
EXPLORING NODE ATTRIBUTES

FOR DATA MINING IN ATTRIBUTED GRAPHS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jihwan Lee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Sunil Prabhakar, Chair

Department of Computer Science

Dr. Jennifer Neville

Department of Computer Science

Dr. Bruno Ribeiro

Department of Computer Science

Dr. Dan Goldwasser

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu

Head of the Department Graduate Program

iii

To my family

For their endless love, support, and encouragement

iv

ACKNOWLEDGMENTS

I am indebted to many people on finishing my Ph.D which was an unforgettable

experience in my entire life. I would never have been able to finish my dissertation

without the guidance of my advisor, committee members, help from friends, and

support from my family.

First of all, I dedicate my sincere gratitude to my advisor, Dr. Sunil Prabhakar,

for his constant support and continuous guidance to cultivate me as an independent

researcher throughout my doctoral study. I appreciate that he decided to be willing

to serve as my advisor when I first joined Purdue. It was fortunate to meet and work

with him at the very important moment when starting my Ph.D degree. He gave me

a lot of opportunities to explore various research topics while guiding me to move

forward in the right direction. Whenever I struggled with making progress on my

research, he always built me up with kindness and a sympathetic ear. He has been a

great mentor and wonderful inspiration at all times during my pursuing Ph.D.

I also appreciate my committee members. Dr. Jennifer Neville gave me a great

insight on the world of graphs/networks through classes and research discussions. Dr.

Bruno Ribeiro guided me to keep focusing on fundamental properties of graphs when

conducting research. Dr. Dan Goldwasser helped me widen my perspective on the

intersection of various research areas.

I was also fortunate to have a lot of friends at Purdue who enjoyed delightful

moments with me together - Romila Pradhan, Keehwan Park, Siarhei Bykau, Koray

Manchuhan, Hogun Park, Jaewoo Lee, Jaewoo Shin, Hongjun Choi, Minkwang Choi,

and many others. I will never forget all the memories we shared while spending tough

times in the boring city.

Lastly, I would like to thank my lovely wife, Soobin Seo, for staying with me

and being supportive during this long journey, and encouraging me to finish my

v

dissertation. She always makes me think positively and move forward consistently.

I have no doubt that I would never have made it through this process without her

endless devotion and love. I also wish to thank my daughter, Lena Lee, and my son,

Eugene Lee, who are the greatest blessing and gift to me and my wife. They always

bring delightful joys to our life and keep us smiling.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

SYMBOLS . xi

ABSTRACT . xiv

1 Introduction . 1

1.1 Motivation . 2

1.2 Thesis Statement and Contributions . 6

1.3 Outline . 6

2 Statistically Significant Attribute Associations 8

2.1 Introduction . 8

2.2 Related Work . 12

2.3 Problem Statement . 13

2.3.1 Attribute Associations . 14

2.3.2 Statistically Significance . 15

2.3.3 Locality Preserving Significant Associations 17

2.4 Graph Transformation . 18

2.4.1 Similarity-based split . 19

2.4.2 Strength-based split . 22

2.5 Experiments . 27

2.5.1 Datasets . 27

2.5.2 Effectiveness Analysis . 28

2.5.3 Scalability Analysis . 31

2.5.4 Application: Link prediction . 34

2.6 Summary . 35

vii

Page

3 Community Detection . 37

3.1 Introduction . 37

3.2 Related Work . 40

3.3 Model Description . 40

3.3.1 Model Overview . 41

3.3.2 Modeling the Links of the Network 41

3.3.3 Modeling the Node Attributes 43

3.4 Inference . 47

3.4.1 Updating Topic Related Parameters 47

3.4.2 Updating Community Memberships 49

3.5 Experiments . 50

3.5.1 Detecting Hidden Communities 51

3.5.2 Additional Task: Attribute Profiling 54

3.6 Summary . 57

4 Attribute Association Aware Network Embedding 59

4.1 Introduction . 59

4.2 Related Work . 62

4.3 Attribute Association Aware Network Embedding 65

4.3.1 Problem Definition . 65

4.3.2 Attribute Associations . 67

4.3.3 A3embed . 68

4.4 Experiments . 73

4.4.1 Datasets . 73

4.4.2 Baselines . 74

4.4.3 Experimental Setup . 75

4.4.4 Multi-Label Classification . 76

4.4.5 Capturing Attribute Associations 79

4.4.6 Impact of Embedding Dimensions 81

viii

Page

4.4.7 Visualization . 81

4.5 Summary . 84

5 Conclusion . 86

REFERENCES . 88

VITA . 95

ix

LIST OF TABLES

Table Page

2.1 Basic notations . 13

2.2 Dataset statistics . 27

2.3 DBLP subareas in computer science . 27

2.4 Significant associations minus Frequent associations for DBLP 30

2.5 Significant associations minus Frequent associations for Yelp 32

3.1 Notations used in the PTC model . 42

3.2 Facebook Network Statistics . 52

3.3 Community Detection Performance . 55

3.4 Mean Accuracy of Attribute Profiling . 56

4.1 Basic notations . 66

4.2 Dataset Statistics . 74

4.3 Node classification performance of different methods over different training-
test split ratios on BlogCatalog . 77

4.4 Node classification performance of different methods over different training-
test split ratios on Flickr . 78

4.5 Node classification performance on synthetic attributed networks 80

x

LIST OF FIGURES

Figure Page

1.1 Taxonomy of graph. 2

1.2 Social network example with an attribute “major”. 4

2.1 Attribute associations in attributed graph 10

2.2 Distribution of the number of edges between two groups of nodes 17

2.3 Graph transformation . 19

2.4 Two different strength-based splits . 23

2.5 DBLP subgraph characteristics for different subareas 29

2.6 Running time experiments on synthetic graph datasets 33

2.7 Link prediction performance . 35

3.1 Modeling links . 43

3.2 Modeling attributes . 45

4.1 Framework of A3embed : For each node, its attribute vector and one-hot
vector are fed into the deep model, and then its attribute and structural
information are jointly modeled to predict its neighbors. 69

4.2 Classification performance of learned representation over different embed-
ding dimensions . 82

4.3 Visualization of synthetic attributed networks. Color of a point indicates
its community. (p: in-community link probability, q: cross-community
link probability, r: number of distinct attribute vectors in a community) . 83

xi

SYMBOLS

G = (V,E) attributed graph

V = {u1, u2, . . . , u|V |} set of nodes in G

E set of edges in G

AG = (V , E) association graph

V = {c1, c2, . . . , c|V|} set of clusters in AG

E set of attribute associations in AG

a = (a1, a2, . . . , al) attribute vector of size l

∆ attribute association

σ freq support

η size support

δG density of graph G

Ψc p-value of cluster c

TS(u, v) tie-strength between node u and v

Γ(·) set of neighbors

G̃c subgraph of nodes within cluster c

U number of nodes

C number of communities

A number of attributes

K number of topics

θ multinomial distribution over topics of a node

λ multinomial distribution over topics of a community

πu community memberships of node u

φaz multinomial distribution over values of attribute a

given topic z

xii

µu probability that node u is biased to communities

zua node u’s topic on attribute a

cua node u’s community that is relevant to attribute a

xua node u’s value on attribute a

yua node u’s bias for attribute a

G = (V,E,X) attributed network

n number of nodes

l number of attributes

sij weight of edge eij

τ penalty term to the reconstruction error of non-zero

values in attribute vectors

yi attribute embedding of node vi

zi structural embedding of node vi

hi joint representation of node vi

W
(k)
1 ,b1

(k) k-th layer weights and biases in attribute modeling

W
(k)
2 ,b2

(k) k-th layer weights and biases in structure modeling

W
(k)
3 ,b3

(k) k-th layer weights and biases in joint modeling

m1, m2, m3 number of layers for each modeling component

ω hyperparameter that controls weights on the latent

representation from modeling node attributes

ζ negative penalty to control the importance of

attribute association

Ni neighbors of node vi

σ activation function

R regularization function

L{sim,ass,net} loss functions for attribute similarity, attribute

association, and network structure

p in-community link probability in a synthetic graph

q cross-community link probability in a synthetic graph

xiii

r number of distinct attribute vectors in a community

in a synthetic graph

xiv

ABSTRACT

Lee, Jihwan Ph.D., Purdue University, May 2019. Exploring Node Attributes for
Data Mining in Attributed Graphs. Major Professor: Sunil Prabhakar.

Graphs have attracted researchers in various fields in that many different kinds of

real-world entities and relationships between them can be represented and analyzed

effectively and efficiently using graphs. In particular, researchers in data mining

and machine learning areas have developed algorithms and models to understand the

complex graph data better and perform various data mining tasks. While a large body

of work exists on graph mining, most existing work does not fully exploit attributes

attached to graph nodes or edges.

In this dissertation, we exploit node attributes to generate better solutions to

several graph data mining problems addressed in the literature. First, we intro-

duce the notion of statistically significant attribute associations in attribute graphs

and propose an effective and efficient algorithm to discover those associations. The

effectiveness analysis on the results shows that our proposed algorithm can reveal

insightful attribute associations that cannot be identified using the earlier methods

focused solely on frequency. Second, we build a probabilistic generative model for

observed attributed graphs. Under the assumption that there exist hidden communi-

ties behind nodes in a graph, we adopt the idea of latent topic distributions to model

a generative process of node attribute values and link structure more precisely. This

model can be used to detect hidden communities and profile missing attribute values.

Lastly, we investigate how to employ node attributes to learn latent representations

of nodes in lower dimensional embedding spaces and use the learned representations

to improve the performance of data mining tasks over attributed graphs.

1

1. INTRODUCTION

This dissertation investigates the problem of exploring node attributes and learning

correlations between node attributes and graph structure from attributed graphs. It

aims at discovering insightful and interesting attribute patterns and performing data

mining tasks better by considering node attributes in complex network data.

Many different kinds of real-world objects establish relationships to each other and

are usually represented by a certain type of abstract data type, called graph. A graph

consists of a set of nodes and a set of edges connecting nodes, and its structural feature

itself fits very well to the formation of connected objects. For example, in a social

network, each individual user corresponds to a node and a connection or relationship

between users is formed by an edge in a graph. In a citation network, a node represents

a publication and any two publications forms a directed edge if one cites the other.

There are a variety of graph types according to their structural/temporal/stochastic

characteristics, as shown in Figure 1.1, and our main focus is on attributed graphs

in this dissertation. Note that we use the terms graph and network interchangeably

throughout this dissertation.

The explosive increase of relational data in terms of both the amount and the

variety has led to the popularity of graphs in various fields. As graphs are more

widely used in a broad range of commercial and scientific applications, the needs

to analyze the graph data and find new valuable information from the graph data

become more important. The availability of attributes associated with nodes and

edges has the potential to enrich our learning and mining tasks to yield more insightful

and accurate predictions. However, existing work has only recently begun to take

these attributes into account. In this dissertation, we develop novel methods that

exploit node attribute information to yield novel insights and improve the accuracy

of predictions over existing methods.

2

t t+1 t+2

{UIUC, CS}

{Purdue, Stat}

{Purdue, ECE}
{Purdue, CS}

Attributed Dynamic

UncertainDirected

Graph

0.7
0.2

Fig. 1.1.: Taxonomy of graph. In attributed graphs, the nodes of a graph have some

attribute values. If a graph evolves over time, it is called a dynamic graph. Also, The

edges can be directional in directed graphs, and they may appear or not with some

probability in uncertain graphs.

More specifically, this dissertation provides answers to the following questions:

Given an attributed graph, (1) Which attribute values co-occurring through any con-

nected nodes in the graph could bring us most significant information by themselves?

(2) How are the node attributes correlated with link structure in generating the graph?

(3) How should the node attributes be used together with graph structure for learning

richer feature representations of the nodes?

1.1 Motivation

For the past decades, relational data has grown at a tremendous rate in a wide

range of domains such as the Internet and the World-Wide Web [1–3], scientific

citation and collaboration [4, 5], epidemiology [6–9], communication analysis [10],

3

metabolism [11, 12], ecosystems [13, 14], bioinformatics [15, 16], fraud and terrorist

analysis [17, 18], and many others. The links in these data may represent citations,

friendship, associations, metabolic functions, communications, co-locations, shared

mechanisms, or many other explicit or implicit relationships.

Such relational data basically encode how objects relate to each other, and look-

ing at the relationships of an object to its neighbors can help us understand the role

of the object in the network (i.e., a person having a number of followers in a social

network may play a role of hub in information propagation) and detect latent com-

munities (i.e., people within a group interact with each other more frequently than

with those outside the group). Sometimes the objects are associated with attributes

describing their own properties. For example, each individual in a social network has

its personal information such as gender, age, school, employer, and so on. Not only

they reveal the characteristics of an object by themselves, but it also has been shown

that the attributes affect the formation of relationships among individual objects in

a network [19]. In other words, the attributes may be strongly correlated with the

relationships, which gives us a chance to deal with relational data much better for

machine learning tasks by taking into account both the relationships and the node

attributes. As an illustrating example of the benefit of using node attributes, Fig-

ure 1.2 shows that the clusters of the nodes could be formed differently depending on

which of structure and attribute is considered in graph clustering.

The proliferation of relational data in the real-world has given rise to the explosive

growth of research on graphs. Researchers have come up with diverse interesting

problems such as graph clustering, link prediction, node classification, community

detection, and so on. These problems were first considered for graphs without node

attributes and some have been extended to attributed graphs.

From the perspective of node attributes themselves, one might be interested in

what insights we expect from seeing the node attributes over the entire graph. Given

a pair of nodes that are connected to each other, one interesting observation on the

relationship is which attribute values co-occur through the connection. Homophily

4

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Computer ScienceComputer ScienceStatisticsStatistics

Statistics

Computer Science,
Statistics

(a) Social Network

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Computer ScienceComputer ScienceStatisticsStatistics

Statistics

Computer Science,
Statistics

(b) Structure-based Cluster

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Computer ScienceComputer ScienceStatisticsStatistics

Statistics

Computer Science,
Statistics

(c) Attribute-based Cluster

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Computer ScienceComputer ScienceStatisticsStatistics

Statistics

Computer Science,
Statistics

(d) Structural/Attribute Cluster

Fig. 1.2.: Social network example with an attribute “major”. Figure 1.2(a) shows a

small social network graph where a node corresponds to an individual and an edge

represents a friend relationship between two individuals. Each of the nodes is associ-

ated with an attribute which describes a subject she has majored. Figure 1.2(b) shows

clusters based on node connectivity, i.e., friend relationship. Individuals within clus-

ters are closely connected, but they could have different attribute values. Figure 1.2(c)

shows another set of clusters based on attribute similarity, i.e., majors. However, the

friend relationship may be lost due to the partitioning so that individuals are quite

isolated in one of the clusters. Figure 1.2(d) shows clusters based on both structure

and attribute information. This result balances the structural and attribute similar-

ities. That is, individuals within clusters are closely connected, and meanwhile, they

are homogeneous on major.

5

is the tendency of individuals to associate and bond with similar others. That is,

if the relationship is homophilic, the connected nodes are likely to share the same

or similar attribute values. Heterophily is the opposite case. The presence of those

kinds of relationships has been discovered in a vast array of network studies by social

scientists [19–21], yet they have only focused on associations between the same set of

attributes. This problem can be generalized to associations between any two subsets

of attributes and these associations may bring us more insightful patterns that are

helpful for understanding the relationships between nodes, or even the entire network,

better. Especially, we may want to discover only some associations which are really

meaningful in terms of their statistical significance, but it is challenging to identify

which associations are statistically significance in a naive way due to the extremely

large number of possible associations in a large graph.

In addition to the node attribute patterns, it is worth considering the node at-

tributes in different machine learning tasks because of their high applicability. Nu-

merous machine learning tasks on graphs still rely nearly on relational learning in the

graph structure. However, previous research has shown that the connectivity infor-

mation in relational data is essentially not sufficient but necessary for achieving high

performance in many applications. The relationships between nodes are not identical

across different pairs of connected nodes. For example, in Facebook, user A and user

B might make a friendship relationship because they used to be classmates while user

A and user C are in a friend relationship because they work for the same company.

Apparently, the different types of relationships have to be considered and handled

differently while performing machine learning tasks since they actually play different

roles depending on tasks. In most cases, the relationship types are implicit, and if

this is the case then they need to be identified. Although it is non-trivial to dis-

criminate the implicit relationship types, we can exploit node attributes to estimate

the types if they are available. Fortunately, many relational data are provided with

such extra information even if it is not necessary a form of node attribute, and it has

been considered as critical to understand how node attributes and graph structure

6

are dependent of each other [19, 22–30]. Even though many previous research have

been done on attributed graphs for various machine learning tasks, there is still a

room for improvement.

1.2 Thesis Statement and Contributions

In this dissertation, we consider the problem of finding insightful attribute patterns

and using node attributes with the purpose of improvement on existing approaches

to some data mining tasks. First of all, we develop an effective algorithm for mining

statistically significant attribute associations in attributed graphs. The results shed

light on meaningful patterns of co-occurring node attribute values between connected

nodes which might be hidden by frequent ones. Second, we propose a new proba-

bilistic generative model for attributed graphs. The proposed model resolves some

concerns raised from existing models by introducing a novel generative process with

various hidden factors which are inferred through sampling and optimization tech-

niques. We demonstrate the effectiveness of the model for community detection and

profiling of missing attribute values. Lastly, we investigate the problem of learning

network representation on attributed graphs in which no previous research has tried

to incorporate node attributes. The learned representations in lower dimensional em-

bedding spaces for nodes can be directly used for standard machine learning tasks on

relational data.

The main thesis of this dissertation can be stated as follows:

It is important to uncover insightful patterns of node attributes for un-

derstanding the essence of attributed graphs better, and deep understanding

on the dependency between node attributes and graph structure will help

improve the performance of various machine learning tasks

1.3 Outline

The remainder of this dissertation is organized as follows.

7

First, in Chapter 2, we define the concept of attribute association and introduce

a new algorithm that can discover statistically significant attribute associations in

attributed graphs.

In Chapter 3, we build a probabilistic generative model and show how the model is

used to detect hidden communities in a network with node attributes and to estimate

missing attribute values.

In Chapter 4, we propose a new approach to graph embedding, especially when the

graph data contain node attributes. The nodes in a graph have new representations

in lower dimensional embedding space that are obtained through an optimization

process and then the learned representations are directly used as inputs for different

machine learning tasks.

Lastly, in Chapter 5, we summarize our contributions made in the dissertation

and present future works.

8

2. STATISTICALLY SIGNIFICANT ATTRIBUTE

ASSOCIATIONS

Recently, graphs have been widely used to represent many different kinds of real

world data or observations such as social networks, protein-protein networks, road

networks, and so on. In many cases, each node in a graph is associated with a set

of its attributes and it is critical to not only consider the link structure of a graph

but also use the attribute information to achieve more meaningful results in various

graph mining tasks. Most previous works with attributed graphs take into account

attribute relationships only between individually connected nodes. However, it should

be greatly valuable to find out which sets of attributes are associated with each

other and whether they are statistically significant or not. Mining such significant

associations, we can uncover novel relationships among the sets of attributes in the

graph. We propose an algorithm that can find those attribute associations efficiently

and effectively, and show experimental results that confirm the high applicability of

the proposed algorithm.

2.1 Introduction

Nowadays graphs have emerged as a powerful abstract data type to represent

and analyze complex data in a broad range of commercial and scientific applications

including social networks [31,32], bioinformatics [33], world wide web [2,34], and so on.

Mining structured patterns in graphs have been actively studied in the literature and

such patterns including cliques [35], subgraphs [36–38], paths [39] and trees [40] help

us better understand the intrinsic characteristics of graph data. Also, when the graph

data come with auxiliary information such as node attributes, such information can be

applied to various application areas, e.g., community detection, link prediction, graph

9

clustering, network modeling, and etc. Thus, attributed graphs are more important

than ever before to complex mining tasks.

While node attributes can be successfully employed to augment various mining

tasks, the node attributes themselves could give us interesting patterns for better

understanding graphs. Given an attributed graph where each node is associated with

its attribute values, one might be interested in a pattern of node attribute values which

co-occur between connected nodes. Let us call such co-occurring attribute values

between two connected nodes an attribute association. This information can tell us

directly the attribute patterns shared by connected nodes over the entire graph. In

large scale, one might be interested in which attribute associations are most frequently

observed or which attribute vector is most expected to be observed given another

attribute vector in attribute associations. Looking at frequent attribute associations

reveals the most dominant attribute associations in the graph by simply taking into

account how many times they are held by connected nodes. Even though the frequent

attribute associations give us which ones are dominant over the entire graph, they

do not tell us which ones are really significant. That is because the frequency of an

attribute association often does not depart from what we expect and therefore may

not be meaningful actually if we already know the distributions of attribute values in

the graph. Rather, identifying the statistically significant attribute associations where

the pattern of the attribute association deviates from the expected, can potentially

infer undiscovered possible relationships between nodes in the graph. The statistical

significance of a pattern has been emphasized in various data mining problems [25,36,

41–43] and the previous works already explored why a statistically significant pattern

is more important rather than a frequent pattern. Thus, in this chapter we define a

statistically significant attribute association and address the problem of uncovering

it in attributed graphs.

Fig. 2.1 shows an example that shows a list of possible attribute associations in

an attribute graph. An attribute association is frequent if the number of pairs of

nodes is above a given threshold which is determined by freq support. Unfortunately

10

[1,0,1]

[0,0,1] [0,0,1]

[1,0,1]

[1,0,1]

[1,1,1]

[1,1,1]

[1, 0, 1] - [0, 0, 1] : 3
[1, 0, 1] - [1, 0, 1] : 2
[1, 0, 1] - [1, 1, 1] : 1
[1, 1, 1] - [1, 1, 1] : 1
[1, 1, 1] - [0, 0, 1] : 1

[1, 0, 1] - [*, 0, 1] : 5
[1, *, 1] - [*, 0, 1] : 5
[1, *, 1] - [0, *, 1] : 4

Fig. 2.1.: Attribute associations in attributed graph

the frequency is not sufficient to measure the statistical significance of an attribute

association since the frequency eventually depends on the actual distributions of the

attribute values in the graph. We will closely see the set difference between the two

in Section 2.5. Also when obtaining significant associations, each attribute value does

not always have to take discrete attribute value, e.g., 0 or 1 in binary case, as long as

the association has enough statistical significance. Accordingly, we introduce wildcard

attribute notation (∗), which matches any value of the corresponding attribute.

The statistical significance of an attribute association with its frequency k is de-

termined by the probability that it is observed at least k times or more, and the

probability is called the p-value of the attribute association. By measuring p-value,

we can identify the significant ones even though they are not frequent absolutely in

the graph. Also, as shown in Fig. 2.1, we are interested in even associations of partial

attribute values as long as they are statistically significant. The main challenge of

the problem is how to estimate the probability that an attribute association occurs

in a random graph. There are as many different attribute associations as the number

of edges in a graph, and if we consider even the partial attribute associations then

the number of possible attribute associations grows exponentially. We address the

11

challenge by transforming a graph G into an alternative graph AG, called association

graph, where each vertex contains a subset of nodes in G that have the same or similar

attribute values and each edge corresponds to a certain attribute association between

two set of attribute values, each of which is represented by a cluster. During the

process of transformation, we build AG such that the edges (i.e., associations) are

statistically significant.

To experimentally evaluate our work, we use two real world attributed graphs.

One is the DBLP co-authorship network and the other is the Yelp social network. We

present the statistically significant attribute associations extracted from the graphs

and compare them against the frequent attribute associations qualitatively. In addi-

tion to that, we show quantitatively how the statistically significant attribute associ-

ations can be used for boosting the performance of the link prediction task.

We summarize the contributions of our work as follows:

• We formally define the novel problem of mining statistically significant attribute

associations which aims to find patterns of co-occurring attribute values between

nodes which deviate from the expected.

• We design and implement an algorithm that can find the statistically significant

attribute associations efficiently and effectively.

• We conduct experiments using real world attributed graphs and show qualitative

results as well as the actual application that can benefit from the results.

This chapter is organized as follows. In Section 2.2, we introduce previous works

related to our problem and discuss how our problem differs from them. In Section 2.3,

we define the problem of mining statistically significant attribute association and

provide basic background concepts. The novel algorithm to solve our problem is

discussed in Section 2.4 and we present our experimental findings in Section 2.5.

Finally, we summarize the chapter in Section 2.6.

12

2.2 Related Work

There are a number of previous works that have explored the statistical significance

of patterns in various data mining and knowledge discovery tasks and have proposed

efficient methods for mining the statistically significant patterns. [36, 42] study the

statistical significance of subgraphs where the nodes of the graph are labeled. [42]

addresses the problem of finding statistically significant connected subgraphs in a

vertex-labeled graph where the labels are discrete and continuous. The statistical

significance is quantified by using the chi-square statistic, which makes the näıve

algorithm impractical because of the exponential number of subgraphs. They propose

an efficient algorithm which converts the graph into a super-graph. In [36], the authors

propose a technique for computing the statistical significance of frequent subgraphs

in a graph database. In order to solve the difficulty of estimating the p-value of a

subgraph directly in the graph space due to the flexible structures of graphs, they

tranform graphs into a feature space with predefined set of basis elements, and then

approximate the significance of a feature vector in the feature space by using the

binomial distribution. Although these two works explore the statistically significant

patterns in graphs, they differ from our work in that they more focus on structured

patterns, not attribute association patterns.

In addition to graphs, the statistical significance has been studied for other types

of patterns as well. [41] extends the traditional association rule mining problem to

searching statistically significant association rules such that some spurious rules are

not included in the result set while considering statistical dependence. The signifi-

cance of the observed frequency of an association rule is estimated by the binomial

distribution. [43] solves the problem of mining statistically significant substrings in

a string generated from a memoryless Bernoulli distribution and uses the chi-square

statistic as a quantitative measure of statistical significance. The statistical signif-

icance is considered for the sequential pattern mining problem as well in [44]. The

approach developed by the authors is able to efficiently mine unexpected patterns in

13

Table 2.1.: Basic notations

Notation Meaning

G = (V,E) attributed graph

V = {u1, u2, . . . , u|V |} set of nodes in G

E set of edges in G

AG = (V , E) association graph

V = {c1, c2, . . . , c|V|} set of clusters in AG

E set of attribute associations in AG

a = (a1, a2, . . . , al) attribute vector of size l

∆ attribute association

σ freq support

η size support

δG density of graph G

Ψc p-value of cluster c

TS(u, v) tie-strength between node u and v

Γ(·) set of neighbors

G̃c subgraph of nodes within cluster c

sequence of itemsets without considering overlapping occurrences or conditioning the

length of the sequence.

2.3 Problem Statement

In this section, we give basic definitions of the attribute association, frequent

association, statistically significant association, and define the problem of mining

statistically significant attribute associations. Table 2.1 introduces the notations we

use throughout this chapter.

14

2.3.1 Attribute Associations

Suppose we have an attributed graph G = (V,E,A) where V = {u1, u2, . . . , u|V |}

is a set of nodes, E = V × V is a set of edges, and A = {au1 , au2 , . . . , au|V|} is a

set of attribute vectors, each of which is associated with a node in V . The attribute

vector au of the node u that holds l different attributes is represented by a vector

of l binary values in that each binary indicates whether the node u actually has a

value for the corresponding attribute (in case of an m multi-valued attribute, it can

be transformed into m− 1 dichotomous variables each with binary). Then we define

an attribute association between a pair of attribute vectors a1 and a2 as follows:

Definition 2.3.1 Given two attribute vectors a1 = (a1
1, a

2
1, . . . , a

l
1) and a2 = (a1

2, a
2
2, . . . , a

l
2),

the attribute association between them, denoted by ∆a1,a2, is defined as a pair of two

sets of attribute values, {i|ai1 = 1} and {i|ai2 = 1} where i ∈ {1, 2, . . . , l}.

Note that the attribute association is symmetric with respect to a given pair of

attribute vectors a1 and a2, that is, ∆a1,a2 = ∆a2,a1 . Every pair of nodes has its

attribute association and therefore there are as many attribute associations as the

number of edges in G. The attribute association information is widely used in many

different applications. For example, the link prediction algorithms that aim to predict

whether a link will be newly formed between two unconnected nodes in the future

usually employ the link structure information around the two nodes but it could lever-

age from using the attributes of the nodes as well. Many previous researches have

shown that nodes in a graph tend to establish homophily or heterophily relationships

in terms of their attributes [19–21]. Another example of using attribute informa-

tion is the community detection problem. Many early approaches to detect latent

communities rely on only the link structure of a graph [45–47]. That is, they detect

communities such that nodes within the same community interact with each other

more frequently than with those outside the community. However more recent stud-

ies use the node attributes as well as the link structure and show that the attribute

information is helpful for community detection [23,24,48].

15

If an attribute association ∆ is repeatedly observed and its frequency is over a

given threshold σ that is referred as freq support, then we say ∆ is a frequent attribute

association.

Definition 2.3.2 Given an attribute association ∆ and a support σ, ∆ is called a

frequent attribute association if fr(∆) ≥ σ × |E| where fr(∆) is the number of pairs

of nodes with ∆.

When a frequent attribute association is given, we can say that there are many

pairs of nodes having the association but it does not necessarily mean that the at-

tribute association is really interesting. For example, in a social network of Purdue

University Almuni, it is not surprising to observe many connected nodes have the

attribute association of {“Purdue”, “CS”} – {“Purdue”, “CS”}. So we are interested

in statistically significant attribute associations rather than frequent ones, which will

be discussed in the following section.

2.3.2 Statistically Significance

The statistical significance of an object can be quantified by estimating the prob-

ability of the observed or rarer objects under the null hypothesis. Let δG denote the

density of G which is defined as the fraction of the number of edges in G over all

pairs of nodes (δG = |E|
1/2·|V |·(|V |−1)

). If we randomly select two groups of nodes no

matter which attribute values they have, denoted by C1 and C2 respectively, then

the expected number of edges between C1 and C2 is e(C1, C2) = |C1| · |C2| · δG by

assuming the probability of a pair of randomly selected nodes being connected to each

other follows δG. Also, assuming the edges are independent of each other, the actual

number of edges M between C1 and C2 would follow the binomial distribution with

parameters n = |C1| · |C2| and p = δG, and thus the probability of getting exactly k

edges among n possible edges is given by the following probability mass function:

16

f(k;n, p) = P [M = k] =

(
n

k

)
pk(1− p)n−k (2.1)

If each of C1 and C2 is a group of nodes with the same attribute values in G

which are specified by an attribute vector, then the attribute vectors a1 and a2 can

be instantiated from C1 and C2 respectively and the attribute association between

two attribute vectors is induced from the edges across the nodes of C1 and the nodes

of C2. So we can measure the statistical significance of a given attribute association

∆a1,a2 based on the probability P [M ≥ k] that the observed or higher number of

edges occur between C1 and C2 in which the nodes have a1 and a2 respectively. The

association is said to be statistically significant if the estimated probability P [M ≥ k]

is very small.

P [M ≥ k] = 1−
k−1∑
i=0

(
n

i

)
pi(1− p)n−i (2.2)

Definition 2.3.3 An attribute association ∆a1,a2 between C1 and C2 is statistically

significant if the probability of the observed or more number of edges between C1 and

C2 is less than α which is called a significance level.

In order to show the assumption that the number of edges between two groups

of nodes follows the binomial distribution is reasonable, we randomly sampled two

groups of 50 nodes from the DBLP co-authorship network (the details of the network

is described in Section 2.5) 10,000 times and obtained the empirical distribution of

the number of edges residing between the two groups. As shown in Fig. 2.2, the

empirical distribution (blue bar, mean: 8.68 / stddev: 3.29) is very closed to the

actual binomial distribution (red line, mean: 8.64 / stddev: 2.93), which is verified

by the chi-squared testing on the two distributions.

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of edges

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
ro

ba
bi

lit
y

Fig. 2.2.: Distribution of the number of edges between two groups of nodes

2.3.3 Locality Preserving Significant Associations

An attribute association may reside in anywhere over the entire graphG. However,

we expect that a certain attribute association could be observed more frequently

among nodes which are closed to each other. For example, in the DBLP co-authorship

network, some authors who have published papers in venues of data mining area are

expected to have a certain attribute association with other authors in the same or

similar area (e.g., the association of {ICDM, KDD} - {ICDM, NIPS, ICML}). Any pair

of authors in a relationship with the association could be seen in several locations of

G, but some of them may be located very closely in terms of the hop distance in the

graph and form a densely connected subgraph or community. Different communties

that have the same venue pattern many times would be corresponding to different

schools in different countries. That is, some attribute association patterns come with

locality in the graph and such a pattern can be more statistically significant locally

rather than globally. Besides, some attribute association patterns that are statistically

18

significant locally may form another complex patterns (e.g., star or chain, not just

pair) among them. One of the nice features of the algorithm we propose in Section 2.4

is that it is able to effectively find all the statistically significant attribute associations

while preserving the locality.

2.4 Graph Transformation

In this section, we describe the algorithm that finds statistically significant at-

tribute associations in a given attribute graph G. The basic approach for finding

statistically significant attribute associations is to transform the original graph G

into a new graph AG = (V , E ,A), which is called Association Graph, where each

node in V corresponds to a group of nodes in V which have the same or similar at-

tribute values, each edge in E is an attribute association ∆ between two attribute

vectors, and each attribute vector in A represents one shared by a group of nodes in

V . To avoid confusion, from now on we call a node in V a cluster and call an edge

in E an association. Each association ∆ is assigned a weight, referred as its strength

w(∆), that is given by the number of edges between nodes in the clusters forming

the association. For a given association ∆ and its associated strength, defined as

the number of edges between nodes in the clusters, we can determine whether ∆ is

significant or not by looking at the strength and the size of the clusters to which ∆

is incident, which will be explained in detail in the following sections.

The graph transformation can be done through an iteration of two steps. We first

start with a single cluster that contains all nodes of V in G and then the cluster is

partitioned into several subclusters by applying two steps repeatedly and iteratively.

For the first step, a cluster is split such that each subcluster contains a subset of V

that have similar attribute values. This operation is able to be easily done using any

clustering algorithms. In case of binary attributes, we just select one of the attributes

and then do two-way split with respect to the attribute. In Section 2.4.1, we explain

how to select the attribute. For the second step, we try to split a cluster such that

19

[0,0,1] [0,0,1]

[1,0,1]

[1,0,1]

[1,0,1]

[1,1,1]

[1,1,1]
[0,0,1] [1,1,1]

[1,0,1]
2

3 1
1

1

Fig. 2.3.: Graph transformation

each of the associations incident to the cluster has higher strength in order to obtain

more significant associations between two sets of attributes. That is, the iteration of

the two different splits alternate between performing the similarity-based split, which

produces clusters with the same or similar attribute values, and the strength-based

split, which makes associations more significant. It results in a new graph AG where

we can see groups of nodes with certain attribute values and significant associations

between them, as shown in Fig. 2.3.

Algorithm 1 shows the whole structure of the graph tranformation algorithm in-

cluding the two steps of splits. and the following subsections describe how each split

should be done in detail.

2.4.1 Similarity-based split

As mentioned already, the goal of the first step is to maximize the similarity

among attribute values in each cluster so that each cluster can represent a certain set

of attribute values. Thus we select one of the clusters in AG and then split it into

two subclusters based on a certain attribute so that each subcluster contains a set of

node that share the same value on the attribute. The way to select a cluster in AG is

based on the following idea. Basically we do not only want to maximize the similarity

20

Algorithm 1 Algorithm for graph transformation

Input: G = (V,E,A)

Output: AG = (V , E ,A)

Initialization :

1: V = ∅, E = ∅

2: c is initialized as a cluster containing all nodes in V

3: V = V ∪ c

Iterative Process

4: while there exist at least one cluster to split do

5: c = findClusterForSimilaritySplit(AG)

6: if (c exists) then

7: similaritySplit(AG, c)

8: end if

9: c = findClusterForStrengthSplit(AG)

10: if (c exists) then

11: strengthSplit(AG, c)

12: end if

13: end while

14: return AG

of attribute values in each subcluster after the split, but also want each subcluster to

be statistically significant as much as possible in terms of the attribute values of its

nodes.

To achieve the goal, we need to figure out which cluster should be split and which

attribute should be used to split the cluster. Let pi denote the probability that a

value of 1 occurs at i-th attribute, which is the fraction of nodes with a value of 1 for

the i-th attribute in G. So, pi is considered an expectation of having the attribute

value for a random node. First, an attribute on which a cluster should be split based

is picked such that the probability of the attribute having the value of 1 in the cluster

21

is least deviated from its corresponding pi. It allows the subclusters to not only have

higher similar attribute values among the nodes in them but also have the highest

significance gain through the split. Once we decide which attribute should be used

for the split of the clusters, we select one of the clusters to split. While assuming that

the attributes are independent of each other and the number of times the value of 1

appears at the i-th attribute follows the binomial distribution with the probability pi,

the statistical significance Ψc of a cluster c is defined based on the product of p-values

of the attribute values of the nodes in the cluster as follows,

Ψc = 1−
l∏

i=1

(
1−

ki−1∑
j=0

(
|c|
j

)
pji (1− pi)|c|−j

)
(2.3)

where ki is the number of nodes having the value of 1 on the i-th attribute and |c|

is the number of nodes in the cluster c. So for each cluster c we compute Ψc′ of

the subclusters c′. Remind that our goal is to split a cluster so that its subclusters

are most statistically significant. However, since the subclusters may have different

significances (one can be highly significant but the others can be very low), we take

subclusters with the lowest significance from each of the clusters in AG and then

select a cluster that will produce a subcluster with the highest significance among

those subclusters, i.e.,

arg max
c

(
min
c′∈sb(c)

Ψc′
)

(2.4)

where sb(c) is a set of subclusters that will be created after the split. In this way,

we can avoid to split a cluster that will produce the least significant subclusters. By

repeating this kind of split, AG will have only clusters, in each of which the same

attribute values are shared by its nodes, but we need to place one constraint while

doing the split. Even though a cluster represents a certain set of attribute values

shared in it, if it contains only a few nodes then its attribute values may not be

meaningful at all when we look at an attribute association between clusters in AG.

Thus, we use size support, denoted by η, to force a cluster not to split any more if

22

all the subclusters that will be obtained after splitting the cluster have the sizes less

than η · |V |. Thus, during the first step, we examine only clusters satisfying the η

threshold to determine which cluster should be split. Also, it is obvious that a cluster

in which all its nodes have the same attribute values does not need to be split.

We do not only want nodes in the same cluster to have the same attribute values

but also allow them to have similar attribute values. In other words, even though

every node in a cluster does not agree on a certain attribute, if the distribution of

the values of the attribute is statistically significantly deviated from the expectation,

then those nodes are considered to have an identical value for the attribute.

Once a cluster is split at the first step, we move on to the second step to increase

the significances of the attribute associations between clusters.

2.4.2 Strength-based split

While the similarity-based split of the first step aims to increase the similarity of

attribute values for a cluster, we try to maximize strengths of associations to which

a cluster is incident through the strength-based split. Given an attribute association

between two clusters, its strength is defined as the number of edges that connect the

nodes of the clusters. The strength is not meaningful by itself because the significance

depends on the sizes of the clusters as well as the strength. As we discussed the defi-

nition of a statistically significant attribute association in Section 2.3.2, the stronger

strength an attribute association has and the smaller the associated clusters are, the

higher statistically significant the association is. Thus, in order to make an associa-

tion more significant, a cluster that is one of the end points of the association needs to

be split into subclusters such that nodes which have many common neighbor clusters

belong to the same subcluster. Fig. 2.4 illustrates the basic idea of the strength-based

split. Suppose we want to maximize the significance of the associations held by the

cluster c1 and we consider two different splits to do that as presented in Fig. 2.4(a)

and Fig. 2.4(b). The nodes a and b in c1 have edges, all of which are incident to other

23

c2

x

c1

a

b

c
zd

y

w

c3

c11

a

b

c

d

c12

c2

x

z

y

w

c3

(a) (a, c) and (b, d)

c2

x

c1

a

b

c
zd

y

w

c3

c11

a

c

b

d

c12

c2

x

z

y

w

c3

(b) (a, b) and (c, d)

Fig. 2.4.: Two different strength-based splits

nodes in c2 while the nodes c and d are adjacent to only other nodes in c3. Thus, in

order for the subclusters obtained from splitting c1 to have associations of maximized

significance, the split should produce two subclusters which contain the two nodes a

and b, and the other two nodes c and d, respectively.

So we need to find the optimal split of a cluster so that its associations be-

come more significant. For a given cluster c we try to split, we build a graph

G̃ = (Ṽ , Ẽ) where Ṽ = {u|u ∈ c} and Ẽ = {(u, v)|u, v ∈ c ∧ ∃c′ s.t. (u,w1), (u,w2) ∈

E and w1, w2 ∈ c′}, some of which are connected to each other if they have edges

with some common neighbor clusters, Γ(c). Those edges in Ẽ are weighted based

on the fraction of edges to common neighbors among all of their edges. Then, we

partition the graph G̃ based on the weights of the edges in the graph and the sub-

graphs resulted from the partition become the subclusters we obtain through the

24

strength-based split. For this task, we need to come up with a proper way to assign

weights to the edges. We borrow the idea of tie-strength between individuals in social

network. In the social science community, there are many different ways to define the

tie-strength of an interpersonal relationship [49], and one widely used measure is the

Jaccard index. That is, a tie-strength between two individuals u and v is determined

by |Γ(u) ∩ Γ(v)|/|Γ(u) ∪ Γ(v)| where Γ(·) is a set of neighbors of a node. In our

setting, two nodes u and v in the cluster c may not have common neighbor nodes in

G but some of their neighbor nodes may belong to the same neighbor cluster c′ in

AG. Similarly, when u and v in c are connected to some of the nodes in a common

neighbor cluster c′ of c, there might not be common nodes in c′ which are incident

to both u and v. Thus, we modify the Jaccard index slightly so as to measure the

tie-strength between u and v while capturing the common neighbor clusters.

TS(u, v) =

∑
c′∈Γ(c) min{φ(u, c′), φ(v, c′)}∑
c′∈Γ(c) max{φ(u, c′), φ(v, c′)}

(2.5)

where φ(u, c′) = |w|w ∈ c ∧ (u, v) ∈ E|, that is the number of edges in E between

u and any nodes in c′. Using this tie-strength measure, we can have nodes belong

to the same subcluster after the split if they have many common neighbor clusters,

regardless of whether they have common neighbor nodes in G or not (of course, it

depends on the weight given by TS(·, ·)).

Once we have G̃ for the cluster c then we perform graph partitioning on G̃ to

find optimal subclusters that can make the associations between c and c′ ∈ Γ(c)

more significant. Since all the edges Ẽ of G̃ are assigned weights and G̃ should be

partitioned based on the weights, we take an approach to maximize the modularity

of G̃ [47]. The modularity Q(G̃) is defined as

Q(G̃) =
1

2m

∑
u,v

[
Auv −

ku, kv
2m

]
δ(cu, cv) (2.6)

where m = Ẽ, ku is the degree of u, cu is the group to which u belongs, and Auv is

1 if there is an edge in Ẽ between u and v otherwise 0. That is, the modularity is

25

the fraction of the edges that fall within the given groups minus the expected such

fraction if edges were distributed at random. If we split the cluster c through the

graph partitioning method as described, a set of nodes that share many common

neighbor clusters is likely to fall within the same subcluster as much as possible, and

different nodes that share only few common neighbors would be distributed to dif-

ferent subclusters. Thus, we can increase the statistical significances of the attribute

associations.

During the second step, we enforce a couple of conditions to prune some clusters

and associations in AG and do not perform the strength-based split on them for both

achieving computational efficiency and finding more meaningful results. As done in

the first step, we use size support, η because if the size of a cluster c is too small,

we do not believe that c is representative of a certain set of attribute values. Thus,

the strength-based split is run for a cluster c only when |c| ≥ η · |V |. In addition

to that, if a cluster has an attribute association with too weak strength, then we

can safely discard it for the rest of the algorithm. Note that the strength of an

attribute association between two clusters monotonically decreases as the two splits

are performed iteratively while the statistically significance is not monotonic in either

way. Since we consider only attribute associations between clusters satisfying the

size support condition and the statistically significance of an association depends on

its strength and the sizes of the clusters at the end points, we can prune an attribute

association from AG as long as it meets the following condition.

Lemma 1 Given an attribute association ∆c1,c2 and its two incident clusters c1 and

c2, if the strength of ∆c1,c2 is less than Φ−1
(

1− α− C(p2+q2)√
npq

)√
npq + np, then ∆c1,c2

does not have a chance to be statistically significant any more, where n = |c1| · |c2|,

p = δG, q = 1− p, Φ(·) is the error function, and C is a constant.

Proof Given the size support η, both the clusters c1 and c2 should have the size

of at least |V | · η in order to make the attribute association ∆c1,c2 considered as

statistically significant. Also, let k denote the strength of ∆c1,c2 and then according

26

to the (2.2), P [X ≥ k] ≤ α. If we approximate the binomial distribution using the

normal distribution,

P [X ≥ k] = P
[X − np
√
npq

≥ k − np
√
npq

]
= P

[
Z ≥ k − np

√
npq

]
≤ α (2.7)

Now we have the standard normal distribution and need to find the lower bound of k

which satisfies the inequality (2.7). Using the error function Φ(x) = 1√
2π

∫ x
−∞ e

−t2

2 dt

which is essentially identical to the standard normal cumulative distribution func-

tion [50],

k − np
√
npq

≥ Φ−1(1− α)

k ≥ Φ−1(1− α)
√
npq + np (2.8)

The lower bound for k is originated from approximation based on the standard normal

distribution and thus we need to get the error bound. According to the following

Berry-Essen theorem [51],

sup
x∈R

∣∣∣P[B(p, n)− np
√
npq

− Φ(x)
]∣∣∣ ≤ C(p2 + q2)

√
npq

(2.9)

with C < 0.4748, we know that the error arising from the approximation is at most

C(p2+q2)√
npq

. As a result, if we relax the lower bound for k in (2.8) to the extent of the

error, then we obtain

k ≥ Φ−1
(

1− α− C(p2 + q2)
√
npq

)√
npq + np (2.10)

Since p is very small and n is large for given η, the error bound is small and we

can still get a reasonably tight lower bound for k. Regarding the inverse of the error

function, if we use α = 0.01 as the significance level, then Φ−1(1 − α) = 1.8212.

According to Lemma 1, we drop attribute associations if they are too weak to be able

to be significant later on. In fact, such associations are noise and do not bring us any

meanings. Rather, it prevents the strength-based split from running optimally.

27

Table 2.2.: Dataset statistics

Original graph Association graph

Nodes Edges Density Nodes Edges

DBLP 4,672 37,726 0.00346 195 6,302

Yelp 4,454 44,906 0.00453 202 8,388

Table 2.3.: DBLP subareas in computer science

Subarea Conferences

DM/ML ICDM, NIPS, ICML

OS SOSP, OSDI

Theory FOCS, STOC, SODA

Security IEEE Symposium on Security and Pri-

vacy (S&P),

ACM Conference on Computer and

Communications Security (CCS)

2.5 Experiments

2.5.1 Datasets

We ran the graph transformation algorithm on real co-authorship and social net-

works, and obtained the resulting association graphs. Using the association graphs,

we analyzed qualitative differences between the statistically significant and frequent

associations. Also we showed the application of the significant patterns to a link

prediction problem, and synthetic graphs with attributes are considered to show the

algorithm’s scalability.

28

DBLP. We obtained a collection of bibliographic information from the DBLP

website [52], an open bibliographic information provider of computer science journals

and conferences. Each record of journal or conference paper has one or more authors,

and the venue, on which it is published. We first filtered out any authors who appear

in less than 3 papers. Then, we considered only papers published to the 10 conferences

of 4 different subareas of computer science, i.e., data mining and machine learning

(DM/ML), operating systems (OS), theory, and security. More details are shown

in Table 2.3. Then we built an attribute vector of length 10 for each node, i.e., if

an author (or a node) published a paper to a conference in Table 2.3, we set the

corresponding vector value to 1. If not, we set the corresponding vector value to 0.

Finally, an edge is formed if two authors (or nodes) have co-authored at least one

paper in the dataset.

Yelp. Yelp is a provider of crowd-sourced reviews about local businesses, along

with a social network. The Yelp challenge dataset [53] contains the social network,

composed of the users (nodes) and their friend relations (edges). Also the sets of users’

reviews are provided in the dataset. Each review is tied to a user and a business,

and each business has a small set of business type categories. We first filtered out

any users who have less than 10 reviews. Then, we considered only reviews for the

restaurants, which has at least one of the 10 business categories, {Chinese, Japanese,

Mediterranean, Thai, French, Greek, Vietnamese, Korean, Indian, British}. The node

attributes are compiled similarly to the DBLP dataset. Note that we did not use some

of the most popular restaurant categories, e.g., American, Mexican, and Italian. As

the majority of users has left reviews on the restaurants of such categories, they seem

to appear in most of the attribute associations and carry little or no information.

2.5.2 Effectiveness Analysis

To evaluate the effectiveness of our algorithm, we conducted the set difference

between the statistically significant associations and the top-15 frequent associations.

29

DM/ML OS Theory Security
0

0.5

1

1.5

2

2.5

3
·10−2

D
en

si
ty

0

500

1,000

1,500

2,000

2,500

3,000
Density

of nodes

Subarea Nodes Edges Density

DM/ML 2,657 15,639 0.00443

OS 395 2,113 0.02715

Theory 1,700 16,738 0.01159

Security 758 4,291 0.01496

Fig. 2.5.: DBLP subgraph characteristics for different subareas

As the resulting significant associations contain wildcard attributes, it is not easy

to make direct comparisons or set differences between the two. Thus, we took a

conservative approach that as long as all attribute values of any top-15 frequent

associations have exact or wildcard attribute match, we considered that there is a

match. This approach is certainly in favor of the frequent associations, since it ignores

that wildcard matches may lead to some other possible set of attribute values.

Table 2.4, we have the set difference between statistically significant and frequent

associations for the DBLP dataset. First consider 4 subgraphs that only contains the

nodes and their edges, whose attribute value for any conference of the corresponding

subarea is 1. Fig. 2.5 describes the characteristics of each subgraph. The subgraph of

DM/ML has a large number of nodes but its graph density is small, which means that

30

Table 2.4.: Significant associations minus Frequent associations for DBLP

Association

1 {SOSP, OSDI, S&P, CCS} – {SOSP, OSDI}

2 {SOSP, OSDI, S&P, CCS} – {S&P, CCS}

3 {ICML, ICDM, S&P(*)} – {ICML, ICDM}

4 {SOSP, OSDI, S&P, CCS} – {SOSP, S&P, CCS}

5 {FOCS(*), STOC(*), CCS} – {S&P, CCS}

6 {ICML, ICDM, S&P(*)} – {ICML(*), ICDM}

7 {SOSP, S&P, CCS} – {SOSP, OSDI}

8 {SOSP, S&P, CCS} – {S&P, CCS}

9 {ICML, ICDM, S&P(*)} – {ICDM, OSDI(*)}

10 {ICML, ICDM} – {ICML(*), ICDM}

the tie-strengths are weak. On the other hand, there are relatively small numbers of

nodes in the subgraph of OS and security but their densities are high, which means

that the tie-strengths are strong among the nodes. We can easily identify the OS

and security-related associations, which contain {SOSP, OSDI} and {S&P, CCS},

are appearing on top of the difference list. Also note that many frequent associations

are related to DM/ML conferences since its subgraph contains the most number of

edges while its density is low.

From Table 2.4, we can infer many interesting significant associations, which do

not appear in the frequent association list. The association number 1, 2, 4, 7, and

8 clearly shows that the nodes who have authorship in the OS-related conferences

tend to co-work with the authors in the security-related conferences. The association

number 3, 5 and 6 shows that the nodes who have authorship in the security-related

conferences frequently co-work with the authors in DM/ML and theory-related con-

ferences. Interestingly enough, the association number 9 shows how the authors in

31

DM/ML, security, and OS have frequent co-authorship relations in the graph. These

results might look obvious to some of the readers who have a good understanding of

co-authorship in computer science. However, when the relationships of attributes are

little known, the discussed results may be intriguing.

Table 2.5 shows that the set difference between statistically significant and fre-

quent associations for the Yelp dataset. Note that {Chinese, Japanese} appears very

commonly in the association results due to their prevalence in node attributes. Thus,

we will exclude them from the subsequent discussions. Also it turned out that the

first 10 significant associations with the highest statistical significance are the same

as the associations reported in Table 2.5. That is, none of the first 10 significant

associations are reported in the top-15 frequent association results, since the signifi-

cant associations do not occur often in terms of frequency but do occur often in the

dataset in a statistically significant manner.

Among the frequent visitors of {Mediterranean, Thai}, the association number 2

and 7 shows that the nodes with {Greek} attribute are strongly associated with the

nodes with {Vietnamese, Korean} attributes, and the association number 4, 6 and 10

shows that the nodes with {Vietnamese, Korean, Indian} are strongly associated with

the nodes with {Vietnamese, Korean} and {Greek} attributes. Also the association

number 5 and 8 describes that the nodes with {Mediterranean} have statistically

significant associations with the nodes with {Mediterranean, Thai, Greek}.

2.5.3 Scalability Analysis

We evaluated the computation cost of our algorithm on synthetic attributed

graphs of different sizes and densities. The experiments were carried on a machine

with an Intel Xeon 3.1GHz CPU and 32GB memory, running 64bit Ubuntu 14.04.

All algorithms are implemented in Python 2.7.

The graphs are generated based on the simplified version of Multiplicative At-

tribute Graph (MAG) model [19]. MAG is widely used in the literature to generate

32

T
ab

le
2.

5.
:

S
ig

n
ifi

ca
n
t

as
so

ci
at

io
n
s

m
in

u
s

F
re

q
u
en

t
as

so
ci

at
io

n
s

fo
r

Y
el

p

#
A
ss
o
ci
a
ti
o
n

1
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
G
re
ek
}
–
{C

h
in
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i(
*
),
G
re
ek
}

2
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
G
re
ek
}

3
{C

h
in
es
e,

J
ap

a
n
es
e,

T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

V
ie
tn
a
m
es
e,

K
o
re
a
n
}

4
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
,
In
d
ia
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
}

5
{C

h
in
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i(
*
),
G
re
ek
}
–
{C

h
in
es
e,

M
ed
it
er
ra
n
ea
n
}

6
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
,
In
d
ia
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

T
h
a
i}

7
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
}
–
{C

h
in
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i(
*
),
G
re
ek
}

8
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
G
re
ek
}
–
{C

h
in
es
e,

M
ed
it
er
ra
n
ea
n
}

9
{C

h
in
es
e,

J
ap

a
n
es
e,

T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

T
h
a
i}

10
{C

h
in
es
e,

J
ap

an
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
V
ie
tn
a
m
es
e,

K
o
re
a
n
,
In
d
ia
n
}
–
{C

h
in
es
e,

J
a
p
a
n
es
e,

M
ed
it
er
ra
n
ea
n
,
T
h
a
i,
G
re
ek
}

33

0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

100

200

300

400

500

600

Number of nodes

R
u
n
n
in
g
ti
m
e
(s
)

Similarity-based split
Strength-based split

(a) µ = 0.6, density= 0.010

0.2 0.6 1 1.4 1.8 2.2

·10−2

0

20

40

60

80

100

120

Expected density

R
u
n
n
in
g
ti
m
e
(s
)

Similarity-based split
Strength-based split

(b) µ = 0.6, nodes= 4, 000

Fig. 2.6.: Running time experiments on synthetic graph datasets

synthetic graphs with node attributes, and known to model real-world networks with

flexibility. We conducted two sets of experiments with l = 5 and µ’s fixed, the prob-

ability of each attribute value being 1, i.e., each node has five binary attributes and

the attributes are drawn from the same distribution, retaining the node attribute

distribution throughout the experiments.

Time complexity. Our algorithm is divisive in nature and it splits at least one

node of Association Graph in every iteration. First, the similarity-based split step

will run O(2l) iterations. Usually the length of attribute vector is small, l � n, and

the similarity-based split under reasonable settings takes much less time compared to

that of the strength-based split. In the strength-based split step, it is not hard to see

that the computation of tie-strengths between each pair of nodes, O(n2), dominates

the running time of the step. And we can notice that the algorithm will run log n

iterations of the strength-based steps on average. Accordingly the overall average

time complexity of the algorithm is O(n2 log n).

Results. Fig. 2.6(a) shows the computation time over the number of nodes. We

fixed the attribute link-affinity matrix [19], which determines the probability of edge

formation between two sets of node attributes. Note that since we kept all parameters

34

of the MAG model but the number of nodes, the graph density remained the same.

We confirmed that the algorithm is of polynomial time in the number of nodes. This

result is in line with the time complexity we discussed above.

In the second experiment, we fixed the number of nodes and the scale factor of the

attribute matrix, which merely changes the expected number of edges. That is, we

scaled the attribute matrix such that the resulting graphs have the graph densities

as we desire, without changing any other properties of the graphs. In Fig. 2.6(b),

we can easily observe that the algorithm’s running time remains almost the same as

we increase the expected graph density. The aforementioned time complexity should

well explain the result.

Finally, both of the plots in Fig. 2.6 show that the running time of the strength-

based split step dominates that of the similarity-based step. Also both plots describe

that the running time of the similarity-based step remain the same as we add more

edges with the number of nodes fixed, and the running time grows as we increase the

number of nodes. This supports our intuition that the similarity-based split step is

not relevant to the number of edges or graph density.

2.5.4 Application: Link prediction

As one of the application for which the statistically significant attribute associa-

tions are useful, the link prediction problem is considered. Many different approaches

to the link prediction have been proposed for the past decade, but with the objective

of showing the potential merit of the statistically significance attribute associations,

we simply use the Jaccard coefficient proposed in [54] and compare the effects of us-

ing statistically significant attribute associations and frequent ones. Given a pair of

nodes without an edge, we compute the prediction score by combining the Jaccard

coefficient J(u, v) and the score S(u, v) resulted from either the significance or the

normalized frequency of an attribute association between the nodes as follows

pred(u, v) = τ · J(u, v) + (1− τ) · S(u, v) (2.11)

35

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

False positive rate

T
ru
e
p
o
si
ti
ve

ra
te

Jaccard+Significant
Jaccard+Frequent

Fig. 2.7.: Link prediction performance

and if it is over a given threshold then we predict that u and v will form a new

link. We take two snapshots of the DBLP co-authorship network (Mar 2015 and

Mar 2016) and all the newly created links between the two snapshots are used for

the positive samples. Similarly, a set of pairs of nodes that do not have an edge in

both the snapshots are used for the negative samples. Since the number of negative

samples far outweighs the number of positive samples, we do negative subsampling

with the ratio of 1 : 5 (five negatives per one positive). In Fig. 2.7, we report the ROC

curves for two different methods, Jaccard+Significant, and Jaccard+Frequent. As

shown in Fig. 2.7, the link prediction can more benefit from employing the attribute

information and the statistically significant attribute associations can achieve higher

performance rather than the frequent ones.

2.6 Summary

We defined a problem of mining statistically significant attribute associations us-

ing Association Graph, which keeps the locality of attribute associations and carries

the significant relationships between the sets of attribute values. And we proposed a

36

novel, two-step iterative algorithm that efficiently and effectively generates an Asso-

ciation Graph from the original graph. The experiments are conducted on two real

world datasets, and we ran some qualitative analysis on the results, confirming that

our algorithm effectively finds the significant associations, which cannot be uncov-

ered by conventional frequent association mining. Also we ran extensive scalability

experiments on synthetic datasets, and confirmed that the algorithm is of polynomial

running time in the number of nodes. Lastly, applying the results from one of the

real world datasets to the link prediction task, and we showed how the statistically

significant attribute associations can be used in practice.

For future work, we plan to investigate how we can exploit resulting Association

Graph better, e.g., its locality preserving property, and if we can come up with a

linear time algorithm or a distributed algorithm, which can be run on large-scale

graphs.

37

3. COMMUNITY DETECTION

As many different kinds of complexe network data have become more and more avail-

able in these days, the community detection problem has become more important

and its applications have been prevalent. Numerous methods have been proposed for

solving the problem. One class of them considers only the network structure to detect

latent communities while the other class of methods uses both the network structure

and node attributes, if available. In this chapter, we propose a new community detec-

tion method, Probabilistic Topic-aware Community (PTC), based on a probabilistic

generative model. The model tries to model an observed network along with node

attributes by using the notion of hidden topics and individual node’s bias. We pro-

vide the model description and the inference strategy for the hidden parameters in

the model. The experiments with multiple Facebook ego networks show us not only

the effectiveness of the proposed model but also the general limitation of using node

attributes for community detection at the same time.

3.1 Introduction

The problem of community detection in networks has attracted a lot of interests

from researchers in the literature for the past decades because the communities are

helpful to better understand the underlying structures of the network and see how

nodes form connections in an organized way. A community simply can be defined as a

group of nodes which share common properties and/or interact with each other more

frequently than with those outside the group. Communities can be observed easily

in many different kinds of real-world networks such as social networks, collaboration

networks, protein-protein interaction networks, and so on [55].

38

According to the definition of a community we saw earlier, we expect that there are

many connections between nodes in a community and few connections between nodes

across different communities. We can also consider the attributes of nodes if available.

It is reasonable to think that a community is associated with some attributes and

the nodes in the same community might have the same value on the attributes.

For example, in social networks such as Facebook and Twitter, the members of the

community Purdue alumni should have the value of “purdue” on the attribute school

while the other community Google employees is strongly associated with the value

of “google” on the attribute work but its members may have diverse values on the

attribute school. Thus, we could consider two different sources that could be affected

by communities: the network structure and the node attributes.

Due to the importance of the problem and a lot of possible applications, there are

many methods that have been proposed for solving the community detection problem.

Some of them have considered only either the network structure [46,47,56–58] or the

node attributes [59]. However, both of the two sources are jointly correlated to the

formation of communities [22]. That is, it is empirically shown that nodes across

communities are loosely connected and nodes in a community share the same value

with each other for certain attributes. Recently, many different methods that consider

both the network structure and node attributes have been proposed [23,24,26,27,60–

62].

There are many different ways to model the link structure in a network and the

node attributes. We follow an idea of generating word-document corpus in LDA

(Latent Dirichlet Allocation) model [63]. That is, we assume that every latent com-

munity has its own hidden topic distributions. Then each attribute is associated with

probability distributions, each of which is associated with a topic, and the value of

the attribute is decided according to a topic assigned to the attribute and its corre-

sponding value distribution. In this way, we can model the attribute values such that

two nodes in the same community are likely to have the same attribute value.

39

One interesting fact is that every attribute is not relevant to a community and it

even depends on individual nodes. There can be some attributes whose values are

not generated from a community’s topics. Especially, if a node is loosely connected

to other nodes so it does not belong to any community, then the attribute values

possessed by the node should come from the node’s personal topics. That is, each node

has its own bias that represents how likely it takes attribute values from communities’

topics or its own personal topics. So we aim to model topic-aware communities

and each individual node’s personal topics. Eventually the Probabilistic Topic-aware

Community (PTC) model proposed in this chapter differs from existing works in that

we consider hidden topics behind communties and nodes and non-community related

attributes to generate the node attributes.

Our contributions of this chapter consist of

• For the problem of community detection, we propose a new probabilistic genera-

tive model which incorporates hidden topics for generating attribute values and

individual biases for differentiating nodes’ personal topics from communities’

topics.

• We develop an inference algorithm based on the Gibbs sampling and the gradi-

ent method, which is used to estimate the hidden parameters in the proposed

model.

• We apply the model to discover latent communities and show its effectiveness

on real-world social networks through experimental results.

This chapter is organized as follows: In Section 3.2, we introduce some previous

works that are related to the community detection problem or statistical network

model. We propose a new probabilistic generative model for discovering communities

in Section 3.3 and explain how the inference steps should be defined in Section 3.4.

In Section 3.5, we conduct an experiment with real-world social network datasets

and report the performances of our model and other baseline models. Lastly, we

summarize the chapter and discuss the future work in Section 3.6.

40

3.2 Related Work

Many different kinds of approaches have been proposed to solve the problem of

community detection. A probabilistic generative model can be used to find latent

communities over a network [26,27]. They basically assume that communities might

exist initially with having nodes as their members and the node attributes and connec-

tions are generated according to the community memberships. So they try to jointly

model the node attributes and connections which are observed in a network. [27] uses

a logistic function based on the community memberships to model the node attributes

and link-affinity matrices that represent how likely a pair of nodes has a link depend-

ing on the community memberships to model the occurrences of links. [26] devises

a model that has pretty similar structure to [27] except that it tries to model the

connections by using a logistic function with the community memberships as well.

Our model differs from them in that we consider non-community related attributes

and hidden topics behind communities and nodes to generate the node attributes.

The community detection could be considered as an application of the problem of

graph clustering. The graph clustering divides a graph into groups of similar nodes

based on a predefined objective function. [28–30] propose distance-based solutions to

compute the similarity between nodes while taking into account both network struc-

ture and nodes attributes. Even though the methods in [28–30] are able to produce

well-clustered nodes for a given attributed graph, they do not consider overlapping

between communities so all nodes in a graph can belong to only one cluster.

3.3 Model Description

In this section, we describe a new probabilistic generative model that models how

the network structure and node attributes are generated from latent communities

behind nodes. The Probabilistic Topic-aware Community (PTC) model is built based

on an idea of jointly modeling the links of the network and the node attributes while

following the assumption that each community and each individual are associated

41

with hidden topic distributions and follow the distributions to draw node attribute

values.

3.3.1 Model Overview

Given an attributed network G, we assume that there are U nodes in G and each

of them is associated with a set of A attributes. Each node u = 1, 2, . . . , U has a non-

negative real-valued community memberships πu over the C latent communities that

represent how strongly the node belongs to each community. Also, each node and each

community c = 1, 2, . . . , C have topic distributions θ and λ respectively where each

entry is a probability to draw a certain topic. A pair of an attribute a = 1, 2, . . . , A

and a topic z = 1, 2, . . . , K is associated with a multinomial distribution φaz over the

attributes and an entry φxaz represents a probability that the value x of the attribute a

is drawn given the topic z. Lastly, each node u has a bias probability µu that tells us

how likely the node takes an attribute value based on its own interests or the topics

of the communities to which the node belongs. Table 3.1 lists the notations that are

used throughout this chapter.

3.3.2 Modeling the Links of the Network

An attribute network G can be represented by an adjacency matrix M ∈ {0, 1}U×U

where the binary value of each entry indicates whether there is a link between the

node u and the node v or not. In order to model the connections between the nodes

in the network G, we use the community memberships π of the nodes and employ

the generative process used in CESNA [26]. As described earlier, πuc indicates how

strongly the node u is associated with the community c. Two nodes u and v who

belong to the same community c are more likely to establish a link between them as

πuc and πvc have more similar values. Thus the probability that two nodes in the

same community c are connected to each other can be defined as follows:

42

Table 3.1.: Notations used in the PTC model

Symbol Description

G attribute network

U number of nodes

C number of communities

A number of attributes

K number of topics

θ multinomial distribution over topics of a node

λ multinomial distribution over topics of a community

πu community memberships of node u

φaz multinomial distribution over values of attribute a given

topic z

µu probability that node u is biased to communities

zua node u’s topic on attribute a

cua node u’s community that is relevant to attribute a

xua node u’s value on attribute a

yua node u’s bias for attribute a

43

!" !#$"#

%"#

Fig. 3.1.: Modeling links

Puv(c) = 1− exp(−πuc · πvc)

Also, since we assume each node can belong to multiple communities and each

community contributes to form a link independently, the probability of a link between

u and v is obtained from the probability that u and v are not connected through any

community:

Puv = 1−
∏
c

(1− Puv(c)) = 1− exp(
∑
c

−πuc · πvc)

Then we can generate the adjacent matrix M by drawing a binary value for each

entry muv according to the probability defined above. The corresponding graphical

model representation is shown in Figure 3.1.

3.3.3 Modeling the Node Attributes

The attribute values can be modeled by borrowing the idea of generating words

in LDA(Latent Dirichlet Allocation) model [63]. Each community and each node are

associated with topic distributions (λ and θ). The latent topics could describe each

of the attribute values held by nodes. Thus, if two nodes u and v belong to the same

44

community, then they are likely to have the same topic on a certain attribute and

eventually have the same value on the attribute. However, all the attributes of nodes

do not have to be relevant to communities. There might be some attributes that are

generated regardless of the community memberships. For example, if a node has only

few connections with other nodes and is actually not a member of any community in

the network, then all the attribute values of the node might not be relevant to any

community and not generated from communities’ topics. Similarly, if a node belongs

to only communities Purdue alumni and Google employees but has the value of

“baseball” on the attribute hobby, then the attribute value might not be generated

from the communities but from the node’s personal interests. Therefore, for each

attribute a, a node u first decides whether it is related to communities’ topics or

the node’s personal topics by flipping a biased coin y(its bias to head is µu). If

the attribute a is community-related(y = 1), then the node u selects a community

c according to πu and draws a topic z from λc. If the attribute is not community-

related(y = 0), then the node draws a topic z from θu. Once a topic is decided for

the attribute a, its value is decided based on the probability φaz that is a multinomial

distribution over the values of the attribute a.

While generating the node attribute values, we use the community memberships to

select a community to which a node belongs. However, the node u’s community mem-

bership πu has non-negative real values which do not form a probability distribution.

So we need to make it follow a probability distribution over a set of communities by

normalizing the values. We use π′u to denote the normalized community memberships

of u (π′uc = πuc/
∑

c′ πuc′). The model has the plate notation as shown in Figure 3.2

and the generative process can be described as follows:

For a node u, if an attribute a follows a topic distribution of the node u, then the

the joint distribution of the attribute’s values Xua of the node u is defined as:

P (Xua, yua = 0|µu, η, φ) =P (yua = 0|µu)∫
P (θu|η)

(∑
zua

P (zua|θu)P (xua|zua, φa)
)

dθu
(3.1)

45

!

"

#$ %

&

'

(

)

*

+

,-

C

UAK

Fig. 3.2.: Modeling attributes

46

Algorithm 2 Generative process of node attribute values

1: for each attribute a and each topic z do

2: draw φaz ∼ Dir(βa)

3: end for

4: for each community c do

5: draw λ ∼ Dir(α)

6: end for

7: for each user u do

8: draw µu ∼ Beta(ρ)

9: for each attribute a do

10: draw yua ∼ Bernoulli(µu)

11: if yua == 1 then

12: draw cua ∼ Multi(π′u)

13: draw zua ∼ Multi(λcua)

14: else

15: draw θu ∼ Dir(η)

16: draw zua ∼ Multi(θu)

17: end if

18: draw xua ∼ Multi(φazua)

19: end for

20: end for

For a node u, if an attribute a follows a topic distribution of a community c to which

the node u belongs, then the the joint distribution of the attribute’s values Xua of

the node u is defined as:

P (Xua, yua = 1|µu, α, φ, π′u) =

P (yua = 1|µu)
∫
P (c|πu)(∫

P (λc|α)
(∑

zua

P (zua|λc)P (xua|zua, φa)
)

dλc

)
dπu

(3.2)

47

From the joint distributions defined above, we can obtain the full joint distribution

of all observed attribute values X in the network G as follows:

P (X|Θ) =
∏
u

∫
P (µu|ρ)

(∏
a

{
P (Xua|µu, η, φ)

+ P (Xua|µu, α, φ, π′u)
})

dµu

(3.3)

where Θ is a set of all parameters in the model. We will discuss how the hidden

variables should be estimated in the following section.

3.4 Inference

Given an observed attributed network G and associated node attribute values X,

we need to estimate the hidden variables θu, θc, π, φ, µ, and φ. In PTC model, both G

and X are generated from the community memberships π and they are conditionally

indenpendent of each other given π. Also, as seen in Section 3.3.2, the links depend

on only the community memberships, while the node attribute values depend on

not only the community memberships but also other hidden variables such as topic

distributions (θ and λ), attribute value distribution (φ), and bias distribution µ. Thus,

our inference strategy is basically to run two separate inference steps alternately: one

is for estimating the topic related parameters (θ, λ, φ, µ) on which the node attributes

depend and the other is for estimating the community memberships (π).

3.4.1 Updating Topic Related Parameters

First, given the observed attribute valuesX we should estimate θ, λ, φ, and µ while

assuming the values of π are predefined. Unfortunately, it is intractable to directly

solve the distributions in Equations (3.1), (3.2), and (3.3) defined in Section 3.3.3.

Thus, instead of estimating θ, λ, φ, and µ directly, the Gibbs sampling technique is

48

used for the model to learn the parameters. We sample biases and topics for each

pair of user and attribute according to the conditional probabilities defined below:

P (yua = 0|·) ∝
nuy(u, 0) + ρ∑
y nuy(u, y) + 2ρ

· nuz(u, zua) + η∑
k nuz(u, k) +Kη

P (yua = 1|·) ∝
nuy(u, 1) + ρ∑
y nuy(u, y) + 2ρ

·
∑
c

(πuc
ncz(c, zua) + α∑
k ncz(c, k) +Kα

)

P (zua = z|yua = 0, ·) ∝

nuz(u, z) + η∑
k nuz(u, k) +Kη

· n
(a)
zx (z, xua) + βa∑

x n
(a)
zx (z, x) +Xaβa

P (zua = z|yua = 1, ·) ∝

ncz(cua, z) + α∑
k ncz(c, k) +Kα

· n
(a)
zx (z, xua) + βa∑

x n
(a)
zx (z, x) +Xaβa

where nuy is the number of node u’s attributes having bias y, nuz is the number of

times topic z is assigned to attributes based on node u, ncz is the number of times

topic z is assigned to attributes based on community c over all nodes, and n
(a)
zx is the

number of times topic z is assigned to the value x of attribute a.

We iterate the sampling until convergence and then estimate the parameters θ, λ,

φ, and µ based on the samples:

θ(k)
u =

nuz(u, k) + η∑
k′ nuz(u, k

′) +Kη

θ(k)
c =

ncz(c, k) + α∑
k′ ncz(c, k

′) +Kα

φ(x)
az =

nzx(z, x) + βa∑
x′ nzx(z, x

′) +Xaβa

µ(y)
u =

nuy(u, y) + ρ∑
y′ nuy(u, y

′) + 2ρ

49

3.4.2 Updating Community Memberships

Once the hidden parameters θ, λ, φ, and µ are estimated through the Gibbs

sampling, we are ready to estimate the community memberships π and π can be

estimated by the maximum likelihood estimation. That is, we can estimate π by

finding the optimal π that maximizes the log-likelihood of the observed G and X:

arg max
π

logP (G,X|π,Θ)

Since an observed network G and node attribute values X are conditionally indepen-

dent of each other given the community memberships π and other parameter set Θ,

the log-likelihood of G and X is decomposed into two parts as follows:

logP (G,X|π,Θ) = logP (G|π) + logP (X|π,Θ)

Assuming every link in G is generated independently, the likelihood of G is

P (G|π) =
∏

(u,v)∈E

(1− exp(−
∑
c

πucπvc))

∏
(u,v)/∈E

(exp(−
∑
c

πucπvc)))

and thus the log-likelihood `(G) is given by

`(G) =
∑

(u,v)∈E

log(1− exp(−
∑
c

πucπvc))

−
∑

(u,v)/∈E

∑
c

πucπvc

Likewise, the likelihood of X is

P (X|π,Θ) =
∏
u

∏
k

(Qxuk
uk (1−Quk)

(1−xuk))

where Quk is the probability that the node u takes the attribute value k, which is

defined as follows:

Quk =
∑
z

φ(xuk)
az (µu

∑
c

πuc′

π0
u

λ(z)
c + (1− µu)θ(z)

u)

50

where π0
u =

∑
c πuc. Then, the log-likelihood `(X) is

`(X) =
∑
u,k

(xuk logQuk + (1− xuk) log(1−Quk))

In order to find π that maximizes `(G) and `(X), we use the gradient method.

Since the community memberships of the nodes in the network are independent, we

can update new community memberships node by node. We denote the log-likelihood

of G and the log-likelihood of X specific to only a node u by `(G, πu) and `(X, πu)

respectively.

`(G, πu) =
∑

v∈N(u)

log(1− exp(−
∑
c

πucπvc))−
∑

v/∈N(u)

πucπvc

`(X, πu) =
∑
k

(xuk logQuk + (1− xuk) log(1−Quk))

where N(u) is a set of neighbor nodes of u. From the partial derivatives of `(G, πu)

and `(X, πu), each component of ∇`(G, πu) and ∇`(X, πu) are defined as follows

∂`(G, πu)

∂πuc
=
∑

v∈N(u)

πvc
exp(−

∑
c πucπvc)

1− exp(−
∑

c πucπvc)
−
∑

v/∈N(u)

πvc

∂`(X, πu)

∂`(πuc)
=
∑
k

(xuk −Quk)Q
′
uk

(1−Quk)Quk

where Q′uk is the partial derivative of Quk with respect to πuc. That is,

∂Quk

∂πuc
=
∑
z

φ(k)
az µu

(λ(z)
c π0

u −
∑

c′ πuc′λ
(z)
c′

(π0
u)

2

)
Since the community memberships are represented by non-negative real values,

the new community memberships that are updated based on the gradients defined

above should be projected onto positive value space.

πnewuc = max(0, πolduc + α(
∂`(G, πu)

∂πuc
+
∂`(X, πu)

∂πuc
))

where α is a learning rate.

3.5 Experiments

We evaluate our generative model on the two different predictive tasks: 1) com-

munity detection and 2) profiling missing attribute values.

51

3.5.1 Detecting Hidden Communities

Dataset Basically PTC learns the community memberships based on both the net-

work structure and the node attributes. In addition to the network structure and

the node attributes, we need to know the actual community labels for each node as

the ground-truth so that we can evaluate the results of community detection done by

PTC and baseline methods. With the requirements, we consider the Facebook net-

work dataset that is publicly accessible in the site of Stanford Network Analysis

Project1. It consists of 10 different ego networks, each of which contains a set of

communities. Since different ego networks are associated with different set of at-

tributes, we evaluate our PTC for each of the networks separately. Tabel 3.2 shows

some statistics of the ego networks.

Baselines CESNA [26] is state of the art model for the community detection prob-

lem and it uses both the network structure and the node attributes to detect latent

communities as PTC does. One might be also interested in comparing PTC with

other methods based on only the network structure. So we consider two other meth-

ods that focus on the network structure without taking into account any information

about node attributes. One is MaxMod [57] and the other is InfoMap [56]. MaxMod

basically discovers a set of communities in a network such that the modularity of the

network is maximized. InfoMap works based on the probability flow through random

walks. The implementations of those three baseline methods are provided by the

SNAP (Stanford Network Analysis Platform) system2.

Experimental Results There are various metrics to measure the performance of a

community detection method. Among them we take an evaluation function that were

used in [26,46], which is defined as follows:

1

2|C|
∑
Ci∈C

max
C̃j∈C̃

J(Ci, C̃j) +
1

2|C̃|

∑
C̃j∈C̃

max
Ci∈C

J(C̃j, Ci)

1http://snap.stanford.edu/
2http://snap.stanford.edu/

52

T
ab

le
3.

2.
:

F
ac

eb
o
ok

N
et

w
or

k
S
ta

ti
st

ic
s

P
ro

p
er

ti
es

eg
o1

eg
o2

eg
o3

eg
o4

eg
o5

eg
o6

eg
o7

eg
o8

eg
o9

eg
o1

0
A

ve
ra

ge

N
u
m

b
er

of
n
o
d
es

34
8

1,
04

5
79

0
75

5
54

7
22

7
59

15
9

17
0

66
41

6.
60

N
u
m

b
er

of
ed

ge
s

5,
03

8
53

,4
98

28
,0

48
60

,0
50

9,
62

6
6,

38
4

29
2

3,
38

6
3,

31
2

54
0

17
,0

17
.4

0

N
u
m

b
er

of
co

m
m

u
n
it

ie
s

24
9

17
46

32
14

17
7

14
13

19
.3

0

N
u
m

b
er

of
at

tr
ib

u
te

s
21

23
20

22
20

19
16

19
18

20
19

.8
0

N
u
m

b
er

of
va

lu
es

22
4

57
6

31
9

48
0

26
2

16
1

42
10

5
63

48
22

8.
00

A
ve

ra
ge

co
m

m
u
n
it

y
si

ze
13

.5
4

55
.6

6
45

.7
0

23
.1

5
6.

00
40

.5
0

3.
41

25
.4

2
34

.6
4

6.
53

25
.4

5

C
om

m
u
n
it

ie
s

p
er

n
o
d
e

0.
93

0.
47

0.
98

1.
41

0.
35

2.
49

0.
98

1.
11

2.
85

1.
28

1.
28

53

where J(·) is the Jaccard coefficient that measures similarity between a pair of sets,

which is defined as the size of the intersection divided by the size of the union of

the two sets. The evaluation function basically measures how much the ground-truth

communities and the detected communities conform to each other. For each of the

ground-truth communities, we find its most similar detected community based on

the Jaccard coefficient between them. By taking the average of the maximal Jaccard

coefficients over all ground-truth communities, we can see the degree of conformity

between the two sets of communities. Note that there is no restriction on the number

of detected communities. In other words, the number of detected communities de-

pends on different methods and even on a single method because it can be specified

as a parameter. Thus, we should measure the metric in the opposite direction as well,

from the detected communities to the ground-truth communities. The average over

the resulted measures should be reported as the performance of a method. Table 3.3

shows the performances of all the methods over the 10 different ego networks. The

higher the value is, the better the performance is. We repeat our experiments five

times with different samples and report the mean of the evaluation metric in five

rounds, in order to make sure our experimental results are statistically meaningful.

There is no method that consistently outperforms other methods over the ego

networks. PTC performs best for ego1, ego5, and ego6, CESNA performs best for

ego2, and MaxMod performs best the rest of the ego networks. InfoMap does not

win for any ego network. If we consider the average of the results as the overall

performance then MaxMod could achieve the best performance. PTC can achieve

better performance if a network is large enough in terms of the numbers of nodes, links,

attributes, and hidden communities, since it can provide PTC with more evidences

to estimate hidden variables that contribute to generate those components. One

interesting observation is that MaxMod that uses only the network structure without

considering the node attributes for community detection works outperforms methods

that considers both the network structure and node attributes, which contradicts

the results reported in [26]. This indicates either that using node attributes might

54

be information overloading so that it makes the model based on both information

confusing while discovering communities or that Facebook ego networks simply do

not have strong relationships between node attributes and latent communities.

3.5.2 Additional Task: Attribute Profiling

Dataset For the task of profiling missing attribute values, the Facebook ego networks

used for community detection is not appropriate because users attribute values in

the networks are tokenized and anonymized as binary vectors. Instead, we obtain

LinkedIn dataset used in [22]. The authors of [22] collected the data by asking real

users in LinkedIn to provide their attributes (e.g., employer, college, and location) and

their ego networks (including the connections from the ego users to their friends and

those among their friends) based on LinkedIn APIs. We merge all the ego networks

to construct one big network where 19K users and 110K connections exist.

Baselines We use the following two competing methods as the baselines.

• RN The Relational Neighbor (RN) classifier [64] is based on the assumption

that if two nodes are connected to each other then they are likely to share the

same attribute value. It estimates the probability that a user holds an attribute

value as the weighted average of the probabilities of its labeled neighbors (i.e.,

weighted majority voting). Despite of the simplicity of the method, previous

studies show [64, 65] that it performs surprisingly well in many settings, even

compared to complex models.

• CP Co-profiling (CP) approach [22] jointly learns users’ attributes and rela-

tional types of their friends in a network. It profiles user attributes by propa-

gation from friends in certain relational types, and profiles relational types for

friends based on inferred attribute values and the network structure.

Experimental Results We use the accuracy to measure the performance of a

method. It is the ratio of the number of the correctly profiled users to the total

55

T
ab

le
3.

3.
:

C
om

m
u
n
it

y
D

et
ec

ti
on

P
er

fo
rm

an
ce

M
et

h
o
d

eg
o1

eg
o2

eg
o3

eg
o4

eg
o5

eg
o6

eg
o7

eg
o8

eg
o9

eg
o1

0
A

ve
ra

ge

P
T

C
0
.2

2
0

0.
21

1
0.

20
2

0.
29

3
0
.1

7
5

0
.5

4
0

0.
21

7
0.

33
9

0.
41

8
0.

34
1

0.
29

6

C
E

S
N

A
0.

19
8

0
.2

5
5

0.
38

8
0.

32
2

0.
08

7
0.

37
5

0.
24

6
0.

42
5

0.
28

6
0.

42
4

0.
30

1

M
ax

M
o
d

0.
19

6
0.

15
1

0
.4

6
4

0
.3

7
0

0.
09

7
0.

38
2

0
.4

3
9

0
.4

8
2

0
.4

3
5

0
.4

8
2

0
.3

5
0

In
fo

M
ap

0.
18

1
0.

19
1

0.
32

1
0.

24
6

0.
09

5
0.

32
1

0.
36

7
0.

36
5

0.
21

0
0.

42
4

0.
27

2

56

Table 3.4.: Mean Accuracy of Attribute Profiling

RN CP PTC

Employer 0.53 0.60 0.58

College 0.50 0.61 0.60

Location 0.62 0.65 0.68

number of test users. Since a user may have multiple values (e.g., Google, Facebook)

for some attribute (e.g., employer), we define that a user is correctly profiled if the

profiled value matches any of his true values. Also, as done in [22], we randomly

take 20% of users as labeled samples and their attribute values are revealed to our

algorithm and baseline methods, and then we profile missing attributes based on the

attributes of the labeled users and the network structure with our algorithm and

baseline methods.

Table 3.4 shows the mean accuracy of attribute profiling. RN achieves a reasonable

accuracy (i.e., 53%) when using 20% of nodes as labeled samples, which demonstrates

the usefulness of social connections for profiling missing attributes. However, it shows

the worst performance among the three methods. The reasons could be 1) it fails to

utilize additional information about connections available in networks and 2) the

assumption that two connected users are likely to share the same attribute does not

precisely capture the correlation between users attributes and their social connections.

Both CP and PTC outperform RN over all considered attributes, which implies that

it is obvious that joint learning of node attributes and network connections is helpful

to better capture the correlation between the two components. While PTC is able to

better profile the location attribute than CP, CP achieves higher accuracy than PTC

for the other two attributes. It can be explained by the fact that there exist more

various values on employer and college than location, which makes it hard for PTC

to learn accurate probability distributions over attribute values.

57

3.6 Summary

In this chapter, we have devised a new generative model for an attributed network

which learns latent communities behind nodes in the network. In order to discover

the latent communities, we made three assumptions. First, community memberships

affect the formation of the network structure and the node attribute values. That is, if

two nodes belong to the same community then they are not only likely to be connected

to each other but also likely to share the same value on certain attributes. Second,

given an attribute each community and each node have their own topic distribution

that represents the strength of their interests on latent topics. These latent topics

determine which value a node would take for the attribute. Third, every attribute is

relevant to a topic coming from either a community or an individual node and different

nodes have different level of biases over the attributes. Based on the assumptions,

PTC generates an attribute network consisting of both the network connections and

node attributes in such a way that two nodes in the same community are likely to form

a link between them and share the same value on only community-related attributes.

Also, the attribute values are generated from hidden topics that represent interests of

individual nodes and latent communities. We developed an inference algorithm that

is used to estimate the hidden parameters as well as the community memberships.

The experiments for the performance evaluation were conducted on the Facebook

ego networks. The results show that PTC performs well for some ego networks even

though it does not outperform other baseline methods for every network. Per our

analysis, PTC tends to better detect hidden communities in case where the size of

network is large in terms of the number of nodes, the number of links, the number of

attributes, and the number of hidden communities, because a large network can pro-

vide the model with more evidence to learn network structure attribute distributions.

For future works, we will further investigate in which case node attributes effectively

contribute to better detect latent communities. Definitely, every attribute is not help-

ful for discovering communities. If so, we may come up with how to selectively use

58

some of the attributes for better learning. Also, we chose the number of topics and

the number of communities empirically but they could be obtained from a function of

the network size including the number of nodes, the number of links, and the number

of attributes. Lastly, since PTC is able to generate both the network structure and

node attributes probabilistically, it can inherently predict missing attribute values or

missing links. Given an attribute network with missing attribute values/links, once

the model learns all the parameters then it will be able to compute probabilities that

each of the missing information is generated based on observed information. The

experimental results show that PTC is comparable to state-of-the-art models and it

can better profile missing values of attributes whose values are less various. That is

because too many different attribute values make it hard for PTC to learn accurate

attribute distributions.

59

4. ATTRIBUTE ASSOCIATION AWARE NETWORK

EMBEDDING

Network embedding aims to learn low-dimensional vector representations for nodes in

a network that preserve structural characteristics. It has been shown that such rep-

resentations are helpful in several graph mining tasks such as node classification, link

prediction, and community detection. Some recent works have attempted to extend

the approach to attributed networks in which each node is associated with a set of

attribute values. They have focused on homophily relationships by forcing nodes with

similar attribute values to obtain similar vector representations. This is unnecessarily

restrictive and misses the opportunity to harness other types of relationships revealed

by patterns in attribute values of connected nodes for learning insightful relationships.

In this chapter, we propose a new network attributed embedding framework called

A3embed that is aware of attribute associations. A3embed favors significant attribute

associations, not merely homophily relationships, which contributes to its robustness

to diverse attribute vectors and noisy links. The experimental results on real-world

datasets demonstrate that the proposed framework achieves better performance on

different graph mining tasks compared to existing models.

4.1 Introduction

Data mining and machine learning tasks that aim to exract insightful information

from real-world data must increasingly handle complex network data. However, it

is not realistic to apply standard machine learning models directly to network data

because the network itself lacks fruitful feature representations that can provide infor-

mative patterns among nodes and links. To overcome this challenge, researchers have

proposed methods for learning new network representations that are usually repre-

60

sented by low-dimensional continuous vectors. Such vectors in a continuous feature

space represent nodes in a more abstract form while preserving structural proximities

among the nodes and thus are better suitable for various data mining and machine

learning tasks.

While recently proposed network embedding algorithms show acceptable perfor-

mance on various tasks [66–71], they are limited to networks without attributes.

However, an increasing number of real-world objects and applications are modeled

with attributed networks and it has become increasingly important to analyze the

attributes together with network structure. For example, in social networks such as

Twitter and Facebook where user profile information is captured using attribute val-

ues, many users that have similar attributes are not connected to each other. That

is, structural proximity is not sufficient to explain whether nodes in a network are

similar or dissimilar. In that case, if available, node attributes can bring us a huge

opportunity to capture the nodes’ underlying similarity.

Alternative methods taking into account node attribute values in network em-

bedding have been proposed more recently [72, 73]. They basically have the same

motivation, where nodes with similar attribute values are located closely in the low-

dimensional embedding space. It seems quite reasonable because many previous works

have shown that nodes in a network tend to establish homophily relationship in terms

of their attributes [19–21]. However, there actually exist more diverse relationships in

real-world networks [74]. Also, even though such relationships may not be observed as

frequently as homophily relationships, they can be more important for understanding

various dynamics in complex networks and can be captured by considering statistical

significance [74]. Unfortunately, the notion of attribute associations, defined as co-

occurred attribute values between connected nodes, along with their significance has

been ignored by existing network embedding methods despite its potential impact on

network embedding.

Consider an attribute network where each node is associated with its attribute

values. A pattern of node attribute values which co-occur between connected nodes

61

might be of interest because it can reveal the type of relationships among nodes

clearly along with their structural proximity. As the number of attributes increases,

it is unlikely that homophily relationships alone are dominant in the entire network.

For example, in a social network, people working at Google may establish many links

to co-workers but they may have different alma maters (e.g. connections between

{Google, Stanford} – {Google, UCLA}). Moreover, if we consider other attributes

such as nationality and major, one expects to observe much more diverse patterns of

co-occurring attribute values on the connections among Google employees. That is,

the homophily relationship may not be sufficient to capture underlying similarities

among the nodes in a network. In such cases it is clear why it is important to consider

such patterns which are called attribute associations and possibly significant, as well

as attribute similarity represented by homophily relationship for successful attributed

network embedding. Even if a particular attribute association is frequently observed

among connected nodes, the frequency itself does not tell us how meaningful it is.

Whether it is really meaningful or not depends more on how many nodes hold the

attribute vectors involved with the attribute association and how many of them are

connected to each other. The relative frequency of attribute association over the

number of such nodes is more indicative of whether two nodes with the attribute

association should be considered similar – and therefore be close to each other – in a

low-dimensional embedding space.

In this chapter, we study the network embedding problem, especially for at-

tributed networks, and propose a new embedding method that exploits attribute

associations in learning low-dimensional representations. We experimentally evaluate

our proposed method A3embed using two real-world attributed networks including

BlogCatalog and Flickr. We compare the performance of A3embed with state-of-the-

art network embedding methods [67–69, 73]. Our observations from the experiments

demonstrate that new network representations learned by A3embed can be better

generalized to various prediction and visualization tasks. Especially, A3embed is su-

perior to not only some baselines that use only network structure but also others that

62

use augmented attribute information in addition to the structural information for all

considered tasks.

We summarize the contributions of our proposed method as follows:

• We propose a novel network embedding method, called A3embed (Attribute

Association Aware network embedding). The method aims to obtain new

representations of nodes in an attributed network by jointly modeling both

structural and attribute information in the network while capturing attribute

associations.

• We show why it is important to consider attribute associations on the task of

network embedding.

• We empirically demonstrate how successfully A3embed learns new network rep-

resentations in a low-dimensional space and how effective the learned repre-

sentations are for downstream machine learning tasks on different real-world

attributed networks.

This chapter is organized as follows. In Section 4.2, we introduce previous works

related to our problem and discuss how our problem differs from them. In Section 4.3,

we define the problem of network embedding and provide basic background concepts,

and then introduce a novel method to solve the problem of attributed network em-

bedding. We present our experimental observations over different network embedding

methods on real-world datasets in Section 4.4. Finally, we summarize the chapter in

Section 4.5.

4.2 Related Work

The problem of network embedding that aims to learn new representations for

networks has been attracted by data mining and machine learning communities due

to its practical importance in various applications such as node classification, link

63

prediction, visualization, network compression, and clustering. Especially, represen-

tational learning has been actively studied in the field of natural language processing

and recently neural network based models have been proposed for feature learning of

discrete objects such as words. In particular, the Skip-gram model [75, 76] has been

applied to many different kinds of applications [66,77–79]. The model basically aims

to learn continuous feature representations for words in a corpus by optimizing an

objective function based on the likelihood of observing surrounding words for a given

word. The idea of the model is based on the distributional hypothesis which states

that words in similar contexts tend to have similar meanings. That is, similar words

tend to appear in similar word neighborhoods. More specifically, the model tries to

embed each of the words of a document such that the word’s features can predict its

context that consists of the neighboring words appearing inside a window centered

on the word. The feature representations are learned by optimizing the likelihood

objective using stochastic gradient descent with negative sampling technique. The

basic idea of the model is based on the distributional hypothesis which states that

words in similar contexts tend to have similar meanings. That is, similar words tend

to appear in similar word neighborhoods.

The data mining and machine learning communities have been attracted to the

problem of network embedding that aims to learn new representations for networks

due to its practical importance in various applications such as node classification,

link prediction, visualization, network compression, and clustering. Recently, many

researchers have developed methods to learn network representations which are based

on the Skip-gram model [75,76] that aims to learn continuous feature representations

for words in a corpus. DeepWalk [66] is the first work that established an analogy for

networks by representing a network as a document. While a document includes a se-

quence of words, nodes in a network do not have any ordered sequences among them.

The idea to obtain a sequence of nodes from a network is to consider a set of short

truncated random walks as its own corpus, and the nodes as its own words. Then the

same optimization framework as one for the Skip-gram model can be applied to the

64

set of node sequences obtained from repeated random walks. In [68] the authors pro-

posed a new algorithmic framework called node2vec for learning continuous feature

representations for nodes in networks using a biased random walk procedure that

smoothly interpolate between Breadth-First Search (BFS) and Depth-First Search

(DFS). However, those models exploit only network structure when learning feature

representations without taking into account any other information such as node at-

tributes.

In the case of citation networks, where nodes come with text information, such

auxiliary information can be useful for learning richer representations. [80] proposed

text-associated DeepWalk (TADW) that incorporates text features of nodes into net-

work representation learning under the framework of matrix factorization. TriDNR [81],

a tri-party deep network representation model, is based on a coupled neural network

that exploits inter-node relationships, node-content correlation, and node-label cor-

respondence in a network to learn an optimal representation for each node in the

network. Even though TADW and TriDNR use rich information in addition to net-

work structure for learning network representations, the text information is inherently

different from node attributes in that text information itself includes a sequence of

words so as to be easily exploited by neural networks based on the Skip-gram model.

While all the methods introduced above work only for networks without node

attributes, [72,73] exploit node attribute values to get richer representations for net-

works if node attribute are available. LANE [72] is a semi-supervised model that

incorporates node labels into embedding representation learning for attributed net-

works. AANE [73] also learns low-dimensional representations based on the decompo-

sition of attribute affinity and the embedding difference between connected nodes in

a distributed way at scale. Both of the methods jointly model the network structure

and node attributes but they are limited to attribute similarity. That is, nodes have

a chance to have similar representations only when their attribute values are simi-

lar. In contrast, our proposed model considers more diverse patterns of co-occurring

attribute values.

65

4.3 Attribute Association Aware Network Embedding

In this section, we first define the network embedding problem and then introduce

our proposed method that learns network representations for attributed networks.

Table 4.1 presents the notations we use throughout this chapter.

4.3.1 Problem Definition

Consider an attributed network denoted byG = (V,E,X) where V = {v1, v2, · · · , vn}

is a set of n number of nodes, E = {eij}ni,j=1 is a set of edges, andX = {x1,x2, · · · ,xn}

is a set of attribute vectors, each of which is associated with a node in V . The at-

tribute vector xi of the node vi that holds l different attributes is represented by a

vector of l numerical values. An edge eij in E can be associated with its weight sij

representing how strongly two individual nodes are connected to each other. If vi

and vj are not connected by an edge, then sij = 0. In case of unweighted networks,

sij = 1 for all edges eij.

Network embedding aims to learn new representations of nodes in a low-dimensional

feature space by finding a mapping function F : V 7→ Rd where d � n is the num-

ber of dimensions. Since a raw representation of nodes is too sparse, it is hard

to observe interesting patterns, or obtain insightful knowledge, by applying stan-

dard machine learning models directly. However, the low-dimensional representations

learned by network embedding may contain important underlying information over

the network nodes in an abstract form. The key point to achieve good representa-

tions for attributed networks is to preserve the structural and attribute proximity of

nodes [72,73]. However, the sparsity of attribute space and diversity of attribute vec-

tors render attribute proximity insufficient to account for actual similarity of nodes.

In Section 4.3.2, we will introduce the notion of attribute association and explain why

it needs to be considered for the network embedding task.

66

Table 4.1.: Basic notations

Notation Meaning

G = (V,E,X) attributed network

n number of nodes

l number of attributes

sij weight of edge eij

yi attribute embedding of node vi

zi structural embedding of node vi

hi joint representation of node vi

W
(k)
1 ,b1

(k) k-th layer weights and biases in attribute modeling

W
(k)
2 ,b2

(k) k-th layer weights and biases in structure modeling

W
(k)
3 ,b3

(k) k-th layer weights and biases in joint modeling

m1, m2, m3 number of layers for each modeling component

ω hyperparameter that controls weights on the latent rep-

resentation from modeling node attributes

ζ negative penalty to control the importance of attribute

association

Ni neighbors of node vi

σ activation function

R regularization function

L{sim,ass,net} loss functions for attribute similarity, attribute associa-

tion, and network structure

p in-community link probability in a synthetic graph

q cross-community link probability in a synthetic graph

r number of distinct attribute vectors in a community in

a synthetic graph

67

4.3.2 Attribute Associations

We first define an attribute association as follows,

Definition 4.3.1 Given two nodes vi and vj, the attribute association between them

is defined as a relationship of co-occurred attribute values that appear in the pair of

corresponding attribute vectors xi = [x1
i , x

2
i , · · · xli] and xj = [x1

j , x
2
j , · · ·xlj].

Every pair of nodes has its attribute association, and thus there are as many

attribute associations as the number of edges in E if all the nodes in V have distinct

attribute vectors. Note that an attribute association of xi and xj is associated with

not only the nodes vi and vj but also any pairs of nodes that have the same attribute

vectors as xi and xj. As the number of attributes increases in a network, the sparsity

of attribute vectors would be higher and it is more likely for nodes to have diverse

attribute vectors. However, even though two nodes have different attribute vectors,

it does not mean necessarily that they are not similar. That is because it is also

possible for some different attribute values to share similar topics or be correlated to

each other. For example, in a social network where each individual is associated with

their personal profile, some users may have google, facebook, J.P Morgan, Goldman

Sachs, and so on for the attribute employer. In terms of their context, google and

facebook, Internet service companies, are closer to each other rather than to the other

two finance companies, and vice versa, and thus it is expected that users working at

google (or J.P Morgan) are more likely to be linked with users working at facebook

(or Goldman Sachs) even if they have different values for the attribute. In other

words, dissimilarity of node attribute values may not neccessarily imply dissimilarity

of nodes. This motivates us to consider various patterns of co-occured attribute values

that are represented by attribute associations for network representation learning.

Similarly, it is not always true that two nodes with exactly the same attribute vectors

must be similar. Even though a number of nodes are associated with a particular

attribute vector, if only a few of them are connected to each other, it is hard to say

that all the nodes with the attribute vector are similar and should be located closely

68

in the embedding space. Thus, it is important to consider statistically significant

attribute associations for more insightful network analysis [74]. In this paper, we do

not compute the actual statistical significance of attribute associations but introduce

the basic idea of jointly modeling node attributes and network structure for the task of

learning network representations. That is, for a given attribute association of xi and

xj, we say the attribute association between them is more significant than another

association of xm and xn if the nodes with the association of xi and xj are more

densely connected to each other compared to the connections among the nodes with

xm and xn. Such nodes with more significant associations should be closer to each

other than ones with less significant associations in the embedding space. We explain

how the notion of significance should be considered in 4.3.3.

4.3.3 A3embed

We now propose a new network embedding method called A3embed using attribute

associations for attributed networks. A3embed consists of two parts: one is for mod-

eling attribute associations and the other is for modeling network structure. The idea

is straightforward. If two nodes share similar attribute values and/or the attribute

association between them is significant, then they should be close to each other in

the low-dimensional embedding space. Likewise, if two nodes share many common

neighbors and therefore are structurally similar to each other, then they should be

located closely as well. In this way, we can preserve both attribute proximity and

structural similarity while keeping patterns of significant attribute associations in the

embeddings. The overall framework of A3embed is illustrated in Figure 4.1.

Modeling Attribute Associations

We basically want to not only preserve the attribute similarity but also employ

significant attribute associations. First of all, in order to model the attribute similarity

among network nodes, we apply a deep autoencoder [69, 82, 83] to the set of all

69

2

1

3

856

0

9

4
7

0 0 1 0 ⋯ ⋯ ⋯

One-hot Vector

… …

… …

𝒛𝒊

…

0 0 1 0 …...
0 0 1 1 ……
0 1 0 1 ……
.
.
.
0 0 0 0 ……

Adjacency Matrix

…
…

𝒉𝒊

1 0 1 0 ⋯ ⋯ ⋯
0 1 0 0 ⋯ ⋯ ⋯
0 0 1 1 ⋯ ⋯ ⋯
.
.
.
1 0 0 1 ⋯ ⋯ ⋯

Attribute Matrix

𝒙𝒊

𝑵𝒊&

… … … ……

𝒙𝒊

𝒚𝒊

… … … … 𝒙𝒊(

(for attribute association modeling)𝒚𝒋

Fig. 4.1.: Framework of A3embed : For each node, its attribute vector and one-hot

vector are fed into the deep model, and then its attribute and structural information

are jointly modeled to predict its neighbors.

attribute vectors X. An autoencoder neural network, consisting of the encoder and

decoder, is an unsupervised learning algorithm that applies backpropagation, setting

the target values or outputs to be equal to the inputs. In other words, it tries to

learn an approximation to the identity function, so as to output x̂i that is similar

xi, by having a non-linear function that encodes xi to new representations yi and

another non-linear function that reconstructs x̂i from yi. As a result, the learned

yi in the middle of the autoencoder can be considered as compressed and latent

representations of xi. If we have multiple layers for the encoder and the decoder,

then the latent representation yi
(k) is formulated as follows:

yi
(k) = σ(W

(k)
1 yi

(k−1) + b1
(k))

= σ(W
(k)
1 σ(W

(k−1)
1 yi

(k−2) + b1
(k−1)) + b1

(k))

= σ(W
(k)
1 (· · ·σ(W

(1)
1 xi + b1

(1)) · · ·) + b1
(k))

(4.1)

where σ is an element-wise activation function such as a sigmoid function or a rec-

tified linear unit. Similarly, the reconstruction x̂i that has the same shape as xi is

mapped from yi by stacking hidden layers of non-linear functions on the top of yi

70

in the reversed shape of the encoder. Then the autoencoder is trained to minimize

reconstruction errors, represented by

Lsim = L(x, x̂) =
n∑
i=1

‖xi − x̂i‖2
2 (4.2)

As discussed in [69], if an input vector, which is an attribute vector in our setting,

is very sparse, then the autoencoder is prone to reconstruct zero values in an attribute

vector rather than non-zero values. We avoid that by imposing a higher penalty to

the reconstruction error of non-zero values than the error of zero-values as follows:

Lsim =
n∑
i=1

‖(xi − x̂i)� ti‖2
2 (4.3)

where ti = [ti1, ti2, · · · , til] and tij = τ > 1 for j = 1, · · · , l if vi has a value for the j-th

attribute, otherwise tij = 1. The � operator performs an element-wise multiplication

between two vectors.

As we put attribute vectors of nodes repeatedly into the autoencoder, nodes with

similar attribute vectors must have similar latent representations y. However, the loss

function above is not enough to model potentially significant attribute associations

that exist in many real-world applications as well.

The key idea of using significant attribute associations is to see, given an attribute

association, how many nodes have the attribute vectors involved with the association

and how frequently the association is observed over links among the nodes relatively.

That is, if two nodes vi and vj are associated with a particular attribute association

and its attribute vectors xi and xj appear many times on other connected nodes as

well, then we make the corresponding latent representations yi and yj similar, no

matter if they have dissimilar attribute values or not. Note that the frequency of

attribute vectors itself may not be important. In contrast, if there are many nodes

that hold either xi or xj but only few of them are connected, then we make yi and yj

away from each other. The following loss function takes care of attribute associations

with the idea above:

Lass =
n∑

i,j=1

sij · ‖yi − yj‖2
2 (4.4)

71

where sij is the edge weight between vi and vj and sij = ζ < 0 if there is no edge

between vi and vj. For nodes vi and vj that are not connected, we give a negative

penalty ζ to their corresponding latent representations yi and yj such that they are

not close. The effect of the negative penalty term ζ guarantees that 1) even two nodes

with the same attribute vectors could be apart if such attribute association is very rare

in the network and 2) even two nodes with different attribute vectors could be close if

other nodes with such vectors are connected more densely than usual. The choice of

ζ also controls how aggressively A3embed models attribute associations. If ζ is very

low, we rarely penalize attribute associations that appear between unconnected nodes.

Thus, only node pairs with very significant attribute associations will be mapped in

close proximity to each other in the embedding space.

Modeling Structural Proximity

While some existing works take into account preserving the first-order and second-

order proximity simultaneously [67, 69], we focus on the second-order proximity,

i.e., common neighbor structure. This is acceptable because the first-order prox-

imity is already considered to some extent when modeling attribute associations. Of

course, even though two nodes are directly connected, they may not have similar

low-dimensional representations if the attribute association is too weak. This sounds

reasonable unless a pair of connected nodes necessarily share common values on most

attributes.

For a given a node vi, we use its one-hot vector vi as an input to A3embed. It is fed-

forward into a multi-layer perceptron and its latent representation zi is combined with

another latent representation yi to produce a joint representation hi of both network

structure and node attribute values. Then the joint representation hi is further fed-

forward into following hidden layers and the final joint representation is used to

72

predict neighbors of the node vi. The formulations of the latent representations at

each layer are as follows:

zi
(k) = σ(W

(k)
2 zi

(k−1) + b2
(k))

= σ(W
(k)
2 (· · ·σ(W

(1)
2 vi + b2

(1)) · · ·) + b2
(k))

(4.5)

hi
(0) = [ωyi, zi]

hi
(k) = σ(W

(k)
3 hi

(k−1) + b3
(k))

(4.6)

where ω is a hyperparameter that controls weights on the latent representation from

modeling node attributes when constructing the first joint representation by concate-

nation.

Lastly, we predict the neighbors Ni of the input node vi using the final joint

representation hi. The output vector N̂i in A3embed should be close to a row or

column vector of an adjacency matrix indicating neighbor nodes, and thus it is a

multi-label classification task. The predictive probabilities for the neighbor nodes

in Ni are obtained independently by placing a vector of sigmoids. Then the output

vector N̂i is computed as follows:

N̂i = [p(v1|vi), p(v2|vi), · · · , p(vn|vi)]

= [
1

1 + e−u1·hi
,

1

1 + e−u2·hi
, · · · , 1

1 + e−un·hi
]

(4.7)

where uj is a column vector of the weight matrix between the last two layers, which

corresponds to a contextual vector of the neighbor vj. We then construct the loss

function as:

Lnet = −
n∑
i=1

log p(v1, v2, · · · , vn|vi)

= −
n∑
i=1

∑
vj∈Ni

log p(vj|vi)
(4.8)

Modeling jointly the network structure based on neighbors and the attribute in-

formation including attribute similarity and significant attribute associations, our

73

proposed method A3embed is trained while aiming to find optimal weight parameters

in the following final objective function:

arg min
f1,f2,f3

3∑
i=1

λi ·R(fi) + αLsim + γLass + Lnet (4.9)

where fi is a set of weight matrices and biases for each component in the deep neural

network framework of A3embed, R is a regularization function which is defined as

R(fi) = 1
2

∑mi

k=1 ‖W
(k)
i ‖2

F , and λi is a regularization term.

Optimization

Our goal is to find the optimal f1, f2, and f3 that minimize the objective function

formulated in Eq 4.9. We train A3embed using stochastic gradient descent. Specifi-

cally, we adopt RMSProp [84], an adaptive learning rate method, to update gradients

during training. We omit the mathematical formulation of the partial derivative for

each of the loss function because it is straightforward.

4.4 Experiments

4.4.1 Datasets

We evaluate our proposed method as well as competitors using one synthetic and

three real-world attributed networks. Each of the networks contains a set of nodes

forming network edges and associated attribute vectors for each node. Table 4.2

presents the statistics of the network datasets.

Synthetic Attributed Network We generated synthetic attributed networks to

show the robustness of our model to diverse attribute associations, not only ho-

mophily. The networks are generated using the stochastic block model [85, 86]. We

first generate several disjoint connected components, each of which corresponds to

a community representing a group of nodes with the same class label, where nodes

in the same community are connected to each other with p probability and nodes

74

Table 4.2.: Dataset Statistics

Name Synthetic BlogCatalog Flickr

No. Nodes 1,024 5,196 7,575

No. Edges varied 171,743 239,738

No. Attributes 1,000 8,189 12,047

No. Labels varied 6 9

are connected with q probability across different communities. Every node belong-

ing to the same community shares the same attribute vector. We then adjust the

connection probabilities and perturb attribute vectors to introduce non-homophily

attribute associations between nodes in the same community as well as noisy links.

Embeddings for such contrived attributed networks can reveal how a model is able

to capture diverse attribute associations as well as underlying node similarities from

noisy connections of network nodes. See more details in Section 4.4.5.

BlogCatalog [72, 73] BlogCatalog is a blogging platform where users can form a

network connecting each other. Each blog has a short description and the keywords

in the description are considered as attributes. Users can assign to their blogs a

category that represents a class label.

Flickr [72,73] Flickr is an online photo management and sharing website where users

can establish connections to others. For attributes, we use as attributes a set of

tags that describe users’ specific interests in their photos. The groups to which users

subscribe in the platform are considered as class labels.

4.4.2 Baselines

We evaluate the following baseline methods as well as A3embed for comparison.

All the baselines were published recently and are known as good performers for net-

work embedding. They are categorized into two groups. node2vec, SDNE, and LINE

75

use only the network structure information while AANE uses both structural and

attribute information. The brief descriptions of the baselines are as follows:

node2vec [68] node2vec, extending DeepWalk [66], is one of the state-of-the art

methods for network embedding and it uses only structural information. It exploits

truncated random walk sequences to obtain context nodes for a given node while

allowing flexibility between homophily and structural equivalence, and then computes

node embeddings by maximizing the likelihood of observing context nodes.

SDNE [69] This method uses structural information only as well but focuses on the

first-order and second-order proximity among nodes to preserve the network structure.

LINE [67] As in SDNE, LINE preserves the first-order and second-order proximity,

but it does not model them jointly. They are considered separately to learn low-

dimensional representations for each, and then concatenated. In our experiments,

only the second-order proximity is used because it does not differ much from the

concatenated representations, in terms of the effectiveness on downstream tasks.

AANE [73] AANE models and incorporates node attribute proximity into network

embedding in a distributed way. It learns a low-dimensional representation based on

the decomposition of attribute affinity and the embedding between connected nodes.

The key difference from A3embed is that the node attribute information is learned

in A3embed allowing implicit similarity and diverse relationships of attribute values

whereas the node attributes have to be explicitly similar in AANE.

4.4.3 Experimental Setup

All experiments were conducted on a machine with Intel i5-4690K 3.50GHz CPU,

32 GB memory and GTX Titan X GPU, running 64bit Ubuntu 14.04. A3embed is

implemented using TensorFlow 1.2.1 1 in Python 2.7, and for the implementations of

all the baselines, we use the source code from the authors.

1https://www.tensorflow.org

76

All the methods we evaluate include various hyperparameters that may affect the

performances of the methods significantly and thus need to be tuned. We basically

seek optimal hyperparameter values through grid-search and run each of the baseline

algorithms with multiple epochs until we achieve the best results. Note that all the

notations we use in the following discussion are ones from the original papers for

the methods. For AANE, we use the parameter values that are already specified in

the source code written by the author for each dataset (λ ∈ {1e − 6, 0.0425} and

ρ ∈ {4, 5}). For node2vec, the search strategy parameters p and q are set to 2 and 0.5

respectively, and we use typical values for any other parameters such as the length of

random walk (l = 80) and the size of network neighborhoods (k = 10). For SDNE,

we also use α = 1, β = 5, γ = 5, and the shape of its autoencoder structure is the

same as ones described in its paper. All the parameters in LINE are set as used in

the paper, except that we vary the number of samples used for optimization to find

the best performance. For A3embed, we found that the following parameter setting

works best for both BlogCatalog and Flickr: α = 1, τ = 5, γ = 5, ζ = −0.5, ω = 0.5,

λ1 = λ2 = λ3 = 1, and the learning rate is set to 0.001, For fair comparisons, the

dimensionality of the embeddings is set to 200 for BlogCatalog and Flickr and 100

for synthetic networks for all the methods. In addition to d = 200, the impact of

different embedding dimensions is discussed in Section 4.4.6.

4.4.4 Multi-Label Classification

One of the most common analytics tasks in network data is node classification,

and so we evaluate the effectiveness of different network representations obtained from

considered network embedding algorithms through a multi-label classification task on

the real-world datasets. Every node in the network data is associated with one or

more labels. Given a set of low-dimensional representations of the nodes generated by

a network embedding algorithm, we randomly split them into training and test sets

with varied ratios and train a classification model over the training nodes and their

77

T
ab

le
4.

3.
:

N
o
d
e

cl
as

si
fi
ca

ti
on

p
er

fo
rm

an
ce

of
d
iff

er
en

t
m

et
h
o
d
s

ov
er

d
iff

er
en

t
tr

ai
n
in

g-
te

st
sp

li
t

ra
ti

os
on

B
lo

gC
at

al
og

M
et

ri
c

A
lg

or
it

h
m

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

M
ac

ro
F

1

L
IN

E
0.

65
6

0.
67

2
0.

68
6

0.
69

1
0.

68
4

0.
69

1
0.

67
9

0.
68

3
0.

68
9

n
o
d
e2

ve
c

0.
51

4
0.

54
1

0.
60

9
0.

62
4

0.
63

5
0.

64
1

0.
63

9
0.

64
9

0.
65

5

S
D

N
E

0.
55

1
0.

61
7

0.
65

1
0.

67
8

0.
67

9
0.

69
3

0.
68

4
0.

69
0

0.
69

2

A
A

N
E

0.
75

5
0.

85
8

0
.8

8
4

0.
88

5
0.

88
6

0.
88

3
0.

87
6

0.
88

9
0.

88
9

A
3e

m
b

ed
0
.8

3
7

0
.8

6
6

0.
88

1
0
.8

8
8

0
.8

8
8

0
.8

9
4

0
.9

0
1

0
.9

1
2

0
.9

1
7

M
ic

ro
F

1

L
IN

E
0.

66
1

0.
67

6
0.

69
1

0.
69

6
0.

69
1

0.
69

7
0.

68
4

0.
68

9
0.

70
4

n
o
d
e2

ve
c

0.
52

1
0.

54
5

0.
61

4
0.

63
1

0.
64

2
0.

64
8

0.
64

6
0.

65
7

0.
66

9

S
D

N
E

0.
55

6
0.

62
0

0.
65

4
0.

68
2

0.
68

6
0.

69
8

0.
68

8
0.

69
7

0.
70

2

A
A

N
E

0.
78

3
0.

86
5

0
.8

8
9

0.
89

0
0.

89
0

0.
88

7
0.

87
9

0.
89

3
0.

89
2

A
3e

m
b

ed
0
.8

4
1

0
.8

6
8

0.
88

3
0
.8

9
1

0
.8

9
1

0
.8

9
7

0
.9

0
2

0
.9

1
3

0
.9

1
5

78

T
ab

le
4.

4.
:

N
o
d
e

cl
as

si
fi
ca

ti
on

p
er

fo
rm

an
ce

of
d
iff

er
en

t
m

et
h
o
d
s

ov
er

d
iff

er
en

t
tr

ai
n
in

g-
te

st
sp

li
t

ra
ti

os
on

F
li
ck

r

M
et

ri
c

A
lg

or
it

h
m

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

M
ac

ro
F

1

L
IN

E
0.

57
6

0.
60

1
0.

60
4

0.
61

0
0.

61
7

0.
62

1
0.

62
7

0.
62

6
0.

62
4

n
o
d
e2

ve
c

0.
35

8
0.

43
8

0.
47

0
0.

47
9

0.
49

7
0.

50
8

0.
51

4
0.

51
7

0.
52

1

S
D

N
E

0.
50

6
0.

55
9

0.
58

2
0.

59
2

0.
60

0
0.

60
9

0.
60

9
0.

61
0

0.
60

9

A
A

N
E

0.
75

4
0.

78
1

0.
81

8
0.

84
3

0.
84

7
0.

85
8

0.
86

1
0.

86
5

0.
87

2

A
3e

m
b

ed
0
.8

1
6

0
.8

4
0

0
.8

4
9

0
.8

5
5

0
.8

5
6

0
.8

6
4

0
.8

6
5

0
.8

7
4

0
.8

9
0

M
ic

ro
F

1

L
IN

E
0.

58
5

0.
60

8
0.

61
1

0.
61

9
0.

62
6

0.
63

0
0.

63
8

0.
63

9
0.

64
0

n
o
d
e2

ve
c

0.
36

3
0.

44
4

0.
47

5
0.

48
6

0.
50

7
0.

51
8

0.
52

4
0.

52
9

0.
53

3

S
D

N
E

0.
50

8
0.

56
2

0.
58

6
0.

59
7

0.
60

7
0.

61
7

0.
61

7
0.

61
7

0.
62

0

A
A

N
E

0.
78

1
0.

80
6

0.
83

1
0.

85
0

0.
85

5
0.

86
3

0.
86

5
0.

86
9

0.
87

7

A
3e

m
b

ed
0
.8

1
9

0
.8

4
3

0
.8

5
2

0
.8

5
6

0
.8

6
0

0
.8

6
7

0
.8

6
8

0
.8

7
7

0
.8

9
4

79

labels using the learned representations as features. Then, we see how accurately the

models predict the labels of test nodes using Macro- and Micro-F1 metrics. Here,

for the classification model, we use a one-vs-rest support vector machine classifier

provided by scikit-learn library 2.

Table 4.3 and Table 4.4 show the classification results of different methods on the

two real-world attributed network, BlogCatalog and Flickr. By looking at the perfor-

mance difference between structure-only based methods and joint models, it is clear

that using attribute information, if available, is critical to learn better representa-

tions. Especially, A3embed almost consistently outperforms all the other competitive

methods over different split ratios of training and test samples, which demonstrates

the network representations learned from our proposed model can capture more mean-

ingful underlying characteristics of the network nodes. Moreover, A3embed is very

robust to even small training sample sizes. As we decreases the size of the training

set, the improvement margin of A3embed over the baseline methods increases. This

observation can tell us that our proposed method is better suited to many different

real-world applications where only few nodes actually have labeles.

4.4.5 Capturing Attribute Associations

A3embed not only takes into account attribute proximity, but also diverse attribute

associations between different attribute vectors, whereas existing methods work only

on homophily relationship. This property implies that the representation learning of

A3embed is more robust and generalizes to various patterns of relationships between

nodes. In order to highlight how robust A3embed is compared to the baselines, we

generate synthetic attributed networks in such a way that we can control certain

properties held by network data by changing link probabilities and attribute values,

as described in 4.4.1. We start with a naive network where every node in the same

community is assigned an identical attribute vector (r = 1) and nodes are more likely

2https://scikit-learn.org/

80

Table 4.5.: Node classification performance on synthetic attributed networks

p = 0.3, q = 0.1, r = 5 p = 0.3, q = 0.3, r = 5

Algorithm Macro F1 Micro F1 Macro F1 Micro F1

LINE 0.921 0.924 0.088 0.091

node2vec 0.911 0.912 0.061 0.068

SDNE 0.918 0.920 0.083 0.085

AANE 1.0 1.0 0.701 0.712

A3embed 1.0 1.0 1.0 1.0

to be linked with others in the same community (p > q). We then change q such

that nodes are connected across different communities. We also randomly divide the

nodes in each community into r disjoint subsets and perturb the attribute values of

the nodes such that there are r different attribute vectors in the same community. In

this way, we have diverse attribute associations, not only homophily relationships.

Having different values of p, q, and r, we generate various synthetic attributed

networks with ten communities and predict which communities the nodes in the test

set belong to by using learned low-dimensional representations. Changing the value

of r does not affect the behaviors of LINE, node2vec, and SDNE at all because it

preserves the structural proximity only without using the node attributes. It is also

not surprising that both A3embed and AANE perform the classification task with

high accuracy if r is low, that is, diverse attribute associations are rare. Table 4.5

shows the methods’ robustness to existence of diverse attribute associations. When

p = 0.3, q = 0.1, and r = 5, while LINE, node2vec, and SDNE lose some accuracy

due to the noisy links, A3embed and AANE classify every node perfectly. If nodes

in the same community are tightly connected with a small fraction of noisy links,

then the structural proximity can be a strong signal for such nodes to stay close in

the low-dimensional embedding space even if r is high. However, it does not mean

AANE is able to capture diverse attribute associations. We discuss more details in

81

Section 4.4.7. If p = 0.3, q = 0.3, and r = 5, then the network structure is not

helpful anymore (explaining poor performance of LINE, node2vec, and SDNE) and

it becomes very important to be able to capture and model attribute associations.

A3embed still achieves 100% accuracy but AANE ’s performance gets worsen due to

lack of its ability to model attribute associations.

4.4.6 Impact of Embedding Dimensions

We study how the classification performance of learned representations changes

with respect to varying embedding dimensions d ∈ {32, 64, 128, 256}. Ideally, a net-

work embedding method is expected to be able to learn good representations re-

gardless of the embedding dimensions. Figure 4.2 illustrates the effect of embedding

dimensions on node classification with the BlogCatalog and Flickr datasets. We here

report only Macro-F1 because we observed Macro-F1 and Micro-F1 have almost the

same trend in this experiment. As demonstrated in Figure 4.2, A3embed and AANE

work better as d increases while the other methods based on only network struc-

ture saturate or deteriorate after certain number of dimensions. Since A3embed and

AANE use both network structure and node attributes for joint modeling, they have

greater capacity to embed latent features compared to the other three. node2vec goes

even worse when d = 128 or 256, which implies overfitting.

4.4.7 Visualization

In addition to measuring effectivenesses over different downstream tasks we have

discussed so far, it is also very important to visualize a network because such visualiza-

tions can help us more intuitively understand how the network nodes are distributed

and interact with each other. Since different network embedding methods preserve

different properties of a network, they have different ability and interpretation of

node visualization. We use the synthetic networks with different parameter settings

as discussed in 4.4.5 and learn new representations of nodes using A3embed, AANE,

82

A3embed AANE SDNE node2vec LINE

32 64 128 2560.4

0.5

0.6

0.7

0.8

0.9

1

embedding dimensions d

M
a
cr
o
F

1

(a) BlogCatalog

32 64 128 2560.4

0.5

0.6

0.7

0.8

0.9

1

embedding dimensions d

M
a
cr
o
F

1

(b) Flickr

Fig. 4.2.: Classification performance of learned representation over different embed-

ding dimensions

and node2vec. We omit SDNE and LINE for the visualization task because they are

basically not much different from node2vec in that all of them model only network

structure. The learned representations are used as input to t-SNE [87] with its default

parameter values.

83

(a) node2vec, p = 0.3, q =

0.1, r = 1

(b) AANE, p = 0.3, q = 0.1,

r = 1

(c) A3embed, p = 0.3, q =

0.1, r = 1

(d) node2vec, p = 0.3, q =

0.3, r = 1

(e) AANE, p = 0.3, q = 0.3,

r = 1

(f) A3embed, p = 0.3, q = 0.3,

r = 1

(g) node2vec, p = 0.3, q =

0.1, r = 10

(h) AANE, p = 0.3, q = 0.1,

r = 10

(i) A3embed, p = 0.3, q = 0.1,

r = 10

Fig. 4.3.: Visualization of synthetic attributed networks. Color of a point indicates its

community. (p: in-community link probability, q: cross-community link probability,

r: number of distinct attribute vectors in a community)

Figure 4.3 illustrates visualization of low-dimensional representations of various

synthetic attributed networks. The synthetic attributed networks are built with dif-

ferent parameter settings (p, q, and r) and all of them include three communities, each

of which is indicated by a color. When p = 0.3, q = 0.1, and r = 1, all the methods

84

produce nice visualization where every community is well-separated (Figure 4.3(a),

4.3(b), and 4.3(c)). However, if we have large numbers of noisy links (those that cross

different communities), it must be critical to benefit from modeling node attributes.

While A3embed and AANE can visualize the network in perfect shape (Figure 4.3(e)

and 4.3(f)), node2vec fails to visualize the nodes correctly due to the absence of any

clues to differentiate the in-community and cross-community links in the network

(Figure 4.3(d)). If the number of distinct attribute vectors in each community in-

creases (r = 10) and thus there are diverse attribute associations, AANE fails to keep

every node in a community close to each other (Figure 4.3(h)). It makes r disjoint

groups for each community in its visualization because AANE optimizes its objective

based on only homophily relationship. In contrast, A3embed captures the attribute

associations between even different attribute vectors and the nodes in the same com-

munity are better clustered together than AANE (Figure 4.3(i)). node2vec is not

affected by changing r due to its inability to model node attributes (Figure 4.3(g)).

4.5 Summary

In this chapter, we propose a novel network embedding method, called A3embed,

for attributed networks. A3embed learns new network representations by jointly ex-

ploiting network structural information and node attribute values. While preserv-

ing the network structure, it also uses various attribute associations, not limited to

homophily relationships, among nodes. The existence of non-homophily but signifi-

cant attribute associations in networks can play an important role for finding well-

represented embeddings. The experiments are conducted on two real-world attributed

networks to demonstrate the effectiveness of A3embed in some downstream tasks such

as multi-label classification and visualization. We also use synthetic attributed net-

works to show how well A3embed is able to capture diverse attribute associations.

The experimental results show that our proposed method outperforms other network

85

embedding methods in different downstream machine learning tasks, which confirms

the importance of using attribute associations in representation learning.

86

5. CONCLUSION

In this dissertation, we addressed various data mining problems that arise in at-

tributed graphs with a focus on how to exploit attribute values as well as graph

structure to improve the effectiveness of the solutions. The proposed solutions are

relevant and effective in numerous real-world applications where relational entities

possess attribute values representing their properties and providing a rich source of

valuable information.

First of all, in Chapter 2, we introduced the notion of attribute associations in

attributed graphs and explored a novel algorithm that extracts statistically significant

attribute associations efficiently and effectively. The information we can obtain from

such statistically significant attribute associations can provide us with insights that

help us better understand underlying patterns in attributed graphs, and no other

existing works are able to perform the same task. The qualitative analysis on the

experimental results demonstrates the effectiveness of our proposed algorithms for the

task and we also showed that the algorithms scales well to large attributed graphs.

The statistically significant attribute associations are also shown to be helpful for the

link prediction problem.

We also proposed a probabilistic generative model for attributed graphs to solve

the problem of community detection. Detection of hidden communities in graphs is

widely used in various applications such as clustering users together in order to in-

crease the efficacy of predictive models, estimating unknown features of users/entities

in social networks, detecting networks of fraudulent/rogue websites, and so on. The

generative model was built based on the assumption that both node connections and

attributes are generated from communities. To estimate parameters of the model, we

applied an inference algorithm based on Gibbs sampling which is similar to Latent

87

Dirichlet Allocation. Our proposed model enables us to perform community detection

as well as profiling missing attribute values due to the nature of generative model.

Finally, we studied the utility of attribute association patterns to the task of

representation learning for nodes in attributed graphs. Although there are plenty of

existing algorithms that learn node embeddings by considering graph structure and/or

node attribute values, none of them considered the notion of attribute associations we

introduced in Chapter 2. We adopted deep neural networks to perform joint learning

of graph structure and node attributes in an unsupervised setting. We established

that our model was able to capture both attribute associations and node proximity

during the process of learning node embedding vectors. We evaluated our proposed

model, A3embed, on real-world attributed graphs based on node classification task

and visualization. The experiment results showed that A3embed outperforms state-

of-the-art models and it is able to effectively capture diverse patterns of attribute

associations.

To sum up, this dissertation presents various approaches to practical uses of node

attributed values to solve different data mining problems in attributed graphs. Com-

pared to previous methods, our proposed solutions are shown to achieve better per-

formances for all the considered tasks.

REFERENCES

88

REFERENCES

[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the
internet topology,” in ACM SIGCOMM computer communication review, vol. 29,
no. 4. ACM, 1999, pp. 251–262.

[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Computer networks,
vol. 33, no. 1, pp. 309–320, 2000.

[3] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the world-wide
web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[4] A. McGovern, L. Friedland, M. Hay, B. Gallagher, A. Fast, J. Neville, and
D. Jensen, “Exploiting relational structure to understand publication patterns
in high-energy physics,” ACM SIGKDD Explorations Newsletter, vol. 5, no. 2,
pp. 165–172, 2003.

[5] M. E. Newman, “The structure of scientific collaboration networks,” Proceedings
of the National Academy of Sciences, vol. 98, no. 2, pp. 404–409, 2001.

[6] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free net-
works,” Physical review letters, vol. 86, no. 14, p. 3200, 2001.

[7] C. Moore and M. E. Newman, “Epidemics and percolation in small-world net-
works,” Physical Review E, vol. 61, no. 5, p. 5678, 2000.

[8] R. M. May and A. L. Lloyd, “Infection dynamics on scale-free networks,” Physical
Review E, vol. 64, no. 6, p. 066112, 2001.

[9] A. Kleczkowski and B. T. Grenfell, “Mean-field-type equations for spread of
epidemics: The small worldmodel,” Physica A: Statistical Mechanics and its
Applications, vol. 274, no. 1, pp. 355–360, 1999.

[10] R. Rossi and J. Neville, “Modeling the evolution of discussion topics and commu-
nication to improve relational classification,” in Proceedings of the First Work-
shop on Social Media Analytics. ACM, 2010, pp. 89–97.

[11] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The large-
scale organization of metabolic networks,” Nature, vol. 407, no. 6804, pp. 651–
654, 2000.

[12] A. Wagner and D. A. Fell, “The small world inside large metabolic networks,”
Proceedings of the Royal Society of London B: Biological Sciences, vol. 268, no.
1478, pp. 1803–1810, 2001.

89

[13] J. A. Dunne, R. J. Williams, and N. D. Martinez, “Food-web structure and
network theory: the role of connectance and size,” Proceedings of the National
Academy of Sciences, vol. 99, no. 20, pp. 12 917–12 922, 2002.

[14] J. Camacho, R. Guimerà, and L. A. N. Amaral, “Robust patterns in food web
structure,” Physical Review Letters, vol. 88, no. 22, p. 228102, 2002.

[15] S. Maslov and K. Sneppen, “Specificity and stability in topology of protein net-
works,” Science, vol. 296, no. 5569, pp. 910–913, 2002.

[16] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality
in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001.

[17] J. Neville, Ö. Şimşek, D. Jensen, J. Komoroske, K. Palmer, and H. Goldberg,
“Using relational knowledge discovery to prevent securities fraud,” in Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining. ACM, 2005, pp. 449–458.

[18] V. E. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, no. 3,
pp. 43–52, 2002.

[19] M. Kim and J. Leskovec, “Multiplicative attribute graph model of real-world
networks,” Internet Mathematics, vol. 8, no. 1-2, pp. 113–160, 2012.

[20] E. M. Rogers and D. K. Bhowmik, “Homophily-heterophily: Relational concepts
for communication research,” Public opinion quarterly, vol. 34, no. 4, pp. 523–
538, 1970.

[21] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily
in social networks,” Annual review of sociology, pp. 415–444, 2001.

[22] R. Li, C. Wang, and K. C.-C. Chang, “User profiling in an ego network: co-
profiling attributes and relationships,” in Proceedings of the 23rd international
conference on World wide web. ACM, 2014, pp. 819–830.

[23] R. Balasubramanyan and W. W. Cohen, “Block-lda: Jointly modeling entity-
annotated text and entity-entity links.” in SDM, vol. 11. SIAM, 2011, pp.
450–461.

[24] S. Günnemann, B. Boden, I. Färber, and T. Seidl, “Efficient mining of combined
subspace and subgraph clusters in graphs with feature vectors,” in Advances in
Knowledge Discovery and Data Mining. Springer, 2013, pp. 261–275.

[25] S. Gunnemann, P. Dao, M. Jamali, and M. Ester, “Assessing the significance of
data mining results on graphs with feature vectors,” in 2012 IEEE 12th Inter-
national Conference on Data Mining (ICDM). IEEE, 2012, pp. 270–279.

[26] J. Yang, J. McAuley, and J. Leskovec, “Community detection in networks with
node attributes,” in ICDM. IEEE, 2013, pp. 1151–1156.

[27] M. Kim and J. Leskovec, “Latent multi-group membership graph model,” ICML,
2012.

[28] Y. Zhou, H. Cheng, and J. X. Yu, “Clustering large attributed graphs: An
efficient incremental approach,” in ICDM. IEEE, 2010, pp. 689–698.

90

[29] H. Cheng, Y. Zhou, and J. X. Yu, “Clustering large attributed graphs: A balance
between structural and attribute similarities,” TKDD, vol. 5, no. 2, p. 12, 2011.

[30] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on struc-
tural/attribute similarities,” VLDB, vol. 2, no. 1, pp. 718–729, 2009.

[31] S. Wasserman and K. Faust, Social network analysis: Methods and applications.
Cambridge university press, 1994, vol. 8.

[32] J. Scott, Social network analysis. Sage, 2012.

[33] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki, “Mining protein contact
maps.” in BIOKDD, 2002, pp. 3–10.

[34] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins,
“The web as a graph: measurements, models, and methods,” in Computing and
combinatorics. Springer, 1999, pp. 1–17.

[35] J. Pei, D. Jiang, and A. Zhang, “Mining cross-graph quasi-cliques in gene ex-
pression and protein interaction data,” in 21st International Conference on Data
Engineering (ICDE’05). IEEE, 2005, pp. 353–356.

[36] H. He and A. K. Singh, “Graphrank: Statistical modeling and mining of signif-
icant subgraphs in the feature space,” in ICDM’06. Sixth International Confer-
ence on Data Mining, 2006. IEEE, 2006, pp. 885–890.

[37] S. Ranu and A. K. Singh, “Graphsig: A scalable approach to mining significant
subgraphs in large graph databases,” in 2009 IEEE 25th International Confer-
ence on Data Engineering. IEEE, 2009, pp. 844–855.

[38] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph patterns by
leap search,” in Proceedings of the 2008 ACM SIGMOD international conference
on Management of data. ACM, 2008, pp. 433–444.

[39] J. Scott, T. Ideker, R. M. Karp, and R. Sharan, “Efficient algorithms for de-
tecting signaling pathways in protein interaction networks,” Journal of Compu-
tational Biology, vol. 13, no. 2, pp. 133–144, 2006.

[40] Y. Chi, Y. Yang, and R. R. Muntz, “Indexing and mining free trees,” in Third
IEEE International Conference on Data Mining, 2003. ICDM 2003. IEEE,
2003, pp. 509–512.

[41] W. Hamalainen and M. Nykanen, “Efficient discovery of statistically significant
association rules,” in ICDM’08. IEEE International Conference on Data Mining,
2008. IEEE, 2008, pp. 203–212.

[42] A. Arora, M. Sachan, and A. Bhattacharya, “Mining statistically significant
connected subgraphs in vertex labeled graphs,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014, pp.
1003–1014.

[43] M. Sachan and A. Bhattacharya, “Mining statistically significant substrings us-
ing the chi-square statistic,” Proceedings of the VLDB Endowment, vol. 5, no. 10,
pp. 1052–1063, 2012.

91

[44] C. Low-Kam, C. Räıssi, M. Kaytoue, and J. Pei, “Mining statistically signifi-
cant sequential patterns,” in 2013 IEEE 13th International Conference on Data
Mining (ICDM). IEEE, 2013, pp. 488–497.

[45] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “Demon: a local-first
discovery method for overlapping communities,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 615–623.

[46] J. Yang and J. Leskovec, “Overlapping community detection at scale: a nonneg-
ative matrix factorization approach,” in Proceedings of the sixth ACM interna-
tional conference on Web search and data mining. ACM, 2013, pp. 587–596.

[47] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of statistical mechanics: theory and
experiment, vol. 2008, no. 10, p. P10008, 2008.

[48] Y. Ruan, D. Fuhry, and S. Parthasarathy, “Efficient community detection in
large networks using content and links,” in Proceedings of the 22nd international
conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 2013, pp. 1089–1098.

[49] M. Gupte and T. Eliassi-Rad, “Measuring tie strength in implicit social net-
works,” in Proceedings of the 4th Annual ACM Web Science Conference. ACM,
2012, pp. 109–118.

[50] W. H. Greene, Econometric analysis. Pearson Education India, 2003.

[51] S. Nagaev and V. Chebotarev, “On the bound of proximity of the binomial
distribution to the normal one,” Theory of Probability & Its Applications, vol. 56,
no. 2, pp. 213–239, 2012.

[52] “DBLP: computer science bibliography,” http://dblp.uni-trier.de/xml/, April
2016.

[53] “Yelp dataset challenge,” https://www.yelp.com/, July 2014.

[54] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social net-
works,” Journal of the American society for information science and technology,
vol. 58, no. 7, pp. 1019–1031, 2007.

[55] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no.
3-5, pp. 75–174, 2010.

[56] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks
reveal community structure,” Proceedings of the National Academy of Sciences,
vol. 105, no. 4, pp. 1118–1123, 2008.

[57] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in
very large networks,” Physical review E, vol. 70, no. 6, p. 066111, 2004.

[58] M. Girvan and M. E. Newman, “Community structure in social and biological
networks,” Proceedings of the national academy of sciences, vol. 99, no. 12, pp.
7821–7826, 2002.

92

[59] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann, “Multi-assignment
clustering for boolean data,” in ICML. ACM, 2009, pp. 969–976.

[60] J. Chang and D. M. Blei, “Relational topic models for document networks,” in
International conference on artificial intelligence and statistics, 2009, pp. 81–88.

[61] Y. Liu, A. Niculescu-Mizil, and W. Gryc, “Topic-link lda: joint models of topic
and author community,” in proceedings of the 26th annual international confer-
ence on machine learning. ACM, 2009, pp. 665–672.

[62] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego net-
works.” in NIPS, vol. 2012, 2012, pp. 548–56.

[63] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal
of machine Learning research, vol. 3, pp. 993–1022, 2003.

[64] S. A. Macskassy and F. Provost, “A simple relational classifier,” NEW YORK
UNIV NY STERN SCHOOL OF BUSINESS, Tech. Rep., 2003.

[65] M. Pennacchiotti and A.-M. Popescu, “Democrats, republicans and starbucks
afficionados: user classification in twitter,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2011, pp. 430–438.

[66] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social rep-
resentations,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2014, pp. 701–710.

[67] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale in-
formation network embedding,” in Proceedings of the 24th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering
Committee, 2015, pp. 1067–1077.

[68] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: ACM, 2016, pp. 855–864. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939754

[69] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016, pp.
1225–1234. [Online]. Available: http://doi.acm.org/10.1145/2939672.2939753

[70] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep
network representation,” in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp. 1895–
1901. [Online]. Available: http://dl.acm.org/citation.cfm?id=3060832.3060886

[71] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph represen-
tations,” 2016.

[72] X. Huang, J. Li, and X. Hu, “Label informed attributed network embedding,”
in Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining. ACM, 2017, pp. 731–739.

93

[73] ——, “Accelerated attributed network embedding,” in Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 2017, pp. 633–641.

[74] J. Lee, K. Park, and S. Prabhakar, “Mining statistically significant attribute
associations in attributed graphs,” in IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 2016, pp. 991–996.

[75] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[76] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[77] Q. V. Le and T. Mikolov, “Distributed representations of sentences and docu-
ments.” in ICML, vol. 14, 2014, pp. 1188–1196.

[78] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 1365–1374.

[79] A. Tomar, F. Godin, B. Vandersmissen, W. De Neve, and R. Van de Walle, “To-
wards twitter hashtag recommendation using distributed word representations
and a deep feed forward neural network,” in International Conference on Ad-
vances in Computing, Communications and Informatics (ICACCI), 2014. IEEE,
2014, pp. 362–368.

[80] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network representation
learning with rich text information,” in Proceedings of the 24th International
Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015, pp.
2111–2117.

[81] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep
network representation,” in Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July2016, 2016, pp. 1895–1901. [Online]. Available:
http://www.ijcai.org/Abstract/16/271

[82] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of
Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[83] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 35, no. 8, pp. 1798–1828, 2013.

[84] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude,” COURSERA: Neural Networks for
Machine Learning, 2012.

[85] Y. J. Wang and G. Y. Wong, “Stochastic blockmodels for directed graphs,”
Journal of the American Statistical Association, vol. 82, no. 397, pp. 8–19, 1987.

[86] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for stochastic
blockstructures,” Journal of the American Statistical Association, vol. 96, no.
455, pp. 1077–1087, 2001.

94

[87] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Ma-
chine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

VITA

95

VITA

Jihwan Lee obtained B.S degree from the Department of Computer Engineering

in Kyungpook National University, South Korea, in 2008. In 2009, He spent about

six months doing Database and Data Mining research as a research intern under the

guidance of Prof. Wook-Shin Han who is a professor at POSTECH now. He joined

the Department of Computer Science in University of California Los Angeles and was

actively involved with various research projects of Data Stream Mining under the

direction of Prof. Carlo Zaniolo, and obtained M.S degree in 2011. After that he

decided to pursue Ph.D degree and joined the Department of Computer Science in

Purdue University. His research areas during the doctoral program includes graph

data mining, machine learning, and statistical relational learning. He did two summer

internships at Hewrett Packard Enterprise and Amazon in 2015 and 2016, respectively,

and he has been working as Applied Scientist in Amazon Alexa AI while keeping

pursuing his Ph.D degree.

