
ARCHITECTING QUERY COMPILERS FOR DIVERSE WORKLOADS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ruby Y. Tahboub

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Tiark Rompf, Chair

Department of Computer Science

Sunil Prabhakar

Department of Computer Science

Milind Kulkarni

School of Electrical and Computer Engineering

Christopher W. Clifton

Department of Computer Science

Approved by:

Voicu Popescu

Head of the Departmental Graduate Program

iii

To my daughter Yasmeen

iv

ACKNOWLEDGMENTS

It gives me great pleasure to express my gratitude to a large number of people

who contributed to my success over the years of my Ph.D. journey.

I would like to express my gratitude to my advisor Prof. Tiark Rompf for intro-

ducing me to his exciting research area, helping me refining my work and becoming

a better scholar. I enjoyed working with Tiark, and will always be thankful for his

insights and advice. I am also grateful to my former advisor Prof. Walid Aref who

helped me in my early Ph.D. years and taught me to appreciate good systems re-

search. I specially like to thank Grégory Essertel for our successful collaborations.

Special thanks to my colleagues in our research group: Fei Wang, Xilun Wu, James

Decker and Guannan Wei.

I would like to extend my sincere thanks to my advisory and examining committee

Prof. Chris Clifton, Prof. Milind Kulkarni, and Prof. Sunil Prabhakar. Many thanks

are due to all of the Computer Science staff who work tirelessly to support our daily

operations. My gratitude and appreciation to Dan Trinkle and his technical support

team, Tammy Muthing and the business office team, Pam Graf for giving us the best

work environment, and Pat Morgan for planning great events.

My sincere gratitude goes to my parents who raised me to value education and

never quit. I am thankful for my supportive husband, Mohammad Abu Khater.

Finally, most thanks go to my (almost two years) daughter Yasmeen who teaches me

something new every single day!

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.1.1 Spatial Workloads . 3

1.1.2 Graph Workloads . 3

1.2 Overview . 5

1.2.1 Revisiting How to Architect Query Compilers 5

1.2.2 Supporting Compilation in Spatial Query Engines 6

1.2.3 Compiling Graph Queries . 7

1.3 Contributions . 7

1.3.1 Publications . 10

1.4 Related Work . 11

1.5 Hypothesis . 15

2 REVISITING HOW TO ARCHITECT A QUERY COMPILER 16

2.1 Futamura Projections . 16

2.2 Structuring Query Evaluators . 21

2.2.1 The Iterator (Volcano) Model 21

2.2.2 The Data-centric (Produce/Consume) Model 23

2.2.3 Data-centric Evaluation with Callbacks 23

2.3 Building Optimizing Compilers . 24

2.3.1 Row or Column Layout . 29

2.3.2 Data Structure Abstractions . 31

vi

Page

2.3.3 Data Partitioning and Indexing 32

2.3.4 Code Layout and Code Motion 34

2.3.5 Parallelism . 35

2.3.6 Comparison with a Multi-Pass Compiler 38

2.4 Experimental Evaluation . 40

2.4.1 TPC-H Compliant Runtime . 42

2.4.2 Index Optimizations . 45

2.4.3 Parallelism . 49

2.4.4 Code generation and Compilation 50

2.4.5 Productivity Evaluation . 50

2.5 Discussion . 52

2.6 Conclusions . 54

3 ARCHITECTING A QUERY COMPILER FOR SPATIAL WORKLOADS . 55

3.1 Challenges of Compiling Spatial Workloads 57

3.2 Architecting a Spatial Query Compiler 60

3.2.1 LB2-Spatial Overview . 60

3.2.2 Staging Spatial Predicates . 63

3.2.3 Data Loading and Indexing Structures 64

3.2.4 Parallelism . 67

3.2.5 Spatial Applications . 69

3.3 Evaluation . 71

3.3.1 Single-core Spatial Join . 72

3.3.2 Parallel Spatial Join Queries . 77

3.3.3 Memory Consumption . 79

3.3.4 Productivity Evaluation . 81

3.4 Conclusions . 81

4 COMPILING GRAPH QUERIES . 83

4.0.1 Background: Datalog and Recursive Queries 85

vii

Page

4.1 LB2 + Graph Queries . 86

4.1.1 Graph Data Loading . 88

4.1.2 Graph Processing . 88

4.1.3 Graph Data Structures . 89

4.1.4 Recursive Queries . 91

4.2 Evaluation . 92

4.2.1 Single-core Graph Pattern and Analytics Queries 93

4.2.2 Parallel Graph pattern and Analytics Queries 96

4.3 Conclusions . 100

5 SUMMARY . 101

REFERENCES . 102

VITA . 111

viii

LIST OF TABLES

Table Page

2.1 Lines of code needed to add various optimization to LB2. 52

3.1 Spatial datasets that are used in evaluating LB2-Spatial. 73

3.2 Queries that are used in evaluating LB2-Spatial. 73

3.3 Total memory consumed (in GB) by LB2, Simba and GeoSpark while
performing various spatial join operations. 81

3.4 Lines of code needed to extend LB2 with spatial processing. 82

4.1 Graph datasets that are used in evaluating LB2-Graph. 93

4.2 Runtime of single-core triangle count (in seconds) for LB2 (using flat ad-
jacency list and trie), SNAP and EmptyHeaded. 93

4.3 The absolute runtime of single-core PageRank (in seconds) for LB2 (using
flat adjacency structure), SNAP, Ligra and EmptyHeaded. 95

ix

LIST OF FIGURES

Figure Page

1.1 Illustration of (1) query interpreter (2) query compilers (a) single-pass
compiler (b) many-pass compiler. 2

1.2 The evolution of query compilation. 12

2.1 (a) Query interpreter (b) applying the first Futamura projection on a query
interpreter (c) the LB2 realization of the first Futamura projection. 17

2.2 Query Evaluation models. 22

2.3 Specializing select query (a) in Volcano (b) and Data-centric (c) 25

2.4 Hash join implementation in (a) Data-centric (b) Data-centric with call-
backs model (LB2). 25

2.5 LB2 Query Evaluator (data-centric with callbacks). 28

2.6 From a query plan to optimized C code including data structures special-
ization and code motion. 36

2.7 The absolute runtime in milliseconds (ms) for DBLAB, LB2 (with DBLAB’s
plans), HyPer, LB2 (with HyPer’s join ordering plans) in TPC-H SF10.
Only TPC-H compliant optimizations are used. 43

2.8 The absolute runtime in milliseconds (ms) after enabling non-TPC-H-
compliant indexing, date indexing and string dictionary in SF10 using
DBLAB plans. 46

2.9 Overhead in loading time introduced by index creation, date indexing
and string dictionary on DBLAB and LB2 in SF10 using DBLAB plans
(slowdown relative to LB2-compliant). 47

2.10 The absolute runtime in milliseconds (ms) for parallel scaling up LB2 and
HyPer in SF10 on 2, 4, 8 and 16 cores. 49

2.11 Code generation and compilation for LB2 and DBLAB. 51

3.1 Overview of a spatial extension. 56

3.2 Extending LB2 with spatial processing. 60

3.3 (a) Rectangle range join query in SQL and QPlan (b) the implementation
of NestedLoopRangeJoinOp in LB2-Spatial. 62

x

Figure Page

3.4 Compiling spatial predicates (a) staging ST_Contains predicate using Rep
type constructor (b) application code that uses ST_Contains (c) generated
code in Scala. 64

3.5 Specializing k-d tree index in LB2 (a) data in column-layout (b)-(c) stan-
dard k-d tree implementation using pointers and (d) using a flat array. . . 65

3.6 The implementation of index range join operator. 66

3.7 (a)-(b) Parallel operator class and parallel pipeline wrapper (c) the in-
teractions between operators within a parallel query execution pipeline
(adapted from [31]). 68

3.8 Compiling spatial applications in LB2-Spatial. 70

3.9 The absolute runtime for LB2, Simba and PostGIS in distance join, range
join and kNN join. 74

3.10 The absolute runtime for LB2 and handwritten code in distance join and
kNN join using Rtree and grid. 76

3.11 The selectivity ratio of range predicate. 77

3.12 The scalability of LB2-Spatial range query with increasing the index size
in a single-core. 78

3.13 The absolute runtime in seconds (s) for parallel scaling up LB2-Spatial,
GeoSpark, and Simba in distance join on 2, 4, 8, 16 and 24 cores for Tweets
dataset. 79

3.14 The absolute runtime in seconds (s) for parallel scaling up LB2-Spatial,
GeoSpark, and Simba in range join on 2, 4, 8, 16 and 24 cores for Tweets
dataset. 80

4.1 Extending LB2 with graph processing. 86

4.2 Graph front-end in LB2 and graph query evaluation pipelines. 87

4.3 PageRank operator as (a) graph-only and (b) graph + SQL. 91

4.4 Graph structures in LB2. 91

4.5 Runtime of single-core triangle counting and PageRank using LB2 with
adjacency list and flat array in LiveJournal1 and Orkut datasets. 96

4.6 The absolute runtime in seconds (s) for parallel scaling up LB2, SNAP,
Ligra and EmptyHeaded in PageRank on 2, 4, 8, 16 and 24 cores for
LiveJournal1 and Orkut datasets. 97

xi

4.7 The absolute runtime in seconds (s) for parallel scaling up LB2, SNAP, and
EmptyHeaded in triangle count on 2, 4, 8, 16 and 24 cores for LiveJournal1
and Orkut datasets. 99

xii

ABSTRACT

Tahboub, Ruby Y. PhD, Purdue University, May 2019. Architecting Query Compilers
for Diverse Workloads . Major Professor: Tiark Rompf.

To leverage modern hardware platforms to their fullest, more and more database

systems embrace compilation of query plans to native code. In the research commu-

nity, there is an ongoing debate about the best way to architect such query compilers.

This is perceived to be a difficult task, requiring techniques fundamentally different

from traditional interpreted query execution. In this dissertation, we contribute to

this discussion by drawing attention to an old but underappreciated idea known as

Futamura projections, which fundamentally link interpreters and compilers. Guided

by this idea, we demonstrate that efficient query compilation can actually be very

simple, using techniques that are no more difficult than writing a query interpreter

in a high-level language. We first develop LB2: a high-level query compiler imple-

mented in this style that is competitive with the best compiled query engines both in

sequential and parallel execution on the standard TPC-H benchmark.

Query engines process a variety of data types and structures including text, spatial,

graphs, etc. Several spatial and graph engines are implemented as extensions to

relational query engines to leverage optimized memory, storage, and evaluation. Still,

the performance of these extensions is often stymied by the interpretive nature of

the underlying data management, generic data structures, and the need to execute

domain-specific external libraries. On that basis, compiling spatial and graph queries

to native code is a desirable avenue to mitigate existing limitations and improve

performance. To support compiling spatial queries, we extend the LB2 main-memory

query compiler with spatial predicates, indexing structures, and spatial operators.

To support compiling graph queries, we extend LB2 with graph data structures and

xiii

operators. The spatial extension matches the performance of hand-written code and

outperforms relational query engines and map-reduce extensions. Similarly, the graph

extension matches, and sometimes outperforms, low-level graph engines.

1

1. INTRODUCTION

The era of modern hardware and big data analytics has changed the dynamics in

which data is processed and managed. Main-memory platforms have successfully

eliminated slow disk access and exposed compute performance as a new bottleneck,

aggravated by the decline of Moore’s law. In particular when it comes to relational

database systems, the “Volcano” iterator evaluation model [1], which is the prevalent

design of query engines due to its simplicity and expressiveness, falls short under

these new dynamics due to its excessive use of function calls to dispatch individual

records of data from producers to consumers in a query plan. Query compilation,

i.e., generating specialized low-level code for a given query, is emerging as a necessity

for data processing systems to eliminate the interpretive overheads of existing designs

and to keep up with new environmental constraints.

1.1 Problem Statement

A typical relational database management system (RDBMS) processes incoming

queries in multiple stages (Figure 1.1.1): In the front-end, a parser translates a given

SQL query into a logical plan. The query optimizer rewrites this plan into a more

efficient form based on a cost model and emits a physical plan ready for evaluation.

The back-end is usually an interpreter that executes the optimized plan over the

stored data, operator by operator, producing record after record of the computed

query result.

Taking a slightly broader view, a database system fits – almost literally – the

textbook description of a compiler: parser, front-end, optimizer, and back-end. The

one crucial difference is that the last step, generation of machine code, is typically

missing in a traditional RDBMS.

2

Traditional
Query Engine

(1)

Query
Compiler(2)

compile

? ? ?

Logical
plan Interpreter

LLVM IR
GCC IR ASM Result(a) Single-pass

(b) Many-pass

HyPer

DBLAB

LB2Staging
Evaluation

DB optimizations

IR 3

IR 1

IR 2

IR ...

C

Physical
plan

Physical
plan

Logical
plan

SQL

SQL

Fig. 1.1. Illustration of (1) query interpreter (2) query compilers (a) single-
pass compiler (b) many-pass compiler.

For the longest time, this was a sensible choice: disk I/O was the main performance

bottleneck. Interpretation of query plans provided important portability benefits,

and thus, engineering low-level code generation was not perceived to be worth the

effort [2]. But the circumstances have changed in recent years: with large main

memories and storage architectures like Non-volatile Memory (NVM) on the one

hand, and the demand for computationally more intensive analytics, on the other

hand, query processing is becoming increasingly CPU-bound. As a consequence,

query engines need to embrace full compilation to remain competitive, and therefore,

compiling query execution plans (QEPs) to native code, although in principle an old

idea, is seeing a renaissance in commercial systems (e.g., Impala [3], Hekaton [4], Spark

SQL [5], etc.), as well as in academic research [6–8]. Given this growing attention,

the database community has engaged in an ongoing discourse about how to architect

such query compilers [6, 7, 9]. This task is generally perceived as hard and often

thought to require fundamentally different techniques than traditional interpreted

query execution. The most recent contribution to this discourse from SIGMOD’16 [9]

states that “it is fair to say that creating a query compiler that produces highly

optimized code is a formidable challenge,” and that the “state of the art in query

compiler construction is lagging behind that in the compilers field.”

3

1.1.1 Spatial Workloads

Modern location-based applications rely extensively on fast spatial processing.

Large parts of spatial workloads runtime – whether evaluated as an extension to a

relational or clustered back-end – is spent on processing spatial data types, evalu-

ating spatial predicates, and traversing spatial indexing structures. The high-level

implementation of these spatial structures increases the interpretive overhead of pro-

cessing spatial workloads, which also increases latency and lowers throughput. Hence,

to improve the performance of spatial applications, spatial computing systems must

specialize indexing structures, and embrace runtime compilation to generate native

code as in state-of-the-art relational engines.

The core of realizing efficient spatial computing system lies in optimizing spatial

data structures and predicates evaluation, (i.e., minimizing the per-record access and

processing time). Spatial data types are in the two-dimensional space or higher.

Thus, spatial extensions use spatial libraries for predicate computations and build

spatial indexing structures to facilitate data storage and access. However, the code

of external libraries is opaque to the spatial back-end and incurs runtime overhead

in expensive function calls. Similarly, spatial indexes are implemented in high-level

form using the in-data management structures that unify various types of structures

behind a common interface, e.g., SP-GiST [10] in PostgreSQL/PostGIS. Overall, the

interpretive overhead of spatial processing increases the latency of spatial workloads

and lowers the overall system throughput.

1.1.2 Graph Workloads

It is often desirable for graph and relational data to co-exist and be processed to-

gether, which naturally suggests representing graphs as relations on top of an existing

RDBMS. The unique advantage of such an approach is that the core data manage-

ment operations are all provided by the RDBMS and a graph extension would only

need to implement front-end algorithms and functionality. However, the execution

4

pattern of graph workloads is often dominated by long-running loops over the graph

structure where each iteration performs computations on the adjacency of some ver-

tices (e.g., set intersection during a triangle counting operation). The performance

of relational graph extensions is therefore often stymied by the interpretive nature of

typical relational engines and the lack of specialized data structures for adjacency re-

lations. Instead, internal RDBMS data structures are often implemented in a generic

form to unify various types of data layouts behind a common interface.

To tackle the challenges of relational graph extensions, several stand-alone graph

engines have been developed (e.g., high-level Neo4j [11], low-level Snap-Ringo [12])

that process graphs in native adjacency structures. While graph processing in stand-

alone systems is more performant and also often more expressive in describing graph

operations (e.g., shortest paths, centrality, etc.) than relational queries, there exists a

high development cost in terms of core data management and loss of interoperability

with front-end and back-end systems that integrate with RDBMS.

Realizing efficient relational graph processing requires combining relational evalu-

ation with specialized graph structures and operations, which is an uphill battle due

to the difficulty of modifying the internals of a mature RDBMS (typically several

million lines of code). Besides, the key performance challenge in RDBMS is the in-

terpretive overhead associated with processing data in high-level form (e.g., generic

libraries for hash maps) rather than generating optimized low-level code (as precisely

described in Neumann’s work [6]). Even supporting a minimal operational compiled

path for graph queries entails writing thousands of lines of low-level code (e.g., pro-

grammatic LLVM API) that permeates large parts of the query engine code. En

masse, the complexity of extending RDBMS with graph processing and compilation

does not add up linearly; in fact, it multiplies!

This dissertation emphasizes that i) building highly efficient query compilers can

be simple and elegant. Neither low-level coding nor the added complexity of multiple

compiler passes are necessary. ii) The underlying idea of constructing simple but

5

highly efficient query compilers not only applies to purely relational queries but carries

over to diverse workloads including spatial and graph queries.

1.2 Overview

1.2.1 Revisiting How to Architect Query Compilers

Large-scale data processing owes much of its success to declarative query lan-

guages. SQL and its cousins enable succinct statements of intent, at an abstraction

level that allows pervasive and automatic optimizations of query terms before touching

any data. Thus, data processing is fundamentally a language and compiler problem.

Query compilation itself is not a new idea. Historically, the very first relational

database, IBM’s System R [2], was initially designed around a form of templated code

generation. However, before the first commercial release, the code generator was re-

placed by interpreted execution [13], since at the time, the benefits of code generation

were outweighed by its complexity and issues such as code portability, cost of main-

tenance, and prevailing I/O intensive workloads. Indeed, compiling code for query

evaluation pipelines (QEPs) is a non-trivial task. First, code generation mechanisms

need to consider database-level optimizations, compiler-level optimizations and han-

dling non-traditional data types. Second, code generators need to be extensible and

expressive. Third, the generated code should be sufficiently portable, i.e., be easily

mapped to a variety of target platforms.

Most emerging query compilers are either simplistic template expanders or interact

with low-level frameworks like LLVM [14] that provides an even lower-level entry point

into an existing compiler toolchain. But how do we get from physical query plans to

this level of executable code? This is, in fact, the key architectural question. HyPer [6]

uses the programmatic LLVM API and achieves excellent performance, at the expense

of a rather low-level implementation that permeates large parts of the engine code.

LegoBase [7] and DBLAB [9] are engines implemented in a high-level language Scala

that generates efficient C code. The latter two systems add significant complexity in

6

the form of multiple internal languages and explicit transformation passes, which the

authors of DBLAB [9] claim are necessary for optimal performance.

In Chapter 2, we revisit how query compilers are being architected and demon-

strate that neither low-level coding nor the added complexity of multiple compiler

passes is necessary. We present a principled approach to derive query compilers from

query interpreters and show that these compilers can generate excellent code in a

single pass. We present LB2, a new query compiler developed in this style that is

competitive with HyPer and DBLAB.

1.2.2 Supporting Compilation in Spatial Query Engines

A typical spatial query combines two aspects: data operators, e.g., scan, filter,

join, etc.; and spatial predicates, e.g., intersects, contains, etc. While the first part is

generic and forms the backbone of any data management system, supporting opera-

tions on spatial (or geometric) types requires specialized libraries and efficient data

access methods. Spatial data are by definition in 2D, 3D, or a higher-dimensional

space. Hence, sorting and hashing techniques to implement join operators, for in-

stance, are not applicable. As a result, spatial query processing relies extensively on

multi-dimensional indexes to run queries efficiently.

Most spatial query engines are implemented as an extension to an RDBMS, e.g.,

PostGIS [15], or a map-reduce cluster computing framework, e.g., GeoSpark [16] and

Simba [17]. The spatial predicates are often supported using an external library (e.g.,

JTS [18] or Geos [19]) and the query engine is extended with spatial data types and

indexes. Hence, a competitive query evaluation in the underlying database engine is

crucial for the performance of spatial queries.

In Chapter 3, we discuss compiling spatial queries into low-level code. The keys

challenges are spatial query evaluation performs expensive spatial predicates and relies

on efficient traversal of indexing structures. The key idea to address these challenges is

to facilitate building optimized data structures using programmatic specialization, the

7

same technique LB2 already uses for generating efficient code for relational queries.

In particular, we extend LB2 with spatial predicates, spatial indexing structures, and

spatial operators.

1.2.3 Compiling Graph Queries

The increasing demand for graph query processing has prompted the addition

of support for graph workloads on top of standard relational database management

systems (RDBMS). Although this appears like a good idea — after all, graphs are just

relations — performance is typically suboptimal since graph workloads are naturally

iterative and rely extensively on efficient traversal of adjacency structures that are

not typically implemented in RDBMS. Adding such specialized adjacency structures is

not at all straightforward, due to the complexity of typical RDBMS implementations.

The iterative nature of graph queries also practically requires a form of runtime

compilation and native code generation which adds another dimension of complexity

to the RDBMS implementation, and any potential extensions.

In Chapter 4 we demonstrate how the idea of the first Futamura projection, which

links interpreted query engines and compilers through specialization, can be applied

to compile graph workloads in an efficient way that simplifies the construction of rela-

tional engines that also support graph workloads. We extend the LB2 main-memory

query compiler with graph adjacency structures and operators. We implement a sub-

set of the Datalog logical query language evaluation to enable processing graph and

recursive queries efficiently.

1.3 Contributions

The key research contributions of this dissertation are summarized as follows:

1. In the spirit of explaining key compilers results more clearly, we draw atten-

tion to an important but not widely appreciated concept known as Futamura

projections, which fundamentally links interpreters and compilers through spe-

8

cialization. We propose to use the first Futamura projection as the guiding

principle in the design of query compilers (Chapter 2).

2. We show that viewing common query evaluator architectures (pull-based, Vol-

cano; and push-based, data-centric) through the lens of the first Futamura pro-

jection provides key insights into whether an architecture will lead to an efficient

compiler. We use these insights to propose a novel data-centric evaluator model

based on callbacks, which serves as the basis for our LB2 engine (Chapter 2).

3. We discuss the practical application of the first Futamura projection idea and

show how to derive high-level and efficient query compilers from a query in-

terpreter. We implement a range of optimizations in LB2. Among those are

row-oriented vs. column-oriented processing, data structure specialization, code

motion, parallelization, and generation of auxiliary index structures including

string dictionaries. The set of optimizations in LB2 includes all those imple-

mented in DBLAB [9], and some en plus (e.g., parallelization). But in contrast

to DBLAB, which uses up to five intermediate languages and a multitude of in-

tricate compiler passes, LB2 implements all optimizations in a single generation

pass, using nothing but high-level programming (Chapter 2).

4. We support parallelism in LB2, LB2-Spatial, and LB2-Graph using per-thread

data structures in OpenMP (Chapters 2-4).

5. We compare the performance of LB2 with HyPer and DBLAB. We show that

LB2 is the first system implemented in a high-level language that approaches

HyPer performance in a fully TPC-H compliant setting, both sequential and

on up to 16 cores. By contrast, LegoBase [7] and DBLAB [9] do not support

parallelism, and they need to resort to non-TPC-H-compliant indexing and pre-

computation to surpass HyPer on TPC-H queries. With all such optimizations

turned on, LB2 is competitive with DBLAB as well (Chapter 2).

9

6. We support spatial query compilation in LB2. Moreover, we describe staging

spatial predicates, specializing indexing structures, implementing spatial oper-

ators and compiling spatial applications (Chapter 3).

7. We support graph query compilation in LB2. We describe specializing graph

data structures and graph operators. Furthermore, we implement a subset of

the Datalog logical query language to express graph queries succinctly (Chapter

4).

8. We compare the performance of the spatial extension with handwritten code,

spatial RDBMS PostGIS [15] and a Spark spatial extension Simba [17]. We

also compare the performance of the graph extension with Snap [12] and Emp-

tyHeaded [20] graph engines (Chapter 4).

The key idea in this dissertation is the practical realization of the first Futamura

projection, which essentially states that the ability to specialize a query interpreter

to a given query is identical to a query compiler. Guided by the first Futamura

projection idea, we develop the LB2 query compiler presented in Chapter 2. LB2

is a fully compiled query engine that performs on par with, and sometimes beats

the best compiled query engines on the standard TPC-H benchmark. Specifically,

LB2 is the first query engine built in a high-level language that is competitive with

HyPer [6], both in sequential and parallel execution. LB2 is also the first single-pass

query engine that is competitive with DBLAB [9] using the full set of non-TPC-H-

compliant optimizations. In Chapters 3-4, we demonstrate that the underlying idea

of constructing simple but highly efficient query compilers not only applies to purely

relational queries but carries over to diverse workloads including spatial and graph

workloads. In Chapter 3, we extend LB2 with spatial compilation by adding spatial

data types, predicates, indexing structures and spatial operators. In Chapter 4, we

extend LB2 with graph query compilation by adding graph adjacency structures and

graph operators.

10

The LB2 query compiler (Chapter 2) was implemented by Grégory Essertel. More-

over, the trie data structure and trie-based triangle count operator (Chapter4) was

implemented by Xilun Wu.

1.3.1 Publications

The work in this dissertation is based on the following peer-reviewed published

papers and a technical report.

1. Ruby Y. Tahboub, Grégory M. Essertel, Tiark Rompf. How to Architect a

Query Compiler, Revisited, in the Proceedings of the 2018 ACM International

Conference on Management of Data ACM (SIGMOD’18).

2. Ruby Y. Tahboub, Tiark Rompf. On Supporting Compilation in Spatial

Query Engines (Vision Paper), in the Proceedings of the 2016 ACM Interna-

tional Conference on Advances in Geographic Information Systems (SIGSPA-

TIAL GIS’16).

3. Ruby Y. Tahboub, Tiark Rompf. How to Architect a Query Compiler for

Spatial Workloads, Technical Report, 2019.

4. Ruby Y. Tahboub, Xilun Wu, Grégory M. Essertel, Tiark Rompf. Towards

Compiling Graph Queries in Relational Engines, to appear in the 2019 Interna-

tional Symposium on Data Base Programming Languages (DBPL’19).

Specifically, the relational query compilation work in Chapter 2 is based on the

first publication. The spatial query compilation work in Chapter 3 is based on the

second publication and the third technical report. Lastly, the graph compilation work

in Chapter 4 is based on the fourth publication.

11

1.4 Related Work

Compiled Query Engines. The recent changes in architecture and the push

towards main memory databases have revived interest in developing efficient query

compilation methods. The timeline in Figure 1.2 shows a selection of query engines

that employ a form of query compilation since System R. The illustration broadly

classifies the compilation method used. An arrow from A to B denotes that system

B is built on or extends system A. Daytona [21] is a propriety system developed

by AT&T that generates query code which enables running large queries efficiently.

Rao et al. [22] compiled queries to Java bytecode by removing virtual functions from

iterator evaluation. HIQUE [23] performs query plan level optimizations and uses

templates to generate code. The HyPer [6] query compiler is a pivotal work that

presented the data-centric evaluation model that enables generating efficient code for

main-memory databases. Another important line of works employed the lightweight

modular staging platform (LMS) [24] to compile domain-specific languages (e.g., SQL,

machine learning, linear algebra, etc.) to low-level code using a high-level language

as in Delite [25, 26] and its DSLs OptiQL, OptiML [27] and OptiMesh. Similarly,

Legobase [7], the “SQL to C in 500 lines” compiler [28], Flare [29], a native compiler

back-end for SparkSQL, LB2-Spatial [30] and the LB2 [31] single-pass query compiler

generates code using LMS. Moreover, DBLAB [9] uses multi-pass DSL transforma-

tions, DBToaster [32] supports compiling recursive delta view queries. Tupleware [8]

compiles user-defined functions. Voodoo [33] compiles portable query plans that can

run on CPUs and GPUs. Weld [34] provides a common runtime for diverse libraries,

e.g., SQL and machine learning. Butterstein et al. [35] compiles query subexpressions

into machine code in Postgres. Similarly, the work in [36] uses program specialization

and LLVM to generate query code in Postgres. To address the issue of process-

ing raw heterogeneous data RAW [37] uses compilation to generate scanning code

based on the type of raw data it is loading, H2O [38] generates code for layout-aware

access operators and ViDa [39] compiles data structures and query operators. Tung-

12

sten in SparkSQL [5] generates Java code. Commercial examples are Hekaton [4],

DryadLINQ [40], Impala [3] and Spade [41].

year16-18151412-131108-1006-07... 99 ...76

HyperSpace

Postgres
Subexpressions

LB2

DBLAB

VidaTupleware

Impala

RAWH2O

Radish

LegobaseHekaton

HyPer

OptiML
OptiQL
OptiMesh

HIQUE

Spade

DryadLINQ

Daytona

System R

Spark
SQL

 JVM
compiled
engine

500LOC

LB2-SPATIAL

Weld

a form of templates LLVM Generative Multi-DSL transformations

DBToaster Flare

Fig. 1.2. The evolution of query compilation.

Spatial Processing Several well-known relational databases are extended with in-

dexing structures, spatial types, etc. to support spatial processing. For instance,

PostGIS [15] uses SP_GiST’s [10] R-tree, Oracle Spatial [43] adds QuadTree, Mi-

crosoft SQL [44] adds a hierarchical grid index, IBM DB2 [45] uses a grid index

where each cell is indexed using a btree. However, slow data loading remains a major

disadvantage in relational engines specially spatial datasets are typically large. AT-

GIS [46] is a single-node parallel spatial processing system that integrates parsing

and spatial query processing using the proposed associative transducers (ATs) com-

putational abstraction. MonetDB [47] (a column-store) does not support indexing

and stores spatial bounding boxes as a separate column. The performance of contain-

ment queries is comparable to the index-based implementation. However, large join

queries are suboptimal since it requires maintaining the entire dataset in memory.

GeoCouch [48] is a NoSQL spatial processing engine. A comprehensive overview on

spatial indexing structures are surveyed in [49,50].

Hadoop + Spatial Processing The Hadoop big data era witnessed several Hadoop-

based systems that extended Hadoop with spatial partitioning, indexing, operators,

13

etc. The Spatial Join with MapReduce (SJMR) first introduced in [51] did not use

an index. SpatialHadoop [52] pioneered SJMR using two indexing levels: a global

index for partitioning data across nodes and a local index for accessing data within

each node. Similarly, HadoopGIS [53] supports SJMR in addition to a specialized

pathology image analysis module. Parallel SECONDO [54] integrates Hadoop with

the SECONDO [55] database that supports spatial processing. GeoMesa [56] supports

indexing and querying of spatiotemporal data on Accumulo [57]. MD-HBase [58] ex-

tends HBase [59] (key-value store) with multidimensional indexes to support range

and kNN queries. Accumulo and HBase are based on Google’s BigTable [60]. The

main disadvantages in Hadoop-based systems are the need to load data into HDFS

and the cost of inter-job data movement.

Spark + Spatial Processing In recent years, Spark [5] computing framework

has become popular for its main-memory execution model and expressive front-end.

GeoSpark [16], SparkGIS [61], Stark [62], LocationSpark [63], Simba [17], Magellan

[64], SpatialSpark [65] and others extended Spark with spatial indexing (e.g., R-tree,

quadtree, etc.), spatial operators (e.g., distance join, kNN join, etc.) and spatial

types (e.g., points, polygons, etc.). Du et al. [66] presented a multiway spatial join

algorithm with Spark (MSJS). However, the performance of Spark extensions inherits

Spark’s internal bottlenecks in main-memory processing, the overhead of distributed

datasets (RDDs) operations, and communication through Spark’s runtime system

[29]. The spatial extension in this work overlaps the operations in these systems

without incurring runtime overhead (i.e., only generates code for evaluation).

Relational Graph Processing In SQLGraph [67] and Grail [68] graphs are stored

using relational tables. A syntactic layer translates graph queries from domain-specific

API to procedural SQL. Integrating graph processing inside RDBMS greatly benefit

relational-graph workloads. Graphite [69], SAP HANA Graph [70] and GRFusion

integrate graph processing inside RDBMS. GRFusion processes graphs natively as

views. The previous systems focus on efficient graph traversals.

14

Single-machine Shared-memory Ligra [71] and Galois [72] are shared-memory

graph frameworks where Ligra is known for switching between different implemen-

tations of operators and Galois is known for its task scheduler. Examples of semi-

external memory and SSD engines that apply techniques as the sliding window algo-

rithm to minimize disk I/O are GraphChi [73], X-Stream [74] and Grid-Graph [75].

EmptyHeaded [20] compiles graph join queries with strong theoretical guarantees.

Lux [76] leverages multi-GPUs for efficient graph processing.

Specialized and Distributed Specialized graph engines implement native graph

model with a rich set of graph operations. Titan [77] and Neo4j [11] are stand-alone

graph engines that provide rich graph queries, e.g., paths, subgraphs, etc. Ringo [78]

and GraphGen [79] convert relational graph data to a native graph representation.

On scaled-out graph analytics, Teradata Aster [80] provides a SQL front-end where

graph functions are executed using a specialized graph engine. GraphBuilder [81] is

a Hadoop-based graph construction library that extracts graphs from unstructured

data. Giraph [82] is a Hadoop-based iterative graph processing system. GraphLab [83]

is an asynchronous parallel framework where evaluation is based on a Gather-Apply-

Scatter (GAS) model and supports operates on both distributed and shared-memory

platforms. Powergraph [84] is a distributed GraphLab. Naiad [85] is a main-memory

distributed data-flow computation system that supports graph streaming algorithms.

Graph-X [86] is Spark-based graph system that provides a graph abstraction layer for

graph computations using relational operators such as join and group-by.

Graph Query Languages are surveyed in [87]. Recent examples include Oracle’s

PGQL [88], Cypher [89], and GCore [90]. Green-Marl [91] is a DSL for expressing

graphs algorithms intuitively. The Green-Marl compiler generates efficient graph op-

erations code. Examples of Datalog evaluation engines SociaLite [92] developed for

social networks analysis, LogicBlox [93], Soufflé [94] implements program specializa-

tion techniques to compile Datalog programs, BigDatalog [95] is a Spark-based dis-

tributed Datalog engine. The Datalography engine [96] is built on the top of Giraph,

15

and Myria [97] to support graph analytics. G-SPARQL [98] is a SPARQL language

for querying RDF graphs.

Graph Mining Numerous graph systems focus on graph mining tasks, e.g., Motif

Counting (MC), Frequent Subgraph Mining (FSM), etc. Arabesque [99] provides

a graph exploration model referred to as embedding. In each exploration round,

the existing embeddings are expanded. The embeddings are refined using a filter

operation. ScaleMine [100] is a parallel FSM system. DistGraph [101] is a distributed

mining system that optimizes communication costs. RStream [102] is a single machine

graph mining system that extends the GAS evaluation model. G-thinker [103] offers

an API for graph mining algorithms.

1.5 Hypothesis

Our proposed thesis hypothesis states that it is possible to efficiently compile

relational, spatial and graph queries in high-level language using a single-compiler

pass. In particular, we architect a single-pass, multi-stage generative query compiler

that can compile diverse query workloads.

16

2. REVISITING HOW TO ARCHITECT A QUERY
COMPILER

This Chapter is based on the paper How to Architect a Query Compiler, Revisited

which appeared at the Proceedings of the 2018 ACM International Conference on

Management of Data SIGMOD’18 [31].

The performance of a typical relational database management system (RDBMS)

on analytic workloads is primarily determined by two facets: the query evaluation

paradigm, e.g., iterator style [1] or data-centric [6], and characteristics of the runtime,

i.e., whether the back-end code is interpreted, compiled, or a combination. The recent

shift to large main-memory platforms has eliminated I/O as the key bottleneck, and

exposed compute performance as a new limiting factor for many workloads, which

triggered a radical rethinking of query evaluation and runtime architecture.

In this Chapter, we present the LB2 query compiler: a high-level query compiler

implemented with using the practical realization of the first Futamuara projection

that links interpreters and compilers through specialization. The LB2 query compiler

(Chapter 2) was implemented by Grégory Essertel.

2.1 Futamura Projections

In 1970, at a time when the hierarchical and network models of data [104] were

du jour, Codd’s seminal work on relational data processing appeared in CACM [105].

One year later, in 1971, Yoshihiko Futamura published his paper “Partial Evaluation

of Computation Process–An approach to a Compiler-Compiler” in the Transactions

of the Institute of Electronics and Communication Engineers of Japan [106]. The fun-

damental insight of Codd was that data could be profitably represented as high-level

relations without explicit reference to a given storage model or traversal strategy. The

17

Query Engine
(interpreter)

SQL Query
(source)

result

(staged_interpreter)

SQL Query
(source)

input
(data)

result

target

input
mix

SQL Query
(source)

input
(data)

result

SQL Engine
(interpreter)

target

input

source
source source

result = target(input) input
target = mix(interpreter, source) source

result = target(input) input
target = staged_interpreter(source) sourceresult = interpreter(source, input) source input

input
(data)
input

(a) (b) (c)

Fig. 2.1. (a) Query interpreter (b) applying the first Futamura projec-
tion on a query interpreter (c) the LB2 realization of the first Futamura
projection.

fundamental insight of Futamura was that compilers are not fundamentally different

from interpreters, and that compilation can be profitably understood as specializa-

tion of an interpreter, without explicit reference to a given hardware platform or code

generation strategy.

To understand this idea, we first need to understand the specialization of programs.

In the most basic sense, this means to take a generic function, instantiate it with a

given argument, and simplify. For example, consider the generic two-argument power

function (written in Scala) that computes x

n:
def power(x:Int, n:Int): Int =
if (n == 0) 1 else x * power(x, n - 1)

If we know the exponent value, e.g., n = 4, we can derive a specialized, residual, power

function:
def power4(x:Int): Int = x * x * x * x

This form of specialization is also known as partial evaluation [107].

Specializing Interpreters. The key idea of Futamura was to apply specializa-

tion to interpreters. Like power above, an interpreter is a two-argument function: its

arguments are the code of the function to interpret, and the input data this function

should be called with. Figure 2.1a illustrates the case of databases: The query engine

evaluates a SQL query (static input) and data (dynamic input) to produce the result.

18

The effect of specializing an interpreter is shown in Figure 2.1b: if we have a pro-

gram specializer, or partial evaluator, which for historical reasons is often called mix,

then we can specialize the (query) interpreter with respect to a given source program

(query). The result is a single-argument program that computes the query result di-

rectly on the data and runs much faster than running the query through the original

interpreter. This is because the specialization process strips away all the “interpretive

overhead,” i.e., the dispatch that interpreter performs based on the structure of the

query. In other words, through specialization of the interpreter, we are able to obtain

a compiled version of the given program!

This key result–partially evaluating an interpreter with respect to a source pro-

gram produces a compiled version of that program–is known as the first Futamura

projection. Less relevant for us, the second and third Futamura projections explain

how self-application of mix can, in theory, derive a compiler generator: a program

that takes any interpreter and produces a compiler from it.

Codd’s idea has been wildly successful, spawning multi-billion-dollar industries,

to a large extent thanks to the development of powerful automatic query optimiza-

tion techniques, which work very well in practice due to the narrow semantic model

of relational algebra. Futamura’s idea of deriving compilers from interpreters auto-

matically via self-applicable partial evaluation received substantial attention from the

research community in the 1980s and 1990s [108], but has not seen the same practical

success. Despite partial successes in research, fully automatic partial evaluation has

turned out to be largely intractable in practice due to the difficulty of binding-time

separation [107]: deciding which expressions in a program to evaluate directly, at

specialization time, and which ones to residualize into code.

Programmatic Specialization. Even though the magic mix component in Fig-

ure 2.1b has turned out to be elusive in practice, all is not lost. We just have to find

another way to implement program specialization, perhaps with some help from the

programmer. Going back to our example, we can implement a self-specializing power

function like this:

19

def power(x:MyInt, n:Int): MyInt =
if (n == 0) 1 else x * power(x, n - 1)

What is different? We changed the type of x from Int to MyInt, and assuming that we

are working in a high-level language with operator overloading capabilities, we can

implement MyInt as a symbolic data type like this:

// symbolic integer type
class MyInt(ref: String) {
def *(y: MyInt) = {
val id = freshName();
println(s"int $id = $ref * ${y.ref};");
new MyInt(id)

} }

// implicit conversion Int -> MyInt
implicit def constInt(x: Int) =

new MyInt(x.toString)

When we now call power with a symbolic input value:
power(new MyInt("in"),4)

it will emit the desired specialized computation as as a side effect:
int x0 = in * 1; int x1 = in * x0;
int x2 = in * x1; int x3 = in * x2; // = in * in * in * in

In the following, we visualize the intermediate states of generating code for the

power function discussed earlier. The following code shows the power function and

MyInt class implementation:

def power(x:Int, n:Int): Int =
if (n == 0) 1 else x * power(x, n - 1)

// symbolic integer type
class MyInt(ref: String) {
def *(y: MyInt) = {
val id = freshName();
println(s"int $id = $ref * ${y.ref};");
new MyInt(id)

} }
// implicit conversion Int -> MyInt
implicit def constInt(x: Int) = new MyInt(x.toString)

The power function is recursive, with the bottom case reached when n becomes zero.

Following the standard call-by-value evaluation rules, steps 1-8 show how power is

expanded for n = 4, 3,..., 1.

1 J power(new MyInt("in"), 4) K
2 J if (4 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 3)) K
3 J new MyInt("in") * power(new MyInt("in"), 3) K
4 J new MyInt("in") * (

if (3 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 2)) K

20

5 J new MyInt("in") * (new MyInt("in") * power(new MyInt("in"), 2)) K
6 J new MyInt("in") * (new MyInt("in") * (

if (2 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 1)) K
7 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * power(new MyInt("in"), 1))) K
8 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (

if (1 == 0) 1 else new MyInt("in") * power(new MyInt("in"), 0)))) K

When power is invoked with n = 0, we reach the bottom of the recursion, i.e., no

further function calls will be pushed on the call stack. It is the time to go up and

perform the remaining evaluation actions, which will generate code.

9 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") *
power(new MyInt("in"), 0)))) K

10 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") *
if (0 == 0) 1 else power(new MyInt("in"), -1)))) K

The base case of power returns the value 1. Next, the multiplication operator in

MyInt("in") * 1 emits the first line int x0 = in * 1, as side effect, and returns MyInt("x0").
11 J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * (new MyInt("in") * 1))) K
12 int x0 = in * 1
J new MyInt("in") * (new MyInt("in") * (new MyInt("in") * new MyInt("x0"))) K

Similarly, the remaining multiplication expressions in steps 13-15 generate the rest of

the code.
13 int x0 = in * 1

int x1 = in * x0
J new MyInt("in") * (new MyInt("in") * new MyInt("x1")) K
14 int x0 = in * 1

int x1 = in * x0
int x2 = in * x1

J new MyInt("in") * new MyInt("x2") K
15 int x0 = in * 1

int x1 = in * x0
int x2 = in * x1
int x3 = in * x2

J new MyInt("x3") K

Once the full code is generated, the result is stored in the variable x3, and the final

return value will be MyInt("x3").

Binding each intermediate result to a fresh variable guarantees a proper sequencing

of operations. Based on this core idea of introducing special data types for symbolic

or staged computation, we suddenly have a handle on making the first Futamura

projection immediately practical. As with power and MyInt above, we just need to

21

implement a query interpreter in such a way that it evaluates a concrete query on

symbolic input data. The result, illustrated in Figure 2.1c, is a practical and directly

implemented realization of the first Futamura projection without mix. The remainder

of this Chapter will explain the details of this approach and present our query compiler

LB2.

2.2 Structuring Query Evaluators

It is important to note that the first Futamura projection itself does not capture

any kind of program analysis or optimization. This poses the question how to generate

optimized code. A key observation is that the shape of specialized code follows the

shape of the interpreter that is specialized. Hence, we can derive the following design

principle: By engineering the source interpreter in a certain way, we can control the

shape of the compiled code.

In the following, we review popular query evaluation models with an eye towards

specialization, and present our improved data-centric execution model.

2.2.1 The Iterator (Volcano) Model

The Iterator (Volcano) Model is based on a uniform open(), next() and close()

interface for each operator. Figure 2.2a-b shows a QEP, and the operator interface

in Volcano [1]. Evaluation starts when the root operator (e.g., hash join) invokes

next() to probe offspring operators for the next tuple. Subsequent operators (e.g.,

select) repeatedly invoke next() until a scan (or materialized state) is reached. At

this point, a tuple is pipelined back to its caller and the operator’s code is executed.

Thus, the mode of operation can be understood as pull-based. Although the iterator

model is intuitive and allows pipelining a stream of tuples between operators, it

incurs significant overhead in function calls, which one might hope to eliminate using

compilation.

22

// Data schema: Dep(dname: String, rank: Int), Emp(eid: Int, edname: String)

select * from Dep, (select edname, count(*) from Emp group by edname) as T
where rank < 10 and dname = T.edname

Print(
HashJoin(
Select(Scan("Dep"))

(x => x("rank") < 10),
Agg(Scan("Emp"))

(x => x("edname"))(0)
((agg,x) => agg + 1)))

⋈
σ Γ

Dep Emp

next

... next

⋈
σ Γ

Dep Emp

pipeline
breakers

produce/ consume

... produce/ consume

(a) Query in SQL and query plan (b) Volcano (c) Data-centric

abstract class Op {
def open(): Unit
def next(): Record
def close(): Unit

}

class Select(op: Op)(pred: Record => Boolean)
extends Op {

def open() = op.open
def next(): Record = {
var rec = null
do {
rec = op.next

} while (!isNull(rec)
&& !pred(rec))

rec
}
def close() = {...}

}

abstract class Op {
def open(): Unit
def produce(): Unit
def consume(rec:Record): Unit
def close(): Unit

}
class Select(op: Op)(pred: Record => Boolean)

extends Op {
var parent = null
def open() = {
op.parent = this
op.open

}
def produce(): Unit = op.produce
def consume(rec: Record) = {
if (pred(rec))
parent.consume(rec)

}
}

(d) Volcano interface and select (e) Data-centric interface and select

Fig. 2.2. Query Evaluation models.

We follow Futamura’s idea and specialize the Volcano Select operator in Figure

2.2d to a given query, as illustrated in Figure 2.3b. However, the specialized code

is inefficient. Each operator checks that the pulled record is not a null value, even

though this check is really necessary only inside the Scan operator. These !isNull(rec)

23

conditions cannot be specialized away since they impose a control-flow dependency

on dynamic data.

2.2.2 The Data-centric (Produce/Consume) Model

The data-centric (Produce/Consume) Model as introduced in HyPer [6], leads to

better compilation results, and is therefore used by most query compiler develop-

ments, including LegoBase [7], DBLAB [9], and Spark SQL [5]. In this model, the

control flow is inverted. Data records are pushed towards operators, improving data

and code locality. Operators that materialize tuples (e.g., aggregates and hash joins)

are marked as pipeline breakers. As shown in Figure 2.2e, the operator interface

consists of methods produce and consume. The producer’s task is to obtain tuples, e.g.,

from a scan or other interfacing operator in the query pipeline. The consumer carries

out the operation, e.g., evaluating the predicate in Select.

Viewing the data-centric model through the lens of Futamura projections delivers

the key explanation of why it leads to better compilation results than the Volcano

model: the inter-operator control flow does not depend on dynamic data, and hence

specialization can fully remove the dispatch on the operator structure, leading to the

tight residual code shown in Figure 2.3c. In contrast to the Volcano model, there are

no null records since each operator in the pipeline invokes consume only on valid data.

2.2.3 Data-centric Evaluation with Callbacks

For developers, the data-centric evaluation model is somewhat unintuitive since it

spreads out query evaluation across produce and consume methods. But given that we

have identified the desired specialization result, we can think about whether we can

achieve the same specialization from a different API.

Figure 2.4a walks through the hash join evaluation in the data-centric model.

First, the executor invokes HashJoin.open to initialize the hash join branches (i.e.,

left and right operators) followed by HashJoin.produce. Second, the produce method

24

invokes produce on each branch (i.e., left.produce and right.produce). Thus, control

moves to left.produce and perhaps invokes produce on that branch a few times until

a scan or a pipeline breaker is reached. At this point, consume performs its actions

and invokes parent.consume to dispatch a record to its consumer. When the control

eventually returns back to HashJoin.consume, the record is added to the hash table.

In the following step, right.produce is invoked to process the records from the right

branch. As the example illustrates, it is not always clear how the produce and consume

methods are behaving: consume will be called by actions triggered by produce. This

becomes even more complex when the operator possesses multiple children. In this

case consume behaves differently depending on which intermediate operator is pushing

the data.

As our first contribution, we show that we can achieve the same functionality

and specialization behavior by refactoring the produce and consume interface into a

single method exec that takes a callback. This new model is directly extracted from

the desired specialization shown in Figure 2.3c. Figure 2.4b shows how the hash

join operator can be implemented using this new interface. The exec method does

not require additional state. Each join branch is invoked using a different callback

function; first the left, and then the right. This avoids the key difficulty in the

produce/consume model, namely the conflation of phases in consume, and also the need

to maintain parent in addition to child links. A variant of this model was presented

as part of a functional pearl at ICFP ’15 [28]. Intuitively, the statement op.exec(cb)

can be read as follows: operator op, generate your result and apply the function cb on

each tuple.

2.3 Building Optimizing Compilers

Having identified the general approach of deriving a query compiler from an inter-

preter (the first Futamura projection) using programmatic specialization as described

in Section 2.1, and having identified the desired structure of our query interpreter in

25

// Schema: Dep(dname: String, rank: Int)

// Query plan
Print(
Select(
Scan("Dep")))(x => x.rank < 10)

(a)

// Specialized data-centric evaluation
for (rec <- data) {
if (rec.rank < 10)
println(rec.dname+","+rec.rank)

}

// Specialized Volvano evaluation
var nextRec = 0 // scan state
val size = data.length
while (true) { // print loop
val rec = {
var recSel = null
do { // select loop
recSel = if (nextRec < size)
data(nextRec++) else null

} while (!(selRec == null) &&
!(recSel.rank < 10))
recSel

}
if (rec == null) break
println(rec.dname + "," + rec.rank)

}

(c) (b)

Fig. 2.3. Specializing select query (a) in Volcano (b) and Data-centric (c)

class HashJoin(left: Op, right: Op)
(lkey: KeyFun)(rkey: KeyFun) extends Op {
val hm = new HashMultiMap()
var isLeft = true
var parent = null
def open() = { // Step 1
left.parent = this; right.parent = this
left.open; right.open

}
def produce() = {
isLeft = true; left.produce() // Step 2
isLeft = false; right.produce()// Step 4

}
def consume(rec: Record) = {
if (isLeft) // Step 3
hm += (lkey(rec), rec)

else // Step 5
for (lr <- hm(rkey(rec))
parent.consume(merge(lr,rec))

}
}

class HashJoin(left: Op, right: Op)
(lkey: KeyFun)(rkey: KeyFun) extends Op {

// refactored open, produce, consume
// into single method exec
def exec(cb: Record => Unit) = {
val hm = new HashMultiMap()
left.exec { rec => // Step 1
hm += (lkey(rec), rec)

}
right.exec { rec => // Step 2
for (lr <- hm(rkey(rec))
cb(merge(lr,rec))

}
}

}

(a) (b)

Fig. 2.4. Hash join implementation in (a) Data-centric (b) Data-centric
with callbacks model (LB2).

26

Section 2.2, we are now faced with the task of actually making it happen. Recall, ob-

taining a compiled query target from an interpreted query engine requires identifying

three components: the staged interpreter, the static input and the dynamic input.

Figure 2.5 shows LB2’s query evaluator, essentially an interpreter, that implements

the data-centric evaluation with callbacks. We can now start specializing this query

engine to emit source code in the same way we specialized the power function using

the symbolic data type MyInt in Section 2.1. But where in a query engine should code

generation be placed to minimize changes to the operator code?

Pure Template Expansion. As a first idea we could perform coarse-grained code

generation at the operator level. Each operator is specialized as a string with place-

holders for parameters. We show the aggregate operator as example:
class Agg(op: Op)(grp: GrpFun)(init: String)(agg: AggFun) extends Op { // operator template
def exec(cb: String => String) = s"""
val hm = new HashMap()
${op.exec { tuple =>
s"""val key = ${grp(tuple)}
hm.update(key, $init) { curr => ${agg("curr", "tuple")} }

}"""}
for (tuple <- hm) { ${cb("tuple")} }"""

}

At runtime, this query evaluator performs a direct mapping from an operator to

its code, i.e., substitutes op.exec with the operational code of the child operator

op. Template expansion is easy to implement and removes some of the inter-

preter overhead. Still, the approach is criticized as inflexible [9]. First, a query is

generated exactly as written, with generic and inefficient data structure implemen-

tations. Second, cross-operator optimizations, data layout changes, etc., are all

off-limits. Third, string templates are inherently brittle, and rewriting the core en-

gine code as templates may introduce variable name clashes, type mismatches, etc.,

that may cause both subtle errors and hard crashes in generated code.

Programmatic Specialization. In order to avoid the problems of coarse tem-

plates, we can push specialization further down into the structures that make up the

query engine in Figure 2.5, in particular the Record and various HashMap classes. The

27

key benefit of this approach is that the main engine code in Figure 2.5 can remain

unchanged !

The generated code is the same as for operator templates, but all the code genera-

tion logic is now confined to Record and HashMap, with a much smaller surface exposure

to bugs related to string manipulation. The implementation is as follows:
class Record(fields: Seq[(String, String)]) {
val name = freshName()
println(s"""val $name = new Record(${fields map ... })""")
def apply(field: String) = s"""$name.$field"""
def update(field: String, v: String) = println(s"""$name.$field = $v;""")

}
class HashMap() {
val name = freshName()
println(s"""val $name = new HashMap()""")
def apply(key: String) = s"""$name($key)"""
def update(key: String, v: String)(up: String) =
println(s"""$name($key) = $up($name.getOrElse($key,$v))""")

}

Still, the generated code uses unsophisticated Record and HashMap implementations,

which will not exhibit optimal performance. When targeting C code, we will likely

use an equivalent library such as GLib, which has high performance overhead.

Optimized Programmatic Specialization. For optimum performance, we want

to implement specialized internal data structures instead of relying on generic li-

braries. To achieve this, we take the specialization idea one step further and push

code generation even further down to the level of primitive types and operations.

This means that not even our Record and HashMap implementations need to mention

code generation directly, and as we will show in Sections 2.3.1-2.3.2, this will enable

a range of important optimizations while retaining a high-level programming style

throughout. This leads us to use exactly the MyInt class shown in Section 2.1, and,

while it would be possible to build an entire query engine in this way, it pays off

to use an existing code generation framework that already implements this low-level

plumbing.

Lightweight Modular Staging (LMS). LB2 internally uses a library-based gener-

ative programming and compiler framework LMS [24] to encapsulate the code gener-

28

type Pred = Record =>
Rep[Boolean]

type KeyFun = Record => Record
type OrdFun = (Record,Record)

=> Rep[Int]
type AggFun = (Record,Record)

=> Record
type GrpFun = Record => Record

class Scan(table: Buffer)
extends Op {

def exec(cb: Record =>
Unit) = {

for (tuple <- table)
cb(tuple)

} }
class HashJoin(left: Op,

right: Op)(lkey: KeyFun)
(rkey: KeyFun) extends Op {

/* code in Figure 2.4 */
}

class Select(op: Op)(pred: Pred)
extends Op {

def exec(cb: Record => Unit) = {
op.exec { tuple =>
if (pred(tuple)) cb(tuple)

} } }
class Sort(op: Op)(ordFun:

OrdFun) extends Op {
def exec(cb: Record => Unit) = {
val res = new FlatBuffer()
op.exec { tuple => res +=

tuple }
res.sort(ordFun)
for (tuple <- res)
cb(tuple)

} }

class Agg(op: Op)(grp: GrpFun)
(init: Record)(agg:

AggFun) extends Op {
def exec(cb: Record =>

Unit) = {
val hm = new HashMap()
op.exec { tuple =>
val key = grp(tuple)
hm.update(key, init) {
curr => agg(curr,

tuple)
} }
for (tuple <- hm)
cb(tuple)

} }

Fig. 2.5. LB2 Query Evaluator (data-centric with callbacks).

ation logic. LMS maintains a graph-like intermediate representation (IR) to encode

high-level constructs and operations. Moreover, LMS provides a high-level interface to

manipulate the IR graph. LMS distinguishes two types of expressions; present-stage

expressions that are executed normally and future-stage expressions that are com-

piled into code. LMS defines a special type constructor Rep[T] to denote future-stage

expressions, e.g., our MyInt corresponds to Rep[Int] in LMS, and given two Rep[Int]

values a and b, evaluating the expression a+b will generate code to perform the ad-

dition. LMS provides implementations for all primitive Rep[T] types, i.e., strings,

arrays, etc. In addition, LMS also provides overloaded control-flow primitives, e.g.,

if (c) a else b where c is a Rep[Boolean].

LMS is a full compiler framework, which supports a variety of intermediate layers,

but we only use it as a code generation substrate for our purposes. To draw a

comparison with HyPer, LB2 is implemented in Scala instead of C++ and uses LMS

instead of LLVM. While LLVM [14] operates on a lower level than LMS, the difference

29

is not fundamental, and it is important to note that abstractions similar to those

we propose can also be built on top of LLVM in C++, using standard operator

overloading and lambda expressions, which have been available since C++11.

Preliminary Example. In order to better understand how a query is compiled

using the optimized programmatic specialization, consider the following aggregate

query and the query execution plan (QEP) (refer to Figure 2.5 for operators imple-

mentation).

select edname, count(*)
from Emp
group by edname

Γ
Emp

Π Print(
Agg(Scan("Emp"))

(x => x("edname"))(0)
((agg,x) => agg + 1))

In LB2, like in any other database, the query is represented by a tree of operators.

Evaluation starts with the root operator in the QEP (i.e., Print). Calling Print.exec

with an empty callback will call its child operator’s Agg.exec method with a callback

that encodes evaluation actions to be carried out on the records that Agg produces:

in this case, just printing out the result. After that, Agg.exec calls Scan.exec with a

callback tailored to the aggregate operation and the callback it received from Print.

Based on Futamura projections discussed in Section 2.1, the result of executing a

staged query interpreter is a residual program that implements the query evaluation

on record fields where all abstractions are optimized away and indirect control flow

removed.

For the remainder of this section, we discuss how interesting performance optimiza-

tions for data structures, storage layout, memory management, etc., are implemented

in LB2 while retaining the single code generation pass architecture.

2.3.1 Row or Column Layout

Typically, query engines either support row-oriented or column-oriented storage.

Each data layout works better in one situation than the other, so it is attractive to

be able to support both within the same query engine.

30

In LB2, the Record class is the entry point to query engine specialization. Record is

an abstract class that contains a schema (a sequence of named Field attributes) and

supports lookup of Values by name. It is important to note that the schema is entirely

static, i.e., only exists at code generation time, while subclasses of Value carry actual

Rep[T] values, i.e., dynamic data that exists at query evaluation time. Subclasses

of Record can support either flat, row-oriented, storage through a base pointer (class

NativeRec), or abstract over the storage model entirely by referencing individual Values

directly from a record in a scalarized form, mapped to local variables in generated

code (class ColumnRec).
abstract class Field { def name: String } // models an attribute’s name and type
case class IntField(name: String) extends Field // Int type attribute
case class StringField(name: String) extends Field // String type attribute

abstract class Value // models an attribute’s value
case class IntValue(value: Rep[Int]) extends Value { ... } // operations elided
case class StringValue(value: Rep[String], length: Rep[Int]) extends Value { ... }

abstract class Record { def schema: Seq[Field]; def apply(name: String): Value }

case class NativeRec(pt: Rep[Pointer], schema: Seq[Field]) extends Record {
def apply(name: String) = getField(schema,name).readValue(pt, getFieldOffset(schema,name))

}
case class ColumnRec(fields: Seq[Value], schema: Seq[Field]) extends Record {
def apply(name: String) = fields(getFieldIndex(schema,name))

}

Likewise, LB2 abstracts over Record storage through an abstract class Buffer, with

implementation classes for row-oriented (FlatBuffer) and column-oriented storage

(ColumnarBuffer):
abstract class Buffer(schema: Seq[Field]) {
def apply(x: Rep[Int]): Record
def update(x: Rep[Int], rec: Record): Unit

}
case class FlatBuffer(schema: Seq[Field], size: Long) extends Buffer(schema) ...
case class ColumnarBuffer(schema: Seq[Field], size: Long) extends Buffer(schema) {
val cols = schema map { fld => Column(fld,size) }
def apply(x: Rep[Int]) = ColumnRec(cols map { c => c(x) }, schema)
def update(x: Rep[Int], y: Record): Unit =
cols foreach { c => c.update(x, y(c.field.name)) }

}
case class Column(field: Field, size: Long) {
val buf: Rep[Pointer] = malloc(size * field.size)
def apply(x: Rep[Int]) = field.readValue(buf, x)
def update(x: Rep[Int], y: Value): Unit = field.writeValue(buf, x, y)

31

}

The internal implementations are unsurprising, and exactly what one might write in

a high-level query interpreter without much concern for low-level performance. But it

is important to note that there is never any code like new Record(...) or new Value(...)

being generated. Hence, Value, Record, Buffer, etc., objects are generation-time-only

abstractions that are completely dissolved as part of the symbolic evaluation. The

generated code consists only of the operations on the Rep[T] values hidden inside the

Value and Buffer subclasses, i.e., only raw mallocs and pointer reads/writes.

A pipeline of operators accesses records uniformly in either row or column format.

A pipeline breaker materializes the intermediate Records inside a buffer or higher-level

data structure, at which point a format conversion may occur.

2.3.2 Data Structure Abstractions

Query engines use map data structures to implement aggregate and join opera-

tions. For aggregations, a HashMap accumulates the aggregate result for a grouping

key and for hash joins, a HashMultiMap collects all records for a given key. As dis-

cussed earlier, implementations from a generic library (e.g., Glib) tend to be inefficient

due to expensive function calls, resizing, etc. Moreover, we want to make different

low-level implementation choices for different parts of the engine (e.g., open address-

ing vs. linked hash buckets). Based on the Buffer abstractions (Section 2.3.1), we can

build a considerable variety of fast hash table implementations with little effort.

The code example below illustrates the one we use for aggregates (see Figure 2.5).

Class HashMap defines the interface, and subclass LB2HashMap provides an implementa-

tion based on open addressing on top of ColumnarBuffer. Method update locates the

key and updates the aggregate value. Method foreach, which is invoked for Scala

expressions of the form for (rec <- hm), traverses all stored values. The hash map is

fully specialized for key and value types.
abstract class HashMap(kSche: Seq[Field], vSche: Seq[Field]) {
def update(key: Record, init: Record)(up: Record => Record): Unit

32

def foreach(f: Record => Unit): Unit
}
class LB2HashMap(kSche: Seq[Field], vSche: Seq[Field]) extends HashMap {
val size = defaultSize
val agg = new ColumnarBuffer(vSche, size)
val keys = new ColumnarBuffer(kSche, size)
val used = new Array[Int](size)
var next = 0
def update(k: Record, init: Record)(up: Record => Record) = {
val idx = defaultHash(k) % size
if (isEmpty(keys(idx))) {
used(next) = idx; next += 1
keys(idx) = k; agg(idx) = up(init)

} else agg(idx) = up(agg(idx))
}
def foreach(f: Record => Unit) = {
for (idx <- 0 until next) {
val j = used(idx)
f(merge(keys(j), agg(j)))

} } }

It is important to note that this code is the same as one would write in a library

implementation. However, as with Buffers and Records, the HashMap abstraction is

completely dissolved at code generation time, leaving only low-level array and index

manipulations.

The hash join operator uses a HashMultiMap, which differs from this code in its

interface, and also in its internal implementation (we use linked buckets instead of

open addressing). The elided code follows the same high-level of abstraction, and if

we wish, we can pull out some aspects of the two hash map classes into a common

base class, again without any runtime cost.

2.3.3 Data Partitioning and Indexing

Query engines use statistics and metadata to determine when an index can be

used to speed up query execution. We assume that these decisions are made during

the query planning and optimization phase. To add index capabilities to LB2, we

provide a corresponding set of indexed query operators in the same style as those

defined in Figure 2.5. The code below shows an index join. The operator interface

33

is extended with a getIndex method, which enables IndexJoin.exec to find tuples that

match the join key:
// Index join operator that uses index created on the left table
class IndexJoin(left: Op, right: Op)(lkey: String)(rkey: KeyFun) extends Op {
def exec(cb: Record => Unit) = {
val index: Index = left.getIndex(lkey) // obtain index for left table
right.exec { rTuple => // use index to find matching tuples
for (lTuple <- index(rkey(rTuple))) cb(merge(lTuple, rTuple))

} } }

LB2 realizes sparse and dense index data structures for primary and foreign keys on

top of the abstractions presented in Sections 2.3.1 and 2.3.2, behind a uniform Index

interface. The IndexEntryView class enables iterating over index lookups via foreach.

Method exists is used by IndexSemiJoin and IndexAntiJoin operators.

abstract class IndexEntryView {
def foreach(f: Record => Unit): Unit
def exists(f: Pred): Rep[Boolean]

}

abstract class Index(schema: Seq[Field]) {
def apply(k: Record): IndexEntryView

}

In addition to query evaluation, LB2 generates data loading code for different storage

modes, which we extend to create index structures. These can serve as additional

access paths on top of underlying data, or as primary partioned and/or replicated

data format, e.g., when there are multiple foreign keys.

Date Indexes. LB2 represents dates as numeric values to speed up filter and

range operations. If metadata about date ranges is available, it will enable further

shortcuts. LB2 breaks down dates into year and month and uses existing abstractions

to index dates based on year or month. Adding a date index is similar to creating an

index on a primitive type. Hence, we elide further details.

String Dictionaries. Another form of indexing is compressed columns and dictio-

nary encodings. LB2 implements string dictionaries to optimize string operations,

e.g., startsWith. Individual columns can be marked as dictionary compressed in the

database schema. Building on StringValue and ColumnarBuffer discussed earlier in

Section 2.3.1, LB2 defines an alternative string representation class DicValue and a

class StringDict that stores and provides access to compressed string values.

34

class DicField(name: String) extends Field {
def dict: StringDictionary = ...

}
class DicValue(idx: Rep[Long]) extends Value {
def startsWith(p: DicValue) = p.idx <= idx
...

}

class StringDict(attr: String, size: Long) {
val store = Column(StringField(attr),size)
def convert(string: StringValue): DicValue
def get(idx: DicValue): StringValue

}

Consider the simple case of compressing a single string column. At loading time, the

StringDict is loaded from memory. When the loader reads a string, it creates a

StringValue and uses the StringDict to convert it into its DicValue compressed form:

the index where the StringValue is stored inside the StringDict.

While string dictionaries may speed up most string operations, their use requires

some care. The comparison of two strings in compressed form is only valid if they

share the same dictionary. One solution is to use a single global dictionary for all

string attributes, however it is not easy to maintain. Another solution is to group the

columns that are the most likely going to be used together within one dictionary. In

the event of a comparison between string belonging to two different dictionaries, the

fallback is to extract the StringValue and perform the operation on the string repre-

sentation. Moreover, some operations generate strings at runtime (e.g., substring). In

that case, uncompressed strings need to be used as well. Conceptually, LB2 can sup-

port both implementations. The DicField class keeps track of the dictionary associated

with a given attribute, which allows LB2 to generate compressed string operations

where possible and uncompressed operations otherwise. Finally, string dictionaries

do not add new query operators, i.e., they operate transparently as part of the data

representation layer.

2.3.4 Code Layout and Code Motion

Hoisting memory allocation and other expensive operations from frequently exe-

cuted paths to less frequent paths can speed up evaluation dramatically, especially in

hash join and aggregate queries where memory may be pre-allocated in advance.

35

Let us recall the design principle from Section 2.2, that the shape of the gen-

erated code follows how the interpreter is written. Based on this insight, we may

reorder evaluation actions in a certain way that moves expensive operations off the

hot path of query execution. In particular, we can extend LB2’s callback interface

to enable hoisting data structure allocation. In Figure 2.6, we demonstrate how a

small change to the exec method signature enables data structures hoisting. Method

exec in Figure 2.6-a1 takes a single argument, allocates data structures and invokes

parent.exec. In Figure 2.6-a2, exec is re-implemented as zero-parameter method that

separates the data structure allocation and query execution by performing the alloca-

tion first and only then returning a function that executes the operator’s main data

path. The rest of the example in Figure 2.6-b1 and b2 shows how client programs

can inject code, e.g., timing, inbetween memory allocation, and the main evaluation

loop. Figure 2.6-c1 and c2 show the respective generated code.

2.3.5 Parallelism

Query engines realize parallelism either explicitly by implementing special split

and merge operators [109], or internally by modifying the operator’s internal logic to

orchestrate parallel execution. LB2 uses the latter, and generates code for OpenMP [110].

Interestingly, the same pattern we used in Section 2.3.4 to achieve code motion can

be used to structure query engine code for parallel execution. The callback signature

for exec we defined earlier works well in a single-threaded environment, but multi-

threaded environments require synchronization and thread-local variables. Thus, LB2

defines a new class ParOPwith a modified execmethod that adds another callback level.

For state-less operators such as Select, the parallel implementation is very similar

to the single threaded one; it is possible to use a wrapper to transform a single

threaded pipeline into a parallel one. Assuming we have a parallel scan operator

ParScan, we can perform a parallel selection like this:
val parSelect = parallelPipeline(op => Select(op)(t => t("rank") < 10))
parSelect(ParScan("Dep"))

36

def exec(cb: Record => Unit) = {
val hm = new HashMap()

op.exec { tuple =>
hm.update(grp(tuple), ...)(...)

}
for (tuple <- hm) cb(tuple)

}

def exec = {
val hm = new HashMap(); val dataLoop = op.exec
(cb: Record => Unit) => {
dataLoop { tuple =>
hm.update(grp(tuple), ...)(...)

}
for (tuple <- hm) cb(tuple)

} }

(a1) Aggregate skeleton (a2) Optimized aggregate skeleton

// execute aggregate

time { Print.exec(t => ()) }

// execute aggregate
val query = Print.exec
time { query(t => ()) }

(b1) Aggregate client program (b2) Optimized aggregate client program

struct timeval start, end;
gettimeofday(&start, NULL);
// data struct allocation
int* agg = malloc(...); ...
// processing
for (int i = 0; i < N; i++) {
// ... compute aggregate ...

}
for (int i = 0; i < next; i++) {
// ... print records ...

}
gettimeofday(&end, NULL);

// data struct allocation
int* agg = malloc(...); ...
struct timeval start, end;
gettimeofday(&start, NULL);
// processing
for (int i = 0; i < N; i++) {
// ... compute aggregate ...

}
for (int i = 0; i < next; i++) {
// ... print records ...

}
gettimeofday(&end, NULL);

(c1) Generated code (c2) Generated code

Fig. 2.6. From a query plan to optimized C code including data structures
specialization and code motion.

37

The definition of ParOp and parallelPipeline is as follows:
class ParOp {
type ValueCallback = Record => Unit
type DataLoop = ValueCallback => Unit
type ThreadCallback = Rep[Int] => DataLoop => Unit
def exec: ThreadCallback => Unit

}
def parallelPipeline(seq: Op => Op) =
(parent: ParOp) => new ParOp {
def exec = {
val opExec = parent.exec
(tCb: ThreadCallback) => opExec { tId => dataloop =>
tCb(tId)((cb: ValueCallback) =>
seq(new Op { def exec = dataloop }).exec(cb) })

} } }

ParScan

ParSelect

callback

callbacktId

tId

tuples

tuplesexec

exec

The communication between operators is illustrated in the drawing above. The down-

stream client of parSelect initiates the process by calling exec, which parSelect for-

wards upstream to ParScan. ParScan starts a number of threads, and on each thread,

calls the exec callback with the thread id tId and another callback dataloop. This will

allow the downstream operator to initialize the appropriate thread-local data struc-

tures. Then the downstream operator triggers the flow of data by invoking dataloop,

and passing another callback upstream, on which the ParScan will send each tuple for

the data partition corresponding to the active thread.

While the parallelPipeline transformation covers the simpler state-less operators,

some extra work is required for pipeline breakers. The callback interface makes so-

phisticated threading schemes possible, in an elegant manner. For operators such as

Agg, LB2’s parallel implementations split their work internally across multiple threads,

accumulating final results, etc. By using callbacks in a clever way, we can delegate

some of the synchronization effort to specialized parallel data structures. In the case

of Agg, LB2 uses a ParHashMap abstraction, which internally has to enforce thread safety.

Multiple implementations are possible, using synchronization primitives, partitioning,

or an internal lock-free design.
abstract class ParHashMap(nT: Long, kSche: Seq[Field], vSche: Seq[Field]) {
def apply(tId: Rep[Int]): HashMap
def merge(init: Record, agg: AggFun): Unit
def partition(tId: Rep[Int]): DataLoop

}

38

This design is powerful enough to encapsulate all subtle issues related to multi-

threading. Similar to the code motion idea, we use the callbacks to re-organize the

operator code into different parts:
class Agg(grp: GrpFun)(init: Record)(agg: AggFun) extends ParOp {
def exec = {
val opExec = op.exec
val hm = new ParHashMap(nbThread, grp.schema, agg.schema)
(tCb: ThreadCallback) => {
opExec { (tId: Rep[Int]) => (dataLoop: DataLoop) => // parallel section starts
val lHm = hm(tId): HashMap
dataloop { tuple => // computes partial result for this thread
val k = grp(tuple)
lHm.update(k, init) { c => agg(c, tuple) }

} } // parallel section ends
hm.merge(init, agg) // merge the results accross threads
parallelRegion { tId => tCb(tId)(hm.partition(tId)) } // restart a pipeline in parallel

} } }

The distinct parts are the global initialization of the data-structure, the local initial-

ization for each thread, the computation, and finally the merging between threads,

followed by the beginning of a new parallel pipeline.

2.3.6 Comparison with a Multi-Pass Compiler

We contrast LB2’s implementation with a recent multi-pass query compiler, DBLAB

[9]. Both systems aim to implement a query interpreter in a high-level language once

and control query compilation by modifying parts of the query engine. In LB2, we

modifed the core abstractions underneath the main engine code to add code gener-

ation. In DBLAB, the query engine code itself is transformed to lower-level code,

through multiple intermediate stages. For each optimization, an analysis pass identi-

fies pieces of code to be re-written followed by one or more re-writing passes. DBLAB

offers a flag per optimization that can be configured for each query. We compare how

key optimizations are implemented in both systems.

Data Layout. The default data layout in DBLAB is row-oriented. DBLAB supports

column-oriented layout on a best effort basis using a compiler pass that converts arrays

of records to a record of arrays where possible. In LB2, operators decide which storage

39

layout to use by instantiating one of several implementation classes, e.g., FlatBuffer

or ColumnarBuffer as discussed in Section 2.3.1. These decision can be made based

on input from the query optimizer.

Data Structure Specialization. DBLAB introduces a number of intermediate

abstraction levels (referred to as stack-of-DSLs) and defines optimizations that can

be performed at each level. Specializing high level data structure, e.g., hash maps,

into native arrays takes one analysis pass and up to three re-writing passes. In

LB2, the same transformation is achieved by implementing hash maps as generation-

time abstractions, which ensures that only native array operations are generated.

Adding a new hash map variant requires a high-level implementation in LB2, using

normal object-oriented techniques (see Section 2.3.2). For example, LB2 uses open

addressing for aggregates and linked hash buckets for joins. In DBLAB, all analysis

and transformation passes are specific to a linked-bucket hash table implementation.

Adding a variant based on open addressing would require an entire new set of analysis

and transformation passes.

Index Structures. DBLAB’s makes indexing decisions not based on query plans,

but on a lowered version of the query engine code after inlining the operators. A first

analysis extracts hash join patterns and evaluates whether an index can be instan-

tiated. In some sense, this appears to be putting the cart before the horse, because

high-level query plan structure needs to be reverse-engineered from comparatively

low-level code. A second analysis rule determines the type of index, and a third rule

determines whether the hash map is collision-free on the hash function and hence

can use one dimensional arrays. Finally, a rewrite rule updates the generated code

to use the index and inserts index creation code into the loading phase. This au-

tomatic index inference in DBLAB is a global approach that always creates indexes

without reasoning about the index cost or whether a non-index plan could be more

efficient. LB2 does not attempt to infer indexes automatically and instead delegates

such decisions to the query optimizer.

40

For string dictionaries, DBLAB performs a compiler pass to create string dictio-

naries on all string attributes and hoist the allocation statements to loading time.

The rewrite rule identifies the type of string operation and updates the code accord-

ingly. Again, LB2 does not attempt to infer string dictionary usage from low-level

code, but assumes that this information is already available. Instead of transforming

code, LB2 uses corresponding implementation classes as discussed in Section 2.3.3.

Code motion. DBLAB performs detailed analysis to collect data structures

allocation statements along with the dependent statements. After that, a rewrite

rule moves allocation to loading time. Hence, hoisting is sensitive to order. As

illustrated in Section 2.3.4 LB2’s callback interface seamlessly hoist data structures

allocation outside the operator code, with small changes to the operator interface.

Parallelism. LB2 implements parallelism as shown in Section 2.3.5. DBLAB does

not implement parallelism, although the paper [9] discusses some ideas in this direc-

tion.

In summary, we believe that there are certain drawbacks to multi-pass query

compilers. Most importantly, optimizations require a number of analysis and rewrite

passes, i.e., database engineers have to become real compiler experts. The hard part

about writing compilers is not to get a transformation working on a few examples,

but to ensure correctness for all possible corner cases and for interactions with other

parts of the system, which may be changed independently. In comparison, LB2’s

single-pass approach facilitates query compilation using techniques that are no more

difficult than writing a query interpreter in a high-level language.

2.4 Experimental Evaluation

In this section, we evaluate the performance of LB2 on the standard TPC-H

benchmark with scale factor SF10. We compare LB2 with Postgres [111] and two

recent state-of-the-art compiled query engines: Hyper [6], and DBLAB [9]. HyPer

41

implements compilation using LLVM and DBLAB is a multi-pass query compiler that

generates C.

Configurations. We present three sets of experiments. The first set evaluates the

performance of LB2 with only those optimizations that are compliant with the official

TPC-H rules. The second set focuses on comparing optimizations that replicate data

and create auxiliary indexes (Section 2.3) with their counterparts in DBLAB. Finally,

the last set evaluates parallelism in LB2 and HyPer when scaling up the number of

cores (DBLAB only runs on a single core). We run each query five times and record

the median reading. For DBLAB and LB2, we use numactl to bind the execution to

one CPU. HyPer provides a flag for the same purpose PARALLEL=off.

Query plans in LB2 and DBLAB are supplied explicitly while HyPer and Postgres

implement a cost-based query optimizer. Since it is difficult to unify query plan

across all systems, we report two sets of results for LB2. The line LB2 (DBLAB plan)

uses DBLAB’s plans and LB2 (hyper plan) uses HyPer’s plans to the extent possible

but at least with the same join ordering. We choose not to turn indexing off in HyPer

to allow the query optimizer to pick the best plan. Also, DBLAB replaces the outer

join in Q13 with a hard-coded imperative array computation using side effects that

is neither expressible in SQL, nor in their internal query plan language.

DBLAB offers close to 30 configuration flags to enable/disable optimizations. In

the first experiment, we use the -compliant option (a subset of compliant configurations

per query). In the second experiment, we use the compliant configuration with the

hm-part flag, DBLAB/LB 4 and DBLAB/LB 5 configurations respectively to enable indexing,

date indexing with partitioning and string dictionaries as described in [9, 112]. We

compare each of these configurations to the corresponding one in LB2.

Performance Evaluation Parameters. The first experiment (i.e., TPC-H compli-

ant runtime) and the third experiment (i.e., parallelism) use the absolute runtime as a

key evaluation parameter. The second experiment evaluates the impact of individual

optimizations that are pre-computations. In this case, we also report the overhead

42

introduced by all these pre-computations relative to the loading time of LB2 without

any index generation (fastest loading).

Experimental Setup. All experiments are conducted on a single machine with

4 Xeon E7-88904 CPUs, 18 cores and 256GB RAM per socket (1 TB total). The

operating system is Ubuntu 14.04.1 LTS. We use Scala 2.11, Postgres 9.4, HyPer

v0.5-222-g04766a1 1, GCC 4.8 with optimization flag -O3 and GLib library 2.0. We

tried different versions of GCC and Clang with very similar results. We use the version

of DBLAB released by the authors as part of the SIGMOD ’16 artifact evaluation

process [112]2.

2.4.1 TPC-H Compliant Runtime

In the first experiment, we compare LB2 with Postgres, DBLAB, and HyPer on

a single core under the TPC-H compliant settings. Figure 2.7 reports the absolute

runtime for all TPC-H queries. We follow [9] in evaluating DBLAB without any

indexing and use the same configuration for LB2. We did not disable primary key

indexing in HyPer, as doing so appears to lead to very suboptimal query plans. In the

plans reported here, HyPer employed one or more index joins in Q2, Q8-Q10, Q12,

and Q21. Postgres is a Volcano-style interpreted query engine that is representative

of wide-spread traditional systems.

Overall, LB2 outperforms Postgres and DBLAB in all queries where query plans

are matched. Furthermore, LB2 and HyPer’s performance is comparable. On a query

by query analysis, LB2 outperforms DBLAB in aggregate queries Q1 and Q6 by 70%

and 4% respectively. On join queries Q3, Q5, Q10, etc. LB2 is 3⇥-13⇥ faster than

DBLAB. Similarly, LB2 is 5⇥-13⇥ faster in semi join and anti join queries Q4, Q16,

Q21 and Q22. In Q13, DBLAB replaces the outer join operator with a hard-coded
1At the time of writing, HyPer binaries are no longer publicly available. We use a version obtained
in late 2015.
2The generated C files for TPC-H queries submitted in [112] do not include an equivalent configu-
ration for (compliant+index) and also use nonstandard string constants, e.g., in Q3, Q7, etc. For a
uniform comparison, we re-generated the C files using [113].

43

SF
10

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

Po
st
gr
es

24
15
81

66
65

33
83
5

79
80

30
15
8

23
48
5

32
57
7

29
95
3

64
42
9

33
23
7

71
13

38
04
0

31
42
5

22
15
4

23
18
3

13
45
0

15
55
41

91
24
1

29
54
8

65
68
1

29
96
91

11
76
6

DB
LA
B

80
9

21
9

65
75

79
77

30
49

23
2

35
98

54
94

32
31
3

41
75

10
4

38
47

(1
07
9)

52
6

93
3

29
61

37
95

47
71

63
53

76
3

13
85
1

13
28

LB
2
(D
BL
AB

pl
an
)

47
6

14
0

49
1

57
3

57
6

22
3

91
4

19
41

45
40

12
30

52
69
1

40
12

37
7

37
3

59
5

20
01

12
94

26
23

56
9

18
87

23
5

Hy
Pe
r

61
3

61
11
93

87
2

99
1

23
3

98
2

63
7

20
29

10
21

13
8

50
4

37
18

34
2

26
1

12
74

58
0

37
64

20
03

43
9

16
58

19
0

LB
2
(H
yP
er

pl
an
)

47
6

14
1

49
4

57
3

64
9

22
2

70
6

86
2

28
06

13
78

51
69
1

40
12

24
6

18
9

59
3

19
94

12
89

29
65

83
3

17
93

23
4

10
0

10
1

10
2

10
3

10
4

10
5

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Runtime (ms)

Po
st

gr
es

D
BL

AB
LB

2
(D

BL
AB

 p
la

n)
H

yP
er

LB
2

(H
yP

er
 p

la
n)

Fi
g.

2.
7.

T
he

ab
so

lu
te

ru
nt

im
e

in
m

ill
ise

co
nd

s
(m

s)
fo

r
D

B
LA

B
,L

B
2

(w
ith

D
B

LA
B

’s
pl

an
s)

,H
yP

er
,L

B
2

(w
ith

H
yP

er
’s

jo
in

or
de

rin
g

pl
an

s)
in

T
P

C
-H

SF
10

.
O

nl
y

T
P

C
-H

co
m

pl
ia

nt
op

tim
iz

at
io

ns
ar

e
us

ed
.

44

imperative array computation that has no counterpart in the query plan language.

Hence, a direct comparison for this query is misleading, and we do not attempt to

recreate an equivalent “plan” in LB2.

The performance gap between LB2 and DBLAB can be attributed, in part, to a

number of implementation details. First, LB2 implements a generation-time string

abstraction (explained in Section 2.3.2) that optimizes commonly used string oper-

ations while DBLAB primarily relies on C-strings and only optimizes one instance

(the startsWith operation). Second, the systems make different decisions related to

hash join implementations, e.g., the hash function and number of keys used while

creating a hash table. LB2’s hash table is always custom-generated while DBLAB

sometimes relies on GLib C data structures and also uses function calls for some

string operations as opposed to inlining and specialization in LB2. Furthermore,

there are different trade-offs related to handling composite keys, i.e., either creating a

very selective hash table that combines more than one key or using only a single key

and relying on the join condition to filter unqualified tuples (essentially a short linear

search). We observe that DBLAB opts for smaller hash tables at the expense of more

extensive search, while LB2 chooses more precise hashing. Finally, there are differ-

ences in optimizing data layout, e.g., pertaining to row-oriented vs. column-oriented

layout for internal data structures (Section 2.3).

Comparing the performance of LB2 and HyPer, we observe that LB2 is faster by

at least 2⇥-3⇥ in Q3, Q11, Q16, and Q18. Also, LB2 is 25%-50% faster than HyPer

in Q1, Q4, Q5, Q7, Q14, and Q15. On the other hand, HyPer is faster than LB2 by

2⇥-3⇥ in Q2 and Q17. This performance gap is, in part, attributed to (1) HyPer’s use

of specialized operators like GroupJoin and (2) employing indexes on primary keys as

seen in Q2, Q8-Q10, etc. Finally, while both LB2 and HyPer generates native code

(LB2 generates C and HyPer generates LLVM), differences in implementation may

result in faster generated code. One example is floating point numbers. HyPer uses

proper decimal precision numbers, whereas LB2 and DBLAB use double precision

floating point values.

45

2.4.2 Index Optimizations

The second experiment focuses on evaluating three advanced optimizations that

were used by DBLAB to justify a multi-pass compiler pipeline [9]; primary and for-

eign key indexes, date indexes, and string dictionaries. In their full generality, these

optimizations are not compliant with the TPC-H rules [114] since they incur pre-

computation and potentially a duplication of data. While a subset of these opti-

mizations that indexes data uniformly across all queries would be allowed by the

TPC-H spec, we do not evaluate this setting for consistency with previously pub-

lished DBLAB configurations [9, 112]. The results of this experiment are shown in

Figures 2.8 and 2.9. The first table and graph give the absolute runtime of the

TPC-H queries with different levels of indexing enabled: primary/foreign key, date

columns, and string dictionaries. The second graph shows the overhead on loading

time associated with creating these indexes.

Primary and Foreign Key Indexes. The results for this configuration are shown

in line DBLAB/LB2-idx. Recall that DBLAB analyzes intermediate code to decide on

which indexes it will create. LB2 makes those decisions based on the query plan.

For the purpose of this experiment, we have tuned LB2’s decision rules to lead to

the same decisions as DBLAB. We observe that DBLAB’s index cost is greater than

LB2’s in all queries with Q5, Q12, and Q3 as the top three. In these queries, a

hash map index is created on a sparse key. While both systems follow a similar

compromise in allocating larger space to optimize access time, LB2’s column-oriented

layout contributes to lowering index creation and access cost. This observation is

the main reason for the better performance for LB2 over DBLAB. On a query by

query analysis for the absolute runtime, LB2 outperforms DBLAB in join query Q3

by 3⇥ and by 15%, 80% in Q10 and Q5 respectively. Similarly, LB2 is 2⇥-4⇥ faster

in semi join and anti join queries Q4, Q22, Q16, Q21. On the other hand, DBLAB is

faster than LB2 in Q7 and Q9 by 3% and 13% respectively. As discussed in Section

46

SF
10

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

DB
LA
B-
id
x

82
7

14
4

23
41

63
1

38
0

23
6

12
3

33
2

90
0

76
5

10
0

11
67

(1
37
9)

27
2

91
9

46
48

26
6

46
80

24
7

31
2

14
08

20
8

LB
2-
id
x

52
1

87
68
5

31
6

20
7

22
3

12
7

81
10
21

66
3

15
48
9

38
95

27
2

44
0

11
57

14
4

18
3

69
84

34
7

10
4

DB
LA
B-
id
x-
da
te

92
8

10
1

42
2

21
7

20
7

11
7

78
29
2

84
6

70
3

85
12
42

(1
33
7)

28
9

40
53
55

21
8

20
0

31
1

41
4

62
6

17
3

LB
2-
id
x-
da
te

48
5

85
15
2

16
2

21
2

80
10
8

81
10
24

45
5

17
29
4

38
95

26
54

11
53

13
8

20
4

69
83

40
6

10
4

DB
LA
B-
id
x-
da
te
-s
tr

49
7

97
13
8

22
2

22
5

82
79

23
51
0

60
3

13
0

36
2

(4
50
7)

16
41

55
5

13
19
8

15
40
1

49
4

17
6

LB
2-
id
x-
da
te
-s
tr

48
7

74
16
6

18
5

17
0

79
85

35
64
1

40
8

16
18
4

39
04

10
56

77
4

7
18
4

11
85

38
4

10
4

10
0

10
1

10
2

10
3

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Runtime (ms)

D
BL

AB
−i

dx
LB

2−
id

x
D

BL
AB

−i
dx
−d

at
e

LB
2−

id
x−

da
te

D
BL

AB
−i

dx
−d

at
e−

st
r

LB
2−

id
x−

da
te
−s

tr

Fi
g.

2.
8.

T
he

ab
so

lu
te

ru
nt

im
e

in
m

ill
ise

co
nd

s(
m

s)
af

te
re

na
bl

in
g

no
n-

T
P

C
-H

-c
om

pl
ia

nt
in

de
xi

ng
,d

at
e

in
de

xi
ng

an
d

st
rin

g
di

ct
io

na
ry

in
SF

10
us

in
g

D
B

LA
B

pl
an

s.

47

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

DB
LA
B-
co
mp
li
an
t

3.
8

1.
5

3.
8

4.
1

3.
6

3.
3

7.
4

6.
2

7.
3

5.
9

2.
2

3.
3

4.
8

3.
4

2.
2

3.
5

3.
3

2.
2

3.
8

3.
6

1.
8

3.
5

LB
2-
co
mp
li
an
t

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

DB
LA
B-
id
x

4
1.
7

5.
6

5.
5

5.
6

3.
5

5.
6

6
5.
5

5.
5

2.
9

3.
6

5.
2

3.
8

2.
5

3
4.
7

2.
8

6.
2

5.
9

3
5.
4

LB
2-
id
x

1
0.
9

1.
3

1.
2

1.
7

1
3.
2

4
4.
1

1.
2

1.
3

1
1

1
1

0.
8

2.
7

1.
2

6.
7

3.
6

2.
1

1.
7

DB
LA
B-
id
x-
da
te

3.
9

2.
1

4.
4

4.
4

3.
9

6.
2

4.
1

4.
2

4.
2

4.
5

2.
2

3.
7

4.
7

4.
2

2.
4

3.
2

3.
3

2.
7

4.
8

4.
5

2
3.
8

LB
2-
id
x-
da
te

1.
2

0.
9

1.
7

1.
2

1.
6

1.
2

2.
3

3.
2

3.
9

1.
2

1
1.
1

0.
8

1.
1

1.
1

0.
7

2.
2

1.
1

6.
2

3.
1

1.
6

1.
2

DB
LA
B-
id
x-
da
te
-s
tr
in
g

3.
8

3
4.
3

4.
1

4
4.
4

4.
6

4.
4

4.
5

4.
7

4.
2

4.
7

37
.4

4.
8

2.
4

4.
6

3.
2

2.
6

5.
3

5
2

5.
5

LB
2-
id
x-
da
te
-s
tr
in
g

1.
7

1.
2

1.
9

1.
5

1.
9

1.
4

2.
6

3.
5

4.
3

1.
4

1.
3

1.
3

1
1.
6

1.
4

1.
2

2.
8

1.
7

5.
5

3.
3

2
1.
7

01234567

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

Slowdown

D
BL
AB

−c
om

pl
ia
nt

LB
2−
co
m
pl
ia
nt

D
BL
AB

−i
dx

LB
2−
id
x

D
BL
AB

−i
dx
−d
at
e

LB
2−
id
x−
da
te

D
BL
AB

−i
dx
−d
at
e−
st
r

LB
2−
id
x−
da
te
−s
tr

Fi
g.

2.
9.

O
ve

rh
ea

d
in

lo
ad

in
g

tim
e

in
tr

od
uc

ed
by

in
de

x
cr

ea
tio

n,
da

te
in

de
xi

ng
an

d
st

rin
g

di
ct

io
na

ry
on

D
B

LA
B

an
d

LB
2

in
SF

10
us

in
g

D
B

LA
B

pl
an

s
(s

lo
w

do
w

n
re

la
tiv

e
to

LB
2-

co
m

pl
ia

nt
).

48

2.4.1 the performance gap is attributed to a variety of implementation details that

are different between the two systems.

Finally, we can notice that using index inference may result in access paths that

are slower than hash joins, e.g., Q16. Indexes are built on leaf nodes whereas hash

tables are built on interior nodes with the smaller intermediate result. Therefore,

a query optimizer with a cost model would avoid slower access paths and using an

index every time it is available may not be the optimal solution for the query. For Q13

DBLAB is much faster than LB2 due to their use of imperative computation outside

of query plans (as noted above). Curiously, enabling index optimizations causes a

slowdown in DBLAB for Q13.

Date Indexes. The date indexing optimization is used when a table is filtered on a

date attribute. The table is partitioned by year and month on the given attribute and

the index is scanned only on the dates that satisfy the predicate. This optimization

is always beneficial in both systems.

String Dictionaries. DBLAB creates string dictionaries to speed up commonly used

string operations: equality, startsWith, endsWith and like. In LB2, a string dictionary

is used only for the first three operations. We decided that tokenizing strings in order

to optimize the like operation (as in DBLAB) is difficult in the general situation. A

simple example is like %green%. This should match the word greenway but tokenizing

over spaces, punctuation, etc. would not be correct. The line DBLAB/LB2-idx-date-str

in the Figure 2.8 shows runtime when using the string dictionary optimization in

DBLAB and LB2. Queries 3, 8, 12, 17, 19 are only using equality operations. LB2 is

35%-95% faster in Q12, Q17, Q19 whereas DBLAB is 20%, 50% faster in Q3 and Q8

respectively. Moreover, Q2 and Q14 uses startsWith and endsWith. LB2 is 30% and

60% faster in these queries. Finally, Q9, Q13 and Q16 use like that LB2 does not

optimize. However, DBLAB does not optimize it for Q13 either. When generating

the C code for Q13 in this experiment, the DBLAB executable raised a segfault that

we manually fixed.

49

0

250

500

750

1000

1 2 4 8 16

R
un

tim
e

(m
s)

LB2
HyPer

Query 4

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2
HyPer

Query 6

0

2000

4000

6000

1 2 4 8 16

R
un

tim
e

(m
s)

LB2
HyPer

Query 13

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2
HyPer

Query 14

0

100

200

300

400

1 2 4 8 16

R
un

tim
e

(m
s)

LB2
HyPer

Query 22

Fig. 2.10. The absolute runtime in milliseconds (ms) for parallel scaling
up LB2 and HyPer in SF10 on 2, 4, 8 and 16 cores.

2.4.3 Parallelism

In this experiment, we compare the scalability of LB2 with HyPer. DBLAB

does not support parallelism. We pick five queries that represent aggregates and join

variants. Figure 2.10 gives the absolute runtime for scaling up LB2 and HyPer for Q4,

Q6, Q13, Q14, and Q22 in SF10. Overall, the speedup of LB2 and HyPer increases

with the number of cores, by an average 4⇥-5⇥ in Q22 and by 5⇥-11⇥ in Q4, Q6,

Q13, and Q14.

At a closer look, LB2 outperforms HyPer in semi join Q4 by 50% with 2 to 8

cores. In outer join Q13, LB2 is 10%-20% faster than HyPer up to 16 cores. On the

other hand, the performance of LB2 and HyPer is comparable in aggregate query Q6.

Finally, HyPer outperforms LB2 in anti join Q22 by 10%-50% with 2 to 16 cores. In

summary, the parallel scaling in LB2 and HyPer lie within a close range. However,

the difference in implementation and parallel data structures can result in faster code.

In terms of implementation, LB2 generates C code and realizes parallelism in a high-

50

level style using OpenMP. HyPer generates LLVM and uses Pthreads for fine-grained

(Morsel-driven [115]) parallelism.

Conclusion The results of our experiments show that LB2 can compete against state-

of-the-art query compilers. However, LB2’s design is simpler than both DBLAB and

HyPer; it is derived from a straightforward query interpreter design and does not

require multiple compiler passes or additional intermediate languages.

2.4.4 Code generation and Compilation

In this experiment, we analyze the overhead of code generation and compilation

using GCC in LB2 and DBLAB with the compliant and optimal configurations. The

results are illustrated in Figure 2.11. The y-axis value shows both code generation

and GCC compilation for each configuration.

Code generation time increases with the number of operators and subqueries, e.g.,

in Q2, Q5, Q8, and Q21. Compilation times are constant for any dataset size, and

can often be amortized if queries are precompiled and used multiple times.

At a closer look, LB2 is faster than DBLAB in TPC-H compliant mode for code

generation by an average of 3%-80%. On the other hand, LB2 is slower for Q1, Q4,

Q11-Q13, Q15, and Q18-Q19 by an average of 15%-2.6⇥. For GCC compilation, LB2

is between 40% slower and 75% faster than DBLAB. In the optimal mode, LB2 is

slower for Q15 and Q17-Q21 by up to 40% and faster for the remaining queries by

up to 3.8⇥. For GCC compilation, LB2 is between 30% slower and 35% faster than

DBLAB.

2.4.5 Productivity Evaluation

Table 2.1 summarizes the line of code (LOC) that have been added to the compli-

ant LB2 compiler for each optimization. The original core engine of HyPer is reported

to consist of around 11k lines of code [6] that uses low-level LLVM APIs to produce

code in LLVM’s intermediate language.

51

Q1
Q2

Q3
Q4

Q5
Q6

Q7
Q8

Q9
Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

LB
2-
co
mp
li
an
t

24
3

65
0

38
1

22
1

44
4

59
51
9

66
3

44
7

42
7

30
2

35
6

19
7

14
7

32
2

28
6

17
1

36
6

22
8

38
7

39
8

21
1

LB
2-
co
mp
li
an
t
GC
C

17
5

55
8

42
1

33
6

66
4

18
0

43
6

50
7

49
8

43
9

32
0

28
3

20
3

19
5

22
8

29
2

21
4

36
8

34
9

36
7

44
9

22
9

LB
2-
op
t

36
7

73
6

42
0

27
4

56
6

13
9

53
7

69
3

46
8

35
8

37
9

26
1

22
6

24
8

42
0

30
9

43
5

50
2

52
6

51
2

68
6

27
6

LB
2-
op
t
GC
C

24
5

57
8

28
9

24
8

38
5

18
0

42
1

46
2

40
8

33
8

30
2

25
9

21
4

22
2

34
0

27
4

23
7

33
2

40
2

36
5

46
7

23
1

DB
LA
B-
co
mp
li
an
t

17
8

67
0

51
4

18
7

70
1

90
62
0

11
99

74
5

45
8

26
6

25
8

16
4

15
4

12
4

48
5

18
2

25
1

19
8

46
7

41
0

27
1

DB
LA
B-
co
mp
li
an
t
GC
C

26
0

40
1

48
8

36
3

69
9

22
8

60
5

78
5

77
2

43
4

30
0

39
1

25
4

31
1

29
2

49
7

37
6

54
5

59
8

60
6

48
6

27
3

DB
LA
B-
op
t

60
5

20
40

85
6

65
8

17
83

36
3

14
09

26
71

86
8

70
0

46
0

63
2

43
2

41
7

33
3

77
2

31
3

42
5

47
3

49
2

49
7

40
3

DB
LA
B-
op
t
GC
C

23
7

32
4

38
2

33
3

50
8

20
7

51
3

55
1

53
2

39
2

26
1

32
1

26
7

29
4

26
6

34
8

30
3

34
2

39
0

42
4

39
0

31
6

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

 2
50

0
 3

00
0

 3
50

0

Compilation Time (ms)

LB
2-

co
m

p
LB

2-
co

m
p

GC
C

LB
2-

op
t

LB
2-

op
t G

CC
DB

LA
B-

co
m

p
DB

LA
B-

co
m

p
GC

C
DB

LA
B-

op
t

DB
LA

B-
op

t G
CC

Q2
2

Q2
1

Q2
0

Q1
9

Q1
8

Q1
7

Q1
6

Q1
5

Q1
4

Q1
3

Q1
2

Q1
1

Q1
0

Q9
Q8

Q7
Q6

Q5
Q4

Q3
Q2

Q1

Fi
g.

2.
11

.
C

od
e

ge
ne

ra
tio

n
an

d
co

m
pi

la
tio

n
fo

r
LB

2
an

d
D

B
LA

B
.

52

DBLAB is based on a specifically developed compiler framework called SC [9],

with about 30k lines of code. Most or all of the facilities provides by this framework

appear necessary. While the DBLAB developers claim that SC can serve as a generic

compiler framework, there is no evidence that it is used anywhere else. By contrast,

LB2 uses the LMS compiler framework [24], which has been used by a variety of

groups in academia and industry for applications ranging from generating JavaScript

to C, CUDA, and VHDL. LMS is only 7k lines in total, and of that, LB2 uses

only a small fraction. While LMS does provide sophisticated support for multiple

intermediate languages and transformation passes, LB2 does not use any of these

facilities. Removing this functionality from LMS leads to a core framework of only

2k lines that are enough to support LB2.

Table 2.1.
Lines of code needed to add various optimization to LB2.

LB2 DBLAB

Base 1800 3700

Index data structures 200 505

Compliant Indexing compilation 80 318

Non-compliant String Dictionary 150 456

Non-compliant Date Indexing 50 400

Memory Allocation Hoisting 30 186

Other 600 1000

Total modified 1100 2800

2.5 Discussion

In this section, we draw some general insights and aim to clarify some specific

points of discussion, notably regarding single-pass vs. multi-pass compilers.

Templates Expansion vs. Many Passes: A False Dichotomy. The authors

of DBLAB [9] motivate their multi-pass architecture by claiming that “all existing

query compilers are template expanders at heart” and that “template expanders make

53

cross-operator code optimization impossible”. But this argument confuses first-order,

context-free, template expansion with the richer class of potentially more sophis-

ticated single-pass compilers, which can very well perform context-dependent opti-

mizations. Especially in the context of Futamura projections, we have shown that

the structure of the query interpreter that is specialized into a query compiler has

a large effect on the style of generated code, and can achieve all the optimizations

implemented in DBLAB.

Are Many Passes Necessary? Staying with the specialization idea of Futamura

projections, we can specialize away further abstraction levels without auxiliary trans-

formation passes. Hence, we demonstrate that for standard relational workloads, no

additional intermediate languages besides the query plan language and the generated

C level are necessary.

Do Many Passes Help or Hurt? Multiple passes help if one step of expan-

sion/specialization can expose information to an analysis that is not present in the

source language. For database queries, the source language of query plans is already

designed to contain all relevant information. If some information is missing, it can

likely be added to the execution plan language. Hence, we find that additional ab-

straction levels in between relational operators and C code do not provide tangible

benefits. To the contrary, some information may get lost and has to be arduously

recovered. Multiple transformation passes depend on analysis of imperative code that

manipulates low-level data structures, which is notoriously difficult.

In contrast, the database community has already solved the query optimization

problem for interpreted engines, and cost-based optimizers that produce good plans

are available. In particular, deciding when an index can be used to speed up a join

query is readily solved by looking at the query plan. Trying to make such a decision

by analyzing low-level code generated from a physical plan (as DBLAB does) seems

overall backward, and unlikely to scale to realistic use cases.

When to use Multiple Intermediate Languages? We have argued that we

do not need stacks of multiple intermediate languages for compiling relational query

54

plans. So when do we need them? A key use case is in combining multiple front-end

query languages (DSLs), e.g., SQL and a DSL for machine learning or linear algebra

(as in Delite’s OptiQL and OptiML [27]). First, domain-specific optimizations need to

be applied on each DSL independently, e.g., arithmetic simplification, join ordering,

etc. After that, a series of compiler transformations may be needed to translate both

DSLs into a common intermediate core, where loop fusion and other compiler level

optimizations can be performed before code generation.

In a relational system, the query plan DSL is essential. We have to perform cost-

based optimization of join ordering before we can think about generating code. The

situation is similar in a linear algebra DSL, where we have to perform arithmetic

optimizations before switching representations from matrices and vectors to loops

and arrays.

2.6 Conclusions

We advocate that query compilation need not be hard and that a low-level cod-

ing style on the one hand and the added complexity of multiple compiler passes

and intermediate languages, on the other hand, are unnecessary. Drawing on the

old but under-appreciated idea of Futamura projections, we have presented LB2; a

fully compiled query engine, and we have shown that LB2 performs on par with, and

sometimes beats the best compiled query engines on the standard TPC-H benchmark.

Specifically, LB2 is the first query engine built in a high-level language that is com-

petitive with HyPer [6], both in sequential and parallel execution. LB2 is also the

first single-pass query engine that is competitive with DBLAB [9] using the full set

of non-TPC-H-compliant optimizations. In conclusion, we demonstrate that highly

efficient query compilation can be simple and elegant, with not significantly more

implementation effort than an efficient query interpreter.

55

3. ARCHITECTING A QUERY COMPILER FOR SPATIAL
WORKLOADS

This Chapter is based on the paper On Supporting Compilation in Spatial Query

Engines (Vision Paper) which appeared at the Proceedings of the 2016 International

Conference on Advances in Geographic Information Systems SIGSPATIAL GIS’16

[30] and the technical report How to Architect a Query Compiler for Spatial Workloads

[116].

Modern location-based applications rely extensively on efficient processing of spa-

tial data and queries. Spatial query engines are commonly engineered as an extension

to a relational database or a cluster-computing framework. Large parts of the spatial

processing runtime is spent on evaluating spatial predicates and traversing spatial in-

dexing structures. Typical high-level implementations of these spatial structures incur

significant interpretive overhead, which increases latency and lowers throughput. A

promising idea to improve the performance of spatial workloads is to leverage native

code generation techniques that have become popular in relational query engines.

However, architecting a spatial query compiler is challenging since spatial process-

ing has fundamentally different execution characteristics from relational workloads in

terms of data dimensionality, indexing structures, and predicate evaluation.

In this Chapter, we discuss the underlying reasons why standard query compi-

lation techniques are not fully effective when applied to spatial workloads, and we

demonstrate how a particular style of query compilation based on techniques bor-

rowed from partial evaluation and generative programming manages to avoid most of

these difficulties by extending the scope of custom code generation into the data struc-

ture layer. We extend the LB2 query compiler, with spatial data types, predicates,

indexing structures, and operators. We show that the spatial extension matches the

56

Diverse Data Indexing Structures Evaluation

indexing processing

...A B
...

C ...
relational

spatial
lat lon
...

alt ...

⋈
σ Γ

A B

Fig. 3.1. Overview of a spatial extension.

performance of specialized library code and outperforms relational and map-reduce

extensions.

Spatial processing is commonly realized as an extension to a relational database

management system (RDBMS), e.g., PostGIS [15], Oracle Spatial [43], etc., or a

cluster computing framework, e.g., GeoSpark [16], Simba [17], etc. Figure 3.1 gives

an overview of such spatial extensions that add spatial data types, predicates, in-

dexing structures, and operators. The key advantage of extending an existing data

management back-end is leveraging the engineering effort that went into building

sophisticated management layers for memory, storage, and query evaluation.

Bottlenecks in Existing Spatial Engines Time spent in evaluating spatial pred-

icates makes up a large part of spatial processing runtime. For instance, a spatial

range join operator performs the ST_Contains predicate on pairs of data records when

testing for spatial containment. For convenience, spatial engines rely on external li-

braries, e.g., JTS [18], Geos [19] for evaluating spatial predicates. However, these

high-level libraries are opaque to the query evaluator which incurs runtime overhead

in expensive function calls, and also prevents further code optimizations that target

both the predicate and query plan implementation, e.g., inlining, loop fusion, etc.

For the case of relational spatial processing, the in-database data structures are

typically implemented in a generic form to unify various types of structures behind a

57

common interface. For instance, the SP-GiST [10] indexing framework in PostgreSQL

is used to instantiate a quad-tree, k-d tree, or trie. Processing data in generic struc-

tures is expensive due to function calls (usually virtual) needed to resolve which data

structure to use. Additionally, most relational engines are interpreters that run pre-

compiled code to process data in high-level form, i.e., Record structures (in contrast

to query compilation, i.e., generating specialized low-level target code per query plan

at runtime as demonstrated in recent query compilers [6, 7, 9, 31]).

Similarly, the performance of spatial Spark extensions is suboptimal, in general,

due to the following issues [29]. Spark is internally designed for distributed shared-

nothing environments. At runtime, Spark generates multiple code regions for its

resilient distributed datasets RDDs. Traversing separate regions at runtime is expen-

sive due to various reasons, e.g., main-memory data structures, JVM overhead, etc.

Moreover, spatial datasets need to be explicitly partitioned to avoid scanning the en-

tire data under Spark’s distributed execution model. Data partitioning is expensive

especially when performed inside Spark due to internal overheads of RDD processing.

In summary, both spatial relational and spatial Spark extensions incur substantial

runtime overhead. What can be done to speed up spatial computations? It is natural

to look at query compilation – the translation of high-level queries to native code –

which has seen a renaissance in relational query engines. However, applying query

compilation techniques effectively to spatial workloads is far from straightforward.

We discuss some of the unique challenges next.

3.1 Challenges of Compiling Spatial Workloads

Over the previous years, several approaches have been proposed for state-of-the-

art query engines to compile relational queries to native code. For instance, HyPer

uses low-level code generation [6] that mixes generated LLVM for isolated pipelines

within a query plan with pre-written C++ kernels for data structures and individual

operators. LegoBase [7] and DBLAB [9] are high-level query compilers that use multi-

58

ple intermediate languages and compiler passes to generate optimized code. The LB2

query compiler [31] demonstrates that a simple one-pass compiler phase is sufficient

to efficiently compile relational queries.

However, at the time of writing this dissertation, none of the previous query com-

pilation techniques have been applied to architect a spatial query compiler yet since

(i) spatial processing is fundamentally different from relational workloads in terms of

data dimensions, indexing structures and query evaluation (ii) implementing any of

the previous compilation approaches in spatial engines would not necessarily result

in significant speedups, unless the generated spatial indexing structures and spatial

query evaluation code are carefully specialized to eliminate interpretive overhead.

In particular, as we discuss below, the architecture pioneered by HyPer and

adopted by many other systems including Spark SQL, which uses on-the-fly-generated

code only for the high-level control structure but relies on pre-written libraries of data

structures is unlikely to scale to efficient spatial workloads.

Identifying the Dominating Query Evaluation Cost Relational data is typi-

cally dense, and sorting and indexing methods, e.g., hash tables or B-tree variants, are

sufficient to achieve efficient evaluation. As a consequence, works on relational query

compilation have primarily focused on removing the interpretive overhead inherent in

traversing a query execution plan and evaluating fine-grained logical predicates that

are individually inexpensive. On the other hand, spatial processing cost is rather

dominated by evaluating coarse-grained spatial predicates that are individually com-

putationally epensive and accessing complex spatial data structures that index diverse

types of spatial data, e.g., points, rectangles, etc.

Choosing a Query Compilation Approach As discussed earlier, spatial data

are multi-dimensional, diverse and sparse, i.e., potentially covering a large space with

a less regular structure. Therefore, we argue that architecting a spatial query com-

piler needs to go beyond removing the interpretive overhead from query evaluation

and focus on evaluating complex spatial predicates and generating efficient spatial in-

59

dexing structures. The question then is: how to choose a query compilation approach

for spatial workloads?

At first glance, a compilation approach similar to HyPer’s where data structures

are pre-implemented in a high-level language, i.e., C++ and the query evaluation en-

coded in LLVM assembly would appear as an attractive approach to compile spatial

workloads. However, taking an in-depth look at this style of code generation as it is

adopted in systems like Spark [29] already reveals that pre-implementing data struc-

tures in a language other than C++, especially Java for interoperability with common

cluster computing frameworks, results in generating suboptimal code due to various

issues including JVM overhead, the specialization level of data structures and query

evaluation did not entirely remove interpretive overhead associated with processing

Spark distributed plan.

Furthermore, adopting DBLAB’s approach for compiling spatial queries would

require adding new transformation passes tailored towards high-dimensional spatial

indexing structures since DBLAB’s compiler is engineered to compile linear data

structures, e.g., hash tables to specialized arrays.

For the rest of this Chapter, we demonstrate that the underlying idea of construct-

ing simple but highly efficient query compilers not only applies to purely relational

workloads but carries over to processing spatial workloads. Given an optimized spa-

tial query plan, the key idea to address the previous challenges is to specialize spatial

and predicate implementation (Section 3.2.2) in addition to facilitating building op-

timized data structures (Section 3.2.3) using programmatic specialization, the same

technique LB2 already uses for generating efficient code for relational queries. We

thus extend the LB2 [31] main-memory query compiler with spatial compilation. In

particular, spatial predicates, indexing structures, and spatial operators.

60

Target
query
plan

LMS
Framework

emits
query

staged

Query Compiler

Spatial Predicates &
Operators

Parser &
Optimizer

Graph Operators

Query Engine

Spatial
Indexes

Fig. 3.2. Extending LB2 with spatial processing.

3.2 Architecting a Spatial Query Compiler

Over the previous decade, spatial query engines have devoted a tremendous effort

to support large workloads by building spatial indexes [117], applying adaptive query

processing techniques [118], exploiting advances in distributed and parallel computing,

etc. We add to the ongoing effort and compile spatial queries to low-level code as in

pioneering relational databases. Our goal is to architect a spatial query compiler, in

a high-level language, by extending LB2 with spatial data types, spatial predicates,

spatial indexing structures, and spatial operators.

3.2.1 LB2-Spatial Overview

The LB2-Spatial extension compiles spatial queries into optimized native code.

Figure 3.2 shows a high-level architecture of LB2-Spatial. The front-end accepts SQL

queries, spatial queries (adopting the syntax in [15,17]), and a domain-specific API for

spatial operations in Scala. The back-end is extended with spatial predicates, indexing

structures (R-tree, k-d tree and 2D grid) and the following select and join operators:

rectangle range, distance, and kNN (each operator is implemented without using an

index, with an index, serial and parallel). The index-based kNN operator implements

the branch-and-bound algorithm from Roussopoulos et al. [119]. Similar to LB2, the

data structures used by spatial operators, e.g., spatial indexes are implemented using

LB2’s high-level abstractions, e.g., various array buffers that generate low-level code.

61

As discussed earlier in Chapter 2, evaluating a query plan with respect to a staged

query evaluator (using LMS Rep annotations) produces a staged query. The LMS

framework builds an intermediate representation (IR) graph that encodes high-level

constructs and operations. The result of executing the graph is a source program

(written in Scala or C) that implements the query evaluation without the interpretive

overhead of processing static input (i.e., query pipeline). Finally, the generated code

is compiled into a target and executed.

Front-end and Query Optimization Spatial Spark extensions, e.g., Simba and

GeoSpark, provide SQL front-end as, traditional RDBMS, and a programmatic front-

end that offers a spatial processing API within a programming language, e.g., Scala,

Python, etc. LB2-Spatial follows the same approach and leverages the extensible

Spark SQL [5] front-end and Catalyst optimizer as follows. The SQL grammar rules

are extended with spatial keywords, e.g., within, kNN, etc. needed to form spatial

queries. Similarly, the Catalyst optimizer is extended with rules that identify the

spatial constructs and also performs optimizations as pushing down spatial predicates.

Since Spark SQL is implemented in Scala, LB2-Spatial only needs to map Spark’s

optimized query plan into LB2’s back-end operators and data structures1.

Query Example Throughout the remainder of this Section, we are going to use

the range join query illustrated in Figure 3.3a (expressed in SQL and spatial API)

as a running example for compiling spatial queries. Given two tables, Rectangles and

Points, the range join query finds the points located inside the rectangle areas.

Figure 3.3b shows the straightforward implementation of range join using nested

loops (in the data-centric model with callbacks). Query evaluation starts with

Print operator calling the exec method of its child NestedLoopRangeJoinOp. The

NestedLoopRangeJoinOp, in turn, executes its own exec method (Lines 6-19) where it

calls the exec methods of Scan(Rectangles) and Scan(Points) operators (i.e., left.exec

and right.exec). At a closer look, Lines 6-10 shows the actions that are performed
1The Spark SQL version used is 2.2

62

// Rectangles(rid: Int, x1: Int, x2: Int, y1: Int)
// Points (pid: Int, px: Int, py: Int)

SELECT *
FROM Rectangles, Points
WHERE ST_Contains(x1,x2,y1,y2,px,py)

Print(
NestedLoopRangeJoinOp(
Scan(Rectangles), Scan(Points))
(x => x("x1"))(x => x("x2"))
(x => x("y1"))(x => x("y2"))
(x => x("px"))(x => x("py"))) PointsRectangles

ST_Contains
(x1,x2,y1,y2,
 px,py)

⋈
Π

(a)

1 class NestedLoopRangeJoinOp(left: Op, right: Op)
2 (x1Fun: key1, x2Fun: key2, ..., pxFun: keyx, pxFun: keyy)
3 extends Op {
4 val len = var_new(0L)
5 val buffer = new ColumnarBuffer(schema, defaultSize)
6 def exec(cb: Record => Unit) = {
7 left.exec { rec =>
8 buffer(len) = rec
9 len = len + 1
10 }
11 right.exec { rec =>
12 for (i<-0 until len){
13 val x1 = key1(buffer(i))
14 // val x2 ... val y1 ... val y2 ...
15 val px = keyx(rec)
16 val py = keyy(rec)
17 if(ST_Contains(x1,x2,y1,y2,px,py))
18 cb(merge(buffer(i),rec))
19 }}}}

(b)

Fig. 3.3. (a) Rectangle range join query in SQL and QPlan (b) the im-
plementation of NestedLoopRangeJoinOp in LB2-Spatial.

on the left operator where the records obtained from Rectangles table are inserted

into a buffer to prepare for the joining operation. Moreover, Lines 11-18 encodes the

join operation where a pair of rectangle and point values are extracted in Lines 13-16

from the corresponding records, and the spatial predicate ST_Contains is evaluated.

63

Finally, the statement in Line 18 is essential as it invokes the callback of the caller’s

exec method to stream the joined records to the parent operator Print.

Next, in Sections 3.2.2-3.2.5, we discuss the elements of compiling spatial queries:

staging spatial predicates, specializing indexing structures, supporting parallelism in

shared-memory and spatial applications.

3.2.2 Staging Spatial Predicates

Spatial predicates encode the spatial relation between spatial types, e.g., overlap,

containment, etc. Spatial query engines extensively use spatial predicates (usually

provided by external libraries) to implement various spatial operations, e.g., nearest

neighbors, ranking, etc. For convenience, external libraries, e.g., JTS [18] in Java,

Geos [19] in C++, etc. are used for spatial predicates’ evaluation. However, using

libraries for spatial predicates evaluation result in generating suboptimal code. First,

the generic library interface adds nontrivial interpretive overhead in function calls to

process parameter types and choosing the right overloaded function. For instance, a

spatial shape could be a point, line, polygon, etc. Second, the library code appears

as a black box for the query engine and hence cannot be further optimized. To

address the previous shortcomings, LB2-Spatial implements spatial predicates inside

the query engine. The implementation effort is equivalent to staging the code of an

existing open source library with Rep type constructor.

Figure 3.4a shows a staged implementation for a simplified2 ST_Contains predicate

used in range queries that tests whether a point (x, y) is located inside a minimum

bounding rectangle (x1, x2, y1, y2). The Rep constructor denotes that all parameter

values are future stage (i.e., only known at runtime). Figure 3.4b shows a partial

code for a filter operation that uses the staged ST_Contains to check whether a point

is contained inside a rectangle. Figure 3.4c shows the generated code in Scala (LB2-

Spatial generates Scala and C).
2typically a compile-time abstractions Rectangle and Point are used.

64

def ST_Contains(x1: Rep[Int],
x2: Rep[Int], y1: Rep[Int],
y2:Rep[Int], x: Rep[Int],
y: Rep[Int]): Rep[Boolean]={

((x1 <= x) && (x2 >= x) &&
(y1 <= y) && (y2 >=y))

}

// Scanner code ...
val rec = Record(fields, schema)
val x1 = rec("x1")
val x2 = rec("x2")
val y1 = rec("y1")
// ...

if(ST_Contains(x1, x2, y1, y2,px,py))
println("ST_Contains")

(a) (b)

// Scanner code ...
// x11-x16 represent x1,x2,y1,y2,px,py
val x18 = x11 <= x15
val x20 = if (x18) {
val x19 = x12 >= x15; x19

} else false
val x22 = if (x20) {
val x21 = x13 <= x16; x21

} else false
val x24 = if (x22) {
val x23 = x14 >= x16; x23

} else false
val x27 = if (x24) {
val x25 = println("ST_Contains"); x25

} else ()
x27

(c)

Fig. 3.4. Compiling spatial predicates (a) staging ST_Contains predicate
using Rep type constructor (b) application code that uses ST_Contains (c)
generated code in Scala.

3.2.3 Data Loading and Indexing Structures

Data Loading Data is processed in-situ without an explicit preloading phase as

follows. The query optimizer uses the available meta-data, and statistics to produce

an optimized query plan. At loading time, indexes are created based on the key

attributes specified in the query plan. Finally, indexes are made available for the

query evaluator.

65

4,8

3,6

c

gd
9,3

2,2 1,9 6,1 7,8
e a f h

3,10 10,9
b i

-1 2 3 6 4 0 5 -1-1-1 1 -1 -1-17 8
2

2

4

4

6

6 8

8

10

10
a

b

c

d

e
f

g

h
i Schema:

 Points(id: String,
 x: Double,
 y: Double)

a b c d e f g h i
1 343 2 6 9 7 10
9 10 68 2 1 3 8 9

0 1 2 3 4 5 6 7 8
id
x
y

(a) (b)

(c)

(d)

Fig. 3.5. Specializing k-d tree index in LB2 (a) data in column-layout
(b)-(c) standard k-d tree implementation using pointers and (d) using a
flat array.

Data Structures Spatial data are multi-dimensional in nature. Hence, spatial

engines implement various types of indexing structures to access data efficiently. For

instance, R-trees are used when indexing minimum bounding rectangles (MBRs),

k-d trees are suitable for range, and nearest neighbor queries, grids perform best

when data is not skewed, etc. General indexing frameworks, e.g., SP-GiST [10] used

in PostGIS provides high-level abstractions to support most commonly used tree

indexes, e.g., R-tree, k-d tree and tries. Traversing generic trees tend to be inefficient

due to expensive function calls (usually virtual). Thus, LB2-Spatial generates code

for indexes (instead of using generic libraries) and uses data schema to specialize

access to indexes, and hence eliminating dispatch overhead. Moreover, LB2 flattens

tree structures into arrays to optimize data access and layout.

Figure 3.5 demonstrates the specialization of the k-d tree index in LB2-Spatial.

Data is stored in a column-oriented layout for optimized storage and access. Figure

3.5b-c shows the space layout, and the standard k-d tree using pointers. The flattened

k-d tree is shown in 3.5d where the values inside the flat array reference the original

data without duplication. In main-memory spatial processing, flat data structures

have shown good performance [120].

66

1 // left: Rectangles table,
2 // right: spatial index on Points table
3 // Index range operator that uses a spatial index on the right table
4 class IndexRangeJoinOp(left: Op, right: Op) (idxName: String)
5 (rectFun: keyRect) extends Op {
6 // obtain index for right table
7 val index: Index = right.getIndex(idxName)
8 def exec(cb: Record => Unit) = {
9 left.exec{ lTuple =>
10 val rectangle = rectFun(lTuple)
11 // use index to find the points located inside rectangle
12 index(rectangle).RangeRectangle{ pnt =>
13 cb(merge(pnt, rectangle))
14 }}}}

Fig. 3.6. The implementation of index range join operator.

All indexing structures in LB2-Spatial are implemented using array abstractions

that generate optimized code similar to LB2’s [31]. Moreover, index-based operations,

e.g., range, kNN, etc. are implemented as an index-based method, i.e., similar to

normal interpreter code that is called by spatial operators. For instance, Figure 3.6

shows the implementation of an index range join operator that uses a spatial index

(in contrast to the nested loop version from Figure 3.3). Line 6 obtains the index

built on the Points (right) table. Lines 9-14 shows the actions performed on the

Rectangles (left) table where a rectangle is extracted (Line 10) and the RangeRectangle

method implemented inside the index finds the points that lie inside the rectangle.

Furthermore, the callback is invoked in Line 13 to stream the result to the parent

operator. Note the structure of basic operators, and index-based operators are almost

the same. The difference lies in invoking the implementation provided by the index

operation.

Auxiliary Data Structures Spatial processing is best described as performing

spatial computations while traversing indexing structures. The implementation of

various spatial operators often use auxiliary data structures to assist traversals and

maintain intermediate results. For instance, the kNN operation uses a heap to main-

67

tain the list of k nearest points during index traversal which may update the neighbors

list. In LB2-Spatial, we recognize the performance of auxiliary data structures is im-

portant to query runtime. Therefore, all auxiliary data structures e.g., Stack, heap,

etc. are implemented optimized flattened fashion.

Auxiliary Data Structures Spatial processing is best described as performing

spatial computations while traversing indexing structures. The implementation of

various spatial operators often use auxiliary data structures to assist traversals and

maintain intermediate results. For instance, the kNN operation uses a heap to keep

the list of k nearest points during index traversal which may update the neighbors’

list. In LB2-Spatial, we recognize the performance of auxiliary data structures is

essential to query runtime. Therefore, all auxiliary data structures, e.g., Stack, heap,

etc. are implemented on optimized flattened fashion.

3.2.4 Parallelism

LB2 supports parallelism on shared memory systems using OpenMP [110] where

blocks of parallel code are generated with OMP parallel annotations. The key ele-

ments to implement parallel evaluation are summarized as first, defining code gener-

ation constructs that emit various OMP annotations.

Second, modifying the parallel evaluator structure, and operators internally to enable

orchestrating parallel execution. Third, handling shared data structures for operators

that maintain state by defining per-thread or lock-free data structures. For instance,

the following code shows LB2’s parallelRegion annotation that emits a #pragma omp

parallel around a block of statements.
def parallelRegion(worker: Rep[Long] => Unit): Unit = {
parallel_region {
val j = ompGetThreadId
worker(j)

}}

The code in Figure 3.7a-b shows the definition of LB2’s parallel pipeline wrapper

that enables generating parallel code by adding thread variables and thread callbacks

68

1 class ParOp {
2 type ValueCallback = Record => Unit
3 type DataLoop = ValueCallback => Unit
4 type ThreadCallback = Rep[Int] => DataLoop => Unit
5 def exec: ThreadCallback => Unit
6 }

ParScan

ParPrint

exec

exec

callback

callback

tid/
tuples

tid/
tuples

ParRange

(a) (c)

7 def parallelPipeline(seq: Op => Op) =
8 (parent: ParOp) => new ParOp {
9 def exec = {
10 val opExec = parent.exec
11 (tCb: ThreadCallback) => opExec { tId => dataloop =>
12 tCb(tId)((cb: ValueCallback) =>
13 seq(new Op { def exec = dataloop }).exec(cb) })
14 } } }

(b)

Fig. 3.7. (a)-(b) Parallel operator class and parallel pipeline wrapper
(c) the interactions between operators within a parallel query execution
pipeline (adapted from [31]).

(Lines 11-12). LB2-Spatial extends LB2’s parallel evaluator with parallel spatial

operators. Consider evaluating the following index range query.
SELECT * FROM Points WHERE ST_Contains(0,0,100,100,px,py)

The query pipeline in Figure 3.7c shows how the query evaluation starts with ParPrint

calling the exec method of ParRange operator which in turn calls ParScan.exec. The

ParScan operator is the point where threads are initiated. In other words, ParScan par-

allelizes the loop that reads data from the source. Thus, for each thread, ParScan calls

exec callback with the thread id tId, and another callback dataloop. This allows the

downstream operator ParRange to initialize the appropriate thread-local data struc-

tures (recall, ST_Contains uses a previously created index meaning that each thread

requires a local data structure to maintain traversal state independently). Finally,

the downstream operator ParPrint triggers the flow of data by invoking dataloop, and

69

passing another callback upstream, on which the ParScan will send each tuple for the

data partition corresponding to the active thread.

3.2.5 Spatial Applications

Traditional RDBMS provide procedural languages, e.g., PL/pgSQL to support

user applications that interleave spatial processing and user-customized code. Simi-

larly, Spark programs naturally interleave front-end code, e.g., Python, Scala, etc. with

dataframe operations. However, the performance of these applications is often subop-

timal due to the limited visibility between query evaluation and user code. In other

words, a query is executed independently where the application is given an iterator

to process the result dataset. However, this is not an issue in LB2-Spatial since the

query engine is implemented in Scala with LMS, the whole application code can be

optimized and generated (not only the operators). In the following, we demonstrate

writing a spatial application using the spatial processing API in Scala.

Consider supporting a customized spatial-textual ranking operation that first fil-

ters records that lie within a specific distance (facilitated by an index) then the textual

attribute is processed to assign each record a score. LB2-Spatial facilitates injecting

user customized code using callbacks. Figure 3.8 demonstrates a program that per-

forms spatial-textual ranking. Lines 1-13 creates an R-tree index named tweetIdx on

(lon,lat) attributes of the table tweets and loads the cities table. The function f

defined in Lines 19-24 encodes simple ranking actions to be performed on tweetIdx

records. The for loop starting at Line 26 reads records from table cities and probes

tweetIdx. Notice that ranking code is injected into the index distance operation in

Line 30.

Additionally, LB2-Spatial supports writing user-defined functions (UDFs) similar

to standard RDBMs. For instance, spatial predicates not already implemented in the

spatial extension can be written as UDFs. Unlike traditional RDBMS, the imple-

70

1 // create a record abstraction for spatial key
2 type pointRec = Record {val lon: Double; val lat: Double}
3 def pointRec(x: Rep[Double], y: Rep[Double]) =
4 new Record{val lon = x; val lat = y;}
5 // Tweets schema
6 type tweetRec = Record{val tid: Long; val lat:
7 Double; val lon: Double; val tweet: String}
8 // building an R-tree index on table Tweets
9 val tweetIdx =
10 loadWithIdx[pointRec, tweetRecord] (file_tweet,
11 RTreeKey("twidx", x=>pointRec(x.lon, x.lat)))
12 // Citites schema
13 type citiesRec = Record {val cname: String;
14 val lat: Double; val lon: Double;}
15 // loading table citites
16 val cities = load[citiesRec](file_cities)
17 // constructing a (lon, lat) key
18 val lonlatkey = x=>pointRec(x.lon, x.lat)
19 val eps = 1.5
20 type RankRec = Record{ val rank: Long }
21 // user code for ranking records
22 val f = { tuple =>
23 val t = record_select(tuple,"tweet")
24 val rankVal =
25 if (t.contains("keyword"))
26 10 * t.length
27 else t.length
28 val rec = new Record{val rank = rankValue}
29 printRecord(merge(tuple,rec))
30 }
31 // scanning Citites and probing tweetIdx
32 for(i<-0 until cities.length){
33 val city = cities(i)
34 val cityKey = lonlatkey(city)
35 // ranking code as callback
36 tweetIdx(cityKey).distance(f, eps)
37 }

Fig. 3.8. Compiling spatial applications in LB2-Spatial.

mentation of UDFs in LB2-Spatial is not opaque to evaluation, and does not incur a

performance penalty.

71

3.3 Evaluation

In this section, we evaluate the performance of the spatial extension implemented

in LB2. We compare the performance of LB2-Spatial with spatial library code, a

spatial extension to relational engine PostGIS [15] and two spatial Spark extensions

Simba [17] and Geospark [16].

We conduct three sets of experiments. The first set evaluates the performance of

spatial operators in a single-core setup. We also provide experiments that focus on

evaluating the effect of varying the selectivity ratio in range queries and the impact

of scaling up the index size in spatial join queries. The second set of experiments

evaluates parallelism in LB2-Spatial, and spatial Spark extension when scaling up

the number of cores. The third experiment measures the total memory consumed

by LB2, and the Spark-based systems while performing join operations. Finally, we

provide a productivity evaluation analysis that summarizes the lines of code needed

to extend LB2 with spatial processing.

The experiments focus on evaluating the absolute query runtime without includ-

ing data loading and indexing construction time. The rationale behind this decision

is first, both PostGIS and spatial spark extensions do not optimize loading time. Sec-

ond, Spark extensions perform expensive data partitioning due to Spark’s distributed

execution model. For the single-core setup, we show that LB2-Spatial outperforms

spatial spark extensions and PostGIS in spatial join queries by 12⇥-299⇥. For scaled-

up execution, LB2-Spatial is 10⇥-20⇥ faster than spatial Spark extensions.

Datasets and Queries Table 3.1 shows the spatial datasets we use in the exper-

iments section. The tweets dataset consists of one billion geo-tagged tweets located

inside the United States. The tweets were collected over the period from January

2013 to December 2014. We cleaned the dataset from invalid records that did not

include an accurate geo-location. Furthermore, we only kept the longitude and lati-

tude attributes and dropped the rest attributes. We added a serial numeric attribute

to identify data records. The Open Street Map (OSM) consists of 200 million points

72

and 114 million rectangles obtained from a performance evaluation study that com-

pares the performance of several spatial Spark extensions [121]. The last dataset is

synthetic and consists of one million randomly generated points.

Table 3.2 shows the queries we used in experiments. The syntax of kNN join is

adapted from [17]. We run each query five times and record the median reading.

Environment All experiments are conducted on a single NUMA machine with 4

sockets, 24 cores in a Xeon(R) Platinum 8168 CPU per socket, and 750GB RAM per

socket (3 TB total). The operating system is Ubuntu1 16.04.9. We use Scala 2.11,

GCC 5.4 with optimization flag -O3. We use Scala 2.11, PostgreSQL 10.4, PostGIS

2.2, GeoSpark 2.0, and Simba with Spark 2.1.

3.3.1 Single-core Spatial Join

In the first experiment, we compare LB2-Spatial with Simba, GeoSpark, and Post-

GIS in range join, distance join, and kNN join queries using only a single-core. For

range join we use the OSM points, and rectangles datasets where a spatial index is

built on the left table of size 200 million, and the size of the right table is one million.

Moreover, we set up the value of k to 5. For distance join and kNN join we use

the tweets dataset where a spatial index is built on the left table of size 200 million.

Moreover, the size of the right table is one million. For the kNN join query, we reduce

the index size to 10 million as in [17,121].

Figure 3.9 gives the absolute runtime for three spatial join queries: distance

join, range join and kNN join. Overall, LB2-Spatial outperforms Simba, GeoSpark,

and PostGIS in all three join queries. Moreover, PostGIS outperforms Simba and

GeoSpark in index distance join query. On a query-by-query analysis, LB2-Spatial

outperforms PostGIS, GeoSpark, and Simba in the distance join by 25⇥, 30⇥, and

299⇥ respectively. Similarly, LB2-Spatial outperforms PostGIS in range join by 19⇥

and 28⇥ respectively. Finally, LB2 is 13⇥ faster than Simba in kNN join.

73

Table 3.1.
Spatial datasets that are used in evaluating LB2-Spatial.

Dataset Geometry #Records Size(GB)

Tweets Point 1 billion 32

OSM Nodes Point 200 million 4.3

OSM Rectangle Rectangle 114 million 14.3

Random Point 1 million 0.03

Rectangle

Range

SELECT *
FROM Points
WHERE ST_Contains(ST_PolygonFromEnvelope(x1,x2,y1,y2),

Points.pointshape)

Range

Join
SELECT *
FROM Polygons, Points
WHERE ST_Contains(Polygon.polygonshape, Points.pointshape)

Distance

Join

SELECT *
FROM Points1, Points2
WHERE ST_Dwithin(Points1.pointshape,

Points2.pointshape, distance)

kNN

Join
SELECT *
FROM Point1 AS P1 KNN JOIN Point2 AS P2
ON POINT(P2.x, P2.y) IN KNN(POINT(P1.x, P1.y), k)

Table 3.2.
Queries that are used in evaluating LB2-Spatial.

74

X X X100

101

102

103

IndexDistanceJoin IndexRangeJoin IndexkNNJoin

R
un

tim
e

(s
)

LB2 Simba GeoSpark PostGIS

Distance Join Range Join kNN Join

LB2-Spatial 21.1 21 68.4

Simba 6325.8 - 888.2

GeoSpark 653.7 412.9 -

PostGIS 544.4 606 -

Fig. 3.9. The absolute runtime for LB2, Simba and PostGIS in distance
join, range join and kNN join.

In general, map-reduce extensions similar to Simba and GeoSpark are optimized

for distributed execution on large clusters. The single machine performance is sub-

optimal due to internal RDD overhead, JVM overhead, etc. The performance of

Spark-based systems can be improved with leveraging multi-threading and appro-

priate data partitioning schemes that work well with the broadcast-based operations.

For traditional spatial RDBMS extensions, the interpreted evaluation associated with

processing data in high-level incurs significant runtime overhead.

Stand-alone Spatial Indexing Libraries In the second experiment, we compare

LB2-Spatial with stand-alone spatial indexing library code. The Spatial Indexing

at Cornell project [122, 123] provides a spatial indexing library written in C++ for a

set of common spatial indexing structures and operations. For this experiment, we

75

extend the R-tree and grid from the previous library with distance join and kNN join

operations to evaluate LB2-Spatial performance with specialized code (i.e., without

RDBMS overhead). We use a randomly generated dataset where a spatial index is

built on the left table of size 1 million, and the size of the right table is 1000.

Figure 3.10 shows the absolute runtime of performing distance, and kNN join us-

ing R-tree and grid in LB2-Spatial and stand-alone indexing library. The performance

of R-tree-based queries is comparable since tree indexes are useful in data pruning

and hence less time is spent in computations. For the case of grid index, LB2-Spatial

outperforms the library code by 1.9⇥, and 2.4⇥ in distance join and kNN join re-

spectively. The performance gap between the two systems is attributed, in part, to

a number of implementation details. First, LB2-Spatial’s grid is implemented as a

flat array whereas the library grid index is implemented as a two-dimensional ar-

ray. Hence, there is additional memory access incurred in the later system. Second,

LB2-Spatial’s generated code leverages compiler’s level optimizations (e.g., dead code

elimination, loop fusion, etc.) that are sometimes missed by general purpose compil-

ers.

Range Predicate Selectivity The selectivity of a spatial predicate determines the

amount of computations performed by an operator. In this experiment, we evaluate

the effect of varying the selectivity ratio of the rectangle range predicate using single-

core. We use the OSM nodes dataset of size 200 million and build a spatial index

on the points data. We follow the same approach from [121] and submit a batch of

100 queries as in and compute the throughput as the number of queries executed per

minute 3.

Figure 3.11 shows the throughput of range query in LB2-Spatial, Simba and

GeoSpark for � = 1, 10, 50 and 100. LB2’s throughput for highly selective range

predicate is 7500 and 134 when the range predicate does not perform any data prun-

ing. On the other hand, the throughput of spatial Spark extensions is very low, e.g.,
3In this experiment, a throughput value less than one is counted as zero.

76

100

101

102

103

104

DistanceJoinRtree kNNJoinRtree DistanceJoinGrid kNNJoinGrid

R
un

tim
e

(m
s)

LB2 Library

DJ-R-tree kNNJ-R-tree DJ-Grid kNNJ-Grid

LB2-Spatial 7 46 192 7155

Library 10 45 367 17108

Fig. 3.10. The absolute runtime for LB2 and handwritten code in distance
join and kNN join using Rtree and grid.

9 and 2 for � = 1, 10 in Simba and zero otherwise. Given the simplicity of the range

predicate, the low throughput is primarily caused by Spark’s runtime overhead.

Scaling up Index Size In this experiment, we evaluate the effect of scaling up

the index size in LB2-Spatial for range, distance and kNN join operators using the

tweets dataset. For each join query, we build a spatial index on the left table of size

200 million, 400 million, up to one billion. The size of the right table is fixed as one

million. Moreover, we exclude the spatial Spark systems since Spark does not scale

up well in a single-core [29, 121].

Figure 3.12 gives the absolute runtime in seconds for performing range, distance,

and kNN join operations in LB2-Spatial. We observe the runtime increases linearly

with increasing the index size. The outcome validates that LB2-Spatial does not incur

system overhead beyond data loading and a proportional time for index traversal as

we increased input size (the fanout of spatial indexes is typically large where the tree

height increases slowly, e.g., the R-tree node size in LB2-Spatial and Simba is 20).

77

●

●

● ●0

2000

4000

6000

8000

1 10 50 100
Selectivity ratio of Range predicate

Th
ro

up
ut

 (q
ue

ry
/m

in
) ●GeoSpark LB2 Simba

1 10 50 100

LB2-Spatial 7500 1224 267 134

Simba 9 2 0 0

GeoSpark 0 0 0 0

Fig. 3.11. The selectivity ratio of range predicate.

3.3.2 Parallel Spatial Join Queries

In this experiment, we compare the scalability of LB2-Spatial with GeoSpark,

and Simba on distance join and range join queries. We use the OSM dataset where

a spatial index is built on the left table of size 200 million. Moreover, the size of

the right table is one million. The experiment focuses on the absolute performance

and the Configuration that Outperforms a Single Thread (COST) metric proposed by

McSherry et al. [124]. COST compares the number of threads needed by one system

to match the single-thread performance of another. We scale the number of cores up

to 24 to keep the execution local within a single socket.

Figure 3.13 gives the absolute runtime for scaling up LB2-Spatial, GeoSpark, and

Simba in distance join query. Overall, the speedup of all systems increases with the

number of cores and spatial Spark systems appears as having better speedup than

LB2-Spatial at 24 cores, i.e., 8⇥ to 11⇥. However, examining the absolute running

78

●
●

●
●

●

0

25

50

75

100

200 400 600 800 1000
Index size in millions

R
un

tim
e

(s
)

●index−DistanceJoin index−kNNJoin index−RangeJoin

200M 400M 600M 800M 1B

Range Join 22.07 21.93 22.83 22.98 23.31

Distance Join 19.52 21.15 22.92 24.88 24.88

kNN Join 76.05 81.06 85 89.02 94.05

Fig. 3.12. The scalability of LB2-Spatial range query with increasing the
index size in a single-core.

times, LB2-Spatial is 21⇥ 214⇥ faster than GeoSpark, and Simba respectively at

24 cores. Furthermore, it takes GeoSpark over than 24 cores to match LB2-Spatial’s

single-core performance. What appears to be good scaling for spatial Spark extension

actually reveals that the runtime incurs significant overheads.

Figure 3.14 gives the absolute runtime for scaling up LB2-Spatial and GeoSpark

in a range join query. LB2-Spatial outperforms GeoSpark 20⇥ up to 4 cores, and by

10⇥ as the number of cores reach 24. Also, it takes GeoSpark over than 24 cores to

match LB2’s single-core performance. The gap in performance is attributed in part

to Spark’s internal overhead, Java Virtual Machine (JVM) overhead, high-level data

structures implementation, etc.

79

●
●

●
●

● ●

Distance Join

100

101

102

103

104

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

●GeoSpark LB2 Simba

Runtime 1 2 4 8 16 24

LB2-Spatial 21.1 12.6 7.3 4.6 3.1 2.6

Simba 653.7 352.5 198.5 107.2 113.5 55.6

GeoSpark 6325.8 3229 1702.6 901.8 738 563.4

Speedup

LB2-Spatial 1 1.7 2.9 4.6 6.8 8

Simba 1 1.9 3.3 6.1 5.8 11.8

GeoSpark 1 2 3.7 7 8.6 11.2

Fig. 3.13. The absolute runtime in seconds (s) for parallel scaling up LB2-
Spatial, GeoSpark, and Simba in distance join on 2, 4, 8, 16 and 24 cores
for Tweets dataset.

3.3.3 Memory Consumption

In this experiment, we measure the total memory consumed by LB2-Spatial,

Simba, and GeoSpark while performing spatial join operations. For both Spark and

LB2-Spatial, we used the time command in Unix with the verbose option -v and

recorded the value of maximum resident set size. We also monitored the Storage tab

in Spark’s web UI4 which gives the memory occupied by a cached RDD. We observed
4Memory consumption for Spark’s RDDs cannot be collected programmatically [121,125].

80

● ● ● ● ● ●

Range Join

0

100

200

300

400

500

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

●GeoSpark LB2

Runtime 1 2 4 8 16 24

LB2-Spatial 21.0 11.4 6.2 5.3 4.1 3.3

GeoSpark 412.9 228 123.6 71.6 42.6 32

Speedup

LB2-Spatial 1 1.8 3.4 4 5.1 6.4

GeoSpark 1 1.8 3.3 5.8 9.7 12.9

Fig. 3.14. The absolute runtime in seconds (s) for parallel scaling up LB2-
Spatial, GeoSpark, and Simba in range join on 2, 4, 8, 16 and 24 cores for
Tweets dataset.

that storage memory value after constructing a spatial index on 200 million records is

approximately 21GB and 48GB in Simba, and GeoSpark respectively. The difference

is due to index serialization in Simba [17].

Table 3.3 gives the maximum execution memory used by LB2-Spatial and the

Spark-based systems. LB2-Spatial consumes less memory than Spark-based systems

(approximately 5⇥-7⇥ and 4.5⇥ less in the distance and range queries respectively).

Typically, Spark-based systems consume more memory due to replication, distributed

execution, and JVM [125]. Furthermore, spatial Spark extensions perform data par-

titioning that requires extra storage for sampling and processing [121]. On the other

hand, LB2-Spatial leverages the dataset size, when available, and incrementally in-

81

Table 3.3.
Total memory consumed (in GB) by LB2, Simba and GeoSpark while
performing various spatial join operations.

Distance Join Range Join kNN Join

LB2 12.3 21.1 1.3

Simba 60.8 - 2.6

GeoSpark 94.4 95.8 -

creases the data structures size otherwise. For instance, the raw size of the points

and rectangles datasets used in range query is approximately 18.6GB. LB2-Spatial

consumed only additional 3GB to perform this operation.

3.3.4 Productivity Evaluation

Table 3.4 summarizes the development effort in terms of line of codes (in Scala)

needed to extend LB2 with spatial processing. The front-end work consists of first

extending the Spark SQL front-end and optimizer with spatial keywords and rules.

Second, mapping the optimized query plan to LB2-Spatial’s operators5. Overall, the

front-end was written in 277 lines. The spatial indexing structures (R-tree, k-d tree

and grid) and auxiliary data structures were developed in 1087 lines. Moreover, basic,

index-based, single thread and parallel operations (for R-tree, k-d tree and grid) are

implemented in 1474 lines. Other 120 lines of code cover various tasks, e.g., data

loading, configurations, etc. Overall, LB2-Spatial consists of 2958 lines.

3.4 Conclusions

In this Chapter, we have added spatial query compilation inside the LB2 main-

memory query compiler. We support parallelism for shared memory using OpenMP
5We only count the lines needed for mapping spatial operators.

82

Table 3.4.
Lines of code needed to extend LB2 with spatial processing.

Front-end 277

Spatial indexing and auxiliary data structures 1087

Spatial operators (basic and index-based) 1474

Other 120

Total 2958

and thread-aware data structures. The spatial extension matches the performance

of the library code. In single-core distance join, range join and kNN join queries,

LB2-Spatial outperforms spatial spark extensions and PostGIS in spatial join queries

by 12⇥-299⇥. For scaled-up execution, LB2-Spatial is 10⇥-20⇥ faster than spatial

Spark extensions.

83

4. COMPILING GRAPH QUERIES

This Chapter is based on the paper Towards Compiling Graph Queries in Relational

Engines which is accepted at the 2019 International Symposium on Data Base Pro-

gramming Languages DBPL’19 [126].

The increasing demand for graph query processing has prompted the addition

of support for graph workloads on top of standard relational database management

systems (RDBMS). Although this appears like a good idea — after all, graphs are just

relations — performance is typically suboptimal, since graph workloads are naturally

iterative and rely extensively on efficient traversal of adjacency structures that are

not typically implemented in RDBMS. Adding such specialized adjacency structures is

not at all straightforward, due to the complexity of typical RDBMS implementations.

The iterative nature of graph queries also practically requires a form of runtime

compilation and native code generation that adds another dimension of complexity

to the RDBMS implementation, and any potential extensions.

In this Chapter, we demonstrate how the idea of the first Futamura projection,

which links interpreted query engines and compilers through specialization, can be

applied to compile graph workloads in an efficient way that simplifies the construc-

tion of relational engines that also support graph workloads. We extend the LB2

main-memory query compiler with graph adjacency structures and operators. We

implement a subset of the Datalog logical query language evaluation to enable pro-

cessing graph and recursive queries efficiently. The graph extension matches, and

sometimes outperforms, best-of-breed low-level graph engines.

Graphs are Relations It is often desirable for graph and relational data to co-exist

and be processed together, which naturally suggests representing graphs as relations

on top of an existing RDBMS. The unique advantage of such an approach is that the

84

core data management operations are all provided by the RDBMS and a graph exten-

sion would only need to implement front-end algorithms and functionality. However,

the execution pattern of graph workloads is often dominated by long-running loops

over the graph structure where each iteration performs computations on the adja-

cency of some vertices (e.g., set intersection during triangle counting operation). The

performance of relational graph extensions is therefore often stymied by the interpre-

tive nature of typical relational engines and the lack of specialized data structures for

adjacency relations. Instead, internal RDBMS data structures are often implemented

in a generic form to unify various types of data layouts behind a common interface.

Stand-alone Graph Processing To tackle the challenges of relational graph ex-

tensions, several stand-alone graph engines have been developed (e.g., high-level

Neo4j [11], low-level Snap-Ringo [12]) that process graphs in native adjacency struc-

tures. While graph processing in stand-alone systems achieves higher performance

and is often more expressive in describing graph operations (e.g., shortest paths, cen-

trality, etc.) than relational queries, there exists a high development cost in terms

of core data management and loss of interoperability with front-end and back-end

systems that integrate with RDBMS.

The Complexity Dimension for Building Specialized Relational Graph En-

gines Realizing efficient relational graph processing requires combining relational

evaluation with specialized graph structures and operations, which is an uphill battle

due to the difficulty of modifying the internals of a mature RDBMS (typically sev-

eral million lines of code). Besides, the key performance challenge in RDBMS is the

interpretive overhead associated with processing data in high-level form (e.g., generic

libraries for hash maps) rather than generating optimized low-level code (as precisely

described in Neumann’s work [6]). Even supporting a minimal operational compiled

path for graph queries entails writing thousands of lines of low-level code (e.g., pro-

grammatic LLVM API) that permeates large parts of the query engine code. En

85

masse, the complexity of extending RDBMS with graph processing and compilation

does not add up linearly; in fact, it multiplies!

In this Chapter, we demonstrate that the underlying idea of constructing simple

but highly efficient query compilers not only applies to purely relational queries but

carries over to graph queries. The key challenge is that graph processing relies on

efficient traversal of adjacency structures. The key idea to address this challenge is to

facilitate building optimized data structures using programmatic specialization, the

same technique LB2 already uses for generating efficient code and indexing structures

for relational queries.

We extend the LB2 [31] main-memory query compiler with graph compilation,

in particular, graph data structures, graph operators, and corresponding support for

shared-memory parallelism. We also implement the semi-naive evaluation algorithm

[127] to support graph and recursive queries.

4.0.1 Background: Datalog and Recursive Queries

Many graph operations, e.g., transitive closure, shortest paths etc. are simpler

when expressed using recursion. The Datalog [127] logical query language enables

expressing recursive and graph queries succinctly. Datalog is used to define rules

where a rule consists of a head and body of the form predicate(term1, term2, ...).

Consider the following rule.
Colleagues(A,B) :- Employee(C,A), Employee(C,B)

In other words, A is a colleague of B if, for some C, C is the Department of A and

C is the Department of B. Furthermore, the previous rule is a schema that is used to

define propositional implications, e.g.,
Colleagues(Joe,Sally) :- Employee(CS,Joe), Employee(CS,Sally)

Facts are rules without a condition part, e.g., Employee(Math,Ann). Datalog is widely

used as a graph query language [92, 95–97] due to its expressiveness and the ability

86

Target
query
plan

LMS
Framework

emits
query

staged

Query Compiler

DataLog
SQL

Graph Operators

Query Engine

Adjacency Structures

...
...

Fig. 4.1. Extending LB2 with graph processing.

to write recursive queries succinctly. For example, transitive closure can be expressed

as follows:
Path(x,y) :- Edge(x,y)

Path(x,y) :- Path(x,z),Path(z,y)

The semi-naive evaluation strategy [127] is an iterative bottom-up evaluation of re-

cursive queries. In each iteration, the least fixpoint is computed by instantiating all

subgoals of the existing rules until no new tuples are discovered. Thus, it avoids re-

peating computations and focuses on the derived deltas from the previous iterations.

SQL-99 added WITH RECURSIVE clause to support recursive queries using Common

Table Expressions (CTE). Recursive CTEs are incrementally evaluated and main-

tained (i.e., equivalent to the semi-naive evaluation). The following SQL query en-

codes the transitive closure operation from src = 1.
CREATE TABLE Edges (src Int, des Int);
WITH RECURSIVE TC as (
SELECT src as dst FROM Edges WHERE src = 1
UNION
SELECT TC.dst FROM TC, Edges WHERE Edges.dst = TC.dst
)
SELECT * FROM TC;

4.1 LB2 + Graph Queries

Existing relational approaches for graph processing fall into three categories. First,

translate graph operations into SQL procedures [68]. Second, adding a specialized

87

evaluation

Datalog QPlan API
(Graph rules)

Graph Structures

Generated Code

(Graph + SQL)

Query Plan

idxPageRank

Π type Edges = Record {val source: Long; val
dest: Long}

val graph = loadCSVGraph(key(...),
"edges.csv")

Print(PageRankidx(graph))

(b1) (b2)

σ
Edges

PageRankOp

Π
⋈

Data

type Edges = Record {val source: Long; val
dest: Long}

type Data = Record {val v: Int; val desc:
String}

val edges = loadCSV("edges.csv")
val data = loadCSV("data.csv")
Print(Join(Scan(data),

PageRankOp(Select(Scan(edges))(selpred))
(joincond)

)
)

(a) (c1) (c2)

Fig. 4.2. Graph front-end in LB2 and graph query evaluation pipelines.

graph processing layer that extracts and processes graph data externally [79]. Third,

extending the query engine with graph structures and operators [128] which enables

processing pipelines that mix relational and graph operators. LB2 follows the last

approach. (Queries implemented in any of the previous approaches could also be

compiled into low-level code by extending LB2).

The extended LB2 engine compiles graph and recursive queries into optimized na-

tive code. Figure 4.1 shows a high-level architecture of the extended LB2 system. The

front-end accepts SQL queries, Datalog rules and QPlan (a domain-specific language

DSL to compose query plans). LB2 is extended with three graph structures: adja-

cency list, flattened adjacency list and trie. LB2 supports the following graph opera-

tions: PageRank, triangle counting, single source-destination shortest path, transitive

closure, and all pairs shortest paths. Furthermore, LB2 implements shared-memory

parallel operators OpenMP PageRank and OpenMP triangle counting. As discussed

earlier in Chapter 2, evaluating a query plan with respect to a staged query evaluator

88

(using LMS Rep annotations) produces a staged query. The LMS framework builds

an intermediate representation (IR) graph that encodes high-level constructs and op-

erations. The result of executing the graph is a target program that implements the

query evaluation without the interpretive overhead of processing static input (i.e.,

query pipeline).

Although the graph extension appears as if it is only wired to execute specialized

queries connecting LB2 with an optimizer allows executing arbitrary recursive queries

by composing a plan that employs recursive join implementation.

4.1.1 Graph Data Loading

Data in LB2 is processed in-situ without an explicit preloading phase. The query

plan contains the necessary information to identify key attributes used to create in-

dexing and adjacency structures. At loading time, the data loader processes relational

graph data and creates the specified adjacency structures. For the case of graph-only

queries, LB2 provides a data loader that can process data in compressed row storage

(CRS). This data loader is most beneficial for building flat adjacency structure as

it minimizes the memory allocated for preprocessing data during the graph creation

phase.

4.1.2 Graph Processing

LB2 provides two front-ends for graph processing as illustrated in Figure 4.2a.

Graph-only operations, e.g., traversals, shortest paths, etc., are encoded as Datalog

rules or QPlan whereas queries that mix SQL and graph processing are written using

QPlan DSL. In the case of graph-only operations, LB2 builds an adjacency structure

to access the graph directly and avoid accessing the Edge relation while performing

graph operations. In spirit, a graph structure resembles an index where the source

vertex is the key, and the data record (i.e., the edge that contains the destination

vertex and relational attributes) is the value.

89

In general, main-memory query compilers implement the data-centric evaluation

approach [6] since it can be efficiently specialized to remove operators’ interpretive

overhead leading to generating efficient code. Figure 4.2b-c shows two PageRank

query execution plans (QEPs). QEP (b1) is a graph-only PageRank operation that

prints the result of PageRank (i.e., vertices and scores). On the other hand, QEP

(c1) mixes graph and SQL operators as follows. First, the query filters the graph

edges before performing PageRank. After that, the PageRank intermediate result is

joined with data from another table, and the final result is printed. For both queries,

the implementation of PageRank is similar, the difference is only in the operator

interface. Figure 4.3a shows the PageRankidx operator. Line 5 obtains the previously

created graph. The exec method invokes the PageRank operator implemented inside

the graph structure (see Section 4.1.3). Since PageRankidx is a leaf operator in the

query plan, there is no parent.exec call. Figure 4.3b shows PageRankOp used in QEP

(c) where the exec operator creates a graph structure at evaluation time (due to the

filter operation) and inserts the edges received from the interfacing filter operator.

After that, graph.PageRank is invoked, and the result is passed to the join operator

through the callback function cb.

4.1.3 Graph Data Structures

Adjacency lists are the most commonly used data structures to build and process

graphs due to their optimized storage and intuitive interface. LB2 implements three

graph data structures: adjacency list, flattened adjacency list, and trie, shown in

Figure 4.4. For graph-only queries, the flattened adjacency list has the best runtime

performance (see Section 4.2.1). However, the creation of such a graph structure is

expensive since it constructs an adjacency list indirectly to obtain the neighbor sets

as illustrated in Figure 4.4b-c (except when data is already stored in CRS form). The

adjacency list performs well with queries that mix graph and SQL since the graph is

built at runtime. Recently, tries have received attention as graph data structure [129]

90

as they facilitate performing multi-way joins (in contrast to two binary joins). For

instance, triangle counting can be implemented directly as a three-way join. There-

fore, LB2 adds a trie adjacency structure to optimize operations with multi-way join

patterns. However, the performance of trie-based operations is sensitive to vertex

ordering in the graph. A good vertex ordering assists the join operation to minimize

the number of comparisons (the experiment in Section 4.2.1 gives insights about the

performance of trie-based triangle count). The trie data structure and trie-based

triangle count operator was implemented by Xilun Wu.

Internally, the specialized graph structures are implemented using LB2’s generation-

time abstractions (e.g., records, data buffers, etc.) that emit low-level code. In the

following code, we show the extended graph adjacency list structure implemented in

LB2 which is similar to any high-level graph implementation (for simplicity we omit

the vertex to list index mapping and resizing steps).
1 abstract class Graph {
2 def insert(src: Rep[Long], dest: Rep[Long]): Unit
3 // graph operations, e.g., PageRank, triangle count
4 }
5 class LB2Graph(val size: Rep[Long]) extends Graph {
6 val cap0 = defaultSize
7 val adjList = LB2BufferFlat2D[Long](verSize, cap0)
8 val adjListCount = NewArray[Long](verSize)
9
10 def insert(vs: Rep[Long], vd: Rep[Long]) ={
11 adjList.getRow(vs).update(adjListCount(vs), vd)
12 adjListCount(vs) = adjList(vd) + 1
13 }}

The LB2BufferFlat2D class is an abstraction over (an array of arrays) Array[Array[Long]]

that is generated as long** adjList. Moreover, the method getRow that obtains a row

from the adjacency list and is generated as long* row = adjList[vs].

Auxiliary Data Structures Graph operators use auxiliary data structures while

processing. For instance, Dijkstra’s algorithm for finding the shortest path between

two vertices in a graph uses a minimum heap for distance values. All auxiliary data

structures in LB2 are implemented as high-level abstractions that emit low-level code.

91

1 class PageRankidx(left: Op)
2 (gr: String) extends Op {
3
4 def exec(cb: Record => Unit) = {
5 val graph = left.getGraph(gr)
6 graph.PageRank {rec =>
7 cb(rec)
8 }
9 }
10 }
11
12

class PageRankOp(parent: Op)
(srcKey: KeyFun)
(destKey: KeyFun) extends Op {

val size = defaultSize
def exec(cb: Record => Unit) = {
val graph = new GraphStruct(size)
parent.exec { rec =>
graph.insertEdge

(srcKey(rec), desKey(rec))
graph.PageRank{r =>
cb(r)

}}}

(a) (b)

Fig. 4.3. PageRank operator as (a) graph-only and (b) graph + SQL.

(a)

A B

D

E
F

GC

(d)

0 1 2 3 4 5 6 7 8
src
dest

C
A

C
D

C
E

A
B

A
D

G
F

D
F

B
G

D
G

9
D
B

0 3 5 -1 6 7 -1

0 4 8 2 7 1 3 65 9
0 1 2 3 4 5 6 7 8 9

(c)

A B C D G

B D G A D E B F G Foffsets

adjacency

(b)

C
A

B
D
E

F
G

0
2

6

1

3

4

5

7
8

9

Fig. 4.4. Graph structures in LB2.

4.1.4 Recursive Queries

In standard query engines, recursive queries are composed using CTEs and evalu-

ated using a variant of the incremental view maintenance algorithms which in essence

improves on the basic semi-naive evaluation algorithm that performs a sequence of

join, union, and set difference operations until a fix-point is reached.

LB2 processes recursive graph queries encoded in Datalog as follows. Given a query

optimizer that extracts the recursion from the rules and maps the result into either

a specialized operator (if a particular pattern is recognized like triangle count that

92

consists of two join conditions) or to an operator that unrolls recursion and perform

the encoded join operation until no more new records are produced.

4.2 Evaluation

In this Section, we evaluate the performance of the graph extension implemented

in LB2. We compare LB2’s performance with several low-level graph processing

engines. EmptyHeaded [20] is regarded as a state-of-art graph relational engine that

implements specialized graph structures, exploits SIMD parallelism and generates

optimized low-level code. We also picked two popular low-level shared-memory graph

engines SNAP [12] and Ligra [71].

We conduct two experiments to evaluate the performance of the graph extension.

In the first experiment, we evaluate the performance of graph pattern and graph

analytical queries (triangle count and PageRank) in LB2, EmptyHeaded, SNAP and

Ligra using standard graph benchmarks in Table 3.1. Furthermore, we illustrate

the effect of graph data structure choice (trie, adjacency list, and flat array) on the

performance graph queries. The second experiment compares the parallel scalability

of the previous graph engines on triangle count and PageRank queries. We show the

performance of LB2’s graph extension is competitive with state-of-art low-level graph

engines.

Environment All experiments are conducted on a single NUMA machine with 4

sockets, 24 cores in a Xeon(R) Platinum 8168 CPU per socket, and 750GB RAM per

socket (3 TB total) The operating system is Ubuntu1 16.04.9. We use Scala 2.11,

GCC 5.4 with optimization flag -O3. We use EmptyHeaded v.0.1 and SNAP 4.1.

Datasets and Configurations Table 3.1 shows the graph datasets we use in the

experiments section that span three application domains: social, web and product

networks. The two largest datasets are LiveJournal1 and Orkut (approximately 69M

and 117M edges respectively) which represent the size of practical graph workloads.

93

Table 4.1.
Graph datasets that are used in evaluating LB2-Graph.

Dataset Nodes Edges Description

Amazon 334,863 925,872 Product network

YouTube 1,134,890 2,987,624 Social network

Skitter 1,696,415 11,095,298 Internet topology

Orkut 3,072,441 117,185,083 Social network

LiveJournal1 4,847,571 68,993,773 Social network

Table 4.2.
Runtime of single-core triangle count (in seconds) for LB2 (using flat
adjacency list and trie), SNAP and EmptyHeaded.

Dataset LB2-Flat LB2-Trie SNAP EmptyHeaded

Amazon 0.1 0.9 0.19 0.5

YouTube 0.4 0.5 0.7 0.5

Skitter 1.4 1.7 2.2 1.7

Orkut 80.9 61 87.2 60.1

LiveJournal1 13.6 26.4 18.1 24.9

For each query, we measure the runtime excluding compilation time, data loading and

adjacency list (or index) creation. We run each query 5 times and pick the median

measurement. To guarantee local execution, we run the queries in a single NUMA

node using numactl -m and -C options.

4.2.1 Single-core Graph Pattern and Analytics Queries

Triangle counting Triangle counting is an important sub-graph pattern matching

query largely used in graph structure mining and graph benchmarking in general. For

94

this query, we follow SNAP’s implementation that treats the graph as undirected when

counting triangles. Table 4.2 gives the runtime of evaluating triangle count on LB2,

SNAP1, and EmptyHeaded on five graph datasets. For small to medium size datasets

(i.e., Amazon, YouTube, Skitter and LiveJournal1 where the number of edges is

approximately 69M), LB2 outperforms SNAP by 7%-2.7⇥ and EmptyHeaded by 80%-

7⇥. In the Orkut dataset, EmptyHeaded is 35% faster than LB2-flat and comparable

to LB2-Trie. Also, SNAP is slower than both of LB2 and EmptyHeaded due to the

high-level implementation of its graph structure that is more expensive to access than

the specialized structures in LB2 and EmptyHeaded. LB2’s performance advantage

over EmptyHeaded is attributed to its specialized data structures in addition to the

fact that EmptyHeaded’s SIMD parallel set operations work better with high density

skewed data.

PageRank Another graph analytical query is PageRank, developed to rank the im-

portance of a webpage based on the link structure of the web [130]. The applicability

of PageRank computations to any graph (e.g., road, social, biology, etc.) make it an

important graph workload. Similar to SNAP and Ligra, we implement the algorithm

in Berkhin’s survey [131]. Table 4.3 gives the runtime for 25 iterations of PageRank

on LB2, SNAP, Ligra and EmptyHeaded. For fairness across all systems, we com-

mented out the convergence computations in LB2, SNAP, and Ligra since the query is

designed to run for a constant number of iterations without convergence testing that

may incur additional runtime cost or cause an early exit. EmptyHeaded is the slowest

among the benchmarked systems due to running naive recursion in this query which

is equivalent to a simple unrolling of the join algorithm [20]. The authors pointed

out that PageRank performance can be further improved with double buffering and

redundant join elimination. For large datasets LiveJournal1 and Orkut, the perfor-

mance of LB2 and SNAP is comparable (LB2 is 5% faster in LiveJournal1 whereas
1SNAP provides two implementations for triangle count. We picked GetTriangleCnt since it can be
parallelized and it also outperformed GetTriads.

95

Table 4.3.
The absolute runtime of single-core PageRank (in seconds) for LB2 (using
flat adjacency structure), SNAP, Ligra and EmptyHeaded.

Dataset LB2-Flat SNAP Ligra EmptyHeaded

Amazon 0.2 0.4 0.3 2.6

YouTube 0.7 1.1 1.0 8.2

Skitter 2.5 2.8 3.2 16.6

Orkut 27.2 24.4 36.3 142.8

LiveJournal1 19.5 20.4 27.1 70.1

SNAP is 10% faster in Orkut). Furthermore, LB2 is 30%-50% faster than Ligra across

all datasets.

The Effect of Adjacency List Specialization LB2 implements three graph ad-

jacency structures: adjacency list, flattened adjacency list (using arrays that maintain

the offset of vertices and neighboring edges) and trie. In this experiment, we eval-

uate the performance of triangle counting and PageRank using the previous three

adjacency structures as illustrated in Figure 4.5. For the triangle counting query in

LiveJournal1 the flat implementation is faster than the adjacency list and trie by

20% and 95% respectively whereas the trie is faster than the adjacency and flat list

in Orkut by 40% and 30% respectively. For PageRank query, the adjacency list is

slower than flat array version by 28% and 14% respectively. For the adjacency list,

the difference in performance is a result of generating adjacency lists as an array of

arrays (long** adj). Hence, the first array access to obtain a row from the adjacency

list (long* nbr_lst = adj[index]) is slightly more expensive than two simple array ac-

cesses (i.e., first access to obtain the vertex offset in the edges array and second to

start iterating over the vertex neighbors). Similarly, a trie similar to the one in Figure

4.5d incurs two accesses to obtain an edge. Moreover, the performance of trie-based

96

LiveJournal1

0

20

40

60

80

100

TriangleCount PageRank
R

un
tim

e
(s

)

LB2−adjacency
LB2−Flat
LB2−Trie

Orkut

0

20

40

60

80

100

TriangleCount PageRank

R
un

tim
e

(s
)

LiveJournal1 Orkut

TriangleCount PageRank TriangleCount PageRank

LB2-Adj 16.3 25 86 31

LB2-Flat 13.6 20 80.9 27

LB2-Trie 26.4 - 61 -

Fig. 4.5. Runtime of single-core triangle counting and PageRank using
LB2 with adjacency list and flat array in LiveJournal1 and Orkut datasets.

operations is sensitive to vertex ordering in the graph which justifies the variance in

performance on different datasets. Finally, the key insight gained from comparing

various implementations of data structures is that optimized memory access matters

in processing large graphs.

4.2.2 Parallel Graph pattern and Analytics Queries

In this experiment, we compare the multicore scalability of LB2 with SNAP, Ligra

and EmptyHeaded. Figure 4.6 gives the absolute runtime for scaling up LB2, SNAP,

Ligra and EmptyHeaded in PageRank on 2, 4, 8, 16 and 24 cores for LiveJournal1

and Orkut datasets. We scale the number of cores up to 24 to keep the execution

local within a single socket.

Overall, the speed up in all systems linearly increases with the number of cores.

The systems with the fastest single core runtime (SNAP and LB2) achieves a speedup

97

LiveJournal1

100

100.5

101

101.5

102

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

LB2 SNAP Ligra EmptyHeaded

1 2 4 8 16 24

LB2 20 9.9 5.2 2.8 1.6 1.3

SNAP 20 12.2 7 3.7 2.2 2

Ligra 27 20 14.5 9.3 5.7 4.1

EmptyHeaded 70 39 19.5 10 5.1 3.8

Orkut

100

100.5

101

101.5

102

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

LB2 SNAP Ligra EmptyHeaded

1 2 4 8 16 24

LB2-Flat 27 14 7.2 3.8 2.5 1.6

SNAP 24 14.3 7.9 4.2 2.4 1.8

Ligra 36 22 12 6.8 3.4 2.6

EmptyHeaded 132 71 35.5 17.9 8.9 6.4

Fig. 4.6. The absolute runtime in seconds (s) for parallel scaling up LB2,
SNAP, Ligra and EmptyHeaded in PageRank on 2, 4, 8, 16 and 24 cores
for LiveJournal1 and Orkut datasets.

98

of 10⇥ and 15⇥ respectively in LiveJournal1, and speedup of 13⇥ and 16⇥ respec-

tively in Orkut. Furthermore, LB2 and SNAP outperform Ligra and EmptyHeaded

in this query. At a closer look, the scaling up of LB2 is 4⇥ (at two cores) and 2⇥

(at 24 cores) faster than EmptyHeaded in LiveJournal1 and 5⇥-6⇥ times faster in

Orkut. Similarly, LB2 is average 5⇥-6⇥ times faster than Ligra in LiveJournal1.

We observed that the implementation of SNAP PageRank spends time in creating

a vertex lookup index that maps the vertex id into a vector index which explains,

in part, the small difference in runtime numbers. In the case of EmptyHeaded, (as

we discussed in the single-core experiment) that EmptyHeaded implements the naive

evaluation (for this operator) which is not aggressive enough in duplicate elimination

and causes the operator to perform extraneous work per iteration. EmptyHeaded

would probably match LB2 if the implementation were improved. Although Ligra is

implemented in C++, our observation is the high-level data structure adds runtime

interpretive overhead in contrast to LB2’s specialized data structure.

Figure 4.7 gives the absolute runtime for scaling up LB2, SNAP, and Empty-

Headed in triangle count on 2, 4, 8, 16 and 24 cores for LiveJournal1 and Orkut

datasets. Overall, EmptyHeaded’s scaling up in LiveJournal1 outperforms LB2 and

SNAP by an average of 8%-2.8⇥ from 8 cores and above. Similarly, EmptyHeaded

outperforms LB2 and SNAP in Orkut by an average of 40%-2⇥. At a closer look,

the performance of LB2 and SNAP is comparable. For instance, the scaling of LB2 is

10% faster than SNAP in LiveJournal1 at core 24 whereas SNAP is faster than LB2

by 25% for the same core value. Moreover, EmptyHeaded results are attributed, in

part, to the data structure, query optimizer that picks the proper layout based on

data skew and SIMD parallelism.

Discussions The outcomes of the parallel scaling experiment are consistent with the

single-core experiment. The performance of LB2 is attributed, in part, to optimized

evaluation and data structures specialization. Altogether, our experiments show that

99

LiveJournal1

100

100.5

101

101.5

102

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

LB2 SNAP EmptyHeaded

1 2 4 8 16 24

LB2-Adj 16.3 9.6 6 4.1 3.2 2.7

SNAP 18.1 10.3 6.1 3.8 2.7 3

EmptyHeaded 24.9 13.7 6.7 3.5 1.7 1.07

Orkut

100

100.5

101

101.5

102

1 2 4 8 16 24
Cores

R
un

tim
e

(s
)

LB2 SNAP EmptyHeaded

1 2 4 8 16 24

LB2-Flat 27 14 7.2 3.8 2.5 1.6

SNAP 24 14.3 7.9 4.2 2.4 1.8

Ligra 36 22 12 6.8 3.4 2.6

EmptyHeaded 132 71 35.5 17.9 8.9 6.4

Fig. 4.7. The absolute runtime in seconds (s) for parallel scaling up LB2,
SNAP, and EmptyHeaded in triangle count on 2, 4, 8, 16 and 24 cores for
LiveJournal1 and Orkut datasets.

100

LB2 can compete against state-of-the-art graph engines. However, LB2’s design is

simpler as it is derived from a straightforward query interpreter design.

4.3 Conclusions

In this Chapter, we have added graph query compilation inside the LB2 main-

memory query compiler. We support parallelism for shared memory using OpenMP

and thread-aware data structures. The graph extension matches, and sometimes

outperforms, specialized low-level graph engines.

101

5. SUMMARY

In this dissertation, we have demonstrated the practical application of a deep and

fundamental idea known as the first Futamura projection, which essentially states

that the ability to specialize a query interpreter to a given query is identical to a

query compiler.

In Chapter 2, we have presented LB2; a fully compiled query engine, and we have

shown that LB2 performs on par with, and sometimes beats the best compiled query

engines on the standard TPC-H benchmark. Specifically, LB2 is the first query engine

built in a high-level language that is competitive with HyPer [6], both in sequential

and parallel execution. LB2 is also the first single-pass query engine that is compet-

itive with DBLAB [9] using the full set of non-TPC-H-compliant optimizations.

In Chapters 3-4, we have demonstrated that the underlying idea of construct-

ing simple but highly efficient query compilers applies not only to purely relational

queries, but carries over to diverse workloads including spatial and graph queries.

Chapter 2 was published and presented in the ACM 2018 International Conference

on Management of Data (SIGMDOD’18). In Chapter 3, we have added spatial query

compilation inside the LB2 main-memory query compiler. We support parallelism for

shared memory using OpenMP and thread-aware data structures. The spatial exten-

sion matches the performance of the library code. In single-core distance join, range

join and kNN join queries, LB2-Spatial outperforms spatial spark extensions and

PostGIS in spatial join queries by 12⇥-299⇥. For scaled-up execution, LB2-Spatial

is 10⇥-20⇥ faster than spatial Spark extensions. In Chapter 4, we have added graph

query compilation inside the LB2 main-memory query compiler. We support paral-

lelism for shared memory using OpenMP and thread-aware data structures. Chapter

3 is currently under submission, and Chapter 4 is accepted at the 17th Symposium

on Data Base Programming Languages (DBPL’19).

REFERENCES

102

REFERENCES

[1] G. Graefe, “Volcano-an extensible and parallel query evaluation system,” TKDE,
vol. 6, no. 1, pp. 120–135, 1994.

[2] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl
et al., “System R: relational approach to database management,” TODS, vol. 1,
no. 2, pp. 97–137, 1976.

[3] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Er-
ickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis,
S. Wanderman-Milne, and M. a. Yoder, “Impala: A modern, open-source SQL
engine for hadoop,” in CIDR, 2015.

[4] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher,
N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-optimized oltp
engine,” in SIGMOD. ACM, 2013, pp. 1243–1254.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL: Relational data pro-
cessing in spark,” in SIGMOD. ACM, 2015, pp. 1383–1394.

[6] T. Neumann, “Efficiently compiling efficient query plans for modern hardware,”
PVLDB, vol. 4, no. 9, pp. 539–550, 2011.

[7] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi, “Building efficient query engines
in a high-level language,” PVLDB, vol. 7, no. 10, pp. 853–864, 2014.

[8] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Cetintemel,
and S. Zdonik, “An architecture for compiling udf-centric workflows,” PVLDB,
vol. 8, no. 12, pp. 1466–1477, 2015.

[9] A. Shaikhha, I. Klonatos, L. E. V. Parreaux, L. Brown, M. Dashti Rah-
mat Abadi, and C. Koch, “How to architect a query compiler,” in SIGMOD,
2016.

[10] “SP-GiST indexes,” https://www.postgresql.org/docs/10/static/spgist.html.

[11] “Neo4j,” https://neo4j.com/.

[12] “SNAP: Stanford Network Analysis Project,” https://snap.stanford.edu/index.
html.

103

[13] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King,
B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger,
M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost, “A history
and evaluation of system r,” Commun. ACM, vol. 24, no. 10, pp. 632–646, Oct.
1981.

[14] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis and transformation,” in CGO, Mar 2004, pp. 75–88.

[15] “Postgis,” http://postgis.org.

[16] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for
processing large-scale spatial data,” in SIGSPATIAL. ACM, 2015, p. 70.

[17] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient in-memory
spatial analytics,” 2016.

[18] “JTS topology suite,” http://www.vividsolutions.com/jts/JTSHome.htm.

[19] “GEOS-Geometry engine, open source,” https://trac.osgeo.org/geos.

[20] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré, “Empty-
headed: A relational engine for graph processing,” TODS, vol. 42, no. 4, p. 20,
2017.

[21] R. Greer, “Daytona and the fourth-generation language cymbal,” in ACM SIG-
MOD Record, vol. 28, no. 2. ACM, 1999, pp. 525–526.

[22] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman, “Compiled query execution
engine using jvm,” in ICDE. IEEE, 2006, pp. 23–23.

[23] K. Krikellas, S. D. Viglas, and M. Cintra, “Generating code for holistic query
evaluation,” in ICDE. IEEE, 2010, pp. 613–624.

[24] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic approach
to runtime code generation and compiled dsls,” Commun. ACM, vol. 55, no. 6,
pp. 121–130, 2012.

[25] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented embed-
ded domain-specific languages,” ACM TECS, vol. 13, no. 4s, p. 134, 2014.

[26] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa, C. Aberger, and
K. Olukotun, “Have abstraction and eat performance, too: Optimized hetero-
geneous computing with parallel patterns,” in CGO. ACM, 2016, pp. 194–205.

[27] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, M. Wu, A. R. Atreya, M. Oder-
sky, and K. Olukotun, “OptiML: an implicitly parallel domain-specific language
for machine learning,” in ICML, 2011.

[28] T. Rompf and N. Amin, “Functional pearl: a SQL to C compiler in 500 lines of
code,” in ICFP. ACM, 2015, pp. 2–9.

[29] G. Essertel, R. Tahboub, J. Decker, K. Brown, K. Olukotun, and T. Rompf,
“Flare: Optimizing apache spark with native compilation for scale-up architec-
tures and medium-size data,” in OSDI, 2018, pp. 799–815.

104

[30] R. Y. Tahboub and T. Rompf, “On supporting compilation in spatial query
engines:(vision paper),” in SIGSPATIAL, 2016.

[31] R. Y. Tahboub, G. M. Essertel, and T. Rompf, “How to architect a query
compiler, revisited,” in SIGMOD, 2018, pp. 307–322.

[32] Y. Ahmad and C. Koch, “DBToaster: A SQL compiler for high-performance
delta processing in main-memory databases,” VLDB, vol. 2, no. 2, pp. 1566–
1569, 2009.

[33] H. Pirk, O. Moll, M. Zaharia, and S. Madden, “Voodoo - a vector algebra for
portable database performance on modern hardware,” VLDB, vol. 9, no. 14,
pp. 1707–1718, 2016.

[34] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf,
S. Amarasinghe, M. Zaharia, and S. InfoLab, “Weld: A common runtime for
high performance data analytics,” in CIDR, 2017.

[35] D. Butterstein and T. Grust, “Precision performance surgery for PostgreSQL:
Llvm—based expression compilation, just in time,” VLDB, vol. 9, no. 13, pp.
1517–1520, 2016.

[36] E. Sharygin, R. Buchatskiy, R. Zhuykov, and A. Sher, “Runtime specialization
of PostgreSQL query executor,” in International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics. Springer, 2017, pp. 375–386.

[37] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive query
processing on RAW data,” PVLDB, vol. 7, no. 12, pp. 1119–1130, 2014.

[38] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: a hands-free adaptive store,”
in SIGMOD, 2014, pp. 1103–1114.

[39] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki, “Just-
in-time data virtualization: Lightweight data management with vida,” in CIDR,
2015.

[40] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed
data-parallel programs from sequential building blocks,” in SIGOPS/EuroSys,
ser. EuroSys, 2007, pp. 59–72.

[41] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “Spade: the system
s declarative stream processing engine,” in SIGMOD. ACM, 2008, pp. 1123–
1134.

[42] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda, N. Amin,
G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti, C. Koch, M. Püschel, and
K. Olukotun, “Go meta! A case for generative programming and dsls in per-
formance critical systems,” in SNAPL, ser. LIPIcs, vol. 32. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015, pp. 238–261.

[43] “Oracle spatial and graph,” https://www.oracle.com/assets/
spatial-and-graph-ds-1738135.pdf.

[44] Y. Fang, M. Friedman, G. Nair, M. Rys, and A.-E. Schmid, “Spatial indexing
in microsoft SQL server 2008,” in SIGMOD, 01 2008, pp. 1207–1216.

105

[45] J. R. Davis, “IBM’s DB2 spatial extender: Managing geo-spatial information
within the dbms,” 1998.

[46] P. Ogden, D. Thomas, and P. Pietzuch, “At-gis: Highly parallel spatial query
processing with associative transducers,” in SIGMOD. ACM, 2016, pp. 1041–
1054.

[47] M. Vermeij, W. Quak, M. Kersten, and N. Nes, “Monetdb, a novel spatial
column-store dbms,” 2008.

[48] “Geocouch,” https://accumulo.apache.org.

[49] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal access meth-
ods,” IEEE Data Eng. Bull., 2003.

[50] L.-V. Nguyen-Dinh, W. G. Aref, and M. Mokbel, “Spatio-temporal access meth-
ods: Part 2 (2003-2010),” IEEE Data Eng. Bull., 2010.

[51] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, “Sjmr: Parallelizing spatial join
with mapreduce on clusters,” in CLUSTER. IEEE, 2009, pp. 1–8.

[52] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in ICDE, 2015, pp. 1352–1363.

[53] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop gis:
a high performance spatial data warehousing system over mapreduce,” VLDB,
vol. 6, no. 11, pp. 1009–1020, 2013.

[54] J. Lu and R. H. Guting, “Parallel secondo: boosting database engines with
hadoop,” in ICPADS. IEEE, 2012, pp. 738–743.

[55] R. H. Güting, T. Behr, V. Almeida, Z. Ding, F. Hoffmann, M. Spiekermann,
and L. D. für neue Anwendungen, SECONDO: An extensible DBMS architecture
and prototype.

[56] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, “Spatio-temporal indexing in
non-relational distributed databases,” in Big Data. IEEE, 2013, pp. 291–299.

[57] “Accumulo,” https://github.com/couchbase/geocouch.

[58] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, “Md-hbase: A scalable
multi-dimensional data infrastructure for location aware services,” in MDM,
vol. 1. IEEE, 2011, pp. 7–16.

[59] “Hbase,” https://hbase.apache.org/.

[60] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” TOCS, vol. 26, no. 2, p. 4, 2008.

[61] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “Sparkgis: Resource aware
efficient in-memory spatial query processing,” in SIGSPATIAL. ACM, 2017,
p. 28.

[62] S. Hagedorn, P. Götze, and K.-U. Sattler, “The stark framework for spatio-
temporal data analytics on spark,” BTW, 2017.

106

[63] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Locationspark:
a distributed in-memory data management system for big spatial data,” VLDB,
vol. 9, no. 13, pp. 1565–1568, 2016.

[64] “Magellan: Geospatial analytics using spark,” https://github.com/harsha2010/
magellan.

[65] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query processing
in cloud,” in ICDEW. IEEE, 2015, pp. 34–41.

[66] Z. Du, X. Zhao, X. Ye, J. Zhou, F. Zhang, and R. Liu, “An effective high-
performance multiway spatial join algorithm with spark,” ISPRS International
Journal of Geo-Information, vol. 6, no. 4, p. 96, 2017.

[67] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie, “SQL-
Graph: an efficient relational-based property graph store,” in SIGMOD. ACM,
2015, pp. 1887–1901.

[68] J. Fan, A. Gerald, S. Raj, and J. M. Patel, “The case against specialized graph
analytics engines,” 2015.

[69] M. Paradies, W. Lehner, and C. Bornhövd, “Graphite: an extensible graph
traversal framework for relational database management systems,” in SSDBM.
ACM, 2015, p. 29.

[70] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner, “The graph story of the
sap hana database.” in BTW, 2013.

[71] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing framework
for shared memory,” in ACM Sigplan Notices, vol. 48, no. 8. ACM, 2013, pp.
135–146.

[72] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph
analytics,” in SOSP. ACM, 2013, pp. 456–471.

[73] A. Kyrola, G. E. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph com-
putation on just a pc,” in OSDI. USENIX, 2012.

[74] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph pro-
cessing using streaming partitions,” in SOSP. ACM, 2013, pp. 472–488.

[75] X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph processing on a
single machine using 2-level hierarchical partitioning.” in USENIX ATC, 2015.

[76] Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, and A. Aiken, “A dis-
tributed multi-gpu system for fast graph processing,” PVLDB, vol. 11, no. 3,
pp. 297–310, 2017.

[77] “Titan,” http://titan.thinkaurelius.com/.

[78] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, and
J. Leskovec, “Ringo: Interactive graph analytics on big-memory machines,” in
SIGMOD, 2015, pp. 1105–1110.

107

[79] K. Xirogiannopoulos, U. Khurana, and A. Deshpande, “Graphgen: Exploring
interesting graphs in relational data,” VLDB, vol. 8, no. 12, pp. 2032–2035,
2015.

[80] D. Simmen, K. Schnaitter, J. Davis, Y. He, S. Lohariwala, A. Mysore, V. Shenoi,
M. Tan, and Y. Xiao, “Large-scale graph analytics in aster 6: bringing context
to big data discovery,” VLDB, vol. 7, no. 13, pp. 1405–1416, 2014.

[81] T. L. Willke and N. Jain, “Graphbuilder – a scalable graph construction library
for apache tm hadoop tm,” in NIPS, 2012.

[82] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a system for large-scale graph processing,” in SIGMOD.
ACM, 2010, pp. 135–146.

[83] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: a framework for machine learning and data mining in
the cloud,” VLDB, vol. 5, no. 8, pp. 716–727, 2012.

[84] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical prop-
erties of community structure in large social and information networks,” in
WWW, 2008, pp. 695–704.

[85] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,
“Naiad: a timely dataflow system,” in SOSP. ACM, 2013, pp. 439–455.

[86] “Graph-X,” https://spark.apache.org/graphx/.

[87] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Com-
puting Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[88] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “Pgql: a property graph
query language,” in GRADES, 2016, p. 7.

[89] “Cypher graph query language.” https://neo4j.com/developer/
cypher-query-language/.

[90] R. Angles, M. Arenas, P. Barcelo, P. Boncz, G. Fletcher, C. Gutierrez, T. Lin-
daaker, M. Paradies, S. Plantikow, J. Sequeda et al., “G-core: A core for future
graph query languages,” in SIGMOD, 2018, pp. 1421–1432.

[91] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: a dsl for easy and
efficient graph analysis,” in SIGARCH, vol. 40, no. 1, 2012, pp. 349–362.

[92] J. Seo, S. Guo, and M. S. Lam, “Socialite: Datalog extensions for efficient social
network analysis,” in ICDE. IEEE, 2013, pp. 278–289.

[93] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.
Veldhuizen, and G. Washburn, “Design and implementation of the logicblox
system,” in SIGMOD. ACM, 2015, pp. 1371–1382.

[94] “Soufflé: A Datalog synthesis tool for static analysis,” https://souffle-lang.
github.io/.

108

[95] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo, “Big
data analytics with datalog queries on spark,” in SIGMOD. ACM, 2016, pp.
1135–1149.

[96] W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch, “Datalogra-
phy: Scaling datalog graph analytics on graph processing systems,” in BigData.
IEEE, 2016, pp. 56–65.

[97] J. Wang, M. Balazinska, and D. Halperin, “Asynchronous and fault-tolerant
recursive datalog evaluation in shared-nothing engines,” PVLDB, vol. 8, no. 12,
pp. 1542–1553, 2015.

[98] S. Sakr, S. Elnikety, and Y. He, “Hybrid query execution engine for large at-
tributed graphs,” Information Systems, vol. 41, pp. 45–73, 2014.

[99] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboul-
naga, “Arabesque: a system for distributed graph mining,” in SOSP. ACM,
2015, pp. 425–440.

[100] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour, “Scalemine:
scalable parallel frequent subgraph mining in a single large graph,” in High
Performance Computing, Networking, Storage and Analysis. IEEE Press, 2016,
p. 61.

[101] W. Gan, J. C.-W. Lin, H.-C. Chao, and J. Zhan, “Data mining in distributed
environment: a survey,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 7, no. 6, p. e1216, 2017.

[102] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream: Marrying
relational algebra with streaming for efficient graph mining on a single machine,”
in OSDI.

[103] D. Yan, H. Chen, J. Cheng, M. T. Özsu, Q. Zhang, and J. Lui, “G-thinker: big
graph mining made easier and faster,” arXiv, 2017.

[104] C. W. Bachman, “The programmer as navigator,” Communications of the ACM,
vol. 16, no. 11, pp. 653–658, 1973.

[105] E. F. Codd, “A relational model of data for large shared data banks,” Commu-
nications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[106] Y. Futamura, “Partial evaluation of computation process — an approach to a
compiler-compiler,” Transactions of the Institute of Electronics and Communi-
cation Engineers of Japan, vol. 54-C, no. 8, p. 721–728, 1971.

[107] N. D. Jones, “An introduction to partial evaluation,” ACM Computing Surveys
(CSUR), vol. 28, no. 3, pp. 480–503, 1996.

[108] N. Jones, C. Gomard, and P. Sestoft, Partial evaluation and automatic program
generation. Peter Sestoft, 1993.

[109] M. Mehta and D. J. DeWitt, “Managing intra-operator parallelism in parallel
database systems,” in SIGMOD Conference, 1995, pp. 743–754.

[110] “OpenMP,” http://openmp.org/.

109

[111] “PostgreSQL,” https://www.postgresql.org.

[112] A. Shaikhha, I. Klonatos, L. E. V. Parreaux, L. Brown, M. Dashti Rah-
mat Abadi, and C. Koch, “DBLAB SIGMOD 2016 reproducibility,” https:
//dl.acm.org/citation.cfm?id=2915244, 2016.

[113] “DBLAB reproducibility git repository,” https://github.com/rtahboub/dblab,
2016, commit: e5d3fe2d5e8705fc827c40b07b752291f967a5a6, last accessed: 02-
15-2018.

[114] T. Chiba and T. Onodera, “Workload characterization and optimization of tpc-h
queries on apache spark,” Tech. Rep. RT0968, October 2015.

[115] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann, “Morsel-driven parallelism:
a numa-aware query evaluation framework for the many-core age,” in SIGMOD
Conference. ACM, 2014, pp. 743–754.

[116] R. Y. Tahboub and T. Rompf, “How to architect a query compiler for spatial
workloads,” Purdue University, Tech. Rep., 2019.

[117] B. Ooi, R. Sacks-Davis, and J. Han, “Indexing in spatial databases,” 1993.

[118] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmele-
egy, and T. Qadah, “Aqwa: adaptive query workload aware partitioning of big
spatial data,” PVLDB, vol. 8, no. 13, pp. 2062–2073, 2015.

[119] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in ACM
sigmod record, vol. 24, no. 2. ACM, 1995, pp. 71–79.

[120] D. Šidlauskas and C. S. Jensen, “Spatial joins in main memory: Implementation
matters!” PVLDB, vol. 8, no. 1, pp. 97–100, 2014.

[121] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern
spatial analytics systems?” PVLDB, vol. 11, no. 11, pp. 1661–1673, 2018.

[122] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke, “An experimental
analysis of iterated spatial joins in main memory,” VLDB, vol. 6, no. 14, pp.
1882–1893, 2013.

[123] “Spatial indexing at cornell,” http://www.cs.cornell.edu/bigreddata/
spatial-indexing.

[124] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what cost?” in
HotOS. USENIX Association, 2015.

[125] Spark, “Tuning Spark,” https://spark.apache.org/docs/latest/tuning.html.

[126] R. Y. Tahboub, X. Wu, G. M. Essertel, and T. Rompf, “Towards compiling
graph queries in relational engines,” in DBPL. ACM, 2019.

[127] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to know about
datalog (and never dared to ask),” ICDE, vol. 1, no. 1, pp. 146–166, 1989.

[128] M. S. Hassan, T. Kuznetsova, H. C. Jeong, W. G. Aref, and M. Sadoghi, “Ex-
tending in-memory relational database engines with native graph support,” in
EDBT, 2018, pp. 25–36.

110

[129] T. L. Veldhuizen, “Leapfrog triejoin: A simple, worst-case optimal join algo-
rithm,” 2014.

[130] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[131] P. Berkhin, “A survey on pagerank computing,” Internet Mathematics, vol. 2,
no. 1, pp. 73–120, 2005.

VITA

111

VITA

Ruby received her Ph.D. from the Department of Computer Science at Purdue

University. Her research interests lie in the intersection area of database systems and

programming languages. Ruby earned her master’s degree in computer science from

Purdue University. She also earned another master’s degree from the University of

Jordan and her bachelor of science from Jordan University of Science and Technology.

Ruby completed a summer internship with Software and Services Group (SSG) in

INTEL. Also, Ruby was awarded a best demo award in the ACM SIGSPATIAL 2015

and in 2016, Ruby received the Boyce Graduate teacher award from the college of

science at Purdue University. She is a member of the IEEE and a member of the

ACM.

