
THREE PROBLEMS IN IMAGING SYSTEMS: TEXTURE RE-RENDERING IN

ONLINE DECORATION DESIGN, A NOVEL MONOCHROME HALFTONING

ALGORITHM, AND FACE SET RECOGNITION WITH CONVOLUTIONAL

NEURAL NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tongyang Liu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

First of all, I want to thank my advisors Dr. Qian Lin and Professor Jan P.

Allebach whose wonderful advise and tutoring in the projects that I participated

helped me get into the field of deep learning, computer vision, image processing and

halftoning fast and think sharply about new ideas. My advisors’ attitudes toward

work and their hard-working spirit will always inspire me to work harder and harder

and think harder and harder.

I want to thank my family. I have not spent much time with my parents ever

since I came to US to pursue my PhD degree. I wish they can share the joy of my

academic achievements.

I want to thank all friends and lab mates. They have greatly expanded my vision of

knowledge and they have had lots of encouragement and inspirations for my research.

I want to specially thank HP Labs Palo Alto, HP Inc Boise and DzineSteps for their

support for my research projects. They not only provide me with valuable funding

support but more importantly also provide me with opportunities to participate in

the exciting industry engineering projects and giving me chances of integrating my

research topics into their industrial products design. This is awesome.

I want to thank my committee professors for reviewing my work and giving me

valuable feedback. I really appreciate that.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . xvi

1 PREFACE . 1

2 WEB IMAGE PERSONALIZED RENDERING 4

2.1 INTRODUCTION . 4

2.2 PROJECTIVE GEOMETRY . 7

2.2.1 HOMOGENEOUS REPRESENTATION FOR 2D POINTS . . 7

2.2.2 PROJECTIVE TRANSFORMATION BETWEEN TEXTURE
IMAGE AND SCENE IMAGE 8

2.2.3 CALCULATING ENTRIES OF HOMOGENEOUS TRANS-
FORMATION MATRIX H . 9

2.3 METHODOLOGY . 13

2.3.1 USER SELECTION OF 4 COORDINATES SETS 13

2.3.2 RE-RENDERING ADJUSTMENTS 16

2.3.3 HIGH-RESOLUTION RENDERING 17

2.4 EXPERIMENTAL RESULTS . 19

2.5 CONCLUSION . 22

3 DIGITAL HALFTONING WITH HYBRID SCREEN FOR LASER ELEC-
TROPHOTOGRAPHIC SYSTEMS WITH UNEQUAL RESOLUTION . . . 24

3.1 INTRODUCTION AND RELATED WORK 24

3.2 METHODOLOGY . 28

3.2.1 UNEQUAL RESOLUTION PRINTER MODEL 28

3.2.2 SUBPIXEL COMPOSITION OF UNEQUAL RESOLUTION
PRINTER PIXEL AND HVS MODEL 29

iv

Page

3.2.3 SCREENING AND DOT PROFILE FUNCTION 31

3.2.4 DIRECT BINARY SEARCH AND WRAPAROUND EFFECT 32

3.2.5 UNEQUAL RESOLUTION DBS 36

3.3 BILEVEL HYBRID SCREEN DESIGN 37

3.3.1 TILING VECTORS, PERIODICITY MATRIX AND SCREEN
ANGLE . 37

3.3.2 MICROCELL AND BSB . 38

3.3.3 SUPERCELL AND CORES . 39

3.3.4 DOT PROFILE FUNCTION GENERATION FOR HIGHLIGHTS
AND SHADOWS . 39

3.3.5 SCREEN GENERATION . 42

3.4 MULTILEVEL HYBRID SCREEN DESIGN 43

3.4.1 PRELIMINARIES . 43

3.4.2 DOT PROFILE FUNCTION GENERATION FOR THE MUL-
TILEVEL PIXEL . 44

3.5 EXPERIMENTAL RESULTS . 46

3.6 CONCLUSION . 48

4 FACE SET RECOGNITION WITH CONVOLUTIONAL NEURAL NET-
WORKS . 58

4.1 INTRODUCTION AND RELATED WORK 58

4.1.1 OVERVIEW OF FACE SET RECOGNITION 58

4.1.2 BRIEF INTRODUCTION TO CONVOLUTIONAL NEURAL
NETWORKS (CNN) . 62

4.1.3 KERNEL, STRIDE AND PADDING 64

4.1.4 GENERAL TRAINING PROCESS FOR CNN 64

4.2 PROPOSED METHOD FOR FACE SET RECOGNITION 66

4.2.1 SINGLE FACE EMBEDDING 68

4.2.2 FACE FEATURE AGGREGATION MODULE 69

4.2.3 CLUSTER AGGREGATION NETWORK (CAN) 71

4.3 PREPARING TRAINING DATA FOR CAN 71

v

Page

4.3.1 TRAINING DATASET . 71

4.3.2 DATA PREPARATION . 73

4.3.3 DATA PREPROCESSING . 74

4.4 TRAINING PROCEDURE OF CAN 75

4.4.1 TRAINING BATCH GENERATION 76

4.4.2 NETWORK FORWARDING AND AGGREGATION 78

4.4.3 TRAINING LOSS AND SOLVER 79

4.5 TESTING RESULTS OF CAN . 80

4.5.1 ILLUSTRATION FOR WEIGHTS: CAN OUTPUT 80

4.5.2 PERFORMANCE OF CAN . 82

4.5.3 FAILURE CASES OF FACE SET RECOGNITION 83

4.6 CONCLUSION . 84

REFERENCES . 90

VITA . 94

vi

LIST OF TABLES

Table Page

2.1 Table I: Time consumption comparison for different approaches to generate
texture mapping matrix, experiment performed in MATLABr 23

4.1 Evaluation result for SphereFace face feature extractor model on LFW
dataset . 67

4.2 Layer configurations for CAN (Input size can vary, the size as shown in
the Table is due to input size of 128 × 128. The second Convolutional
Layer is optional). 72

4.3 Verification Accuracy comparison of state of the art methods, our baseline
methods and our proposed CAN network on IJB-C dataset. 82

vii

LIST OF FIGURES

Figure Page

2.1 Examples of texture re-rendering for the indoor bathroom image. High-
lighted lines show the orientation of parallel lines in floor texture. (a)
Original scene image taken from bathroom (b) Re-rendered floor and side
wall with wooden texture. (c) Re-rendered side-wall with pure color tex-
ture. (d) Re-rendered floor with brick texture that naturally corresponds
to geometry layout of the room. 6

2.2 An illustration for projective geometry. Lines A1B1, A2B2, C1D1 and
C2D2 are lines in 3D world space. A1B1 is parallel to C1D1 while A2B2

is parallel to C2D2, also A1B1 is perpendicular to A2B2. A′1B
′
1, C

′
1D
′
1,

A′2B
′
2 and C ′2D

′
2 are respective projections on plane π. Note that A′1B

′
1

and C ′1D
′
1 intersect at point E ′1, while A′2B

′
2 and C ′2D

′
2 intersect at point

E ′2. E
′
1 and E ′2 are vanishing points in plane π. And these vanishing points

correspond to orientations of lines in 3D world space. 8

2.3 Projective transformation between two planes. x0y0z0 is world coordinate
frame, and its origin O is the center of projection. x is a point in plane π,
and x′ is a point in plane π′. The mapping from plane π to π′ is a linear
mapping H between homogeneous coordinates such that x′ = Hx. 10

2.4 Flow charts that illustrate how the user selects four corresponding pixels
from the scene image and the texture image. (a) From left to right: A
click-based segmentation framework [17], a geometry layout estimation
framework [16], a generated cubic hypothesis from scene image and a user-
selected cuboid surface. (b) From left to right: A non-parametric texture
synthesis framework [18] and a rectangular window in texture image. . . . 14

2.5 Generating texture mapping matrix H, given four corresponding points in
a texture image and a scene image. Through H, pixels at xi are mapped
to pixels at x′

i, for i = 1, 2, 3, 4. 15

2.6 Proposed methods for refining texture re-rendering results: (a) Cuboid
surface shifting, the green surface is before shifting, and the purple surface
is after shifting. The shifting direction, in this case, is along −x axis. (b)
Rectangular sampling window re-sizing, three yellow rectangular shapes
corresponds to three sampling windows in texture image with different
sizes. In this case, the window is expanding. 17

viii

Figure Page

2.7 Texture re-rendering and indoor scene image re-mixing results in various
room layout configurations. (a) re-rendered floor with bricks texture. (b)
re-rendered side wall with bricks texture. (c) re-rendered floor with carpet-
like texture. (d) re-rendered floor with stone texture. (e) re-rendered
accent wall with bricks texture. (f) re-rendered ceiling with tiles texture.
(g) re-rendered accent wall with bricks texture. (h) re-rendered floor with
tile texture. (i) re-rendered side wall with bricks texture. 20

2.8 Illustration of re-rendering adjustment, the adjustments are introduced
in Figure 2.6. We denote cuboid surface shifting distance as d in pixel,
and sampling window size as win size in pixels × pixels. Green blocks
are highlighted brick tiles. (a) User-selected component to be re-rendered.
(b) Re-rendering result when d = 100 and win size = 800 × 800. (c)
Re-rendering result when d = 100 and win size = 1400 × 1400. (d) Re-
rendering result when d = 120 and win size = 1800× 1800. 21

2.9 High-resolution texture re-rendering and Low-resolution re-rendering with
zoomed-in view. (a) Re-rendering result on 1024×683 pixels scene image.
(b) and (c) Re-rendering result on 3861×2574 pixels scene image. (b) and
(c) are different in the way of generating texture mapping matrix (see
Table 2.1). 22

3.1 An illustration of the composition for unequal resolution printer address-
able pixel from subpixels. The left shows a subpixel which represents the
physical 1/1200 × 1/1200 inches square block, the right shows the tiled
pixel with height 1/400 inches and width 1/600 inches. 30

3.2 Illustration of wraparound effect on a halftone image with size 6× 5 and
cp̃p̃ with the size 7 × 7. (a) The wraparound effect when look up values
from cp̃p̃[m], this figure shows the instance where DBS tries to evaluate
cp̃p̃[m0−m1], which is already beyond the boundary of the cover range of
cp̃p̃. Then by using the modulo operator on [m0 −m1] in both horizontal
and vertical direction, we can see that the dot m1 as seen by the cp̃p̃ has
been moved from bottom right to upper left. And then [m0 −m1] is now
within the cover range of cp̃p̃. (b) The wraparound effect when updating
cp̃ẽ[m]. As suggested by the figure on the left, the azure block is already
out of the boundary of cp̃ẽ, however, the modulo operation on the indices
of cp̃ẽ will move the azure block to the area within the boundary of cp̃ẽ, as
denoted by the red block. Then actually is it the subpixels within the red
block that are updated. In both cases (a) and (b), the modulo operations
will let the halftone pattern as seen by DBS be repeated with periodic 6× 5.49

ix

Figure Page

3.3 Illustration of trial changes in the unequal resolution DBS in a halftone
image that consists of 2×2 unequal resolution pixels. Each of the unequal
resolution pixel is constituted by 3×2 subpixels. Our presumption is each
of the subpixels represents a square block with physical size 1/1200 ×
1/1200 inches, thus each unequal resolution pixel is of size 1/400× 1/600
inches. Therefore, the DBS resolution as shown in the figure is 400× 600
dpi. (a) A trial toggle in the unequal resolution DBS, the pixel on the
bottom right of the halftone image get toggled off. Notice that all the
3×2 subpixels within this orange block are turned off as a unit. (b) a trial
swap in the unequal resolution DBS. The unequal resolution pixels on the
upper left and bottom right of the halftone image get swapped. And for
this single swap operation, all the subpixels within a pixel are swapped
as a unit. Therefore, for a single swap trial in this instance of unequal
resolution DBS, there are actually 12 subpixels that are swapped. 50

3.4 Illustration of the microcell, tile vector, BSB, and cores. (a) A microcell
formed by the tile vector z = [2, 3] and w = [2,−3]. O is origin, i is
vertical axis and j is horizontal axis. (b) A BSB containing 2 microcells,
which are separatedly shown in the azure and yellow block. 50

3.5 An illustration of a 4×12 supercell and cores. The supercell contains four
microcells, as shown in the color blocks. Each microcell contains a 2 × 2
highlight core and a 2 × 2 shadow core. Thus the supercell has 8 cores
(4 highlight cores and 4 shadow cores) in total. The gray blocks are the
candidate location for placing the first dot in each highlight core. 51

3.6 An Illustration of multilevel output and justification modes. (a) A printer
addressable pixel with four output levels and three thresholds. When
the absorptance level is less than the lowest threshold, the pixel is not
rendered; when the absorptance level is greater or equal than the lowest
threshold but less than the medium threshold, 1/3 of the pixel is rendered;
when the absorptance level is greater or equal than the medium threshold
but less than the highest threshold, 2/3 of the pixel is rendered; when the
absorptance level is greater or equal than the highest threshold, the pixel
is fully rendered. (b) Four different justification modes for printer pixel.
From left to right: left, right, center and split justified. 51

x

Figure Page

3.7 A illustration of the symmetric rule and the compact rule in justification
mode. The black blocks are full dots and the magenta blacks are newly
added partial dots. (a) The newly added partial dots are located right
below the full dot, obeying the symmetric rule. (b) The newly added
partial dots are blow the full dot on the left, disobeying the symmetric
rule. (c) The newly added partial dots are adjacent to full dots, obeying
the compact rule. (d) The newly added partial dots are nonadjacent to
full dots, disobeying the compact rule. 52

3.8 A comparison of the halftone patterns corresponding to the same gray
level. (a) The halftone pattern generated from multilevel pixels, without
the centroid rule in the partial dot justification. (b) The halftone pattern
generated from multilevel pixels, with the centroid rule in the partial dot
justification. (c) The halftone pattern in (a) after Gaussian filtering. (d)
The halftone pattern in (b) after Gaussian filtering. 53

3.9 A illustration of two halftone patterns corresponding to the same gray
level. (a) The halftone pattern generated by the unequal resolution DBS
without the compact constraint. DBS is free to place the 1/3 partial
dot (slivers) at any location within the highlight cores. (b) The halftone
pattern generated by the unequal resolution DBS with the compact con-
straint. The new 1/3 partial dot (slivers) has to be placed adjacent to the
existing slivers, and DBS choose the optimal location for this newly added
sliver. 54

3.10 A comparison of the halftone patterns. (a) The halftone pattern generated
by unequal resolution DBS and rendered in unequal resolution with sub-
pixels. (b) The halftone pattern generated by equal resolution DBS and
rendered in unequal resolution with subpixels. (c) The halftone pattern
generated by equal resolution DBS and rendered in equal resolution. 55

3.11 Halftone pattern generated from a 64 × 60 supercell hybrid screen with
bilevel unequal resolution pixel. 56

3.12 Halftone pattern generated from a 32x30 supercell hybrid screen with
bilevel unequal resolution pixel. 56

3.13 Halftone pattern generated from a 20 × 24 supercell hybrid screen with
4-level unequal resolution pixel, with the compact rule but without the
centroid rule. 57

3.14 Halftone pattern generated from a 20× 24 supercell hybrid screen with 4-
level unequal resolution pixel, with both the centroid rule and the compact
rule. 57

xi

Figure Page

4.1 The difference of face recognition and face set recognition. We see that
the problem of face recognition essentially deals single face comparison, in
which we are trying to find single feature vectors corresponding to each of
the original faces, and then perform similarity or distance calculation for
these feature vectors. For face set recognition, rather than dealing with
single faces, the problem becomes more complicated as we are comparing
different clusters of face images. The face images in each cluster have
different pose orientation, lighting, sharpness, as well as number and order
of images. As a result, the key problem of face set recognition is to develop
an efficient and appropriate representation of face sets to gather dominant
information in a set while disregarding noisy information. 58

4.2 The pipeline for face set recognition in imaging systems. On the left it
shows the input to the system, which can be either face videos or face
clusters. It typically contained frames of face images with different poses,
sharpness, illumination, etc. Then the input face set is forwarded to a
feature extractor, which is the core component that is going to be pre-
sented in the thesis. And then the desired output for the system is fixed
dimensional feature vector representation. Fianlly the distances or the
similarities between those feature vectors can be computed, thus those
extracted feature vectors can be directly used for recognition. 60

4.3 The pipeline of Neural Aggregation Network (NAN) and examples of its
output. NAN is one of the current state-of-the-art method for adopting
CNN to smartly capture characteristics from face features and accord-
ingly assign different weights to them to generate a fixed-dimensional fea-
ture representation for different face sets. Firstly, the input face images
are forwarded to a single face embedding CNN to generate corresponding
feature vectors, and then these vectors are forwarded to two cascaded at-
tention blocks to generate according weights to these features, as shown
on the right hand side. However, these two cascaded attention blocks
will need to read all the input features and then generate linear weights
for them. Thus for each time NAN operates on the input face set, extra
running time and memory space is required. 61

xii

Figure Page

4.4 The pipeline of Quality Aware Network (QAN). QAN is another state-
of-the-art method for aggregating face images in a set and generating a
compact feature representation for the set as to do the recognition. The
input of the network is the face image set, which are firstly forwarded to
an intermediate CNN, from where its output data are forwarded simul-
taneously to two parallel convolutional neural networks. The first CNN
is for generating feature vectors from the intermediate output, and the
second CNN is for assigning weights to the features. The QAN is huge
and inefficient. And it is also not flexible to multiple more advanced face
feature extractors. 63

4.5 Illustration of a convolution layer that operates on a 32 × 32 input image.
On the left hand side it shows a convolution layer with kernel size 3, stride
1 and without padding. We see that without padding, the output size is
reduced to 30 × 30, with the information for the pixels on the corners of
the original images lost. On the right hand side it shows a convolution
layer with kernel size 3, stride 1 and with padding size 1. We see that
padding essentially adds value (typically zeros) on the border of the input
image and by doing this the output size preserves the same as the input
image. Therefore the information for the corner pixels from the input is
maintained. 65

4.6 The pipeline of Cluster Aggregation Network (CAN). CAN is the proposed
method in the thesis for aggregating face images in a set and generating
a compact feature representation for the set as to do the recognition. As
shown in the figure, the method contains two independent CNNs and the
input of the networks are both sets of face images. The CNN at the
top is the single face feature extractor which essentially maps each of the
input face images to feature vectors. The CNN at the bottom is CAN,
which takes the images that are resized and transformed to grayscale from
the upper input as its own input and generate a scalar between [0,1] to
each of the images, depending on the network’s assemssent for the input
face images sharpness, facing directions, illuminations, etc. In brief, the
network at the top maps images to vectors and the network at the bottom
maps the same set of images to scalars, then the aggregated feature is
calculated as the weighted summation combining the vectors and the scalars.66

xiii

Figure Page

4.7 The pipeline of single face embedding. It contains two modules: face
detection and alignment and face feature extraction. For the first module,
color images are passed to the neural networks to detect the faces that are
present in these images. Then the faces are aligned such that their eyes
and noses are in the same horizontal and vertical level. All detected and
aligned face images are in the size 112 × 96. After that, the detected and
aligned face images are then fed to the SphereFace netowrk to get fixed-
dimensional feature vectors corresponding to each detected and aligned
faces. The size for the output feature vectors are 1024 × 1 in size. 68

4.8 An example of CASIA face dataset that is used for training SphereFace
model for single face embedding. As shown in here, the dataset contains
faces of different angles, illumination, ethnics, qualities. Therefore there is
enough information in the dataset to train an efficient SphereFace single
face feature extractor. 69

4.9 An example of LFW face dataset that is used for testing the face recog-
nition accuracy of our trained SphereFace model. We can see that the
dataset is challenging for model evaluation because it contains faces im-
ages of different conditions. 70

4.10 An example of YouTube Face dataset. The image on the left shows the
folders of video frames from different people. And the image on the right
shows the opening up of one of the folders on the left, which are frames of
videos from different person. 73

4.11 An example illustrating the face-feature pairs after data preparation. The
face images are aligned, resized and converted to 128 × 128 grayscale
and the MATLAB files are storing the face images’ corresponding feature
vectors with size 1024 × 1. 74

4.12 An example illustrating the training data after data preprocessing. We
see that for the identity shown here, he will have two separate folders
of video frame images-feature vectors pairs in folder ’sele1’ and ’sele2’,
corresponding to two face sets from different viewing perspectives for the
same person. 75

xiv

Figure Page

4.13 Illustration for CAN training procedure. From left to right: The first
module is training batch generation, in which small batches of face sets
containing image-feature pairs are collected by the network as its input.
The Second module is network forwarding, where the images in the previ-
ous step pass through CAN and the features in the previous step remain
the same. After this step, the input features in the training batch and the
output scalars generated by CAN is forwarded to the feature aggregation
module where the feature representations for the face sets in the train-
ing batch are generated. Finally we calculate the distance between those
generated face set features to compute our loss function. 76

4.14 Illustration of training batch generation for CAN training. For each train-
ing epoch, firstly 2 random identities with different numeric labels are
selected from the training data. And then we randomly choose one of the
identity as the Anchor Set. Then we randomly pick up 8 image-feature
pairs from the ’sele1’ folder of this person. Next we randomly pick up 8
image-feature pairs from the ’sele2’ folder of this person as the Positive
Set. Finally we randomly pick up 8 image-feature pairs from either ’sele1’
or ’sele2’ folder of another person as the Negative Set. Hence finally we
will have 24 image-feature pairs corresponding to three face sets. 77

4.15 An illustration of weights generated by CAN (The version is 128 with
Conv. Layer.) for different image sets with variation of face posing and
face obstacles. For each row, the images are the frames in a short face video
clip. And the Bar Chart is the weights output from CAN on each of the
frame image. Higher values in the Bar Chart means greater values of the
weights. And for each of the rows, each bar in the Bar Chart corresponds
to each image from left to right. 85

4.16 An illustration of weights generated by CAN (The version is 224 without
Conv. Layer.) that is capable of capturing the sharpness of images and
assess different qualities accordingly. The CAN takes different images as
input and generate weights for these images, as shown in the Bar Chart.
Higher bars in the Bar Chart means larger weights and each bar in the
Bar Chart corresponds to each image from left to right. 86

4.17 False Face Set Recognition results. (a) Video face pairs detected by CAN
as the same identity. (b) Video face pairs detected by baseline face set
aggregation (See Section 4.5) as the same identity but detected by CAN
as different identity. 87

xv

Figure Page

4.18 An example of successful verification for two face sets using CAN but
unsuccessful verification using the baseline. The yellow digits on top is
the quality score or the feature weights generated by CAN, which has
been averaged on three channels. The Bar Chart visualizes the variation
of the feature weights. 88

4.19 The structure of CAN convolution neural network (rotated view). It takes
grayscale image with size 128 × 128 as its input and contains four Con-
volutional Layers and two Pooling Layers. The Fully Connected Layer
generates a single scalar for the input and the Sigmoid Layer at the very
last of the network normalize the scalar to [0,1], which is the final score
assigned to the input face image, or the weights assigned to the face’s
corresponding feature. 89

xvi

ABSTRACT

Liu, Tongyang PhD, Purdue University, May 2019. Three Problems in Imaging
Systems: Texture Re-rendering in Online Decoration Design, a Novel Monochrome
Halftoning Algorithm, and Face Set Recognition with Convolutional Neural Networks.
Major Professor: Qian Lin, Jan P. Allebach.

In this thesis, studies on three problems in imaging systems will be discussed.

The first problem deals with re-rendering segments of online indoor room images

with preferred textures through websites to try new decoration ideas. Previous meth-

ods need too much manual positioning and alignment. In the thesis, a novel approach

is presented to automatically achieve a natural outcome with respect to indoor room

geometry layout.

For the second problem, the laser electrophotographic system is eagerly looking for

a digital halftoning algorithm that can deal with unequal printing resolution, since

most halftoning algorithms are focused on equal resolution. In the thesis, a novel

monochrome halftoning algorithm is presented to render continuous tone images with

limited numbers of tone levels for laser printers with unequal printing resolution.

For the third problem, a novel face set recognition method is presented. Face set

recognition is important for face video analysis and face clustering in multiple imaging

systems. And it is very challenging considering the variation of image sharpness, face

directions and illuminations for different frames, as well as the number and the order

of images in the face set. To tackle the problem, a novel convolutional neural network

system is presented to generate a fixed-dimensional compact feature representation

for the face set. The system collects information from all the images in the set while

having emphasis on more frontal and sharper face images, and it is regardless of

the number and the order of images. The generated feature representations allow

direct, immediate similarity computation for face sets, thus can be directly used for

xvii

recognition. The experiment result shows that our method outperforms other state-

of-the-art methods on the public test dataset.

1

1. PREFACE

In this thesis, three problems in imaging systems will be discussed. The imaging

systems are generally designed for observation or capturing images in a variety of

applications. Common imaging systems include printers, cameras, flatbed scanners,

mobile phones and flat panel displays [1]. Depending on color types, imaging systems

can be either color imaging systems, such as the daily mobile phone and PC monitors

that we use, or monochrome imaging systems, like the black and white printers. The

color imaging systems nowadays are highly integrated and applied to huge amount

of the modern devices. They can be either used as image capturing devices, such

as cameras and scanners, or used as interconnection space and processing devices,

such as smart phones, tablets, personal computers or cloud, or used as image output

devices, such as displays or printers. Considering the high-level integration of imaging

systems and the very close cooperation between the systems and the whole device,

I have done research on three important problems regarding the imaging systems,

to further enhance the imaging systems’ integration with modern digital devices and

to further increase the imaging systems’ capability of handling more complicated

application scenarios.

The first problem is about re-rendering textures for online decoration design, which

is also known as web images customization. The specific case that we are especially

interested in is about customizing images on websites. Specifically, users are able to

replace some part of the images which are already on websites with new textures that

they prefer, and then create new images by mixing up the replaced texture with the

original image. This has become more and more popular as it is very convenient for

users to try new decoration ideas without spending huge budget on that in the first

place. Prior to the proposed method of this research, users need to put great effort in

positioning and aligning the newly rendered texture in order to get a natural feeling

2

with respect to the correspondence to the room layout from indoor scene images.

And in this research I proposed a novel tool that is able to autonomously align the

re-rendered textures to room spatial layout. Details will be discussed in Chapter 2.

Monochrome digital halftoning is the process of generating a pattern of binary

pixels with a limited number if tone levels that creates the impression of a continuous

tone image. In order to achieve high quality illustration for the continuous tone image,

the halftone image must contain high spatial frequency patterns of coarsely quantized

pixels that are perceived as intermediate gray levels through low pass filters [2]. The

human visual system (HVS) through which the halftone pattern is observed has the

low-pass filtering characteristic [2]. Therefore, the goal of our research on monochrome

digital halftoning is to generate the binary image that correctly reproduce tone and

the details for the original image without introducing noticeable artifacts. Most

halftoning algorithms are one of the three categories [2]: the first is point processes,

typical cases for which is screening or dithering [3] [4] [5] [6]; the second is neigh-

borhood process, typical cases for which is error diffusion [7]; the third is iterative

algorithms (least square and direct binary search (DBS)) [8]. Although the quality

of the halftone increases with the order, the computational complexity required to

generate decent halftone images also increases in this order. In fact, screening and

error diffusion can be operated at real time, thus they are widely-used in practical

electrophotographic systems. The iterative algorithm, however, cannot be directly

integrated into normal printers due to the limit of computational resources. But on

the other hand, iterative approach provides us a great capability for offline halftone

patterns design. This brings us the idea of using the iterative search method for

designing screening algorithms. Such technology is called hybrid screens. There has

been plenty of research on hybrid screens [2] [5] [9]. And many of them are based on

the property of printer that the printing pixels are square-shaped. In this research,

the hybrid screen is developed for the laser printers that have unequal resolution

printing pixels. For this kind of case, the original hybrid screen that is based on the

equal resolution pixels needs to be revised. Details will be discussed in Chapter 3.

3

In third part of the thesis a novel Cluster Aggregation Network (CAN) for face

set recognition is presented. This network takes a set of face images, which could be

either face videos or clusters with a different number of face images as its input, and

then it is able to produce a compact and fixed-dimensional feature representation for

the face set for the purpose of recognition. The whole network is made up of two

modules, among which the first one is a face feature embedding module and the second

one is the face feature aggregation module. The first module is a deep Convolutional

Neural Network (CNN) which maps each of the face images to a fixed-dimensional

vector. The second module is also a CNN which is trained to be able to automatically

assess the quality of input face images and thus assign various weights to the images’

corresponding feature vectors. Then the one aggregated feature vector representing

the input set is formed inside the convex hull formed by the input single face image

features. Due to the mechanism that quality assessment is invariant to the order of

one image in a set and the number of images in the set, the aggregation is invariant to

these factors. Our CAN is trained with standard classification loss without any other

supervision information and we found that our network is automatically appealed to

high quality face images while repelling low quality images such as blurred, blocked

and non-frontal face images. We trained our networks with CASIA and YouTube Face

datasets and the experiments on IJB-C video face recognition benchmark show that

our method outperforms the current state-of-the-art feature aggregation methods and

our challenging baseline aggregation method.

4

2. WEB IMAGE PERSONALIZED RENDERING

2.1 INTRODUCTION

In this research I propose a novel tool for re-rendering objects in indoor scene

images with new textures. It aims to address the problem of too much manual work

of positioning and alignment when applying new texture onto an object surface in an

indoor scene image. The algorithm of the tool is based on establishing 2D projective

transformation between texture images and planar object surfaces in scene images.

In order to find the transformation, I use a sampled rectangular texture pattern

from a large synthesized planar texture and a planar quadrangle corresponding to

object surface orientation estimation, which is generated by a geometric orientation

hypothesis framework. The tool also puts effort in adjusting the scaling and reducing

artifacts for re-rendered textures. I present the re-rendering results for ceilings, walls,

floors, etc. that naturally correspond to room geometry layout.

Digital imaging and rendering technology has brought us tremendous amount of

benefits, one of which is the privilege of creating variable media contents through user

customizations. One case that is receiving increasing interest these days, is in the

application of customizing images on websites. Specifically, users can replace some

part of images that is already on websites with new textures that they prefer, and

then create new images by mixing up the replaced texture with original images. This

kind of customization is known as image personalization [10]. The specific instance

of image personalization to which our tool is targeted is the virtual customization

of images taken from indoor scenes of residential structures, such as kitchen, living

room or bedroom. This kind of customization lets users replace the original textures

from object surfaces in the scene with preferred new textures, which is called texture

re-rendering and image re-mixing. Figure 3.1 shows examples of texture re-rendering

5

and image re-mixing. In the figure, the original floor textures and/or side wall textures

from the indoor bathroom image are replaced with new types of textures, and then

a re-mixed scene image is created. Figure 3.1b and Figure 3.1d separately show us

that original appearance of floor and/or side wall is replaced by wooden and brick

like textures. The highlighted green lines in Figure 1a illustrate the orientation of

parallel lines within original floor texture. And the highlighted yellow lines in Figure

1b illustrate the orientation of parallel lines within replaced wooden-like texture.

The brick-like texture in Figure 1d is clearly showing the orientation of parallel lines.

By comparing the parallel line orientations in the re-rendered texture in Figure 1b

and Figure 1d, we are able to see that the re-rendering result in Figure 1d looks

more natural than that in Figure 1b, with respect to the room spatial layout. The

position and orientation of the re-rendered texture in Figure 1b apparently needs to be

manually adjusted before it appears to natrually corresponds to room spatial layout.

Figure 1c shows a different type of texture replacement, where the surface of side

walls is replaced with pure color textures. This type of texture re-render, however,

can only be suitable to the situation where original textures of the object surface

have no complicated texture patterns. Currently, several commercial websites has

been devoted to developing web-based interfaces for indoor scene image re-texturing,

among which [11]- [12] are quite noticeable. [13] and [14] provide a functionality

that is similar to the one shown in Figure 1c. [13] and [12] let users apply preferred

textures in a virtual design environment. Although the visualization tool provides

quite reasonable rendering result, it is hard to see the effect of newly applied texture in

original scene images. As for [11], which provides a functionality as shown in Figure

3.1b, even though their tools are able to let users select various types of textures

and render them in the original scene images, the result does not look as if it is

naturally corresponding to the geometry orientation of the scene, thus an amount of

manual adjustment afterwards is needed. In addition, the zoomed-in view of their

rendered texture has poor quality. As a result, a tool is desired that has the following

properties: firstly, it supports various types of textures; secondly, it is able to allow

6

(a) (b)

(c) (d)

Fig. 2.1. Examples of texture re-rendering for the indoor bathroom
image. Highlighted lines show the orientation of parallel lines in
floor texture. (a) Original scene image taken from bathroom (b) Re-
rendered floor and side wall with wooden texture. (c) Re-rendered
side-wall with pure color texture. (d) Re-rendered floor with brick
texture that naturally corresponds to geometry layout of the room.

the re-rendered texture be directly mixed with the original scene image; thirdly, the

re-rendering result natrually corresponds to room layout; finally, it is able to allow

high-resolution rendering. Our proposed tool aims at these targets. In [10], the

authors proposed a method for inserting text in images based on pinhole camera

model with camera parameter estimation. However, text-insertion usually happens

within a limited spatial range, thus the error for parameter estimation is not going

to greatly affect the alignment and orientation of inserted text. In addition, their

approach is based on straight line detection where the lines are either perpendicular

7

or parallel with each other. This is not applicable to indoor scene images since straight

lines in these images do not have to be aligned either horizontally or vertically to each

other.

In this paper, we propose a texture re-rendering tool that is based on 2D pro-

jective geometry [15], and we are specially focused on establishing the 2D projective

transformation from texture images to scene images. To begin with, we adopt a room

layout estimation framework proposed in [16], which is based on line sweeping algo-

rithm and convex edge detection to generate layout hypothesis. And then we apply

Direct Linear Transform (DLT) algorithm to calculate the transformation matrix for

texture mapping. The details are discussed in the rest of the paper.

2.2 PROJECTIVE GEOMETRY

In this section, we briefly introduce projective geometry, which is the study of 2D

planar geometry, as the starting point for our texture re-rendering method. And in

the following discussions, we denote 2D plane as P2.

2.2.1 HOMOGENEOUS REPRESENTATION FOR 2D POINTS

The coordinate pair (x, y) can represent a point in 2D plane. Therefore we identify

a plane as R2, and the coordinate pair (x, y) is then identified as a 2D vector, thus

a plane can be considered as a vector space. A point (x, y) ∈ R2 lies on line (a, b, c)

if and only if ax + by + 1 = 0, which, in matrix form, can be written as (x, y, 1) ·

(a, b, c)> = 1. Here we can see that (x, y) ∈ R2 is represented as a 3D vector (x, y, 1).

And since it is also true that k(x, y, z) · (a, b, c)> = 0, we are able to draw the

conclusion that (kx, ky, k) and (x, y, 1) represents the same point (x, y) in P2, thus

the 3-vector representative of the form (x1, x2, x3), where x3 6= 0, is the homogeneous

representation for points (x1/x3, x2/x3) in R2.

Now we discuss the case when x3 = 0. The homogeneous representation for points

in R2 with the form of (x1, x2, 0) is known as ideal points, representing the points

8

Fig. 2.2. An illustration for projective geometry. Lines A1B1, A2B2,
C1D1 and C2D2 are lines in 3D world space. A1B1 is parallel to C1D1

while A2B2 is parallel to C2D2, also A1B1 is perpendicular to A2B2.
A′1B

′
1, C

′
1D
′
1, A

′
2B
′
2 and C ′2D

′
2 are respective projections on plane π.

Note that A′1B
′
1 and C ′1D

′
1 intersect at point E ′1, while A′2B

′
2 and C ′2D

′
2

intersect at point E ′2. E
′
1 and E ′2 are vanishing points in plane π. And

these vanishing points correspond to orientations of lines in 3D world
space.

at infinity. If there are two parallel lines (a, b, c) and (a, b, c′) in R3, the ideal point

(−b, a, 0) then lies on both of the two lines. Therefore, we can actually consider ideal

point (x1, x2, 0) as the intersection of two parallel lines in 3D world, which apparently

extends to infinity. Based on the above discussions, we are now able to introduce the

concept of vanishing points, as illustrated in Figure 3.2. Note that vanishing points

are indeed the projection of ideal points on P2.

2.2.2 PROJECTIVE TRANSFORMATION BETWEEN TEXTURE IM-

AGE AND SCENE IMAGE

The core idea for our texture re-rendering tool is to estimate the transformation

between pixels in the texture image and pixels in the scene image, which is called

texture mapping. And it is actually a projective planar transformation that maps one

set of points in P2 to another set of points in P2. Figure 3.3 shows one instance of

planar transformation from plane π to plane π′, and as is shown, point x is mapped

to point x′. Now we are going to check the linearity of this transformation. As in

9

Figure 3.3, ABB′A′ is a plane in 3D world that passes through center of projection O,

plane π and plane π′, which intersects plane π at line AB and plane π′ at line A′B′.

Furthermore, line A′B′ is the mapping of line AB from plane π to plane π′, thus lines

in P2 are mapped to lines in P2. Therefore, the projective transformation between

two lines in P2 is a linear transformation on homogeneous 3D vectors, and it indeed

can be represented by a non-singular 3 by 3 homogeneous matrix H [15]. In texture

mapping, plane π in Figure 3.3 is the texture image, and x represents one pixel in

the texture image. Meanwhile, plane π′ is the scene image that is to be re-rendered,

and x′ represents one pixel in the scene image. Note that although x and x′ are both

points in P2, we are using homogeneous representations. Therefore x and x′ are both

3D vectors. As a result, we denote x as (x1, x2, x3)
> and vector x′ as (x′1, x

′
2, x
′
3)
>.

Then the transformation between vector x and x′ can be expressed as:
x′1

x′2

x′3

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

x2

x3

 (2.1)

Here we use hij to represent ith row and jth column element of homogeneous matrix

H.

2.2.3 CALCULATING ENTRIES OF HOMOGENEOUS TRANSFOR-

MATION MATRIX H

In Section 2.2, we discussed the homogeneous transformation matrix for mapping

points between P2. The next step is how we calculate the elements in homogeneous

matrix H. As is indicated in previous sections, we are given a set of points x repre-

sented by homogeneous 3D vectors in P2, and another set of points x′ in P2, which are

also represented by homogeneous 3D vectors. The homogeneous matrix H between

P2 is then established such that x′ = Hx.

The first question is how many coordinate sets (x,x′) are needed forH calculation.

We notice that matrix H has 9 entries, but the number of degrees of freedom for

10

Fig. 2.3. Projective transformation between two planes. x0y0z0 is
world coordinate frame, and its origin O is the center of projection. x
is a point in plane π, and x′ is a point in plane π′. The mapping from
plane π to π′ is a linear mapping H between homogeneous coordinates
such that x′ = Hx.

projective transformation between P2, is indeed 8 [15]. The reason is that suppose

we have two homogeneous matrices H1 and H2, where H2 = aH1 and a is a scalar,

and then we apply projective transformation on same homogeneous 3D vector x.

According to Equation 2.1, we will get x′
1 = H1x and x′

2 = H2x. Since H2 = aH1, we

have x′
2 = ax′

1. According to Section 2.1, we already know the fact that homogeneous

3D vectors x′
2 and x′

1 correspond to the same point in P2. Therefore, we can draw

the conclusion that homogeneous matrices H1 and H2 indeed are the same projective

transformation between points in P2. Finally, we are able to draw the conclusion that

homogeneous matrix H is defined up to a scalar, thus the 2D projective homogeneous

transformation has 8 degrees of freedom.

Now we consider the way of calculating the entries’ values for homogeneous trans-

formation matrix H using Direct Linear Transformation (DLT) algorithm [15]. Ac-

tually, we can infer the fact from Section 2.1 that 3D homogeneous representation

(x1, x2, x3) for a point in P2 has 2 degrees of freedom. This is because x3 just stands

for an arbitrary none-zero ratio. Furthermore, we also infer from Section 2.2 that

the degrees of freedom for point x must correspond to the degrees of freedom for

its mapped point Hx. As a result, one coordinate mapping pair (x, Hx) actually

reduces the total degrees of freedom of the transform by 2. Therefore, in order to

get efficient estimation for the entries of homogeneous transformation matrix H, it is

11

necessary that we obtain 4 pairs of corresponding coordinate points to fully specify

the matrix H. Now we set out to solve homogeneous matrix for our texture mapping

method whereby it denotes the transformation from pixels of P2 in texture image to

corresponding pixels of P2 in scene image. Note that here we are using homogeneous

3-vectors for pixels in P2, as is explained in Section 2.1. Therefore, pixel (x1, x2) in

texture image is represented as:

x = (x1, x2, 1)>

Similarly, pixel (x′1, x
′
2) in scene image is represented as:

x′ = (x′1, x
′
2, 1)>

Consequently, our texture mapping between x and x′ is the homogeneous transfor-

mation matrix H such that
x′1

x′2

1

 =


h1 h2 h3

h4 h5 h6

h7 h8 h9




x1

x2

1

 (2.2)

where hi, i = 1, ..., 9 stands for the entries of matrix H. Now we use the denotation

hi to represent row vectors for matrix H, that is:

h1 = (h1, h2, h3)

h2 = (h4, h5, h6)

h3 = (h7, h8, h9)

Since x′ = Hx, we infer that homogeneous vector x′ and Hx are indeed in same

direction. As a consequence, we know that:

x′ ×Hx = 0 (2.3)

where 0 = (0, 0, 0)>, is the null 3D vector. And actually Hx can be expanded as:

Hx =


h1 · x

h2 · x

h3 · x



12

Therefore

x′ ×Hx =


x′1

x′2

1

×


h1 · x

h2 · x

h3 · x



=


x′2h

3 · x− h2 · x

h1 · x− x′1h3 · x

x′1h
2 · x− x′2h1 · x

 = 0

(2.4)

Since:

hi · x = x> · hi>

expressions in Equation 2.4 may actually be re-written as:

x′ ×Hx =


0> −x> x′2x

>

x> 0> −x′1x>

−x′2x> x′1x
> 0>




h1>

h2>

h3>


= Lh = 0

(2.5)

Note that here we have:

h = (h1,h2,h3)

is a 9-vector that is constituted by 9 entries of homogeneous matrix H. Furthermore,

we notice the fact that if we left multiply matrix L by two elementary matrices in

Equation 2.5:

L′ =


1 0 0

0 1 0

x′1 0 1




1 0 0

0 1 0

0 x′2 1

L
we will end up getting

L′h =


0> −x> x′2x

>

x> 0> −x′1x>

0> 0> 0>




h1>

h2>

h3>


= 0

(2.6)

13

As a consequence, we are able to reach the conclusion that Equation 2.5 actually give

rise to 2 linearly-independent constraints for solving homogeneous transformation

matrix H. At the beginning of Section 2.3 we explained that in order to efficiently

calculate H, it is necessary that four corresponding coordinate pairs (xi,x
′
i) are

given, where i = 1, 2, 3, 4. And following the denotations in Section 2.3, we have

x′
i = (x′1i, x

′
2i, 1), where (x′1i, x

′
2i), i = 1, 2, 3, 4 are the pixel values in scene image, and

xi = (x1i, x2i, 1), where (x1i, x2i), i = 1, 2, 3, 4 are the pixel values in texture image.

Consequently we will have 8 linear equations. And based on the result in Equation

2.6, the four equation sets for solving texture mapping matrix H are expressed as:

 0> −x>
i x′2ix

>
i

x>
i 0> −x′1ix>

i




h1>

h2>

h3>

 = 0 (2.7)

where i = 1, 2, 3, 4. Note that matrix H is defined up to a scalar, and in homogeneous

3D vector (x1, x2, x3), component x3 is actually the scaling factor, thus without loss of

generality, we set h9 = 1, in other words, h3 = (h7, h8, 1). Consequently, as denoted in

Equation 2.2, we are able to calculate the remaining 8 entries hj, where j = 1, 2, ..., 8

in texture mapping matrix H.

2.3 METHODOLOGY

2.3.1 USER SELECTION OF 4 COORDINATES SETS

In Section 2, we proved that in order to get the texture mapping matrix H, we

need four corresponding pixel sets, separately from the texture image and the indoor

scene image. Also we noticed in Figure 3.2 that different points A, B, C, D on P2

may lead to different vanishing points, thus corresponding to different orientations in

3D world. As a result, an arbitrary user selection of the four coordinate sets from

images may not lead to a proper texture mapping matrix that corresponds to indoor

room geometry layout. Consequently, judging the room layout while selecting points

from images is challenging for normal users, which is not what we want for a user-

14

friendly interface. Hence in our method, we introduce a semi-automatic way to make

it easy for users to select the reasonable coordinate sets from scene images and texture

images.

The flow chart in Figure 2.4a illustrates an instance of how the user selects four

pixels from the scene image. Firstly, the user interacts with our tool through a

click-based segmentation framework for indoor scene images [17], which is capable of

generating a mask for the components in indoor scene images onto which users would

like to re-render new textures. In this case, a floor plane is picked out. Secondly,

an embedded geometry layout estimation framework [16] is able to autonomously

generate spatial estimation of room layout by presenting users parametrized cubic

hypotheses that correspond to 3 primary orthogonal orientations of the room scene, as

(a)

(b)

Fig. 2.4. Flow charts that illustrate how the user selects four corre-
sponding pixels from the scene image and the texture image. (a) From
left to right: A click-based segmentation framework [17], a geometry
layout estimation framework [16], a generated cubic hypothesis from
scene image and a user-selected cuboid surface. (b) From left to right:
A non-parametric texture synthesis framework [18] and a rectangular
window in texture image.

15

Fig. 2.5. Generating texture mapping matrix H, given four corre-
sponding points in a texture image and a scene image. Through H,
pixels at xi are mapped to pixels at x′

i, for i = 1, 2, 3, 4.

shown in Figure 2.4. In addition, each of the cuboid surfaces has the same orientation

as a rectangular plane in world scene. In next step, the users is able to interact with

our tool by selecting one of the surfaces from the generated cubic. Note that in Figure

2.4, the bottom surface of the cubic is selected, since it is corresponding to z axis in

room scene configuration, which matches the orientation of the selected floor plane.

Once the cubic surface is selected, acquiring the four coordinates from scene image is

straight-forward. They are indeed the pixel values on the four corners of the selected

cuboid surface.

Next we are going to discuss how the user selects four pixels from the texture

image. We already know that four pixels selected from the scene image corresponds

to the orientation of a rectangular plane in the world scene. Thus it is quite straight-

forward that a rectangular window on a texture image can be used to determine four

pixels on the texture image. The flow chart in Figure 2.4b illustrates an instance

16

of selecting four pixels from a texture image. In the backend, an embedded texture

synthesis framework [18] takes a small texture pattern as input and presents the user

with a synthesized large texture pattern. Then the user is able to choose a rectangular

window on the synthesized texture. Finally, the pixel values on the four corners of

the rectangular window act as the four coordinates from texture image. After all four

corresponding coordinate sets

(xi, x
′
i), i = 1, 2, 3, 4

where xi is the homogeneous 3-vector representing pixels in the texture image and

x′
i is the homogeneous 3-vector representing pixels in the scene image, are picked,

by using Equation 2.7, we are able to generate texture mapping matrix H (as shown

in Figure 2.5). And then the tool is able to re-render the selected component (as in

Figure 2.4a) with the new texture (as in Figure 2.4b).

2.3.2 RE-RENDERING ADJUSTMENTS

In this section, we talk about adjusting re-rendering result. Using the texture

mapping matrix generated from Section 3.1 can be useful enough if we only consider

the re-rendering result correspondence with the indoor scene (room) geometry layout.

Nevertheless, some re-rendering results may be visually over-sized and thus unfitted

for some certain scene configurations (as shown in Figure 2.8b). Thus, there is neces-

sity for our tool to propose approaches to refine texture re-rendering results through

user-interactions. And Figure 2.6 shows our proposed two methods, which include

cubic surface shifting in the scene image and sampling window re-sizing in the texture

image. As is seen in Figure 2.6a, the cubic surface before and after shifting has the

same orientation (both perpendicular to x axis). Meanwhile, the sampling windows

with different sizes obviously have same orientation, since the texture image itself

is a plane. Consequently, through the adjustment, the scaling of the re-rendering

result is changing, while the orientation of the re-rendered texture, with respect to

room geometry layout, is not changing. Hence users can interact with our texture

17

(a) (b)

Fig. 2.6. Proposed methods for refining texture re-rendering results:
(a) Cuboid surface shifting, the green surface is before shifting, and
the purple surface is after shifting. The shifting direction, in this
case, is along −x axis. (b) Rectangular sampling window re-sizing,
three yellow rectangular shapes corresponds to three sampling win-
dows in texture image with different sizes. In this case, the window
is expanding.

re-rendering tool in either of the two ways to get a satisfying scaling effect for the

re-rendering result.

2.3.3 HIGH-RESOLUTION RENDERING

A critical case that we are especially interested in is to increase the re-rendering

quality, while not increasing time consumption too much. Before our method, the

contradictory point is that on one hand, for low resolution images, it is fast to generate

cubic hypothesis (see Table 2.1), but the rendering quality is poor. The re-rendered

texture may come with a bundle of artifacts which are certainly unwelcome by users.

On the other hand, for high-resolution images, although it is time-consuming to

generate cubic hypothesis (see Table 2.1), the rendering quality is satisfying. In

practical cases, users can neither accept that it takes too long to get a result, nor

that the rendering quality is of low-quality. Thus we propose a matrix scaling method

18

that enables high-resolution images to utilize the texture mapping matrices generated

from low-resolution images, for the purpose of re-rendering textures on high-resolution

images while reduce time consumption for matrices generation.

Let us now think of a pair of two images. One image has a resolution m×n pixels

and the other image has a higher resolution am × an pixels (a>1). Therefore, one

pixel (x0, y0) in the low-resolution image corresponds to a pixel (ax0, ay0) in the high-

resolution image. According to Section 2.1, the 3-vector homogeneous representations

for (x0, y0) and (ax0, ay0) are x′
Low Res = (x0, y0, 1) and x′

High Res = (ax0, ay0, 1),

respectively. It is easy to see that the transformation between these 2 points is
ax0

ay0

1

 =


a 0 0

0 a 0

0 0 1




x0

y0

1

 (2.8)

Now, our method takes the low resolution image as input, and then follows the

routine described in Section 3.1 to generate the texture mapping matrix from a texture

image to the low-resolution image, which is denoted as HLow Res. Then, in order to

get the texture mapping matrix from the same texture image to the high-resolution

image, denoted as HHigh Res, we follow the discussion in Section 2.2:

x′
Low Res = HLow Resx

and

x′
High Res = HHigh Resx

where x is 3-vector homogeneous representation for pixels in texture image. By

comparing Equation 2.8 and the above two relationships, we have

HHigh Resx =


a 0 0

0 a 0

0 0 1

HLow Resx (2.9)

19

We know that x actually corresponds to a pixel in texture image, thus it cannot be

a null vector. Thus, a straight-forward solution for Equation 2.9 is

HHigh Res =


a 0 0

0 a 0

0 0 1

HLow Res (2.10)

From Equation 2.10 we know that HHigh Res can actually be acquired from HLow Res,

just by left-multiplying HLow Res with a scaling matrix. In this way, we can avoid

estimating HHigh Res in a time-consuming way.

2.4 EXPERIMENTAL RESULTS

In order to test the efficiency of our texture re-rendering tool, we firstly did texture

re-rendering on different room configurations to check whether the newly applied

texture corresponds to room spatial layout. And then we tested the efficiency of

our tool with respect to re-rendering adjustment. Finally, we compared the results

between low-resolution and high-resolution images.

Figure 2.7 shows the indoor scene image re-mixing results for different room con-

figurations. The appearance of re-rendered textures in Figures 2.7a, 2.7b, 2.7c, 2.7e,

2.7g and 2.7i look plausible, because they not only visually correspond to room spa-

tial layout, but also present a harmonious visual effect when their scaling in sizes are

compared with the objects nearby. The appearance of re-rendered textures in Figures

2.7d, 2.7f, 2.7h look reasonable in the sense of correspondence with room geometry

orientation. However, the results in these figures are basically generated from raw

texture mapping matrix with less refinement and user adjustments. Therefore they

present us an inharmonious visual effect when their sizes are compared with that

of nearby objects. Nevertheless, scaling can be refined and adjusted through our

user-interface that is introduced in Section 3.2.

Figure 2.8 actually shows how user interaction affects the scaling of re-rendering

results. As the highlighted brick tiles suggest, re-rendering result in Figure 2.8b

20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.7. Texture re-rendering and indoor scene image re-mixing re-
sults in various room layout configurations. (a) re-rendered floor with
bricks texture. (b) re-rendered side wall with bricks texture. (c) re-
rendered floor with carpet-like texture. (d) re-rendered floor with
stone texture. (e) re-rendered accent wall with bricks texture. (f) re-
rendered ceiling with tiles texture. (g) re-rendered accent wall with
bricks texture. (h) re-rendered floor with tile texture. (i) re-rendered
side wall with bricks texture.

is visually inharmonious because the brick tiles are oversized when compared with

cabinet top edges. However, as is observed in Figures 2.8c and 2.8d, with the changes

in cuboid surface shifting distance and the sampling window sizes, the scaling of the

brick tiles also changes accordingly. We now discuss this in detail. As suggested by

highlighted brick tiles, in Figure 2.8c, around 4 brick tiles are aligned with cabinet

21

(a) (b)

(c) (d)

Fig. 2.8. Illustration of re-rendering adjustment, the adjustments are
introduced in Figure 2.6. We denote cuboid surface shifting distance
as d in pixel, and sampling window size as win size in pixels × pix-
els. Green blocks are highlighted brick tiles. (a) User-selected com-
ponent to be re-rendered. (b) Re-rendering result when d = 100 and
win size = 800 × 800. (c) Re-rendering result when d = 100 and
win size = 1400 × 1400. (d) Re-rendering result when d = 120 and
win size = 1800× 1800.

top edge. And in Figure 2.8d, around 6 brick tiles are aligned with cabinet top edge.

So re-rendering results in Figures 2.8c and 2.8d are actually showing brick tile with

different scaling in size. In addition, we notice the fact from Figure 2.8 that all the

3 different re-rendering results have the same geometry orientation, which visually

corresponds to room layout.

Finally, we discuss the result for our proposed high-resolution re-rendering method.

In the process of generating the results in Figure 2.9, we are actually using the same

synthesized texture image with resolution 5000×5000 pixels for both low-resolution

22

scene images and high-resolution scene images. But as is shown in Figure 2.9, the

quality of re-rendered texture on the low-resolution image is poor – a lot of artifacts

are visually noticeable; while the re-rendering quality on the high-resolution image

is plausible. The critical point here for re-rendering on the high-resolution image is

that, although results in Figures 2.9b and 2.9c look very similar, the time consumed

for generating these two results are quite different. As shown in Table 2.1, in order to

generate the texture mapping matrix, time consumed for Figure 2.9b is more than 20

minutes while for Figure 2.9c, it is around 5 seconds. The results indicates that using

our proposed matrix scaling method greatly enhances the efficiency of re-rendering

on high-resolution images.

2.5 CONCLUSION

In the paper we propose a novel tool for texture re-rendering and indoor scene

image re-mixing. The tool is able to autonomously align newly rendered texture with

room spatial layout. Also it provides users an interface for adjusting the scaling of

(a) (b)

(c)

Fig. 2.9. High-resolution texture re-rendering and Low-resolution re-
rendering with zoomed-in view. (a) Re-rendering result on 1024×683
pixels scene image. (b) and (c) Re-rendering result on 3861×2574
pixels scene image. (b) and (c) are different in the way of generating
texture mapping matrix (see Table 2.1).

23

Table 2.1.
Table I: Time consumption comparison for different approaches
to generate texture mapping matrix, experiment performed in
MATLABr

Image in Fig-

ure

Image size (in

pixels × pix-

els)

Approach for

generating

texture map-

ping matrix

Time consumed

for generating

texture mapping

matrix

a 1024 × 683 Geometry layout

estimation [16]

~5 secs

b 3861 × 2574 Geometry layout

estimation [16]

>20 mins

c 3861 × 2574 Our proposed

matrix scaling

method

~5 secs

the re-rendered texture in order to match with practical object sizes. In addition, our

tool is capable of proving high-quality rendering result efficiently. In the future, we

plan to research options to autonomously enable more realistic outcomes: one is to

autonomously adjust the scaling of re-rendered texture, the other is to add light and

shadow effects.

24

3. DIGITAL HALFTONING WITH HYBRID SCREEN

FOR LASER ELECTROPHOTOGRAPHIC SYSTEMS

WITH UNEQUAL RESOLUTION

3.1 INTRODUCTION AND RELATED WORK

The efficient iterative search based algorithm has been producing decent digital

halftoning results, but due to the limit of computational resources, this kind of algo-

rithm cannot be integrated into normal laser electrophotographic systems for real-time

execution. The screening method for generating digital halftoning result is a more

practical way for normal industrial laser printers at a low cost of computational re-

sources, thus it can be executed in real time. Hybrid screen utilizes the search-based

method for designing the screening algorithm. According to the textures generated by

screen, they can be categorized into clustered-dot screens and dispersed-dot screens.

A clustered-dot screen is made up of clustered individual printing pixels, which typi-

cally forms a periodic grid-like pattern. The frequency of the grid pattern is referred

to as the screen frequency [2]. A number of grey levels can be produced through

varying the size of the dot cluster. The dispersed-dot screen does not form cluster,

and distinct grey levels are achieved through changing the density of printing pixels

(printer addressable dots). The dispersed-dot screen is commonly integrated into the

inkjet printer, which is able to easily generate stable and isolated printing pixels.

Oppositely, for the laser printer based on electrophotograhic (EP) process technology

whose rendering output is unstable, the clustered-dot screen is more robust compared

to the dispersed-dot screen. However, there is also limitation about the clustered-dot

screen. One of the constrains is that in order to implement a clustered-dot screen in

printers, the screen frequency must be lower than the frequency of the printer such

as to form clusters. This limits the capacity of such screens for detail resolving. An-

25

other disadvantage of the clustered-dot screen is that the number of gray levels are

insufficient, since the number of gray levels should be no more than the number of

printing pixels within a halftone cell. As a result, the output halftone patterns show

visible contour artifacts in the region where gray levels are gradually changing due to

the sharp gradient between different gray levels. The two disadvantages are actually

coupled and there is a trade-off between them. If we increase the screen frequency,

the capacity for the screen to render details will increase, but in the mean time the

size of the halftone cell must decrease, thus the number of gray levels becomes less.

On the other hand, if we increase the number of gray levels, the size of halftone cells

must be increased as well, thus the screen frequency decreases and it decrease the

screen’s capability to render details. In order to overcome this limit, there has been a

popular supercell approach [19]. In the supercell approach, the clustered-dot halftone

cells that we discussed previously becomes microcells that are formed together as the

a new halftone cell known as a supercell [2]. For supercells, as the absorptance in-

creases, there are multiple dot clusters that are growing within the supercell. Unlike

the conventional clustered-dot screen whose multiple cluster dots grow simultane-

ously, the clusters in the microcells within a supercell can either grow sequentially or

a few of them once. Here the dot growing sequence within the microcell is denoted as

the turn-on sequence of the microcell. Also, the sequence by which microcell clusters

grow is denoted as the macrocell growing sequence [2]. The benefit of a supercell

is that, the number of gray levels can be increased by adopting both microcell turn

on sequence and macrocell turn on sequence. In this way, the gray level number is

extended from the length of the microcell dot growing sequence to the product of

the length of the microcell dot growing sequence and the length of the macrocell dot

growing sequence. In this way, the total number of the gray level in a supercell can

be as large as the pixel number in this supercell. Therefore, the advantage of a su-

percell screen is that we can keep the screen frequency while arbitrarily increase the

number of gray levels. In my research of designing hybrid screen, this supercell screen

is implemented. In addition, in order to allow even more gray levels, the printer ad-

26

dressable pixels have the property of partially turned on, thus allowing multiple bits

of condition for a single printing pixel. In a supercell, the macrocell growing sequence

can be a major impact on the quality of final halftone patterns. And there are several

designing rules for macrocell growing sequence. One of them is the commonly-known

Bayer Screen [20] when the dots are placed successively in microcells. However, due

to the fact that the effective halftoning frequency is the same as the microcell screen

frequency, the regular textures that are visible in Bayer Screen is exacerbated [2].

Another logical solution for designing macrocell growing sequence is to replace the

Bayer Screen by a stochastic, blue noise screen [21] [22]. Nevertheless, the artifacts

similar to that come from Bayer Screen also occur when the blue noise screen is

adopted to control the macrocell growing sequence [2]. Another disadvantage about

the blue noise screen is that it will create a maze like artifacts for the highlight texture

due to the presence of parallel rows of dots [2]. The hybrid screen proposed by Lin

and Allebach [3] is another method for designing macrocell growing sequence, which

aims to solve the problem caused by the Bayer Screen and the blue noise screen. In

the hybrid screen, there is a small region in the microcell defined as core. Within

the core, pixels has the spatial freedom of moving around either within the core or

from core to core, following specific constraints. This spatial freedom allows us to

eliminate the maze like artifacts caused by blue noise screens [2]. After the cores are

filled, the macrocell growing sequence then becomes a regular periodic, clustered-dot

texture. Beyond the level at which all the cores are completely filled, the dot cluster

then grows in a manner similar to typical clustered-dot screen, except the fact that

the macrocell growing sequence is determined by the first dot turn on sequence in

the core. Within the core of the microcells, the dot growing sequence is determined

by Direct Binary Search (DBS) algorithm. Besides, DBS also helps determine the

macrocell dot growing sequence. In addition, in order to let the designed microcell

have the dot-hole complementary symmetry, the shadow core is also defined, which

applies the same strategy to the shadow region. So far, our discussion on digital

halftoning with hybrid is screen is based on the presumption that the printer only

27

has the capability of binary output, that is to say, the output condition of the printer

addressable pixel is either filled with a colorant dot or not filled with a colorant dot.

However, laser electrophotographic printers are commonly designed with a multilevel

capacity [2], which is commonly referred to as the pulse width modulation (PWM)

ability. With this ability, the multilevel halftone systems are able to generate even

more gray levels, with supercell already implemented for binary /printer addressable

pixel case.

Notice that our discussion about the digital halftoning so far is based on equal

printer resolution on scan direction and process direction. For equal resolution, printer

addressable pixel has the same dimension of stretching in both horizontal and vertical

direction. Therefore, when applying digital halftoning algorithms, the dimension of

the digital image pixel matches that of the actual printer addressable pixel. As a re-

sult, digital halftoning algorithm like DBS can be directly applied to the digital image

pixels in order to get an illusion that is close to the real printing outcome. However,

for printers whose addressable pixel has different dimension of stretching in horizon-

tal and vertical direction, thus causing an unequal resolution of pixels horizontally

and vertically, we use the pixels from digital image as the subpixel that represents

pixel block with identical dimensions in horizontal and vertical direction, and sev-

eral subpixels are aligned with different numbers horizontally and vertically, forming

a printer addressable pixel with unequal resolution. Then the screening and search

based halftoning algorithms are applied to the unequal resolution pixel by keeping

the binary condition of the subpixels within the pixel identical to each other. In the

following sections we will discuss the details for designing hybrid screen for printers

with unequal resolution and PWM ability.

28

3.2 METHODOLOGY

3.2.1 UNEQUAL RESOLUTION PRINTER MODEL

We use (x) = (x, y) and [m] = [m,n] for representing continuous tone images and

discrete spatial coordinates, respectively. And therefore the units for (x) and [m] are

pixels and inches, respectively. And in our denotation, we let f [m] be a continuous-

tone image and g[m] be the halftone pattern corresponding to f [m]. Here both

g[m] and f [m] are expressed in terms of absorptance level, where 0 is white (no

absorptance) and 1 is black (full absorptance). In this way, f [m] will take discrete

values a ∈ {0, 1
L−1 ,

2
L−1 , ..., 1} where L is the number of gray levels. As for g[m], the

value is either 0 or 1, since on halftone patterns there can only be black or white

pixels. Notice that the pixel we discuss here on g[m] is actually the the subpixel. For

1 bit per printing pixel case, a subpixel in g[m] represents a printer addressable pixel,

while for printers with PWM ability and for printers with unequal resolution, the

cluster of subpixels in g[m] represents an actual printer addressable pixel. Suppose

now we have an ideal continuous-tone printer that can produce a perfect rectangle

dot with absorptance equal to that of the discrete image pixel value. Let f [x] be the

version of f [m] that is rendered by the idea printer, then f [x] can be written as

f(x) =
∑
m

f(m)p(x−mX, y − nY) (3.1)

where p[x] = p(x, y) = rect(x/X, y/Y) is the spot profile function of the ideal printer

with unequal resolution. X is the distance between addressable dots in vertical di-

rection, and Y is the distance between addressable dots in horizontal direction. Thus

the printer vertical resolution is 1/X and horizontal resolution is 1/Y. Likewise, g[x]

and g[m] have the same relationship

g(x) =
∑
m

g(m)p(x−mX, y − nY) (3.2)

Note that a laser printer can actually have a high resolution such as 1/X = 400 dpi

(dot per inch) and 1/Y = 600 dpi (dot per inch).

29

3.2.2 SUBPIXEL COMPOSITION OF UNEQUAL RESOLUTION PRINTER

PIXEL AND HVS MODEL

In our research, subpixels with the same dimension in both horizontal and vertical

direction in the digital image represents partial ideal printer addressable dot. And in

fact, by tiling different number of subpixels horizontally and vertically, we will have

a tiled pixel with different dimension in these two directions. Now suppose that the

resolution for the printer is 1/X dpi vertically and 1/Y dpi horizontally, then the

vertical dimension of the pixel is X inches and horizontal dimension of the pixel is Y

inches. For printing pixel with binary condition (either fully filled or not filled), the

resolution of the subpixel, denoted by 1/Z dpi, is chosen such that

1

Z
= LCM(

1

X
,

1

Y
) (3.3)

where LCM stands for lowest common multiple. Since 1/Z is divisible by both 1/X

and 1/Y , the height Hp and width Wp of the subpixel, in unit of number of subpixels,

are

Hp =

∣∣∣∣1/X1/Z

∣∣∣∣ =

∣∣∣∣ZX
∣∣∣∣ ,Wp =

∣∣∣∣1/Y1/Z

∣∣∣∣ =

∣∣∣∣ZY
∣∣∣∣ (3.4)

Fig 3.1 shows the composition of an unequal resolution printer dot with vertical

dimension 1/400 inches and horizontal dimension 1/600 inches from tiling 3 by 2

subpixels that are perfect square pixels of 1/1200 × 1/1200 inches, in vertical and

horizontal direction.

Now, for the continuous-tone image f [m] and the halftone image g[m] with res-

olution X × Y dpi, which are made up with 1/Z × 1/Z inches subpixels, they can

actually be recognized as images with equal resolution Z dpi with the characteristic

that all the subpixels within an unequal resolution pixel must have the same binary

condition, which means they are simultaneously turned on or off. Based on the dis-

cussions above, the HVS (Human Visual System) that is applied on the images with

unequal resolution pixels that are tiled from subpixels can also be considered as the

one that is applied on the images with equal resolution subpixels. Therefore, there is

30

Fig. 3.1. An illustration of the composition for unequal resolution
printer addressable pixel from subpixels. The left shows a subpixel
which represents the physical 1/1200 × 1/1200 inches square block,
the right shows the tiled pixel with height 1/400 inches and width
1/600 inches.

no need to change the human visual system when running HVS-dependent halftoning

algorithms, such as DBS, on unequal resolution images composed by subpixels.

In the research of digital halftoning, the HVS is modeled as a linear, shift-invariant

low-pass filter. And the spatial representation for the HVS are denoted as h(x). When

we consider that the HVS is applied to an image composed by subpixels where the

distance between the subpixels is Z inches, then the perceived image f̃(x) through

the visual filter is obtained from the convolution between rendered image f(x) and

h(x)

f̃(x) = f(x) ∗ ∗h(x) =
∑
m

f(m)p̃(x−mZ) (3.5)

where ∗∗ denotes the 2-D convolution and p̃(x) = p(x) ∗ ∗h(x) is the perceived spot

profile function of the ideal printer on the subpixels. Similarly,

g̃(x) =
∑
m

g(m)p̃(x−mZ) (3.6)

For a laser printer with unequal resolution 1/X = 400 dpi and 1/Y = 600 dpi, by

raising equation 3.3, we are able to get the resolution of subpixel 1/Z = 1200 dpi. The

spot profile function p(x) is sufficiently narrow when compared with h(x), and p(x) is

also a rectangle function as defined in 4.1.2. Therefore we can make the assumption

that p̃(x) = h(x) [2]. The HVS model that we use for monochrome halftoning is based

on the luminance contrast sensitivity function that is based on Näsänen’s model [2].

Kim and Allebach compared Näsänen’s model with other three human visual model

31

and concluded that Näsänen’s model give the best overall halftone quality when used

together with DBS algorithm [23]. The luminance spatial frequency response H(ū)

for HVS based on Näsänen’s model is given [24] by:

H̄(ū) = aΓ b exp

(
− ‖ū‖
c ln Γ + d

)
(3.7)

where (ū) = (ū, v̄) are the spatial frequency coordinates in the unit of cycles/degree.

The parameters for the models are a = 131.6, b = 0.3188, c = 0.525, d = 3.91, and

Γ is the average luminance of the light reflected from the print in the unit of cd/m2.

Considering the continuous-space Fourier transformation (CSFT) of H̄(ū), we can get

the HVS filter in spatial domain, denoted as h̄(x̄). Notice that here (x̄) = (x̄, ȳ), which

are degrees subtended at the retina. In order to better represent the HVS in spatial

domain, we need convert the unit of cycles/degree in Equation 3.7 to cycles/inch,

which is

x̄ =
180

π
tan−1

(x
D

)
≈ 180

πD
x, for x� D (3.8)

By using this transformation, the spatial filter can be written [2] as:

p̃(x) = h(x) =
1

T 2
h̄
(x

T

)
=

1

T 2
h̄(x̄) =

1

T 2
F−1{H̄(ū)} (3.9)

where T = πD
180

.

3.2.3 SCREENING AND DOT PROFILE FUNCTION

In this section we will talk about the screening process in using hybrid screen to

generate halftone pattern. Screening is the process of comparing each input pixel

value from continuous tone image with a spatially varying threshold. If the input

pixel value is greater or equal than the threshold, the halftone image pixel is set to

black. Otherwise, the pixel is set to white. The thresholds are usually stored in a

2-D array of size H×W , where H and W are the height and the width of the screen,

respectively. Through the screening process, a continuous-tone image is rendered

to one of the halftone patterns that corresponds to one of the absorptance levels

32

a ∈
{

0, 1
L−1 ,

2
L−1 , ..., 1

}
. Note that here the absorptance level are normalized within

the range of (0, 1), and the absorptance of 0 is the white color, while the absorptance

level of 1 is the black color. The dot profile function p[m; a] is defined as the family

of halftone patterns corresponding to different absorptance level a. In the screening

process, if a dot is present at m at level a0, then the dot must appear at m for all the

darker level a > a0. That is to say, if p[m; a0] = 1, then p[m; a] = 1 for all a > a0.

The rule is called the stacking constraint [2].

The dot-turn on sequence, or the index matrix d[m] can be acquired though [2]

d[m] = L− 1−
L−1∑
i=0

p

[
m;

i

L− 1

]
, (3.10)

This equation suggests that, the greater the threshold for the absorptance level is, the

greater the index value is. Also we are able to conclude that the number of elements

in the index matrix is equal to the number of total gray levels minus one. From the

index matrix, we are able to get the threshold matrix, which is given as

t[m] =
d[m] + 0.5

L− 1
(3.11)

Note that the values in the threshold matrix are actually absorptance levels within the

range of (0, 1). Therefore, in order to generate the halftone pattern of the continuous-

tone image from this screen, we firstly have to transform the gray scale values f̄ [m] ∈

[0, 255] from the continuous-tone image into normalized absorptance levels f [m] ∈

[0, 1], which follows

f [m] = 1− f̄ [m]

255
(3.12)

And then the halftone image g[m] after the screening process is given as

g[m] =

 1, if f [m] ≥ t[m mod [H,W]]

0, otherwise
(3.13)

3.2.4 DIRECT BINARY SEARCH AND WRAPAROUND EFFECT

DBS is a search based digital halftoning method that aims to generate the halftone

pattern that has the minimal error between the perceived continuous-tone image and

33

the halftone image [2], which are the original images filtered by HVS filter defined in

section 3.2.2.

Now we consider a trial change to a current subpixel with dimension Z × Z by

either modifying the state of current subpixel (toggle on or off) or switch the states of

the current subpixel with another neighboring pixel (swap). If any of these changes

decrease the total error, then the change that decrease the total error the most is

accepted and the halftone pattern is updated. If none of these changes decrease the

total error, then the change that increase the total error the lease is accepted and the

halftone pattern is updated. The perceived error ẽ(x) between the continuous-tone

image and the halftone image is given [2] by

ẽ(x) = g̃(x)− f̃(x) =
∑
m

e[m]p̃(x−mZ) (3.14)

where e[m] = g[m]− f [m] is the error image before the perception of HVS. Then the

mean squared error after the perception of HVS is given as

E =

∫
|ẽ(x)|2dx =

∑
m

e[m]cp̃ẽ[m] (3.15)

where cp̃ẽ[m] = e[m] ∗ ∗cp̃p̃[m]. According to Section 3.2.2, cp̃p̃[m] is acquired by

evaluating the autocorrelation function of HVS

cp̃p̃[x] =

∫
p̃(s)p̃(s + x)ds (3.16)

at at points on the printer lattice of subpixels , which is indeed cp̃p̃[m] = cp̃p̃[mZ].

In the case of single toggling of a subpixel from g[m], the trial halftone image

g′[m] after the toggling at subpixel located at m0 are expressed as

g′[m] = g[m] + a0δ[m−m0] (3.17)

where a0 is the absorptance change at m0. Therefore a0 = 1 if g[m0] = 0 and a0 = −1

if g[m0] = 1. The trial error change is given [2] by

∆E = a20cp̃p̃[0] + 2a0cp̃ẽ[m0]. (3.18)

34

If there are any trial changes that lead to ∆E < 0, then among the trial changes

considered, the toggling operation that decrease the total error the most is accepted.

However, in some occasions, there are none of the trial changes that decrease the

total error, thus ∆E ≥ 0 for all the trial changes. In this case, the toggling operation

that increase the total error the lease is accepted. Consider ∆E as a function of m,

by which ∆E[m] indicates the trial error change when the trial toggling is operated

at m. Then for both of the circumstances of ∆E discussed above, A very general

expression for the chosen toggling operation at m is such that

m = arg min
m

∆E[m] (3.19)

Then after the toggling change is accepted, if the continuous tone image f [m] to which

the halftone image g[m] corresponds is not changing, then we can update cp̃ẽ[m] as

c′p̃ẽ[m] = cp̃ẽ[m] + a0cp̃p̃[m−m0]. (3.20)

In case of a swapping operation between two subpixels, the values of the current

subpixel and the neighboring pixels are switched. If the subpixel at m0 and m1 are

being swapped, then the halftone image after this trial swap is

g′[m] = g[m] + a0δ[m−m0] + a1δ[m−m1], (3.21)

where a0 and a1 indicate the absorptance level changes at subpixels m0 and m1,

respectively. Hence a0 = −a1. The value of a0 can be acquired through evaluating

Equation 3.17. The trial error change is given [2] as

∆E = (a20 + a21)cp̃p̃[0] + 2a0cp̃ẽ[m0] + 2a1cp̃ẽ[m1] + 2a0a1cp̃p̃[m0 −m1]. (3.22)

If ∆E < 0 then the trial swap that decrease the error the most is accepted, and cp̃ẽ[m]

is updates [2] as

c′p̃ẽ[m] = cp̃ẽ[m] + a0cp̃p̃[m−m0] + a1cp̃p̃[m−m1]. (3.23)

Now we discuss the wraparound effect when using DBS for the screen design.

Suppose the screen size is H ×W , indicating that the size for both f [m] and g[m] is

35

H ×W . Then cp̃ẽ[m] has the same size of f [m] and g[m], which is also H ×W . By

considering the wrap around effect, the halftone pattern looks to the DBS algorithm

as though it repeats with period H ×W . Note that in Equation 3.20 through 3.23,

in order to evaluate ∆E and update cp̃ẽ[m], we need to look up values from the

autocorrelation of the PSF (point spread function) of the HVS, denoted cp̃p̃[m]. In

addition, the wraparound effect of cp̃ẽ[m] also needs to be considered when subpixel

are out of the boundary of H ×W . Let’s now assume that PSF for the human visual

system model has a support of P × P , then cp̃p̃[m] is of size 2P − 1 × 2P − 1 for

a perceived spot p̃. When wrap around effect is taken in account, by noticing the

denotation that m = [m,n], Equation 3.20 is re-written as

c′p̃ẽ[m mod H,n mod W] = cp̃ẽ[m mod H,n mod W] + a0cp̃p̃[m−m0]. (3.24)

And Equation 3.23 is re-written as

c′p̃ẽ[m mod H,n mod W] = cp̃ẽ[m mod H,n mod W]+a0cp̃p̃[m−m0]+a1cp̃p̃[m−m1].

(3.25)

Now we consider the wraparound effect in looking up the values of cp̃p̃[m] in Equation

3.22, which occurs when m0 −m1 are out of the cover range of the PSF of HVS. By

taking the denotation that [m0−m1] = [m0−m1, n0−n1], the equation is re-written

as

∆E = (a20+a
2
1)cp̃p̃[0]+2a0cp̃ẽ[m0]+2a1cp̃ẽ[m1]+2a0a1cp̃p̃[|m0−m1| mod P, |n0−n1| mod P].

(3.26)

The above equations suggest that wraparound occurs for cp̃ẽ[m] and cp̃ẽ[m] when

we calculate ∆E and update cp̃ẽ. Figure 3.2 shows the wraparound effect that happens

when we look up values in cp̃p̃[m] and update the values in cp̃ẽ[m]. And the figure also

illustrates the outcomes of the modulo operator in Equation 3.24 through 3.26, which

functions as giving DBS the illusion that the H ×W halftone pattern are repeated

with a period of H ×W .

36

3.2.5 UNEQUAL RESOLUTION DBS

Unequal resolution DBS is operated on the unequal resolution pixel which is ac-

tually a block of subpixels. Referring to the subpixel composition that is described in

section 3.2.2, DBS on the pixels with unequal resolution 1/X × 1/Y dpi can indeed

be recognized as DBS on the subpixels with equal resolution 1/Z× 1/Z dpi, where Z

is given by Equation 3.3. Given this presumption, for a trial toggle in the operation

of the unequal resolution DBS, all the subpixels within the unequal resolution pixel is

simultaneously turned on or off. And for a trial swap in the operation of the unequal

resolution DBS, all the subpixels within one unequal resolution pixels are simultane-

ously switched condition with all the subpixels within the other unequal resolution

pixels. In other words, all the subpixels with dimension Z × Z inches that compose

the unequal resolution pixel with dimension X × Y gather as a single unit, as shown

in Figure 3.3. Therefore, we can reach the fact that the unequal resolution DBS is

indeed a special case of the equal resolution DBS with certain constraints. Kacker

et al. has developed a version of the DBS algorithm that is suitable for the case of

multiple subpixel changes [25]. Lee and Allebach [2] also proposed the equations of

DBS toggle and swap for (q− 1)× 1 subpixel blocks. Based on these algorithm. Now

we presume that the unequal resolution pixel has m× n subpixels. Then we are able

to write the DBS toggle and swap equations for the unequal resolution pixel, as well

as the m× n subpixel block. Suppose that we toggle the unequal resolution pixel at

m0 or swap the unequal resolution pixel at m0 and m1, which means that we are also

toggling or swapping the subpixel blocks. In the following discussions, we denote the

subpixels in the unequal resolution pixel at m0 as m0ij, where i ∈ {0, 1, ...,m−1} and

j ∈ {0, 1, ..., n− 1}. Likewise, we denote the subpixels in the unequal resolution pixel

at m1 as m1kl, where k ∈ {0, 1, ...,m−1} and l ∈ {0, 1, ..., n−1}. Then the equations

for g[m], ∆E and c′p̃ẽ[m] in Equations 3.17 - 3.18 and 3.20 - 3.23 is re-written as

g′[m] = g[m] + a0

m−1∑
i=0

n−1∑
j=0

δ[m−m0ij] + a1

m−1∑
k=0

n−1∑
l=0

δ[m−m1kl] (3.27)

37

∆E = 2a0

m−1∑
i=0

n−1∑
j=0

cp̃ẽ[m0ij]+2a1

m−1∑
k=0

n−1∑
l=0

cp̃ẽ[m1ij]+a0a1

m−1∑
i=0

n−1∑
j=0

m−1∑
k=0

n−1∑
l=0

cp̃p̃[m0ij−m1kl].

(3.28)

c′p̃ẽ[m] = cp̃ẽ[m] + a0

m−1∑
i=0

n−1∑
j=0

cp̃p̃[m−m0ij] + a1

m−1∑
k=0

n−1∑
l=0

cp̃p̃[m−m1kl], (3.29)

where a0 and a1 are the absorptance level changes at pixel m0 and m1, respectively.

As a result, a0 = 1 and a1 = 0 in a toggle operation, and a1 = −a0 in a swap

operation. A special instance for the toggle and swap operation on the pixel that is

made up of 3× 2 subpixels are shown in Figure 3.3.

3.3 BILEVEL HYBRID SCREEN DESIGN

In this section we will discuss the designing for hybrid screen integrating DBS

approach for electrophotographic printers that does not have pixel modulation tech-

nology, meaning that each of the printer addressable pixel is of bilevel output (either

fully toggled on or off).

3.3.1 TILING VECTORS, PERIODICITY MATRIX AND SCREEN AN-

GLE

Generally, a periodic screen can be associated with two vectors z = [zi, zj] and

w = [wi, wj], as shown in Figure 3.4. These vectors are defined as the screen tile

vectors [2], which are restricted to be integer pairs. By shifting and copying the vector

set using n1z +n2w, (n1, n2) ∈ R2, we are able to cover the whole spatial domain. In

addition, in order to span the whole space with the tile vectors, the vectors must be

linear independent. Figure 3.4 actually shows an example of the tile vectors z = [2, 3]

and w = [2,−3]. The periodicity matrix is defined as N = [zT |wT]. Another import

concept for hybrid screen design is the screen angle, which is defined [2] as the angle

between a tile vector and the +j axis, which is the horizontal axis shown in Figure

3.4. It is worth mentioning that here we are considering the unequal resolution printer

dots with dimension X × Y inches. Therefore, in order to calculate the screen angle

38

for unequal printing resolution, we have to consider the stretch caused by the non-

uniform dimension. The stretching factor γ is given as the ratio between vertical

resolution and horizontal resolution, which is indeed

γ =
1/X

1/Y
= Y/X, (3.30)

and then screen angle θ is given as

θ = arctan(γ|wi|/|wj|) (3.31)

For an electrophotographic system with unequal resolution 400 dpi × 600 dpi, ac-

cording to the equations above, we can get γ = 600/400 = 3/2. Thus for the tile

vectors z = [2, 3] and w = [2,−3] as shown in Figure 3.4(a), the screen angle is

θ = arctan(2/3 ∗ 3/2) = 45°.

3.3.2 MICROCELL AND BSB

Once the screen tile vectors are set and the basic parameters are determined, we

define [2] the block that roughly matches the parallelogram formed by the tile vector

as the microcell. Figure 3.4(a) shows a microcell with a shape of cross, which is

formed by the tile vector z = [2, 3] and w = [2,−3]. The number of pixels, denoted

as Nm in the microcell is equal to the area of the parallelogram formed by the tile

vactors, and is given [2] as

Nm = | det N| = |ziwj − zjwi| (3.32)

The number of output gray levels per microcell is Nm+1. For the microcell in Figure

3.4(a), Nm = |2 · (−3)− 3 · 2| = 12.

Since the microcell shape is not rectangular, when they are tiled together, the

boundary is also not rectangular. Nevertheless, it will be convenient in most screen-

ing implementations to store the screen in the form of a 2-D array. Hence we use

the equivalent rectangular screen from the non-rectangular screen using the method

introduced in [2]. The basic screen block (BSB) is defined as the smallest rectangle

39

screen that can be tiled in the vertical and horizontal directions. Figure 3.4(b) shows

a BSB that is formed by tiling two microcells. The height HB and the width WB of

the BSB is given [2] as

HB =

∣∣∣∣ Nm

gcd(zj, wj)

∣∣∣∣ , WB =

∣∣∣∣ Nm

gcd(zi, wi)

∣∣∣∣ , (3.33)

where gcd stands for greatest common divisor. For the vectors z and w given in

Figure 3.4(a), HB = 4 and WB = 6, thus a 4× 6 BSB is formed.

3.3.3 SUPERCELL AND CORES

A supercell is a block created by grouping the microcells together. Given the BSB

height HB and width WB, the screen height and width can be obtained [2] by

H = MHHB, W = MWWB, (3.34)

where MH and MW are the arbitrarily chosen integer multiplication factors in the

horizontal and vertical direction. In order to hide repeating patterns in the halftone

output, H and W are generally set to be more than a hundred levels [2].

Next we will discuss the creation for the highlight core and shadow core for

stochastic-dot texture. The core is the region where the original cluster growing

sequence given by Equation 3.10 is ignored and chosen by DBS instead. The core

region is very flexible, and in our design, we incorporated a 2 × 2 square core de-

sign as shown in Figure 3.5, which will be suitable for growing a conventional round

dot-cluster. The region outside of the core area is called the midtone, whose growing

sequence can follow a conventional clustered dot growing order.

3.3.4 DOT PROFILE FUNCTION GENERATION FOR HIGHLIGHTS

AND SHADOWS

As described by the sections before, the highlight and shadow textures are deter-

mined by DBS. Before applying DBS, we firstly have to decide the desired number of

40

levels Ld. Commonly the input image pixel has 256 levels that range from [0, 1, ...255].

However, in order to correct for the nonlinear relationship between the absorptance

of the ideal halftoning process and the absortance that is measured from the printed

page [2], Ld is often set to be more than a thousand levels. And then during the

calibration process, a subset of 256 levels is selected from these levels [2]. Now we

denote LM as the length of the macrocell growing sequence as described in Section

4.1 {0, 1, ..., LM − 1}. It is actually the same as the level where each microcell in the

supercell contains a single dot. Hence the total number of output levels is given as

L = LMNm + 1, (3.35)

where L ≥ Ld.

In order to generate the index matrix d[m] as described in Equation 3.10, we

generate each level of the dot profile function p[m; i
L−1] in sequential order. That is

to say, in order to create p[m; i
L−1], we either start from p[m; i−1

L−1] and add dots to

it or start from p[m; i+1
L−1] and remove dots to it. In this way the stack constraint is

guaranteed.

Now suppose the highlight core consists of Nh pixels. Generating the dot profile

function in the highlight core region defines p[m; i
L−1], i = 1, ...NhLM , recalling that

LM is the length of the macrocell turn on sequence. The designing for the first LM

levels, which corresponds placing the first dot in every microcell, is called the FM

seeding [2]. The designing for the remaining levels p[m; i
L−1], i = LM + 1, LM +

2...NhLM , which corresponds to placing dots sequentially in the microcell until the

core is fully filled, is called the AM growing [2].

In order to implement FM seeding and AM growing, we use a constrained DBS

algorithm to design the dot profile function in the highlights. This DBS algorithm has

the restriction of only being able to place dots inside the core region. In addition, the

number of dots in each core is also restricted so that dots are evenly distributed all

across the screen. Specifically, for p[m; i
L−1], the maximum number of dots allowed in

each core is di/LMe, which means that when i ∈ {1, 2..., LM}, each core has maximum

one dot, and when i ∈ {LM + 1, ..., 2 ∗ LM}, each core has maximum two dots, until

41

when i ∈ {(Nh − 1)LM + 1, ..., NhLM}, each core has maximum Nh dots, and finally

each core has Nh dots, meaning that core region are fully filled.

Generating a level of dot profile function using the constrained DBS is composed

of two parts:

(i) Constrained DBS swap for determining p[m; LM/2
L−1]: In this step, we firstly gen-

erate a random halftone pattern corresponding to level LM/2
L−1 , where half of the

cores have one dot and half of the other cores are empty. We use the unequal

resolution DBS described in section 3.2.5 to calculate ∆E and update cp̃ẽ[m].

For a trial swap, each of the pixel (dot) within the core is able to either swap

with the neighboring pixels within the same core or swap with the pixels lo-

cated at empty cores, and then we calculate ∆E according to Equation 3.29. If

any ∆E < 0, then the trial swap that decrease the error the most is accepted;

and g[m] and cp̃ẽ[m] are updated according to Equation 3.27 and 3.28. The

algorithm stops if |∆E| becomes smaller than a threshold and/or the number

of iteration exceeds the maximum number of iterations allowed.

(ii) Constrained DBS toggle for generating p[m; i
L−1], i ∈ {1, 2, ..., LM/2 − 1} and

p[m; i
L−1], i ∈ {LM/2 + 1, LM/2 + 2, ..., NhLM}. The candidate toggle posi-

tion must satisfy the constrains that we have discussed in FM seeding and AM

growing. And the best trial toggle position is selected by Equation 3.19.

After generating all levels of the dot profile function in the highlight, we now have

the index matrix for the highlight core region, written [2] as

dh[m] =


NhLM −

NhLM∑
i=1

p

[
m;

i

L− 1

]
, if m ∈ Ωh

0 , otherwise

, (3.36)

where Ωh denotes the highlight core region.

The shadow core is actually designed by following a similar procedure. The dif-

ference here is that the dots become holes. Hence we are still able to follow a similar

42

designing routing to the one described for highlight core. In spite of this, Lee and

Allebach proposed an alternative approach [2] for creating the dot profile function

for shadow core, which is based on inverting and offsetting the dot profile function

of highlight core. Suppose the offset from the highlight core to the shadow core is

[m−mc, n− nc]. The the dot profile function is written as

ds[m] =

L− 1− dh[(m−mc) mod H, (n− nc) mod W] , if m ∈ Ωs

0 , otherwise
, (3.37)

3.3.5 SCREEN GENERATION

In this section we will discuss the generation of midtones, thus determining the

dot profile function p[m; i
L−1], i ∈ {NhLM + 1, NhLM + 2, ..., (Nm − Ns)LM}, where

Nh is the number of pixels in the highlight core and Ns is the number of pixels in

the shadow core. For bilevel hybrid screen design, we do not use DBS to design dot

growing sequence. Instead, we use the first dot turn-on sequence that is determined

in the FM seeding process as the macrocell turn-on sequence. In this way, in the

process of generating midtones, we have two sets of growing sequence: the first is

the macrocell turn-on sequence dM [m] ∈ {0, 1, ..., LM − 1}, and the second is the

microcell growing index dm[m] ∈ {Nh, Nh + 1..., Nm − Ns − 1}. We firstly turn on

the dots located at microcell index dm[m] ∈ {Nh} following the macrocell index, then

the dots located at microcell index dm[m] ∈ {Nh + 1} are turned on following the,

macrocell index. Sequentially, all the dots in the midtones are turned on. Therefore,

we have the index matrix for the midtone region as [2]

dm[m] =

LMdm[m] + dM [m] , if m ∈ Ωm

0 , otherwise
, (3.38)

where Ωm is the midtine region. Finally, the overall index matrix is generated [2] by

d[m] = dh[m] + dm[m] + ds[m] (3.39)

43

And the screen or the threshold matrix is generated using Equation 3.11.

3.4 MULTILEVEL HYBRID SCREEN DESIGN

In this sections we will discuss the designing for the hybrid screen levels for pixels

with multilevel outputs. As discussed in Section 4.1, it is becoming increasingly com-

mon for laser eclectrophotographic printers to support multilevel outputs in order to

improve image quality by adopting pixel modulation technique. And in the screening

process , multilevel rendering is achieved by comparing the input image pixel value

to the thresholds of multiple screens so as to determine the output.

3.4.1 PRELIMINARIES

Figure 3.6 shows a pixel 4 output levels, for such kind of pixel, there are three

thresholds that correspond to the different rendering output. In general, if a pixel

has q possible output levels, then the number of screens needed to produce q output

levels per pixel is q − 1 [2]. According to Lee and Allebach, the multilevel screens

ti[m] are given by

ti[m] =
di[m] + 0.5

L′ − 1
, i = 0, 1, ..., q − 2 (3.40)

where di[m], i = 0, 1, ...q − 2 be the multilevel screen index matrices and L′ be the

number of output levels, which is given [2] as L′ = (L−1)(q−1)+1, and the halftoning

operation corresponding to multiple thresholds are given [2] as

g[m] =


0, if 0 ≤ f [m] < t0[m]

1

q − 1
, if ti−1[m] ≤ f [m] < ti[m]

1, if f [m] ≥ tq−2[m]

, (3.41)

Each output pixel multitone level is determined by two parameters: partial dot width

and justification. Justification is the offset of the partial dot from the native printer

44

resolution grid, which is used to determine the rule for adding partial dots. Figure

3.6(b) shows an example of four justification modes for a pixel with 4 output levels:

left, right, center and split. The justification mode is determined after screening.

One method [2] of determining the justification for current pixel is based on the

information of the partial-dot width of the left and right pixels. In our method, the

determination of the justification for current pixel is based on the rule that the newly

formed pattern should be compact and its centroid must shift from the previous one to

the minimum extension, thus forming a symmetric pattern. A simple instance for the

compact rule is that, if one of the neighboring pixels is a full dot while the the pixel on

the other side is not, then the current pixel is justified toward the full dot, or in other

words, the newly added partial dot is adjacent to the full dot. A good illustration

of the centroid rule and the compact rule is shown in Figure 3.7. As we can see,

the halftone pattern in Figure 3.7(b) has a greater centroid shift than the pattern in

Figure 3.7(a); and the halftone halftone pattern in Figure 3.7(d) is less compact than

that in Figure 3.7(c). Figures 3.8(a) and (b) show actual halftone patterns generated

with and without the centroid rule. Figure 3.8 (c) and (d) are the Gaussian-filtered

version of the halftone patterns in Figures 3.8 (a) and (b), respectively. The Gaussian

filterer is used as a rough approximation of the visual outcome for the actual printing

results. We are able to notice that there are maze-like artifacts in Figure 3.8 (c) but

in Figure 3.8 (d) these artifacts are greatly reduced.

3.4.2 DOT PROFILE FUNCTION GENERATION FOR THE MULTI-

LEVEL PIXEL

As discussed in Section 3.4.1, in order to generate a screen from the pixels with

multilevel output, we have to follow the compact rule and the centroid rule. In

addition, for the pixel with multilevel output as shown in Figure 3.6(a), the three

partial dots, or the three slivers on the left, right and in the middle can be treated as

unequal resolution pixels, and thus we can apply the unequal resolutio DBS algorithm

45

described in Section 3.2.5 to the slivers such as to determine where they should be

added when designing the dot profile function. However, when we let DBS recognize

these slivers as independent unequal resolution pixel that are freely to be toggled and

swapped, it is very likely that the generated halftone is not following the compact

rule, as shown in Figure 3.9(a). As a result, we need to run a constrained DBS

algorithm to generate the dot profile function for multilevel cases. Unlike the bilevel

hybrid screen design where we let DBS generate highlight and shadow patterns and

let the midtone growth follow the macrocell sequence, for the multilevel cases, the

dot growing sequence is all determined by DBS that is restricted to place new partial

dots at places where the design rules described in Section 3.4.1 satisfy. In order to

create p[m; i
L′−1], if we start from p[m; i+1

L′−1], then we just remove a sliver using DBS,

which is similar to what we do in Section 3.3.4. If we start from p[m; i−1
L′−1], then the

newly added sliver must be located at where the compact rule and the centroid rule,

as shown in Figure 3.7, are satisfied.

Now suppose there are L − 1 full dots in the screen and the highlight has Nh

full dots that has q − 1 slivers each. Then generating the dot profile function defines

p[m; i
L′−1] where L′ = (L− 1)(p− 1) + 1 and i ∈ {1, ..., Nh(p− 1)LM}, recalling that

LM is the length of macrocell turn on sequence. Notice that the number of slivers in

each core is also restricted so that they are evenly distributed all across the screen.

Specially, for p[m; i
L′−1], the maximum number of slivers allowed for each core is

di/LMe. For instance, when i ∈ {(Nh− 1)(p− 1)LM + 1, ..., Nh(p− 1)LM}, each core

has a maximum of Nh(p− 1) slivers, and finally all the cores have Nh(p− 1) slivers,

which means that thedi/LMe core region are fully filled. In conclusion, presuming

that the shadow core has Ns full dots , then generating a level of dot profile function

for multilevel pixels using constrained DBS is described as:

(i) Constrained DBS swap for determining p[m; LM/2
L′−1], where LM is the length of

macrocell turn on sequence, or the number of microcells in the supercell. We

follow a similar routine to the one described in Section 3.3.4. The only difference

46

is that now we use the unequal resolution DBS described in Section 3.2.5 to swap

slivers that are composed by subpixels.

(ii) constrained DBS toggle for generating p[m; i
L′−1], i ∈ {1, 2, ..., LM/2 − 1} and

p[m; i
L′−1], i ∈ {LM/2 + 1, ..., (L − 1 − Ns)(p − 1)LM}. It is worthwhile to be

noticed that here we are using DBS toggle to determine midtone dot profile

function p[m; i
L′−1], i ∈ {Nh(p − 1)LM + 1, ..., (L − 1 − Ns)(p − 1)LM}. The

candidate toggle positions are selected with the compact and the centroid rule.

The shadow core dot profile function p[m; i
L′−1], i ∈ {(L−1−Ns)(p−1)LM+1, ..., (L−

1)(p − 1)LM} is generated using the same shift-based method described in Section

3.3.4. After we generate p[m; i
L′−1], i ∈ {1, 2, ..., (L − 1)(p − 1)LM}, the turn on

sequence for the slivers is determined by

d[m] = L′ − 1−
L′−1∑
i=0

p

[
m;

i

L′ − 1

]
, (3.42)

Notice that here we are getting the sliver index matrix. Suppose that the screen

size is H × W , then sliver index matrix is of size H × (p − 1)W , recalling that p

is the number of output levels per dot. In order to generate multilevel screen index

matrices di[m] with size H ×W , where i = 0, 1, ...q − 2, we have to place the entries

in every connected non-overlapping 1× (p− 1) unit of d[m] in ascending order. And

then the entries of di[m] are the ith elements in each of the 1× (p− 1) units, where

i ∈ {0, 1, ..., p−2}. Given di[m], the multilevel screen is determined by Equation 3.40.

3.5 EXPERIMENTAL RESULTS

In this section, we will talk about the experimental result for the hybrid screen

design using unequal resolution DBS. Firstly I will show the results of the unequal

resolution DBS. Secondly I will show the results of bilevel unequal resolution hybrid

screen design and finally I will show the results of multilevel unequal resolution hybrid

screen design. Figure 3.10 shows the result of the generated halftone patterns that

correspond to the same absorptance level, using equal and unequal resolution DBS.

47

We observe in Figure 3.10(c) that the halftone pattern created from equal resolution

DBS has horizontal and vertical block patterns, which are reasonable to look at in the

equal resolution case where there is no distortion in pixels. However, when looking

at the unequal resolution rendering of the halftone pattern in Figure 3.10(c), which

is as shown in Figure 3.10(b), we notice that the unequal dimension of the pixel in

horizontal and vertical direction makes the horizontal and vertical pixel block patterns

look strange. And indeed, in Figure 3.10(a), we noticed that when the unequal

resolution DBS is applied to generate the unequal resolution halftone pattern, the

algorithm tends to place dots in the form of diagonal patterns, which greatly increases

the visual quality of the halftone pattern.

Figure 3.11 through 3.14 show the halftone ramp images that are generated from

different unequal resolution hybrid screen and they are all rendered in unequal res-

olution with subpixels. The continuous ramp image on which we do the screening

is an image whose gray scale value changes continuously from 255 to 0. Figure 3.11

shows the halftone ramp image generated from a supercell hybrid screen designed by

the approaches in 3.3.4. We observe from the pattern that the the highlight region

actually gives us an illusion that it is generated from conventional mono-chrome DBS

algorithm, however in fact it is generated from screening. Figure 3.12 shows a halftone

ramp image generated from a supercell hybrid screen designed by the approaches in

3.3.4 as well, but with a smaller supercell size. This time we observe that due to the

deduction of the number for tone levels, the halftone output is not as visually ho-

mogeneous as the one shown in Figure 3.11. Figure 3.13 and 3.14 show the halftone

ramp images generated from multilevel hybrid screen, one without considering the

centroid rule and one considering the centroid rule. Although the supercell size is

even smaller, due to the multilevel output per-pixel, the generated halftone quality

look similar to the ones shown in Figure 3.11 and 3.12. Also we notice that after

considering the centroid rule in multilevel hybrid screen design, the halftone patterns

in Figure 3.14 is showing some visual improvements than that in 3.13, especially at

the upper right area.

48

3.6 CONCLUSION

In this work we developed a novel hybrid screen design approach integrating the

concept of superpixels and unequal resolution DBS algorithm. The integration of DBS

in determining the dot growing sequence help produce decent halftoning quality. Our

experiments show that the generated halftone images show plausible visual outcome

for both bilevel screen and multilevel screen.

49

(a)

(b)

Fig. 3.2. Illustration of wraparound effect on a halftone image with
size 6×5 and cp̃p̃ with the size 7×7. (a) The wraparound effect when
look up values from cp̃p̃[m], this figure shows the instance where DBS
tries to evaluate cp̃p̃[m0−m1], which is already beyond the boundary
of the cover range of cp̃p̃. Then by using the modulo operator on
[m0 −m1] in both horizontal and vertical direction, we can see that
the dot m1 as seen by the cp̃p̃ has been moved from bottom right to
upper left. And then [m0 −m1] is now within the cover range of cp̃p̃.
(b) The wraparound effect when updating cp̃ẽ[m]. As suggested by
the figure on the left, the azure block is already out of the boundary
of cp̃ẽ, however, the modulo operation on the indices of cp̃ẽ will move
the azure block to the area within the boundary of cp̃ẽ, as denoted by
the red block. Then actually is it the subpixels within the red block
that are updated. In both cases (a) and (b), the modulo operations
will let the halftone pattern as seen by DBS be repeated with periodic
6× 5.

50

(a) (b)

Fig. 3.3. Illustration of trial changes in the unequal resolution DBS in
a halftone image that consists of 2×2 unequal resolution pixels. Each
of the unequal resolution pixel is constituted by 3× 2 subpixels. Our
presumption is each of the subpixels represents a square block with
physical size 1/1200 × 1/1200 inches, thus each unequal resolution
pixel is of size 1/400 × 1/600 inches. Therefore, the DBS resolution
as shown in the figure is 400 × 600 dpi. (a) A trial toggle in the
unequal resolution DBS, the pixel on the bottom right of the halftone
image get toggled off. Notice that all the 3× 2 subpixels within this
orange block are turned off as a unit. (b) a trial swap in the unequal
resolution DBS. The unequal resolution pixels on the upper left and
bottom right of the halftone image get swapped. And for this single
swap operation, all the subpixels within a pixel are swapped as a unit.
Therefore, for a single swap trial in this instance of unequal resolution
DBS, there are actually 12 subpixels that are swapped.

(a) (b)

Fig. 3.4. Illustration of the microcell, tile vector, BSB, and cores. (a)
A microcell formed by the tile vector z = [2, 3] and w = [2,−3]. O is
origin, i is vertical axis and j is horizontal axis. (b) A BSB containing
2 microcells, which are separatedly shown in the azure and yellow
block.

51

Fig. 3.5. An illustration of a 4×12 supercell and cores. The supercell
contains four microcells, as shown in the color blocks. Each microcell
contains a 2 × 2 highlight core and a 2 × 2 shadow core. Thus the
supercell has 8 cores (4 highlight cores and 4 shadow cores) in total.
The gray blocks are the candidate location for placing the first dot in
each highlight core.

(a)

(b)

Fig. 3.6. An Illustration of multilevel output and justification modes.
(a) A printer addressable pixel with four output levels and three
thresholds. When the absorptance level is less than the lowest thresh-
old, the pixel is not rendered; when the absorptance level is greater or
equal than the lowest threshold but less than the medium threshold,
1/3 of the pixel is rendered; when the absorptance level is greater or
equal than the medium threshold but less than the highest threshold,
2/3 of the pixel is rendered; when the absorptance level is greater or
equal than the highest threshold, the pixel is fully rendered. (b) Four
different justification modes for printer pixel. From left to right: left,
right, center and split justified.

52

(a) (b) (c) (d)

Fig. 3.7. A illustration of the symmetric rule and the compact rule
in justification mode. The black blocks are full dots and the magenta
blacks are newly added partial dots. (a) The newly added partial
dots are located right below the full dot, obeying the symmetric rule.
(b) The newly added partial dots are blow the full dot on the left,
disobeying the symmetric rule. (c) The newly added partial dots are
adjacent to full dots, obeying the compact rule. (d) The newly added
partial dots are nonadjacent to full dots, disobeying the compact rule.

53

(a) (b)

(c) (d)

Fig. 3.8. A comparison of the halftone patterns corresponding to the
same gray level. (a) The halftone pattern generated from multilevel
pixels, without the centroid rule in the partial dot justification. (b)
The halftone pattern generated from multilevel pixels, with the cen-
troid rule in the partial dot justification. (c) The halftone pattern
in (a) after Gaussian filtering. (d) The halftone pattern in (b) after
Gaussian filtering.

54

(a) (b)

Fig. 3.9. A illustration of two halftone patterns corresponding to the
same gray level. (a) The halftone pattern generated by the unequal
resolution DBS without the compact constraint. DBS is free to place
the 1/3 partial dot (slivers) at any location within the highlight cores.
(b) The halftone pattern generated by the unequal resolution DBS
with the compact constraint. The new 1/3 partial dot (slivers) has to
be placed adjacent to the existing slivers, and DBS choose the optimal
location for this newly added sliver.

55

(a) (b)

(c)

Fig. 3.10. A comparison of the halftone patterns. (a) The halftone
pattern generated by unequal resolution DBS and rendered in unequal
resolution with subpixels. (b) The halftone pattern generated by equal
resolution DBS and rendered in unequal resolution with subpixels. (c)
The halftone pattern generated by equal resolution DBS and rendered
in equal resolution.

56

Fig. 3.11. Halftone pattern generated from a 64× 60 supercell hybrid
screen with bilevel unequal resolution pixel.

Fig. 3.12. Halftone pattern generated from a 32x30 supercell hybrid
screen with bilevel unequal resolution pixel.

57

Fig. 3.13. Halftone pattern generated from a 20× 24 supercell hybrid
screen with 4-level unequal resolution pixel, with the compact rule
but without the centroid rule.

Fig. 3.14. Halftone pattern generated from a 20× 24 supercell hybrid
screen with 4-level unequal resolution pixel, with both the centroid
rule and the compact rule.

58

4. FACE SET RECOGNITION WITH CONVOLUTIONAL

NEURAL NETWORKS

4.1 INTRODUCTION AND RELATED WORK

4.1.1 OVERVIEW OF FACE SET RECOGNITION

The research on face set recognition has attracted more and more attention from

the computer vision community [26] [27] [28] [29] [30] [31]. Different from single face

image recognition, which basically deal with single face feature extraction and simi-

Fig. 4.1. The difference of face recognition and face set recognition.
We see that the problem of face recognition essentially deals single
face comparison, in which we are trying to find single feature vec-
tors corresponding to each of the original faces, and then perform
similarity or distance calculation for these feature vectors. For face
set recognition, rather than dealing with single faces, the problem be-
comes more complicated as we are comparing different clusters of face
images. The face images in each cluster have different pose orienta-
tion, lighting, sharpness, as well as number and order of images. As
a result, the key problem of face set recognition is to develop an effi-
cient and appropriate representation of face sets to gather dominant
information in a set while disregarding noisy information.

59

larity calculation, more information can be extracted from sets of faces from different

identities, which are naturally composed of faces with variations in image quality,

facing directions and illumination conditions, etc. Figure 4.1 clearly shows the differ-

ences of face recognition and face set recognition. The face sets that we are discussing

are usually from face video frames and face image clusters, which are naturally not

constrained with specific orders and numbers of face images. Hence the key issue in

face set recognition is to develop an efficient and appropriate representation of face

sets, such that it can effectively gather the dominant information in a face set (e.g.

information from sharper, more frontal face images) while disregarding information

from noisy information.

One naive method for the face set recognition is to recognize the face image set

as a cluster of face features that are extracted by deep CNN [32] [33], and hence

in order to compare two face image sets, one needs the fused matching results from

individual face feature pairs. Suppose n be the average number of face images in

the face set, then a computational complexity of O(n2) is required per similarity

comparison, which dramatically increases as the number of images goes up. This will

be a critical problem when we want to build time-sensitive application such as real

time video face recognition systems. Therefore, in our discussion afterwards, we are

not considering such methods as a challenging competitor to our method.

We propose that it is desirable to develop a fixed-dimensional compact feature

representation for the face sets, which is not related to the indexing and number

of the images on each set, as is shown in figure 4.2 Such features should consider

the information from all the images in the set while emphasize on the information

from higher quality face images. Then it will allow direct, immediate computation

for the set similarity or distance. One straightforward solution for generating such

representation is the strategy to take the average of the features in a set. Although

state-of-the-art deep neural networks are already able to generate very efficient feature

representations for different identities (meaning that taking average of face feature is

already very challenging), we believe that features generated from more frontal faces

60

Fig. 4.2. The pipeline for face set recognition in imaging systems. On
the left it shows the input to the system, which can be either face
videos or face clusters. It typically contained frames of face images
with different poses, sharpness, illumination, etc. Then the input face
set is forwarded to a feature extractor, which is the core component
that is going to be presented in the thesis. And then the desired out-
put for the system is fixed dimensional feature vector representation.
Fianlly the distances or the similarities between those feature vectors
can be computed, thus those extracted feature vectors can be directly
used for recognition.

and sharper images should be preferably considered over the features generated from

occluded, non-frontal and blurred face images. Hence we are looking for a smart

algorithm to capture these characteristics from input images and accordingly assign

different weights to their corresponding feature vectors.

There has been active studies on the face set and video face recognition in the

past. Many previous approaches have attempted to represent the face set manifolds

or subspaces and compute the manifold similarity or distance for recognition [34] [35].

These methods may work well in some constrained scenarios but is has limited ca-

pabilies for handling more casual and complex situations where there are large vari-

ations between image frames. Besides these manifold-based methods, there also has

been prior research on aggregating features using CNNs. Yang et al. [26] proposed a

method of using the attention blocks as the universal face feature quality assessment,

and then aggregate them, know as Neural Aggregation Network (NAN), as shown in

61

Fig. 4.3. The pipeline of Neural Aggregation Network (NAN) and
examples of its output. NAN is one of the current state-of-the-art
method for adopting CNN to smartly capture characteristics from
face features and accordingly assign different weights to them to gen-
erate a fixed-dimensional feature representation for different face sets.
Firstly, the input face images are forwarded to a single face embed-
ding CNN to generate corresponding feature vectors, and then these
vectors are forwarded to two cascaded attention blocks to generate
according weights to these features, as shown on the right hand side.
However, these two cascaded attention blocks will need to read all
the input features and then generate linear weights for them. Thus
for each time NAN operates on the input face set, extra running time
and memory space is required.

figure 4.3. Their method borrows the differentiable memory addressing mechanisms

from the Neural Turing Machine. Although they are also building a feature aggre-

gation method based on smart weighing, the nature of the attention block that they

used essentially needs to read all the feature vectors from the input before gener-

ating linear weights for them. Therefore, their proposed method needs preallocated

memories and extra running time each time their method performs aggregation. In

addition, the weights generated by their network is more like an arbitrary value that

is assigned to each of the feature vector depend on the context of the input, thus

62

the relationship between these generated values and the quality of the original images

are weak. Therefore the network cannot be treated as a universal face image feature

quality assessment. To compensate for this shortcoming, Liu et al. [27] proposed a

feature aggregation network called Quality Aware Network (QAN) which uses a Fully

Convolutional Network (FCN) [36] to simultaneously generate face feature represen-

tation and assign weights to them. Even though this method emphasizes more on the

relationship between the generated feature weights and face image quality, the com-

bination of feature generation network essentially makes their aggregation network

inflated. In practical scenarios where thousands of competitive CNN face feature ex-

tractors are available, this method shows its limit of not taking advantage of these

fast marching approaches for single face embedding.

In summary, we want to look for an efficient and smart adaptive weighting schemat-

ics to linearly combine single face features from a face set together to form a discrim-

inate face set representation. We designed a neural network to adaptively weigh

features depending on the assessment of their original face images. We named our

network Cluster Aggregation Network (CAN), whose parameters are trained through

supervised learning using only the information of a normal face recognition task, e.g.

face identities without any other extra supervised signals.

4.1.2 BRIEF INTRODUCTION TO CONVOLUTIONAL NEURAL NET-

WORKS (CNN)

The Convolution Neural Network (CNN) [37] is Deep Learning algorithm which

can take images as its input and assign learnable weights and biases to various as-

pects/objects in the image and be able to make difference on multiple images. In

fact, the images are matrices containing pixel values, so the advantage of convolu-

tion operation is that by applying the 2 dimensional filter, both spatial and temporal

dependencies in an image through the application of relevant filters are easier to be

captured.

63

Fig. 4.4. The pipeline of Quality Aware Network (QAN). QAN is
another state-of-the-art method for aggregating face images in a set
and generating a compact feature representation for the set as to do
the recognition. The input of the network is the face image set, which
are firstly forwarded to an intermediate CNN, from where its output
data are forwarded simultaneously to two parallel convolutional neural
networks. The first CNN is for generating feature vectors from the
intermediate output, and the second CNN is for assigning weights to
the features. The QAN is huge and inefficient. And it is also not
flexible to multiple more advanced face feature extractors.

The architecture of a CNN is inspired by the connectivity pattern of neurons in

the human brain [37]. When processing images, individual neurons in the network

respond to stimuli only in a restricted region, which is known as the receptive field.

As a result, when processing the convolution operation on an image, neurons with

different receptive fields forms different feature maps. Typically, the size of the feature

maps are smaller than input images. When further convolution operation is applied

to the feature maps, the succeeded feature maps will be even smaller in size, and

eventually, the size of the feature maps are small enough in sizes that, they can be

fully connected together to from a compact representation for the original image, and

this is what we call a feature vector.

64

The name pooling sounds a little bit weird to the image and signal processing

community, but in more familiar word it is just a 2-dimensional subsampling process.

Similar to the aim of convolution operations, the pooling operation is responsible

for reducing the spatial size of the convolved features. The main purpose for this

is to decrease the computational power that is required to process the data through

reducing dimensions. More importantly, it is useful for extracting dominant features

that are rotational and positional invariant. And in this way the effectiveness of the

trained model will be maintained. Depending on the pooling type, there are max

pooling and average pooling. Max pooling performs as a noise suppressant thus we

usually use it before average pooling.

4.1.3 KERNEL, STRIDE AND PADDING

Kernel, stride and padding are important concepts in convolutional neural net-

works. The kernel is the convolution filter matrix and kernel size is the filter’s size

horizontally and vertically. The stride decides how many steps a convolution core

moves for each convolving operation. Padding adds arbitrary value to fill the borders

of input images. The reason of padding is to preserve as much information as possible

at the early stage of the neural network. A illustration for how the kernel, stride and

padding affects the output of convolution layers is shown in Figure 4.5.

4.1.4 GENERAL TRAINING PROCESS FOR CNN

During the training process, the weights of the neurons in CNN are updated

through a process called backpropagation [38], which can be separated into four parts:

the forward pass, the loss function, the backward pass, and the weights updating.

During the forward pass, you take a batch of the training data and set it as the input

to the whole neural network. And then we compute the loss function L by calculating

the distance from the output to the ground truth data. If we want to adjust the

weights as to minimize the loss the function, we will have to do the derivative from

65

Fig. 4.5. Illustration of a convolution layer that operates on a 32 ×
32 input image. On the left hand side it shows a convolution layer
with kernel size 3, stride 1 and without padding. We see that without
padding, the output size is reduced to 30 × 30, with the information
for the pixels on the corners of the original images lost. On the right
hand side it shows a convolution layer with kernel size 3, stride 1
and with padding size 1. We see that padding essentially adds value
(typically zeros) on the border of the input image and by doing this
the output size preserves the same as the input image. Therefore the
information for the corner pixels from the input is maintained.

the loss function to the weights. Now considering the weights of the CNN that we

want to train as w, and the initial neuron weights in the convolutional layers as wi,

then the backward pass process literally finds the derivative ∂L
∂w

layer by layer. After

that we do the weight update, which can be written as

w = wi − η
∂L

∂w
. (4.1)

The η here is known as the training rate. And it is often chosen manually to make

sure it is neither too big or too small.

66

Fig. 4.6. The pipeline of Cluster Aggregation Network (CAN). CAN
is the proposed method in the thesis for aggregating face images in a
set and generating a compact feature representation for the set as to
do the recognition. As shown in the figure, the method contains two
independent CNNs and the input of the networks are both sets of face
images. The CNN at the top is the single face feature extractor which
essentially maps each of the input face images to feature vectors. The
CNN at the bottom is CAN, which takes the images that are resized
and transformed to grayscale from the upper input as its own input
and generate a scalar between [0,1] to each of the images, depending on
the network’s assemssent for the input face images sharpness, facing
directions, illuminations, etc. In brief, the network at the top maps
images to vectors and the network at the bottom maps the same set
of images to scalars, then the aggregated feature is calculated as the
weighted summation combining the vectors and the scalars.

4.2 PROPOSED METHOD FOR FACE SET RECOGNITION

Recalling that in the last section, we have discussed about the disadvantages for

the previous methods. Hence it is desirable to develop a more efficient novel face set

recognition.

In the following discussions, a novel feature aggregation method is introduced.

The core component of the proposed method is presented as Cluster Aggregation

67

Table 4.1.
Evaluation result for SphereFace face feature extractor model on LFW dataset

Fold Accuracy

1 99.17%

2 99.00%

3 99.00%

4 99.50%

5 99.00%

6 99.17%

7 99.17%

8 99.00%

9 99.83%

10 99.33%

Network, abbreviated as CAN. The method uses CNNs and it not only utilizes the

state of the art face feature extractor but also serves as a universal face image quality

measurement. The proposed method for face set recognition method contains two

methods, as shown in figure 4.6. Each module is a CNN which are trained separately.

The first one is a face feature extractor using a deep CNN. The second one is the

aggregation module which incorporates a quality assessment neural network that

serves as weights generator for the features generated in the first module. As the key

component in our feature aggregation module, it will be discussed in details next.

The succeeding chapters are arranged as the following: Firstly we will discuss the

network structure for the CNNs, and then we will discuss the data preparation and

the training procedure for the networks, finally we will discuss the testing results.

68

Fig. 4.7. The pipeline of single face embedding. It contains two
modules: face detection and alignment and face feature extraction.
For the first module, color images are passed to the neural networks
to detect the faces that are present in these images. Then the faces
are aligned such that their eyes and noses are in the same horizontal
and vertical level. All detected and aligned face images are in the
size 112 × 96. After that, the detected and aligned face images are
then fed to the SphereFace netowrk to get fixed-dimensional feature
vectors corresponding to each detected and aligned faces. The size for
the output feature vectors are 1024 × 1 in size.

4.2.1 SINGLE FACE EMBEDDING

The face feature image embedding module of our method is a deep CNN, which

embeds each image from a face set to a feature vector representation. In order to lever-

age modern CNNs with state of the art performance, we adopt the recent proposed

SphereFace feature extractor [39], which produces 1024-dimension feature vector for

each of the input face images, as shown in Figure 4.7. In the rest of the paper, we will

refer to the employed SphereFace as CNN. The training of the CNN took a standard

face classification and verification process and we trained it on the publicly available

CASIA WebFace dataset [40]. Figure 4.8 shows an example of the CASIA webface

69

Fig. 4.8. An example of CASIA face dataset that is used for training
SphereFace model for single face embedding. As shown in here, the
dataset contains faces of different angles, illumination, ethnics, quali-
ties. Therefore there is enough information in the dataset to train an
efficient SphereFace single face feature extractor.

dataset. For evaluating the efficiency of our trained CNN, we tested its accuracy on

10 different folds of LFW dataset [41], as shown in table 4.1. Figure 4.9 shows an

example of LFW dataset. We can see that SphereFace CNN model is accurate in

identifying single faces and thus we can use it as a robust and efficeint single face

embedding.

4.2.2 FACE FEATURE AGGREGATION MODULE

In this section we will be discussing the feature aggregation module which essen-

tially takes the feature vectors from the feature embedding module and then generate

face set represention. Consider that we are recognizing n pairs of face image sets

with varying image number Ki. Therefore each face image set X i is represented as

X i = {xi1, xi2, ..., xik} where xik, k = 1, 2, ..., Ki is the k-th image in the face set. Each

image has a corresponding feature representation φik which is extracted by the fea-

ture embedding module. As for better readability, the upper index i is omitted in

the following text. By forwarding the images {x1,x2, ...,xk} to the quality assessment

network, we will have a quality score normalized to zero and one {σ1, σ2, ..., σk} which

70

Fig. 4.9. An example of LFW face dataset that is used for testing
the face recognition accuracy of our trained SphereFace model. We
can see that the dataset is challenging for model evaluation because
it contains faces images of different conditions.

corresponds to each of the input images. We then set σj, j = 1, ..., k as the weights

for the feature vectors φj, j = 1, ..., k. Hence the aggregated feature r is represented

as

r =

∑k
j=1 σjφj∑k
j=1 σj

. (4.2)

In this way, we can see that the aggregates feature vector is a weighted summation

of the input single face feature vectors. Therefore the output feature vector is of the

same dimension as a single face feature vector, and it is irrelevant to the order or the

number of input face images in the face set.

Notice that here the weights that we assign for the feature vectors are directly

related to the face image quality. In other words, the images that are preferred by

our quality assessment network should be more frontal and sharper, thus the network

tends to assign higher quality scores to those images. In the mean time, blurred

and non-frontal face images are less preferred, leading to the result that the network

tends to assign lower quality scores to them. We presume that sharp and frontal face

71

images are much more critical in the decision of recognition than blurred and side

faces. Therefore, equation 4.2 will make the face set recognition system focus on good

images while ignoring bad ones.

4.2.3 CLUSTER AGGREGATION NETWORK (CAN)

Our Cluster Aggregation Network (CAN) for face images is actually a Convolu-

tional Neural Network, and its structure is shown in Figure 4.19. This network has

a simple structure, which is partially inspired by [27] and [42]. And the process of

generating quality score is a one-time network forwarding. In the earlier design, the

network takes either RGB color images with size 224 × 224 × 3 and the sigmoid

layer’s output has size 1 × 3, which corresponds to the Red, Green and Blue channels

from the input images. In the latest design, we have reduced the input image size

to 128 × 128 grayscale to better enhance the efficiency of CAN. Different from NAN

which depends on input context to generate feature weights, our quality score is only

related to one input image and the parameters of the neurons in the network, which

are trained with standard face recognition techniques without any other supervision

signals such as how good or bad the image is. The layer configuration for CAN is

shown in table 4.2.

4.3 PREPARING TRAINING DATA FOR CAN

In this section we will discuss the training of CAN. The following sub-suctions are

organized as the following: firstly we discuss training dataset, next we discuss the

details of data preparation and pre-processing.

4.3.1 TRAINING DATASET

The training dataset for CAN is YouTube Face dataset [43]. It contains folders

named by different people’s names, which are videos frames from YouTube. An

72

Table 4.2.
Layer configurations for CAN (Input size can vary, the size as shown in
the Table is due to input size of 128 × 128. The second Convolutional
Layer is optional).

Layer Kernel

Size

Stride Padding Input

Size

Output

Size

Input 7 2 3 128 × 128

or 224 ×

224 × 3

Convolutional 3 1 1 128 × 128 64 × 64 ×

64

Convolutional

(Optional)

3 1 1 64 × 64 ×

64

64 × 64 ×

64

Pooling (Max) 3 2 64 × 64 ×

64

32 × 32 ×

64

Convolutional 3 1 1 32 × 32 ×

64

32 × 32 ×

64

Convolutional 3 1 1 32 × 32 ×

64

32 × 32 ×

64

Pooling (Aver-

age)

4 4 32 × 32 ×

64

8 × 8 × 64

Fully Connec-

tion

8 × 8 × 64 1 ×1

Sigmoid 1 ×1 1 ×1

example of the dataset is shown in Figure 4.10. The dataset contains 3,425 videos of

1,595 different people. An average of 2.15 videos are available for each subject. The

73

shortest clip duration is 48 frames, the longest clip is 6,070 frames, and the average

length of a video clip is 181.3 frames [43].

4.3.2 DATA PREPARATION

In order to train CAN, we need to prepare the face images data and the feature

vectors data, since we will be using image-feature pairs for the training procedure,

which will be discussed later. The data preparation has the following steps:

� Firstly a pre-trained CNN face detection and alignment model which we used

in section 4.2.1 are adopted to detect and align the faces in the dataset. After

this step we will have the face images with size 112 × 96 × 3 and the faces

are aligned such that the eyes and noses from different faces are on the same

horizontal and vertical level.

� Next, the SphereFace model that we trained in section 4.2.1 for single face

embedding is used here for extracting face features from the face images that

are prepared in step one. After this step, we will have feature vectors with size

1024 × 1 that correspond to original face images.

Fig. 4.10. An example of YouTube Face dataset. The image on the
left shows the folders of video frames from different people. And the
image on the right shows the opening up of one of the folders on the
left, which are frames of videos from different person.

74

� Next, the face images we get in step one is converted to grayscale images with

size 128 × 128 to fit with the input data dimension of the CAN.

� Finally the images are named as ’aligned detect***.jpg’ and their corresponding

feature vectors are named as ’aligned detect***.mat’ MATLAB .mat files.

An example of the formulated face-feature pairs after the data preprocessing is shown

in Figure 4.11.

4.3.3 DATA PREPROCESSING

In this step, each identity in the training data will have two viewing perspective for

their face sets. To fulfill this, for each person’s face-feature pair that we prepared in

section 4.3.2, face frames from two separated videos are manually selected and split,

such that each person will have two folders named ’sele1’ and ’sele2’ with each folder

containing its own face-feature pairs, as illustrated in Figure 4.12.

Fig. 4.11. An example illustrating the face-feature pairs after data
preparation. The face images are aligned, resized and converted to 128
× 128 grayscale and the MATLAB files are storing the face images’
corresponding feature vectors with size 1024 × 1.

75

A subset from the YouTube Face dataset is used for our current CAN training.

After data preparation, the training data contains 178,460 image-feature pairs and

500 identities.

Fig. 4.12. An example illustrating the training data after data pre-
processing. We see that for the identity shown here, he will have two
separate folders of video frame images-feature vectors pairs in folder
’sele1’ and ’sele2’, corresponding to two face sets from different view-
ing perspectives for the same person.

4.4 TRAINING PROCEDURE OF CAN

In this section a novel training procedure is presented. As discussed in section

4.1.1, previous state-of-the-art CNN for aggregating face features are either trained

76

with feature vectors only [26] or trained with images but inefficiently combined a

feature extraction network training in the process [27]. In the theis a new train-

ing procedure combining the feature vector and the face images is presented, whose

flowchart is shown in Figure 4.13

Fig. 4.13. Illustration for CAN training procedure. From left to right:
The first module is training batch generation, in which small batches
of face sets containing image-feature pairs are collected by the net-
work as its input. The Second module is network forwarding, where
the images in the previous step pass through CAN and the features in
the previous step remain the same. After this step, the input features
in the training batch and the output scalars generated by CAN is
forwarded to the feature aggregation module where the feature repre-
sentations for the face sets in the training batch are generated. Finally
we calculate the distance between those generated face set features to
compute our loss function.

4.4.1 TRAINING BATCH GENERATION

In this section we discuss in detail how the training batch is generated. The

purpose for generating training batch is that, for each training epoch, three small

face sets can be generated:

� Anchor Set. The small face set from person A

� Positive Set. The small face set from person A

� Negative Set. The small face set from person B

77

Here we are taking the triplet training strategy, meaning that the we want to make

sure that not only the distance of different person’s features are far off, but the

distance of the same person’s features are close by.

For our current training, a training batch size of 24 samples per epoch is used. And

these samples spread evenly among the Anchor Set, Positive Set and the Negative Set.

Meaning that each of the three sets get 8 samples of face-feature pairs per training

epoch, as illustrated in Figure 4.14.

Fig. 4.14. Illustration of training batch generation for CAN train-
ing. For each training epoch, firstly 2 random identities with different
numeric labels are selected from the training data. And then we
randomly choose one of the identity as the Anchor Set. Then we ran-
domly pick up 8 image-feature pairs from the ’sele1’ folder of this
person. Next we randomly pick up 8 image-feature pairs from the
’sele2’ folder of this person as the Positive Set. Finally we randomly
pick up 8 image-feature pairs from either ’sele1’ or ’sele2’ folder of
another person as the Negative Set. Hence finally we will have 24
image-feature pairs corresponding to three face sets.

78

4.4.2 NETWORK FORWARDING AND AGGREGATION

In this section we will introduce Network Forwarding and Aggregation modules,

which are steps after we acquire the training data and before we calculate loss function

for each training epoch. Suppose the Anchor Set we get in section 4.4.1 is denoted as

{iA1, φA1, ..., iA8, φA8}, (4.3)

where i represents images and φ represents feature vectors, and the Positive Set is

denoted as

{iP1, φP1, ..., iP8, φP8}, (4.4)

and the Negative Set as

{iN1, φN1, ..., iN8, φN8}, (4.5)

And suppose the parameters of CAN forms a non-linear transformation from input

image i to the output scalars (weights) σ, which is denoted as ϕ. Then we have

ϕ(i) = σ (4.6)

During network forwarding, feature vectors remain the same while images pass through

CAN, so that after one training iteration, we have the Anchor Set as

{ϕ(iA1), φA1, ..., ϕ(iA8), φA8}, (4.7)

according to Equation 4.6, Equation 4.7 can be written as

{σA1, φA1, ..., σA8, φA8}. (4.8)

Similarly, the Positive Set and the Negative Set after network forwarding can be

written as

{σP1, φP1, ..., σP8, φP8}, (4.9)

and

{σN1, φN1, ..., σN8, φN8}. (4.10)

79

Hence after the step of network forwarding, we now have feature vectors and their

corresponding weights. Given Equation 4.2, the aggregated feature for the Anchor

Set rA after passing it to the aggregation module in one training epoch is computed

as

rA =

∑8
j=1 σAjφAj∑8
j=1 σAj

. (4.11)

And similarly, the aggregated Positive Set feature rP and the aggregated Negative

Set feature rN after one training iteration is computed as

rP =

∑8
j=1 σPjφPj∑8
j=1 σPj

. (4.12)

and

rN =

∑8
j=1 σNjφNj∑8
j=1 σNj

. (4.13)

4.4.3 TRAINING LOSS AND SOLVER

We now have the feature representation rA, rP and rN for the Anchor, Positive and

Negative Set that we randomly sampled during one training iteration. The next step

is to find a loss function regarding these intermediate output and do the backward

pass as we discussed in 4.1.4 and then update the CAN parameters after this training

iteration. We want the distance between rA and rP be as small as possible while the

distance between rA and rN be as large as possible. Hence a triplet loss function [32]

here is defined on rA, rP and rN : and

loss = ‖rA − rP‖2 − ‖rA − rN‖2 + δ, (4.14)

where the norms indicate Euclidean distance between vectors.

We see that since rA, rP represents the same identity while rN represents different

identities, minimizing Equation 4.14 is equivalent to minimizing the distance between

rA, rP while maximizing the distance between rA, rN , since δ is a constant value.

Therefore, in the training process, the loss functions regulate the parameters of the

neurons such that they can gradually learn to ignore the low quality images in the

80

face set that prevent the distance between rA and rP from decreasing and rA and

rN from increasing. And finally the neurons are trained to automatically protrude

higher quality face images while repelling hard samples from face sets. In the training

process, the standard backpropagation will adapt the network parameters such as to

minimize the average loss as described in Equation 4.14.

In the actual training, CAN was trained on the prepared dataset with standard

back propagation and a SGD solver [44].The learning rate is set as 0.001 and batch

size be 24. We trained on NVIDIAr 1080Ti GPU with CUDA [45] enabled and it

takes around 4 hours to finish the training process.

4.5 TESTING RESULTS OF CAN

We tested the efficiency of CAN on publicly available IJB-C dataset [46] [47]. The

IJB-C dataset contains face images and videos that are captured from situations in

the wild. It features a wide variety in pose, illumination and other kinds of imaging

conditions, thus it is very challenging. We tested on the video frames from IJB-C,

which has 500 identities with 2042 videos in total and around 11 frames per person’s

video. We firstly looked at the face image weights generated by CAN, and then we

compared our face set recognition accuracy with reported results on IJB-C’s ’compare’

protocol for 1:1 face verification from current state of the art methods and also our

own baseline method, which is averaging all the face features in a face set. In addition,

we also analysis the CAN’s advantage over the baseline method, which is taking the

average of all the features in the set as the aggregated feature representation for the

face set.

4.5.1 ILLUSTRATION FOR WEIGHTS: CAN OUTPUT

From equation 4.6 we have known that CAN forms a non-linear transformation

from an input image to an output scalar, which we refer to as weights. Equation 4.11,

4.13 and 4.12 show that the weights directly determine how much a single face can

81

represent the whole face set. In other words, when gathering all the face information

in the set to form an aggregated representation, faces with higher weights will present

more information than faces with lower weights. Hence the output of CAN can be

considered as a quality assessment for each of the faces in the set. In this section we

tested CAN on specific face image set with variations of face posing, face obstacles

and image sharpness to illustrate the meaning of weights.

Figure 4.15 illustrates the CAN output weights on the face image sets with various

face posing (the first row to the fifth row) and with or without obstacles (the last

row). We can see from row 1, 3 and 5 that, with the pose of faces in each of the frame

becomes less and less frontal, the weights generated by CAN, which are shown in the

Bar Chart, also decreases accordingly. And it means that CAN smartly considers

that the quality of the video frames in video of row 1 and row 3 decreases from left

to right. Now if we look at row 4, there is little variations between each of the frames

in the video except for one frame, and CAN is able to detect that frame and assign

smaller weight to it. And then if we look at row 2, there is very little variation for

each of the frames in the video, thus the weights generated by CAN is very similar

across the frames. We can also see from row 6 that the CAN is able to assign larger

weights to more frontal faces and much less weights to faces with obstacles.

Figure 4.16 illustrates the CAN output weights on face images with different

sharpness. The original face images are from the IJB-C’s video frames, and the

blurred images are acquired by Adobe Photoshopr. Different radius of Gaussian filter

are selected to generate different levels of blurriness. And the images are forwarded

to our trained CAN model to generate weights. It is encouraging to see that weights

generated by CAN decrease with the increment of blurriness level of images, meaning

that CAN assigns lower quality score to more blurred images, which is consistent with

human cognition.

82

Table 4.3.
Verification Accuracy comparison of state of the art methods, our
baseline methods and our proposed CAN network on IJB-C dataset.

Method Accuracy

(%)

Model

size

Running time

EigenPEP [48] 84.8

DeepFace-single [49] 91.4

DeepID2+ [50] 93.2

CNN+Baseline 94.65

FaceNet [32] 95.12

NAN [26] 95.52

QAN [27] 96.17 50MB 15fps (GPU)

CAN(224, no Conv) 96.97 378KB 60fps (CPU)

CAN(224, Conv) 97.17 522KB 40fps (CPU)

CAN(128, no Conv) 96.59 378KB 60fps (CPU)

CAN(128, Conv) 96.78 522KB 40fps (CPU)

4.5.2 PERFORMANCE OF CAN

Comparing with previous work on the face set aggregation network, one big con-

tribution of this work is the development of a small network that achieves better

performance while requiring much less running time. From table 4.3 shows the com-

parison of accuracy and the running time of four different (very similar) version of our

developed CAN network with previous state-of-the-art QAN method. We see that

the model size of QAN is 132 times bigger than that of CAN while yielding worse

accuracy performance. In addition, the running time for QAN is on NVIDIAr 1080

Ti GPU and for CAN on Intelr i5 4670K. The testing results show that CAN runs

much faster than QAN even on a normal desktop CPU.

83

The accuracy of the proposed method for video face verification is shown in Table

4.3. We see from the results that QAN outperforms its previous state of the art

by 0.65% and our proposed CAN outperforms QAN by 0.8%. The CAN variations

does not show much performance change. In addition, it is noteworthy that CAN

outperforms our baseline method by 2.32%, meaning that our smart aggregation

actually works better than the naive aggregation method. An example of the failure

case from using the baseline method, while non-failure from CAN is shown in Figure

4.18. We see that for face set on the left, the image on the right is much more blurred

than the image on the left, in addition, the pose of the face on the right is not as

frontal as the one on the left. Therefore, by forwarding the two face images to CAN

for quality assessment, our network is able to smartly generate higher score for the

image on the left while much lower score for the image on the right. As for the face

set on the right, the images actually do not vary a lot with sharpness but varying

in face pose. Hence our proposed CAN is also able to detect these variations and

adaptively assign weights to the images. We notice that for this image set, from

left to right the facing angle of the person is gradually decreasing, thus interestingly,

weights generated by CAN is also in descending order. This is actually consistent

with human cognition.

4.5.3 FAILURE CASES OF FACE SET RECOGNITION

Figure 4.17 illustrates the failure cases for our Face Set Recognition method.

We can see from this figure that the baseline method fails in correctly recognizing

some very apparent different identities and by using CAN as the feature aggregation

method, the false recognition is reduced and these face sets be correctly identified as

belonging to different persons. However, from this figure we can also see that in the

current Face Set Recognition methods with CAN, recognition of some sets of faces

are still very challenging due to some single face’s high similarity or ambiguousness.

In Figure 4.6 we have seen that CAN and single face embedding work corporately.

84

Therefore, in the future we can train a better single face embedding and re-train CAN

with this new feature extractor to improve the performance of CAN even better.

4.6 CONCLUSION

We have presented a Cluster Aggregation Network for face set representation and

recognition. It gathers all the input frames and uses an adaptive weighing schematics

based on the smart assessment for face images quality to generate a set of variable

weights for the input, resulting a compact representation of the face image set. This

method is simple, competitive and can also be used in many scenarios such as video

face recognition, face clustering and many other vision tasks.

85

Fig. 4.15. An illustration of weights generated by CAN (The version is
128 with Conv. Layer.) for different image sets with variation of face
posing and face obstacles. For each row, the images are the frames in
a short face video clip. And the Bar Chart is the weights output from
CAN on each of the frame image. Higher values in the Bar Chart
means greater values of the weights. And for each of the rows, each
bar in the Bar Chart corresponds to each image from left to right.

86

Fig. 4.16. An illustration of weights generated by CAN (The version is
224 without Conv. Layer.) that is capable of capturing the sharpness
of images and assess different qualities accordingly. The CAN takes
different images as input and generate weights for these images, as
shown in the Bar Chart. Higher bars in the Bar Chart means larger
weights and each bar in the Bar Chart corresponds to each image
from left to right.

87

Fig. 4.17. False Face Set Recognition results. (a) Video face pairs
detected by CAN as the same identity. (b) Video face pairs detected
by baseline face set aggregation (See Section 4.5) as the same identity
but detected by CAN as different identity.

88

Fig. 4.18. An example of successful verification for two face sets using
CAN but unsuccessful verification using the baseline. The yellow
digits on top is the quality score or the feature weights generated by
CAN, which has been averaged on three channels. The Bar Chart
visualizes the variation of the feature weights.

89

Fig. 4.19. The structure of CAN convolution neural network (rotated
view). It takes grayscale image with size 128 × 128 as its input
and contains four Convolutional Layers and two Pooling Layers. The
Fully Connected Layer generates a single scalar for the input and the
Sigmoid Layer at the very last of the network normalize the scalar to
[0,1], which is the final score assigned to the input face image, or the
weights assigned to the face’s corresponding feature.

REFERENCES

90

REFERENCES

[1] J. Allebach, “Principles of digital color imaging systems - introduction,” Princi-
ples of Digital Color Imaging Systems, 2017.

[2] C. Lee and J. P. Allebach, “The hybrid screen – improving the breed,” IEEE
Transactions on Image Processing, vol. 19, no. 2, pp. 435–450, Feb 2010.

[3] G. Y. Lin and J. P. Allebach, “Generating stochastic dispersed and periodic clus-
tered textures using a composite hybrid screen,” IEEE Transactions on Image
Processing, vol. 15, no. 12, pp. 3746–3758, Dec 2006.

[4] Q. Lin and J. P. Allebach, “Color fm screen design using dbs algorithm,” Proc.
SPIE, vol. 3300, pp. 353–361, 1998.

[5] G. Lin and J. P. Allebach, “Generating stochastic dispersed and periodic clus-
tered textures using a composite hybrid screen,” IEEE Trans. Image Processing,
vol. 15, no. 12, pp. 3746–3758, 2006.

[6] ——, “Multilevel screen design using direct binary search,” in Color Imaging:
Device-Independent Color, Color Hardcopy, and Applications VII, San Jose,
CA, USA, January 19, 2002, 2002, pp. 264–277. [Online]. Available:
http://dx.doi.org/10.1117/12.452997

[7] P. Li and J. P. Allebach, “Tone-dependent error diffusion,” IEEE Transactions
on Image Processing, vol. 13, no. 2, FEBRUARY 2004.

[8] “Model-based digital halftoning,” IEEE Signal Processing Magazine, vol. 20,
no. 4, pp. 14–27, July 2003.

[9] F. A. Baqai and J. P. Allebach, “Computer-aided design of clustered-dot color
screens based on a human visual system model,” Proceedings of the IEEE, vol. 90,
no. 1, pp. 104–122, Jan 2002.

[10] H. Ding, R. Bala, Z. Fan, R. Eschbach, C. A. Bouman, and J. P. Allebach, “Semi-
automatic object geometry estimation for image personalization,” vol. 7533, pp.
753 304–753 304–11, 2010.

[11] Dzine Steps: Create, Customize, Collaborate!, http://dzinesteps.com/.

[12] M S International, Inc. Virtual Kitchen Designer,
https://www.msistone.com/virtual-kitchen-designer/.

[13] Zillow Digs: Find inspiration for your home project.,
http://www.zillow.com/digs/.

[14] Sherwin-Williams ColorSnap Visualizer, https://www.sherwin-
williams.com/visualizer/.

91

[15] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[16] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating spatial layout
of rooms using volumetric reasoning about objects and surfaces,” Advances in
Neural Information Processing Systems (NIPS), vol. 24, November 2010.

[17] C. Tai, T. Liu, J. Bagchi, F. Zhu, and J. Allebach, “Click-based interactive
segmentation with graph cut,” Imaging and Multimedia Analytics in a Web
and Mobile World 2017, (Part of IS&T Electronic Imaging 2017), J. Allebach,
Z. Fan, and Q. Lin, Eds., San Francisco, CA, 29 January -2 February 2017
(2017)., 2017.

[18] K. Ziga, J. Bagchi, J. Allebach, and F. Zhu, “Non-parametric texture synthesis
using texture classification,” Computational Imaging XIV, (Part of IS&T Elec-
tronic Imaging 2017), C. Bouman and R. Stevenson, Eds., San Francisco, CA,
29 January -2 February 2017 (2017), 2017.

[19] G. Sharma, Digital Color Imaging Handbook. Boca Raton, FL, USA: CRC
Press, Inc., 2002.

[20] B. E. Bayer, “An optimum method for two-level rendition of continuous-tone
pictures,,” IEEE Int. Conf. Communications, vol. 1, pp. 11–15, 1973.

[21] C. W. Wu, C. P. Tresser, G. R. Thompson, and M. J. Stanich, “Supercell dither
masks with constrained blue noise interpolation,” IS&Ts NIP 17: Int. Conf.
Digital Printing Technologies, vol. 1, pp. 487–490, 2001.

[22] R. Bartels, “Reducing patterns in the fm part of tile-based hybrid screens,”
IS&Ts 2002 PICS Conf, pp. 241–244, 2002.

[23] S. H. Kim and J. P. Allebach, “Impact of hvs models on model-based halftoning,”
IEEE Transactions on Image Processing, vol. 11, no. 3, pp. 258–269, Mar 2002.

[24] R. Näsänen’s, “Visibility of halftone dot textures,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. SMC-14, no. 6, pp. 920–924, Nov 1984.

[25] D. Kacker, T. Camis, and J. P. Allebach, “Electrophotographic process embed-
ded in direct binary search,” Proc. SPIE, vol. 3963, pp. 468–482, 1999.

[26] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua, “Neural
aggregation network for video face recognition,” Proceedings of the 32th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4362–
4371, 2017.

[27] Y. Liu, Y. Junjie, and W. Ouyang, “Quality aware network for set to set recogni-
tion,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[28] Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen, “Fusing robust face region de-
scriptors via multiple metric learning for face recognition in the wild,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3554–
3561, 2013.

92

[29] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang, “Probabilistic elastic matching
for pose variant face verification,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3499–3506, 2013.

[30] H.Mendez-Vazquez, Y.Martinez-Diaz, and Z.Chai, “Volume structured ordinal
features with background similarity mea- sure for video face recognition,” Inter-
national Conference on Biometrics (ICB), 2013.

[31] L. Wolf and N. Levy, “The svm-minus similarity score for video face recognition,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3523–3530, 2013.

[32] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for
face recognition and clustering.” CoRR, 2015.

[33] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1701–1708, 2014.

[34] R.Wang, S.Shan, X.Chen, and W.Gao, “Manifold-manifold distance with appli-
cation to face recognition based on image set,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–8, 2008.

[35] ——, “Statistical computations on grassmann and stiefel manifolds for image and
video-based recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 2273–2286, 2011.

[36] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 640–651, 2017.

[37] J. Schmidhuber, “Deep learning in neural networks: An overview,”
arXiv:1404.7828, 2014.

[38] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” Neural Net-
works for Perception (Vol. 2), pp. 65–93, 1992.

[39] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hy-
persphere embedding for face recognition,” The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[40] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,”
arXiv:1411.7923, 2014.

[41] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
University of Massachusetts, Amherst, no. 07-49, October 2007.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, 2014.

[43] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained videos with
matched background similarity,” IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 529–534, 2011.

93

[44] L. Bottou, “Stochastic gradient descent tricks,” Neural Networks: Tricks of the
Trade, 2012.

[45] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[46] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother,
A. Mah, M. Burge, and A. K. Jain, “Pushing the frontiers of unconstrained face
detection and recognition: Iarpa janus benchmark a,” 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1931–1939, 2015.

[47] B. Maze, J. C. Adams, J. A. Duncan, N. D. Kalka, T. Miller, C. Otto, A. K. Jain,
W. T. Niggel, J. Anderson, J. Cheney, and P. Grother, “Iarpa janus benchmark
- c: Face dataset and protocol,” 2018 International Conference on Biometrics
(ICB), pp. 158–165, 2018.

[48] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, “Eigen-pep for video face recog-
nition,” Computer Vision-ACCV, pp. 17–33, 2014.

[49] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” ICCV, pp. 1701–1708, 2014.

[50] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse,
selective, and robust,” IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2892–2900, 2015.

VITA

94

VITA

Tongyang Liu is currently a PhD candidate working under Dr. Qian Lin and

Professor Jan P. Allebach in the School of Electrical and Computer Engineering at

Purdue University. His research is focused on deep learning, computer vision, color

image processing, imaging and printing. He obtained his bachelor’s degree from

University of Science and Technology of China (2014).

