OPTIMIZATIONS FOR N-BODY PROBLEMS ON HETEROGENOUS SYSTEMS

A Dissertation
Submitted to the Faculty
of
Purdue University
by

Jiangiao Liu

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

May 2019
Purdue University

West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF DISSERTATION APPROVAL

Dr. Milind Kulkarni, Chair

School of Electrical and Computer Engineering
Dr. Anand Raghunathan

School of Electrical and Computer Engineering
Dr. Mithuna S. Thottethodi

School of Electrical and Computer Engineering
Dr. Samuel P. Midkiff

School of Electrical and Computer Engineering

Approved by:
Dr. Pedro Irazoqui

Head of the School Graduate Program

11

This dissertation is dedicated to my parents, Shucheng and Changqin, and my wife,

Zhenyan, who have unconditionally supported me morally and culinarily.

11

v

ACKNOWLEDGMENTS

I want to have my utmost gratitude to my fabulous advisor, Milind Kulkarni. He has
provided insightful guidance in my research and enlighten me to explore unknown areas.
Whenever I got stuck in difficulties, I could find a way out through his conversation and
advice. Milind is a consummate communicator, and I’'m honored to learn from him turning
raw fact into shareable knowledge. I thank my advisory committee, Sam Midkiff, Anand
Raghunathan and Mithuna Thottethodi for attending my examinations, and providing valu-
able feedback to improve my dissertation. And I thank Mithuna and T. N. Vijaykumar for
their advisement about computer architecture and optimization during our joint research
project.

I want to thank all my co-authors and collaborators. I have sincere gratitude to Tom
Quinn for his guidance throughout our three years of collaboration. Tom provided elaborate
instruction on ChaNGa and helped me immensely to grow intellectually. I thank Michael
Robson, who helped me understand the Charm++ runtime system, and other members in
ChaNGa community for incisive suggestions. Throughout my course of the research, I
worked closely with Nikhil Hegde, who was also my highest frequency student co-author.
Nikhil has pushed me to be a more complete and more thorough thinker.

I have been fortunate to spend three months working with Ian Brown, Ramki Ramakr-
ishna, and Alex Wiltschko during my internship at Twitter. They taught me how to ap-
proach new projects in industry and skills in communicating with diverse people. I'd like
to thank Hao Lin, my labmate in Purdue ECE and colleague at Facebook. Hao gave me a
broadened horizon — there are so much to be learned in the world of industry.

I thank my labmates, Nour Jaber, Kirshanthan Sundararajah, Laith Sakka, Chris Wright,
Jad Hbeika and Charitha Saumya. They are extremely talented and motivated researchers

with an excellent sense of humor and adorable vigor. Thanks to my roommates, Yiyang.

His thinking and advice, about research and life, has made the tough spots bearable and the
high point even better.

This research was supported in part by the DOE Early Career Award (DE-SC0010295)
and an NSF funding (OAC-1550525 SI2-SSI: Collaborative Research: ParaTreet: Parallel

Software for Spatial Trees in Simulation and Analysis).

vi

TABLE OF CONTENTS
Page
LISTOF TABLES e e ix
LISTOFFIGURES o e X
ABSTRACT e Xii
I INTRODUCTION o e e e e e 1
1.1 N-bodyproblems 1
1.2 N-body problems on GPU platform 3
1.3 N-body problems on distributed system 4
1.4 Ourapproaches 6
1.4.1 Hybrid CPU-GPU scheduling and execution 6
1.42 GPUsingletreewalk 7
1.5 Contributions and organization 8
2 N-BODY PROBLEMSONGPU 10
2.1 m-bodycodes 10
2.2 GPUexecutionmodel 10
2.3 Autorope and lockstep traversal L L Lo 12
3 HYBRID CPU-GPU SCHEDULING AND EXECUTION 14
3.1 Traversal Scheduling 14
3.1.1 ScuepisNP-hard oo 15
3.1.2 Priorsorting heuristics L. 17
32 DeSign e e e e e e e 18
32.1 Profiling 19
3.22 Scheduling 23
323 Execution L 27

3.2.4 COITECINESS . . v v v v v e e e e e e e e e e e 28

4

5

3.3 Implementation e e
3.3.1 Profilingdivision o
34 Evaluation
34.1 Methodology
342 Results
3.4.3 Performance breakdownso
3.5 RelatedWork
3.6 Conclusions
LOCAL TREE WALK ON DISTRIBUTED HETEROGENEOUS SYSTEM . . .
4.1 ChaNGa e
4.1.1 ChaNGastructure ot

4.1.2 Dual-treetraversals

42 Design e
4.2.1 Offloading the local tree walk
422 Complexity CONCeInS v v v v v v e e e et et
4.2.3 Further optimizations
43 Implementation
44 Evaluation L
45 RelatedWork
4.6 Conclusions e e e
REMOTE TREE WALK ON DISTRIBUTED HETEROGENOUS SYSTEM.. . .
5.1 Introduction
5.1.1 Ourapproaches
5.1.2 Challenges e
52 Design e e e
5.3 Implementation

5.4 DISCUSSION o . v e

Vil

Page

Page

5.4.1 Open criterion and inclusion condition 72

5.4.2 The break of inclusion condition 72

5.4.3 Approach 1: bottom-up open radius calculation 75

5.4.4 Approach 2: top-down open radius calculation 77

5.4.5 Approach 3: bookkeeping 77

5.5 Conclusionso 81

6 CONCLUSIONS s s e 83
6.1 Single node heterogenous system 83
6.2 Distributed heterogenous system 83
REFERENCES e 85

Table

3.1
32
4.1
4.2
4.3
4.4
4.5

X

LIST OF TABLES

Page
Scheduling matrix for point correlation 21
Scheduling effects on divergence 39
Comparison of open criterion Lo 54
Comparison of interactions 55
Runtime Comparison 59
Runtime breakdown for original ChaNGa 60

Runtime breakdown fornew ChaNGa 60

LIST OF FIGURES
Figure Page
2.1 BarnesHutpseudocode 11
3.1 Pointcorrelation. 16
3.2 Treetraversal algorithm, 20
3.3 Profiling for point correlation 20
3.4 Profiling for nearestneighbor 22
3.5 Intra-bucket schedulingexample 24
3.6 Intra-bucket schedulingcode 24
3.7 Guided optimizationexampleo 26
3.8 Guided optimizationcode 26
39 FSMsstatetransfer. 29
3.10 FSM lockstepkernel 30
3.11 Speedup comparisono 33
3.12 Overhead cost ratio comparison oo e 34
3.13 Depth sensitivity analysis L 37
3.14 Detailed depth sensitivity analysis 38
4.1 Tree StuctureinChaNGa 44
4.2 Pseudocode of dualtreewalk Lo 46
4.3 Strategy COmMpariSON v v v v v e e e e e e e e e e e 53
44 GPUsingletreewalk L o 57
4.5 Strongscaling L 61
4.6 Weakscaling 61
4.7 Runtime comparison under different theta values 62
5.1 GPU CPU computational ability comparison 66
5.2 ChaNGaruntime profiling 67

X1

Figure Page
5.3 GPU-centric traversal L 69
5.4 CPU approximated traversal, 70
5.5 Simplified open criterion 73
5.6 Openradiusin2Dplane 73
5.7 Original Problem 75
5.8 Bottom up radius calculation Lo 76
5.9 Top-downradius calculation 78
5.10 CornerCase i i 78
5.11 Dependency among subtrees 79

5.12 CPU/GPU asynchronous communication workflow 80

Xii

ABSTRACT

Liu Jiangiao Ph.D., Purdue University, May 2019. Optimizations for N-body Problems on
Heterogenous Systems. Major Professor: Milind Kulkarni.

N-body problems, such as simulating the motion of stars in a galaxy and evaluating
the spatial statistics through n-point correlation function, are popularly solved. The naive
approaches to n-body problems are typically O(n?) algorithms. Tree codes take advantages
of the fact that a group of bodies can be skipped or approximated as a union if their dis-
tance is far away from one bodys sight. It reduces the complexity from O(n?) to O(n*lgn).
However, tree codes rely on pointer chasing and have massive branch instructions. These
are highly irregular and thus prevent tree codes from being easily parallelized.

GPU offers the promise of massive, power-efficient parallelism. However, exploiting
this parallelism requires the code to be carefully structured to deal with the limitations of
the SIMT execution model. This dissertation focusses on optimizations for n-body prob-
lems on the heterogeneous system. A general inspector-executor based framework is pro-
posed to automatically schedule GPU threads to achieve high performance. Essentially,
the framework lets the GPU execute partial of the tree codes and profile threads behaviors,
then it assigns the CPU to re-organize these threads to minimize the divergence before ex-
ecuting the remaining portion of the traversals on the GPU. We apply this framework to
six tree traversal algorithms, achieving significant speedups over optimized GPU code that
does not perform application-specific scheduling. Further, we show that in many cases, our
hybrid approach is able to deliver better performance even than GPU code that uses hand
tuned, application-specific scheduling.

For large scale input, ChaNGa is the best-of-breed n-body platform. It uses an asymp-
totically-efficient tree traversal strategy known as a dual-tree walk to quickly provide an

accurate simulation result. On GPUs, ChaNGa uses a hybrid strategy where the CPU per-

Xiil

forms the tree walk to determine which bodies interact while the GPU performs the force
computation. In this dissertation, we show that a highly optimized single-tree walk ap-
proach is able to achieve better GPU performance by significantly accelerating the tree
walk and reducing CPU/GPU communication. Our experiments show that this new de-
sign can achieve a 8.25x speedup over baseline ChaNGa using one node, one process per
node configuration. We also point out that ChaNGa’s implementation doesn’t satisfy the

inclusion condition so that GPU-centric remote tree walk doesn’t perform well.

1. INTRODUCTION
1.1 N-body problems

N-body problems consist of a class of important problems across computational ge-
ometry, statistics, computational physics, and machine learning fields. From simulating
the formation of galaxies to recommending customers potential product according to their
social network neighbors, n-body problems are popularly solved in the various fields.

The n-body problems share a common structure: each body in a large data set poten-
tially needs to traverse all the rest bodies (one or more times) to update some attributes. One
example is the n-body simulation, which computes interactions between particles in a sys-
tem to evaluate the effects of forces between those bodies such as gravity, electrical charge,
etc. Perhaps the most classic example of an n-body simulation is modeling the self-gravity
of astronomical bodies—stars in a galaxy, for instance. As withall n-body problems, the
naive approach to computing the gravitational force is the direct approach: for each body
in the system, compute the force acting on it from the other n — 1 bodies, resulting in an
O(n?) algorithm.

In 1986, Barnes and Hut proposed an approach that has since become a standard way
of performing n-body gravitational simulations, or even all the n-body problems: a tree
code [1]. This approach takes advantage of the fact that the gravitational force of a group

! the lowest term of which is

of bodies can be approximated by a multipole exansion
proportional to the total mass divided by the square of the distance, and higher order terms
drop off with successively higher powers of the distance. Tree codes use a spatial tree
(classically, an octree) to capture the spatial relationship between bodies. To compute the

forces on a body, the body traverses the tree, computing approximate forces from bodies

'The multipole expansion is the sum of spherical harmonics of the mass distribution in the Cartesian coordi-
nates.

that are far away by interacting with a node of the octree that encompasses all of those far-
away bodies, and exact forces from bodies that are close by. In this way, the O(n?*) algorithm
becomes an O(nlogn) algorithm. Most of the n-body problems are being solved along
with the same strategy: using a recursive tree traversal code to reduce the computation
complexity.

There are more n-body problems besides the n-body simulation. They consist but not
limited to:

The n-point correlation function forms the theoretical foundation of several compu-
tational fields, e.g. bioinformatics and data mining, which are heavily using statistical
analysis or simulation. Nowadays, it is being used by the cosmologists to validate the
state-of-the-art cosmological model with the observation from the weak lensing and cos-
mic microwave background survey. These surveys image hundreds of millions of galaxies,
which necessitates efficient methods to extract useful data. The point correlation functions
supply fast and accurately spatial evaluation to them. A key question that point correlation
functions are typically used to answer is that: for a given galaxy, the correlation functions
describe the probability that another galaxy can be found within a certain distance [2].

The k-nearest neighbors (kNN) algorithm is mostly known as a non-parametric method
in regression and classification. It doesn’t make any assumption to the input data, which is
quite useful to process the practical data who does not clearly obey the typical theoretical
assumptions like the Gaussian mixtures or linearly separable etc. Similar to the Barnes-Hut
algorithm, the kNN also adopts the tree structure to partition the space and accelerate the
search process. Each point in the query data set traverses the reference tree to update a
list (of length k) of its nearest neighbors. While most of the time the query and reference
data set are the same, they may be quite different in application field like the computational
geometry. The type of tree structure has a strong effect on search performance [3].

Smooth Particle Hydrodynamics (SPH) is a central technique in simulating the mechan-
ics of fluid flows. It was first proposed in 1977 as an alternative way to simple grid-based
approach to fluid dynamics. SPH is a particle-based method and thus usually implemented

as tree code. It computes pressure from the weighted contribution of nearest neighboring

particles rather than solving linear systems of equations. The simulation result could be ad-
justed through variables like density/pressure. The abilities to provide adaptive resolution
and simulate phenomena across many orders of magnitude make SPH ideal for astronomi-

cal simulations, such as galaxy formation and the structure of dark matter.

1.2 N-body problems on GPU platform

GPUs offer the promise of massive, energy-efficient parallelism, providing hardware
that can execute hundreds of simultaneous parallel threads. As a result, the last decade has
seen intense efforts towards mapping applications and kernels to GPUs to take advantage of
that parallelism. Unfortunately, achieving such highly efficient parallelism requires com-
promises: GPUs present a somewhat limited SIMT (single-instruction, multiple-thread)
execution model, where, to take full advantage of the parallel execution resources, threads
that are executing simultaneously must perform the same computation (avoiding control
divergence) and access memory in a predictable way (avoiding memory divergence). In
other words, while GPUs appear to be well-suited to executing data-parallel algorithms,
the full power of the GPU cannot be exploited unless the data-parallel tasks are similar
to each other. As a result, most successful GPU algorithms are regular, with predictable
control flow and memory access patterns.

There has been considerably less success tackling n-body problems on GPU. These
algorithms, which feature data structures such as trees and data-dependent behavior, are
much more difficult to map to GPUs, as the input-dependence precludes grouping together
threads to minimize control divergence and the pointer-based data structures mean that
even if threads are performing similar operations, their memory accesses are likely not pre-
dictable, increasing memory divergence. As a result of these difficulties, most attempts
to map n-body problems to GPUs have been one-off implementations: for each new algo-
rithm, a new, ad hoc implementation for GPUs must be developed [4—11].

Recently, Goldfarb ef al. developed a general framework for mapping a class of n-

body problems, to GPUs [12]. These applications, which include classic algorithms such

as Barnes-Hut [1] and kd-tree—based nearest neighbor searches [13], perform multiple re-
cursive traversals of tree structures. The multiple traversals expose tremendous amounts
of data parallelism. However, since the behavior of each traversal is input dependent, the
data parallel tasks are not identical, making GPU execution challenging. If the tasks are
merely mapped to SIMT threads, each thread ultimately experiences substantial memory
and control divergence. To overcome this, Goldfarb et al. developed two transformations,
autoroping and lockstepping, that restructure these tree traversal algorithms so that they
execute effectively on GPUs (see Section 2.3 for more details).

Unfortunately, to achieve maximum performance using their framework, Goldfarb ez al.
used application-specific “sorting” optimizations. To minimize control divergence while
avoiding memory divergence, Goldfarb et al. reorganized the set of traversals to be per-
formed so that the traversals that were grouped into SIMT thread groups were likely to
touch similar portions of the tree. Figuring out a fast, effective way to perform this sorting
requires a careful understanding of an algorithm’s behavior. In other words, this prior work
relies on application-specific sorting to achieve high performance. What is missing is an
approach to tackling these problems that does not rely on application-specific knowledge

to be effective.

1.3 N-body problems on distributed system

N-body problems can involve millions or even trillions of bodies, distribution is a key
approach to scaling up computation. This thesis focus on the n-body simulations for the
distributed platform. Over the years, there have been many frameworks developed to per-
form distributed tree code—based n-body simulations [14-16]. One of the most advanced,
and most efficient, is ChaNGa [17]. The full name of ChaNGa is ”Charm Nbody GrAvity
solver”. This framework, based on Charm++ [18], works by breaking up the large spatial
tree required by a tree-code into tree pieces. Each of these tree pieces represents a sub-tree
of the overall spatial tree, and hence a subset of all the bodies in the simulation. These tree

pieces can then be distributed and executed on different nodes in a system, combining the

forces from “local walks” (bodies in a tree piece interacting with other bodies in the same
tree piece) and “remote walks” (bodies interacting with the remote tree pieces).

The local walks in ChaNGa are implemented using a dual tree algorithm: rather than
having each body perform separate tree walks, resulting in “particle-cell” interactions
(when a body determines whether all the bodies in a given subtree are far enough away) and
“particle-particle” interactions (when a body interacts directly with another body to com-
pute forces), the tree walk performs a number of “cell-cell” interactions, which can quickly
determine if all the bodies in one subtree are far enough away from the bodies in another
subtree to allow for approximate computation?. This optimization further reduces the com-
plexity of the tree walk to O(N) compared to the original “single-tree” implementation.
Note that this complexity difference affects only the tree-walk portion of the algorithm; the
two variants perform asymptotically similar numbers of force computations.

While this dual-tree approach is highly effective for CPU-only computation, it suffers
from several drawbacks when trying to take advantage of the GPUs that are increasingly
a part of distributed systems. Dual-tree walks derive their asymptotic benefit from per-
forming the tree walk for numerous points as part of a single computation. While this is the
source of the asymptotic win versus single-tree implementations, it also reduces the amount
of parallelism available in the computation (all of the single-tree walks are parallelizable,
but the dual-tree walks for all the points must be done as part of a single computation),
underutilizing a GPU’s massive parallel resources. Moreover, the dual-tree algorithm is
very control-heavy, leading to control divergence that compromises a GPU’s SIMT execu-
tion model, further reducing utilization. As a result, ChaNGa does not directly implement
a dual-tree walk on GPUs. Instead, ChaNGa separates the tree walk step from the force
computation step: the CPU performs the dual-tree traversal to determine which bodies
each other body needs to interact with directly, building interaction lists, then the GPU
uses these interaction lists to perform force computation. Because the interaction lists are
dense, regular structures, the force computation step can be efficiently performed on the

GPU.

2A variant of this approach is also used in another classic n-body algorithm, the Fast Multipole Method [19,
20].

ChaNGa’s CPU/GPU approach is an effective way to exploit GPUs in its distributed
computation. However, it means that the GPU’s parallelism cannot be leveraged for the
tree-walk portion of the computation. Moreover, because the CPU must perform the tree
walks and then send the interaction lists to the GPU, a significant amount of time needs to

be spent in this communication, further reducing efficiency.

1.4 Our approaches

To make effective optimization for n-body problems on heterogeneous systems, we

spend efforts on two main directions:

1.4.1 Hybrid CPU-GPU scheduling and execution

For a single computer, we take advantage of a key insight about the behavior of tree
traversal algorithms that allows us to perform effective scheduling without performing
application-specific sorting: even though traversals are data-dependent and hence inher-
ently unpredictable, if the behavior of a single traversal is examined part of the way through
its execution, its future behavior is highly correlated with its past behavior. In other words,
two traversals that have behaved similarly for the first half of their execution are likely to
behave similarly for the second half, as well.

The insight that past traversal behavior is correlated with future behavior has been ex-
ploited before, in narrower, or application-specific contexts by Zhang et al. [21] and Pingali
et al. [22], and in a more general tree-traversal context by Jo and Kulkarni [23,24]. Funda-
mentally, these approaches all interleave the scheduling component (tracking past behavior
and reorganizing computations based on that behavior) with the execution (perform the
next phase of computations). This tight coupling has an advantage: by interleaving track-
ing and scheduling with execution, the schedule can be continuously adapted in response
to the profiling information. However, these approaches also have a serious disadvantage:
because the tracking and scheduling occur continuously, and are highly irregular processes,

this tightly-coupled approach is ill-suited to execution on a GPU.

In this work, we introduce a completely different way of automatically scheduling tree
traversals. We base our approach on an extension of the prior insight about traversal behav-
ior. The depth-first nature of recursive traversals means that the behavior of traversal as it
explores the “lower half” of the tree (i.e., nodes at depth more than half the tree height) is
largely determined by its behavior in the “upper half” of the tree (i.e., which nodes in the
upper half of the tree the traversal visits, and in which order). In other words, two traversals
that have similar behaviors in the upper half of the tree will behave similarly in the lower
half of the tree, as well. However, the vast majority of the work performed by the traversal
occurs in the lower half of the tree. As a result, it is possible to examine the behavior of
traversals as they visit the upper half of the tree, and use just that information to reschedule
the traversals as they execute the lower half of the tree.

Crucially, since this upper-half execution is a small fraction of the overall execution
time, it is not burdensome to perform that execution more than once. This fact suggests
a automatic, hybrid, insepctor-executor approach that can be readily mapped to a GPU.
We perform the “top half” of all of the traversals on the GPU once, to collect profiling
data about the behavior of each traversal. This inspector stage is highly data-parallel, with
a small memory footprint, and is well-suited to the GPU. The GPU then transmits that
profiling data back to the CPU, which performs the highly irregular scheduling process to
determine a new schedule of execution. This new schedule of execution is then used to
execute the original tree traversal algorithm on the GPU, using strategies such as Goldfarb
et al.’s. Even though the inspector and scheduler phases add additional overhead to the

application, the gains from the optimized schedule during the execution phase win out.

1.4.2 GPU single tree walk

For n-body problems on a distributed system, we make the observation that it is im-
portant to match the algorithm to the target hardware. While dual-tree approaches have
attractive asymptotic properties that are effective for CPU computation, these asymptotic

behaviors are counterbalanced by the specific requirements of efficient GPU computation:

a desire for massive parallelism and a desire for regular control flow. Hence, in this dis-
sertation, we make a key change to ChaNGa’s GPU implementation: we use an efficient
single-tree algorithm to perform local tree computations.

By using a single-tree computation, we can move both the tree walk and force compu-
tation steps to the GPU, eliminating the communication bottleneck inherent in transferring
interaction lists between the CPU and GPU. While single-tree walks are still irregular, we
adapt recent developments in GPU tree walks from Goldfarb et al. [12] and Liu et al. [25]
that show that it is possible to implement these tree walks in a way that nevertheless lim-
its control divergence and hence highly efficient on the GPU. By combining these two
effects—reduced communication costs and reduced control divergence—our approach is
able to overcome the higher asymptotic complexity of the single-tree approach to deliver
a more efficient GPU implementation of ChaNGa, representing the fastest known config-
uration of ChaNGa. We show, across several benchmarks, that on a CPU-heavy system
our implementation is 4.85x faster than the best prior configuration of ChaNGa in the best
case, and 3.66x faster on average, and on a GPU-heavy system, our implementation is

8.07x faster in the best case and 6.04x faster on average.’

1.5 Contributions and organization

The dissertation starts with the hybrid CPU-GPU scheduling and execution for n-body
problems on a single machine, then we make an insightful observation to the state-of-the-
art n-body simulation implementation and contribute our optimization techniques to it. The

primary contributions are:

1. We introduce a hybrid, inspector executor—based, dynamic scheduling algorithm that
performs partial traversals on the GPU, then reschedules the traversals on the CPU,
before completing the work on the GPU. We develop optimized versions of this
scheduling algorithm that exploit structural properties of traversal algorithms to fur-

ther improve our dynamic scheduling.

30n a single node with 1 CPU/GPU, we compute the average speedup over different input datasets and bucket
sizes.

. We implement a framework that performs this dynamic scheduling in a general,
application-agnostic manner, allowing programmers to produce hybrid CPU-GPU

implementations of tree traversal algorithms.

. We develop a new skeleton for writing the GPU kernel portion of tree traversals that

minimizes unnecessary memory accesses.

. We observe that dual tree walk is not suitable for GPUs and point out that its asymp-
totic behaviors are counterbalanced by the specific requirements of efficient GPU

computation.

. We implement GPU gravitational force computation kernel using above skeleton and
integrate it with the ChaNGa, which is the state-of-the-art distributed computational

astrophysics platform.

. We point out that ChaNGa’s implementation doesn’t satisfy the inclusion condition

so that GPU-centric remote tree walk doesn’t work well.

10

2. N-BODY PROBLEMS ON GPU

This chapter describes the necessary background for the remainder of the dissertation. We
briefly cover the n-body code, the SIMT execution model of GPUs and Goldfarb et al.’s

approach [12] for mapping traversal algorithms to GPUs.

2.1 n-body codes

The naive approach to perform the n-body simulation is to have each particle in the
space directly compute the gravity with all the rest of the particles. Each particle requires
O(n) computation, and the overall complexity is O(n?). The Barnes Hut algorithm uses an
octree in three-dimensional space to organize the particles. The topmost node (the roor)
represents the whole space, and its eight children represent the subspaces. The space is
recursively divided until the number of particles in each node is below a threshold. In the
simulation, a particle traverses the space from the root. If the center of mass of one internal
node is sufficiently far away from the particle, the particles contained by that node are
treated as a single particle whose position and mass are represented by the node’s spatial
property. Otherwise, the particle needs to traverse each child of the node. The process is

repeated until no more nodes remain (Figure 2.1).

2.2 GPU execution model

GPUs use a SIMT (single-instruction, multiple-thread) execution model that allows
multiple threads to execute efficiently in parallel. SIMT execution is, essentially, vector
execution: multiple threads can execute in parallel provided that all the threads are per-
forming the same instruction. In the simplest case, consider a group of threads that each

perform exactly the same operation on different pieces of data in an array. In a SIMT ex-

O 00 N O W R W =

—_ -
—_ o

11

void BarnesHut (particle, node) {
if (far_away (particle, node)) {
calculateGravity (particle, node) ;
} else if (isBucket (node)) {
for (p : node.particles())
calculateGravity (particle, p);
} else {
for (child : node.children())
BarnesHut (particle, child);

Fig. 2.1.: Barnes Hut pseudocode

ecution, some number of threads will be combined into a single group (called a “warp” in
NVIDIA parlance, and a “wavefront” by AMD; for brevity, we will use the term “warp”
hereafter). These threads will execute in lockstep, each executing the same instruction si-
multaneously. As long as all the threads perform the same instruction, and all memory
accesses performed by the threads are well-structured (e.g., adjacent locations in an array),
the GPU will deliver large amounts of efficient parallelism.

The key to the SIMT execution model, which both lends it its ease of use and hides a se-
ries of performance pitfalls, is how it deals with situations when threads do not perform ex-
actly the same instruction (control divergence), or do not access memory in well-structured
ways (memory divergence). In this case, the GPU hardware automatically manages execu-
tion by masking out threads in the warp so that the threads that do execute still execute in
a straightforward, vectorized manner. So, for example, if the threads in a warp encounter a
branch, with some taking the branch and the others falling through, the warp will conceptu-
ally split into two groups, with the taken threads executing together while the fall-through
threads are stalled, then vice-versa, until all the threads reconverge after the branch. This
masking behavior under control divergence reduces parallelism, often significantly. Simi-
larly, if the threads in a warp do not access memory locations in a structured way—which
allows the hardware to coalesce the memory accesses into a single operation—some of the

threads will stall until all the accesses can be completed. This memory divergence also re-

12

duces parallelism. Fundamentally, achieving good performance under the SIMT execution
model requires structuring code to minimize control and memory divergence.

In the presence of divergence, GPU utilization can drop precipitously, at which point
the parallelism advantages of a GPU are moot: execution on a CPU can often be faster.
Unfortunately, irregular applications often incur both types of divergence. Because of data-
dependent behavior, threads often suffer from control divergence. Because of the dynamic
memory allocation inherent in pointer-based data structures, threads often access unpre-
dictable memory locations on loads, leading to memory divergence. As a result, most
attempts to map irregular applications to GPUs have required very careful, application-

specific tricks and techniques to achieve good performance.

2.3 Autorope and lockstep traversal

Goldfarb et al. described an approach for mapping a general class of irregular applications—
those that perform repeated tree traversals—to GPUs [12]. These applications are charac-
terized by the following structure: a set of “points” each traverse a single tree in a recursive,
depth-first manner. However, GPU implementations of recursive tree traversals suffer from
a specific performance pitfall. After a thread finishes traversing along a particular path in
the tree, it must return to upper nodes in the tree to reach other branches. Thus the in-
terior nodes are repeatedly traversed, an overhead that is compounded by the expense of
numerous recursive calls on a GPU. To mitigate this overhead, Goldfarb et al. proposed a
transformation called autoropes [12].

Ropes are a common technique for mapping traversal algorithms to GPUs. Rather
than letting threads discover which nodes to visit through a series of recursive calls, ropes
are additional pointers installed in the tree that directly point to the next node to be tra-
versed (e.g., to a sibling node in the tree), avoiding the expense of revisiting interior nodes.
Ropes provide a linearization of the tree. Unfortunately, the particular targets of rope point-
ers are application specific and are complicated when multiple traversal orders are possi-

ble. Autoropes is an application-agnostic transformation that uses a stack of dynamically-

13

instantiated rope pointers to linearize trees. When visiting a node using autoropes, the
thread pushes pointers to the children nodes onto a rope stack in the reverse order they
will be traversed. Then, instead of making recursive calls, the autorope traversal just iter-
ates over the rope stack, eliding the overhead of recursion, and ensuring that each node is
visited just once.

Autoropes replaces the recursive call stack with a simple iteration over the rope stack.
As a result, threads experience significantly less control divergence (because they are all
simply iterating over a stack). Unfortunately, this means threads in a warp can diverge in
the tree, with different threads touching very different portions of the tree, resulting in un-
necessary memory traffic. Lockstepping mitigates this problem by introducing additional
control flow that keeps threads in sync in the tree during traversal. When a thread is trun-
cated at certain node @, it doesn’t move to the next node through autorope stack directly.
Instead, if other threads in the warp want to continue the traversal to the subtree rooted at
node @, the thread will be carried along by others, masked out from any computation. A
warp only truncates its traversal when all its threads in the warp have given up the traversal.
To ensure that lockstepping does not result in many threads being dragged along through
the tree doing no useful work, it is important to carefully schedule the computation so that
threads with similar traversals get grouped together into a warp. Together with autoropes,

lockstep traversal delivers high performance for well-scheduled inputs [12].

14

3. HYBRID CPU-GPU SCHEDULING AND EXECUTION

As mentioned in the introduction, scheduling is an important issue for tree traversals be-
cause GPU’s SIMT execution model requires structuring code to achieve high performance.
The threads in the same warp have to perform exactly the same instruction and access the
memory location in a predictable way. Otherwise, the control divergence (threads do not
perform exactly the same instruction) and memory divergence (threads do not access mem-
ory in well-structured ways) pop up and steal over the GPU utilization. Unfortunately,
n-body codes often incur both types of divergence. Because of data-dependent behavior,
threads often suffer from control divergence. And because of the dynamic memory alloca-
tion inherent in pointer-based data structures, threads often access unpredictable memory
locations on loads, leading to memory divergence. Thus, mapping n-body codes to GPUs
requires very careful scheduling techniques. However, due to the high input-dependency
and complex traversal patterns, the scheduling for n-body codes is extremely hard.

In this chapter, we demonstrate a hybrid, inspector-executor based dynamic scheduling
framework that allows programmers to efficiently implement tree traversal algorithms on
CPU-GPU platform. We begin with the formulation of the scheduling problem and its
NP-hardness provement. Then we explain our design in detail, including optimization for
different traversal patterns. We also include some key points in our implementation and a

full evaluation.

3.1 Traversal Scheduling

As explained in the introduction, efficiently mapping tree traversals on GPUs requires
carefully scheduling those traversals so that traversals that are grouped together into the
same warp are as similar as possible. This ensures that lockstep traversal is able to exploit

substantial commonality in the memory accesses performed by traversals while not overly

15

expanding the amount of work done by a warp. This section shows that the general schedul-
ing problem, ScHep is NP-hard, necessitating the use of heuristics. It then summarizes prior

scheduling and sorting heuristics for tree traversal algorithms.

3.1.1 Scuep is NP-hard

The general scheduling problem for tree traversals, which we call ScHEp, is simple to
define. Given a point p that represents a traversal, define #(p) as the set of nodes visited
during p’s traversal of the tree. For two points, p; and p;, define the difference between the
traversals, 6(p;, p;) as t(p;) U t(p;) — (t(p;) N 1(pj))—in other words, the nodes that exist in
one traversal but not in the other. Note that these are the nodes that result in non-convergent
computation, as only one point needs to visit them.

ScHeD is the following problem. Given a set of points, {p1, ..., p,}, produce a sequence
s of those points that minimizes:

n—

A= 16Csi, s

1
i=1

In other words, ScHED minimizes the total differences between consecutive points in the

sequence—it produces a sorted sequence.
Theorem 1 ScHeD is NP-hard.

Proof To show that Scuep is NP-hard, we reduce from Hamiltonian Path: given an undi-
rected graph G = (V, E), find a path that visits each vertex once. We show how to design a
tree traversal problem based on G where solving ScHeD for that problem solves the Hamil-
tonian Path problem.

First, build a tree with |E| + 2 leaves. Let the first leaf in the tree be x and the last leaf
in the tree be y. Label each of the other |E| leaves in the tree according to the edges in E;
call these edge-based leaf nodes. Then, attach subtrees with 4|E| nodes to x and y. For
each vertex v; € V, we specify a point p; with a traversal defined as follows: p; visits all

of the nodes in the tree except the subtrees rooted at x and y and any edge-based leaf node

16

1 void recurse (node root, point pt) {
if (!can_correlate(root, pt))
return;
if (is_leaf (root))
update_correlation (root, pt);
else {
recurse (root.left, pt);
recurse (root.right, pt);

O 00 N N W R W

}

—_
e
—

Fig. 3.1.: Point correlation

corresponding to an edge not incident on v. The only leaf nodes visited by p; correspond to
the edges incident on v;, E(v;). Then define two additional points p, and p,, which truncate
at x and y, respectively, and otherwise visit all of the other nodes in the tree except the
edge-based leaf nodes.

Note that for any two vertices v; and v;, [0(p;, pj)| = |[E()I + [E(W))| = 2|E(v;) N E(v;)|.
Note that the last term is zero unless v; and v; share an edge. Also, for all vertices v;,
6(p, Pl = 16(py, Pl = 41E| + [E(v)].

Now we solve ScHED across all the points—those corresponding to the vertices of G as
well as p, and p,. Note, first, that minimizing A requires that p, and p, be scheduled first
or last—otherwise their 4|E| difference penalty is accounted for twice. Each other point
appears in two pairs in the scheduled sequence. Every edge therefore is accounted for four
times—twice for each vertex it is incident on—unless it is incident on both vertices of a

pair. We thus have that A is:

8|E| +4|E| - 20

Where Q is the number of point pairs in the sequence produced by ScHep that share a leaf
node—in other words, the number of vertex pairs that share an edge. A is minimized when
Q is maximized. In other words, A is minimized when all vertex pairs in the sequence share

an edge—a Hamiltonian Path. Hence, if a Hamiltonian Path exists, Scuep will find it. W

17

Note that ScHED merely refers to an arbitrary set of tree traversals. However, we are not
interested in arbitrary tree traversals—we are interested in tree traversals that are generated
from recursive tree traversal algorithms, as Point Correlation algorithm in Figure 3.1. It is
straightforward to construct such an algorithm for a given graph. When building the tree for
the graph, color each of the nodes that should be visited by all of the points white, all of the
nodes visited only by p, red, all of the nodes visited only by p, green, and all of the other
nodes blue. It is clear that the can_correlate predicate in Figure 3.1 can be modified to
ensure that the points visit exactly the nodes they are supposed to: if a node is white, then
can_correlate is always true; if a node is red or green, can_correlate is true only
if the point is p, or p,, respectively; if a node is blue, can_correlate looks up whether
the graph vertex associated with the point is incident on the edge associated with the node.
This modified recursive algorithm, when presented with a set of points derived from the
vertices of the graph in question, and a tree built as specified above, produces exactly the

set of traversals needed for ScHep to find a Hamiltonian path if one exists.

3.1.2 Prior sorting heuristics

Because Scuep is NP-hard, we must instead turn to heuristics to schedule traversals.
The typical approach for tree-traversal applications is to use ad hoc, application-specific
sorting heuristics, based on a programmer’s understanding of the behavior of the tree-
traversal algorithm. As a result, there have been several strategies proposed for specific
traversal algorithms. For Barnes-Hut alone, researchers have proposed sorting using space-
filling curves [26], Z-curves [27], orthogonal bisection [28], or the structure of the Barnes-
Hut tree itself [29]. For ray tracers, researchers have suggested various ray-reorganization
techniques [30-34]

Rather than devising new sorting strategies for each new traversal algorithm, several re-
searchers have looked at using the past behavior of computations to predict their future tree
accesses, and hence dynamically schedule them with minimal application-specific knowl-

edge [21-24]. Most directly relevant, as they target the same types of algorithms as this

18

paper, is Jo and Kulkarni’s traversal splicing work [23,24]. Traversal splicing operates
by tracking each traversal’s behavior during execution. Each traversal is partially executed
until it either truncates its execution at a node in the tree, or reaches some pre-specified
maximum depth in the tree. Traversals that are truncated at the same node in the tree (in-
cluding those that make it to the pre-specified maximum depth) are considered similar, and
a new execution order is constructed based on this information. Then all of the traver-
sals are again partially executed until they truncate again or reach another pre-determined
stopping point, and the process repeats.

Traversal splicing is based on the insight that traversals that truncate at the same part of
the tree are behaving similarly, and hence are likely to behave similarly in the future. Un-
fortunately, traversal splicing requires very careful bookkeeping, monitoring of traversals,
sorting, and interleaving the execution of the traversals with the highly irregular scheduling
process. As aresult, traversal splicing incurs noticeable runtime overhead [23]', and is very
ill-suited to execution on GPUs.

Hence, we are left with a dilemma: known scheduling approaches are either application-
specific, or require highly-irregular computation that is poorly matched to GPUs’ SIMT
execution model. In the next section, we present a novel hybrid scheduling approach that
splits the tasks of scheduling and execution, and hence is substantially simpler than prior
dynamic scheduling approaches, incurs less runtime overhead, and is well-suited to map-

ping to GPUs.

3.2 Design

This section describes our hybrid CPU-GPU scheduling strategy, a novel scheduling
and execution technique for tree traversal algorithms that is both general and automatic. We
do not rely on any application-specific or semantic knowledge. Instead, our technique uses
two GPU kernels: one that runs a portion of the traversal code on the GPU while inspecting

the behavior of individual traversals. The CPU then uses this information to dynamically

'Though this overhead is often mitigated by gains in locality.

19

reorder the traversals so that when the second kernel is called, threads grouped into warps
perform similar work, improving SIMT efficiency. This strategy is, essentially, an instance
of the inspector-executor model [35], where the initial GPU kernel acts as the inspector, the
CPU is used to perform the re-scheduling, and the second GPU kernel acts as the executor.

The key phases of the technique are:

1. Profiling. A carefully constructed GPU kernel runs a small portion of every traversal
in the algorithm to collect behavioral information that is used during scheduling.

(Section 3.2.1).

2. Scheduling. The CPU analyzes the profiling information and groups threads into
different buckets. Threads in one bucket are more likely to access the same branches

of the tree and hence exhibit better locality. (Section 3.2.2).

3. Execution. This schedule is then used to execute a second GPU pass that performs

the rest of the traversal, using an optimized kernel (Section 3.2.3).

In Section 3.2.4, we argue that this scheduling strategy is sound.

3.2.1 Profiling

In the profiling stage, we run a GPU kernel that performs each traversal only in the
top half of the tree. Because the top portion of the tree is small relative to the rest of the
tree, this profiling step accounts for a very small proportion of the overall computation, and
hence even if the points are poorly scheduled, the overall impact on performance is small.

Figure 3.2(a) shows the top portion for a binary tree, with nodes indexed in heap order.
In the following sections, we call this top portion the fop-tree. Figure 3.2(b) shows the
traversals of eight points using the algorithm shown in Figure 1. The vertical axis shows
different input points that would traverse the tree, while the horizontal axis records which
nodes a point may visit. Each circle in the diagram represents a computation step during

execution. Note that each point does not visit all the nodes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Points

I O m m O O @ >
d
Y
i

20

(a) top tree

Nodes
1 2 4 8 9 5 10 11 3 6 12 13 7 14 15

(b) point traversal

Fig. 3.2.: Tree traversal algorithm

void profiling(node root, point pt) {

stack stk = new stack();
stk.push (root) ;

while (!stk.is_empty()) {

root = stk.pop();

if (!can_correlate(root, pt))

continue;
// update information here
if (is_leaf (root)) {

matrix[pt.id] [root.id] = root.id;
} else {

stk.push (root.right);
stk.push (root.left);

Fig. 3.3.: Profiling for point correlation

During profiling, the traversal of each thread is traced and recorded into a scheduling

matrix. The scheduling matrix has one row for each point, and one column for each node

21

Table 3.1.: Scheduling matrix for point correlation

112489 |5|10 |11 |36 |12 13 |7 | 14 | 15
All1]2|4]|8)| 9 316 7114 | 15
B|1|2]|4 5/110 |11 |3 |6 |12 | 13 | 7
cC|1/|2]4]|8]| 9 316|112 |13 |7
D|1|2|4 5|110 |11 (36 (12|13 |7 | 14 | 15
E|1|2]4]|8]| 9 316 7114 | 15
F|1|2|4 5110 | 11 | 3
G|1|2|4/8|]9 |5|]1011 3
H 1|2 31612 13 |7 | 14 | 15
Result ACEG BDFG BCDH ADEH

in the top tree. When a point visits a node, the appropriate cell in the table is marked.
Figure 3.3 shows how the point correlation code is augmented with this profiling data.
Note that the stack manipulation in lieu of recursive calls to visit different portions of the
tree is due to the autoropes transformation (Section 2.3). Figure 3.1 shows the resulting
scheduling matrix for the set of traversals in Figure 3.2(b). Note, we only need the leaf
node columns, which are marked in gray, for scheduling. This matrix is transferred back to
the CPU for use during scheduling, as described in the next section. The profiling overhead
is discussed in Section 3.4.

Guided traversals In some algorithms, such as nearest neighbor, the particular order a
point visits nodes is governed by point-specific data. For example, based on characteristics
of a point, one point might visit the tree root’s left child before its right, while another
might visit the right child before the left. Following Goldfarb et al.’s terminology, we call
algorithms that have this property guided traversals, in contrast to algorithms like point
correlation that are unguided [12]. Note that whether a traversal is guided or not can be
determined by a simple static analysis that determines whether the order of recursive calls
is control dependent on any point-specific data.

Because the traversal order of each point in a guided traversal is different than in an
unguided traversal, our profiling code must also encode that traversal order. Figure 3.4
shows that code. Note, first, that the particular order of tree traversal is determined by the
predicate closer_to_left (line 13), making the traversal guided. Second, the structure

of the scheduling matrix is now different. Rather than each column representing a particular

22

1 void profiling (node root, point pt) ({

2 stack stk = new stack();

3 stk.push (root) ;

4 int index = 0;

5 while (!stk.is_empty()) {

6 root = stk.pop();

7 if (!can_correlate (root, pt))
8 continue;

9 // update information here

10 if (is_leaf (root)) {

11 matrix([pt.id] [index++] = root.id;
12 } else {

13 if (closer_to_left (root, pt)) {
14 stk.push (root.right);

15 stk.push (root.left);

16 } else {

17 stk.push (root.left);

18 stk.push (root.right);

19 }

20 }

21 }

22 }

Fig. 3.4.: Profiling for nearest neighbor

node in the tree, column i represents the ith node visited by a particular point. Line 11

shows how the particular traversal order of a given point is encoded into the matrix.

Profiling overhead The profiling step is essentially partial execution of the whole com-
putation task but truncated at certain depth. The deeper this truncation depth, the more
information is collected during profiling. However, as we explain in Section 3.2.3, the
computation performed during profiling is re-computed during execution, and hence doing
more work during profiling can result in wasted work. Balancing the effects of more pro-
filing information with more profiling overhead is a classic problem in any profile-guided
optimization. In our case, we choose a profiling depth of around one third of the tree. Be-
cause the bottom half of the tree contains the bulk of the tree nodes, our profiling overheads
are very low. Moreover, we also adopts CUDA streams to overlap the profiling execution
and data transmission. Especially, when the schedule matrix is oversized, splitting the input

and multi-streaming can perfectly achieve good performance.

23

3.2.2 Scheduling
Scheduling unguided traversals

The profiling matrices we generate in the profiling step provide information that lets us
reason about the behavior of the points. In Table 3.1, we see that points ACEG all visit the
leaf nodes @ and (9 of the top tree. Since all of these points reached the same leaf nodes
of the top tree, it is more likely that they will behave similarly as they traverse the rest of
the tree. Similarly points BDFG all visit nodes (10) and @, so we expect them to behave
similarly in the rest of the tree. (Note that point G shows up in both groups; we conclude
that it behaves somewhat similarly to both groups of points).

We can scan the columns of the scheduling matrix to construct scheduling buckets. The
last row of Table 3.1 shows the resulting buckets. Note that even though the top tree has
eight leaf nodes, there are only four buckets. This is because sibling leaf nodes have the
same information in our example.

These buckets represent points that have some similarity of behavior. Scheduling ac-
cording to this information can greatly improve locality. However, points in the same
bucket are still unoptimized. Since each bucket may contains millions of points, the diver-
gence in a single bucket can still be considerable. Indeed, intra-bucket scheduling can be
even more important than inter-bucket grouping. We hence perform intra-bucket schedul-
ing while building each bucket.

At a high level, the idea behind intra-bucket scheduling is simple. In the result row of
Table 3.1, A and E appear in two buckets together, while they only appear in one bucket
with D and H. Hence, in the bucket where all four points appear, , we would like to
execute A and E consecutively, and then D and H. In other words, nodes that appear in
several buckets together should be considered more similar, and hence scheduled together.
Unfortunately, building the buckets and then searching for such similarity is very expensive.
We thus use an intra-bucket scheduling algorithm that orders the points on the fly.
Intra-bucket scheduling Rather than treating the construction of each bucket as a separate

process, we consider these steps a continuous process: we use the outcome of building one

24

sandpile: ABCDEFGH ACEGBDFH GBDFACEH BDCHGFAE DHAEBCGF
taken: —>ACEG —>GBDF —»BDCH —>DHAE
untaken: L-»BDFH L»ACEH L» GFAE L»BCGF
Fig. 3.5.: Intra-bucket scheduling example

1 void schedule () {

2 vector<int> xsandpile = {A, B, ..., H};

3 foreach (Node n in nodes) {

4 vector<int> xtaken, =xuntaken;

5 for (i = 0; i < npoints; 1 ++) {

6 point_id = sandpile[i].id;

7 if (matrix[n->id] [point_1id])

8 taken->push_b