out processes at runtime due to their behavior.

113

We present malWASH, a tool that hides the behavior of an arbitrary program by distribut-

ing the program’s execution across many processes. We break the program into small chunks

and inject these chunks into other processes. Our emulator captures and synchronizes state

among the processes and coordinates the execution of the program, hopping from process to

process and weaving individual instructions and system calls into the stream of instructions

and system calls of the host program. We also propose the use of sub-emulators to further

protect malWASH itself.

Our evaluation shows that our prototype of malWASH successfully distributes different

malware programs into sets of benign processes. Detecting coordinated small chunks of

malicious code in benign processes is a challenging problem for the research community.

114

6 RELATED & FUTURE WORK

As discussed in Chapter 1, precisely inferring the Residual Attack Surface, is not possible as

it is based on an undecidable problem (refer to Appendix 7.1 for the proof). Approximating

it remains an open problem with lots of interesting directions to explore. This dissertation

explores only a small portion of it (e.g., malWASH is just one way to achieve persistence

on a compromised system while evading detection). Finding new attacks is beneficial for

defenders as they can reinforce their defense mechanisms.

6.0.1 Library Fuzzing

Fuzzing remains the most widely deployed technique for discovering new vulnerabilities.

One major factor of its widespread use is simplicity: the target application is fed with some

random input while fuzzer looks for abnormal behavior (crashes, or hangs). However, scaling

fuzzing to libraries is challenging, as libraries are not standalone applications with a well

defined entry point. Existing solutions include i) libFuzzer [52] and ii) fuzzing standalone

programs (called consumers) that utilize API functions from this library. Although libFuzzer

provides a convenient way to fuzz individual API functions, it involves a huge amount

of manual effort, as the analyst needs to figure out how to fuzz the individual functions.

Fuzzing library a consumer has some major limitations too. First, consumers may explore

only a small portion of the library. Second, it is hard to determine whether the discovered

bugs are from the library and not the consumer itself.

FuzzGen is the first attempt to solve this problem. However it can be improved in several

directions. Analysis can be imprecise or even fail in some cases, so improving the analysis

is our first goal. Furthermore, the generated fuzzers are heavily dependent on the library

consumers. Having too many consumers, results in cumbersome and slower fuzzers. Also,

when the consumers explore only a small portion of the library, FuzzGen produces weak

115

fuzzers. Classifying library consumers and selecting an appropriate subset is also the next

topic of our future work.

6.0.2 Data-Only and Control Flow Bending attacks

With the wide deployment of CFI, ROP is no longer possible. Nevertheless, it is

still possible to perform code reuse attacks [15, 93, 94, 95], as well as data-only attacks

[16, 17, 96, 129]. However, these attacks are extremely hard in practice as they have

requirements (e.g., arbitrary memory write primitives) that are hard to find. Even worse,

it has been shown [17] that the problem of automating data-only attacks is reduced to an

NP-hard problem. Hence, research in this areas seems to be saturated, as there are not many

new things to explore. A potential extension is to include the applied CFI policy in BOPC

framework, to include the likelihood of finding a solution when a coarse-grained CFI policy

is applied.

On the other hand, preventing data-only attacks remains an open problem as existing

DFI protection schemes come with a high overhead. During the evaluation of BOPC, we

noticed that it is possible to insert additional code in the binary, that clobbers a set of given

basic blocks. Thus finding dispatcher gadgets to stitch functional blocks together is no

longer possible. Finding a way to thwart BOP gadget stitching with a low overhead is an

interesting challenge that we will look into.

6.0.3 Distributed malware detection

Detecting malware through dynamic and behavioral analysis is an effective measure

against obfuscated and metamorphic malware where static analysis fails. Although it is easy

to change the shape of a malware, it is hard to change its identity and its intentions. With the

concept of distributed malware [37], attackers can “mix” the behavior of the malware with

other processes on the system thus bypassing existing detection mechanisms. Detecting this

form of distributed malware is an interesting challenge, as existing detection mechanisms

are not designed to scale to multiple processes. Finding a new detection scheme that is

116

capable of analyzing two or more processes at the same time with low overhead is also an

interesting problem to look into.

117

7 CONCLUSION

This dissertation presented the body of the work on infering the Residual Attack Surface

under state-of-the-art mitigations. The dissertation started with a definition of the Residual

Attack Surface and continued with the challenges in measuring it. The key insight was to

divide an attack into distinct phases (Vulnerability Discovery, Vulnerability Exploitation,

Persistence on the compromised system) and to infer the Residual Attack Surface in each

phase.

FuzzGen is a tool for automatically synthesizing target-specific fuzzers that able to

achieve a high code coverage and hence expose bugs that reside deep in the code. FuzzGen

is part of the Vulnerability Discovery phase and assist software developers to quickly find

and patch bugs before an attacker exploits them.

BOPC [17] is a framework that implements the concept of Block Oriented Programming

which automates Data-Only attacks under heavily constrained environments such as binaries

hardened with CFI and shadow stacks. BOPC is part of the Vulnerability Exploitation phase

and can help software developers to highlight payloads that an attacker is still capable of

executing.

An extension of BOPC is X-Cap, which is an ongoing work. It essentially assesses

exploitation capabilities by indicating what types of payloads are feasible to run in vulnerable

applications. X-Cap highlights the limits of BOPC and provides upper bounds on attacker’s

capabilities.

malWASH [37] is another framework for the last phase of the attack that thwarts dynamic

and behavioral analysis to achieve persistence on the compromised system. malWASH

automatically “chops” a binary into hundreds of piece and performs a distributed execution

on them. malWASH can help malware analysts to evaluate their detection tool and include

potential detection schemes for distributed malware in their defense mechanisms.

118

In conclusion, we hope that the Residual Attack Surface will lead to new defenses. These

defenses should be adapted to the new attack technologies and possibilities that attackers

invent to bypass existing mitigations.

119

APPENDIX

7.1 Determining exploitability is undecidable

We present a proof that the problem of determining the exploitability of a security bug

(i.e. vulnerability) is undecidable. We prove this statement by contradiction, by reducing

halting [142] problem to it.

Let us assume that it is possible to determine whether a vulnerability is exploitable. In

this case there should exist a Turing machine EXPLM , that decides (i.e., always termi-

nates) whether another Turing machine M (i.e., a program) with an known vulnerability, is

exploitable when running on some given input w. EXPLM is formally defined as follows:

EXPLM(M,w) =

accept, if running M on w exploits a vulnerability

reject, otherwise
(7.1)

Given EXPLM , we will build a Turing machine HALTM that determines whether

another Turing machine M terminates (halts) when running on some input w:

HALT (M,w) =

accept, if running M on w terminates

reject, otherwise
(7.2)

Let also M ′ be a Turing machine that operates on three distinct inputs: The description

〈M〉 of another Turing machine M , some input w, and some exploit payload x. The

description of M ′ is the following:

M ′ = ‘ for input (〈M〉, w, x)‘

1. Run EXPLM on (M,w)

2. if it accepts, then reject

3. Simulate M on w

120

4. If M accepts, or rejects, then

5. Trigger the vulnerability and execute payload x

Having all these components, we can build a Turing machine HALTM that decides

whether a Turing machine terminates:

HALTM = ‘ for input (〈M〉, w)‘

1. Run EXPLM on M ′ with input (〈M〉, w, x)

2. If it accepts, then accept

3. Otherwise reject

The intuition behind M ′ is that, if M does not terminate with input w, then it will never

reach step 5 and hence it will never exploit a vulnerability. Thus, EXPLM(〈M〉, w, x) will

reject. On the other hand, if M terminates when running with input w after a finite number

of steps, then M ′ will reach step 5 which means that the M ′ will trigger the vulnerability

and execute a payload. This means that M ′ has an exploitable vulnerability and therefore

EXPLM(〈M〉, w, x) accepts input. However, there’s a special case. What if running M

on w exploits an vulnerability itself? In that case, EXPLM will accept M ′, even if the

exploit payload does not terminate. We do not consider this case, as we assume that M does

not have any vulnerabilities.

The above statement indicates that it is possible to build HALTM from EXPLM . This

implies that we have a solution for the halting problem. This is of course is not possible.

Therefore, the initial assumption (i.e., it is possible to determine whether vulnerability is

exploitable) contradicts with our result. Thus, EXPLM cannot exist and hence the problem

of determining exploitability is undecidable.

121

7.2 Extended Backus-Naur Form of SPL

〈SPL〉 ::= void payload() { 〈stmts〉 }

〈stmts〉 ::= (〈stmt〉 | 〈label〉)* 〈return〉?

〈stmt〉 ::= 〈varset〉 | 〈regset〉 | 〈regmod〉 | 〈call〉

| 〈memwr〉 | 〈memrd〉 | 〈cond〉 | 〈jump〉

〈varset〉 ::= int64 〈var〉 = 〈rvalue〉;

| int64* 〈var〉 = {〈rvalue〉 (, 〈rvalue〉)*};

| string 〈var〉 = 〈str〉;

〈regset〉 ::= 〈reg〉 = 〈rvalue〉;

〈regmod〉 ::= 〈reg〉 〈op〉= 〈number〉;

〈memwr〉 ::= *〈reg〉 = 〈reg〉;

〈memrd〉 ::= 〈reg〉 = *〈reg〉;

〈call〉 ::= 〈var〉 ((ε | 〈reg〉 (, 〈reg〉)*);

〈label〉 ::= 〈var〉:

〈cond〉 ::= if (〈reg〉 〈cmpop〉 〈number〉) goto 〈var〉;

〈jump〉 ::= goto 〈var〉;

〈return〉 ::= returnto 〈number〉;

〈reg〉 := ‘__r’〈regid〉

〈regid〉 := [0-7]

〈var〉 := [a-zA-Z_][a-zA-Z_0-9]*

〈number〉 := (‘+’ | ‘-’) [0-9]+ | ‘0x’[0-9a-fA-F]+

〈rvalue〉 := 〈number〉 | ‘&’ 〈var〉

〈str〉 := [.]*

〈op〉 := ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘~’ | ‘«’ | ‘«’

〈cmpop〉 := ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

122

7.3 Stitching BOP Gadgets is NP-Hard

We present the NP-hardness proof for the BOP Gadget stitching problem. This problem

reduces to the problem of finding the minimum induced subgraph Hk in a delta graph.

Furthermore, we show that this problem cannot even be approximated.

(2015).
[60] The Chromium Projects. [n. d.]. Control Flow Integrity The Chromium Projects.

"https://www.chromium.org/developers/testing/control-flow-integrity".
[61] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM.. In USENIX Security.

[62] Takeaki Uno. 1997. Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. Algorithms and Computation (1997).

[63] Arjan van de Ven and Ingo Molnar. 2004. Exec shield. https://www.redhat.com/
f/pdf/rhel/WHP0006US_Execshield.pdf.

[64] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In Proceedings of the 22nd Conference on Computer and Communi-
cations Security (CCS’15).

[65] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrida. 2017. The Dynamics of Innocent Flesh on
the Bone: Code Reuse Ten Years Later. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. 1675–1689. https://doi.org/10.1145/3133956.
3134026

[66] RN Wojtczuk. 2001. The advanced return-into-lib (c) exploits: PaX case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[67] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712–716.

A EXTENDED BACKUS-NAUR FORM OF SPL

⟨SPL⟩ ::= void payload() { ⟨stmts⟩ }
⟨stmts⟩ ::= (⟨stmt⟩ | ⟨label⟩)* ⟨return⟩?
⟨stmt⟩ ::= ⟨varset⟩ | ⟨regset⟩ | ⟨regmod⟩ | ⟨call⟩

| ⟨memwr⟩ | ⟨memrd⟩ | ⟨cond⟩ | ⟨jump⟩

⟨varset⟩ ::= int64 ⟨var⟩ = ⟨rvalue⟩;
| int64* ⟨var⟩ = {⟨rvalue⟩ (, ⟨rvalue⟩)*};
| string ⟨var⟩ = ⟨str⟩;

⟨regset⟩ ::= ⟨reg⟩ = ⟨rvalue⟩;
⟨regmod⟩ ::= ⟨reg⟩ ⟨op⟩= ⟨number⟩;
⟨memwr⟩ ::= *⟨reg⟩ = ⟨reg⟩;
⟨memrd⟩ ::= ⟨reg⟩ = *⟨reg⟩;
⟨call⟩ ::= ⟨var⟩ ((ϵ | ⟨reg⟩ (, ⟨reg⟩)*);
⟨label⟩ ::= ⟨var⟩:
⟨cond⟩ ::= if (⟨reg⟩ ⟨cmpop⟩ ⟨number⟩) goto ⟨var⟩;
⟨jump⟩ ::= goto ⟨var⟩;
⟨return⟩ ::= returnto ⟨number⟩;

⟨reg⟩ := ‘__r’⟨regid⟩
⟨regid⟩ := [0-7]
⟨var⟩ := [a-zA-Z_][a-zA-Z_0-9]*
⟨number⟩ := (‘+’ | ‘-’) [0-9]+ | ‘0x’[0-9a-fA-F]+
⟨rvalue⟩ := ⟨number⟩ | ‘&’ ⟨var⟩
⟨str⟩ := [.]*
⟨op⟩ := ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘~’ | ‘<<’ | ‘<<’
⟨cmpop⟩ := ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

B STITCHING BOP GADGETS IS NP-HARD
We present the NP-hardness proof for the BOP Gadget stitching
problem. This problem reduces to the problem of finding the mini-
mum induced subgraph Hk in a delta graph. Furthermore, we show
that this problem cannot even be approximated.

A1 A2 A3

B1 B2

C1

D2D1 D3

8 12 42

11 13

7 17

11 1050

17

∞ ∞

∞

∞ ∞

∞

∞

Figure 8: An delta graph instance. The nodes along the black
edges form a flat delta graph. In this case, the minimum in-
duced subgraph, Hk is A3,B1,C1,D1, with a total weight of 20,
which is also the shortest path from A3 to D1. When delta
graph is not flat (assume that we add the blue edges), the
shortest path nodes constitute an induced subgraph with a
total weight of 70. However Hk has total weight 34 and con-
tains A3,B2,C1,D2. Finally, the problem of finding the mini-
mum induced subgraph becomes equivalent to finding a k-
clique if we add the red edges with∞ cost between all nodes
in the same set.

Let δG be a multipartite directed weighted delta graph with k
sets. Our goal is to select exactly one node (i.e., functional block)
from each set and form the induced subgraph Hk , such that the total
weight of all of edges is minimized:

min
Hk ⊂δG

∑
e ∈Hk

distance(e) (1)

A δG is flat, when all edges from ith set are towards (i + 1)th set.
The nodes and the black edges in Figure 8 are such an example. In
this case, the minimum induced subgraph, is the minimum among
all shortest paths that start from some node in the first set and end
in any node in the last set. However, if the δG is not flat (i.e., the
SPL payload contains jump statements, so edges from ith set can
go anywhere), the shortest path approach does not work any more.
Going back in Figure 8, if we make some loops (add the blue edges),
the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the δG is not flat . To
prove this, we will use a reduction from K-Clique: First we apply
some equivalent transformations to the problem. Instead of having
K independent sets, we add an edge with∞ weight between every
pair on the same set, as shown in Figure 8 (red edges). Then, the
minimum weight K-induced subgraph Hk , cannot have two nodes
from the same set, as this would imply that Hk contains an edge
with∞ weight.

Let R be an undirected un-weighted graph that we want to
check whether it has a k-clique. That is, we want to check whether
clique(R,k) is True or not. Thus, we create a new directed graph
R′ as follows:
• R′ contains all the nodes from R
• ∀ edge (u,v) ∈ R, we add the edges (u,v) and (v,u) in R′

withweiдht = 0

Figure 7.1.: An delta graph instance. The nodes along the black edges form a flat delta graph.
In this case, the minimum induced subgraph, Hk is A3, B1, C1, D1, with a total weight of
20, which is also the shortest path from A3 to D1. When delta graph is not flat (assume that
we add the blue edges), the shortest path nodes constitute an induced subgraph with a total
weight of 70. However Hk has total weight 34 and contains A3, B2, C1, D2. Finally, the
problem of finding the minimum induced subgraph becomes equivalent to finding a k-clique
if we add the red edges with∞ cost between all nodes in the same set.

Let δG be a multipartite directed weighted delta graph with k sets. Our goal is to select

exactly one node (i.e., functional block) from each set and form the induced subgraph Hk,

such that the total weight of all of edges is minimized:

min
Hk⊂δG

∑
e∈Hk

distance(e) (7.3)

123

A δG is flat, when all edges from ith set are towards (i + 1)th set. The nodes and the

black edges in Figure 7.1 are such an example. In this case, the minimum induced subgraph,

is the minimum among all shortest paths that start from some node in the first set and end

in any node in the last set. However, if the δG is not flat (i.e., the SPL payload contains

jump statements, so edges from ith set can go anywhere), the shortest path approach does

not work any more. Going back in Figure 7.1, if we make some loops (add the blue edges),

the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the δG is not flat . To prove this, we will use a

reduction from K-Clique: First we apply some equivalent transformations to the problem.

Instead of having K independent sets, we add an edge with∞ weight between every pair

on the same set, as shown in Figure 7.1 (red edges). Then, the minimum weight K-induced

subgraphHk, cannot have two nodes from the same set, as this would imply thatHk contains

an edge with∞ weight.

Let R be an undirected un-weighted graph that we want to check whether it has a

k-clique. That is, we want to check whether clique(R, k) is True or not. Thus, we create a

new directed graph R′ as follows:

• R′ contains all the nodes from R

• ∀ edge (u, v) ∈ R, we add the edges (u, v) and (v, u) in R′ with weight = 0

• ∀ edge (u, v) /∈ R, we add the edges (u, v) and (v, u) in R′ with weight =∞

Then we try to find the minimum weight k-induced subgraph Hk in R′. It is true that:

∑
e∈Hk

weight(e) <∞⇔ clique(R, k) = True

:⇒ If the total edge weight of Hk is not∞, this implies that for every pair of nodes in

Hk, there is an edge with weight 1 in R′ and thus an edge in R. This by definition means

that the nodes of Hk form a k-clique in R. Otherwise (the total edge weight of Hk is∞) it

means that it does not exist a set of k nodes in R′ that has all edge weights <∞.

124

:⇐ If R has a k-clique, then there will be a set of k nodes that are fully connected. This

set of nodes will have no edge with∞ weight in R′. Thus, these nodes will form an induced

subgraph of R′ and the total weight will be smaller than∞.

This completes the proof that finding the minimum induced subgraph in δG is NP-hard.

However, no (multiplicative) approximation algorithm does exists, as it would also solve the

K-Clique problem (it must return 0 if there is a K-Clique).

7.4 SPL is Turing-complete

We present a constructive proof of Turing-completeness through building an interpreter

for Brainfuck [143], a Turing-complete language in the following listing. This interpreter is

written using SPL with a Brainfuck program provided as input in the SPL payload.

1 int64 *tape = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
2 string input = ".+[.+]";
3 __r0 = &tape; // Data pointer
4 __r2 = &input; // Instruction pointer
5 __r6 = 0; // STDIN
6 __r7 = 1; // STDOUT
7 __r8 = 1; // Count arg for write/read
8 NEXT: __r1 = *__r2;
9 if (__r1 != 0x3e) goto LESS; // '>'

10 __r0 += 1;
11 LESS: if (__r1 != 0x3c) goto PLUS; // '<'
12 __r0 -= 1;
13 PLUS: if (__r1 != 0x2b) goto MINUS; // '+'
14 *__r0 += 1;
15 MINUS: if (__r1 != 0x2d) goto DOT; // '-'
16 *__r0 -= 1;
17 DOT: if (__r1 != 0x2e) goto COMMA; // '.'
18 write(__r7, __r0, __r8);
19 COMMA: if (__r1 != 0x2c) goto OPEN; // ','
20 read(__r6, *__r0, __r8);
21 OPEN: if (__r1 != 0x5b) goto CLOSE; // '['
22 if (__r0 != 0) goto CLOSE;
23 __r3 = 1; // Loop depth counter
24 FIND_C: if (__r3 <= 0) goto CLOSE;
25 __r2 += 1;
26 __r1 = *__r2;
27 if (__r1 != 0x5b) goto CHECK_C; // '['
28 __r3 += 1;
29 CHECK_C: if (__r1 != 0x5d) goto FIND_C; // ']'
30 __r3 -= 1;

125

31 goto FIND_C;
32 CLOSE: if (__r1 != 0x5d) goto END; // ']'
33 if (__r0 != 0) goto END;
34 __r3 = 1; // Loop depth counter
35 FIND_O: if (__r3 <= 0) goto END;
36 __r2 -= 1;
37 __r1 = *__r2;
38 if (__r1 != 0x5b) goto CHECK_O; // '['
39 __r3 -= 1;
40 CHECK_O: if (__r1 != 0x5d) goto FIND_O; // ']'
41 __r3 += 1;
42 goto FIND_O;
43 END: __r2 += 1;
44 goto NEXT;

7.5 CFG of nginx after pruning

The following graph, is a portion of nginx’s CFG that includes function calls starting

from the function ngx_cache_manager_process_cycle. The graph only displays

functions which are up to 3 function calls deep to simplify visualization. Note the reduction

in search space–which is a result of BOPC’s pruning–as this portion of the CFG reduces to

the small delta graph in Figure 3.7.

126

40c6a3

40c6ac 40c6b1

40c8f8

40c8fc40c5e6

40c5f0

41e0c9

41e0df

4117af

4117f5

4117be

4043b3

4043b6

418a7b

418a99

418a8c

41153c

40429e

41155b

404422

4044c8

40442c

40f791

40f7a1

41e06c

41e0bf

41e076

40c4f4

40c50e

40c588

40c593

41ec8b

41ec93

4189db

404407

40440f

418acb

418ad3

411617

411636

40c574

40c57e40c584

41e1ad

402880

40c5c4

40c5c8

4115d2

4115f6

41ec81

411441

41ebfc

41ec1e

41ec05

418ac1

418ad5

41e3e8

41e3ed

41e417

40c9cf

40c9d9

4116f3

411726

411702

41e25e

41e282

41e1c8

41e1fa

41e1d4

40c94d

40c95740c95d

40c6fb

40c6ff

41e2fe

41e308

411760

4117a6

40c81a

40c83b40c824

41e172

41e17a

41e31c

418a4f

418a5e

418a55

40c4a2

40c4a6

41e3c3

41e3cd

40f78a

40f7b3

418aad

418aa3

41169f

4116d7

4116a4

40f82c

40f836

40f857

41146c

411473

41148a

40c89d

40c846

40c912

40c937

40c93b

40c51b

40c542 40c521

41e488

41e49841e48e

41e23f

41e244

41e190

40c7a0

40c7b140c90c

40f83b

40f7de

40f7fa

41e1d9

41e112

41e2b8

41e2c1

41e02a

41e039

40c9c0

411603

411612

40c4fa

40c50440c50a

4114de

4114e3

41e207

41e235

41e213

41e0a2

40f770

40f78c 40f77c

41ec13

41177e

411783

40c49c

41e385

41e38a

41e165

41e16a

41eca0

41d8d1

41d8e6

40c419

40c41f

41e293

41e298

4115fe

41e005

41e321

41e32c

41e34a

41eb5c

41eb69

40f889

41eb42

40ca62

41ebde

41173e

411743

40c7bb

40c7e0

40c7e4

40447f

404485

4044ef

40c492

418a49

418a65

4115be

4115cd

40c691

40c6ba

40f7ca

40f7cf

4116b8

40c8e8

40c8f2

40430c

4042cc

40c863

40c867

41164c

4044c6

41e17f 41e1b7

41e2d7

41e2f4

418ab2

418ab7

41e11c

41e132

411678

411697

41e357

41e35c

40c460

40c469

40c4b1

40c5f8

41e218

404399

41eb6c

41e3d2

41e3db

40f804

40f80e

40f817

40c47e

40c47a

40c80a

41e251

40c4e2

40c4e6

41e0e4

41e0f0

40ca58

40c772

40c776

41e428

41e442

40c87940c874

418a3f

40f756

40f766

40f7c2

4116ee

40c435

40c43f

404448

40444b

40c601

40c60f40c424

4117dc

40c806

40c3fc

40c613

40c48c 40c88940c883

41eb23

40f709

40f716

40f74c

40f873

404475

41ec15

41ec4b

41d902

41eba7

41e18b

40c800

411762

41e2c6

41e2d2

40431c

404337

40c6bf

411664

411673

411528

411537

411563

41e3e3

41e137

41e143

41ec28

41ec41

40ca2f

40ca48

41e3fe

41172e

411733

411481

40c765

40c769

41e447

41e470

41e452

40c8d6

40c8e3

41e023

40c9d5

41dfe3

40c992

40c9b3

40c9af

41e0f5

40c54b

40c55c

40c560

40c948

41e03e

41e04a

41e148

40c8d2

41e393

41e3a8

41e331

4117c8

4117cd 4114a6

4114af

4114c7

4115054114cf

41e202

41e379

40438d

41e287

41e2b1

40436c

40c82e

40ca53

411568

41159b

411577

418ae2

40448e

4044b3

40c6e6

41e398

41ebf7

41e000

41e00f

40c79e

40c971

4115b9

40441f

40c70e

40c704

40ca3e

41e3b9

41e04f

41e3f9

40c961

41d8a7

40c74340c748

404435

40c7f1

411707

40ca44

40c88d

41d8f2

40f7bb

4115a9

40c56e

411510

403cdb

40c5ec

418a14

418a20

418a2d

41ebe3

41ebbc

40c6b7

41157c

40c9c5

40c3e6

40c97b

40c985

41e457

4117d7

40f827

40ca34

40c75c

41e08c

41e091

41ec68

41e1c3

4116b3

41165f

4117a2

411500

40f7a3

41e39e

41e24c

40c758

41e09d

41176a

41ec54

41ebcf

40c684

40c69a

4189ff

418a0a

40c9e9

40f7d9

418a04

40ca1e

40ca22

411523

41176f

40c5dc

40c7f6

40c5d6

41149d

418a35

40c752

40c6f5

403d9c

403da5403fa6

403fb4

40513a

403d1b

403d0b 403d8b

4050ba

40511c

403fd9

127

7.6 Detailed overview of the BOPC implementation

O
pt

io
na

l

Si
m

ul
at

io
n

Ite
ra

tiv
e

Pr
oc

es
s

Ca
lc

ul
at

e
CF

G
Ab

st
ra

ct
CF

G

Ab
st

ra
ct

Bl
oc

k

Co
m

pi
le

r
O

pt
im

ize
r

CF
G IR
’

Bi
na

ry
 F

ro
nt

-E
nd

SP
L

Pa
yl

oa
d

Fi
nd

Ca
nd

id
at

e
Bl

oc
ks

SP
L

Fr
on

t-
En

d

CF
G
’

IR

M
ap

Fi
nd

Fu
nc

tio
na

l
G

ad
ge

ts

M
V

M
R

RG VG

SB SA

Bu
id

De
lta

G
ra

ph

M
in

In
du

ce
d

Su
bg

ra
ph

δG

N

Tr
av

er
se

HK

Si
m

ul
at

io
n

St
at

e

sim
ul

at
e

ed
ge

sim
ul

at
e

ed
ge

cl
on

e

HK
i

st
at

e

e

st
at

e2
’

st
at

e’

K fin
al

ize

CF
G

 S
ho

rte
st

 P
at

hs

CF
G

A

st
at

e2

Sh
uffl

e
Re

m
ov

e

G
O

TO
M
’A

DJ
M

AD
J

st
at

eF
ou

tp
ut

m
em

(a
dd

r,
va

lu
e)

. . .
(a

dd
r,

va
lu

e)

Fa
ilu

re
:

M
od

ul
e:

RS
VP

s

128

Bibliography

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in Security and Privacy

(SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 48–62.

[2] J. C. King, “Symbolic execution and program testing,” Communications of the ACM, 1976.

[3] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 2008, pp. 337–340.

[4] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program transformation,” 2018.

[5] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz testing,” in Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security, 2018.

[6] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley, “Automatic exploit

generation,” Communications of the ACM, vol. 57, no. 2, pp. 74–84, 2014.

[7] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen, and W. Zou, “Revery: From

proof-of-concept to exploitable,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2018, pp. 1914–1927.

[8] A. van de Ven and I. Molnar, “Exec shield,” https://www.redhat.com/f/pdf/rhel/WHP0006US_

Execshield.pdf, 2004.

[9] S. Designer, “return-to-libc attack,” Bugtraq, Aug, 1997.

[10] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls

(on the x86),” in Proceedings of CCS 2007, S. De Capitani di Vimercati and P. Syverson, Eds. ACM

Press, Oct. 2007, pp. 552–61.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented programming: a new class of code-reuse

attack,” in Proceedings of the 6th ACM Symposium on Information, Computer and Communications

Security, 2011.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and M. Winandy, “Return-oriented

programming without returns,” in Proceedings of the 17th ACM conference on Computer and communi-

cations security, 2010.

https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

129

[13] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity principles, implementations,

and applications,” ACM Transactions on Information and System Security (TISSEC), 2009.

[14] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of shadow stacks and stack canaries,”

in Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security.

ACM, 2015, pp. 555–566.

[15] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow bending: On the effective-

ness of control-flow integrity.” in USENIX Security, 2015.

[16] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, “Data-oriented programming: On the

expressiveness of non-control data attacks,” in Security and Privacy (SP), 2016 IEEE Symposium on,

2016.

[17] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented programming: Automating data-

only attacks,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2018, pp. 1868–1882.

[18] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing data-flow integrity,” in Proceedings

of the 7th symposium on Operating systems design and implementation, 2006.

[19] PAX-TEAM, “Pax aslr (address space layout randomization),” http://pax.grsecurity.net/docs/aslr.txt,

2003.

[20] T. Durden, “Bypassing PaX ASLR protection,” Phrack magazine #59, 2002.

[21] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-guard: Stopping address space

leakage for code reuse attacks,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2015, pp. 280–291.

[22] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code,” Journal in

Computer Virology, 2006.

[23] D. Wagner and D. Dean, “Intrusion detection via static analysis,” IEEE Symposium on Security and

Privacy, 2001.

[24] D. Devi and S. Nandi, “Pe file features in detection of packed executables,” International Journal of

Computer Theory and Engineering, 2012.

[25] M. I. Sharif, V. Yegneswaran, H. Saidi, P. A. Porras, and W. Lee, “Eureka: A framework for enabling

static malware analysis,” ESORICS, 2008.

[26] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” 2010 International Conference

on Broadband, Wireless Computing, Communication and Applications, 2010.

http://pax.grsecurity.net/docs/aslr.txt

130

[27] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic malware-analysis

techniques and tools,” ACM Comput. Surv., 2012.

[28] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns from unix process execution traces for intrusion

detection,” AAAI Workshop on AI Approaches to Fraud Detection and Risk Management, 1997.

[29] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences of system calls,”

Journal of Computer Security, 1998.

[30] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. yong Zhou, and X. Wang, “Effective and

efficient malware detection at the end host,” USENIX Security Symposium, 2009.

[31] X. Hu, T. cker Chiueh, and K. G. Shin, “Large-scale malware indexing using function-call graphs,”

ACM Conference on Computer and Communications Security, 2009.

[32] C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting intrusions using system calls: Alternative

data models,” IEEE Symposium on Security and Privacy, 1999.

[33] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “Leaps: Detecting camouflaged attacks with

statistical learning guided by program analysis,” DSN, 2015.

[34] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and classification of malware

behavior,” in International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer, 2008, pp. 108–125.

[35] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious executables in the wild,”

ournal of Machine Learning Research, 2006.

[36] J. Aycock, R. deGraaf, and M. J. Jr., “Anti-disassembly using cryptographic hash functions,” Journal in

Computer Virology, 2006.

[37] K. K. Ispoglou and M. Payer, “malwash: Washing malware to evade dynamic analysis.” in WOOT,

2016.

[38] P. Ferrie, “Attacks on virtual machine emulators,” Symantec Security Response, 2006.

[39] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not academical overview

of malware anti-debugging, anti-disassembly and antivm technologies.” [Online]. Available:

http://research.dissect.pe/docs/blackhat2012-paper.pdf

[40] K. Serebryany, “Oss-fuzz - google’s continuous fuzzing service for open source software,” https:

//www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany, 2017.

[41] ——, “Oss-fuzz,” https://github.com/google/oss-fuzz.

http://research.dissect.pe/docs/blackhat2012-paper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/serebryany
https://github.com/google/oss-fuzz

131

[42] P. Godefroid, “From blackbox fuzzing to whitebox fuzzing towards verification,” in Presentation at the

2010 International Symposium on Software Testing and Analysis, 2010.

[43] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: the state of the art,” DEFENCE SCIENCE

AND TECHNOLOGY ORGANISATION EDINBURGH (AUSTRALIA), Tech. Rep., 2012.

[44] M. Zalewski, “American fuzzy lop,” 2015.

[45] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as markov chain,”

IEEE Transactions on Software Engineering, 2017.

[46] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox fuzzing,” in Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

[47] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl: Path sensitive fuzzing,” in

CollAFL: Path Sensitive Fuzzing, 2018.

[48] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and

G. Vigna, “Driller: Augmenting fuzzing through selective symbolic execution.” in NDSS, 2016.

[49] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-aware

evolutionary fuzzing,” in Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2017.

[50] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: a practical concolic execution engine tailored for

hybrid fuzzing,” in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[51] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” arXiv preprint arXiv:1803.01307,

2018.

[52] K. Serebryany, “libfuzzer: A library for coverage-guided fuzz testing (within llvm).”

[53] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & trans-

formation,” in Proceedings of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization, 2004.

[54] O. H. Alliance, “Android open source project,” 2011.

[55] “CVE-2017-13187: An information disclosure vulnerability in the android media framework (libhevc),”

https://nvd.nist.gov/vuln/detail/CVE-2017-13187, 2018.

[56] “CVE-2017-0858: Another vulnerability in the android media framework (libavc),” https://nvd.nist.

gov/vuln/detail/CVE-2017-0858, 2018.

[57] J. Drake, “Stagefright: Scary code in the heart of android,” BlackHat USA, 2015.

https://nvd.nist.gov/vuln/detail/CVE-2017-13187
https://nvd.nist.gov/vuln/detail/CVE-2017-0858
https://nvd.nist.gov/vuln/detail/CVE-2017-0858

132

[58] J. Röning, M. Lasko, A. Takanen, and R. Kaksonen, “Protos-systematic approach to eliminate software

vulnerabilities,” Invited presentation at Microsoft Research, 2002.

[59] D. Aitel, “An introduction to spike, the fuzzer creation kit,” presentation slides), Aug, 2002.

[60] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, 2011.

[61] R. Swiecki, “Honggfuzz,” Available online a t: http://code. google. com/p/honggfuzz, 2016.

[62] S. Hocevar, “zzufâĂŤmulti-purpose fuzzer,” 2011.

[63] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing

coverage,” in Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, 2018.

[64] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, and G. Vigna, “Difuze: interface

aware fuzzing for kernel drivers,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, 2017.

[65] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang, “Semfuzz: Semantics-based auto-

matic generation of proof-of-concept exploits,” in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, 2017.

[66] M. Pradel and T. R. Gross, “Automatic generation of object usage specifications from large method

traces,” in International Conference on Automated Software Engineering, 2009.

[67] ——, “Leveraging test generation and specification mining for automated bug detection without false

positives,” in International Conference on Software Engineering, 2012.

[68] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “APISan: Sanitizing API Usages through Semantic

Cross-checking,” in Usenix Security Symposium, 2016.

[69] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and Z. Zhang, “Vetting ssl usage in

applications with sslint,” in 2015 IEEE Symposium on Security and Privacy (SP), 2015.

[70] H. Chen and D. Wagner, “Mops: an infrastructure for examining security properties of software,” in

Proceedings of the 9th ACM conference on Computer and communications security, 2002.

[71] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vulnerabilities with code

property graphs,” in Security and Privacy (SP), 2014 IEEE Symposium on, 2014.

[72] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast address sanity

checker.” in USENIX Annual Technical Conference, 2012.

[73] “The clang development team: Sanitizer coverage,” http://clang.llvm.org/docs/SanitizerCoverage.html,

2015.

http://clang.llvm.org/docs/SanitizerCoverage.html

133

[74] A. Blanda, “Fuzzing android: a recipe for uncovering vulnerabilities inside system components in

android,” BlackHat EU, 2015.

[75] ——, “Fuzzing the media framework in android,” Android Builders Summit, San Jose, USA, 2015.

[76] “A whole new efficient fuzzing strategy for stagefright,” https://slideplayer.com/slide/13546193/, 2015.

[77] G. J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand et al., “Overview of the high efficiency video

coding(hevc) standard,” IEEE Transactions on circuits and systems for video technology, 2012.

[78] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and

H. Hinton, “Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks.” in

Usenix Security, 1998.

[79] T. Müller, “ASLR smack & laugh reference,” Seminar on Advanced Exploitation Techniques, 2008.

[80] Kil3r and Bulba, “Bypassing stackguard and stackshield,” Phrack magazine #53, 2000.

[81] G. Richarte et al., “Four different tricks to bypass stackshield and stackguard protection,” World Wide

Web, 2002.

[82] R. Wojtczuk, “The advanced return-into-lib (c) exploits: Pax case study,” Phrack Magazine, Volume

0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, 2001.

[83] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On the effectiveness of address-

space randomization,” in Proceedings of the 11th ACM conference on Computer and communications

security, 2004.

[84] V. Katoch, “Whitepaper on bypassing aslr/dep,” Secfence, Tech. Rep., September 2011.[Online].

Available: http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf, Tech. Rep.

[85] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing

forward-edge control-flow integrity in GCC & LLVM.” in USENIX Security, 2014.

[86] Microsoft, “Visual studio 2015 — compiler options — enable control flow guard,” 2015, https://msdn.

microsoft.com/en-us/library/dn919635.aspx.

[87] N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz, “Control-flow integrity:

Precision, security, and performance,” ACM Computing Surveys (CSUR), 2018.

[88] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer integrity.” in

OSDI, vol. 14, 2014, p. 00000.

[89] B. Niu and G. Tan, “Modular control-flow integrity,” ACM SIGPLAN Notices, vol. 49, 2014.

[90] ——, “Per-input control-flow integrity,” in Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, 2015.

https://slideplayer.com/slide/13546193/
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
https://msdn.microsoft.com/en-us/library/dn919635.aspx
https://msdn.microsoft.com/en-us/library/dn919635.aspx

134

[91] T. C. Projects, “Control flow integrity,” https://www.chromium.org/developers/testing/

control-flow-integrity, 2018.

[92] J. Tang and T. M. T. S. Team, “Exploring control flow guard in windows 10,” Available at "http://blog.

trendmicro.com/ trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10", 2015.

[93] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz, “Counterfeit object-oriented

programming: On the difficulty of preventing code reuse attacks in c++ applications,” in Security and

Privacy (SP), 2015 IEEE Symposium on, 2015.

[94] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos,

“Control jujutsu: On the weaknesses of fine-grained control flow integrity,” in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, 2015.

[95] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of control: Overcoming control-flow

integrity,” in Security and Privacy (SP), 2014 IEEE Symposium on, 2014.

[96] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the gadgets: On the ineffectiveness of

coarse-grained control-flow integrity protection.” in USENIX Security, 2014.

[97] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz, “Microgadgets: size does matter

in turing-complete return-oriented programming,” in Proceedings of the 6th USENIX conference on

Offensive Technologies. USENIX Association, 2012, pp. 7–7.

[98] J. Salwan and A. Wirth, “ROPGadget,” https://github.com/JonathanSalwan/ROPgadget, 2012.

[99] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening made easy.” in USENIX Security

Symposium, 2011.

[100] A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou, M. Payer, and E. Bodden, “PSHAPE:

Automatically combining gadgets for arbitrary method execution,” in International Workshop on

Security and Trust Management, 2016.

[101] Pakt, “ropc: A turing complete rop compiler,” https://github.com/pakt/ropc, 2013.

[102] M. Polychronakis and A. D. Keromytis, “ROP payload detection using speculative code execution,” in

Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on, 2011.

[103] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A detection tool to defend against return-

oriented programming attacks,” in Proceedings of the 6th ACM Symposium on Information, Computer

and Communications Security, 2011.

[104] E. R. Jacobson, A. R. Bernat, W. R. Williams, and B. P. Miller, “Detecting code reuse attacks with a

model of conformant program execution,” in International Symposium on Engineering Secure Software

https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10
https://github.com/JonathanSalwan/ROPgadget
https://github.com/pakt/ropc

135

and Systems, 2014.

[105] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG et al., “ROPecker: A generic and practical approach

for defending against ROP attack,” 2014.

[106] V. Pappas, “kBouncer: Efficient and transparent rop mitigation,” tech. rep. Citeseer, 2012.

[107] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking modern defenses.” in USENIX Security,

2014.

[108] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity through binary hardening,”

in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,

2015.

[109] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient protection of path-sensitive control

security,” 2017.

[110] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C. Giuf-

frida, “Practical Context-Sensitive CFI,” in Proceedings of the 22nd Conference on Computer and

Communications Security (CCS’15), October 2015.

[111] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giuffrida,

“The dynamics of innocent flesh on the bone: Code reuse ten years later,” in Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,

Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 1675–1689. [Online]. Available:

http://doi.acm.org/10.1145/3133956.3134026

[112] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms. The MIT press,

2009.

[113] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 263–272.

[114] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation of high-coverage

tests for complex systems programs.” in OSDI, 2008.

[115] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,

C. Kruegel et al., “SOK:(State of) The Art of War: Offensive Techniques in Binary Analysis,” in

Security and Privacy (SP), 2016 IEEE Symposium on, 2016.

[116] A. B. Kahn, “Topological sorting of large networks,” Communications of the ACM, 1962.

[117] T. Uno, “Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs,”

Algorithms and Computation, 1997.

http://doi.acm.org/10.1145/3133956.3134026

136

[118] J. Y. Yen, “Finding the k shortest loopless paths in a network,” management Science, vol. 17, no. 11, pp.

712–716, 1971.

[119] “CVE-2006-5815: Stack buffer overflow in proftpd 1.3.0,” https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2006-5815, 2006.

[120] “CVE-2013-2028: Nginx http server chunked encoding buffer overflow 1.4.0,” https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2013-2028, 2013.

[121] “CVE-2012-0809: Format string vulnerability in sudo 1.8.3,” https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2012-0809, 2012.

[122] “Cve/bug in orzhttpd - format string,” https://www.exploit-db.com/exploits/10282/, 2009.

[123] “CVE-2000-0573: Format string vulnerability in wu-ftpd 2.6.0,” https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2000-0573, 2001.

[124] “CVE-2002-1496: Heap-based buffer overflow in null http server 0.5.0,” https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2002-1496, 2004.

[125] “CVE-2001-0144: Integer overflow in openssh 1.2.27,” https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2001-0144, 2001.

[126] “CVE-2014-2299: Buffer overflow in wireshark 1.8.0,” https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2014-2299, 2014.

[127] “CVE-2006-3747: Off-by-one error in apache 1.3.34,” https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2006-3747, 2006.

[128] “CVE-2009-1886: Format string vulnerability in smbclient 3.2.12,” https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2009-1886, 2009.

[129] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic generation of data-oriented exploits.”

in USENIX Security, 2015.

[130] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM

symposium on Theory of computing. ACM, 1971, pp. 151–158.

[131] M. V. Yason, “The art of unpacking,” https://www.blackhat.com/presentations/bh-usa-07/Yason/

Whitepaper/bh-usa-07-yason-WP.pdf, 2007.

[132] E. Eilam, Reversing: Secrets of Reverse Engineering. Wiley; 1 edition, 2005.

[133] C. Eagle, The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler. No

Starch Press; 2 edition, 2011.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809
https://www.exploit-db.com/exploits/10282/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

137

[134] V. Mohan and K. W. Hamlen, “Frankenstein: Stitching malware from benign binaries,” Usenix WOOT,

2012.

[135] G. Poulios, C. Ntantogian, and C. Xenakis, “Ropinjector: Using return oriented programming for

polymorphism and antivirus evasion,” Blackhat USA, 2015.

[136] S. Dolan, “mov is turing-complete,” http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf, 2013.

[137] “Metasploit,” https://www.metasploit.com/.

[138] S. Fewer, “Reflective dll injection,” http://www.harmonysecurity.com/files/HS-P005_

ReflectiveDllInjection.pdf.

[139] P. V. Shijoa and A. Salimb, “Integrated static and dynamic analysis for malware detection,” ICICT,

2014.

[140] S. Yusirwan, Y. Prayudi, and I. Riadi, “Implementation of malware analysis using static and dynamic

analysis method,” International Journal of Computer Applications, 2015.

[141] P. Szor, The Art of Computer Virus Research and Defense. Addison-Wesley Professional, 2005.

[142] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM

symposium on Theory of computing. ACM, 1971, pp. 151–158.

[143] U. Müller, “Brainfuck–an eight-instruction turing-complete programming language,” Available at the

Internet address http://en. wikipedia. org/wiki/Brainfuck, 1993.

http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
https://www.metasploit.com/
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf
http://www.harmonysecurity.com/files/HS-P005_ReflectiveDllInjection.pdf

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	The three phases of an attack
	Discovering a vulnerability
	Exploiting a vulnerability
	Persisting on the compromised system

	Dissertation Statement
	Dissertation Organization

	FUZZGEN: AUTOMATIC FUZZER GENERATION
	Introduction
	The case for API-aware fuzzer construction
	Background and Related Work
	Design
	Inferring the library API
	Abstract API Dependence Graph (A2DG) construction
	Argument flow analysis
	Fuzzer stub synthesis

	Implementation
	Evaluation
	Consumer Ranking
	Measuring code coverage
	Android evaluation
	Case Study: Out Of Bounds Read in libhevc

	Discussion and future work
	Conclusion

	BLOCK ORIENTED PROGRAMMING: AUTOMATING DATA ONLY ATTACKS
	Introduction
	Background and Related Work
	Control Flow Integrity
	Shadow Stacks
	Data-only Attacks

	Assumptions and Threat Model
	Design
	Expressing Payloads
	Selecting functional blocks
	Finding BOP gadgets
	Searching for dispatcher blocks
	Stitching BOP gadgets

	Implementation
	Binary Frontend
	SPL Frontend
	Locating candidate block sets
	Identifying functional block sets
	Selecting functional blocks
	Discovering dispatcher blocks
	Synthesizing exploits

	Evaluation
	Case Study: nginx
	Spawning a shell
	Infinite loop
	Conditional statements

	Discussion and Future Work
	Conclusion

	X-CAP: ASSESSING EXPLOITATION CAPABILITIES
	MALWASH: WASHING MALWARE TO EVADE DYNAMIC ANALYSIS
	Introduction
	Background and Related Work
	Design
	Implementation
	Phase 1: Chopping the binary
	Phase 2.a: Loading emulators
	Phase 2.b: Executing the binary
	Recovering terminated instances

	Evaluation
	malWASH resilience
	Case Study: Remote Keylogger
	Discussion

	Conclusion

	RELATED & FUTURE WORK
	Library Fuzzing
	Data-Only and Control Flow Bending attacks
	Distributed malware detection

	CONCLUSION
	APPENDIX
	Determining exploitability is undecidable
	Extended Backus-Naur Form of SPL
	Stitching BOP Gadgets is NP-Hard
	SPL is Turing-complete
	CFG of nginx after pruning
	Detailed overview of the BOPC implementation

	BIBLIOGRAPHY

