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ABSTRACT

Fancher, Sean PhD, Purdue University, May 2019. Fundamental Limits to Collective
Sensing in Cell Populations. Major Professor: Andrew Mugler.

Cells live in inherently noisy environments. The machinery that cells use to sense

their environment is also noisy. Yet, cells are exquisite environmental sensors, often

approaching the limits of what is physically possible. This thesis investigates how

the precision of environmental sensing is improved when cells behave collectively. We

derive physical limits to cells’ ability to collectively sense and respond to chemical

concentrations and gradients. For concentration sensing, we find that when cell

populations become sufficiently large, long-range communication can provide higher

sensory precision than short-range communication, and that the optimal cell-cell

separation in such a system can be large, due to a tradeoff between maintaining

communication strength and reducing signal cross-correlations. We also show that

concentration profiles formed diffusively are more precise for large profile lengths

while those formed via directed transport are more precise for short profile lengths.

These effects are due to increased molecule refresh rate and mean concentration

respectively. For gradient sensing, we derive the sensory precision of the well-known

the local excitation-global inhibition (LEGI) model and the more recently proposed

regional excitation-global inhibition (REGI) model for two and three dimensional cell

cluster geometries. We find that REGI systems achieve higher levels of precision

than LEGI systems and give rise to optimally sensing geometries that are consistent

with the shapes of naturally occurring gradient-sensing cell populations. Lastly,

we analyze the precision with which migrating cell clusters can track a chemical

gradient via an individual-based and emergent method. We show that one and two

dimensional clusters utilizing the emergent chemotactic method have improved scaling
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with population size due to differences in the scaling properties of the variance in the

total polarization. By completing these studies we aim to understand the limits and

precise roles of collective behavior in environmental sensing.
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1. INTRODUCTION

Cells exist in a wide array of chemical environments subject to stochastic fluctuations.

In order to properly react to these environments, cells must be able to sense their

surroundings with sufficient precision to overcome both this external noise as well as

fluctuations inherent in their own stochastic machinery. In some cases this precision

approaches the physical limits set by molecular diffusion [1, 2]. Yet cells rarely

perform these sensory tasks in isolation. Cells can exist in communities such as

colonies, biofilms, and tissues. Within these communities, cells can influence each

other through means such as chemical communication and mechanical interactions.

Can cells utilize these effects to further improve their ability to sense and respond to

various aspects of their environments?

Experiments have shown that cells are more sensitive in groups than they are

alone. In some cases, such as with epithelial cells [3], cell-cell communication has been

shown to be directly responsible for the enhanced sensitivity. Yet, from a theoretical

perspective, the fundamental limits to concentration sensing [1, 2, 4–8] or gradient

sensing [9–11] have been largely limited to single receptors or single cells. Here we

focus on expanding the understanding of these limits by determining how groups

of cells can utilize different methods of chemical communication to improve their

ability to sense. Specifically, we look at whether these limits depend on the exact

communication mechanism and how they scale with collective properties such as

communication strength and population size.

In addition to simple environmental sensing, groups of cells can also influence

each other through self-created chemical cues. This is prominently seen in developing

systems utilizing morphogen profiles to induce morphological changes such as the

concentration of Bicoid dictating the expression of the Hunchback gene [12]. Exactly

how the method by which these profiles are formed affects the cells’ ability to precisely
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decipher such a cue remains poorly understood though. Morphogens such as Fgf8 in

Zebrafish appear to have molecular dynamics consistent with Brownian diffusion [13],

but others such as Hedgehog in Drosophila appear to track membrane protrusions [14].

Here we investigate how these methods differ in their limits to the cells’ sensory

precision of the resultant profiles.

In some instances though, a method which allows groups of cells to sense one

aspect of their environment more precisely might hinder their ability to sense another.

In the case of stripe formation in Drosophila, spatial averaging of concentration

measurements made by cells has been shown to improve the precision of concentration

sensing [15]. However, the effects such a mechanism might have on gradient sensing

has only been studied for one dimensional chains of cells [3, 16] despite biological

systems frequently existing in two and three dimensional geometries. Here we expand

upon this by ascertaining the role that dimensions transverse to a gradient play in

determining the precision of gradient sensing.

Lastly, groups of cells typically perform these sensory tasks so as to act upon the

results, such as in the phenomenon of collective migration in response to chemical

cues in the environment. This process, known as chemotaxis, can be performed by

each cell acting individually in a manner identical to that of a single, isolated cell [17]

or by cells changing their behavior when they enter a group so as to facilitate a more

emergent strategy [18–21]. Here we study how these methods allow groups of cells

to improve their chemotactic precision in responding to a chemical gradient and the

effects of the geometry of the cell cluster.

In these works we use stochastic modeling to make theoretical predictions about

the physical limits to how precisely groups of cells can perform and act on a variety of

sensory tasks. We compare our results to several experimental systems which suggest

that whichever of these tasks a group of cells is performing, it does so in a manner that

maximizes this precision. The culmination of these works represents a step forward

in our understanding of the underlying physics behind collective behavior in noisy

environments.
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2. THESIS PLAN

Here we briefly describe the basic components of the thesis. Further details on each

component will follow in Chapters 4-7.

2.1 Collective Concentration Sensing

We first develop the mathematical framework used throughout the rest of the

works presented by examining a collection of cells sensing a uniform ligand concentration.

We model the system with a series of stochastic equations that describe i) the diffusion

of the ligand through three dimensional (3-D) space, ii) the binding and unbinding

of the ligand to receptors on the cell surface, and iii) the production, degredation,

and movement of messenger molecules between cells. We show that when these

equations are expressed as Langevin equations in which the noise terms have well

known properties, relavent results such as the mean and variance of time averaged

measurements of the system variables can be exactly solved for. With these solutions,

we compare the precision in concentration sensing of the juxtacrine and autocrine

communication methods to establish which produces lesser noise for a given set of

parameters.

2.2 Morphogen Profile Sensing

We next investigate a system in which cells perform concentration sensing of a

nonuniform concentration field. In particular, we focus on the problem of morphogen

profile sensing in developing systems. We consider profiles formed via diffusion in

a similar manner to our previous work as well as via direct transport of morphogen

through cytonemes. These distinct methods of profile formation create different mean
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distributions and have fluctuations that scale differently with the various parameters

of the system. We compare these fluctuations to determine which method creates the

profile with less inherent noise given certain system properties and contrast this with

experimental measurements of systems observed to use one method or the other.

2.3 Juxtacrine Gradient Sensing

In conjunction with concentration sensing, we also develop a simplified model

of gradient sensing. Utilizing the same mathematical methods and the assumption

that the ligand diffusion and receptor binding occur at rates significantly faster than

the relevant time scales of the messenger molecules, we solve for the precision with

which a collection of cells arranged in a square or cubic lattice and communicating

via juxtacrine signalling can detect a constant gradient in the ligand profile. We look

at both the local excitation-global inhibition (LEGI) and regional excitation-global

inhibition (REGI) models to discern which method provides higher precision under a

variety of cluster configurations. For the REGI mechanism, we then find the optimal

configuration for a fixed number of cells in both 2-D and 3-D.

2.4 Multicellular Chemotaxis

Lastly, we continue to investigate gradient sensing but through collectives of cells

utilizing mechanical coupling rather than chemical communication. We consider 1-

D, 2-D, and 3-D configurations of cells in which each cell adheres to its neighbors

and makes its own individual measurement of its local environment. Cells either

directly measure the local gradient attempt to move the cluster in that direction, or

they measure the local concentration and attempt to move outwardly away from the

cluster. We show that while both these methods produce similar mean chemotactic

velocities, they can have different noise properties depending on the dimensionality

of the cluster configuration.
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3. BACKGROUND INFORMATION ON

MATHEMATICAL TECHNIQUES

3.1 Brief Analysis of Single Cell Sensing

Cells live and operate in enviroments that are inherently stochastic in nature. As

such, models of cellular mechanics must incorporate an inherent amount of noise in

their systems which in turn causes said systems to have a finite level of precision.

Among the first to study the limits to this precision were Berg and Purcell, who

calculated the noise-to-signal ratio of a cell acting as a perfect counting instrument [1].

In their model, the cell is taken to be a perfect sphere of radius a and volume

V into and out of which molecules can freely diffuse. Assuming the molecular

concentration is spatially uniform on average, when the cell counts the number of

molecules inside itself, it will measure a mean value of n̄ = c̄V ∼ c̄a3, where c̄ is

the mean concentration. Since diffusion is a Poissonian process, the variance in this

count will be inherently equal to its mean. Thus, the noise-to-signal ratio, the ratio

of the variance to the square of the mean, takes the form

σ2
n

n̄2
=

1

n̄
∼ 1

c̄a3
. (3.1)

The cell can decrease this error by taking multiple independent measurements.

However, in order for measurements to be independent, the molecules must be given

enough time to diffuse into or out of the cell and refresh themselves. This time scale is

given by the characteristic diffusion time τ ∼ a2/D, where D is the diffusion constant.

Assuming the cell integrates its measurements over a time T , it is effectively making

N = T/τ independent measurements, which in turn reduces the variance by a factor

of 1/N . Thus, the noise-to-signal ratio now takes the form
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σ2
n

n̄2
∼ 1

c̄a3N
=
a2/D

c̄a3T
=

1

ac̄DT
. (3.2)

The noise-to-signal ratio is seen to decrease with increased cell size, molecular

concentration, molecular diffusion rate, and integration time. The first two factors

stem from the fact that increasing cell size and molecular concentration increases the

mean. Increasing the diffusion rate decreases the noise as it allows more independent

measurements to be taken in a time T . Similarly, increasing the integration also

decreases the noise as it creates more independent measurements. This limit has

been rigorously derived by Berg and Purcell to produce the result [1]

σ2
n

n̄2
=

3

5

1

πac̄DT
. (3.3)

3.2 Mathematical Definitions: Correlation Function and Power Spectrum

We proceed to study cellular precision in the same vein as Berg and Purcell, by

examining the noise-to-signal ratio of our modelled systems, but choose to utilize

different techniques to solve the stochastic equations that describe such systems.

There are several techniques avaliable for mathematically modelling stochastic systems,

such as master equations and Fokker-Planck equations. Here we will make use of

Langevin equations as our primary tool. Unlike master equations and Fokker-Planck

equations, which perform time evolutions on probability distributions of the system,

Langevin equations incorporate random noise into the time evolution of the state

variables themselves to account for fluctuations. For a given state variable x (t), this

is typically written in the form

dx

dt
= O (x) + η, (3.4)

where O is some operator being applied to the system state and η is the Langevin

noise term that accounts for fluctuations away from the mean equation.



7

Equations of the form seen in Eq. 3.4 have a number of solution methods, but here

we will focus on derivations of the correlation function, cross spectrum, and power

spectrum. First, let δx (t) be defined as x (t) − 〈x (t)〉, where 〈x (t)〉 is the ensemble

average of the state varable x (t) at time t. Thus, δx (t) gives the fluctuations from

the mean at any given time. The correlation function can then be defined as

C
(
t, t′
)

=
〈
δx
(
t′
)
δx (t)

〉
. (3.5)

If the system is in steady state, then absolute time becomes irrelevant and the

correlation function depends only on the difference in time, C (t, t′) = C (t− t′). This

steady state assumption will be how we view the correlation function throughout this

work. Now, let the cross spectrum,
〈
δ̃x
∗

(ω′) δ̃x (ω)
〉

, be defined as the correlation

function Fourier transformed in the unprimed coordinates and conjugate Fourier

transformed in the primed coordinates. This allows us to define the power spectrum,

S (ω), as the integral of the cross spectrum over the primed coordinates, which leads

to the relation

Sx (ω) =

∫
dω′

2π

〈
δ̃x
∗ (
ω′
)
δ̃x (ω)

〉
=

1

2π

∫
dω′dtdt′

〈
δx
(
t′
)
δx (t)

〉
eiωte−iω

′t′

=

∫
dtdt′C

(
t− t′

)
eiωtδ

(
t′
)

=

∫
dtC (t) eiωt. (3.6)

Thus, the power spectrum is the Fourier transform of the steady state correlation

function. Inverting this relationship will allow us to obtain the correlation function

once the power spectrum is solved for.

With these definitions, we can now calculate the correlation function of a measurement

of δx (t) averaged over a time period T .
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CT
(
t− t′

)
=

〈(
1

T

∫ t′+T

t′
dτ ′δx

(
τ ′
))( 1

T

∫ t+T

t

dτδx (τ)

)〉

=
1

T 2

∫ t+T

t

dτ

∫ t′+T

t′
dτ ′
〈
δx
(
τ ′
)
δx (τ)

〉
=

1

T 2

∫ t+T

t

dτ

∫ t′+T

t′
dτ ′C

(
τ − τ ′

)
(3.7)

Let y ≡ (τ − τ ′)− (t− t′) and z ≡ (τ + τ ′)− (t+ t′). This transforms Eq. 3.7 into

CT
(
t− t′

)
=

1

T 2

∫ T

−T
dy

∫ 2T−|y|

|y|
dz

1

2
C
(
y + t− t′

)
=

1

T 2

∫ T

−T
dy
(
T −|y|

)
C
(
y + t− t′

)
. (3.8)

By inverting the relationship found in Eq. 3.6, C (y + t− t′) can be replaced with an

inverse Fourier transform of S (ω) to produce

CT
(
t− t′

)
=

1

T 2

∫ T

−T
dy

∫
dω

2π

(
T −|y|

)
Sx (ω) e−iω(y+t−t′)

=

∫
dω

2π

(
2

ωT
sin

(
ωT

2

))2

Sx (ω) e−iω(t−t′). (3.9)

The factor of (ωT )−2 in the integrand of Eq. 3.9 forces only small values of ω to

contribute when T is large. Thus, the approximation Sx (ω) ≈ Sx (0) can be made

since only values of ω near 0 are contributing. This causes CT (0) to be exactly

calculable to

CT (0) ≈ Sx (0)

∫
dω

2π

(
2

ωT
sin

(
ωT

2

))2

=
Sx (0)

T
, (3.10)

where the integration can be easily performed by noting that sin (x) /x is the 0th

spherical bessel function and using a table of integral properties of bessel functions.

When t = t′, the correlation function as defined in Eq. 3.5 becomes simply

the variance of x (t). Thus, Eq. 3.10 relates the variance in the time averaged

measurement of x (t) to the zero-frequency power spectrum of a non-time averaged

measurement of x (t), assuming that Sx (ω) does not change in value significantly
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when ω is changed by ∼ T−1. The technique presented here is for a state variable

x (t) that is a function of only a single coordinate, but it is easily generalizable to

state variables that are functions of an arbitrary number of coordinates by simply

adding the appropriate Fourier integrals to any Fourier transformations.

3.3 Historical Example: Berg and Purcell’s Perfect Instrument

With the relations between the time averaged correlation function and power

spectrum defined, we can apply them to a well known system. In particular, we can

analytically solve for the perfect instrument as defined by Berg and Purcell. This

is a system consisting of a ligand field, c (~x, t), that is on average uniform in space,

c̄ (~x) = c̄ and diffuses throughout space with diffusion constantDc. Additionally, there

is a spherical cell of radius a whose membrane is perfectly permeable to the ligand.

The cell then makes a measurement of n (t), the number of ligand molecules within

its volume, averaged over a time T . As given by Eq. 3.3, Berg and Purcell calculated

the noise to signal ratio σ2
nT/〈n〉2, the ratio of the variance of such a measurement to

the square of its mean, to be

σ2
nT

〈n〉2
=

3

5

1

πac̄DcT
. (3.11)

We will show that we can derive this result via a Langevin formalism. To begin,

we must define how c (~x, t) evolves with time. Since the ligand’s only interaction is

diffusion, this can be simply written as

dc

dt
= Dc∇2c+ ηc, (3.12)

where ηc is the Langevin noise term that accounts for fluctuations in the ligand field.

As shown in [22] and derived in Appendix A, ηc has a correlation function of the form

〈
ηc
(
~x′, t′

)
ηc (~x, t)

〉
= 2Dcδ

(
t− t′

)
~∇x · ~∇x′

(
c̄ (~x) δ3

(
~x− ~x′

))
. (3.13)
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Since c̄ (~x) is a constant, Fourier transforming Eq. 3.13 is relatively straight-

forward and yields

〈
η̃∗c

(
~k′, ω′

)
η̃c

(
~k, ω

)〉
= 2Dcc̄k

2
(

2πδ
(
ω − ω′

))(
(2π)3 δ3

(
~k − ~k′

))
. (3.14)

A detailed derivation of Eq. 3.14 can be seen in Appendix A.

Now, Eq. 3.12 must be linearized by defining δc (~x, t) such that c (~x, t) = c̄ +

δc (~x, t). This allows Eq. 3.12 to be rewritten as

dδc

dt
= Dc∇2 (δc) + ηc. (3.15)

Fourier transforming Eq. 3.15 transforms the derivatives into factors of −iω and −k2

respectively and allows for δ̃c to be solved for as

δ̃c =
η̃c

Dck2 − iω
. (3.16)

Returning to n (t), the number of ligand molecules within the cell volume V at

time t, this can be easily defined as

n (t) =

∫
V

d3xc (~x, t) . (3.17)

Since the cell is considered spherical and the ligand field constant on the level of the

mean, the mean of n (t) is easily calcualted to be

〈
n (t)

〉
=

∫
V

d3xc̄ =
4

3
πa3c̄. (3.18)

To calculate the noise however, we must first linearize and Fourier transform Eq. 3.17

into

δn (t) =

∫
V

d3xδc (~x, t) (3.19)
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=⇒ δ̃n (ω) =

∫
V

d3x

∫
d3k

(2π)3 δ̃c
(
~k, ω

)
e−i

~k·~x

=

∫
V

d3x

∫
d3k

(2π)3

η̃c

(
~k, ω

)
Dck2 − iω

e−i
~k·~x. (3.20)

Since the cross spectrum of ηc is known, this makes the cross spectrum of n also

solvable as

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=
(

2πδ
(
ω − ω′

)) 16πc̄a5

15Dc

f

a√2|ω|
Dc

 , (3.21)

where

f(x) ≡ 15

x5

e−x cos (x)

(
x2

2
+ 2x+ 1

)
+
(
1 + e−x sin (x)

)(x2

2
− 1

) . (3.22)

A detailed derivation of Eq. 3.21 can be seen in Appendix A. From here, the power

spectrum takes the form

Sn (ω) =

∫
dω′

2π

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=

16πc̄a5

15Dc

f

a√2|ω|
Dc

 . (3.23)

Combining this with Eq. 3.18 yields and noise to signal ratio of

σ2
nT

〈n〉2
=
Cn,T (0)

〈n〉2
≈ Sn (0)

〈n〉2T
=

1

T

(
4

3
πa3c̄

)−2

lim
ω→0

16πc̄a5

15Dc

f

a√2|ω|
Dc


=

3

5

1

πac̄DcT
(3.24)

Thus, we see that our method of utilizing Langevin noise terms reproduces the

same result as that obtained by Berg and Purcell [1]. Of important note is that

in order to justify the approximation used in Eq. 3.10, Sn (ω) must not change

drastically when ω changes by T−1. Since the ω dependence of Sn (ω) is contained
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entirely in f
(
a
√

2|ω| /Dc

)
and f (x) as defined in Eq. 3.22 has a finite value and

first derivative, the factor a
√

2|ω| /Dc should be approximately equal for ω = 0 or

T−1. This is equivalent to requiring a/
√
DcT � 1, or T � a2/Dc. Thus, Eq. 3.24 is

valid only for T � a2/Dc, which is the characteristic diffusive timescale for a ligand

molecule to diffuse around the cell.

As an additional check, we can exactly calculate the variance in an instantaneous

measurement of n by inverting the relationship found in Eq. 3.6. This yields

σ2
n = Cn (0) =

∫
dω

2π
Sn (ω) =

8c̄a5

15Dc

∫
dωf

a√2|ω|
Dc

 =
4

3
πa3c̄ = 〈n〉. (3.25)

Thus, we see that our method of utilizing Langevin noise terms also recovers the

Poissonian nature of diffusion by equating the variance to the mean.
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4. FUNDAMENTAL LIMITS TO COLLECTIVE

CONCENTRATION SENSING IN CELL POPULATIONS

This work has been published in Physical Review Letters [23]

Single cells sense chemical concentrations with extraordinary precision. In some

cases this precision approaches the physical limits set by molecular diffusion [1, 2].

Yet, no cell performs this sensory task in isolation. Cells exist in communities, such

as colonies, biofilms, and tissues. Within these communities, cells communicate in

diverse ways. Communication mechanisms include the exchange of molecules between

cells in contact (juxtacrine signaling), and secretion and detection of diffusible molecules

over distances comparable to the cell size or longer (autocrine signaling) [24–27].

This raises the question of whether cell-cell communication improves a cell’s sensory

precision, beyond what the cell achieves alone.

Experiments have shown that cells are more sensitive in groups than they are

alone. Groups of neurons [28], lymphocytes [19], and epithelial cells [3] exhibit

biased morphological or motile responses to chemical gradients that are too shallow

for cells to detect individually. Groups of cell nuclei in fruit fly embryos detect

morphogen concentrations with a higher precision than is expected for a single nucleus

[12, 15, 29]. In some cases, such as with epithelial cells [3], cell-cell communication

has been shown to be directly responsible for the enhanced sensitivity. Yet, from a

theoretical perspective, the fundamental limits to concentration sensing [1,2,4–8,30,

31] or gradient sensing [9–11] have been largely limited to single receptors or single

cells. Analogous limits for groups of communicating cells have been derived only for

specific geometries [16], and are otherwise poorly understood. In particular, it remains

unknown whether the limits depend on the communication mechanism (juxtacrine vs.
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autocrine), and how they scale with collective properties like communication strength

and population size.

Here we derive the fundamental limits to the precision of collective sensing by one,

two, and three dimensional (3D) populations of cells. We focus on the basic task of

sensing a uniform chemical concentration. We compare two ubiquitous communication

mechanisms depicted in Fig. 4.1, juxtacrine signaling and autocrine signaling. Intuitively

one expects that sensory precision is enhanced by communication, that communication

is strongest when cells are close together, and therefore that juxtacrine signaling

should result in the higher sensory precision. Instead, we find that under a broad

range of conditions, autocrine signaling results in the higher sensory precision. In fact,

we find that for autocrine signaling, it is not optimal for cells to be as close as possible.

Rather, an optimal cell-to-cell distance emerges due to a tradeoff between maintaining

sufficient communication strength and minimizing signal cross-correlations. For sufficiently

large populations, this distance can be many times the cell diameter, meaning that

these populations are porous, not tightly packed. Surprisingly, the sensory precision

in these porous populations is then higher than that in the case of juxtacrine signaling,

where cells are adjacent and communicate directly. We discuss the implications of

these findings for cell populations, compare our results to data from a wide variety of

communicating cell types, and make predictions for future experiments.

4.1 Recptor Binding and Unbinding

Consider N cells with radii a in the presence of a ligand that diffuses in three

dimensions with coefficient Dc (Fig. 4.1). The ligand concentration c (~x, t) fluctuates

due to the particulate nature of the ligand molecules, but on average the steady-state

concentration c̄(~x) = c̄ is uniform. Ligand molecules bind and unbind to receptors on
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the surface of cell i with rates α and µ, respectively, leading to ri(t) bound receptors.

The dynamics of c and r are

dc

dt
= Dc∇2c−

N∑
j=1

δ3
(
~x− ~xj

) drj
dt

+ ηc, (4.1)

drj
dt

= αc
(
~xj, t

)
− µrj + ηrj. (4.2)

The first term on the righthand side of Eq. 4.1 describes the ligand diffusion, while

the second term describes the binding and unbinding of ligand at cell positions ~xi,

with the binding dynamics given by Eq. 4.2. The noise terms obey〈
ηc (~x, t) ηc

(
~x′, t′

)〉
= 2Dcc̄δ

(
t− t′

)
~∇x · ~∇x′δ

3
(
~x− ~x′

)
, (4.3)〈

ηrj (t) ηrl
(
t′
)〉

= 2µr̄δjlδ
(
t− t′

)
, (4.4)

and account for the spatiotemporally correlated diffusive fluctuations [22] and the

stochastic nature of the binding reactions [32], respectively. Here r̄ = αc̄/µ is the

mean bound receptor number of each cell in steady state. In Eq. 4.2 we have assumed

that the receptors are numerous enough such that the binding of ligand does not

significantly affect the available number of unbound receptors, which is to say we

have neglected the effects of receptor saturation.

Figure 4.1. Cells with (A) short-range (juxtacrine) or (B) long-range
(autocrine) communication, sensing a uniform ligand concentration.
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We must first consider the properties of c and rj. Following the same method as

was used for the perfect instrument, Eq. 4.1 can be linearized, Fourier transformed,

and solved for δ̃c to yield

δ̃c
(
~k, ω

)
=
iω
∑

j δ̃rje
i~k·~xj + η̃c

Dck2 − iω
. (4.5)

The summation term in Eq. 4.5 induces a relation between all the δ̃rj’s when Eq. 4.2

is similarly linearized, Fourier transformed, and Eq. 4.5 is used to substitute for δ̃c.

This summation can be solved by writing the δ̃rj relations in matrix form, yielding

the solution

δ̃rj (ω) =
∑
l

R−1
jl (ω)

(
α

∫
d3k

(2π)3

η̃c
Dck2 − iω

e−i
~k·~xl + η̃rl

)
, (4.6)

where the matrix

Rjl (ω) = (µ− iω) δjl − iωΣ
(
~xj − ~xl, ω

)
(4.7)

along with the function

Σ (~x, ω) = α

∫
d3k

(2π)3

1

Dck2 − iω
ei
~k·~x =

α

4πDc|~x|
e(i−1)|~x|

√
ω

2Dc (4.8)

accounts for the cross-correlations between the cells.

The Σ (x, ω) function introduces an important issue with how we have modelled

the ligand diffusion in Eq. 4.1. When j = l in Eq. 4.7, Σ (0, ω) as defined in Eq. 4.8

diverges. This is due to the treatment of cells as point particles, which is seen in the

use of the Dirac δ-functions in Eq. 4.1. Realistically, wavevectors large enough such

that the corresponding wavelengths are less than the cell radius will be averaged out

to negligible contributions. Thus, for sufficiently small values of
∣∣~xj − ~xl∣∣, we cut off

the integral in Eq. 4.8 to a maximal magnitude of 2π
ga

, where g is a geometric factor.

This allows for the calculation

Σ (0, ω) ≈ α

πDcga

1 + sgn (ω)
iga

4

√
|ω|
2Dc

 , (4.9)

where we have assumed ω−1 � a2/Dc. This assumption is validated when Eq. 3.10

is used to calculate the variance and forces ω−1 ∼ T � a2/Dc.
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With the explicit forms of Rjl (ω) and Σ (~x, ω) defined, Eq. 4.6 can be used to

calculate the cross spectrum in rj, which takes the simplified form〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=
(

2πδ
(
ω − ω′

)) 2αc̄

ω
Im
(
R−1
jl (ω)

)
. (4.10)

A detailed derivation of Eq. 4.10 can be seen in Appendix B. Eq. 4.10 is particularly

reassuring in its form as it can be seen to be of the exact form the fluctuation-

dissipation theorem would predict, namely proportional to the imaginary component

of the matrix element used to connect δ̃rj to the noise terms in Eq. 4.6 [22].

Of important note is that for the time averaged noise of rj to be calculated as was

done for the perfect instrument, there must be restrictions put on T . In particular,

the power spectrum of rj cannot change significantly when ω changes by ∼ T−1. Since

Σ (~x, ω) is a function that monotonically decreases with |~x|, we only need consider the

j = l case. Utilizing Eq. 4.9 and the fact that g is merely a geometric factor of order

unity, it follows that the factor a
√
|ω| /2Dc should be small for ω = T−1. This is

equivalent to requiring

T � τ1 = a2/Dc, (4.11)

where τ1 is the time scale over which the ligand can diffuse around the cell, just as

for the perfect instrument.

Additionally, Rjl (ω) cannot change significantly when ω changes by ∼ T−1.

Continuing to focus on the j = l case, it follows that ω
(
1 + Σ (0, 0)

)
� µ should

be true for ω = T−1. Utilizing the explicit form of Σ (0, 0) given in Eq. 4.9, this is

equivalent to requiring

T � τ2 =
1

µ
+

1

kDKD

, (4.12)

where τ2 is the receptor equilibration timescale including rebinding, with diffusion-

limited rate kD = πgaDc and dissociation constant KD = µ/α [4]. Since g = 4

corresponds to the diffusion-limited rate kD = 4πaDc for a sphere of radius a, we

take g = 4 from here on.
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4.2 Juxtacrine Signalling

With the properties of c and rj thoroughly understood, we now consider juxtracrine

signaling, in which a messenger molecule is exchanged between adjacent cells at a rate

γ (Fig. 4.1A). Messenger molecules are produced in each cell by the bound receptors

at a rate β and degraded at a rate ν, such that the messenger acts as both the

mediator of communication and the sensory readout. The dynamics of mj(t), the

number of messenger molecules in cell i, are

dmj

dt
= βrj − νmj + γ

∑
l∈Ni

(
ml −mj

)
+ ηmj, (4.13)

where Ni denotes the set of cells that are neighbors of cell i. The noise term obeys〈
ηmj (t) ηml

(
t′
)〉

= 2m̄Mjl (0) δ
(
t− t′

)
, (4.14)

where the matrix

Mjl (ω) =
(
ν +

∣∣Nj∣∣ γ − iω) δjl − γδl∈Nj (4.15)

accounts for the stochasticity of the reactions (first term) and the anti-correlations

induced by the exchange (second term) [32]. Here m̄ = βr̄/ν is the mean messenger

molecule number of each cell in steady state, and
∣∣Nj∣∣ is the number of neighbors of

cell i.

The precision of concentration sensing is given by the signal-to-noise ratio of the

readout in a particular cell, m̄2/(δmj)
2. We assume that each cell integrates its

messenger molecule count over a time T , such that (δmj)
2 is the variance in the

time average T−1
∫ T

0
dt mj(t) [1]. As seen in Section 3.3, this can be done by first

calculating the instantaneous power spectrum of mj. To do this, we proceed to

linearize and Fourier transform Eq. 4.13, then solve for ˜δmj. Utilizing the definintion

of Mjl (ω) in Eq. 4.15, this solution takes the form

˜δmj (ω) =
∑
l

M−1
jl (ω)

(
βδ̃rl + η̃ml

)
. (4.16)
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Since the form of Mjl (ω) and the cross spectrums of rj and ηmj are already known,

Eq. 4.16 allows for the cross spectrum of mj to be calculated to be

〈
˜δm
∗
l

(
ω′
)

˜δmj (ω)
〉

= 2
(

2πδ
(
ω − ω′

))m̄Re
(
M−1

jl (ω)
)

+
αβ2c̄

ω

∑
s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

Im
(
R−1
su (ω)

) . (4.17)

The factor of R−1
su (ω) comes from the dependence of mj on rj and thus represents

the noise mj inherits from rj. This also implies that when the time averaged variance

of mj is calculated, it will also inherit the restrictions T � [τ1, τ2]. Additionally, the

dependence of Mjl (ω) on ω means that it too will provide another restriction on T .

Utilizing the explicit form of Mjl (ω) as given in Eq. 4.15, it follows that ω � ν + γ

should be true for ω = T−1. This is equivalent to requiring

T � τ3 =
1

ν + γ
, (4.18)

where τ3 is the turnover timescale of the messenger molecule. Thus, for the juxtacrine

model, [τ1, τ2, τ3] represents the timescales the cell must integrate its measurements

over to obtain the precisions our results predict. Special cases illuminate the key

physics, below.

First, for either N = 1 or γ = 0, we can use Eq. 4.17 to obtain the result for a

single, isolated cell,
σ2
mT

m̄2
=

1

2

1

πac̄DcT
+

2

µT r̄
+

2

νTm̄
. (4.19)

Eq. 4.19 is the inverse of the precision, which we call the error, and its detailed

derivation can be seen in Appendix C. The first term is the well-known Berg-Purcell

limit for the extrinsic noise propagated from ligand diffusion [1]. The second and

third terms are the intrinsic noise arising from the finite numbers of bound receptors

r̄ and messenger molecules m̄. In the limit of large molecule numbers {r̄, m̄} → ∞,

these terms vanish. From here on we consider only the extrinsic noise, since extrinsic

factors such as c̄ and Dc are not under direct control of the cell (see Appendix C for

the general case).
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Second, for N = 2 (as in Fig. 4.1A) the extrinsic part of the error for either cell

is (as calculated in Appendix C)

σ2
mT

m̄2
=

1

2

[
1− λ̂2(1 + λ̂2)

(1 + 2λ̂2)2

]
1

πac̄DcT
(4.20)

→ 3

8

1

πac̄DcT
λ� a. (4.21)

Here λ̂ ≡ λ/(2a), where λ ≡ 2a
√
γ/ν is the communication length: it is the

lengthscale of the exponential kernel that governs the exchange of messenger molecules

[3, 16]. The prefactor in Eq. 4.20 is a monotonically decreasing function of λ̂, which

demonstrates that noise decreases with increasing communication. In the limit of

weak communication λ � a, the prefactor becomes 1/2 as in the one-cell case (Eq.

4.19). In the limit of strong communication λ � a, it becomes 3/8 (Eq. 4.21). The

fact that 3/8 is larger than half of 1/2 means that two cells are less than twice as

good as one cell in terms of sensory precision, even with perfect communication.

The reason is that, with juxtacrine signaling, the cells are sampling adjacent regions

of extracellular space, and correlations mediated by the diffusing ligand molecules

prevent their measurements from being independent [16]. Can autocrine signaling

avoid this drawback?

4.3 Autocrine Signalling

To answer this question, we consider autocrine signaling (Fig. 4.1B). As before, a

messenger molecule is produced by each cell at rate β and degraded at rate ν, but

now it diffuses within the extracellular space with coefficient Dρ. Thus, the autocrine

model retains Eqs. 4.1 and 4.2 but replaces Eq. 4.13 with

dρ

dt
= Dρ∇2ρ− νρ+

N∑
i=1

δ3 (~x− ~xi)
(
βri + ηpi

)
+ ηd, (4.22)

where ρ (~x, t) is the concentration of the messenger molecule. The production noise

obeys [32] 〈
ηpj (t) ηpl

(
t′
)〉

= βr̄δjlδ
(
t− t′

)
, (4.23)
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while the degradation and diffusion noise obeys [22]〈
ηd (~x, t) ηd

(
~x′, t′

)〉
= νρ̄ (~x) δ

(
t− t′

)
δ3
(
~x− ~x′

)
+ 2Dρδ

(
t− t′

)
~∇x · ~∇x′

[
ρ̄ (~x) δ3

(
~x− ~x′

)]
. (4.24)

Here

ρ̄ (~x) =
βr̄

4πDρ

N∑
j=1

e−|~x−~xj|/λ(0)∣∣~x− ~xj∣∣ (4.25)

with

λ (ω) =

√
Dρ

ν − iω
(4.26)

is the steady-state concentration profile of the messenger molecule, which is non-

uniform due to the multiple cell sources. λ (0) sets the communication length in the

autocrine case.

We then imagine that each cell counts the number mj(t) =
∫
Vj
d3xρ (~x, t) of

messenger molecules within its volume Vj (such a prescription yields similar concentration-

sensing results to one in which receptor binding is explicitly accounted for [1]). As

in the juxtacrine case, the model remains linear with well understood noise terms.

Therefore, we use the same procedure as above to exactly solve for the error for

arbitrary parameters and cell configuration. A detailed derivation of the general case

can be seen in Appendix D.

In calculating the cross spectrum of mj, the factor of Rsu (ω) can be seen to

be inheritted once again, and with it the restrictions T � [τ1, τ2]. The only other

dependencies on ω to be found within the cross spectrum of mj come in the form

of functions of a/λ (ω). Utilizing the explicit form of λ (ω) as given in Eq. 4.26, it

then follows that ω � ν + a2/Dρ should be true for ω = T−1. This is equivalent to

requiring

T � τ4 =
1

ν + a2

Dρ

, (4.27)

where τ4 is the messenger turnover timescale. Thus, for the autocrine model, [τ1, τ2, τ4]

represents the timescales the cell must integrate its measurements over to obtain the

precisions our results predict.
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For the special case of N = 2 cells separated by a distance ` (as in Fig. 4.1B), in

the limit of strong communication λ� a, the result for the extrinsic noise is

σ2
mT

m̄2
=

1 + Λ2(ˆ̀) + 2Λ(ˆ̀)/ˆ̀

2[1 + Λ(ˆ̀)]2
1

πac̄DcT
(4.28)

→ 2

5

1

πac̄DcT
` = `∗ =

8

3
a. (4.29)

where

Λ(ˆ̀) =


1− ˆ̀2

3
ˆ̀< 1

2

3ˆ̀
ˆ̀≥ 1

(4.30)

and ˆ̀≡ `/a. In the limit of large separation `� a, the prefactor in Eq. 4.28 becomes

1/2 as in the one-cell case (Eq. 4.19), since here each cell only detects messenger

molecules produced by itself (proper autocrine signaling). In general, since Λ(ˆ̀) is

a continuous, monotonically decreasing function of ˆ̀, the denominator in Eq. 4.28

decreases with `; this is because the mean decreases with cell separation due to the

decay of the messenger molecule concentration profile (Eq. 4.25). The numerator

in Eq. 4.28 also decreases with `; this is once again because the cells are sampling

nearby regions of extracellular space, and the variance decreases with their separation

as their measurements become more independent. The tradeoff between these effects

results in a minimum value of the prefactor equal to 2/5, when ` = `∗ = 8a/3 (Eq.

4.29).

4.4 Comparision of Juxtacrine and Autocrine Precision

Evidently, for N = 2 cells autocrine signaling has improved the precision of

concentration sensing less than juxtacrine signaling has (2/5 > 3/8). Do the results

change for larger N? Because we have exact results for arbitrary N and arbitrary

cell positions (as seen in Appendix D), we can answer this question immediately.

Fig. 4.2A, B, and C compare as a function of N the error of the two communication

mechanisms in the limit of strong communication for 1D, 2D, and 3D configurations of

cells, respectively. For juxtacrine signaling, cells are arranged within a line (1D), circle
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(2D), or sphere (3D) on a rectangular lattice with spacing 2a. For autocrine signaling,

cells are confined to the respective dimensionality, but are otherwise allowed to adjust

their positions via a Monte Carlo scheme until the minimum error is reached. The

average nearest-neighbor separation 〈`∗〉 in this case is shown in Fig. 4.2D. We see

in Fig. 4.2A-C that the error always decreases with N , meaning that communication

among an increasing number of cells monotonically improves sensory precision. In

1D, we see that juxtacrine signaling results in a smaller error than autocrine signaling

for all N (Fig. 4.2A). In fact, in the case of autocrine signaling in 1D, the optimal

separation decreases with N , and beyond N = 7, cells overlap, 〈`∗〉 < 2a (Fig. 4.2D).

However, in 2D and 3D, autocrine signaling results in the smaller error beyond N = 7

and N = 6 cells, respectively (Fig. 4.2B and C), and the optimal separation increases

with N (Fig. 4.2D). By N = 400 cells, the optimal separation in 3D becomes more

than 10 cell radii, meaning that the optimal arrangement of cells is highly “porous”.

It is clear from Fig. 4.2A-C that the errors of the two communication strategies

scale differently with population size. The scaling in the juxtacrine case can be

understood quantitatively. In the limit of strong communication, the entire population

of contiguous cells acts as one large detector. The error of a long ellipsoidal (1D), disk-

shaped (2D), or spherical detector (3D) scales inversely with its longest lengthscale

(with a log correction in 1D) [33]. This lengthscale in turn scales with N , N1/2, or

N1/3, respectively, leading to the predicted scalings in Fig. 4.2A-C, which are seen to

agree excellently at large N . On the other hand, the scaling for autocrine signaling

is different from that for juxtacrine signaling in each dimension. Evidently diffusive

communication and non-contiguous arrangement lead to fundamentally different physics

of sensing. In particular, in 2D and 3D the autocrine scaling is clearly steeper at large

N (Fig. 4.2B and C), meaning that not only is the autocrine strategy more precise for

a sufficiently large population, but more importantly, the improvement in precision

will continue to grow with population size.

How do our results compare to actual biological systems? Arguably the most

biologically unrealistic assumption that we make in Fig. 4.2 is that of strong communication,
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λ� a. Since our calculations are exact for any λ (as seen in Appendix D), we relax

this assumption in Fig. 4.3, allowing us to identify phases in the space of λ and N in

which either communication strategy leads to the larger sensory precision. We now

ask where particular biological systems fall in this phase space. Bacteria communicate

via autocrine signaling, and it has been suggested that this communication enables

collective sensing during swarming [34,35]. Data are available from studies of bacterial

quorum sensing [36], which itself has been argued to also play a role in sensing

environmental features [37]. The quorum-sensing messenger molecule AHL has Dρ ∼

490 µm2/s [38] and ν ∼ 0.1−1 day−1 [39, 40], yielding λ ∼ 5−20 mm. Quorum

or swarm sizes N are typically large but can be as small as tens or hundreds of

cells [41]. Gap junctions are a ubiquitous mediator of juxtacrine signaling [42].

Gap junctions extracted from mouse tissues with a range of sizes N were found

to propagate small molecules over approximately 1−2 cell lengths, or λ ∼ 10−20

µm [43]. Mammary epithelial cells also communicate via gap junctions across 3−4

cell lengths, or λ ∼ 30−40 µm [3], and typical sensory units at the ends of mammary

ducts contain N ∼ 101−103 cells [3, 44]. We see in Fig. 4.3 that these systems fall

within the phases where we would predict that the observed communication strategy

of each leads to the larger sensory precision.

Of course, bacteria are single-cellular, whereas mammalian cells are multicellular,

so one might argue that these strategies are predisposed for other functional reasons.

However, many multicellular components adopt porous cell arrangements and exhibit

autocrine signaling. In particular, recent experiments have shown that glioblastoma

tumor cells in groups of N ∼ 103−104 secrete the autocrine factors IL-6 and VEGF

[45], for which Dρ ∼ 30 µm2/s [46] and 100 µm2/s [47], and ν ∼ 0.2 hr−1 [48] and

0.7 hr−1 [49], respectively, yielding λ ∼ 700 µm. Indeed, in this regime, we would

predict that autocrine signaling provides the higher sensory precision (Fig. 4.3). In

fact, in these experiments, cells autonomously adopted a typical spacing of several

cell diameters, which is consistent with the predicted optimal spacing 〈`∗〉 shown in



26

Communicating bacteria

Mouse cells with gap junctions

Epithelial cells

Glioblastoma
tumor cells

a = 10 µma = 1 µm

⟨ℓ∗⟩/a =

3
4
5

6

Number of cells, N
100 101 102 103 104

C
om

m
u
n
ic
at
io
n
le
n
gt
h
,
λ
(µ
m
)

100

101

102

103

104

Juxtacrine
Autocrine

Figure 4.3. Phase plot showing the communication strategy that
results in the lower error in 3D (results are similar for 2D). Ellipses
are estimates from biological systems described in the text. Solid
(dashed) black phase boundary is for a = 10 µm (a = 1 µm), to
be compared with mammalian (bacterial) cell ellipses. Red contour
lines show 〈`∗〉 for a = 10 µm in the autocrine phase up to largest
numerically tractable N = 400. Phase boundaries are extrapolated
from largest numerically tractable N = 103.

the red contours in Fig. 4.3. The authors argued that this spacing minimized the

signaling noise [45], suggesting a mechanism similar to the one we uncover here.

We have shown that communicating cells maximize the precision of concentration

sensing by adopting an optimal separation that can be many cell diameters. This is

surprising, since separation weakens the impact of the communication. However, we

have demonstrated that cells weigh this drawback against the benefit of obtaining

independent measurements of their environment. We predict that the concentration
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detection threshold for communicating cells should decrease with the cell number,

which could be tested using an intracellular fluorescent reporter. Moreover, if cell

positions are controllable [45], we predict that a small concentration would be detected

by modestly separated cells, but not adjacent or far-apart cells.
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5. DIFFUSION VS. DIRECT TRANSPORT IN THE

PRECISION OF MORPHOGEN READOUT

This work has been submitted to Physical Review Letters [50]

Within developing organisms, morphogen profiles provide cells with information

about their position relative to other cells. Cells use this information to determine

their position with extremely high precision [12,15,51–53]. However, not all morphogen

profiles are formed via the same mechanism, and for some profiles the mechanism

is still not well understood. One well-known mechanism is the synthesis-diffusion-

clearance (SDC) model in which morphogen molecules are produced by localized

source cells and diffuse through extracellular space before degrading or being internalized

by target cells [54–59]. Alternatively, a direct transport (DT) model has been proposed

where morphogen molecules travel through protrusions called cytonemes directly from

the source cells to the target cells [54,57,59–61]. The presence of these two alternative

theories raises the question of whether there exists a difference in the performance

capabilities between cells utilizing one or the other.

Experiments have shown that morphogen profiles display many characteristics

consistent with the SDC model. The concentration of morphogen as a function of

distance from the source cells has been observed to follow an exponential distribution

for a variety of different morphogens [52, 62]. The accumulation times for several

morphogens in Drosophila have been measured and found to match the predictions

made by the SDC model [63]. In zebrafish, the molecular dynamics of the morphogen

Fgf8 have been measured and found to be consistent with Brownian diffusion through

extracellular space [13]. Despite these consistencies, recent experiments have lent

support to the theory that morphogen molecules are transported through cytonemes

rather than extracellular space. The establishment of the Hedgehog morphogen
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gradient in Drosophila is highly correlated in both space and time with the formation

of cytonemes [14], while Wnt morphogens have been found to be highly localized

around cell protrusions such as cytonemes [64, 65]. Theoretical studies of both the

SDC and DT models have examined these measurable effects [60, 63, 66–68], but

direct comparisons between the two models have thus far been poorly explored. In

particular, it remains unknown whether one model allows for a cell to sense its local

morphogen concentration more precisely than the other given biological parameters

such as the number of cells or the characteristic lengthscale of the profile.

Here we derive fundamental limits to the precision of morphogen concentration

sensing for both the Synthesis-Diffusion-Clearance (SDC) and Direct Transport (DT)

models. We investigate the hypothesis that sensory precision plays a major role in

the selection of a gradient formation mechanism during evolution, and we test this

hypothesis by quantitatively comparing our theory to morphogen data. Precision

depends not only on stochastic fluctuations in the morphogen concentration, but

also on the shape of the morphogen profile, as the shape determines concentration

differences between adjacent cells that may adopt different fates [12, 69]. However,

because the morphogens to which we will later compare our results generally have

exponential profiles, we restrict ourselves to the exponential regimes of both the

SDC and DT models and focus only on the stochastic noise caused by production,

transport, and degradation of the morphogen molecules. Several past studies have

focused on the dynamics of morphogen profiles and their accumulation times [60,63,

66–68]. Here, we model morphogen profiles in the steady state regime as many of the

experimental measurements to which we will later compare our results were taken

during stages when the steady state approximation is valid [13,70–73].

Intuitively one might expect the DT model to have less noise due to the fact that

molecules are directly deposited at their target. Indeed, we find below that the noise

arises only from molecular production and degradation, with no additional noise from

molecular transport. Surprisingly, however, we also find below that for sufficiently

large morphogen profile lengthscales, the SDC model produces less noise than the
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Figure 5.1. Source cell (green) produces morphogen which is delivered
to target cells (blue) via (A) direct transport (DT) or (B) synthesis-
diffusion-clearance (SDC).

DT model due to it being able achieve a higher effective unique molecule count.

This result holds for one-, two-, and three-dimensional geometries. We compare our

results with measurements of the above morphogens and find quantitative agreement

with our predictions, suggesting that readout precision plays an important role in

determining the mechanisms of morphogen profile establishment.

5.1 Direct Transport

We first consider the DT case, where morphogen molecules are transported via

cytonemes that connect a single source cell to multiple target cells (Fig. 5.1A).
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Cytonemes are tubular protrusions that are hundreds of nanometers thick and between

several and hundreds of microns long [61,74]. They are supported by actin filaments,

and it is thought that morphogen molecules are actively transported along the filaments

via molecular motors [61, 64, 74, 75]. It was recently shown that a DT model that

includes forward and backward transport of molecules within cytonemes reproduces

experimentally measured accumulation times [60, 67], although the noise properties

of this model were not considered. Here, we review the steady state properties of this

model and then derive its noise properties.

Consider a single source cell that produces morphogen at rate β. Morphogen

molecules enter each cytoneme at rate γ. The cytoneme that leads to the jth target

cell has length Lj. Once inside a cytoneme, morphogen molecules move forward

towards the target cell with velocity v+ or backwards toward the source cell with

velocity v−, and can switch between these states with rates ζ+ (forward-to-backward)

or ζ− (backward-to-forward). Once a molecule reaches the forward (backward) end

of the cytoneme it is immediately absorbed into the target (source) cell. Molecules

within a target cell spontaneously degrade with rate ν. Calling N the total number of

target cells, the dynamics of the mean number of morphogen molecules in the source

cell m̄0(t) and jth target cell m̄j(t), and the mean density of forward-moving molecules

ū+
j (x, t) and backward-moving molecules ū−j (x, t) in the jth cytoneme are [60]

∂m̄0

∂t
= β −

N∑
j=1

[
γm̄0 − v−ū−j (0, t)

]
,

∂ū+
j

∂t
= − v+

∂ū+
j

∂x
+ ζ−ū

−
j − ζ+ū

+
j + γm̄0δ(x)− v+ū

+
j δ(x− Lj),

∂ū−j
∂t

= v−
∂ū−j
∂x
− ζ−ū−j + ζ+ū

+
j − v−ū−j δ(x),

∂m̄j

∂t
= v+ū

+
j (Lj, t)− νm̄j. (5.1)

The steady-state solution for this model is calculated in [60], but for completeness

and notational clarity we rederive it in Appendix E. The solution for m̄j specifically

is given by
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m̄j =
βΓ
(
Lj
)

ν
∑N

k=1 Γ (Lk)
, (5.2)

where

Γ(L) = γeκL
1− eφ

1− eφ+κL
(5.3)

is the effective transport rate of morphogen molecules to the jth target cell. Here

φ = log(d+/d−) and κ = d−1
− − d−1

+ are defined in terms of the average distance a

molecule would move forward d+ = v+/ζ+ or backward d− = v−/ζ− within a cytoneme

before switching direction. When d+ � d− the transport rate Γ(L) = γ is constant,

whereas when d+ � d− the transport rate Γ(L) = γe−L/d+ decays exponentially with

cytoneme length.

Despite the complexity of the transport process in Eq. 5.1, we find that it adds

no noise to m̄j. This can be seen by considering the probability that a molecule born

at some time t enters the jth target cell at time t + τ . This probability can be split

into the product P (τ |j)P (j), where P (τ |j) is the probability per unit time that the

molecule enters the jth target cell a time τ after it is born given that it will eventually

enter the jth target cell and P (j) is the probability that it will eventually enter the

jth target cell. Since Γ(Lj) is known to be the effective transport rate of molecules

from the source cell into the jth target cell, we can take P (j) = Γ(Lj)/
∑N

k=1 Γ(Lk).

We now consider Pj(t), the probability per unit time of a molecule entering the

jth target cell at time t. This can be broken up into a summation over all of past

time, t′, of P (t− t′|j)P (j)βdt′, where βdt′ represents the probability the molecule is

born in the infinitesimal time window dt′. Turning this summation into integration

allows P (t) to be written as

Pj (t) =

∫ t

−∞
dt′βP

(
t− t′|j

)
P (j) = βP (j)

∫ ∞
0

dτP
(
τ |j
)

= βP (j) . (5.4)

Thus, the probability per unit time of a molecule entering the jth target cell is

βP (j) which is constant in time and independent of the exact form of P (τ |j). This
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is significant because it implies that the specific transport mechanism can only alter

the statistical properties of mj through P (j) and cannot impart any noise inherent in

such a process to mj. Given this, we can define an effective arrival rate βj = βP (j)

and write the dynamics of mj as

∂mj

∂t
= βj − νmj + ηj. (5.5)

Eq. 5.5 reproduces the mean value given in Eq. 5.2, and when it is linearized and

Fourier transformed as was done in our previous work we obtain

〈
˜δm
∗
j

(
ω′
)

˜δmj (ω)
〉

=

〈
η̃∗j (ω′) η̃j (ω)

〉
(ν − iω) (ν + iω′)

, (5.6)

where

〈
η̃∗j
(
ω′
)
η̃j (ω)

〉
= 2βj

(
2πδ

(
ω − ω′

))
(5.7)

is known from summing the mean propensities seen on the right-hand side of Eq. 5.5

[32]. With these, we calculate the relative of a time averaged measurement of mj to

be

δm2
jT

m̄2
j

=
2

νTm̄j

, (5.8)

so long as T � ν−1.

We see that, as expected for a time-averaged Poisson process [23], the relative

error (σmjT/m̄j)
2 decreases with both the mean number of molecules m̄j and the

number νT of independent measurements that can be made in the time T , where

independence requires separation by a correlation time ν−1. The transport process

influences the noise only via the functional form of m̄j.
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5.2 Synthesis-Diffusion-Clearance

We next consider the SDC case (Fig. 5.1B). We begin in one-dimensional space, as

is typical [63,66,68], although we also consider other geometries later on. Consider a

single source cell at the origin which produces morphogen molecules at rate β. These

molecules diffuse freely with coefficient D and degrade spontaneously at any point in

space with rate ν. The dynamics of the morphogen concentration c(x, t) are

∂c

∂t
= D∇2c+ ηD − νc− ην +

(
β + ηβ

)
δ(x), (5.9)

where the noise terms associated with diffusion, degradation, and production obey〈
ηD(x′, t′)ηD(x, t)

〉
= 2Dδ(t− t′)~∇x · ~∇x′ c̄(x)δ(x− x′)〈

ην(x
′, t′)ην(x, t)

〉
= νc̄(x)δ(t− t′)δ(x− x′), (5.10)〈

ηβ(t′)ηβ(t)
〉

= βδ(t− t′),

respectively [22, 23, 32, 76]. Here c̄(x) is the steady state mean concentration of

morphogen molecules, which for a one-dimensional system with a single source takes

the form

c̄(x) =
βλ

2D
e−|x|/λ (5.11)

with characteristic lengthscale λ =
√
D/ν.

We then imagine a target cell located at x that is perfectly permeable to the

morphogen and counts the number

m (x, t) =

∫
V

dy c (x+ y, t) (5.12)

of morphogen molecules within its volume V . We use this simpler, perfect instrument

style prescription over explicitly accounting for more realistic mechanisms such as

surface receptor binding because it ultimately yields similar concentration sensing

results up to a factor of order unity [1]. Assuming |x| ≥ 2a for cell radius a enforces

the condition that there is no overlap between the source and target cell and produces

a steady state mean value of

m̄ (x) =
β

ν
sinh

(
a

λ

)
e−|x|/λ. (5.13)
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We once again use our method of Fourier transforming Eq. 5.9 in space and time,

calculating the power spectrum of m(x, t), and taking its low-frequency limit to obtain

δm2
T (x)

m̄2 (x)
=

2

νTm̄(x)

[
1− (2/λ̂) + sinh(2/λ̂)

4 sinh(1/λ̂)e1/λ̂

]
, (5.14)

where λ̂ ≡ λ/a, and again T � ν−1. A detailed derivation of Eqs. 5.11, 5.13, and

5.14 as well as there respective forms in different geometries and number of spatial

dimensions can be seen in Appendix F.

As in Eq. 5.8, we see that the relative error decreases with both the mean number

of molecules m̄ (x) and the quantity νT . However, we also see an additional factor

in brackets, which is always less than one and decreases with λ̂. This factor accounts

for the fact that, unlike in the DT model, molecules can leave a target cell not only

by degradation, but also by diffusion. Therefore, the rate at which molecules are

refreshed is larger than that from degradation alone. As a result, more independent

measurements can made in the time T , and the noise is reduced.

To understand this effect quantitatively, consider a simplified SDC model in which

diffusion is modeled as discrete hopping between adjacent target cells at rate h.

The number of molecules in the jth target cell is Poisson distributed, such that

the instantaneous variance is equal to the mean m̄j. The autocorrelation function in

this model is

Cj(t) = m̄jI0(2h|t|)e−(2h+ν)|t|, (5.15)

where I0 is the zeroth modified Bessel function of the first kind. Thus the correlation

time is

τ =

∫ ∞
0

dt
Cj(t)

Cj(0)
=

1√
ν(4h+ ν)

. (5.16)

We see that the correlation time depends on both degradation (ν) and diffusion (h).

More precisely, we see that for fast diffusion (h � ν), the number of independent

measurements scales like T/τ ∼ T
√
νh and therefore increases with both ν and h.

Correspondingly, in the fast-diffusion limit of Eq. 5.14 (λ̂� 1), the term in brackets

reduces to λ̂−1, and therefore the number of independent measurements scales like
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νT λ̂ = T
√
ν(D/a2). These are identical scalings, with D/a2 playing the role of the

hopping rate h, as expected. A detailed derivation of Eqs. 5.15 and 5.16 can be seen

in Appendix G.

5.3 Comparison of DT and SDC

By comparing Eqs. 5.8 and 5.14, it is possible to determine which model achieves

the lower relative error. We take an example system in which there are N target cells

in a line extending from the source cell, such that the position of the jth target cell in

the SDC model and the length of the jth cytoneme in the DT model is xj = Lj = 2aj.

The production rate β, the integration time T , and the cell radius a are common to

both models and are taken to be equivalent. The degradation rate ν is not taken to be

equivalent because in the SDC model the molecules can degrade anywhere but in the

DT model they can only degrade in the target cells. Instead, we equate the effective

lengthscale of m̄, which we define as λ =
∫∞

0
dx[m̄(x)−m̄(∞)]/[m̄(0)−m̄(∞)]. In the

SDC model this is simply the characteristic lengthscale λ =
√
D/ν. In the DT model,

because m̄j is proportional to Γj, it is λ ≈
∫∞

0
dL [Γ(L) − Γ(∞)]/[Γ(0) − Γ(∞)] =

(e|φ|− 1)[ |φ| − log(e|φ|− 1)]/|κ|, where the approximation applies in the limit of many

cells N � 1.

With these equivalencies set, the ratio of Eq. 5.14 to Eq. 5.8 for the jth target

cell is

ρj =
e2j/λ̂Γ (2aj)

sinh(1/λ̂)
∑N

k=1 Γ (2ak)

[
1− (2/λ̂) + sinh(2/λ̂)

4 sinh(1/λ̂)e1/λ̂

]
. (5.17)

When ρj is less (greater) than 1, the SDC (DT) model achieves lesser error in the jth

target cell. Here Γ depends on φ and κ, but κ depends on φ and λ via the expression

for λ in the DT model above. Therefore, Eq. 5.17 depends only on N , λ̂, and φ.

Whereas N and λ̂ can be estimated for particular experimental systems (as we later

discuss), we know of no experimental estimates for φ. Large φ reduces noise in the

DT model for most values of j, but it also causes m̄j to deviate from an exponential

profile, which is the functional form generally observed for the morphogens considered
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Figure 5.2. Comparing theory and experiment. (A) Ratio ρj of SDC
to DT relative error in central cell vs. profile lengthscale for N = 100
target cells in 1D, 2D, or 3D geometry. (B) Percentage of cells for
which ρj < 1 (1D). (C) λ values for various morphogens estimated
from experiments, colored by whether experiments support a DT
(red), SDC (blue), or multiple mechanisms (white). (D) Data from C
overlaid with theory from B using values of a and N estimated from
experiments.

here. Therefore, we set φ to the largest value for which a linear regression of log(m̄j)

vs. j maintains an R2 value of at least 0.95, which we find to be φ ∼ −0.05.

Fig. 5.2A shows ρj as a function of profile length λ̂ for a cell in the center (j = N/2)

of a line of N = 100 target cells. We see that for short profiles the DT model is more

precise (ρj > 1) whereas for long profiles the SDC model is more precise (ρj < 1).

The reason that the SDC model is more precise for long profiles is that long profiles
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correspond to fast diffusion, which increases the refresh rate and reduces the noise

as discussed above. Conversely, the reason that the DT model is more precise for

short profiles is that the mean molecule number is larger. For φ near 0 such as the

φ ∼ −0.05 values obtained to generate Fig. 5.2, Γ(L) ≈ γ/(1 + L(|φ| − ln(|φ|))/λ).

Since this is a power law of L as opposed to the SDC model’s decaying exponential

given in the form of m̄(x), the DT model’s m̄j will obtain a larger mean for all cells

sufficiently far away from the source. This sufficient distance must scale with λ, thus

allowing the DT model to obtain a higher mean for all cells when λ is small. We also

see in Fig. 5.2A that the behavior of ρj is the same when we consider a 2D target

cell geometry with a line of source cells, or a 3D target-cell geometry with a plane of

source cells.

Fig. 5.2B shows similar information as Fig. 5.2A, but for all target cells j in the

line. Specifically, at each λ̂ value, the color shows the percentage of cells for which

the SDC model is more precise (ρj < 1). We normalize the λ̂ axis by λ̂50, the value

at which this percentage is 50% (equivalent to the value of λ̂ at which ρj = 1 in Fig.

5.2A). As expected, we see that for short profile lengths the DT model is more precise

in the majority of cells, whereas for long profiles the SDC model is more precise in

the majority of cells.

5.4 Comparison to Experimental Systems

We now test our predictions against data for ten of the morphogens presented

in Table 1 of [77] and obtain data from the references therein. In Drosophila, the

morphogen Wingless (Wg) is localized near cell protrusions such as cytonemes [64,65],

and the Hedgehog (Hh) gradient correlates highly in both space and time with the

formation of cytonemes [14], suggesting that these two morphogen profiles are formed

via a DT mechanism. Conversely, Bicoid has been understood as a model example

of SDC for decades [12, 52, 62]. Similarly, Dorsal is spread by diffusion, however its

absorption is localized to a specific region of target cells via a nonuniform degradation
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mechanism, making it more complex than the simple SDC model [78]. Finally, for Dpp

there is evidence for a variety of different gradient formation mechanisms [54,57,59].

For each of these morphogens, we then obtain estimates of λ, a, and N . For

Bicoid, we obtain a value of λ of ∼100µm from the text of [71] with and error of

±10µm from the finding in [12] that cells have a ∼10% error in measuring the Bicoid

gradient. We then take the a value of the Drosophila embryo cells that are subjected

to the Bicoid gradient to be ∼2.8µm based on Fig. 3A of [12]. We use the same

figure to estimate the size of the whole embryo to be ∼500µm or ∼90 cells. This

value of a is also used for Dorsal as measurements of both Bicoid and Dorsal occur in

the Drosophila embryo at nuclear cycle 14. For the value of λ for Dorsal, we use Fig.

3D from [79] to obtain a full width at 60% max of 45±10µm. Since this represents

the width of Gaussian fit on both sides of the source whereas our model uses an

exponential profile, we assume the appropriate λ value for such an exponential fit

would be half this value, 22.5±5µm. Fig. 3A from the same source also shows that

the distance from the ventral midline to the dorsal midline is ∼200µm or ∼35 cells.

For Dpp and Wg, [72] provides explicit measurements of λ for each. These values

are 20.2±5.7µm and 5.8±2.04µm respectively. For Hh, we use Fig. S2C in the

supplementary material of [80] to determine λ to be 8±3µm. Dpp, Wg, and Hh all

occur in the wing disc during the third instar of the Drosophila development. As

such, we use a common value of a for all three. This value is taken to be 1.3µm based

on the area of the cells being reported as 5.5±0.8µm2 in the supplementary material

of [72] and the assumption that the cells are circular. Additionally, the scale bar for

Fig. 1A in [80] shows the maximal distance from the morphogen producing midline

of the wing disc to its edge to be ∼250µm or ∼100 cells.

In zebrafish, the morphogen Fgf8 has been studied at the single molecule level and

found to have molecular dynamics closely matching the Brownian movement expected

in an SDC mechanism [13]. Similarly, Cyclops, Squint, Lefty1, and Lefty2, all of which

are involved in the Nodal/Lefty system, have been shown to spread diffusively and

affect cells distant from their source [57,81]. This would support the SDC mechanism,
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although Cyclops and Squint have been argued to be tightly regulated via a Gierer-

Meinhardt type system, thus diminishing their gradient sizes to values much lower

than what they would be without this regulation [55,81].

The λ value of Fgf8 is reported as being 197±7µm in [13]. Additionally, based off

the scale bars seen in Fig. 2C-E of [13], we estimate the value of a for the cells to

be ∼10µm. For the morphogens involved in the Nodal/Lefty system (cyclops, squint,

lefty1, and lefty2), measurements of λ for each are taken from Fig. 2C-F of [82] by

observing where the average of the three curves crosses the 37% of max threshold with

error bars given by the width of the region in which the vertical error bars of each

plot intersect this threshold line. We assume the a value of each morphogen in the

Nodal/Lefty system to be equivalent to the a value of cells in the Fgf8 measurements

performed in [13]. This is because the measurements made in [82] were taken during

the blastula stage of the zebrafish development while measurements taken in [13] we

taken in the sphere germ ring stage. These stages occur at ∼2.25 and ∼5.67 hpf

respectively, but the blastula stage can last until ∼6 hpf based on the timeline of

zebrafish development presented in [83]. As such, since there is potential overlap in

the time frame of these two stages, we assume the cells maintain a relatively fixed

size and thus that the value of a for the Nodal/Lefty system can be taken as the same

value of a used for Fgf8. Additionally, as seen in Figs. 8F and 11B in [83], these two

stages also share a rougly equal overall diameter of the embryo of ∼500µm at the

largest point. This creates a circumference of ∼1600µm or ∼80 cells, which in turn

means the morphogen must travel a maximum distance of ∼40 cells away from the

source.

For all of these morphogens, we estimate the profile lengthscales λ from the

experimental data described above [12, 13, 71, 72, 79, 80, 82]. Fig. 5.2C shows these

λ values and indicates for each morphogen whether the evidence described above

suggests a DT mechanism (red), an SDC mechanism (blue), or multiple mechanisms

including DT and SDC (white). We see that in general, the three cases correspond
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to short, long, and intermediate profile lengths, respectively, which is qualitatively

consistent with our predictions.

To make the comparison quantitative, we estimate the values of cell radius a and

cell number N from the experimental data also as described above [12,13,72,79,83], in

order to calculate ρj from our theory in each case. Estimated values of each of these

parameters along with derived values of φ are given in Table 5.1. Fig. 5.2D shows

the percentage of cells for which we predict that the SDC model is more precise as

a function of λ̂, along with the values of λ̂ from the experiments (both normalized

by λ̂50 from the theory). We see that in almost all cases, morphogens for which

the evidence suggests either a DT or an SDC mechanism (red or blue) fall into the

regime in which we predict that mechanism to be more precise for most of the cells,

and the morphogens with multiple mechanisms (white) fall in between. This result

provides quantitative support for the idea that morphogen profiles form according to

the mechanism that maximizes the sensory precision of the target cells.

We have shown that in the steady-state regime, the DT and SDC models of

morphogen profile formation yield different scalings of readout precision with the

length of the profile and population size. As a result, there exist regimes in this

parameter space in which either mechanism is more precise. While the DT model

experiences no additional noise or premature degradation from the transport process,

the ability of molecules to diffuse into and away from a target cell in the SDC model

allows the cell to measure a greater number of effectively unique molecules in the same

time frame. By examining how these phenomena affect the cells’ sensory precision,

we predicted that morphogen profiles with shorter lengths should utilize cytonemes

or some other form of direct transport mechanism, whereas morphogens with longer

profiles should rely on extracellular diffusion, a prediction that is in quantitative

agreement with measurements on known morphogens.

Of important note is the fact that this work has not taken into account the

effects of profile steepness, which is known to influence the accuracy of positional

information obtained via a morphogen gradient [12]. It remains to be seen how the
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Table 5.1.
Experimentally determined values of λ, a, and N for a variety
of morphogens from Drosophila and Zebrafish. Values of φ are
determined from maintaining a roughly exponential profile in the DT
model.

Morphogen Organism λ (µm) a (µm) N φ

Bicoid Drosophila 100±10 2.8 90 -0.0906

Fgf8 Zebrafish 197±7 10 40 -0.0761

Lefty2 Zebrafish 150±25 10 40 -0.0814

Lefty1 Zebrafish 115±20 10 40 -0.0794

Dpp Drosophila 20.2±5.7 1.3 100 -0.0671

Dorsal Drosophila 22.5±5 2.8 35 -0.0708

Squint Zebrafish 65±10 10 40 -0.0597

Cyclops Zebrafish 30±5 10 40 -0.0295

Hh Drosophila 8±3 1.3 100 -0.0290

Wg Drosophila 5.8±2.04 1.3 100 -0.0205
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results obtained here are affected by the consideration of profile steepness. We leave

such an investigation to future studies. Nevertheless, it will be interesting to observe

whether the trends seen here are further strengthened as more experimental evidence

is obtained for different morphogens, as well as to expand the theory of morphogen

gradient sensing to further biological contexts.
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6. ROLE OF SPATIAL AVERAGING IN

MULTICELLULAR GRADIENT SENSING

This work has been published in Physical Biology [84]

Determining the strength and direction of a chemical concentration gradient is an

essential task for a diverse array of biological processes. Gradient sensing underlies the

polarization of single cells, the orientation and migration of cells and cell collectives,

and the changes in tissue morphology that occur during embryogenesis and the

subsequent development of an organism [3, 19, 28, 85–93]. Experiments have shown

that cells are remarkably precise gradient sensors [3,28], and a large amount of effort

has gone into understanding the mechanisms of, and the limits to, biological gradient

sensing [1, 10,11,16,85,94–97].

At its core, gradient sensing requires the comparison of concentration measurements

between the “front” and the “back” of a detector. Detectors that are longer in

the gradient direction have a higher gradient sensing precision due to the front and

back being more separated and causing the concentration measurements to be more

different [10, 11, 94, 96]. However, this argument neglects the fact that information

must be communicated between different parts of a detector, especially if the detector

is multicellular. Limits to the precision of gradient sensing including communication

have been studied and it has been found that for a one-dimensional (1-D) detector,

the precision indeed increases with detector length, but then saturates due to the

fact that communication introduces its own noise [3,16]. Yet biological detectors are

not 1-D in general. Two-dimensional (2-D) detectors include the quasi-cylindrical

arrangement of cell nuclei during the early stages of Drosophila development [12]

and the planar arrangement of epithelial cell layers [90]. Three-dimensional (3-D)

detectors include single cells and the multicellular tips of growing epithelial ducts [98],
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as well as border cells exhibiting collective guidance in Drosophila [88]. This raises

the question of what effect the dimensions transverse to the gradient direction have

on the precision of gradient sensing.

Intuition about this question can be drawn from the similar task of sensing the

value of a concentration (as opposed to sensing its difference between two points in

space, i. e., the gradient). If the concentration profile is uniform in space, then the

precision of concentration sensing benefits from increasing the detector length in any

direction. The reason is that communication with other parts of the detector, or

spatial averaging, does not change the mean of a particular measurement within the

detector, but it does reduce the noise [1, 10, 96]. Even if the concentration profile

is graded, but the goal is still concentration (rather than gradient) sensing, as in

stripe formation in early Drosophila development, the precision still benefits from

spatial averaging [15]. These considerations, drawn from the problem of concentration

sensing, suggest that the precision of gradient sensing should also increase with the

length of a detector in a direction transverse to the gradient.

Here we investigate theoretically and computationally the precision of gradient

sensing for 2-D and 3-D multicellular detectors. We start with one of the simplest

models of gradient sensing, the local excitation–global inhibition (LEGI) model [95,

97]. This is an accepted basic model when gradient sensing is adaptive (that is,

background concentration largely does not effect the gradient sensing). Surprisingly,

in contrast to the case of concentration sensing, we find that the precision of gradient

sensing decreases with the length of the detector in a direction transverse to the

gradient direction. The reason is that gradient sensing fundamentally relies on a

subtraction of concentration measurements, e.g. between the front and back of the

detector. While spatial averaging reduces the intrinsic noise in these measurements,

which increases precision, it also reduces the covariance between the measurements,

which decreases precision. We demonstrate that the latter effect dominates, such

that the net result is a decrease in precision with transverse detector size. Then we

show that this decrease can actually be overcome by a gradient-sensing strategy that
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was recently introduced, termed regional excitation–global inhibition (REGI) [16].

We demonstrate that REGI retains a high covariance between measurements and

restores the benefit of transverse averaging. Using a REGI-based model, we compute

the optimal 2-D and 3-D detector shapes, which arise from an interplay of the effects of

transverse averaging on both the signal and the noise of gradient detection. We argue

that these shapes are consistent with the shapes of the multicellular tips of epithelial

ducts, suggesting that this and other similarly shaped gradient-sensing systems benefit

from spatial averaging in all dimensions.

6.1 LEGI Concentration Sensing

We consider the local excitation–global inhibition (LEGI) model of multicellular

gradient sensing, which is a minimal, adaptive, spatially extended model of gradient

sensing [3, 16]. We consider a signal concentration profile c that varies linearly in

a particular direction in 3-D space, with concentration gradient g (Fig. 6.1A, C).

In the nth cell, both a local molecular species X and a global molecular species Y

are produced at a rate β and degraded at a rate µ. The production rate is also

proportional to the number of signal molecules in the cell’s vicinity cna
3, where a is

the cell diameter. As such, X and Y follow similar dynamics to those seen for m in

Section 4.2.

Whereas the local species X is confined to each cell, the global species Y is

exchanged between neighboring cells at a rate γy (Fig. 6.1C; note that although

all cells are producing X and Y molecules, we show as examples in Fig. 6.1A and

C only those molecules originating from the rightmost, middle cell). Conceptually,

X measures the local concentration of signal molecules, while Y represents their
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spatially-averaged concentration. As in [3,16] we consider the linear response regime,

in which the dynamics of the local and global species satisfy the stochastic equations

dxn
dt

= β(cna
3)− µxn + ηn, (6.1)

dyn
dt

= β(cna
3)− µyn + γy

∑
n′∈Nn

(yn′ − yn) + ξn

= β(cna
3)− µ

∑
n′

My
nn′yn′ + ξn. (6.2)

Here

My
nn′ = (1 + |Nn|γy/µ)δnn′ − (γy/µ)δn′∈Nn (6.3)

is the connectivity matrix for the global species that accounts for degradation and

molecule exchange. Nn and |Nn| denote the indices and the number of nearest

neighbors of cell n, respectively. The intrinsic noise terms ηn and ξn correspond

to the Poissonian production, degradation, and exchange reactions [3]. The signal

cn also fluctuates, which introduces extrinsic noise. As described below, in this

work we assume that these fluctuations are slow compared to the downstream signal

processing, which is equivalent to assuming either slow diffusion of signaling molecules

or instantaneous downstream processing, and leads to Poisson-distributed signal molecule

counts [3].

In the LEGI paradigm, X excites a downstream species while Y inhibits it. If

the cell is at the higher edge of the gradient, then the local concentration (X) is

higher than the spatial average (Y), and the excitation exceeds the inhibition. While

such comparison of the excitation and the inhibition can be done by many different

molecular mechanisms [97], we consider here the limit of shallow gradients, where the

comparison is equivalent to subtracting Y from X [3]. This difference, ∆n = xn − yn,

is the readout of the model. If ∆n is positive, the nth cell is further up the gradient

than average; if ∆n is negative, the nth cell is further down the gradient than average.

In this work, we always focus on the readout ∆N of the cell highest up the gradient,

which we denote as the Nth cell.
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Figure 6.1. Spatial averaging transverse to a gradient improves
concentration sensing, but worsens gradient sensing. (A) A 2-D array
of cells is exposed to a concentration profile C that varies linearly in
the horizontal direction (green wedge). In each cell, Y molecules are
produced in proportion to the local C value. Y molecules are also
exchanged between neighboring cells, providing the spatial averaging.
Thus Y is the readout for the average concentration in the vicinity of
a particular cell. Blue indicates the mean number of Y molecules ȳ in
each cell that have originated from the rightmost, middle cell. (B) The
signal-to-noise ratio (SNR) for y increases with the number M of rows
of cells added transverse to the gradient direction. (C) As in A, but
with an additional internal species X. The molecules are also produced
in proportion to the local C value, but they are not exchanged between
cells. Red indicates the mean number of X molecules x̄ in each cell
that have originated from the rightmost, middle cell. The difference
∆ = x − y provides the readout for the gradient (LEGI). (D) In
contrast to B, the SNR for ∆ decreases with the number of transverse
rows M . In B and D, the numerical results are compared with
the theoretical approximations (see Eqs. 6.21 and 6.24, respectively)
and agree at small M as expected. Parameters are similar to the
experiments in [3]: c̄N = 1.25 nM, g = 0.5 nM/mm, a = 10 µm,
ny =

√
γy/µ = 4, N = 50 cells per row, and G = β/µ = 10. In B and

D the numerical value of ȳN is used in the approximations.
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Unlike in previous chapters, we assume that the cells do not average concentrations

of the signal C and the messenger molecules X and Y over time (though generalizations

with averaging are certainly possible [16]). Then the precision of gradient sensing is

given by the square root of the instantaneous signal-to-noise ratio (SNR) for the

readout, SNR∆ = (∆̄N/δ∆N)2, where the mean and variance are given by [3]

∆̄N = x̄N − ȳN , (6.4)

x̄N = Ga3c̄N , (6.5)

ȳN = Ga3
∑
n

Ky
nc̄N−n, (6.6)

and

δ∆2
N = (σxN)2 + (σyN)2 − 2cov(xN , yN), (6.7)

δx2
N = x̄N +G2a3c̄N , (6.8)

δy2
N = ȳN +G2a3

∑
n

(Ky
n)2c̄N−n, (6.9)

cov(xN , yN) = G2a3Ky
0 c̄N , (6.10)

respectively. Here

Ky
n = (My)−1

N,N−n (6.11)

is the communication kernel, and G = β/µ is the gain. The first terms in Eqs. 6.8

and 6.9 correspond to intrinsic noise, while the second terms correspond to extrinsic

noise and assume that the diffusion of the signal is slow [3]. Computing the precision

for a given configuration of cells only requires inverting the connectivity matrix My.

In the recently introduced regional excitation–global inhibition (REGI) model [16],

the local species X is also exchanged among cells, but at a lower rate γx < γy. Then

Eq. 6.1 becomes analogous to Eq. 6.2, and Eqs. 6.5, 6.8, and 6.10 are replaced by

x̄N = Ga3
∑
n

Kx
n c̄N−n, (6.12)

δx2
N = x̄N +G2a3

∑
n

(Kx
n)2c̄N−n, (6.13)

cov(xN , yN) = G2a3
∑
n

Kx
nK

y
nc̄N−n, (6.14)
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respectively, where

Kx
n ≡ (Mx)−1

N,N−n (6.15)

is the communication kernel for the local species, and

Mx
nn′ ≡ (1 + |Nn|γx/µ)δnn′ − (γx/µ)δn′∈Nn . (6.16)

Once more, computing the precision for a given configuration of cells in the REGI

model only requires inverting the connectivity matrices Mx and My. While diffusion

of X decreases x̄N at the Nth cell, and hence decreases the difference ∆̄N , it also

averages X over a larger volume, hence decreasing its noise. As shown in Ref. [16],

under a broad range of conditions, the decrease in the noise dominates, and the overall

precision of the REGI model is higher than that of LEGI.

Before investigating gradient sensing, we focus on the simpler problem of concentration

sensing. In the local excitation–global inhibition (LEGI) model, both X and Y provide

readouts of the local concentration, while their difference ∆ provides a readout of the

gradient. The concentration readout provided by Y is spatially averaged, whereas

the concentration readout provided by X is not. Even if the signal profile is graded,

X and Y are concentration readouts if viewed independently (with different spatial

averaging), not gradient readouts. For example, during Drosophila development, the

morphogen profiles are graded, but individual nuclei in the embryo measure (and

threshold) the local concentration, possibly with some spatial averaging [12, 15, 99,

100].

How does the precision of concentration sensing depend on transverse detector

size? To answer this question, we focus on the spatially averaged concentration

readout Y. We consider a linear signal profile with gradient g and compute the

SNR of Y in the Nth cell, as we vary the number M of rows of cells in a direction

transverse to the gradient (Fig. 6.1A). We see in Fig. 6.1B (circles) that the precision

of concentration sensing increases with M . The reason is that adding rows of cells

transverse to the gradient allows for Y molecules to be exchanged between rows

(in addition to along each row). This does not change the mean ȳN due to the
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translational symmetry in the transverse direction. However, it does reduce the

variance, since the global species Y is now averaged over more cells. The net effect is

an increase in the SNR beyond what is allowed by longitudinal averaging.

We can elucidate the effect of spatial averaging more quantitatively by appealing

to the expression for the variance in Y (Eq. 6.9). In a single row of cells, and in the

limit of many cells (N � 1) and fast communication (γy � µ), the kernel reduces to

Ky
n ≈

e−n/ny

ny
, (6.17)

where ny =
√
γy/µ sets the effective length scale of communication [3]. Approximating

the sum in Eq. 6.9 as an integral that extends to infinity (since N is large) obtains

(δy
(1)
N )2 ≈ ȳN +

G2a3c̄N−ny/2

2ny
(6.18)

for a single row. In the case of M rows, Y is averaged with the communication

kernel Ky over M cells transverse to the gradient. This will not affect the intrinsic

component of the variance (since the mean is unchanged), but the extrinsic component

will be reduced according to

(δy
(M)
N )2

ext =

M/2∑
m=−M/2

(Ky
m)2(σ

(1)
yN)2

ext. (6.19)

We again make the exponential kernel approximation, this time normalizing over the

finite domain of size M , giving

Ky
m ≈

e−|m|/ny∑M/2
m′=−M/2 e

−|m′|/ny
. (6.20)

Finally, again approximating the sums as integrals, we obtain

δy2
N ≈ ȳN +

G2a3c̄N−ny/2

2ny

ny(1− e−M/ny)

[2ny(1− e−M/(2ny))]2
. (6.21)

In deriving this approximation, we have neglected effects that the transverse edges

have on the exponential shape of the kernel, as well as correlations between exchange

reactions parallel and perpendicular to the gradient. Nonetheless, the SNR calculated
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using this approximation is compared with the numerical result in Fig. 6.1B, and we

see that the agreement is excellent. In the limit M � ny, Eq. 6.21 simplifies to

δy2
N ≈ ȳN +

G2a3c̄N−ny/2

2nyM
. (6.22)

We see that for a small number of rows, the averaging over rows is nearly uniform,

and the extrinsic component of the variance is reduced by a factor of M , as expected.

6.2 LEGI Gradient Sensing

We now turn our attention to gradient sensing. How does the precision of gradient

sensing depend on transverse detector size? To answer this question for a linear signal

profile, we compute the SNR of the gradient readout ∆N as a function of the number

M of rows of cells in a direction transverse to the gradient (Fig. 6.1C). We see in

Fig. 6.1D that the precision of gradient sensing decreases with M (circles). This is

in contrast to the precision of concentration sensing, which increases with M (Fig.

6.1B).

To understand why the precision of gradient sensing decreases with M , we once

again consider the mean and the variance of the readout. The mean ∆̄N = x̄N − ȳN
does not change with M because neither x̄N nor ȳN changes with M . However, the

variance δ∆2
N = δx2

N + δy2
N − 2cov(xN , yN) changes with M due to two effects. First,

the variance in the global species δy2
N decreases with M due to spatial averaging, as

discussed in the previous section. Second, the covariance cov(xN , yN) also decreases

with M because Y is exchanged with a larger number of cells, whereas X is not

exchanged, so the two covary more weakly. The effects have opposite signs. To

understand which effect dominates, we again appeal to analytic approximation. For

a single row of cells, under the exponential kernel approximation, the covariance in

Eq. 6.10 reduces to cov(1)(xN , yN) ≈ G2a3c̄N/ny. For M rows of cells, since only Y is

exchanged, the covariance is reduced according to

cov(M)(xN , yN) = Ky
m=0cov(1)(xN , yN). (6.23)
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Making the same approximation as above for Ky
m of an exponential in a finite domain,

we obtain

δ∆2
N ≈ δx2

N + ȳN +
G2a3c̄N−ny/2

2ny

ny(1− e−M/ny)

[2ny(1− e−M/(2ny))]2

−2G2a3 c̄N
ny

1

2ny(1− e−M/(2ny))
. (6.24)

The SNR calculated using this approximation is compared with the numerical result

in Fig. 6.1D, and we see good agreement. In the limit M � ny, Eq. 6.24 simplifies to

δ∆2
M ≈ δx2

N + ȳN +
G2a3c̄N−ny/2

2nyM
− 2

G2a3c̄N
nyM

(6.25)

= δx2
N + ȳN −

G2a3[4c̄N − c̄N−ny/2]

2nyM
. (6.26)

Eq. 6.25 shows that in this limit of near-uniform averaging, both (i) the extrinsic

component of the variance in Y and (ii) the covariance are reduced by a factor of M ,

as expected. Furthermore, because the Nth cell is at the highest concentration, we

have c̄N > c̄N−ny/2, and we see that Eq. 6.26 is an increasing function of M . Thus,

this limit elucidates the fact that the decrease of the covariance dominates over the

decrease of the variance in Y, causing the variance of ∆N to increase with M for all

parameter values. Because the mean ∆̄N does not change with M , we conclude that

the precision of gradient sensing decreases with transverse detector size.

6.3 REGI Gradient Sensing

In the previous section we saw that the precision of gradient sensing using the

LEGI model (local messenger X is not exchanged among the cells) decreases with

the size of a detector in a direction transverse to the gradient, due to the fact that

the covariance between the subtracted variables decreases with the transverse size.

For the REGI model, exchange of the X molecules has an additional effect beyond

increasing the sensing precision for 1-D line of cells [16]: it increases the covariance

of X and Y, compared to the LEGI mechanism. Indeed, now both X and Y are

downstream signals from some of the same external ligand molecules. Since the
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decrease of gradient sensing precision with transverse detector size is due to the loss

of covariance (Fig. 6.1D), this raises the question of whether the REGI strategy can

overcome this effect and allow gradient sensing precision to benefit from transverse

averaging.

To answer this question, we once again consider a linear signal profile, and we

compute the SNR of the gradient readout ∆N under the REGI model as a function

of the number M of rows of cells in a direction transverse to the gradient (Fig. 6.2A).

We see in Fig. 6.2B that for a sufficiently large value of nx ≡
√
γx/µ, which sets the

lengthscale of spatial averaging for the local species, the precision of gradient sensing

increases with M . This is in contrast to the case of LEGI, for which the precision

decreases with M (Fig. 6.1D and black circles in Fig. 6.2B). Therefore, the recovery

of covariance between X and Y in the REGI mechanism avoids the loss of gradient

sensing precision and restores the benefit of transverse averaging.

To understand this effect quantitatively, we turn once more to analytic approximation.

The variance in X (Eq. 6.13) and Y (Eq. 6.9) for M rows of cells will be approximated

by expressions of the form of Eq. 6.21. The covariance (Eq. 6.14) for a single row of

cells under the exponential kernel approximation for both X and Y is cov(1)(xN , yN) ≈

G2a3c̄N−n̄/(nx + ny), where n̄ ≡ nxny/(nx + ny). For M rows of cells the covariance

is therefore

cov(M)(xN , yN) =

M/2∑
m=−M/2

Kx
mK

y
mcov(1)(xN , yN). (6.27)

Again approximating Kx
m and Ky

m as exponentials in a finite domain, we obtain

δ∆2
N ≈ x̄N +

G2a3c̄N−nx/2
2nx

nx(1− e−M/nx)

[2nx(1− e−M/(2nx))]2

+ȳN +
G2a3c̄N−ny/2

2ny

ny(1− e−M/ny)

[2ny(1− e−M/(2ny))]2

−2
G2a3c̄N−n̄
nx + ny

n̄(1− e−M/(2n̄))

2nx(1− e−M/(2nx))ny(1− e−M/(2ny))
. (6.28)
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This approximation has assumed {nx, ny} � 1, and we find that for ny = 4 the SNR

calculated using this approximation agrees very well with the numerical result for

nx ≥ 1; see Fig. 6.2B. In the limit M � nx, Eq. 6.28 simplifies to

δ∆2
N ≈ x̄N +

G2a3c̄N−nx/2
2nxM

+ ȳN +
G2a3c̄N−ny/2

2nyM
− 2

G2a3c̄N−n̄
(nx + ny)M

, (6.29)

in which the extrinsic components of the variances and the covariance are reduced

by M , as expected. If we further assume that the gradient is shallow compared to

the background concentration (ag � c̄N), we may approximate c̄N−nx/2 ≈ c̄N−ny/2 ≈

c̄N−n̄ ≈ c̄N , yielding

δ∆2
N ≈ x̄N + ȳN +

G2a3c̄N
nyM

[
1

2ρ
+

1

2
− 2

ρ+ 1

]
, (6.30)

where ρ ≡ nx/ny. The expression in brackets in Eq. 6.30 is positive for all 0 < ρ <

1, which demonstrates analytically that in this limit the variance in the readout

decreases with M , and therefore that the REGI strategy restores the benefit of

transverse averaging.

We also see in Fig. 6.2B that a maximal precision emerges in the REGI model as

a function of M at a particular number of rows M∗. This maximum is due to the

fact that the exchange of X, which causes an increase in precision with M , and the

exchange of Y , which causes a decrease in precision with M , occur on different length

scales, nx < ny. Indeed, we see that as nx increases, the location of the maximum

M∗ increases concomitantly. Additionally, we see that the maximal precision value

first increases with nx, then decreases with nx, leading to an optimal value n∗x. This

is due to the previously understood tradeoff that is introduced when nx increases: on

the one hand the variance of X is reduced, which increases precision; on the other

hand, the means of X and Y are more similar, which decreases the precision [16].

Here this tradeoff is modified by the additional benefit of increasing nx, namely that

it increases the covariance of X and Y in the transverse direction, and thus further

reduces the noise in gradient sensing.
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Figure 6.2. The regional excitation–global inhibition (REGI) strategy
allows cells to exploit transverse spatial averaging for gradient sensing.
(A) As in Fig. 6.1C, but for REGI. X molecules are exchanged between
neighboring cells, at a lower rate than Y molecules. The difference
∆ = x− y still provides the readout for the gradient. (B) In contrast
to Fig. 6.1D, for sufficiently large communication length nx the SNR
increases with the number of transverse rows M , before ultimately
decreasing, which leads to an optimum as a function of M . Since
nx = 0 (LEGI) and nx = ny = 4 (no sensing) are suboptimal, a global
optimum emerges over both M and nx. Parameters are as in Fig. 6.1,
with nx = 1 in A, which is near its optimal value as seen in B. In B
the numerical value of ȳN is used in the approximations.
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6.4 Optimal Shape of Multicellular Gradient Sensor

The emergence of an optimal number of transverse rows of cells, seen in the

previous section, raises the more general question of whether there is an optimal

detector shape for spatially extended gradient sensing. This question has relevance for

both 2-D and 3-D multicellular geometries involved in gradient sensing. Is the optimal

detector shape more “hairlike”, to maximize its extent in the gradient direction,

or more “globular”, to exploit potential benefits of extending along the transverse

direction?

To address this question, we perform a controlled optimization for both 2-D and

3-D multicellular geometries. For a fixed number of cells N = 50, we confine cells to

an elliptical (2-D) or ellipsoidal (3-D) envelope, and compute the precision of gradient

sensing as a function of the ellipse axis parameters (LEGI), as well as the ratio of

averaging length scales nx/ny (REGI), exhaustively exploring substantial ranges of

both. In addition to the extra shape parameter, there is one more important difference

between the 2-D and 3-D cases: in the 2-D case, we assume that every cell detects

signal molecules, since we imagine that these molecules diffuse in the 3-D bulk, while

the cells form a sensory sheet exposed to the bulk. In contrast, in the 3-D case,

we assume that only the surface cells detect signal molecules, whereas cells that are

blocked on all six sides by neighboring cells are “shielded” and thus do not detect

signal molecules (although all cells still communicate via molecule exchange). The

optimal detector shapes determined by such exhaustive search for the REGI model

are shown in Fig. 6.3A, for 2-D (top) and 3-D (bottom).

To explain why these optimal shapes emerge, we present the precision of gradient

sensing as a function of the control parameters. First we investigate the behavior

of the LEGI model in 2-D (Fig. 6.3B). The control parameter is Ng, the (projected)

number of cells in the gradient direction, which is set uniquely in 2-D by the ratio of

the ellipse axis parameters. Small Ng → 1 corresponds to a chain of cells transverse

to the gradient, while large Ng → N corresponds to a chain of cells parallel to the
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Ng = 6

Ng = 18

Figure 6.3. Optimal gradient sensing by 2-D and 3-D detectors.
(A) Optimal elliptical (2-D, top) or ellipsoidal (3-D, bottom)
configurations of N = 50 cells for the REGI model. The number
of cells in the gradient direction for each shape is Ng = 18 (top) and
Ng = 6 (bottom). Cells are depicted as spheres, even though in the
3-D configuration (bottom) only the outermost cells sense the signal;
the rest are shielded. Gradient sensing precision is optimized at the
rightmost cell, and the signal profile increases linearly to the right. We
see that the optimal shapes are “globular”, not “hairlike”, especially
in 3-D. (B) Precision vs. Ng (the projected number of cells in the
gradient direction) for the LEGI model in 2-D, for various gains G.
Inset: mean readout ∆̄ normalized by G (all three curves overlap and
are colored black). (C) As in B, but for REGI. The additional REGI
parameter nx is optimized over at each Ng value, and the optimal
precision is shown. At the observed optima in C, these values are
n∗x/ny = 0.09 (G = 1), 0.30 (G = 10), and 0.53 (G = 100). (D)
As in B but for 3-D. Internal cells are shielded and do not sense,
but do communicate. Ellipsoid axes transverse to gradient are equal.
Optimal n∗x = 0 for all Ng. Curve jaggedness arises due to numerical
effects of fitting a cubic lattice of cells in a smooth ellipsoidal envelope.
Black vertical dashed lines correspond to a perfect circle (B, C) or
sphere (D). Parameters are as in Fig. 6.1.
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gradient. The small “stair steps” in the curves are due to the numerical task of fitting

the discrete multicellular square lattice within the continuous elliptical envelope. We

see that the precision vanishes at Ng = 1, as expected, since in our model a single cell

cannot perform gradient detection. The precision is near maximal at Ng = N . This

trend is analogous to that seen for LEGI in Fig. 6.1D, where here N/Ng ∼ M is the

analog of the number of transverse rows. However, unlike in Fig. 6.1D, we see in Fig.

6.3B that there is a weak optimum at an intermediate value of Ng. This is due to

a difference between the protocols of adding rows of cells (Fig. 6.1D) and reshaping

a fixed number of cells (Fig. 6.3B). Adding rows does not change ∆̄N . In contrast,

as seen in the inset of Fig. 6.3B, reshaping changes ∆̄N . The reason is that elliptical

configurations (like Fig. 6.3A, top) are not translationally symmetric in the transverse

direction. In particular, a large density of cells in the middle of the configuration is a

sink for molecules of Y. This decreases the mean number of Y in the rightmost cell,

ȳN , which weakly increases the signal ∆̄N = x̄N − ȳN at intermediate values of Ng

(Fig. 6.3B inset), and therefore increases the precision (Fig. 6.3B). Finally, we see that

the precision increases with the gain G, as expected, and that the increase saturates

with G, since then the variance of X and Y is dominated entirely by extrinsic, and

not intrinsic, noise.

Next we investigate the behavior of REGI in 2-D (Fig. 6.3C). Once again the

control parameter is Ng. Additionally, at every Ng we optimize the local species’

averaging length scale nx (generally we find an optimal value between ∼ 0.1ny and

∼ 0.5ny, see Fig. 6.3). We see in Fig. 6.3C that the trend of precision versus Ng is

similar to that of the LEGI model (Fig. 6.3C), but with two key differences. First, the

precision is higher for REGI than for LEGI. This is due to regional averaging reducing

the variance of the local species, as was known previously for the 1-D model [16].

Second, the optimum in the precision as a function of Ng is more pronounced for REGI

than for LEGI. This is because the region surrounding the optimum corresponds to

near-circular ellipses, where considerable transverse averaging occurs. As shown in the

previous section, transverse averaging increases precision in the REGI model. Overall,



60

the optimal structure (Fig. 6.3A, top) is closer to a “globular” circle than to “hairlike”

chain (compare locations of the optima to the dashed vertical line in Fig. 6.3C, which

corresponds to a perfect circle). Therefore, we see that optimal gradient sensing by a

2-D structure benefits from an elliptical shape in which transverse averaging occurs.

Finally, we investigate the behavior of REGI in 3-D (Fig. 6.3D). Here there are

two control parameters: the number of cells in the gradient direction Ng, and the

asymmetry of the ellipsoid in the two directions transverse to the gradient. Generally

we find that the optimal shape at a fixed Ng displays symmetry in the two transverse

directions, and therefore we impose this symmetry explicitly and focus on the control

parameter Ng. As before, at every Ng we optimize the local species’ averaging length

scale nx. Importantly, in the 3-D geometry, we find that the optimal value at every

Ng is n∗x = 0, corresponding to no averaging of the local species (an effective LEGI

model). This is due to the shielding of internal cells: since internal cells do not detect

signal molecules, averaging of the local species would dramatically reduce the mean

local readout, making it far less than the actual local signal value at the edge cell.

This would severely reduce the mean ∆̄N , and thus the precision. The dependence

of precision on Ng is shown in Fig. 6.3D. The additional jaggedness is again due

to the incommensurate nature of the cubic cell lattice with the smooth ellipsoidal

envelope, here amplified due to the additional dimension. We see in Fig. 6.3D that

there is again an optimum. In fact, it is much more pronounced than in 2-D: the

overall value of the precision is ten-fold higher than in 2-D. This is again due to the

shielding of internal cells: the global species Y is averaged among internal cells that

do not produce it, which sharply decreases ȳN , and thereby increases ∆̄N and thus

the precision. Note that this particular effect of shielding will result in the value of

∆̄N being positive in every edge cell, instead of only the edge cells at the high end

of the gradient. The sensory outcomes are still biased, but are less adaptive, similar

to “tug-of-war” chemotaxis mechanisms that have been proposed [101]. Overall, the

optimal structure is very “globular” (Fig. 6.3A, bottom). Indeed, it is almost a sphere

(compare the optima to the dashed vertical line in Fig. 6.3D). We conclude that, due
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to the combined effects of spatial averaging and shielding, the optimal 3-D detector

of linear gradients extends significantly in all three spatial dimensions.

6.5 Discussion

We have investigated theoretically and computationally the ways in which the

precision of spatially extended, multi-component gradient sensing is affected by detector

geometry. Using a minimal model of adaptive gradient sensing (LEGI), we have found

that, unlike for concentration sensing, the precision of gradient sensing decreases with

the size of the detector in a direction transverse to the gradient. This is due to

the competing effects of noise reduction and a reduction of the covariance between

concentrations subtracted to estimate the gradient. We have demonstrated that a

simple modification of LEGI (REGI) restores the covariance and recovers the benefit

of transverse averaging for gradient sensing. The result is that the optimal detectors

in 2-D and 3-D are more globular than hairlike.

Our study elucidates the important roles of spatial averaging in gradient sensing,

which are several-fold. First, there is spatial averaging along the gradient. In both

LEGI and REGI, the global species Y is averaged along the gradient. For a linear

signal profile, this averaging both increases the signal ∆̄2, and decreases the noise δ∆2.

Therefore, it is optimal for Y to be averaged along the gradient to as large an extent

as possible. Second, in the REGI model, the local species X is also averaged along

the gradient. This decreases the signal but also decreases the noise [16]. Therefore,

there is often an optimal ratio nx/ny of the spatial extents of the averaging. Third,

there is spatial averaging transverse to the gradient. In the LEGI model, only Y is

averaged transverse to the gradient. In a translationally symmetric geometry, this

does not change the signal, but it changes the noise by both decreasing the variance

of Y and decreasing the covariance between X and Y. These have opposite effects on

the precision. For LEGI, the latter dominates, decreasing the precision. Therefore,

transverse averaging is detrimental for gradient sensing. However, in the REGI
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model, X is also averaged transverse to the gradient. Once again, in a translationally

symmetric geometry, this does not change the signal with respect to REGI in 1-D, but

it decreases the noise, both by further reducing the variance in X and by restoring

a larger covariance between X and Y. Therefore, transverse averaging is beneficial

for REGI-type gradient sensing. These roles of spatial averaging are modified in

geometries without translational symmetry as we discussed above. However, the net

result remains the same: the optimal 2-D and 3-D REGI-type gradient detectors are

globular, benefitting from extensive spatial averaging in the transverse directions.

How do our results compare to experimental systems? A well-studied example of a

natural gradient-sensing system is the growth factor-directed extension of mammary

epithelial ducts [93, 98]. Gradient sensing in this system has been shown to be

multicellular and adaptive [3]. In vivo, the extension is led by an “end bud” of

cells at the duct tip. These tips can form either long hairlike structures or coalesce

into nearly spherical globules, as was observed in organotypic studies with different

chemical and genetic perturbations [3]. Long hairs could act as “feelers” for the duct,

sampling a long swath of the environment in the gradient direction. However, our

analysis predicts that such hairlike morphologies are suboptimal, and the globular

bud shape, as in Fig. 6.3A, would produce a better precision. In agreement with

the prediction, the end buds in wildtype mice are nearly spherical, and the globule

is often wider than the duct itself [93]. Similarly, neither chemotaxing amoeba [102]

and neutrophils [85], nor growing neurons [28] form very thin hairlike protrusions to

facilitate sensing. Instead they keep the aspect ratio of the gradient sensing part of

the protrusions closer to one, again supporting our findings. Further, in Drosophila

border cell migration, another example of directional collective cell behavior, groups

of cells travel as a sphere in a confined space, where it would have been easier to

travel as a chain [88]. All of these examples provide indirect evidence that transverse

averaging is used in multiple biological contexts.
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7. EMERGENT VS. INDIVIDUAL-BASED

MULTICELLULAR CHEMOTAXIS

This work has been published in Physical Review Letters [76]

Collective migration is ubiquitous in cell biology, occurring in organism development

[88,103–105], tissue morphogenesis [3] and metastatic invasion [89,106–108]. Collective

migration often occurs in response to chemical cues in the environment, a process

known as chemotaxis. The simplest way for cells to collectively chemotax is by

individual detection and response to the chemical attractant: each cell measures

the spatial difference in chemoattractant across its body and moves in the perceived

direction of the gradient, while short-range coupling keeps the group together. Groups

performing this type of individual-based chemotaxis (IC) are found not only in cell

biology [17] but also in ecological systems such as bird flocks [109]. However, recent

experiments have uncovered an alternative type of chemotaxis, in which cells grouped

together chemotax differently than if they were alone [18–21]. For example, outer cells

may polarize while inner cells do not, a mechanism observed in neural crest cells [103]

and considered in several recent modeling studies [19,101,110]. This type of emergent

chemotaxis (EC) behavior seen in cell collectives presupposes a machinery within cells

which allows for behavior to change once a cell is in a group. Since this machinery

may come at a cost, this raises the question of whether EC offers any fundamental

advantage over IC.

We address this question using simple physical models of EC and IC. Cell collectives

respond to graded profiles of freely diffusing molecules, and we quantify the migratory

behavior of one-dimensional (1D) cell chains, two-dimensional (2D) cell sheets, and

three-dimensional (3D) cell clusters (Fig. 7.1A), configurations designed to mimic

physiological multicellular structures such as filaments and ducts [89,111,112]. Collectives
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Figure 7.1. (a) We study the chemotactic performance of 1D chains,
2D sheets, and 3D clusters of cells. (b) In individual-based chemotaxis
(IC), cells in the collective polarize based on their own gradient
measurement. (c) In emergent chemotaxis (EC), cell polarization
depends on intercellular interactions: cells on the edge polarize based
on their measurement of the concentration, and cells in the bulk do not
polarize. In both mechanisms the total polarization ~P will fluctuate
in magnitude and direction due to noise in cell measurements.

performing EC and IC are found to have very similar mean speed, with polarization

strength scaling linearly with the number of cells regardless of chemotactic mechanism

or dimensionality. However, 1D and 2D EC collectives have higher chemotactic

precision than IC collectives: we find that for N cells, the relative error in EC scales

as {N−2, N−3/2, N−1} for 1D, 2D, and 3D, respectively, whereas in IC it scales as

N−1 for any dimension. We explain the physical origin of this difference and discuss

its implications.
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7.1 Individual-based Chemotaxis

We first consider IC (Fig. 7.1B). Due to the chemoattractant molecules in the

environment, the ith cell becomes polarized with vector ~pi in its desired direction

of motion [97]. The components of ~pi reflect the difference in concentration c(~r, t)

between the front and back of the cell in each respective direction. This concentration

difference will fluctuate due to the particulate nature of diffusion. Focusing on this

extrinsic source of noise, we treat each cell as a sphere of radius a through which

molecules freely diffuse, akin to the “perfect instrument” described by Berg and

Purcell [1]. The concentration difference is encoded internally as a weighted count of

the molecules within the cell volume Vi. The weighting function will depend on the

sensory network, but will generally be positive at the front and negative at the back;

here we choose cosine for simplicity. Orienting our coordinate system such that ẑ is

parallel to the gradient, the components of ~pi become

~pi(t) =

∫
Vi

d3r ~wc(~r, t), (7.1)

where ~w = {sin θ cosφ, sin θ sinφ, cos θ} is the angular unit vector extending from

the center of the cell. The concentration is a random variable which obeys regular

diffusion
∂c

∂t
= D∇2c+ ηc (7.2)

with D the diffusion coefficient and ηc the Langevin noise. The mean concentration

is taken to be

c̄(~r) = c0 + ~r · ~g, (7.3)

and first we consider a constant gradient ~g = gẑ that is shallow (ag � c0). Cells are

assumed to preferentially adhere to one another, hence the polarization of a collective

of N cells is the sum of its constituent cells’ polarization vectors ~P (t) =
∑N

i=1 ~pi(t).

The collectives exist at low Reynolds number, hence their velocity ~v is proportional

to the motility force, and in turn the polarization ~P . Therefore, understanding the

behavior of ~P will inform us of the collective migratory performance. We focus
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on two measures of performance: the mean and the relative error of time averaged

measurements of the polarization in the gradient direction Pz, where measurements

are averaged over a time T and the relative error is defined

ε2 =
δP 2

zT

〈Pz〉2
=
δv2

zT

〈vz〉2
. (7.4)

Eq. 7.1 indicates that a single cell will have mean polarization proportional to the

concentration difference across the cell,

〈~pi〉 =

∫
Vi

d3r ~w (c0 + ~r · gẑ) =
π

3
a4gẑ, (7.5)

regardless of the cell’s location. Therefore the mean collective polarization is geometry-

independent, depending only on the number of cells present,

〈~P 〉IC =
π

3
a4gN ẑ, (7.6)

as shown in Fig. 7.2A (blue lines) along with consistent results from simulations

performed by a previous group member.

We next investigate the relative error for IC collectives. We linearize the concentration

c(~r, t) = c̄(~r)+δc(~r, t) as well as the cell polarization ~pi(t) = 〈~pi〉+δ~p(t), and through

the same power spectrum analysis performed in previous works we derive analytic

expressions for δP 2
zT and thereby ε2. Since Pz =

∑N
i=1 piz, the variance in the total

polarization is a linear combination of all cell polarization variances and covariances

present in the collective,

δP 2
zT =

∑
i

δp2
i,zT +

∑
i 6=j

Cov[piz, pjz] ≡ V + C, (7.7)

The covariances are derived from the power spectrum in polarization cross correlations

in a similar manner to the variances, taking the general form [2,16]

Cov[piα, pjα] =
1

T
lim
ω→0

∫
dω′

2π
〈δp̃∗iα(ω′)δp̃jα(ω)〉, (7.8)

Eq. 7.8 assumes that the integration time is larger than the timescale of molecule

diffusion over the radius R of the collective, T � τD = R2/D, though we relax this
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(a) (b)
Sim. Anl.

Figure 7.2. (a) Mean cluster polarization and (b) relative error
for both mechanisms of collective chemotaxis in every configuration.
Points are simulation data, colored lines are analytical predictions.
1D EC data plotted with respect to N − 1.

assumption in later simulations. Following this procedure we find that V and C for

IC are

VIC =
4πa5c0

45DT
N, (7.9)

CIC = − πa
5c0

18DT

N∑
i 6=j

3 cos2 Θij − 1

n3
ij

. (7.10)

Here nij is the number of cell radii separating the centers of cells i and j, and Θij is

the angle between the gradient direction and a line connecting the two cells.

VIC scales with N since each cell is involved in gradient sensing. However, Eq.

7.10 reveals an angular dependence on the correlations between two IC cells. A pair

of cells can be correlated or anti-correlated depending on their locations relative to

the gradient. For example, if a pair of cells is parallel to the gradient then cos2 Θij =

1, resulting in a negative covariance, indicating that their gradient measurements
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are anti-correlated. In contrast, if two cells are perpendicular to the gradient then

cos2 Θij = 0, resulting in a positive covariance and correlations between the two

cells. The resulting contribution of CIC to δP 2
zT is dimensionality-dependent since

the angles made between pairs of cells is determined by geometry, whereas VIC is

dimension-independent.

For a 1D chain of IC cells, every pair is parallel to the gradient resulting in anti-

correlated measurements. This allows us to exactly evaluate Eq. 7.10 which when

combined with Eq. 7.9 produces

δP 2
zT =

πa5c0

9DT

[
4

5
N − 1

8

(
NH

(3)
N−1 −H

(2)
N−1

)]
, (7.11)

where H
(m)
n =

∑n
k=1 k

−m is the generalized harmonic number. Since H
(i)
N−1 approaches

a constant for i ≥ 2, we see that Eq. 7.11 scales as ∼ N to leading order, which in

turn means ε2 will scale as ∼ N−1.

As dimensionality increases, more and more pairs of cells will be perpendicular to

the gradient resulting in reduced anti-correlations in the collective. This means CIC

will have diminishing impact on δP 2
zT , culminating in 3D clusters having zero cell-

cell covariance contribution to the total cluster variance. This results in ε2 ∼ N−1

regardless of dimensionality. This is significant as it is exactly the scaling we would

expect to see if each cell was treated as completely independent of each other cell,

indicating that IC cells behave as effectively independent gradient sensors even with

diffusion-mediated cross-correlations. These scalings for V and C are summarized in

Table 7.1. The resulting ε2 predictions are plotted in Fig. 7.2B (blue lines), and we see

excellent agreement with the aforementioned simulation results. A detailed derivation

of Eq. 7.11 as well as its analogous 2D and 3D results can be seen in Appendix H.

7.2 Emergent Chemotaxis

Next we turn our attention to EC, the mechanism in which grouped cells sense

and migrate differently than individuals. Often cells in a cluster differentiate, with

edge cells polarized and bulk cells unpolarized [19,104]. In accordance with previous
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Table 7.1.
Summary of scaling behavior. N dependence of the leading order
term for the mean 〈Pz〉, and the variance (V ) and covariance (C)
contributions to the relative error ε2 = (V + C)/〈Pz〉2. C for EC in
2D has a log correction.

〈Pz〉 V C ε2

IC

1D N1 N1 −N1 N−1

2D N1 N1 −N1 N−1

3D N1 N1 0 N−1

EC

1D N1 N0 −N−1 N−2

2D N1 N1/2 N1/2 N−3/2

3D N1 N2/3 N1 N−1

studies [101,110], we assume that cell interactions are mediated by contact inhibition

of locomotion [113]. The interactions result in edge cells polarized away from their

neighbors, and interior cells that remain uninvolved in chemical sensing and do not

polarize (Fig. 7.1C). The edge cells polarize with strength proportional to the local

concentration which, again like Berg and Purcell’s perfect instrument [1], is estimated

by counting the molecules present within their cell volume. Hence we define the

polarization of the ith cell in the collective as

~pi(t) =


r̂i
∫
Vi
d3r c(~r, t) i ∈ {Nedge}

0 i ∈ {Nbulk} ,
(7.12)

where r̂i is a unit vector that points radially outwards from the collective. Eq.

7.12 dictates that ~pi is dependent on a cell’s location relative to the collective.

As illustrated in Fig. 7.1C, only the cells on the edge sense the chemoattractant,
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polarizing with a larger magnitude on the high concentration side of the collective,

and the total polarization depends only on the cells along the edge: ~P =
∑

i ~pi , ∀i ∈

{Nedge}.

For 1D EC, only the two opposing cells at either end of the chain are polarized

so 〈~P 〉 can be solved for exactly. Using the fact that these two cells must have their

centers separated by a distance of 2a(N − 1), the mean of the total polarization can

be expressed as〈
~P
〉

EC
= 〈~pN〉+ 〈~p1〉 = ẑ

∫
VN

d3r (c0 + ~r · gẑ)− ẑ
∫
V1

d3r (c0 + ~r · gẑ)

=
4π

3
a3ẑ
(
(~rN − ~r1) · gẑ

)
=

8π

3
a4g (N − 1) ẑ. (7.13)

In order to calculate the mean total polarization for two and three dimensional

clusters we assume that the cluster size is relatively large (a� R) and approximate

the sum as an integral. For a 2D disc of cells the sum ~P =
∑Nedge

i ~pi becomes

an integral over the circumference of the cluster. The circumference and the total

number of cells along the edge are related by 2πR = 2aNedge, and so a segment along

the perimeter of length Rθ is equivalent in length to 2an with n the number of edge

cells in that segment. Hence n = R
2a
θ allowing us to write integrals for

〈
~P
〉

as

〈~P 〉 =
R

2a

∫ 2π

0

dθ 〈~p〉 =
R

2a

∫ 2π

0

dθ ~w

(
4π

3
a3(c0 + gR cos θ)

)
=

2π2

3
a2gR2ẑ

=
2π2

3
a4gNẑ, (7.14)

where the last equality utilizes the relation N = (R/a)2.

Similarly, in 3D we approximate the sum as an integral of the spherical surface

of the cluster. A patch on the surface of area ΩR2 encompasses n = ΩR2/(πa2) edge

cells. The total polarization can therefore be written as an integral over the surface

of a spherical cluster:

〈~P 〉 =
R2

πa2

∫
dΩ 〈vecp〉 =

R2

πa2

∫
dΩ ~w

(
4π

3
a3(c0 + gR cos θ)

)
=

16π

9
agR3ẑ

=
16π

9
a4gNẑ, (7.15)
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where for such a spherical cluster, N = (R/a)3. Eqs. 7.13-7.15 are shown in Fig. 7.2A

(red lines), and we again see good agreement. We can understand why 〈Pz〉 scales

with N by noting that it depends on the product of Nedge ∼ N (d−1)/d and the distance

spanned in the gradient direction R ∼ N1/d, resulting in a mean polarization which

is geometry invariant [19].

Comparing EC and IC shows that 〈Pz〉 ∼ N regardless of collective migration

mechanism or geometry as seen in Fig. 7.2A. 〈Pz〉 has the same parameter dependency

for both EC and IC, namely a4g, which is the average change in the number of

chemoattractant molecules across a cell. Although 〈Pz〉EC ≈ 6〈Pz〉IC meaning that

EC speed is faster than IC, this relatively small difference may be difficult to detect

in biological systems. Moreover, both mechanisms have the same N scaling. Does

the same equivalence between EC and IC also hold for the relative error?

Following the procedure outlined by Eqs. 7.7 and 7.8 we find analytic expressions

for δP 2
zT = V + C for EC,

VEC =
16πa5c0

15DT

Nedge∑
i=1

cos2 Θi, (7.16)

CEC =
8πa5c0

9DT

Nedge∑
i 6=j

cos Θi cos Θj

nij
, (7.17)

with Θi being the angle r̂i makes with the gradient. Both VEC and CEC depend on

dimensionality simply because Nedge ∼ N (d−1)/d. From Eqs. 7.16 and 7.17 we see that

V ∼ Nedge, and that C depends on the angles edge cells make with the gradient.

The angular dependence means that cells along the front and back sides of the

cluster (relative to the gradient) are strongly anti-correlated since cos Θi cos Θj ≈ −1,

whereas pairs of edge cells near the middle are very weakly correlated (cos Θi cos Θj ≈

0).

For a 1D chain of EC cells the summations only go over the two edge cells with

cos Θ = ±1. This allows us to exactly evaluate Eqs. 7.16 and 7.17 to produce

δP 2
zT =

8πa5c0

3DT

(
4

5
− 1

6 (N − 1)

)
. (7.18)



72

To leading order, Eq. 7.18 scales as ∼ N0, which in turn means ε2 will scale as ∼ N−2.

Unlike in the case of IC, the scaling of C with N increases with dimensionality as

summarized in Table 7.1, and the resulting ε2 predictions show good agreement with

the simulation results (Fig. 7.2B). A detailed derivation of Eq. 7.18 as well as its

analogous 2D result and a discussion of the 3D geometry can be seen in Appendix I.

The dimension dependence of the EC relative error can be understood by thinking

of the collective as one large detector whose sensory surface is comprised of two halves.

If both halves were to take measurements of their local concentrations and then

polarize in opposing directions with strengths proportional to their measurements,

then ε2 would depend on the size of each half aeff and their separation distance Aeff

according to ε2 ∼ a−1
eff A

−2
eff [16]. The size of each half is independent of N for a 1D

chain (each half is a single cell), but it scales as aeff ∼ N1/d for d = 2 or 3 dimensions.

The separation distance scales with the radius of the collective for all d, Aeff ∼ N1/d.

This results in ε2 ∼ {N−2, N−3/2, N−1} for d = {1, 2, 3} (Fig. 7.2B, black lines), which

agree with the scalings seen in simulations and analytics.

7.3 Discussion

The physical origin of the advantage of EC over IC lies in how the errors scale

with the collective size N . In IC, all N cells contribute to the sensing, and cross-

correlations between them scale either linearly or sublinearly with N , leading to a

scaling ε ∼ 1/
√
N that is characteristic of independent sensors. But in EC, only

Nedge ∼ N (d−1)/d cells contribute to the sensing, leading to a sublinear scaling with

N of the variance contributions of the individual cells. The total variance of the

collective, then, depends on the cross-correlations, which are geometry-specific: in

1D they are dwarfed by the individual variances, in 2D they are commensurate, and

in 3D they dominate (Table 7.1). As a result, 1D and 2D EC collectives benefit from

a variance that scales subextensively, i.e., sublinearly with N .
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In our model, IC polarization is adaptive to the background concentration as

observed in the Ras signalling pathway for Dictyostelium discoideum chemotaxis [114].

On the other hand, our EC model is non-adaptive. Cell polarization increases with

background concentration causing tension in the collective (Fig. 7.1C), as previously

studied [101]. However, adaptive collective sensing has been observed in mammary

epithelial cells [3]. Our EC model could be made adaptive by replacing the integrand

in Eq. 7.12 with c(~r+~r′, t)− c0. This change does not affect the properties of ~P since

the background concentration cancels out when summing over all edge cells, but it

does remove the internal tension in the collective.

Besides the advantage revealed here in terms of chemotactic precision, another

benefit of EC is in terms of cell differentiation. In EC only edge cells need to be

involved in chemical sensing and polarization, freeing bulk cells from the obligation

of receptor and protein production necessary for chemotaxis. Bulk cells are free to

differentiate into other phenotypes, possibly serving different uses for the collective.

This is in stark contrast with IC where every cell must be of the polarized phenotype,

leaving no cells with the freedom to differentiate.

The two EC advantages of improved chemotactic precision and the possibility of

cell differentiation may be why EC-style collective migration is more prevalent than

IC. For example, EC has been observed in two dimensional collectives of malignant

lymphocytes [19] and in border cell migration [104]. In cancer, metastatic invasion

sometimes occurs in the form of chains of cells leaving the tumor with a leader cell at

the front [89, 111], analogous to our 1D EC model. Two-dimensional EC migration

may also be implicated in tumorigenesis and metastasis in pancreatic ductal cells

given the cylindrical surface-like geometry of pancreas ducts [112].

How can our predictions be tested in experiments? The chemotactic index (CI),

commonly defined as CI ≡ 〈cos θ〉 where θ is the angle between the trajectory and

the gradient [115], is actually a simple monotonic function of ε2. For small deviations

from perfect chemotaxis, we have CI ≈ 1 − 〈θ2〉/2 = 1 − Var[θ]/2. If vz and vx

are the components of the velocity of the collective parallel and perpendicular to
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the gradient, respectively, then θ ≈ vx/vz with 〈vz〉 > 0 and 〈vx〉 = 0, resulting in

Var[θ] = Var[vz]/〈vz〉2 = ε2. Therefore the relative error and chemotactic index are

related as CI = 1−ε2/2 for small errors. With this relationship the predicted scalings

of ε2 for EC and IC may be tested with chemotaxis experiments. Additionally, the

CI scaling behavior could be used to determine whether an EC- or IC-style migration

is at play in an unknown system.

We have shown how the fluctuations in a diffusing attractant concentration set

physical limits to collective chemotactic performance. By focusing on two fundamental

classes of collective chemotaxis, we have found that the mean speed scales with

the size of the collective irrespective of the mechanism or geometry, but that an

emergent mechanism outperforms an individual-based one for 1D and 2D geometries

in terms of chemotactic precision. This advantage arises due to the ways that errors

accumulate in the two mechanisms: in an emergent strategy, fewer cells contribute

their sensory noise to the collective, and in 1D and 2D the cross-correlations between

cells remain low, ultimately leading to a subextensive scaling of polarization variance

with collective size. As such, the performance advantage is an inherent property of the

emergent mechanism, and we suspect that it not only helps explain the prevalence of

emergent chemotaxis in cellular systems, but that it also is detectable using standard

measures such as the chemotactic index.
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8. CONCLUSIONS

Cells are exquisite sensors, and they also display diverse mechanisms of interacting

within collective groups. By utilizing Langevin equation techniques, we have successfully

calculated the physical limits to the precision with which these collectives and perform

a variety of sensory tasks. We have shown that for autocrine signalling in a uniform

concentration there exists a finite, nonzero optimal cell-cell separation to minimize the

noise-to-signal ratio. This is caused by a tradeoff between communication strength

and signal cross-correlations both decreasing with increasing separation, which in

turn allows porous autocrine systems to achieve higher precision than tightly packed

juxtacrine systems. In the case of cells making concentration measurements of a

nonuniform morphogen profile we have uncovered the benefits of having diffusive

transport at long ranges and direct transport at short ranges due to an increased rate

of the morphogen being refreshed and an increased mean expression level respectively.

For gradient sensing, we proceeded to show that higher precision can be obtained

when the cells communicate via the REGI mechanism as opposed to LEGI. This is

caused by the reduced variance in the local species brought on by the transverse

averaging, resulting in the optimal cluster configuration to be very spherical as

opposed to a long, thin chain. Lastly, we determined how 1D and 2D geometries of cell

clusters can improve their ability to chemotax in response to a gradient by changing

their behavior in a group and utilizing an emergent form of chemotaxis. This allows

for the total error to scale with population size more favorably by altering how many

cells contribute to the overall polarization of the cluster. These results showcase the

diverse ways in which collectives of cells can improve how precisely they can perform

tasks well beyond the physical limits of what a single cell can do.
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A. CALCULATIONS FOR BERG AND PURCELL’S

PERFECT INSTRUMENT

For the perfect instrument, a ligand species diffuses in a solution via

dc

dt
= Dc∇2c+ ηc, (A.1)

where c(~x, t) is the ligand concentration, Dc is the ligand diffusion constant, and

ηc(~x, t) is the noise intrinsic to the diffusion process.

The cross spectrum of ηc can be obtained from its correlation function. To derive

such a correlation function, we first consider a separate Markovian system comprised

of a 1-dimensional lattice of discrete compartments that a diffusing species Y can

exist in. The dimensionality is chosen purely for simplicity, as the method outlined

below can be easily generalized to higher dimensions to produce the same result. Let

yi (t) be the number of Y molecules in the ith compartment at time t and d be the rate

at which these molecules move to the i− 1 or i+ 1 compartment. Given a sufficiently

small time step δt, the probability of a molecule moving from the ith compartment

to the i± 1 compartment is

P
(
{yi (t+ δt) , yi±1 (t+ δt)} = {yi (t)− 1, yi±1 (t) + 1}

)
= yi (t) dδt. (A.2)

Higher order interactions in which multiple molecules are transfered within the

time step δt will have probabilites of order (δt)2 or higher and can thus be ignored.

This allows the mean of δyi (t) = yi (t+ δt)− yi (t) to take the form

〈
δyi (t)

〉
=
(
yi−1 (t) + yi+1 (t)− 2yi (t)

)
dδt, (A.3)

where the first two terms come from molecules moving into the ith compartment from

the i − 1 and i + 1 compartments respectively and the third term comes from the
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two different ways molecules can leave the ith compartment. As δt is small, each of

these transfer processes can be treated as being Poissonianly distributed. This allows

the variance of δyi (t) to simply be the right-hand side of Eq. A.3 but with each

term taken to be its absolute value so there are no subtractions. Additionally, this

approximation allows the covariance between δyi and δyi±1 to be taken as the negative

of the sum of the expected number of molecules moving from the ith compartment to

the i± 1 compartment and vice versa. With these, the correlation function between

δyi (t) and δyj (t) can be written as

〈
δyj (t) δyi (t)

〉
=
(
yi−1 (t) + yi+1 (t) + 2yi (t)

)
dδtδi,j −

(
yi (t) + yi−1 (t)

)
dδtδi−1,j

−
(
yi (t) + yi+1 (t)

)
dδtδi+1,j. (A.4)

We now take the system to continuous space by letting yi (t) → `c (x, t) and

δi,j → `δ (x− x′) with any intances of ±1 in the indices also being converted to ±`.

Putting these substitutions into Eq. A.4 and dividing by (`δt)2 yields

〈
δc (x′, t)

δt

δc (x, t)

δt

〉
=

d

δt

((
c (x− `, t) + c (x+ `, t) + 2c (x, t)

)
δ
(
x− x′

)
−
(
c (x, t) + c (x− `, t)

)
δ
(
x− `− x′

)
−
(
c (x, t) + c (x+ `, t)

)
δ
(
x+ `− x′

))
=

d

δt

((
c (x+ `, t) δ

(
x− x′

)
− c (x+ `, t) δ

(
x+ `− x′

))
−
(
c (x, t) δ

(
x− `− x′

)
− c (x, t) δ

(
x− x′

))
+
(
c (x, t) δ

(
x− x′

)
− c (x, t) δ

(
x+ `− x′

))
−
(
c (x− `, t) δ

(
x− `− x′

)
− c (x− `, t) δ

(
x− x′

)))
. (A.5)

Eq. A.5 has been rearranged into this form so as to easily apply the operators ∂±x

defined as

∂+
x f (x) =

f (x+ `)− f (x)

`
, (A.6a)
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∂−x f (x) =
f (x)− f (x− `)

`
. (A.6b)

Using this notation, Eq. A.5 can be simplfied into

〈
δc (x′, t)

δt

δc (x, t)

δt

〉
=
`d

δt

(
∂+
x

(
c (x, t) δ

(
x− `− x′

)
− c (x, t) δ

(
x− x′

))
+∂−x

(
c (x, t) δ

(
x− x′

)
− c (x, t) δ

(
x+ `− x′

)))
=
`2d

δt

(
∂+
x ∂

+
x′ + ∂−x ∂

−
x′

) (
c (x, t) δ

(
x− x′

))
. (A.7)

Taking the ` → 0 limit while holding D = `2d constant allows ∂±x and ∂±x′ to

converge to true derivatives, ∂x and ∂x′ . Additionally, if the δc (x′, t) /δt term on the

left-hand side of Eq. A.7 is replaced with δc (x′, t′) /δt for t′ 6= t, then the entire

right-hand side must go to 0 as the system is Markovian. This can be accomplished

by multiplying the right-hand side by a factor of δt,t′ . Taking the δt → 0 limit then

turns the two terms on the left-hand side into true derivatives in time, ∂t and ∂t′ ,

acting on c (x, t) and c (x′, t′) respectively while the factor of δt,t′/δt on the right-hand

side becomes δ (t− t′). Altogether, this transforms Eq. A.7 into

〈
∂t′c

(
x′, t′

)
∂tc (x, t)

〉
= 2Dδ

(
t− t′

)
∂x∂x′

(
c (x, t) δ

(
x− x′

))
. (A.8)

Finally, by approximating the system as being in steady state, c (x, t) can be

replaced with c̄ (x) and ∂tc (x, t) becomes equivalent to ηD (x, t). Making these substitutions

and generalizing Eq. A.8 to three dimensions yields

〈
ηc
(
~x′, t′

)
ηc (~x, t)

〉
= 2Dδ

(
t− t′

)
~∇ · ~∇′

(
c̄ (~x) δ3

(
~x− ~x′

))
. (A.9)

Here c̄ (~x) is the mean value of c(~x, t) as a function of space, which in this system is

taken to be a constant. Performing a Fourier transformation on Eq. A.9 then yields
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〈
η̃∗c

(
~k′, ω′

)
η̃c

(
~k, ω

)〉
=

∫
d3xd3x′dtdt′

〈
ηc
(
~x′, t′

)
ηc (~x, t)

〉(
ei
~k·~xeiωt

)(
ei
~k′·~x′eiω

′t′
)∗

=

∫
d3xd3x′dtdt′2Dcc̄e

i(~k·~x−~k′·~x′)ei(ωt−ω
′t′)δ

(
t− t′

)
~∇x · ~∇x′

(
δ3
(
~x− ~x′

))
.

(A.10)

Due to the factor of δ (t− t′), the integral in t′ becomes trivial and leaves the only

time dependent factor as eit(ω−ω
′). This allows the integral in t to be solved via the

Fourier definition of the d-dimensional δ function

δd (~z) =

∫
ddκ

(2π)d
ei~κ·~z. (A.11)

By letting d = 1, ~z = ω − ω′, and κ = t, utilizing Eq. A.11 in Eq. A.10 yields

〈
η̃∗c

(
~k′, ω′

)
η̃c

(
~k, ω

)〉
= 2Dcc̄

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′ei(

~k·~x−~k′·~x′)~∇x · ~∇x′

(
δ3
(
~x− ~x′

))
. (A.12)

Eq. A.11 can then be put back into Eq. A.12 by letting d = 3 and ~z = ~x to

change the form of δ3 (~x− ~x′),

〈
η̃∗c

(
~k′, ω′

)
η̃c

(
~k, ω

)〉
= 2Dcc̄

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′ei(

~k·~x−~k′·~x′)~∇x · ~∇x′

∫
d3κ

(2π)3 e
i~κ·(~x−~x′)

=
2Dcc̄

(2π)3

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′d3κei~x·(

~k+~κ)e−i~x
′·(~k′+~κ)κ2. (A.13)

Continuing to utilize Eq. A.11, all remaining integrals in Eq. A.13 either become

δ functions or are over δ functions by integrating over x then κ then x′. This yields

the power spectrum of ηc (~x, t) to be
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〈
η̃∗c

(
~k′, ω′

)
η̃c

(
~k, ω

)〉
= 2Dcc̄

(
2πδ

(
ω − ω′

)) ∫
d3x′d3κδ3

(
~k + ~κ

)
κe−i~x

′·(~k′+~κ)κ2

= 2Dcc̄k
2
(

2πδ
(
ω − ω′

)) ∫
d3x′e−i~x

′·(~k′−~k)

= 2Dcc̄k
2
(

2πδ
(
ω − ω′

))(
(2π)3 δ3

(
~k − ~k′

))
. (A.14)

Now, let c (~x, t) = c̄+ δc (~x, t). This linearizes Eq. A.1 into

dδc

dt
= Dc∇2δc+ ηc. (A.15)

Eq. A.15 can then be Fourier transformed into

−iωδ̃c = −Dck
2δ̃c+ η̃ =⇒ δ̃c =

η̃

Dck2 − iω
. (A.16)

Utilizing Eq. A.16 to solve for the power spectrum of δc (~x, t) gives the solution

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉 =

〈
η∗
(
~k′, ω′

)
η
(
~k, ω

)〉
(Dck2 − iω)

(
Dck′

2 + iω′
)

=

2Dcc̄k
2
(
2πδ (ω − ω′)

)(
(2π)3 δ3

(
~k − ~k′

))
(Dck2 − iω)

(
Dck′

2 + iω′
)

=

2Dcc̄k
2
(
2πδ (ω − ω′)

)(
(2π)3 δ3

(
~k − ~k′

))
(Dck2)2 + ω2

, (A.17)

where the last equality stems from letting ω = ω′ and ~k = ~k′, which is forced by the

δ functions. Generalizing the definition of S (ω) found in Eq. 3.6 to a 4-dimensional

system, Eq. A.17 gives the power spectrum of δc (~x, t) to be exactly that derived by

Bialek,
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Sc

(
~k, ω

)
=

∫
d3k′

(2π)3

dω′

2π

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉

=

∫
d3k′

(2π)3

dω′

2π

2Dc̄k2
(
2πδ (ω − ω′)

)(
(2π)3 δ3

(
~k − ~k′

))
(Dk2)2 + ω2

=
2Dc̄k2

(Dk2)2 + ω2
. (A.18)

Now, let n(t) be the number of molecules in a permeable spherical cell of volume

V and radius a. n(t) can be calculated from c (~x, t) via

n(t) =

∫
V

d3xc (~x, t) . (A.19)

Once again, let n(t) = n̄+ δn(t), where n̄ is the mean value of n(t). Since c̄ is the

mean value of c (~x, t), this implies

n̄ =

∫
V

d3xc̄ =
4

3
πa3c̄ =⇒ δn(t) =

∫
V

d3xδc (~x, t) . (A.20)

Fourier transforming the second part of Eq. A.20 then yields

δ̃n (ω) =

∫
V

d3x

∫
d3k

(2π)3 δ̃c
(
~k, ω

)
e−i

~k·~x. (A.21)

With this and Eq. A.17, the power spectrum of n(t) can be calculated to be

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=

〈(∫
V

d3x′
∫

d3k′

(2π)3 δ̃c
∗ (~k′, ω′) ei~k′·~x′)(∫

V

d3x

∫
d3k

(2π)3 δ̃c
(
~k, ω

)
e−i

~k·~x

)〉

=
1

(2π)6

∫
V

d3xd3x′
∫
d3kd3k′

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉 e−i(~k·~x−~k′·~x′)

=
2Dcc̄

(2π)3

(
2πδ

(
ω − ω′

)) ∫
V

d3xd3x′
∫
d3kd3k′

k2δ3
(
~k − ~k′

)
(Dck2)2 + ω2

e−i(
~k·~x−~k′·~x′)

=
2Dcc̄

(2π)3

(
2πδ

(
ω − ω′

)) ∫
V

d3xd3x′
∫
d3k

k2

(Dck2)2 + ω2
e−i

~k·~xei
~k·~x′ . (A.22)
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Since the integrations in Eq. A.22 are over three dimensional spaces, the expression

∫
dΩκe

i~κ·~z = 4π
sin
(
κ|~z|

)
κ|~z|

, (A.23)

where Ωκ is the solid angle at radius κ, can be used to solve the solid angle

components of the x and x′ integrals, yielding

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=

4

π
Dcc̄

(
2πδ

(
ω − ω′

)) ∫ a

0

dxdx′
∫
d3k

k2

(Dck2)2 + ω2

(
x2 sin (kx)

kx

)(
x′

2 sin (kx′)

kx′

)
=

4

π
Dcc̄

(
2πδ

(
ω − ω′

)) ∫
d3k

k2

(Dck2)2 + ω2

(
sin (ka)− ka cos (ka)

k3

)2

= 16Dcc̄a
2
(

2πδ
(
ω − ω′

)) ∫ ∞
0

dk
1

(Dck2)2 + ω2

(
sin (ka)

ka
− cos (ka)

)2

. (A.24)

To solve this integral, it must first be noted that the integrand is even in k.

Thus, the lower limit can be extended to −∞ simply by introducing a factor of 1
2
.

Additionally, the sin and cos terms can be broken into their exponential forms to

produce

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
= 16Dcc̄a

2
(

2πδ
(
ω − ω′

)) 1

2

∫ ∞
−∞

dk
1

(Dk2)2 + ω2

·
(

1

2ika

(
eika − e−ika

)
− 1

2

(
eika + e−ika

))2

= 2Dcc̄a
2
(

2πδ
(
ω − ω′

)) ∫ ∞
−∞

dk
1

(Dk2)2 + ω2

·

(
e2ika

(
1 +

i

ka

)2

+ e−2ika

(
1− i

ka

)2

+ 2
1 + k2a2

k2a2

)
. (A.25)

Note that the integrand in Eq. A.25 has four poles at k =
√
|ω|
Dc
eiθ for θ ∈[

π
4
, 3π

4
, 5π

4
, 7π

4

]
. These poles can be used to solve the integral via contour integration.

Let C1 be a counter-clockwise path around the infinite half circle enclosing the upper

half plane and C2 be a clockwise path around the infinite half circle enclosing the
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lower half plane. This split allows for terms of the form eika to be integrated around

C1 and terms of the form e−ika to be integrated around C2 without any divergences.

Additionally, this split will cause poles to form at k = 0, but since the integrand in

Eq. A.25 has no poles at k = 0 all subsequent k = 0 poles must cancel and thus need

not be taken into account. With these contours, the residue theorem can be used to

produce

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=

2c̄a2

Dc

(
2πδ

(
ω − ω′

))

·


∫
C1

dk
e2ika

(
1 + i

ka

)2
+ 21+k2a2

k2a2(
k −

√
|ω|
Dc
ei
π
4

)(
k −

√
|ω|
Dc
ei

3π
4

)(
k −

√
|ω|
Dc
ei

5π
4

)(
k −

√
|ω|
Dc
ei

7π
4

)

+

∫
C2

dk
e−2ika

(
1− i

ka

)2(
k −

√
|ω|
Dc
ei
π
4

)(
k −

√
|ω|
Dc
ei

3π
4

)(
k −

√
|ω|
Dc
ei

5π
4

)(
k −

√
|ω|
Dc
ei

7π
4

)

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=
4πc̄a2i

Dc

(
2πδ

(
ω − ω′

))


e2ika
(
1 + i

ka

)2
+ 21+k2a2

k2a2(
k −

√
|ω|
Dc
ei

3π
4

)(
k −

√
|ω|
Dc
ei

5π
4

)(
k −

√
|ω|
Dc
ei

7π
4

)
∣∣∣∣∣∣∣∣∣
k=
√
|ω|
Dc
ei
π
4

+
e2ika

(
1 + i

ka

)2
+ 21+k2a2

k2a2(
k −

√
|ω|
Dc
ei
π
4

)(
k −

√
|ω|
Dc
ei

5π
4

)(
k −

√
|ω|
Dc
ei

7π
4

)
∣∣∣∣∣∣∣∣∣
k=
√
|ω|
Dc
ei

3π
4

−
e−2ika

(
1− i

ka

)2(
k −

√
|ω|
Dc
ei
π
4

)(
k −

√
|ω|
Dc
ei

3π
4

)(
k −

√
|ω|
Dc
ei

7π
4

)
∣∣∣∣∣∣∣∣∣
k=
√
|ω|
Dc
ei

5π
4

−
e−2ika

(
1− i

ka

)2(
k −

√
|ω|
Dc
ei
π
4

)(
k −

√
|ω|
Dc
ei

3π
4

)(
k −

√
|ω|
Dc
ei

5π
4

)
∣∣∣∣∣∣∣∣∣
k=
√
|ω|
Dc
ei

7π
4

 . (A.26)

After some algebraic manipulation of Eq. A.26, the final form of the power

spectrum of n (t) is found to be

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=
(

2πδ
(
ω − ω′

)) 16πc̄a5

15Dc

f

a√2|ω|
Dc

 , (A.27)

where

f(x) ≡ 15

x5

e−x cos (x)

(
x2

2
+ 2x+ 1

)
+
(
1 + e−x sin (x)

)(x2

2
− 1

) . (A.28)

This allows the power spectrum of n (t) to be written as

Sn (ω) =

∫
dω′

2π

〈
δ̃n
∗ (
ω′
)
δ̃n (ω)

〉
=

16πc̄a5

15Dc

f

a√2|ω|
Dc

 , (A.29)

and the subsequent correlation function as
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Cn (t) =

∫
dω

2π
Sn (ω) e−iωt =

8c̄a5

15Dc

∫
dωf

a√2|w|
Dc

 e−iωt

=
8c̄a5

15Dc

∫ ∞
0

dω

f (a√2ω

Dc

)
e−iωt + f

(
a

√
2ω

Dc

)
eiωt


=

16c̄a5

15Dc

∫ ∞
0

dωf

(
a

√
2ω

Dc

)
cos (ωt) . (A.30)

Let x ≡ a
√

2ω
Dc

. This transforms Eq. A.30 into

Cn (t) =
16c̄a3

15

∫ ∞
0

dxxf (x) cos

(
x2Dct

2a2

)
. (A.31)

While the integral in Eq. A.31 is not explicitly doable, several of its most

important properties can be determined. For one, the instantaneous variance, Cn(0),

can be exactly calculated to be

σ2
n = Cn (0) =

16c̄a3

15

∫ ∞
0

dxxf (x) =
16c̄a3

15

5π

4
=

4

3
πa3c̄ = n̄. (A.32)

Thus, the instantaneous variance is seen to be equal to the mean, exactly as

expected. Additionally, the time averaged correlation function can be obtained by

utilizing Eq. 3.10. This exactly yields the result first derived by Berg and Purcell:

δ2nT
〈n〉2

=
Cn,T (0)

〈n〉2
≈ Sn (0)

〈n〉2T
=

1

T

(
4

3
πa3c̄

)−2

lim
ω→0

16πc̄a5

15Dc

f

a√2|ω|
Dc


=

3

5

1

πac̄DcT
(A.33)
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B. CALCULATIONS FOR RECEPTOR BINDING AND

UNBINDING

We begin wth multiple cells all modelled as spheres of radius a in contact with each

other. The cells exist within a ligand bath of density profile c (~x, t) assumed to

fluctuate around a spatially constant mean profile (c̄ (~x) = c̄). The ligand molecules

diffuse with diffusion constant Dc and can bind and unbind to receptors on the surface

of each cell at rates α and µ respectively.

Assume that each cell can be treated as a point particle with respect to the ligand

field and that the number of receptors on each cell is large enough to neglect the

effects of increased bound receptor number on the overall binding propensity (i.e.

receptor saturation). This system can thus be modeled via

dc

dt
= Dc∇2c−

∑
j

δ3
(
~x− ~xj

) drj
dt

+ ηc (B.1a)

drj
dt

= αc
(
~xj, t

)
− µrj + ηrj (B.1b)

where ηc is the noise intrinsic to the diffusion of ligand molecules and ηrj is the noise

intrinsic to the bound receptor number of the jth celll. The purpose of this section

is to calculate the statistics of the ligand and bound receptor number of a particular

cell based off of this model.

We begin by determining the noise properties of the ligand diffusion and receptor

binding-unbinding process. Let c (~x, t) = c̄ + δc (~x, t) and rj (t) = r̄j + δrj (t), where

r̄j is the mean value of rj (t). Eq. B.1b then dictates

0 = αc̄− µr̄j =⇒ r̄j =
αc̄

µ
, (B.2)

while Eqs. B.1a and B.1b can be written in the form

dδc

dt
= Dc∇2δc−

∑
j

δ3
(
~x− ~xj

) dδrj
dt

+ ηc (B.3a)
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dδrj
dt

= αδc
(
~xj, t

)
− µδrj + ηrj. (B.3b)

Fourier transforming Eq. B.3a then yields

−iωδ̃c = −Dck
2δ̃c−

∑
j

ei
~k·~xj
(
−iωδ̃rj

)
+ η̃c

=⇒ δ̃c =
iω
∑

j δ̃rje
i~k·~xj + η̃c

Dck2 − iω
. (B.4)

Similarly Fourier transforming Eq. B.3b then yields

−iωδ̃rj = α

∫
d3k

(2π)3 δ̃c
(
~k, ω

)
e−i

~k·~xj − µδ̃rj + η̃rj

= α

∫
d3k

(2π)3

iω
∑

l δ̃rle
i~k·~xl + η̃c

Dck2 − iω
e−i

~k·~xj − µδ̃rj + η̃rj

=⇒ (µ− iω) δ̃rj − iω
∑
l

δ̃rlΣ
(
~xl − ~xj, ω

)
= α

∫
d3k

(2π)3

η̃c
Dck2 − iω

e−i
~k·~xj + η̃rj,

(B.5)

where

Σ (~x, ω) ≡ α

∫
d3k

(2π)3

1

Dck2 − iω
ei
~k·~x =

α

4πDc|~x|
e−|~x|
√

ω
2Dc ei|~x|

√
ω

2Dc . (B.6)

Thus, it is seen that Σ (~x, ω) is dependent only on the magnitude of ~x, implying

Σ (−~x, ω) = Σ (~x, ω).

Unfortunately, Σ (~x, ω) diverges as ~x→ 0. This case can be rectified by truncating

the range of integration in Eq. B.6 to be inside of a sphere, S, in k space with radius
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2π
ga

, where a is the cell radius and g is a geometric factor. This lets Σ (0, ω) to be

evaluated as

Σ (0, ω) ≈ α

∫
S

d3k

(2π)3

1

Dck2 − iω

=
α

πgaDc

1 +
ga

8π

√
ω

2Dc

log

(
4Dcπ

2 + ωg2a2 − 2πga
√

2ωDc

4Dcπ2 + ωg2a2 + 2πga
√

2ωDc

)

−2 arctan

(
2πga

√
2ωDc

ωg2a2 − 4Dcπ2

)
+

iα

2πω

(
|ω|
2Dc

) 3
2

≈ α

πgaDc

+
iα

2πω

(
|ω|
2Dc

) 3
2

, (B.7)

where the final approximation was made assuming ωa2 � Dc. This is equivalent to

the assumption T � τ1 = a2/Dc, i.e. that over a time T the ligand can easily diffuse

around the whole cell.

Now, let R be a matrix defined as:

Rjl (ω) ≡


µ− iω

(
1 + Σ (0, ω)

)
j = l

−iωΣ
(
~xj − ~xl, ω

)
j 6= l

. (B.8)

Since Σ
(
~xj − ~xl, ω

)
= Σ

(
~xl − ~xj, ω

)
, R is seen to be a symmetric matrix. With this,

Eq. B.5 can be rewritten as∑
l

Rjl (ω) δ̃rl = α

∫
d3k

(2π)3

η̃c
Dck2 − iω

e−i
~k·~xj + η̃rj

=⇒ δ̃rj =
∑
l

R−1
jl (ω)

(
α

∫
d3k

(2π)3

η̃c
Dck2 − iω

e−i
~k·~xl + η̃rl

)
. (B.9)

Utilizing Eq. B.9 yields the cross spectrum of rj (t) and rl (r) to be

〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=

〈∑
u

R−1
lu

(
ω′
)α ∫ d3k′

(2π)3

η̃c

(
~k′, ω′

)
Dck′

2 − iω′
e−i

~k′·~xn + η̃ru
(
ω′
)

∗

·

∑
s

R−1
js (ω)

α ∫ d3k

(2π)3

η̃c

(
~k, ω

)
Dck2 − iω

e−i
~k·~xm + η̃rs (ω)



〉
. (B.10)
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At this point it is necessary to determine the properties of ηrj since the power

spectrum of ηc is already known from Appendix A. For ηrj, since the binding-

unbinding process for a given cell is independent of the binding-unbinding process

of any other cell and the ligand diffusion, it must be true that cross correlations

between ηrj and ηrl, for j 6= l, or ηc vanish. Additionally, since Eq. B.3b is of the

form of a birth-death process, the power spectrum of ηrj must be the sum of the mean

propensities of its reactions. These all imply〈
η̃∗rl
(
ω′
)
, η̃rj (ω)

〉
=
(
αc̄+ µr̄j

)
δjl

(
2πδ

(
ω − ω′

))
= 2αc̄δjl

(
2πδ

(
ω − ω′

))
, (B.11)

as in the main text. Ignoring the vanishing cross terms between η̃c and η̃rj allows Eq.

B.10 to be written in the form

〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=
∑
s,u

R−1
js (ω)

(
R−1
lu

(
ω′
))∗

〈η̃∗ru (ω′) , η̃rs (ω)
〉

+α2

∫
d3kd3k′

(2π)6

〈
η̃∗c

(
~k′, ω′

)
, η̃c

(
~k, ω

)〉
(Dck2 − iω)

(
Dck′

2 + iω′
)ei(~k′·~xu−~k·~xs)

 . (B.12)

Utilizing Eqs. A.14 and B.11 to evaluate the noise correlation terms then yields

〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=
∑
s,u

R−1
js (ω)

(
R−1
lu

(
ω′
))∗

2αc̄δsu

(
2πδ

(
ω − ω′

))

+α2

∫
d3kd3k′

(2π)6

2Dcc̄k
2
(
2πδ (ω − ω′)

)(
(2π)3 δ3

(
~k − ~k′

))
(Dck2 − iω)

(
Dck′

2 + iω′
) ei(

~k′·~xu−~k·~xs)


= 2αc̄

(
2πδ

(
ω − ω′

))∑
s,u

R−1
js (ω)

(
R−1
lu (ω)

)∗
·

(
δsu + α

∫
d3k

(2π)3

Dck
2

(Dck2)2 + ω2
ei
~k·(~xu−~xs)

)
, (B.13)
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where all instances of ω′ outside of the δ function were freely replaced with ω due to

the δ function being a global factor.

Utilizing Eq. A.23 shows that the angular portion of the integral in Eq. B.13 will

cause the imaginary component to vanish. Thus, the integral is completely real and

may be expressed as the real part of Σ (~xu − ~xs, ω)〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
= 2αc̄

(
2πδ

(
ω − ω′

))∑
s,u

R−1
js (ω)

(
R−1
lu (ω)

)∗ (
δsu + Re

(
Σ (~xu − ~xs, ω)

))
.

(B.14)

Comparing the last term in Eq. B.14 with Eq. B.8 then allows Eq. B.14 to be written

as〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
= 2αc̄

(
2πδ

(
ω − ω′

))∑
s,u

R−1
js (ω)

(
R−1
lu (ω)

)∗( 1

ω
Im
((
Rus (ω)

)∗))
.

(B.15)

In order to simplify Eq. B.15, first let a and b be two arbitrary complex numbers.

The product aIm (b) can be reordered as

aIm (b) = Re (a) Im (b) + iIm (a) Im (b)

=
(
Re (a) Im (b) + Im (a) Re (b)

)
− Im (a)

(
Re (b)− iIm (b)

)
= Im (ab)− b∗Im (a) = Im (ab) + b∗Im (a∗) . (B.16)

Applying Eq. B.16 to the
(
R−1
lu (ω)

)∗
Im
((
Rus (ω)

)∗)
term in Eq. B.15 yields

〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=

2αc̄

ω

(
2πδ

(
ω − ω′

))∑
s,u

R−1
js (ω)

·
(

Im
((
R−1
lu (ω)

)∗ (
Rus (ω)

)∗)
+Rus (ω) Im

(
R−1
lu (ω)

))
.

(B.17)
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Separating out the sums then yields〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=

2αc̄

ω

(
2πδ

(
ω − ω′

))(∑
s

R−1
js (ω)

∑
u

Im
((
R−1
lu (ω)Rus (ω)

)∗)
+
∑
u

Im
(
R−1
lu (ω)

)∑
s

R−1
js (ω)Rus (ω)

)
. (B.18)

In the first term of Eq. B.18 the summation over u can be brought inside the Im and

complex conjugation operators and causes the product R−1
lu (ω)Rus (ω) to collapse

to δls. However, since the Kronecker δ function is real, its imaginary component

must be 0, and thus the whole first term vanishes. In the second term, the fact

that R is symmetric can be used to make the substitutions R−1
lu (ω) → R−1

ul (ω) and

Rus (ω)→ Rsu (ω), which causes Eq. B.18 to simplify to〈
δ̃r
∗
l

(
ω′
)
δ̃rj (ω)

〉
=

2αc̄

ω

(
2πδ

(
ω − ω′

))∑
u

Im
(
R−1
ul (ω)

)∑
s

R−1
js (ω)Rsu (ω)

=
2αc̄

ω

(
2πδ

(
ω − ω′

))∑
u

Im
(
R−1
ul (ω)

)
δju

=
2αc̄

ω

(
2πδ

(
ω − ω′

))
Im
(
R−1
jl (ω)

)
. (B.19)

Thus, Eq. B.19 can be seen to be formed from the imaginary component of the matrix

element used to connect δ̃rj to the noise terms, exactly as would be predicted by the

fluctuation-dissipation theorem.

Under the limit µ� ω
(
1 + Σ (0, ω)

)
, which is equivalent to ω �

(
µ−1 + (kDKD)−1

)−1

for kD = πgaDc and KD = µ
α

as in the text, R−1
jl can be easily approximated. Let

Ajl be a matrix equivalent to R with the jth row and lth column removed such that

(−1)j+l det
(
Ajl
)

= Cjl, where C is the cofactor matrix of R. Under this definition,

R−1
jl (ω) = (−1)j+l

det
(
Alj
)

det (R)
. (B.20)

By the rules of determinants, any term within the determinant of R that has off-

diagonal elements must have at least 2 off-diagonal elements. Since all the off-diagonal

terms of R are of the form −iωΣ (~x, ω) and Σ (~x, ω) does not diverge as ω → 0, each

of these terms must have a factor of ω that is of order 2 or higher. Thus, in the small
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ω limit, only the diagonal elements of R contribute to its determinant. For j 6= l,

the creation of Ajl will cause two of the diagonal elements of R to be removed and

|j − l| − 1 more to be shifted to off-diagonal elements. This will in turn cause every

term in the determinant of Ajl to have at least one factor of the form −iωΣ (~x, ω).

However, only the term with all N − 2 remaining factors of µ − iω
(
1 + Σ (0, ω)

)
,

where N is the number of cells, will have an order of ω less than 2 and will thus be

the only nonnegligible term. This term will also carry a prefactor of (−1)|j−l|−1 by

the rules of determinants. With this, R−1
jl takes the form

R−1
jl (ω) ≈ (−1)j+l+|j−l|−1

−iωΣ
(
~xj − ~xl, ω

) (
µ− iω

(
1 + Σ (0, ω)

))N−2

(
µ− iω

(
1 + Σ (0, ω)

))N
=

iωΣ
(
~xj − ~xl, ω

)(
µ− iω

(
1 + Σ (0, ω)

))2 . (B.21)

Thus, R−1
jl is seen to carry a dependence on the separation between the two cells. For

j = l, Ajj is a symmetric matrix, and just like R, all of its off-diagonal components

are of the form −iωΣ (~x, ω). By the same argument as that used for the determinant

of R, only the diagonal terms contribute to the determinant of Ajj. This lets R−1
jj (ω)

to be approximated as

R−1
jj (ω) ≈ (−1)2j

(
µ− iω

(
1 + Σ (0, ω)

))N−1

(
µ− iω

(
1 + Σ (0, ω)

))N =
1

µ− iω
(
1 + Σ (0, ω)

) , (B.22)

which is identical to R−1 for the N = 1 cell case. Thus, for long time averaging the

presence of other cells does not affect any individual cell’s power spectrum at the level

of bound receptors.

This single cell power spectrum can be computed as〈
δ̃r
∗ (
ω′
)
δ̃r (ω)

〉
=

2αc̄

ω

(
2πδ

(
ω − ω′

))
Im

((
µ− iω

(
1 + Σ (0, ω)

))−1
)

=
2αc̄

ω

(
2πδ

(
ω − ω′

)) ω
(

1 + Re
(
Σ (0, ω)

))
(
µ+ ωIm

(
Σ (0, ω)

))2

+ ω2
(

1 + Re
(
Σ (0, ω)

))2 (B.23)
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=⇒ Sr (ω) =

∫
dω′

2π

〈
δ̃r
∗ (
ω′
)
δ̃r (ω)

〉
=

2αc̄
(

1 + Re
(
Σ (0, ω)

))
(
µ+ ωIm

(
Σ (0, ω)

))2

+ ω2
(

1 + Re
(
Σ (0, ω)

))2 . (B.24)

To obtain the time averaged noise-to-signal ratio, Eq. 3.10 can be utilized assuming

T � τ2 = µ−1 + (kDKD)−1 as was done for ω eariler. With this, the time averaged

noise-to-signal ratio in the single cell case can be approximated to be

CrT (0)

r̄2
≈ Sr (0)

r̄2T
=

1

r̄2T

2αc̄
(

1 + Re
(
Σ (0, 0)

))
µ2

. (B.25)

Utilizing Eqs. B.2 and B.7 as well as setting g = 4 as explained in the text, Eq. B.25

simplifies to

(δr)2

r̄2
=
CrT (0)

r̄2
≈ 1

r̄2T

2αc̄
(

1 + α
4πaDc

)
µ2

=
1

πaDcT

α2c̄

2µ2r̄2
+

2

T

αc̄

µ2r̄2

=
1

2

1

πac̄DcT
+

2

µr̄T
. (B.26)

Eq. B.26 can be seen to be the sum of the noise the receptors inherit from the ligand

diffusion, the 1
2

1
πac̄DcT

term, and the noise inherent in the ligand binding-unbinding

process itself, the 2
µr̄T

term.
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C. CALCULATIONS FOR JUXTACRINE SIGNALING

MODEL

We now add to the model that each cell produces a messenger molecule species, mj, at

rate β proportional to that cell’s number of bound receptors, rj. This species degrades

at rate ν and can also be exchanged between neighboring cells at rate γ. Let Nj be

the set of cells neighboring the jth cell. The dynamics of mj can be modeled via

dmj

dt
= βrj − νmj +

∑
l∈Nj

γ
(
ml −mj

)
+ ηmj, (C.1)

where ηmj is the noise intrinsic to the creation, degredation, and exchange of m

molecules in the jth cell. As before, let mj (t) = m̄j + δmj (t), where m̄j is the mean

value of mj (t). Eq. C.1 then dictates

0 = βr̄j − νm̄j +
∑
l∈Nj

γ
(
m̄l − m̄j

)
. (C.2)

Assuming the binding and unbinding as well as the production and degredation

parameters are the same in each cell, Eq. B.2 forces r̄j = r̄l for all j and l, which by

Eq. C.2 then forces

m̄j = m̄l =
β

ν
r̄j (C.3)

for all j and l. Additionally, Eq. C.1 also dictates

dδmj

dt
= βδrj − νδmj +

∑
l∈Nj

γ
(
δml − δmj

)
+ ηmj, (C.4)

which can be Fourier transformed into

−iω ˜δmj = βδ̃rj − ν ˜δmj +
∑
l∈Nj

γ
(

˜δml − ˜δmj

)
+ η̃mj. (C.5)
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Let Nj be the number of cells neighboring the jth cell and the matrix M be defined

as

Mjl (ω) =


ν +Njγ − iω j = l

−γ l ∈ Nj

0 otherwise

. (C.6)

Thus, M is seen to be a symmetric matrix. The form of M also dictates that when

ω is taken to be a small parameter later, it must meet the requirement ω � ν + γ as

those are the variables ω is seen to be compared to in M . This notation allows Eq.

C.5 to be written as∑
l

Mjl (ω) ˜δml = βδ̃rj + η̃mj =⇒ ˜δmj =
∑
l

M−1
jl (ω)

(
βδ̃rl + η̃ml

)
(C.7)

Utilizing Eq. C.7 yields the cross spectrum of mj (t) and ml (t) to be〈
˜δm
∗
l

(
ω′
)

˜δmj (ω)
〉

=

〈(∑
u

M−1
lu

(
ω′
) (
βδ̃ru

(
ω′
)

+ η̃mu
(
ω′
)))∗

·

(∑
s

M−1
js (ω)

(
βδ̃rs (ω) + η̃ms (ω)

))〉
. (C.8)

At this point it is necessary to determine the properties of ηmj. Just as for ηrj,

Eq. C.1 is in the form of a birth-death process, which allows the power spectrum of

ηmj to simply be written as the sum of the mean propensities. However, due to the

exchange term, ηmj and ηml cannot be independent if l ∈ Nj. The cross spectrum, in

this case, must be negative due to the fact that exchange means one cell is losing m

molecules when the other is gaining them and must also be the sum of propensities

of the exchange reaction. Thus, the power spectrum of ηmj takes the form〈
η̃∗ml
(
ω′
)
η̃mj (ω)

〉
=

βr̄j + νm̄j +
∑
s∈Nj

γ
(
m̄s + m̄j

) δjl

(
2πδ

(
ω − ω′

))
− γ

(
m̄l + m̄j

)
δl∈Nj

(
2πδ

(
ω − ω′

))
, (C.9)

which is the Fourier transform of the ηmj correlator in the main text. Utilizing Eqs.

C.3 and C.6 allows Eq. C.9 to be simplified to〈
η̃∗ml
(
ω′
)
η̃mj (ω)

〉
= 2m̄Re

(
Mjl (ω)

) (
2πδ

(
ω − ω′

))
(C.10)
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Since the ligand binding-unbinding process is independent of the noise in the m

molecule production, any cross terms between δrj and ηml must vanish. This allows

Eq. C.8 to be written as〈
˜δm
∗
l

(
ω′
)

˜δmj (ω)
〉

=
∑
s,u

M−1
js (ω)

(
M−1

lu

(
ω′
))∗(

β2
〈
δ̃r
∗
u

(
ω′
)
δ̃rs (ω)

〉
+
〈
η̃∗ms

(
ω′
)
η̃mu (ω)

〉)
= 2

(
2πδ

(
ω − ω′

))∑
s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

·
(
β2αc̄

ω
Im
(
R−1
su (ω)

)
+ m̄Re

((
Msu (ω)

)∗))
, (C.11)

where Eq. B.18 has been used, Re
(
Msu (ω)

)
from Eq. C.10 has been freely changed

to Re
((
Msu (ω)

)∗)
, and all instances of ω′ outside the δ function were freely replaced

with ω due to the δ function being a global factor.

In order to simplify Eq. C.11, first let a and b be two arbitrary complex numbers.

The product aRe (b) can be reordered as

aRe (b) = Re (a) Re (b) + iIm (a) Re (b)

=
(
Re (a) Re (b)− Im (a) Im (b)

)
+ Im (a)

(
Im (b) + iRe (b)

)
= Re (ab) + ib∗Im (a) = Re (ab)− ib∗Im (a∗) (C.12)

Temporarily ignorning theR−1
su term and applying Eq. C.12 to the

(
M−1

lu (ω)
)∗

Re
((
Msu (ω)

)∗)
term in Eq. C.11 yields∑

s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

Re
((
Msu (ω)

)∗)
=
∑
s,u

M−1
js (ω)

(
Re
((
M−1

lu (ω)Msu (ω)
)∗)− iMsu (ω) Im

(
M−1

lu (ω)
))

. (C.13)
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Separating out the sums and freely changing Re
((
M−1

lu (ω)Msu (ω)
)∗)

to Re
(
M−1

lu (ω)Msu (ω)
)

then yields∑
s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

Re
((
Msu (ω)

)∗)
=
∑
s

M−1
js (ω)

∑
u

Re
(
M−1

lu (ω)Msu (ω)
)
− i
∑
u

Im
(
M−1

lu (ω)
)∑

s

M−1
js (ω)Msu (ω) .

(C.14)

Since M is symmetric, Msu (ω) in the first term can be freely changed to Mus (ω).

This implies that when the summation over u is brought inside the Re operator,

M−1
lu (ω)Msu (ω) will collapse to δls, which has no imaginary part. Thus, the entire

summation simplifies to δls. Similarly, the summation over s in the second term will

collapse into δju. These along with once again using the symmetry of M to freely

change M−1
lu (ω) to M−1

ul (ω) in the second term then yields∑
s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

Re
((
Msu (ω)

)∗)
=
∑
s

M−1
js (ω) δls − i

∑
u

Im
(
M−1

ul (ω)
)
δju

= M−1
jl (ω)− iIm

(
M−1

jl (ω)
)

= Re
(
M−1

jl (ω)
)
. (C.15)

Applying Eq. C.15 to Eq. C.11 then yields〈
˜δm
∗
l

(
ω′
)

˜δmj (ω)
〉

= 2
(

2πδ
(
ω − ω′

))m̄Re
(
M−1

jl (ω)
)

+
αβ2c̄

ω

∑
s,u

M−1
js (ω)

(
M−1

lu (ω)
)∗

Im
(
R−1
su (ω)

) .

(C.16)

This allows the power spectrum of mj to take the form

Sm (ω) =

∫
dω′

2π

〈
˜δm
∗
j

(
ω′
)

˜δmj (ω)
〉

= 2m̄Re
(
M−1

jj (ω)
)

+
2αβ2c̄

ω

∑
s,u

M−1
js (ω)

(
M−1

ju (ω)
)∗

Im
(
R−1
su (ω)

)
, (C.17)
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which by Eq. 3.10 yields a noise-to-signal ratio of

(δm)2

m̄2
=
Cm,T (0)

m̄2
≈ Sm (0)

m̄2T

=
2

m̄T
Re
(
M−1

jj (0)
)

+
2αν2c̄

r̄2T
lim
ω→0

∑
s,u

M−1
js (ω)

(
M−1

ju (ω)
)∗ 1

ω
Im
(
R−1
su (ω)

)
=

2

m̄T
Re
(
M−1

jj (0)
)

+
2ν2

µr̄T

∑
s,u

M−1
js (0)

(
M−1

ju (0)
)∗ (

δsu + Re
(
Σ (~xs − ~xu, 0)

))
,

(C.18)

where Eqs. B.2 and C.3 were used to alter the form of the prefactor in the second

term and Eqs. B.21 and B.22 were used to evaluated the ω → 0 limit. Eq. C.18

is the general expression for the error in the case of juxtacrine signaling and, when

only the extrinsic term proportional to Re
(
Σ (~xs − ~xu, 0)

)
is considered, is utilized in

calculating the phase boundaries in Fig. 3 of the main text.

From here, a few properties of M can be used to simplify Eq. C.18 in particular

limits of γ or N . First, for γ � ν, M (0) approximately becomes νIN , where IN is

the identity matrix of rank N . This makes inverting M trivial and reduces Eq. C.18

to

(δm)2

m̄2
=

2

νm̄T
+

2ν2

µr̄T

∑
s,u

1

ν2
δjsδju

(
δsu + Re

(
Σ (~xs − ~xu, 0)

))
=

1

νm̄T
+

2

µr̄T

(
1 + Re

(
Σ (0, 0)

))
=

1

2

1

πac̄DcT
+

2

µr̄T
+

1

νm̄T
, (C.19)

as seen in Eq. 4 of the main text. Since setting γ � ν is equivalent to eliminating

any communication between cells and the extrinsic noises from the ligand diffusion

and binding and unbinding process are unaffected by the presence of other cells as

determined in the previous section, the cell is effectively sensing no effects from the

presence of any other cell. Thus, this result must also be valid for a single isolated

cell.

Second, for γ � ν the cells are effectively communicating at infinite speed.

Physically, this implies that every cell in the cluster communicates with every other
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cell equally, which mathematically translates to the dictation that M−1
jl must be

independent of j and l. Let ~X be a column vector with unit entries. By Eq. C.6 it is

easy to see that

M ~X = (ν − iω) ~X. (C.20)

Thus, ~X is an eigenvector of M , which in turn implies it must also be an eigenvector

of M−1 satisfying

M−1 ~X = (ν − iω)−1 ~X. (C.21)

Since M−1
jl must be independent of j and l, the only way Eq. C.21 can be true is if

lim
γ→∞

M−1
jl =

1

N (ν − iω)
. (C.22)

This allows Eq. C.18 to reduce to

(δm)2

m̄2
=

2

νm̄TN
+

2ν2

µr̄T

∑
s,u

1

N2ν2

(
δsu + Re

(
Σ (~xs − ~xu, 0)

))

=
2

νm̄TN
+

2

µr̄TN2

N +
∑
s,u

Re
(
Σ (~xs − ~xu, 0)

) (C.23)

Once again, when only the extrinsic term proportional to Re
(
Σ (~xs − ~xu, 0)

)
is considered,

Eq. C.23 is utilized in calculating the data depicted in Fig. 2 of the main text.

Finally, Eq. C.18 can be easily represented under no assumptions about γ but for

the limiting case of N = 2 cells. When the cells are adjacent to each other, M and

M−1 take the form

M =

ν + γ − iω −γ

−γ ν + γ − iω

 (C.24a)

M−1 =
1

(ν − iω) (ν − iω + 2γ)

ν + γ − iω γ

γ ν + γ − iω

 . (C.24b)
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Let ~̀ = ~x1 − ~x2. With these and Eqs. B.21 and B.22, Eq. C.18 can be calculated to

yield

(δm)2

m̄2
=

2

m̄T
Re
(
M−1

11 (0)
)

+
2ν2

µr̄T

∑
s,u

M−1
js (0)

(
M−1

lu (0)
)∗ (

δsu + Re
(
Σ (~xs − ~xu, 0)

))

=
2

m̄T

ν + γ

ν (ν + 2γ)
+

2ν2

µr̄T

2
ν + γ

ν (ν + 2γ)

γ

ν (ν + 2γ)
Re

(
Σ
(
~̀, 0
))

+

((
ν + γ

ν (ν + 2γ)

)2

+

(
γ

ν (ν + 2γ)

)2
)(

1 + Re
(
Σ (0, 0)

))
=

1

πac̄DcT

ν2 + 3νγ + 3γ2

2 (ν + 2γ)2 +
1

µr̄T

2
(
ν2 + 2νγ + 2γ2

)
(ν + 2γ)2 +

1

νm̄T

2 (ν + γ)

ν + 2γ
,

(C.25)

where
∣∣∣~̀∣∣∣ has been set to be exactly 2a to reflect the necessity of the cells to be adjacent

to each other in order to exchange m molecules. Eq. C.25 can be seen to be easily

separable into the three distinct terms which reflect the noise inherited from the ligand

diffusion, binding-unbinding process, and m birth-death and exchange processes. Of

important note is that under the γ � ν limit Eq. C.25 reduces to Eq. B.26 plus the

term 2
νm̄T

. Conversely, under the γ � ν limit (which is equivalent to λ = 2a
√

γ
ν
� a)

the second fraction of each term go to 3
8
, 1, and 1 respectively. The first term, which

is the extrinsic noise, is reproduced in Eq. 4.20 of the main text.
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D. CALCULATIONS FOR AUTOCRINE SIGNALING

MODEL

We here assume that the cells produce a messenger molecule with the same production

and degradation rate as in the previous section, but instead of being exchanged

between neighboring cells they are secreted into the environment and diffuse with

a diffusion constant of Dρ. The purpose of this section is to calculate the statistics of

the long-time average of the number of messenger molecules within the volume of a

particular cell.

This system can be modeled via

dc

dt
= Dc∇2c−

∑
j

δ3
(
~x− ~xj

) drj
dt

+ ηc (D.1a)

drj
dt

= αc
(
~xj, t

)
− µrj + ηrj (D.1b)

dρ

dt
= Dρ∇2ρ− νρ+

∑
j

δ3
(
~x− ~xj

) (
βrj + ηpj

)
+ ηd, (D.1c)

where ρ (~x, t) is the density field of the diffusing messenger molecule and ηpj and ηd

are the production from the jth cell, and the degradation and diffusive noise terms,

respectively, as in the main text. Again, let ρ (~x, t) = ρ̄ (~x) + δρ (~x, t), where ρ̄ (~x) is

the mean value of ρ (~x, t) as a function of space. Since ρ is being produced at each

cell and allowed to diffuse, ρ̄ (~x) cannot be constant in space and by Eq. D.1c must

obey

0 = Dρ∇2ρ̄− νρ̄+
∑
j

δ3
(
~x− ~xj

)
βr̄j, (D.2)

which is solved by

ρ̄ (~x) =
1

4πDρ

∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ , (D.3)
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as in Eq. 8 of the main text. Additionally, Eq. D.1c also dictates

dδρ

dt
= Dρ∇2δρ− νδρ+

∑
j

δ3
(
~x− ~xj

) (
βδrj + ηpj

)
+ ηd, (D.4)

which can be Fourier transformed into

−iωδ̃ρ = −Dρk
2δ̃ρ− νδ̃ρ+

∑
j

ei
~k·(~x−~xj)

(
βδ̃rj + η̃pj

)
+ η̃d

=⇒ δ̃ρ =

∑
j e

i~k·~xj
(
βδ̃rj + η̃pj

)
+ η̃d

ν +Dρk2 − iω
. (D.5)

Since the noise in each rj is independent of the noise in the production and degradation/diffusion

of ρ, and the production and diffusion noises must be independent of each other, the

cross spectrum of ρ (~x, t) can be written as〈
δ̃ρ
∗ (~k′, ω′) δ̃ρ(~k, ω)〉 =

〈
∑

l e
i~k′·~xl

(
βδ̃rl (ω

′) + η̃pl (ω
′)
)

+ η̃d

(
~k′, ω′

)
ν +Dρk′

2 − iω′


∗

·


∑

j e
i~k·~xj

(
βδ̃rj (ω) + η̃pj (ω)

)
+ η̃d

(
~k, ω

)
ν +Dρk2 − iω

〉

=

∑
j,l e

i(~k·~xj−~k′·~xl)
(
β2
〈
δ̃r
∗
l (ω′) δ̃rj (ω)

〉
+
〈
η̃∗pl (ω

′) η̃pj (ω)
〉)

+

〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω′
) .

(D.6)

From here the spectra of both ηpj and ηd are needed. Since ηd is also a diffusive

noise term, it must follow the same formalism used in Eq. A.9. However, unlike c, ρ

can degrade, meaning a degradation term must be added to the noise. This yields〈
ηd
(
~x′, t′

)
ηd (~x, t)

〉
= 2Dρδ

(
t− t′

)
~∇x·~∇x′

(
ρ̄ (~x) δ3

(
~x− ~x′

))
+νρ̄ (~x) δ

(
t− t′

)
δ3
(
~x− ~x′

)
,

(D.7)

as in the mian text. Eq. D.7 can then be Fourier transformed to yield〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

∫
d3xd3x′dtdt′

〈
ηd
(
~x′, t′

)
ηd (~x, t)

〉(
ei
~k·~xeiωt

)(
ei
~k′·~x′eiω

′t′
)∗

= 2Dρ

∫
d3xd3x′dtdt′ei(

~k·~x−~k′·~x′)ei(ωt−ω
′t′)δ

(
t− t′

)
~∇x · ~∇x′

(
ρ̄ (~x) δ3

(
~x− ~x′

))
+ ν

∫
d3xd3x′dtdt′ei(

~k·~x−~k′·~x′)ei(ωt−ω
′t′)ρ̄ (~x) δ

(
t− t′

)
δ3
(
~x− ~x′

)
. (D.8)
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The δ function makes the t′ integrals trivial, which leaves the only time dependent

term in the integrands as eit(ω−ω
′). Eq. A.11 can then be used to solve the t integral

and transform δ3 (~x− ~x′) into an integral form in the first integral. In the second

integral, the δ3 function makes the x′ integral trivial. Combining these with Eq. D.3

allows Eq. D.8 to be written as〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

1

2π

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′ei(

~k·~x−~k′·~x′)

· ~∇x · ~∇x′


∑

j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

(∫ d3κ

(2π)3 e
i~κ·(~x−~x′)

)
+

ν

4πDρ

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)
∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ . (D.9)

Focusing on the first integral, moving the κ integral outside the gradient operators

before applying them then yields〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

1

(2π)4

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′d3κei(

~k·~x−~k′·~x′) (−i~κ)

·

i~κei~κ·(~x−~x′)∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ + ei~κ·(~x−~x

′)
∑
j

~∇x
βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|

√
ν
Dρ


+

ν

4πDρ

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)
∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

=
1

(2π)4

(
2πδ

(
ω − ω′

)) ∫
d3xd3x′d3κei~x·(

~k+~κ)e−i~x
′·(~k′+~κ)

·
∑
j

(
κ2 βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|

√
ν
Dρ − i~κ · ~∇x

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

)

+
ν

4πDρ

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)
∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ . (D.10)
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Since x′ only appears in the term e−i~x
′·(~k′+~κ), Eq. A.11 can again be used to solve the

x′ integral, which will then make the κ integral trivial due to the resultant δ function.

This causes Eq. D.10 to simplify to〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

1

2π

(
2πδ

(
ω − ω′

)) ∫
d3xd3κei~x·(

~k+~κ)δ3
(
~k′ + ~κ

)
·
∑
j

(
κ2 βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|

√
ν
Dρ − i~κ · ~∇x

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

)

+
ν

4πDρ

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)
∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

=
1

2π

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)

·
∑
j

βr̄j

(
k′

2 1∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ + i~k′ · ~∇x

1∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ

)

+
ν

4πDρ

(
2πδ

(
ω − ω′

)) ∫
d3xei~x·(

~k−~k′)
∑
j

βr̄j∣∣~x− ~xj∣∣e−|~x−~xj|
√

ν
Dρ . (D.11)

Let ~vj = ~x − ~xj in both integrals. Since the x integral is over all of x-space, this

transformation does not change the limits of integration. Additionally, d3x = d3vj

and ~∇x = ~∇vj due to x and vj being related by a simple translation. Utilizing this

and moving the summations in Eq. D.11 outside the integrals allows it to be written

as 〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

1

2π

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

∫
d3vje

i~vj ·(~k−~k′)

·

(
k′

2 1

vj
e
−vj
√

ν
Dρ + i~k′ · ~∇vj

1

vj
e
−vj
√

ν
Dρ

)
+

ν

4πDρ

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

∫
d3vj

1

vj
e
−vj
√

ν
Dρ ei~vj ·(

~k−~k′). (D.12)

Since 1

|~vj|e
−|~vj|√ ν

Dρ goes to 0 exponentially as
∣∣~vj∣∣ → ∞, the second term in the first

integral of Eq. D.12 can be integrated by parts with the net result of simply adding
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a factor of −1 and moving the gradient to apply to ei~vj ·(
~k−~k′). This causes Eq. D.12

to simplify to〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=

1

2π

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

·
∫
d3vj

1

vj
e
−vj
√

ν
Dρ

(
k′

2
ei~vj ·(

~k−~k′) − i~k′ · ~∇vje
i~vj ·(~k−~k′)

)
+

ν

4πDρ

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

∫
d3vj

1

vj
e
−vj
√

ν
Dρ ei~vj ·(

~k−~k′)

=
1

2π

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

∫
d3vj

~k · ~k′

vj
e
−vj
√

ν
Dρ ei~vj ·(

~k−~k′)

+
ν

4πDρ

(
2πδ

(
ω − ω′

))∑
j

βr̄je
i~xj ·(~k−~k′)

∫
d3vj

1

vj
e
−vj
√

ν
Dρ ei~vj ·(

~k−~k′). (D.13)

The integrals in Eq. D.13 can be solved via the known Fourier transformation∫
d3z

1

z
e−zlei~z·~κ =

4π

l2 + κ2
. (D.14)

Letting ~z = ~vj, l =
√

ν
Dρ

and ~κ = ~k − ~k′, substituting Eq. D.14 into Eq. D.13 yields

〈
η̃∗d

(
~k′, ω′

)
η̃d

(
~k, ω

)〉
=
(

2πδ
(
ω − ω′

)) 2Dρ
~k · ~k′ + ν

ν +Dρ

∣∣∣~k − ~k′∣∣∣2
∑
j

βr̄je
i~xj ·(~k−~k′). (D.15)

Returning to ηpj, since each cell produces ρ independently of each other cell,

the production noises must be independent. Additionally, since the production is a

birth only process, its power spectrum must simply be the mean propensity of the

production, which in turn yields〈
η̃∗pl
(
ω′
)
η̃pj (ω)

〉
= βr̄jδjl

(
2πδ

(
ω − ω′

))
, (D.16)
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as in the main text. Substituting Eqs. B.18, D.15, and D.16 into Eq. D.6 then yields〈
δ̃ρ
∗ (~k′, ω′) δ̃ρ(~k, ω)〉 =

2πδ (ω − ω′)(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω′
)

·

∑
j,l

ei(
~k·~xj−~k′·~xl)

(
β2 2αc̄

ω
Im
(
R−1
jl (ω)

)
+ βr̄jδjl

)
+

2Dρ
~k · ~k′ + ν

ν +Dρ

∣∣∣~k − ~k′∣∣∣2
∑
j

βr̄je
i~xj ·(~k−~k′)


=

2πδ (ω − ω′)(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω
)
∑

j,l

2αβ2c̄

ω
ei(

~k·~xj−~k′·~xl)Im
(
R−1
jl (ω)

)

+

1 +
2Dρ

~k · ~k′ + ν

ν +Dρ

∣∣∣~k − ~k′∣∣∣2
∑

j

βr̄je
i~xj ·(~k−~k′)

 , (D.17)

where all instances of ω′ outside the δ function have been freely replaced with ω due

to the δ function being a global factor.

Now, let mj (t) be the number of ρ molecules in the jth cell, which has volume Vj

and radius a. mj (t) can be calculated from ρ (~x, t) via

mj (t) =

∫
Vj

d3xρ (~x, t) . (D.18)

Once again, let mj (t) = m̄j + δmj (t), where m̄j is the mean value of mj (t). Since

ρ̄ (~x) is the mean value of ρ (~x, t), this implies

m̄j =

∫
Vj

d3xρ̄ (~x) =⇒ δmj (t) =

∫
Vj

d3xδρ (~x, t) . (D.19)

Fourier transforming the second part of Eq. D.19 then yields

˜δmj (ω) =

∫
Vj

d3x

∫
d3k

(2π)3 δ̃ρ
(
~k, ω

)
e−i

~k·~x. (D.20)

With this, the cross spectrum of mj (t) can be calculated to be〈
˜δm
∗
j

(
ω′
)

˜δmj (ω)
〉

=

〈(∫
Vj

d3x′
∫

d3k′

(2π)3 δ̃ρ
∗ (~k′, ω′) ei~k′·~x′)(∫

Vj

d3x

∫
d3k

(2π)3 δ̃ρ
(
~k, ω

)
e−i

~k·~x

)〉

=
1

(2π)6

∫
Vj

d3xd3x′
∫
d3kd3k′

〈
δ̃ρ
∗ (~k′, ω′) δ̃ρ(~k, ω)〉 ei(~k′·~x′−~k·~x). (D.21)
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Again, let ~vj = ~x− ~xj and ~v′j = ~x′ − ~xj and V be the volume of the cell centered at

the origin. This, along with Eq. D.17, transforms Eq. D.21 into〈
˜δm
∗
j

(
ω′
)

˜δmj (ω)
〉

=
1

(2π)6

∫
V

d3vjd
3v′j

∫
d3kd3k′

〈
δ̃ρ
∗ (~k′, ω′) δ̃ρ(~k, ω)〉 ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k)

= 2πδ
(
ω − ω′

) (
I1 (ω) + I2 (ω) + I3 (ω) + I4 (ω)

)
, (D.22)

where

I1 (ω) =
1

(2π)6

∫
V

d3vjd
3v′j

∫
d3kd3k′

1(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k)
∑
s,u

2αβ2c̄

ω
ei(

~k·~xs−~k′·~xu)Im
(
R−1
su (ω)

)
(D.23a)

I2 (ω) =
1

(2π)6

∫
V

d3vjd
3v′j

∫
d3kd3k′

1(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k)
∑
s

βr̄se
i~xs·(~k−~k′) (D.23b)

I3 (ω) =
1

(2π)6

∫
V

d3vjd
3v′j

∫
d3kd3k′

1(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k) 2Dρ
~k · ~k′

ν +Dρ

∣∣∣~k − ~k′∣∣∣2
∑
s

βr̄se
i~xs·(~k−~k′). (D.23c)

I4 (ω) =
1

(2π)6

∫
V

d3vjd
3v′j

∫
d3kd3k′

1(
ν +Dρk2 − iω

) (
ν +Dρk′

2 + iω
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k) ν

ν +Dρ

∣∣∣~k − ~k′∣∣∣2
∑
s

βr̄se
i~xs·(~k−~k′). (D.23d)

Beginning with I1 (ω), moving the summation outside the integral and collecting

terms exponential in ~k and ~k′ yields

I1 (ω) =
2αβ2c̄

(2π)6D2
ρω

∑
s,u

Im
(
R−1
su (ω)

) ∫
V

d3vjd
3v′j

∫
d3kd3k′

· 1(
ν−iω
Dρ

+ k2
)(

ν+iω
Dρ

+ k′2
)ei~k·(~xs−~xj−~vj)e−i~k′·(~xu−~xj−~v′j). (D.24)
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Inverting Eq. D.14 allows for the k and k′ integrals to be easily solved, simplifying

I1 (ω) to

I1 (ω) =
αβ2c̄

2
(
2πDρ

)2
ω

∑
s,u

Im
(
R−1
su (ω)

) ∫
V

d3vjd
3v′j

·

(
1∣∣~xp − ~xj − ~vj∣∣e−|~xs−~xj−~vj|

√
ν−iω
Dρ

) 1∣∣∣~xu − ~xj − ~v′j∣∣∣e
−|~xq−~xj−~v′j|

√
ν+iω
Dρ


=
αβ2c̄a4

2D2
ρω

∑
s,u

Im
(
R−1
su (ω)

)
Λ
(∣∣~xs − ~xj∣∣ , a, λ (ω)

)
· Λ
(∣∣~xu − ~xj∣∣ , a, λ (−ω)

)
, (D.25)

where a is the radius of the volume V ,

λ (ω) ≡
√

Dρ

ν − iω
= 4

√
D2
ρ

4 (ν2 + ω2)

(√
1 +

ν√
ν2 + ω2

+ i sgn (ω)

√
1− ν√

ν2 + ω2

)
,

(D.26)

and

Λ (x, y, z) ≡


2z3

xy2

(
x
z
−
(
1 + y

z

)
e−

y
z sinh

(
x
z

))
x < y

2z3

xy2
e−

x
z

(
y
z

cosh
(
y
z

)
− sinh

(
y
z

))
x > y

(D.27)

comes from the relation∫
V

d3z
1

|~κ− ~z|
e−
|~κ−~z|
l = 2πa2Λ (κ, a, l) , (D.28)

which can be shown by writing ~z in spherical coordinates and evaluating.



109

Moving to I2 (ω), following the exact same procedure as was done for I1 (ω) yields

I2 (ω) =
β

(2π)6D2
ρ

∑
s

r̄s

∫
V

d3vjd
3v′j

∫
d3kd3k′

· 1(
ν−iω
Dρ

+ k2
)(

ν+iω
Dρ

+ k′2
)ei~k·(~xs−~xj−~vj)e−i~k′·(~xs−~xj−~v′j)

=
β(

4πDρ

)2

∑
s

r̄s

∫
V

d3vjd
3v′j

·

(
1∣∣~xs − ~xj − ~vj∣∣e−|~xs−~xj−~vj|

√
ν−iω
Dρ

) 1∣∣∣~xs − ~xj − ~v′j∣∣∣e
−|~xs−~xj−~v′j|

√
ν+iω
Dρ


=
βa4

4D2
ρ

∑
s

r̄s

∣∣∣∣Λ(∣∣~xs − ~xj∣∣ , a, λ (ω)
)∣∣∣∣2 . (D.29)

Unfortunately, I3 (ω) cannot be solved by the same procedure as I1 (ω) and I2 (ω),

but it can be solved. First, utilizing Eq. D.14 again and letting l =
√

Dρ
ν

and ~κ = ~k−~k′

allows the factor of 2Dρ

ν+Dρ|~k−~k′|2 to be transformed into another integral, yielding

I3 (ω) =
1

(2π)7D2
ρ

∫
V

d3vjd
3v′j

∫
d3kd3k′d3z

1(
ν−iω
Dρ

+ k2
)(

ν+iω
Dρ

+ k′2
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k)
~k · ~k′

z
e
−z
√

ν
Dρ ei~z·(

~k−~k′)
∑
s

βr̄se
i~xs·(~k−~k′). (D.30)

Since vj and v′j only appear in a single exponential within the integrand, the factor of

~k · ~k′ can be replaced by ~∇vj · ~∇v′j
acting on the exponential. The gradient operators

can then be moved outside the k, k′, and z integrals while the summation is moved

outside of all the integrals to produce

I3 (ω) =
β

(2π)7D2
ρ

∑
s

r̄s

∫
V

d3vjd
3v′j ~∇vj · ~∇v′j

∫
d3kd3k′d3z

1(
ν−iω
Dρ

+ k2
)(

ν+iω
Dρ

+ k′2
)

· 1

z
e
−z
√

ν
Dρ ei(

~k′·~v′j−~k·~vj)ei~xj ·(
~k′−~k)ei~z·(

~k−~k′)ei~xs·(
~k−~k′). (D.31)
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Utilizing the inverse of Eq. D.14 to solve the k and k′ integrals then yields

I3 (ω) =
β

4 (2π)3D2
ρ

∑
s

r̄s

∫
V

d3vjd
3v′j

~∇vj · ~∇v′j

∫
d3z

1

z
e
−z
√

ν
Dρ

·

(
1∣∣~z + ~xs − ~xj − ~vj

∣∣e−|~z+~xs−~xj−~vj|√ ν−iω
Dρ

) 1∣∣∣~z + ~xs − ~xj − ~v′j
∣∣∣e−|~z+~xs−~xj−~v

′
j|
√
ν+iω
Dρ

 .

(D.32)

From here the z integral can be moved outside the vj and v′j integrals, which can in

turn be separated into the product of two independent integrals to produce

I3 (ω) =
β

4 (2π)3D2
ρ

∑
s

r̄s

∫
d3z

1

z
e
−z
√

ν
Dρ

(∫
V

d3vj ~∇vj

1∣∣~z + ~xs − ~xj − ~vj
∣∣e−|~z+~xs−~xj−~vj|√ ν−iω

Dρ

)

·

∫
V

d3v′j
~∇v′j

1∣∣∣~z + ~xs − ~xj − ~v′j
∣∣∣e−|~z+~xs−~xj−~v

′
j|
√
ν+iω
Dρ

 . (D.33)

Due to the fact that the vj and v′j integrands in Eq. D.33 depend only on
∣∣~z + ~xs − ~xj − ~vj

∣∣
and

∣∣∣~z + ~xs − ~xj − ~v′j
∣∣∣ respectively, taking the gradient with respect to vj and v′j is

identical to taking the gradient with respect to z and multiplying by a factor of −1

in both cases. The extra factors of −1 can be ignored, however, as they will multiply

to unity. This allows the gradients to be moved outside of the vj and v′j integrals,

which in turn allows them to be solved via Eq. D.28 to produce

I3 (ω) =
βa4

8πD2
ρ

∑
s

r̄s

∫
d3z

1

z
e
−z
√

ν
Dρ

∣∣∣∣~∇zΛ
(∣∣~z + ~xs − ~xj

∣∣ , a, λ (ω)
)∣∣∣∣2 . (D.34)

Let ~y = ~z + ~xs − ~xj. Since the z integral is over all of z-space, this transformation

does not change the limits of integration. Additionally, d3y = d3z and ~∇y = ~∇z since

y and z are related by a simple translation. This transformation allows Eq. D.34 to

be written as

I3 (ω) =
βa4

8πD2
ρ

∑
s

r̄s

∫
d3y

1∣∣~y + ~xj − ~xs
∣∣e−|~y+~xj−~xs|√ ν

Dρ

∣∣∣~∇yΛ
(
y, a, λ (ω)

)∣∣∣2 . (D.35)

Let Vy be the spherical volume in y-space centered at the origin with radius a and

V ′y be all of y-space excluding Vy. These along with Eq. D.27 allow the integral
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in Eq. D.35 to be broken into two separate pieces along the piecewise boundary of

Λ
(
y, a, λ (ω)

)
to produce

I3 (ω) =
βa4

8πD2
ρ

∑
s

r̄s

∫
Vy

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|√ ν
Dρ

·

∣∣∣∣∣∣∣~∇y
2

ya2

(
Dρ

ν − iω

) 3
2

y√ν − iω
Dρ

−

1 + a

√
ν − iω
Dρ

 e
−a
√
ν−iω
Dρ sinh

y√ν − iω
Dρ



∣∣∣∣∣∣∣
2

+

∫
V ′y

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|√ ν
Dρ

·

∣∣∣∣∣∣∣~∇y
2

ya2

(
Dρ

ν − iω

) 3
2

e
−y
√
ν−iω
Dρ

a√ν − iω
Dρ

cosh

a√ν − iω
Dρ

− sinh

a√ν − iω
Dρ



∣∣∣∣∣∣∣
2

.

(D.36)

Performing the gradient operators then yields

I3 (ω) =
βa4

8πD2
ρ

∑
s

r̄s

∫
Vy

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|λ(0)

·

∣∣∣∣∣∣~yy 2
(
λ (ω)

)3

y2a2

(
1 +

a

λ (ω)

)
e−

a
λ(ω)

(
sinh

(
y

λ (ω)

)

− y

λ (ω)
cosh

(
y

λ (ω)

))∣∣∣∣∣∣
2

+

∫
V ′y

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|λ(0)

·

∣∣∣∣∣∣~yy 2
(
λ (ω)

)3

y2a2

(
1 +

y

λ (ω)

)
e−

y
λ(ω)

(
sinh

(
a

λ (ω)

)

− a

λ (ω)
cosh

(
a

λ (ω)

))∣∣∣∣∣∣
2

. (D.37)
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Once the magnitude squared of each vector is taken, the only term in either integral

that depends on the angle of ~y will be
∣∣~y + ~xj − ~xs

∣∣. Thus, the angular portion of

each integral can be performed to yield

I3 (ω) =
β
∣∣λ (ω)

∣∣6
D2
ρ

∑
s

r̄s

∫ a

0

dy
λ (0)

y3
∣∣~xs − ~xj∣∣

e−
∣∣∣∣y−|~xs−~xj|∣∣∣∣

λ(0) − e−
y+|~xs−~xj|

λ(0)


·

∣∣∣∣∣∣
(

1 +
a

λ (ω)

)
e−

a
λ(ω)

(
sinh

(
y

λ (ω)

)
− y

λ (ω)
cosh

(
y

λ (ω)

))∣∣∣∣∣∣
2

+

∫ ∞
a

dy
λ (0)

y3
∣∣~xs − ~xj∣∣

e−
∣∣∣∣y−|~xs−~xj|∣∣∣∣

λ(0) − e−
y+|~xs−~xj|

λ(0)


·

∣∣∣∣∣∣
(

1 +
y

λ (ω)

)
e−

y
λ(ω)

(
sinh

(
a

λ (ω)

)
− a

λ (ω)
cosh

(
a

λ (ω)

))∣∣∣∣∣∣
2

. (D.38)

The integrals in Eq. D.38 are well defined and very involved. Nonetheless, they can

be performed piece-by-piece with the aid of integral tables or symbolic computational

solvers. The result is

I3 (ω) =
βa4

D2
ρ

∑
s

r̄s


∣∣∣∣(1 + a

λ(ω)

)
e−

a
λ(ω)

∣∣∣∣2
18

Υ
(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (ω)

)

+

∣∣∣∣∣∣
(
λ (ω)

a

)3
(

sinh

(
a

λ (ω)

)
− a

λ (ω)
cosh

(
a

λ (ω)

))∣∣∣∣∣∣
2

Ξ
(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (ω)

)
 ,

(D.39)
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where

Υ (x, y, z, w) ≡



9z|w|6 sinh(xz )
xy6

e−
y
z

(
2yRe

(
1
w

)
sinh

(
2yRe

(
1
w

))
+2yIm

(
1
w

)
sin
(

2yIm
(

1
w

))
−
(
1− y

z

)(
cosh

(
2yRe

(
1
w

))
− cos

(
2yIm

(
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w

))))
−9|w|6
x2y4
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cosh

(
2xRe

(
1
w

))
− cos
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2xIm

(
1
w
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− 9|w|6

2xy4z
e−

x
z
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Shi

(
x
(

1
z
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(

1
w

)))
+ Shi
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1
z
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(
1
w
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−Shi
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w
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(

1
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(
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w
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(
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(

1
w
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+ Ei
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x
(

1
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− 2Re

(
1
w
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−Ei

(
x
(

1
z

+ 2iIm
(

1
w

)))
− Ei

(
x
(

1
z
− 2iIm

(
1
w

)))
−Ei

(
y
(

1
z

+ 2Re
(

1
w

)))
− Ei

(
y
(

1
z
− 2Re

(
1
w

)))
+Ei

(
y
(

1
z

+ 2iIm
(

1
w

)))
+ Ei

(
y
(

1
z
− 2iIm

(
1
w

))))
x < y

9z|w|6 sinh( yz )
xy6

e−
x
z

(
2yRe

(
1
w

)
sinh

(
2yRe

(
1
w

))
+2yIm

(
1
w

)
sin
(

2yIm
(

1
w

)))
−

9z|w|6
(

sinh( yz )+ y
z

cosh( yz )
)

xy6
e−

x
z

·
(
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(

2yRe
(

1
w

))
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(
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(
1
w
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− 9|w|6

2xy4z
e−

x
z

(
Shi

(
y
(

1
z

+ 2Re
(

1
w

)))
+ Shi

(
y
(

1
z
− 2Re

(
1
w

)))
−Shi

(
y
(

1
z

+ 2iIm
(

1
w

)))
− Shi

(
y
(

1
z
− 2iIm

(
1
w
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x > y,
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Ξ (x, y, z, w) ≡



z sinh(xz )
x

((
1 + y

(
2Re

(
1
w

)
− 1

z

))
e
−y
(

2Re( 1
w)+ 1

z

)

−y2

z2
Ei

(
y
(

2Re
(

1
w

)
+ 1

z

)))
x < y

z
x
e−

x
z

e−2yRe( 1
w)
((

1 + 2yRe
(

1
w

))
sinh

(
y
z

)
+ y

z
cosh

(
y
z

))

− y2

2z2

(
e

2x
z Ei

(
x
(

2Re
(

1
w

)
+ 1

z

))
− Ei

(
x
(

2Re
(

1
w

)
− 1

z

))
−Ei

(
y
(

2Re
(

1
w

)
+ 1

z

))
+ Ei

(
y
(

2Re
(

1
w

)
− 1

z
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− y2

xz
e
−x
(

2Re( 1
w)− 1

z

) x > y,

(D.41)

Shi (x) ≡
∫ x

0

dt
sinh (t)

t
, (D.42)

and

Ei (x) ≡
∫ ∞
x

dt
e−t

t
. (D.43)

Lastly, I4 (ω) must be solved. Similarly utilizing Eq. D.14 allows Eq. D.23d to be

transformed into

I4 (ω) =
ν

2 (2π)7D3
ρ

∫
V

d3vjd
3v′j

∫
d3kd3k′d3z

1(
ν−iω
Dρ

+ k2
)(

ν+iω
Dρ

+ k′2
)

· ei(~k′·~v′j−~k·~vj)ei~xj ·(~k′−~k) 1

z
e
−z
√

ν
Dρ ei~z·(

~k−~k′)
∑
s

βr̄se
i~xs·(~k−~k′). (D.44)

Utilizing the inverse of Eq. D.14 to solve the k and k′ integrals then yields

I4 (ω) =
βν

8 (2π)3D3
ρ

∑
s

r̄s

∫
V

d3vjd
3v′j

∫
d3z

1

z
e
−z
√

ν
Dρ

·

(
1∣∣~z + ~xs − ~xj − ~vj

∣∣e−|~z+~xs−~xj−~vj|√ ν−iω
Dρ

) 1∣∣∣~z + ~xs − ~xj − ~v′j
∣∣∣e−|~z+~xs−~xj−~v

′
j|
√
ν+iω
Dρ

 .

(D.45)
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From here the z integral can be moved outside the vj and v′j integrals, which can in

turn be separated into the product of two independent integrals to produce

I4 (ω) =
βν

8 (2π)3D3
ρ

∑
s

r̄s

∫
d3z

1

z
e
−z
√

ν
Dρ

(∫
V

d3vj
1∣∣~z + ~xs − ~xj − ~vj

∣∣e−|~z+~xs−~xj−~vj|√ ν−iω
Dρ

)

·

∫
V

d3v′j
1∣∣∣~z + ~xs − ~xj − ~v′j

∣∣∣e−|~z+~xs−~xj−~v
′
j|
√
ν+iω
Dρ

 . (D.46)

The vj and v′j integrals can then be solved via Eq. D.28 to produce

I4 (ω) =
βνa4

16πD3
ρ

∑
s

r̄s

∫
d3z

1

z
e
−z
√

ν
Dρ

∣∣∣∣Λ(∣∣~z + ~xs − ~xj
∣∣ , a, λ (ω)

)∣∣∣∣2 . (D.47)

Again, let ~y = ~z+~xs−~xj as well as Vy be the spherical volume in y-space centered at

the origin with radius a and V ′y be all of y-space excluding Vy. These transformations

allow the Λ function to be split along its piecewise boundary again and Eq. D.47 to

be written as

I4 (ω) =
βνa4

16πD3
ρ

∑
s

r̄s

∫
Vy

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|√ ν
Dρ

·

∣∣∣∣∣∣2
(
λ (ω)

)3

ya2

(
y

λ (ω)
−
(

1 +
a

λ (ω)

)
e−

a
λ(ω) sinh

(
y

λ (ω)

))∣∣∣∣∣∣
2

+

∫
V ′y

d3y
1∣∣~y + ~xj − ~xs

∣∣e−|~y+~xj−~xs|√ ν
Dρ

·

∣∣∣∣∣∣2
(
λ (ω)

)3

ya2
e−

y
λ(ω)

(
a

λ (ω)
cosh

(
a

λ (ω)

)
− sinh

(
a

λ (ω)

))∣∣∣∣∣∣
2

. (D.48)
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Once again, the only term in either integral that depends on the angle of ~y will be∣∣~y + ~xj − ~xs
∣∣. Thus, the angular portion of each integral can be performed to yield

I4 (ω) =
βν
∣∣λ (ω)

∣∣6
2D3

ρ

∑
s

r̄s

∫ a

0

dy
λ (0)

y
∣∣~xs − ~xj∣∣

e−
∣∣∣∣y−|~xs−~xj|∣∣∣∣

λ(0) − e−
y+|~xs−~xj|

λ(0)


·

∣∣∣∣∣ y

λ (ω)
−
(

1 +
a

λ (ω)

)
e−

a
λ(ω) sinh

(
y

λ (ω)

)∣∣∣∣∣
2

+

∫ ∞
a

dy
λ (0)

y
∣∣~xs − ~xj∣∣

e−
∣∣∣∣y−|~xs−~xj|∣∣∣∣

λ(0) − e−
y+|~xs−~xj|

λ(0)


·

∣∣∣∣∣∣e− y
λ(ω)

(
a

λ (ω)
cosh

(
a

λ (ω)

)
− sinh

(
a

λ (ω)

))∣∣∣∣∣∣
2

. (D.49)

Relying again on integral tables or computational solvers, these integrals can also be

performed and yield

I4 (ω) =
βν
∣∣λ (ω)

∣∣6
2D3

ρ

∑
s

r̄s

(
Ψ
(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (ω)

)
+ Ω

(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (ω)
))

(D.50)
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where

Ψ (x, y, z, w) =


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z
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(
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z

)
e−

y
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(
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z
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y
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(
x
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(
1
w
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(
y
(

1
z
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(

1
w
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−Ei

(
y
(

1
z
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(
1
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(
y
(

1
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(

1
w
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(
y
(

1
z
− 2iIm

(
1
w
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(
y
z
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(
y
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)
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(
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z
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(
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(

1
z

+ 2Re
(

1
w

)))
+Shi
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(

1
z
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(
1
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a
(

1
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(

1
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(
a
(

1
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− 2iIm

(
1
w
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x > y,
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and

Ω (x, y, z, w) =


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(
x
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)
− sinh

(
y
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)∣∣∣2 Ei

(
x
(

1
z

+ 2Re
(
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(
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− sinh
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)∣∣∣2(Ei

(
y
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2Re
(

1
w

)
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z
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−Ei

(
y
(

2Re
(

1
w

)
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z

))
− Ei

(
x
(
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(

1
w

)
− 1

z

))
+Ei

(
x
(

2Re
(

1
w

)
+ 1
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x > y.
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With the power spectrum of mj (t) solved, the mean m̄j needs to now be calculated

in order to obtain the noise-to-signal ratio. Combining Eqs. D.3 and D.19 yields

m̄j =

∫
Vj

d3x
1

4πDρ

∑
l

βr̄l
|~x− ~xl|

e
−|~x−~xl|

√
ν
Dρ . (D.53)

Again, let ~vj = ~x − ~xj. Utilizing this substitution and Eq. D.28 to solve Eq. D.53

yields

m̄j =
β

4πDρ

∑
l

r̄l

∫
Vj

d3vj
1∣∣∣~vj − (~xl − ~xj)∣∣∣e−

∣∣∣ ~vj−(~xl−~xj)
∣∣∣√ ν

Dρ

=
βa2

2Dρ

∑
l

r̄lΛ
(∣∣~xl − ~xj∣∣ , a, λ (0)

)
(D.54)

Finally, combining Eqs. D.22, D.25, D.29, D.39, D.50, and D.54 yields the time

averaged noise-to-signal ratio of mj (t). To determine the criteria for T in this

equation, it is important to note that ω only appears in λ (ω), which directly compares

ω to ν in Eq. D.26. However, ν can be taken to 0 without complication, thus leaving ω

to be directly compared to Dρ
a2

as λ (ω) is always found in proportion to a or
∣∣~xi − ~xj∣∣,

but
∣∣~xi − ~xj∣∣ can be taken to ∞ without complication as well. Thus, ω � ν must

be true unless ν � Dρ
a2

, at which point ω � Dρ
a2

must be true. This in turn implies
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T � τ4 =
(
ν + Dρ

a2

)−1

can be taken as the appropriate criterion for T . Once this is

met, the time averaged noise-to-signal ratio of mj (t) can be calculated to be

(δmj)
2

m̄2
j

=
Sm (0)

m̄2
jT

=
1

m̄2
jT

∫
dω′

2π

〈
˜δm
∗
j

(
ω′
)

˜δmj (0)
〉

=
I1 (0) + I2 (0) + I3 (0) + I4 (0)(

βa2

2Dρ

∑
l r̄lΛ

(∣∣~xl − ~xj∣∣ , a, λ (0)
))2

T

=
1

βT

∑
l

r̄lΛ
(∣∣~xl − ~xj∣∣ , a, λ (0)
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
∑
s

r̄s

∣∣∣∣Λ(∣∣~xs − ~xj∣∣ , a, λ (0)
)∣∣∣∣2

+
∑
s,u

2αβc̄ lim
ω→0

(
1

ω
Im
(
R−1
su (ω)

))
Λ
(∣∣~xs − ~xj∣∣ , a, λ (0)

)
Λ
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)

+
∑
s

4r̄s


∣∣∣∣(1 + a
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)
e−

a
λ(0)

∣∣∣∣2
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Υ
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(
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sinh
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a
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λ (0)
cosh

(
a

λ (0)

))∣∣∣∣∣∣
2

Ξ
(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (0)

)


+
∑
s

2r̄s

(
λ (0)

a

)4(
Ψ
(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (0)

)
+ Ω

(∣∣~xs − ~xj∣∣ , a, λ (0) , λ (0)
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

(D.55)

Eq. D.55 is the general expression for the error in the case of autocrine signaling.

Additionally, the data presented in Fig. 3 of the main text is obtained by separating

Eq. D.55 into its extrinsic and intrinsic terms and considering only those extrinsic

terms caused by the ligand diffusion.

Eq. D.55 can be greatly simplified in form under the limit ν � Dρ
a2

, which by Eq.

D.26 implies λ (0)� a. When this limit is taken, the Ψ and Ω functions vanish due
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to their original multiplication by ν in Eq. D.23d while the Λ, Υ, and Ξ functions

simplify to

lim
z→∞

Λ (x, y, z) ≡ Λ∞

(
x

y

)
=


1− 1

3

(
x
y

)2
x
y
< 1

2y
3x

x
y
> 1,

(D.56a)

lim
z→∞

Υ (x, y, z, z) ≡ Υ∞

(
x

y

)
=


1− 1

5

(
x
y

)4
x
y
< 1

4y
5x

x
y
> 1,

(D.56b)

lim
z→∞

Ξ (x, y, z, z) ≡ Ξ∞

(
x

y

)
=


1 x

y
< 1

2y
x
−
(
y
x

)2 x
y
> 1,

(D.56c)

which can be shown by Taylor expanding all the functions in Eqs. D.27, D.40, and

D.41 for small 1
z

and evaluating. Utilizing the same method for the other instances

of λ (0) in Eq. D.55 allows it to simplify to

lim
λ(0)→∞
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Λ∞

(∣∣~xs − ~xj∣∣
a

)
Λ∞

(∣∣~xu − ~xj∣∣
a

)

+
∑
s

4r̄s

 1

18
Υ∞

(∣∣~xs − ~xj∣∣
a

)
+

1

9
Ξ∞

(∣∣~xs − ~xj∣∣
a

)
 (D.57)

The data presented in Fig. 2 of the main text is similarly obtained by separating Eq.

D.57 into its extrinsic and intrinsic terms and considering only those extrinsic terms

caused by the ligand diffusion.

For the two cell case Eq. D.55 can be further evaluated. Let ` = |~x1 − ~x2|. Utilizing

Eqs. B.21 and B.22 to evaluate R−1 and the knowledge that r̄1 = r̄2 = r̄ then yields

for either cell
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(δm)2

m̄2
=

1

βT

(
1 + Λ∞

(
`

a

))−2
1

r̄

1 +

(
Λ∞

(
`

a

))2


+
2αβc̄

r̄2

1 + Re
(
Σ (0, 0)

)
µ2

1 +

(
Λ∞

(
`

a

))2
+ 2

Re
(
Σ (l, 0)

)
µ2

Λ∞

(
`

a

)
+

2

9r̄

(
3 + Υ∞

(
`

a

)
+ 2Ξ∞

(
`

a

)) (D.58)

Utilizing the relation between r̄ and c̄ in Eq. B.2 as well as the explicit form of Σ (~x, 0)

in Eqs. B.6 and B.7 (again setting g = 4) allows Eq. D.58 to be simplified to

(δm)2

m̄2
=

1

πac̄DcT

1 +

(
Λ∞

(
`
a

))2

+ 2a
`
Λ∞

(
`
a

)
2

(
1 + Λ∞

(
`
a

))2 +
1

µr̄T

2

(
1 +

(
Λ∞

(
`
a

))2
)

(
1 + Λ∞

(
`
a

))2

+
1

βr̄T

5
3

+

(
Λ∞

(
`
a

))2

+ 2
9
Υ∞

(
`
a

)
+ 4

9
Ξ∞

(
`
a

)
(

1 + Λ∞

(
`
a

))2 (D.59)

The first term is the extrinsic noise, as in Eq. 4.28 of the main text. Let r̄ be large

enough such that the second two terms in Eq. D.59 can be neglected. Additionally,

assume ` > a. Under these, Eq. D.56a can be used to reduce Eq. D.59 to

(δm)2

m̄2
=

1

πac̄DcT

1 +
(

2a
3`

)2
+ 2a

`
2a
3`

2
(
1 + 2a

3`

)2 =
1

πac̄DcT

1 + 16a2

9`2

2
(
1 + 2a

3`

)2 (D.60)

The coefficient of 1
πac̄DcT

in Eq. D.60 achieves its minimum value of 2
5

at `∗ = 8
3
a,

which is within the bounds of the ` > a assumption and is also presented in Eq. 4.29

of the main text.
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E. CALCULATIONS FOR DIRECT TRANSPORT MODEL

We here assume a system of N+1 cells, one source cell and N target cells. The source

cell produces morphogen at rate β, and we assume each target cell extends a cytoneme

to the source cell capable of transporting the morphogen. To model the dynamics of

the morphogen within the cytoneme, we use the model for [60] as it was shown that

this model is capable of reproducing experimentally measured accumulation times.

The steady state of this model was derived in [60], but for completeness and clarity

of notational differences, we rederive the steady state solution here.

Let uj+ (x, t) and uj− (x, t) be the density of forward and backward moving morphogen

in the cytoneme leading to the jth target cell respectively and v+ and v− be the

forward and backward moving velocities respectively. The source cell is capable of

depositing morphogen into any cytoneme at a rate γ. The cytoneme can then deposit

morphogen into the jth target cell at rate rj+ (t) = v+u
j
+

(
Lj, t

)
, where Lj is the

length of the jth cytoneme, and back into the source cell at rate rj− (t) = v−u
j
− (0, t).

Additionally, backward moving morphogen can become forward moving at rate ζ−

and vice versa at rate ζ+. Putting all this together with a production rate of β in the

source cell and degradation rate ν in each target cell yields the equations

∂m0

∂t
= β −

∑
j

(
γm0 − rj−

)
, (E.1)

∂uj+
∂t

= −v+
∂uj+
∂x

+ ζ−u
j
− − ζ+u

j
+ + γm0δ (x)− rj+δ

(
x− Lj

)
, (E.2)

∂uj−
∂t

= v−
∂uj−
∂x
− ζ−uj− + ζ+u

j
+ − r

j
−δ (x) , (E.3)

∂mj

∂t
= rj+ − νmj. (E.4)
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To solve Eqs. E.1-E.4, let J j (x) be defined as

J j (x) = v+ū
j
+ (x)− v−ūj− (x) . (E.5)

Setting the left-hand sides of Eqs. E.2 and E.3 to 0 and summing them then yields

0 = −∂J
j (x)

∂x
+
(
γm̄0 − r̄j−

)
δ (x)− r̄j+δ

(
x− Lj

)
. (E.6)

The fact that uj+, uj−, and J j should only be defined within the jth cytoneme

can be imposed by making each proportional to H
(
x, Lj

)
= Θ (x) − Θ

(
x− Lj

)
,

where Θ (x) is the Heaviside step function. Given this, let J j (x) = Kj (x)H
(
x, Lj

)
.

Substituting this into Eq. E.6 then yields

0 = −H
(
x, Lj

) ∂Kj (x)

∂x
−Kj (x)

∂H
(
x, Lj

)
∂x

+
(
γm̄0 − r̄j−

)
δ (x)− r̄j+δ

(
x− Lj

)
= −H

(
x, Lj

) ∂Kj (x)

∂x
+
(
γm̄0 − r̄j− −Kj (x)

)
δ (x)−

(
r̄j+ −Kj

(
Lj
))
δ
(
x− Lj

)
.

(E.7)

Eq. E.7 can be solved by taking Kj (x) to be constant in space with a value of

r̄j+ = v+ū
j
+

(
Lj
)

and imposing the condition

γm̄0 − r̄j− − r̄
j
+ = γm̄0 − v−wj− (0)− v+w

j
+

(
Lj
)

= 0. (E.8)

Now let ūj+ (x) = wj+ (x)H
(
x, Lj

)
and ūj− (x) = wj− (x)H

(
x, Lj

)
. Substituting these

and Kj (x) = v+ū
j
+

(
Lj
)

= v+w
j
+

(
Lj
)

into Eq. E.6 then allows wj− (x) to be written

as

wj− (x) =
v+

v−

(
wj+ (x)− wj+

(
Lj
))
. (E.9)

Once again setting the left-hand side of Eq. E.2 to 0, it can be rewritten in terms of

wj+ (x) and wj− (x). Substituting in Eq. E.9 as well as r̄j+ = v+w+

(
Lj
)

then yields
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0 = −v+w
j
+ (x)

∂H
(
x, Lj

)
∂x

− v+H
(
x, Lj

) ∂wj+ (x)

∂x
+ ζ−

v+

v−

(
wj+ (x)− w+

(
Lj
))
H
(
x, Lj

)
− ζ+w

j
+ (x)H

(
x, Lj

)
+ γm̄0δ (x)− v+w

j
+

(
Lj
)
δ
(
x− Lj

)
=

(
−v+

∂wj+ (x)

∂x
+ v+κw

j
+ (x)− ζ−

v+

v−
w+

(
Lj
))

H
(
x, Lj

)
+
(
γm̄0 − v+w

j
+ (0)

)
δ (x) ,

(E.10)

where

κ =
ζ−
v−
− ζ+

v+

. (E.11)

Once Eq. E.9 is substituted into Eq. E.8, the final two terms in Eq. E.10 are

seen to vanish. This also allows the factor of H
(
x, Lj

)
to be ignored if it is assumed

the first three terms vanish for all x. Given this, Eq. E.10 can be solved by assuming

wj+ (x) takes the form C (eκx − 1) + wj+ (0). Substituting this into Eq. E.12 yields

0 = −v+
∂

∂x

(
C (eκx − 1) + wj+ (0)

)
+ v+κ

(
C (eκx − 1) + wj+ (0)

)
− ζ−

v+

v−

(
C
(
eκLj − 1

)
+ wj+ (0)

)
= −ζ+v− − ζ−v+

v−

(
wj+ (0)− C

)
− ζ−

v+

v−

(
C
(
eκLj − 1

)
+ wj+ (0)

)
= −ζ+

(
wj+ (0)− C

(
1− eφ+κLj

))
, (E.12)

where

φ = log

(
ζ−v+

ζ+v−

)
. (E.13)

Solving Eq. E.8 for wj+ (0) and Eq. E.12 for C then allows wj+ (x) and wj− (x) to be

written as

wj+ (x) =
wj+ (0)

1− eφ+κLj
(eκx − 1) + wj+ (0) =

γm̄0

v+

eκx − eφ+κLj

1− eφ+κLj
, (E.14)

wj− (x) =
v+

v−

(
γm̄0

v+

eκx − eφ+κLj

1− eφ+κLj
− γm̄0

v+

eκLj − eφ+κLj

1− eφ+κLj

)
=
γm̄0

v−

eκx − eκLj
1− eφ+κLj

. (E.15)
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This in turn forces r̄j+ and r̄j− to take the forms

r̄j+ = v+w
j
+

(
Lj
)

= γm̄0e
κLj

1− eφ

1− eφ+κLj
, (E.16)

r̄j− = v−w
j
− (0) = γm̄0

1− eκLj
1− eφ+κLj

. (E.17)

With these mean values solved for, m̄0 can now be solved. Setting the left-hand

side of Eq. E.1 to 0 and substituting in Eq. E.17 yields

0 = β −
∑
j

(
γm̄0 − γm̄0

1− eκLj
1− eφ+κLj

)
= β − m̄0

∑
j

γeκLj
1− eφ

1− eφ+κLj
, (E.18)

which can then be solved to yield

m̄0 =
β∑

j Γ
(
Lj
) , (E.19)

where

Γ (L) = γeκL
1− eφ

1− eφ+κL
. (E.20)

Finally, the left-hand side of Eq. E.4 can be set to 0 and Eq. E.16 substituted in to

yield

0 = m̄0Γ
(
Lj
)
− νm̄j, (E.21)

which when combined with Eq. E.19 can be solved to yield

m̄j =
β

ν

Γ
(
Lj
)∑

k Γ (Lk)
. (E.22)

Based on the form of Eq. E.21, Γ(Lj) can be inferred to be an effective transport

rate for morphogen molecules to go from the source cell to the jth target cell. This in

turn implies that the fraction of total morphogen molecules that the jth target cell

should receive is Γ(Lj)/
∑

k Γ(Lk), which is precisely what is seen in Eq. E.22 given
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that β/ν must be the total number of morphogen molecules within all the target cells.

Of important note is that since φ and κ must have the same sign, Γ(L) as defined in

Eq. E.20 cannot be negative.
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F. CALCULATIONS FOR

SYNTHESIS-DIFFUSION-CLEARANCE MODEL

We here assume there is a single source cell which produces morphogen at rate β, and

that the morphogen is subsequently released into the extracellular environment where

it freely diffuses at rate D. The morphogen can also spontaneously degrade at rate ν.

We will look at diffusion in a multitude of different spaces with different dimensions

as well as morphogen sources that span a multitude of different dimensions. In each

case, the sources will secrete morphogen molecules into a density field c which must

follow

∂c

∂t
= D∇2c+ ηD − νc− ην +

(
β + ηβ

)
δSP−SO (~x) , (F.1)

where SP is the number of spatial dimensions, SO is the dimensionality of the source,

and ∇2 is taken over all SP dimensions. Each η term is a Langevin noise term

that represents Gaussian white noise for the diffusion, degradation, and production

processes respectively. Of important note is that δSP−SO (~x) is a δ function only

in the last SP − SO dimensions of the space. So, for example, if there was a 1

dimensional source in 3 dimensional space, then δ3−1 (~x) would be a δ function in the

ŷ and ẑ directions but not the x̂ direction. This means that β and ηβ will have units

of T−1L−SO, where T is time and L is space.

We can now assume c has reached a steady state and separate it into c = c̄ + δc,

which in turn allows Eq. F.1 to separate into

0 = D∇2c̄− νc̄+ βδSP−SO (~x) (F.2)

∂δc

∂t
= D∇2δc+ ηD − νδc− ην + ηβδ

SP−SO (~x) . (F.3)
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Fourier transforming Eq. F.2 in space and dividing it by ν then yields

0 = −λ2
∣∣∣~k∣∣∣2 ˜̄c− ˜̄c+

βλ2

D
(2π)SO δSO

(
~k
)

=⇒ ˜̄c =
βλ2

D

(2π)SO δSO
(
~k
)

1 + λ2

∣∣∣~k∣∣∣2 , (F.4)

where λ =
√
D/ν.

Of similarly important note is that δSO
(
~k
)

is a δ function only in the first SO

dimensions of k-space. So in the 1 dimensional source, 3 dimensional space example

δSO
(
~k
)

would be a δ function in the x̂ direction of k-space but not the ŷ or ẑ

directions.

This allows ρ̄ to be written as

c̄ (~x) =

∫
dSPk

(2π)SP
e−i

~k·~x˜̄c
(
~k
)

=
βλ2

D

∫
dSPk

(2π)SP
e−i

~k·~x
(2π)SO δSO

(
~k
)

1 + λ2

∣∣∣~k∣∣∣2
=
βλ2

D

∫
dSP−SOk

(2π)SP−SO
e−i

~k·~x 1

1 + λ2

∣∣∣~k∣∣∣2 =
βλ2−(SP−SO)

D
PSP−SO

(
|~x|
λ

)
, (F.5)

where

PN (x) =

∫
dNu

(2π)N
e−i~u·~x

1

1 +|~u|2
. (F.6)

It is important to note that PN does not integrate over all available dimensions,

but only over the lastN dimensions of the space. This in turn means that its argument

can only depend on the last N dimensions of any input vector. Returning to the 1

dimensional source, 3 dimensional space example, P3−1

(
|~x| /λ

)
should only take the

y and z components of ~x into account. The x component is made irrelevant by the

translational symmetry of the system along the x-axis.

Moving on to the noise terms, Eq. F.3 can be Fourier transformed in space and

time to yield
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−iωδ̃c = −D
∣∣∣~k∣∣∣2 δ̃c+ η̃D − νδ̃c− η̃ν + η̃β =⇒ δ̃c =

η̃D − η̃ν + η̃β

ν

(
1 + λ2

∣∣∣~k∣∣∣2 − iων) , (F.7)

where ηβ

(
~k, ω

)
depends only on the first SO dimensions of k-space. Assuming the

η terms are all independent of each other allows the cross spectrum of c to be

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉 =

1

ν2

(
1 + λ2

∣∣∣~k∣∣∣2 − iων)(1 + λ2

∣∣∣~k′∣∣∣2 + iω
′

ν

)
·

(〈
η̃∗D

(
~k′, ω′

)
η̃D

(
~k, ω

)〉
+

〈
η̃∗ν

(
~k′, ω′

)
η̃ν

(
~k, ω

)〉
+

〈
η̃∗β

(
~k′, ω′

)
η̃β

(
~k, ω

)〉)
.

(F.8)

The cross spectrum of ηD is that of a diffusive term and thus follows the form

derived in Eq. A.9.

〈
ηD
(
~x′, t′

)
ηD (~x, t)

〉
= 2Dδ

(
t− t′

)
~∇ · ~∇′

(
c̄ (~x) δSP

(
~x− ~x′

))
. (F.9)

Fourier transforming Eq. F.9 can be easily performed due to the δ functions, integrating

the spatial terms by parts, and utilizing Eq. F.4 to yield
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〈
η̃∗D

(
~k′, ω′

)
η̃D

(
~k, ω

)〉
=

∫
dSPxdSPx′dtdt′ei

~k·~xe−i
~k′·~x′eiωte−iω

′t′
〈
ηD
(
~x′, t′

)
ηD (~x, t)

〉
= 2D

∫
dSPxdSPx′dtdt′ei

~k·~xe−i
~k′·~x′eiωte−iω

′t′δ
(
t− t′

)
~∇ · ~∇′

(
c̄ (~x) δSP

(
~x− ~x′

))
= 2D

(
2πδ

(
ω − ω′

)) ∫
dSPxdSPx′ei

~k·~xe−i
~k′·~x′ ~∇ · ~∇′

(
c̄ (~x) δSP

(
~x− ~x′

))
= 2D

(
2πδ

(
ω − ω′

)) ∫
dSPxdSPx′c̄ (~x) δSP

(
~x− ~x′

)
~∇ · ~∇′

(
ei
~k·~xe−i

~k′·~x′
)

= 2D~k · ~k′
(

2πδ
(
ω − ω′

)) ∫
dSPxdSPx′c̄ (~x) δSP

(
~x− ~x′

)
ei
~k·~xe−i

~k′·~x′

= 2D~k · ~k′
(

2πδ
(
ω − ω′

)) ∫
dSPxc̄ (~x) ei~x(

~k−~k′)

= 2D~k · ~k′˜̄c
(
~k − ~k′

)(
2πδ

(
ω − ω′

))
=

2λ2~k · ~k′

1 + λ2

∣∣∣~k − ~k′∣∣∣2
(
β (2π)SO+1 δ

(
ω − ω′

)
δSO

(
~k − ~k′

))
. (F.10)

Moving on to ην , its correlation function must be δ correlated in time and space

since it is a purely local reaction and as such, at steady state, must take the form

〈
ην
(
~x′, t′

)
ην (~x, t)

〉
= νc̄ (~x) δ

(
t− t′

)
δSP

(
~x− ~x′

)
. (F.11)

Fourier transforming Eq. F.11 is again easily performed due to the δ functions and

Eq. F.4. This yields

〈
η̃∗ν

(
~k′, ω′

)
η̃ν

(
~k, ω

)〉
=

∫
dSPxdSPx′dtdt′ei

~k·~xe−i
~k′·~x′eiωte−iω

′t′
〈
ην
(
~x′, t′

)
ην (~x, t)

〉
= ν

∫
dSPxdSPx′dtdt′ei

~k·~xe−i
~k′·~x′eiωte−iω

′t′ c̄ (~x) δ
(
t− t′

)
δSP

(
~x− ~x′

)
= ν

(
2πδ

(
ω − ω′

)) ∫
dSPxdSPx′ei

~k·~xe−i
~k′·~x′ c̄ (~x) δSP

(
~x− ~x′

)
= ν

(
2πδ

(
ω − ω′

)) ∫
dSPxei~x·(

~k−~k′)c̄ (~x)

= ν ˜̄c
(
~k − ~k′

)(
2πδ

(
ω − ω′

))
=

1

1 + λ2

∣∣∣~k − ~k′∣∣∣2
(
β (2π)SO+1 δ

(
ω − ω′

)
δSO

(
~k − ~k′

))
. (F.12)
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Finally, the cross spectrum of ηβ must be δ correlated in ω-space as well as all

source dimensions of k-space since it is merely a uniform production term that does

not depend on space or time. This yields

〈
η̃∗β

(
~k′, ω′

)
η̃β

(
~k, ω

)〉
= β (2π)SO+1 δ

(
ω − ω′

)
δSO

(
~k − ~k′

)
. (F.13)

Combining Eqs. F.8, F.10, F.12, and F.13 then yields

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉 =

β (2π)SO+1 δ (ω − ω′) δSO
(
~k − ~k′

)
ν2

(
1 + λ2

∣∣∣~k∣∣∣2 − iων)(1 + λ2

∣∣∣~k′∣∣∣2 + iω
′

ν

)

·

 2λ2~k · ~k′

1 + λ2

∣∣∣~k − ~k′∣∣∣2 +
1

1 + λ2

∣∣∣~k − ~k′∣∣∣2 + 1



=
β (2π)SO+1 δ (ω − ω′) δSO

(
~k − ~k′

)
ν2

(
1 + λ2

∣∣∣~k∣∣∣2 − iων)(1 + λ2

∣∣∣~k′∣∣∣2 + iω
′

ν

) 2 + λ2

(∣∣∣~k∣∣∣2 +
∣∣∣~k′∣∣∣2)

1 + λ2

∣∣∣~k − ~k′∣∣∣2

=

˜̄c
(
~k − ~k′

) (
2πδ (ω − ω′)

)(
2 + λ2

(∣∣∣~k∣∣∣2 +
∣∣∣~k′∣∣∣2))

ν

(
1 + λ2

∣∣∣~k∣∣∣2 − iων)(1 + λ2

∣∣∣~k′∣∣∣2 + iω
′

ν

) . (F.14)

We now define m as

m (~x, t) =

∫
V (a)

dSP rc (~x+ ~r, t) , (F.15)

where V (a) is a SP -dimensional sphere with radius a. This allows the mean value of

m to be written as

m̄ (~x) =

∫
V (a)

dSP rc̄ (~x+ ~r) =
βλ2−(SP−SO)

D

∫
V (a)

dSP rPSP−SO

(
|~x+ ~r|
λ

)
=
βλSO

ν
MSP−SO,SP

(
|~x|
λ
,
a

λ

)
, (F.16)
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where

MN,N ′ (x, y) =

∫
V (y)

dN
′
uPN

(
|~x+ ~u|

)
. (F.17)

Since PN
(
|~x|
)

can only depend on the last N dimensions of its input vectors, the

same must be true of MN,N ′ . From here we define S (~x) as the 0-frequency limit of

the cross spectrum in ω-space of m. This allows it to take the form
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S (~x) = lim
ω→0

∫
dω′

2π

〈
˜δm
∗ (
~x, ω′

)
˜δm (~x, ω)

〉
= lim

ω→0

∫
dω′

2π

∫
V (a)

dSP rdSP r′
∫

dSPk

(2π)SP
dSPk′

(2π)SP
e−i

~k·(~x+~r)ei
~k′·(~x+~r′)

〈
δ̃c
∗ (~k′, ω′) δ̃c(~k, ω)〉

=
1

(2π)2SP ν

∫
V (a)

dSP rdSP r′
∫
dSPkdSPk′e−i

~k·(~x+~r)ei
~k′·(~x+~r′)

·

˜̄c
(
~k − ~k′

)(
2 + λ2

(∣∣∣~k∣∣∣2 +
∣∣∣~k′∣∣∣2))(

1 + λ2

∣∣∣~k∣∣∣2)(1 + λ2

∣∣∣~k′∣∣∣2)
=

1

(2π)2SP ν

∫
V (a)

dSP rdSP r′
∫
dSPkdSPk′dSP ze−i

~k·(~x+~r)ei
~k′·(~x+~r′)ei~z·(

~k−~k′)

· c̄ (~z)

2 + λ2

(∣∣∣~k∣∣∣2 +
∣∣∣~k′∣∣∣2)(

1 + λ2

∣∣∣~k∣∣∣2)(1 + λ2

∣∣∣~k′∣∣∣2)
=

1

(2π)2SP ν

∫
V (a)

dSP rdSP r′
∫
dSPkdSPk′dSP ze−i

~k·(~x+~r−~z)ei
~k′·(~x+~r′−~z)

· c̄ (~z)

 1

1 + λ2

∣∣∣~k∣∣∣2 +
1

1 + λ2

∣∣∣~k′∣∣∣2


=
1

(2π)2SP ν

∫
V (a)

dSP rdSP r′
∫
dSP zc̄ (~z)

∫ dSPke−i
~k·(~x+~r−~z) (2π)SP δSP (~x+ ~r′ − ~z)

1 + λ2

∣∣∣~k∣∣∣2

+

∫
dSPk′ei

~k′·(~x+~r′−~z) (2π)SP δSP (~x+ ~r − ~z)

1 + λ2

∣∣∣~k′∣∣∣2

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=
βλ2−(SP−SO)

DνλSP

∫
V (a)

dSP rdSP r′
∫
dSP zPSP−SO

(
|~z|
λ

)
·

(
δSP

(
~x+ ~r′ − ~z

)
PSP

(
|~x+ ~r − ~z|

λ

)
+ δSP (~x+ ~r − ~z)PSP

(
|~x+ ~r′ − ~z|

λ

))

=
βλ4−(2SP−SO)

D2

∫
V (a)

dSP rdSP r′PSP

(
|~r − ~r′|
λ

)(
PSP−SO

(
|~x+ ~r|
λ

)
+ PSP−SO

(
|~x+ ~r′|

λ

))

=
βλ4−(SP−SO)

D2

(∫
V (a)

dSP rMSP,SP

(
|~r|
λ
,
a

λ

)
PSP−SO

(
|~x+ ~r|
λ

)

+

∫
V (a)

dSP r′MSP,SP

(
|~r′|
λ
,
a

λ

)
PSP−SO

(
|~x+ ~r′|

λ

))

=
2βλ4−(SP−SO)

D2

∫
V (a)

dSP rMSP,SP

(
|~r|
λ
,
a

λ

)
PSP−SO

(
|~x+ ~r|
λ

)
=

2βλSO

ν2
ΣSP−SO,SP

(
|~x|
λ
,
a

λ

)
, (F.18)

where

ΣN,N ′ (x, y) =

∫
V (y)

dN
′
uMN ′,N ′ (u, y)PN

(
|~x+ ~u|

)
. (F.19)

Wherein once again only the last N dimensions of the input vectors can be taken into

account. Combining Eqs. F.16 and F.18 yields the full 0-frequency noise-to-signal

ratio of m to be

δm2
T

m̄2
=

S

m̄2T
=

2

m̄νT

ΣSP−SO,SP

(
|~x|
λ
, a
λ

)
MSP−SO,SP

(
|~x|
λ
, a
λ

) =
2

λSOβT

ΣSP−SO,SP

(
|~x|
λ
, a
λ

)
(
MSP−SO,SP

(
|~x|
λ
, a
λ

))2 . (F.20)

With Eq. F.20, once the forms of PN , MN,N ′ , and ΣN,N ′ are determined for a given

SP and SO, the full form of the noise-to-signal ratio can be found. We now calculate

these forms for specific choices of SP and SO.
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F.1 1D space, 0D source

To begin, we start with the simple scenario in which SP = 1 and SO = 0. This

allows P1, M1,1, and Σ1,1 to take the forms

P1 (x) =

∫
du

2π
e−iux

1

1 + u2
=

1

2
e−|x| (F.21)

M1,1 (x, y) =

∫ y

−y
duP1

(
|x+ u|

)
=

1

2

∫ y

−y
due−|x+u|

=


1− e−y cosh (x) x < y

e−x sinh (y) x ≥ y

(F.22)

Σ1,1 (x, y) =

∫ y

−y
duM1,1 (u, y)P1

(
|x+ u|

)
=

1

2

∫ y

−y
du
(
1− e−y cosh (u)

)
e−|x+u|

=


1− 1

4
e−y

((
5 + 2y − e−2y

)
cosh (x)− 2x sinh (x)

)
x < y

1
4
e−x

(
4 sinh (y)− e−y

(
2y + sinh (2y)

))
x ≥ y

. (F.23)

Eqs. F.22 and F.23 can then be put into Eq. F.20 along with the assumption |x| > a

to obtain

δm2
T

m̄2
=

2

m̄νT

(
1− e−

a
λ

2a
λ

+ sinh
(

2a
λ

)
4 sinh

(
a
λ

) )
. (F.24)

F.2 2D space, 0D source

For SP = 2 and SO = 0, P2, M2,2, and Σ2,2 each take the form

P2 (x) =

∫
d2u

(2π)2 e
−i~u·~x 1

1 +|~u|2
=

1

2π
K0 (x) (F.25)
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M2,2 (x, y) =

∫
V (y)

d2uP2

(
|~x+ ~u|

)
=

∫
V (y)

d2u

∫
d2u′

(2π)2 e
−i~u′·(~x+~u) 1

1 +|~u′|2

= y

∫ ∞
0

du′
J0 (xu′) J1 (yu′)

1 + u′2
(F.26)

Σ2,2 (x, y) =

∫
V (y)

d2uM2,2

(
|~u| , y

)
P2

(
|~x+ ~u|

)
= y

∫
V (y)

d2u

∫ ∞
0

du′
∫

d2u′′

(2π)2

J0

(
|~u|u′

)
J1 (yu′)

1 + u′2
e−i~u

′′·(~x+~u)

1 +|~u′′|2

= y2

∫ ∞
0

du′du′′
u′′J0 (xu′′) J1 (yu′)

(
u′J0 (yu′′) J1 (yu′)− u′′J0 (yu′) J1 (yu′′)

)(
u′2 − u′′2

) (
1 + u′2

) (
1 + u′′2

) ,

(F.27)

where Jn (x) and Kn (x) are the Bessel functions of the first kind and modified Bessel

functions of the second kind respectively. Unfortunately, the complicated nature

of Bessel functions makes the remaining integrals unsolvable analytically. Similar

problems arise whenever SP = 2 or SP − SO = 2.

F.3 3D space, 0D source

For SP = 3 and SO = 0, P3, M3,3, and Σ3,3 each take the form

P3 (x) =

∫
d3u

(2π)3 e
−i~u·~x 1

1 +|~u|2
=

1

4πx
e−x (F.28)

M3,3 (x, y) =

∫
V (y)

d3uP3

(
|~x+ ~u|

)
=

1

4π

∫
V (y)

d3u
1

|~x+ ~u|
e−|~x+~u|

=


1− 1+y

x
e−y sinh (x) x < y

1
x
e−x

(
y cosh (y)− sinh (y)

)
x ≥ y

(F.29)
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Σ3,3 (x, y) =

∫
V (y)

d3uM3,3

(
|~u| , y

)
P3

(
|~x+ ~u|

)
=

1

4π

∫
V (y)

d3u

(
1− 1 + y

|~u|
e−y sinh

(
|~u|
)) 1

|~x+ ~u|
e−|~x+~u|

=


1− 1

4x
e−y (1 + y)

((
5 + 2y + e−2y

)
sinh (x)− 2x cosh (x)

)
x < y

1
4x
e−x

(
4
(
y cosh (y)− sinh (y)

)
+ e−y (1 + y)

(
2y − sinh (2y)

))
x ≥ y

(F.30)

F.4 2D space, 1D source

For SP = 2, SO = 1, P1 and M2,2 are known from Eqs. F.21 and F.26. This

leaves M1,2 and Σ1,2 to take the forms

M1,2 (x, y) =

∫
V (y)

d2uP1

(
|~x+ ~u|

)
=

1

2

∫ y

0

du

∫ 2π

0

dθue−|x2+u2|

= e−|x2|
∫ 2π

0

dθ
1− e−y sin(θ)

(
1 + y sin (θ)

)
2
(
sin (θ)

)2 (F.31)

Σ1,2 (x, y) =

∫
V (y)

d2uM2,2

(
|~u| , y

)
P1

(
|~x+ ~u|

)
=
y

2

∫ y

0

du

∫ 2π

0

dθ

∫ ∞
0

du′u
J0 (uu′) J1 (yu′)

1 + u′2
e−|x2+u sin(θ)| (F.32)

Unfortunately, the remaining integrals are unsolvable analytically.

F.5 3D space, 2D source

For SP = 3, SO = 2, P1 and M3,3 are known from Eqs. F.21 and F.29. This

leaves M1,3 and Σ1,3 to take the forms
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M1,3 (x, y) =

∫
V (y)

d3uP1

(
|~x+ ~u|

)
=

1

2

∫
V (y)

d3ue−|x3+u3|

= 2π


e−y (1 + y) cosh (x) + y2−x2

2
− 1 x < y

e−x
(
y cosh (y)− sinh (y)

)
x ≥ y

(F.33)

Σ1,3 (x, y) =

∫
V (y)

d3uM3,3

(
|~u| , y

)
P1

(
|~x+ ~u|

)
=

1

2

∫
V (y)

d3u

(
1− 1 + y

|~u|
e−y sinh

(
|~u|
))

e−|x3+u3|

= 2π


e−y (1 + y)

(
7+2y+e−2y

4
cosh (x)− x

2
sinh (x)− cosh (y)

)
+ y2−x2

2
− 1 x < y

e−x
(

4y2+5y−1
8

e−y + 1+y
8
e−3y + 3y

4
cosh (y)− 5

4
sinh (y)

)
x ≥ y

(F.34)



139

G. CALCULATIONS FOR HOPPING MODEL OF

DIFFUSION

To obtain a more intuitive understanding of why the SDC model results in the scaling

properties seen in the various calculations of MSP−SO,SP and ΣSP−SO,SP, we now look

at a simpler version of one dimensional diffusion in which we discretize space into

compartments of uniform size. Let molecules still be produced in the 0th compartment

at rate β and degrade anywhere in space at rate ν. The process of diffusion can be

approximated by letting the molecules hop to neighboring compartments with rate h

with equal probability of moving left or right. This allows the dynamics of mj, the

number of molecules in the j compartment for j ∈ Z, to be written as

∂mj

∂t
= βδ0j + h

(
mj+1 +mj−1 − 2mj

)
− νmj. (G.1)

By setting the left-hand side of Eq. G.1 to 0, the resulting system of equations can be

easily solved by assuming m̄j = Aexp(−2|j| /λ) and calculating A and λ. Imposing

this assumption on Eq. G.1 and taking j > 0 yields

0 = h
(
Ae−

2(j+1)
λ + Ae−

2(j−1)
λ − 2Ae−

2j
λ

)
− νAe−

2j
λ = Ae−

2j
λ

(
he−

2
λ + he

2
λ − 2h− ν

)
= Ae−

2j
λ

(
4h sinh2

(
1

λ

)
− ν

)

=⇒ λ = asinh−1

(√
ν

4h

)
. (G.2)

With λ solved for, we solve for the proportionality constant by noting that the total

number of molecules in the whole system must follow a simple birth-death process

with a mean of β/ν. This in turn implies
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β

ν
=

∞∑
j=−∞

Ae−
2|j|
λ = A

2

 ∞∑
j=0

e−
2j
λ

− 1

 = A

(
2

1− e− 2
λ

− 1

)
= A

(
e

1
λ

sinh
(

1
λ

) − 1

)

= A coth

(
1

λ

)
=⇒ A =

β

ν
tanh

(
1

λ

)
, (G.3)

This in turn gives the average value of mj to be

m̄j =
β

ν
tanh

(
1

λ

)
e−

2|j|
λ . (G.4)

Next, we calculate the full distribution of mj by assuming that at any given

moment in time each molecule in the system has probability Pj of being in the jth

compartment. This can be combined with the aforementioned fact that N , the total

number of molecules in the system, must follow a birth-death process and thus to

Poissonianly distributed with mean β/ν. For any given value of N , P (mj|N) must be

a binomial distribution with success probability Pj since each molecule is independent.

This allows the marginal distribution P (mj) to be calculated to be

P
(
mj

)
=

∞∑
N=mj

P (N)P
(
mj|N

)
=

∞∑
N=mj

e−
β
ν

(
β
ν

)N
N !

(
N

mj

)
P
mj
j

(
1− Pj

)N−mj

= e−
β
ν

(
β
ν
Pj

)mj
mj!

∞∑
N=mj

(
β
ν

(
1− Pj

))N−mj(
N −mj

)
!

= e−
β
ν

(
β
ν
Pj

)mj
mj!

e
β
ν (1−Pj)

= e−
β
ν
Pj

(
β
ν
Pj

)mj
mj!

. (G.5)

Thus, mj is seen to be Poissonianly distributed with mean βPj/ν. Comparing this

mean to that derived in Eq. G.4 then implies

Pj = tanh

(
1

λ

)
e−

2|j|
λ . (G.6)
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We now consider the joint distribution of mj and mk for j 6= k. Since molecules

cannot be in the jth and kth compartment simultaneously, the joint conditional

distribution P (mj,mk|N) must be trinomially distributed. This allows for the joint

distribution to be calculated in a manner similar to Eq. G.5 to produce

P
(
mj,mk

)
=

∞∑
N=mj+mk

P (N)P
(
mj,mk|N

)

=
∞∑

N=mj+mk

e−
β
ν

(
β
ν

)N
N !

(
N

mj,mk

)
P
mj
j Pmk

k

(
1− Pj − Pk

)N−mj−mk
= e−

β
ν

(
β
ν
Pj

)mj
mj!

(
β
ν
Pk

)mk
mk!

∞∑
N=mj+mk

(
β
ν

(
1− Pj − Pk

))N−mj−mk(
N −mj −mk

)
!

= e−
β
ν

(
β
ν
Pj

)mj
mj!

(
β
ν
Pk

)mk
mk!

e
β
ν (1−Pj−Pk)

=

e−βν Pj
(
β
ν
Pj

)mj
mj!


e−βν Pk

(
β
ν
Pk

)mk
mk!

 . (G.7)

Thus the joint probability distribution of mj and mk is seen to be separable into

the product of the two marginal distribution, meaning that same-time, instantaneous

measurements of mj an mk must be uncorrelated.

From here we can begin to calculate the full correlation function for mj and mk.

We start by defining δmj(t) = mj(t) − m̄j and δmk(t) = mk(t) − m̄k. Since m̄j is

known to set the right-hand side of Eq. G.1 to 0, the dynamics of δmj can be written

as

∂δmj

∂t
= h

(
δmj+1 + δmj−1 − 2δmj

)
− νδmj, (G.8)

with the same being true for δmk. Additionally, we assume the system is at steady

state so that all mean expressions are invariant to time translation. Given this, we

can without loss of generality take the correlation function between δmj and δmk to

have the form
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Cj,k (t) =
〈
δmk (t) δmj (0)

〉
, (G.9)

where t > 0. Applying the dynamic result given in Eq. G.8 then yields

∂Cj,k
∂t

=

〈
∂δmk(t)

∂t
δmj(0)

〉
=

〈(
h
(
δmk+1(t) + δmk−1(t)− 2δmk(t)

)
− νδmk(t)

)
δmj (0)

〉
= h

(
Cj,k+1 + Cj,k−1

)
− (2h+ ν)Cj,k. (G.10)

The final form of Eq. G.10 can be split into the term −(2h+ ν)Cj,k which implies

Cj,k ∝ exp(−(2h+ν)t) and the term h(Cj,k+1 +Cj,k−1) which is the recursion relation

for I`(2ht), the modified Bessel function of the first kind, where ` is some function of

j and k. This means Cj,k(t) can be written as

Cj,k (t) = AI`(j,k) (2ht) e−(2h+ν)t, (G.11)

for some proportionality constant A.

To determine the forms of A and `(j, k), we can utilize the initial condition that

mj is Poissonianlly distributed and thus has a variance equal to its mean while being

completely uncorrelated with mk when both are measured at the same time. This

means Cj,k(0) can be written as

Cj,k (0) =
β

ν
Pjδjk, (G.12)

which in turn implies `(j, j) = 0 as In(0) = δ0n for n ∈ Z. To satisfy the recursion

relation term of Eq. G.10, it must then be the case that `(j, j + n) = n. Setting

k = j + n thus yields `(j, k) = k − j. Since k and j are integers, `(j, k) = j − k is

equally valid as In = I−n again for n ∈ Z. Combining these results together yields

the final form of Cj,k(t) to be

Cj,k (t) =
β

ν
PjIk−j (2ht) e−(2h+ν)t. (G.13)
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Next, let τ be the autocorrelation time of mj. This quantity is typically defined

by integrating Cj,j(t)/Cj,j(0) over all time. Using the known properties of modified

Bessel functions, this can be solved to yield

τ =

∫ ∞
0

dt
Cj,j (t)

Cj,j (0)
=

∫ ∞
0

dt I0 (2ht) e−(2h+ν)t =
1√

ν (4h+ ν)
. (G.14)

If we now define M = T/τ where M is the number of effectively independent

measurements that can be made in a time T , we see that for h � ν, M ≈ 2
√
νhT .

Additionally, from Eq. G.2 we see that in the h � ν regime λ ≈ 2
√
h/ν. By

equating this λ to the nondimensionalized λSDC/a from the SDC model we see that

M ≈ λνT = (λSDC/a)νT . This is consistent with the fact that for λSDC � a the

right-hand side of Eq. F.24 becomes approximately 2/(m̄(λSDC/a)νT ) ≈ 2/(m̄M).

In the h � ν regime we find M ≈ νT . Once again, this consistent with Eq.

F.24 when λSDC � a as this causes the right-hand side to become approximately

2/(m̄νT ) ≈ 2/(m̄M). Thus, the SDC model is seen to have its noise-to-signal ratio

scale as 2/(m̄M) in both the large and small h regime.
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H. CALCULATIONS FOR INDIVIDUAL-BASED

CHEMOTAXIS MODEL

For IC the variance in Pz is

δP 2
zT =

N∑
i=1

δp2
i,zT +

∑
i 6=j

Cov[pi,z, pj,z] ≡ VIC + CIC . (H.1)

The Fourier-transformed fluctuations in IC cell polarization is given by linearizing

and transforming Eq. 7.1 to yield

δp̃j,z(~k, ω) =

∫
V

d3x

∫
d3k

(2π)3
cos θδc̃(~k, ω)e−i

~k·(~xi+~x) . (H.2)

The cross-spectrum for the z-component between two cells is thus given by

〈δp̃∗i,z(ω′)δp̃j,z(ω)〉 =

∫
V

d3xd3x′
∫
d3kd3k′

(2π)6
cos θ cos θ′〈δc̃∗(~k′, ω′)δc̃(~k, ω)〉

· e−i~k·(~xj+~x)ei
~k′·(~xi+~x′) . (H.3)

We can rewrite Eq. H.3 by noting that only the relative locations of cell i and j

are relevant for the cross-spectrum. Let ~rij = ~xi − ~xj and rij = |~rij|.

〈δp̃∗i,z(ω′)δp̃j,z(ω)〉 =

∫
V

d3xd3x′
∫
d3kd3k′

(2π)6
cos θ cos θ′〈δc̃∗(~k′, ω′)δc̃(~k, ω)〉

· e−i~k·~xei~k′·(~rij+~x′) . (H.4)

Plugging in Eq. A.17 for 〈δc̃∗(~k′, ω′)δc̃(~k, ω)〉 and writing cos θ in terms of spherical

harmonic Y 0
1 (x̂) yields

〈δp̃∗i,z(ω′)δp̃j,z(ω)〉 =

∫
V

d3xd3x′
∫
d3kd3k′

(2π)6

4π

3
Y 0

1 (x̂)Y 0
1 (x̂′) 2D

2πδ(ω − ω′)
(Dk2 − iω)(Dk′2 + iω′)

∫
d3y~k · ~k′c̄(~y)ei~y·(

~k−~k′)e−i
~k·~xei

~k′·(~rij+~x′)

=
4D

3(2π)5
2πδ(ω − ω′)

∫
V

d3xd3x′
∫
d3kd3k′d3y Y 0

1 (x̂)Y 0
1 (x̂′)

c̄(~y) ~k · ~k′ ei~y·(~k−~k′)

(Dk2 − iω)(Dk′2 + iω′)
e−i

~k·~xei
~k′·(~rij+~x′) . (H.5)
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Plugging the specified mean concentration from Eq. 7.3 into Eq. H.5 allows us to

define Sij,z(0) as the 0-frequency limit:

Sij,z(0) = lim
ω→0

∫
dω′

2π
〈δp̃∗i,z(ω′)δp̃j,z(ω)〉

=
4

3(2π)5D

∫
V

d3xd3x′
∫
d3kd3k′d3y Y 0

1 (x̂)Y 0
1 (x̂′)

~k · ~k′

k2k′2
(c0 + ~g · ~y)

· ei~y(~k−~k′) e−i
~k·~xei

~k′·(~rij+~x′) . (H.6)

We can break up Eq. H.6 into two terms: one dependent on the background concentration,

the other on the gradient.

Sij,z(0) =
4

3(2π)5D

∫
V

d3xd3x′
∫
d3kd3k′ Y 0

1 (x̂)Y 0
1 (x̂′)

~k · ~k′

k2k′2
e−i

~k·~x

ei
~k′·(~rij+~x′)

(
(2π)3δ3(~k − ~k′)c0 +

∫
d3y ~g · ~y ei~y(~k−~k′)

) (H.7)

Let S1
ij represent the background concentration term and S2

ij represent the gradient

dependent term in the power spectrum such that Sij,z(0) = S1
ij + S2

ij.

S1
ij =

4c0

3(2π)2D

∫
V

d3xd3x′
∫
d3k Y 0

1 (x̂)Y 0
1 (x̂′)

1

k2
e−i

~k·~x ei
~k·(~rij+~x′) (H.8)

S2
ij =

4c0

3(2π)5D

∫
V

d3xd3x′
∫
d3kd3k′d3y Y 0

1 (x̂)Y 0
1 (x̂′)

~k · ~k′

k2k′2
~g · ~y

ei~y(~k−~k′) e−i
~k·~x ei

~k′·(~rij+~x′)

(H.9)

The following expansions will prove useful:

e−i
~k·~r = 4π

∑
l,m

(−i)ljl(kr)Y m
l (k̂)Y m∗

l (r̂) , (H.10)

~a ·~b =
4π

3
ab

1∑
m=−1

Y m
1 (â)Y m∗

1 (b̂) . (H.11)
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Starting with Eq. H.8 we expand all the exponential terms, and we use these

expansions in order to evaluate the angular integrals in S1
ij.

S1
ij =

25(2π)c0

3D

∫
V

d3xd3x′
∫
d3k Y 0∗

1 (x̂)Y 0∗
1 (x̂′)

1

k2

∑
l1,m1

i−l1jl1(xk)Y m1
l1

(x̂)Y m1∗
l1

(k̂)


·

∑
l2,m2

il2jl2(rijk)Y m2
l2

(k̂)Y m2∗
l2

(r̂ij)

∑
l3,m3

il3jl3(x
′k)Y m3

l3
(k̂)Y m3∗

l3
(x̂′)


(H.12)

The angular integrals over x̂ and x̂′ eliminate the summations over l1,m1 and l3,m3.

S1
ij =

25(2π)c0

3D

∫ a

0

dxdx′
∫
d3k

1

k2
x2x′2 j1(xk)j1(x′k) Y 0∗

1 (k̂)Y 0
1 (k̂)∑

l2,m2

il2jl2(rijk
′)Y m2

l2
(k̂′)Y m2∗

l2
(r̂ij)

 ,

(H.13)

and the product of the two spherical harmonics is

Y 0∗
1 (k̂)Y 0∗

1 (k̂) =
1√
4π

(
Y 0

0 (k̂) +
2
√

5

5
Y 0

2 (k̂)

)
. (H.14)

Therefore when evaluating the k̂ integral in Eq. H.13 only the l2 = 0,m2 = 0 and

l2 = 2,m2 = 0 terms of the summation will be non-zero.

S1
ij =

25(2π)c0

3D
√

4π

∫ a

0

dxdx′
∫ ∞

0

dk x2x′2 j1(xk)j1(x′k)(
j0(rijk)Y 0

0 (r̂ij)−
2
√

5

5
j2(rijk)Y 0

2 (r̂ij)

) (H.15)

The integrals over x and x′ evaluate to:∫ a

0

dx x2j1(kx) =
1

k3

(
2− 2 cos(ak)− ak sin(ak)

)
≡ 1

k3
h(ak) . (H.16)

Note that Y 0
0 (Θij,Φij) = 1√

4π
, and Y 0

2 (Θij,Φij) = 1
2

√
5

4π
(3 cos2 Θij − 1). The angle

Θij is the angle r̂ij makes relative to the gradient direction ĝ, cos Θij = r̂ij · ĝ. The

expression for S1
ij reduces to

S1
ij =

24c0

3D

∫ ∞
0

dk
h2(ak)

k6

[
j0(rijk)− j2(rijk)(3 cos2 Θij − 1)

]
(H.17)
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We can make the integral dimensionless by making the variable substitutions u ≡ ak

and nij ≡ rij/a.

S1
ij =

24c0a
5

3D

∫ ∞
0

du
h2(u)

u6

[
j0

(
niju

)
− j2

(
niju

)
(3 cos2 Θij − 1)

]
(H.18)

We can break up Eq. H.18 into two integrals and evaluate them individually based

on known properties of spherical Bessel functions. Note that the exact solution to

either integral depends parametrically on nij and that nij is the number of cells radii

separating two cells. If we are evaluating the cross-correlations in one cell then i = j

and nii = 0; on the other hand, if i 6= j then nij ≥ 2 in order to eliminate the

possibility of overlapping cells. In either case the expression simplifies to:

S1
ij =


4πc0a5

45D
i = j

−πc0a5

18D
1
n3
ij

(3 cos2 Θij − 1) i 6= j, nij ≥ 2

. (H.19)

Doing the same set of expansions for S2
ij in Eq. H.9, and performing the same kind

of analysis reveals that the gradient depedendent term is asymmetric under exchange

of i and j. Therefore when calculating the cluster polarization variance all the S2
ij

terms will cancel. The variance contributions V and C are

VIC =
N∑
i=1

1

T
Sii,z(0) =

4πa5c0

45DT
N , (H.20)

CIC =
N∑
i 6=j

1

T
Sij,z(0) = − πa

5c0

18DT

N∑
i 6=j

(3 cos2 Θij − 1)

n3
ij

, (H.21)

resulting in the IC collective total variance

δP 2
zT =

πa5c0

9DT

4

5
N − 1

2

N∑
i 6=j

(3 cos2 Θij − 1)

n3
ij

 . (H.22)

Next we will show how Eq. H.22 scales for collectives in one, two and three dimensional

configurations.



148

H.1 One Dimensional Chain

For a one-dimensional chain of IC cells each cell is aligned parallel to the gradient

and the angular dependence of CIC (Eq. H.21) vanishes,

CIC = − πa
5c0

18DT

N∑
i 6=j

2

n3
ij

. (H.23)

We evaluate the sum:

N∑
i 6=j

1

n3
ij

= 2
N∑
i<j

1

n3
ij

= 2
N−1∑
i=1

N − i
(2i)3

=
1

4
(NH

(3)
N−1 −H

(2)
N−1) ,

with H
(m)
n =

∑n
k=1

1
km

the generalized harmonic number. This results in a total

variance of the form

δP 2
zT =

πa5cc
9DT

[
4

5
N − 1

8

(
NH

(3)
N−1 −H

(2)
N−1

)]
. (H.24)

For large N , H
(i)
N−1 approaches a constant for i ≥ 2. Therefore, we see that δP 2

zT

scales with N for 1D IC collectives as in Table I of the main text.

H.2 Two Dimensional Sheet

For a two-dimensional sheet of IC cells, pairs of cells can now make a variety

of angles with the gradient, and the angular dependence of CIC cannot be easily

simplified. In order to find the N scaling for CIC we calculate the sum numerically.

Since the covariances rapidly fall-off as 1/n3
ij, we only track nearest neighbor pairs

that are less than 3 cell radii apart. The resulting numerical solution to the sum in

CIC is

N∑
i 6=j

3 cos2 Θij − 1

n3
ij

= 2
N∑
i<j

3 cos2 Θij − 1

n3
ij

=
1

4
(1.70N − 2.67

√
N + 0.89) .

Therefore the expression for CIC (Eq. H.21) simplifies to

CIC = − πa
5c0

18DT
(0.43N − 0.67

√
N + 0.22) . (H.25)
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The covariance contribution, CIC, to leading order scales linearly with N . The total

variance becomes

δP 2
zT =

πa5cc
9DT

(
0.59N + 0.33

√
N − 0.11

)
. (H.26)

We see that for large N , δP 2
zT scales with N for 2D IC collectives.

H.3 Three Dimensional Cluster

To obtain a scaling for CIC in a three dimensional cluster we assume that cluster is

large, such that a� R and N � 1. For a given cell we can calculate its contribution

to CIC by considering the covariance contribution it makes with a set of cells a fixed

distance away from it. The equidistant cells form a spherical shell with the principal

cell in the center. Adapting Eq. H.21 for a cell and its spherical shell of covariance

pairs yields:

Ccell = − πa
5c0

18DT

1

n3
shell

∑
ishell

3 cos2 Θi − 1 , (H.27)

with nshell the radius of the shell in terms of cell radii. Going to continuum we can

calculate the contribution from the cell and all its pairs

Ccell = − πa5c0

18DTn3
shell

∫ 2π

0

dφ

∫ π

0

dθ sin θ(3 cos2 θ − 1)

= − π2a5c0

9DTn3
shell

∫ π

0

dθ (3 cos2 sin θ − sin θ) = 0 . (H.28)

In the last step, we see that the integral vanishes. Thus, the contribution from a single

cell and its shell of pairs sum to zero. Repeating this argument for all cells in the

cluster results in the total CIC = 0. Therefore for 3D clusters there is no covariance

contribution to the total variance, and δP 2
zT = VIC ∼ N .
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I. CALCULATIONS FOR EMERGENT CHEMOTAXIS

MODEL

For EC the variance in Pz is

δP 2
zT =

N∑
i=1

δp2
i,zT +

∑
i 6=j

Cov[pi,z, pj,z] ≡ VEC + CEC . (I.1)

The Fourier-transformed fluctuations in EC edge cell polarization is given by linearizing

and transforming Eq. 7.12 to yield

δp̃i,z(~k, ω) = cos Θi

∫
V

d3x

∫
d3k

(2π)3
δc̃(~k, ω)e−i

~k·(~xi+~x) , (I.2)

with Θi the angle cell i makes with the gradient. The cross-spectrum for the z-

component between two cells is thus given by

〈δp̃∗i (~k′, ω′)δp̃j(~k, ω)〉 = cos Θi cos Θj

∫
V

d3xd3x′
∫
d3kd3k′

(2π)6
〈δc̃∗(~k′, ω′)δc̃(~k, ω)〉

· e−i~k·(~xj+~x)ei
~k·(~xi+~x′) (I.3)

Following the same procedure as in the case of IC, we get an expression for S1
ij

for EC:

S1
ij =


16πc0a5

15D
cos2 Θi i = j

8πc0a5

9D
1
nij

cos Θi cos Θj i 6= j, nij ≥ 2

. (I.4)

Since again S2
ij = 0 by symmetry, the variance for any configuration of EC cells is

VEC =
16πa5c0

15DT

Nedge∑
i=1

cos2 Θi , (I.5)

CEC =
8πa5c0

9DT

∑
i 6=j

cos Θi cos Θj

nij
. (I.6)

The resulting total variance is

δP 2
zT =

8πa5c0

3DT

2

5

Nedge∑
i=1

cos2 Θi +
1

3

∑
i 6=j

cos Θi cos Θj

nij

 . (I.7)
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I.1 One Dimensional Chain

For a one-dimensional chain of cells only the two cells on the opposing ends are

polarized. The cell variance contribution to the total variance therefore does not

change with increasing cluster size,

VEC =
16πa5c0

15DT

Nedge∑
i=1

cos2 Θi =
32πa5c0

15DT
. (I.8)

Therefore VEC ∼ N0 for 1D collectives. For CEC the distance between the two edge

cells increases by two cell radii for each cell added to the chain:

CEC =
8πa5c0

9DT

∑
i 6=j

cos Θi cos Θj

nij
= −8πa5c0

9DT

1

2(N − 1)
. (I.9)

So CEC ∼ N−1 for 1D collectives. To leading order in N the total collective variance

depends only on VEC:

δP 2
zT =

32πa5c0

15DT
, (I.10)

and so δP 2
zT does not depend on collective size for 1D EC.

I.2 Two Dimensional Sheet

In order to evaluate the variance for a two-dimensional disc of cells we will

approximate the sums as integrals over the circumference of the disc as we did in

evaluating the mean polarization. Assuming that a � R Eq. I.5 can be written as

an integral

VEC =
16πa5c0

15DT

R

2a

∫ 2π

0

dθ cos2 θ . (I.11)

Using the relation N = (R/a)2 yields

VEC =
8π2a5c0

15DT

√
N . (I.12)

Hence for 2D EC, the variance contribution VEC scales as
√
N . In order to determine

how CEC scales with N we approximate the sums over i and j as a double integral,

again assuming that a� R.

CEC =
16πa5c0

9DT

(
R

2a2

)∫ 2π−∆/2

∆/2

dθ1

∫ 2π

θ1+∆/2

dθ2
cos θ1 cos θ2

n(θ1, θ2)
(I.13)
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Here ∆ = 2a/R is the anguler separation between two edge cells, and

n(θ1, θ2) =
2R

a
sin

(
1

2
(θ2 − θ1)

)
(I.14)

is the number of cell radii separating two edge cells. Using this expression for n(θ1, θ2)

we evaluate the integral over θ2:(
R

2a2

)∫ 2π−∆/2

∆/2

dθ1

∫ 2π

θ1+∆/2

dθ2
cos θ1 cos θ2

n(θ1, θ2)

=
R

8a

∫ 2π−∆/2

∆/2

dθ1 cos θ1

[
−4
(
cos(θ1/2) + cos(θ1 + ∆/2)

)
−2 cos θ1 log

(
tan(∆/4) tan(θ1/4)

)]
. (I.15)

Breaking up the integral into four separate terms we find:∫ 2π−∆/2

∆/2

dθ1 cos θ1 cos(θ1/2) = 0 , (I.16)∫ 2π−∆/2

∆/2

dθ1 cos θ1 cos(θ1 + ∆/2) = −1

2
cos(∆/2)(∆ + sin ∆− 2π) , (I.17)∫ 2π−∆/2

∆/2

dθ1 cos θ1 log
(
tan(∆/4)

)
= −1

2
(∆ + sin ∆− 2π) tan(∆/4) , (I.18)∫ 2π−∆/2

∆/2

dθ1 cos θ1 log
(
tan(θ1/4)

)
= 0 . (I.19)

The first and last integrals are equal to zero since the integrands are odd functions

over the range [0, 2π]. With these results, the whole expression simplifies to

CEC =
16πa5c0

9DT

1

4

√
N

(
1

2
logN + log 2− 2

)(
π − 2√

N

)
(I.20)

Keeping only the leading order terms in N yields

CEC =
2π2a5c0

9DT

√
N logN . (I.21)

The resulting total variance is

δP 2
zT =

8π2a5c0

3DT

√
N

[
1

5
+

1

12
logN

]
, (I.22)

which to to leading order scales as
√
N logN .
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I.3 Three Dimensional Cluster

For the three-dimensional cluster, numerical methods must be used in order to

find the scaling properties of the variance. We numerically evaluate the total variance

(Eq. I.7) on a cubic lattice and obtain the following results.
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Figure I.1. δP 2
zT for a 3D cluster of EC cells. Cluster variance shown

in red. Pink circles are the single cell variance contributions V , and
pink diamonds are the cell-cell covariance contributions C.

The numerical results [Fig. I.1] show that V ∼ N2/3 since the number of edge

cells also scales as N2/3. We also find that C ∼ N ; the covariance contribution to

the total cluster polarization grows linearly with N . For large clusters the N scaling
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dominates the behavior of δP 2
zT . Therefore, in 3D the leading order scaling for the

variance is δP 2
zT ∼ N .
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[91] Erika Donà, Joseph D Barry, Guillaume Valentin, Charlotte Quirin, Anton
Khmelinskii, Andreas Kunze, Sevi Durdu, Lionel R Newton, Ana Fernandez-
Minan, Wolfgang Huber, et al. Directional tissue migration through a self-
generated chemokine gradient. Nature, 503(7475):285–289, 2013.

[92] Shirin M Pocha and Denise J Montell. Cellular and molecular mechanisms
of single and collective cell migrations in drosophila: themes and variations.
Annual review of genetics, 48:295–318, 2014.

[93] Robert J Huebner and Andrew J Ewald. Cellular foundations of mammary
tubulogenesis. In Seminars in cell & developmental biology, volume 31, pages
124–131. Elsevier, 2014.

[94] Geoffrey J Goodhill and Jeffrey S Urbach. Theoretical analysis of gradient
detection by growth cones. Journal of neurobiology, 41(2):230–241, 1999.

[95] Andre Levchenko and Pablo A Iglesias. Models of eukaryotic gradient sensing:
application to chemotaxis of amoebae and neutrophils. Biophysical journal,
82(1):50–63, 2002.

[96] Robert G Endres and Ned S Wingreen. Accuracy of direct gradient sensing by
cell-surface receptors. Progress in biophysics and molecular biology, 100(1):33–
39, 2009.

[97] Alexandra Jilkine and Leah Edelstein-Keshet. A comparison of mathematical
models for polarization of single eukaryotic cells in response to guided cues.
PLoS Comput Biol, 7(4):e1001121, 2011.



162

[98] Andrew J Ewald, Audrey Brenot, Myhanh Duong, Bianca S Chan, and Zena
Werb. Collective epithelial migration and cell rearrangements drive mammary
branching morphogenesis. Developmental cell, 14(4):570–581, 2008.

[99] Arthur D Lander. Pattern, growth, and control. Cell, 144(6):955–969, 2011.
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