
RETROWRITE: STATICALLY INSTRUMENTING COTS BINARIES FOR

FUZZING AND SANITIZATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Sushant Dinesh

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Professor Mathias Payer, Chair

Department of Computer Science

Professor Dongyan Xu

Department of Computer Science

Professor Benjamin Delaware

Department of Computer Science

Approved by:

Professor Voicu Popescu

Head of the Computer Science Graduate Program

iii

ACKNOWLEDGMENTS

I want to thank my advisor, Prof. Mathias Payer, for his continued support and

guidance. His feedback has been instrumental in both my personal and professional

development. Thank you for being a constant source of inspiration. I will always

cherish the time I spent in your research group and hope to continue collaboration in

the future. I would also like to thank the members of my committee, Prof. Dongyan

Xu and Prof. Benjamin Delaware, for their insightful feedback and questions.

I want to thank the members of HexHive group, both past and current, for their

insightful feedback. Your reviews on writing and presentation is much appreciated

and helped me grow as a researcher. I want to specially thank Prashast for all the

discussions and putting up with my crazy ideas. I enjoyed our discussions and I

learned a lot about formulating and communicating ideas through them. I wish you

all the best with your Ph.D. and beyond.

I want to thank my family for their constant support and encouraging me to

pursue graduate studies. Without their support, I would not be able to pursue my

dreams fearlessly. I want to thank my father for being an inspiration in my life and

motivating me to pursue a Ph.D. and my mother for her unconditional emotional

support. I want to thank my sister, Dyuthi, for all the fun discussions and reminding

me that there is a life outside of computer science.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . vii

1 Introduction . 1

2 Static Binary Rewriting . 6

2.1 Background . 7

2.2 RetroWrite . 11

2.3 Implementation . 13

3 Binary Address Sanitizer . 16

3.1 Address Sanitizer Semantics . 17

3.2 Design . 18

3.3 Binary Address Sanitizer Implementation 23

4 Binary Fuzzing Instrumentation . 24

4.1 Binary AFL . 25

5 Evaluation . 26

5.1 Memory Checker — Performance . 27

5.2 Memory Checker — Coverage . 30

5.3 Fuzzer Evaluation . 35

6 Conclusion . 43

6.1 Related Work . 44

6.2 Conclusion . 47

REFERENCES . 48

v

LIST OF TABLES

Table Page

5.1 Overview of binaries rewritten by RetroWrite. 28

5.2 Overview of Bug Detection Rate on Juliet on CWEs related to memory
corruption: CWE121, CWE122, CWE124, CWE126, and CWE127. False
postive is when a system reports a bug in a testcase with no bug. False
negative is when a system reports no bug in a testcase with a bug. Timeout
is when the testcase fails to terminate in 3 seconds. 31

5.3 CWE Descriptions . 33

5.4 Number of unique bugs found in five fuzzing trials. All trials used input
provided with the LAVA-M dataset as initial seeds. Each trial was run
for 24 hours. Legend. CF: afl-clang-fast, G: afl-gcc, Q: afl-qemu, DI:
afl-dyninst, RW: afl-retrowrite. 36

5.5 Overview of p-values from Mann-Whitney U Test, comparing afl-retrowrite
(RW) v/s afl-gcc (G), and afl-retrowrite (RW) v/s afl-qemu (Q). p < 0.05
indicates the results are statistically significant. Values rounded to sixth
decimal place. 41

vi

LIST OF FIGURES

Figure Page

3.1 Code snippets to illustrate difficulty in modifying global data section. (a)
Source code (simplified) provided for clarity, (b) Shows disassembly when
the binary is compiled with optimization (-O2), (c) Compares a compiler
generated assembly file which has the correct semantic connection between
the two labels, while the reassembly misses this connection, and treats
them as two independent labels. Making this semantic connection is in
general undecidable, but a requirement for modifying the layout of global
data. 19

5.1 Evaluation on SPEC CPU2006 C Benchmarks. Mean Runtime (in s)
v/s Benchmark, comparing: baseline (no instrumentation), ASan, BASan
(our implementation), and Valgrind memcheck (state-of-the-art binary-
only memory checker). Lower numbers indicate better performance. 29

5.2 Clusters comparing false negatives on Juliet for the three systems: Source
ASan, Binary ASan, and Valgrind memcheck. X and Y axes are categorical
and represent CWEs. Numbers next to points denote the number of FN
of system that belong the cluster. Explanation of CWEs are provided
in Table 5.3 . 32

5.3 Code snippet showing failing bad-case for ASan. ASan fails to report
the above overflow as wcscpy is not intercepted while Valgrind memcheck
successfully detects this overflow. 36

5.4 Box plot of fuzzing executions per second on LAVA-M across five, 24 hour
trials. Legend: CF=afl-clang-fast, DI=afl-dyninst, G=afl-gcc, RW=afl-
retrowrite (our solution), Q=QEMU. Higher numbers indicate better per-
formance. 37

5.5 Box plot of fuzzing executions per second on real-world targets across five,
24 hour trials. Legend: CF=afl-clang-fast, DI=afl-dyninst, G=afl-gcc,
RW=afl-retrowrite (our solution), Q=QEMU. Higher numbers indicate
better performance. 38

vii

ABSTRACT

Dinesh, Sushant M.S., Purdue University, May 2019. RetroWrite: Statically Instru-
menting COTS Binaries for Fuzzing and Sanitization. Major Professor: Mathias
Payer.

End users of closed-source software currently cannot easily analyze the security

of programs or patch them if flaws are found. Notably, end users can include devel-

opers who use third party libraries. The current state of the art for coverage-guided

binary fuzzing or binary sanitization is dynamic binary translation, which results

in prohibitive overhead. Existing static rewriting techniques cannot fully recover

symbolization information, and so have difficulty modifying binaries to track code

coverage for fuzzing or add security checks for sanitizers.

The ideal solution for adding instrumentation is a static rewriter that can intel-

ligently add in the required instrumentation as if it were inserted at compile time.

This requires analysis to statically disambiguate between references and scalars, a

problem known to be undecidable in the general case. We show that recovering this

information is possible in practice for the most common class of software and li-

braries: 64 bit, position independent code. Based on our observation, we design a

binary-rewriting instrumentation to support American Fuzzy Lop (AFL) and Address

Sanitizer (ASan), and show that we achieve compiler levels of performance, while re-

taining precision. Binaries rewritten for coverage-guided fuzzing using RetroWrite

are identical in performance to compiler-instrumented binaries and outperforms the

default QEMU-based instrumentation by 7.5x while triggering more bugs. Our im-

plementation of binary-only Address Sanitizer is 3x faster than Valgrind memcheck,

the state-of-the-art binary-only memory checker, and detects 80% more bugs in our

security evaluation.

1

1. INTRODUCTION

Software is often large and complex and therefore prone to exploitable vulnerabilities.

While mitigations such as ASLR [1], DEP [2], Stack Canaries [3], or CFI [4,5] protect

the software against the active exploitation of some vulnerabilities they cannot protect

software against the exploitation of all vulnerabilities and they are of limited use in

discovering the locations of vulnerabilities. Best practices in software testing leverage

coverage-guided fuzzing and sanitizers to discover bugs while producing concrete test

cases to reproduce the bugs in a testing environment. Both coverage-guided fuzzing as

well as sanitization requires additional instrumentation of the code. Current standard

tools such as AFL [6], a coverage-guided fuzzer or Address Sanitizer (ASan) [7] require

a recompilation of the source code to (i) get high level information about where

to place the instrumentation and (ii) actually weave the instrumentation into the

compiled code.

Unfortunately, code is frequently only available in binary form. For example, many

libraries or binaries such as the Google Hangouts plugin, Skype, or Zoom are not

available as source code to protect the intellectual property of the vendors. Without

access to source code, testing the security of such programs is challenging. Existing

approaches either give up and rely on, e.g., blackbox fuzzing [8] which often results in

shallow coverage or rely on dynamic binary translation to add coverage tracking [9]

or memory checks [10] to the executed binary at prohibitively high runtime cost of

100x and more (running AFL in QEMU mode on the LAVA-M [11] test suite results

in 10x to 100x slowdown).

A static binary translation technique that enables code and data changes would

allow a static binary analysis to rewrite the binaries and achieve performance similar

to compiler-based techniques. Current static binary rewriting techniques [12,13] have

low overhead, but their reliance on heuristics makes them unsound. The fundamental

2

difficulty is statically disambiguating between reference and scalar constants, so that

a program can be “reflowed”, i.e., have its code and data pointers rewritten according

to any inserted instrumentation or changed data sections. During assembly, labels

are translated into relative offsets or relocation entries. A static binary rewriter must

recover all these offsets correctly. Existing work on static rewriting fits into three buck-

ets based on how this problem is approached: (i) recompilation [14], which attempts

to lift the code to an intermediate representation; (ii) trampolines [15,16], which rely

on indirection to insert new code segments without changing the size of basic blocks;

and (iii) reassembleable assembly, which creates an assembly file equivalent to what

a compiler emits, i.e., with relocation symbols for the linker to resolve. Lifting code

to IR for recompilation requires correctly recovering type information from binaries,

which remains an open problem. Trampolines may significantly increase code size,

and the extra level of indirection adds performance overhead. Therefore, we believe

that resymbolizing binaries for reassembleable assembly is the most promising tech-

nique for static binary rewriting.

We show that static binary rewriting, leveraging reassembleable assembly, can

produce sound and efficient code for an important subset of binaries: 64 bit position

independent code (PIC). Notably, such binaries include third party shared libraries,

the analysis of which is the most pressing use-case for such a rewriter. We achieve

this by leveraging the relocation information that is required for position independent

code, and produce assembly files that an assembler cannot distinguish from compiler

generated code. Whereas source based techniques rely on register allocation later in

the compilation process to assign registers for their instrumentation, we provide a

register liveness analysis that prevents unnecessary spilling of registers to the stack

for instrumentation. To show the usefulness of our rewriting framework, we present

case studies on rewriting for AFL and ASan.

Fuzzing is one of the most effective forms of software testing and is widely adopted

as a part of the software development cycle. Blackbox fuzzing [8], i.e., fuzzing with-

out any insight about the application under test, requires well-curated test cases as

3

it otherwise achieves only shallow coverage. Coverage-guided fuzzing overcomes this

limitation by using program traces as a feedback mechanism to choose future input

sequences. AFL [6] is a popular coverage-guided greybox fuzzer and has been instru-

mental in discovering massive amounts of bugs [17]. AFL instruments applications

at compile time to collect edge-coverage. To collect coverage for fuzzing binary-only

applications, AFL ships with a QEMU-based instrumentation tool. Even with several

optimizations, the QEMU based tool is about 3x - 30x slower than the corresponding

source instrumented counterpart which severely restricts the fuzzing throughput and

further, the ability to find bugs. Additionally, instrumentation such as ASan is not

supported in QEMU mode [9] thereby limiting AFL’s ability to find bugs in blackbox

binaries.

To effectively fuzz test binaries, we identify two key requirements: (i) To maximize

fuzzer throughput, we need a mechanism to generate instrumented binaries that are

as performant as binaries instrumented at compile-time, and (ii) such rewriting should

be sound (not break binaries) and scalable to support real-world use cases. Attempts

to statically instrument binaries using DynInst [18] are not widely adopted as they do

not satisfy the second criteria. We leverage RetroWrite to develop a pass to statically

instrument binaries such that the instrumented binaries are just as performant as

their compiler instrumented counterparts. As RetroWrite is fundamentally sound in

rewriting the binaries it supports, our solution can be widely deployed and used as

a replacement to the current QEMU-based instrumentation when fuzzing position-

independent code.

Fuzzers depend on program crashes to detect and report bugs. Consequently,

bugs that do not trigger crashes are not caught through fuzzing. Address Sanitizer

(ASan) is the most widely used, tripwire-based memory checker that greatly increases

the probability of a program crash when a memory corruption bug is triggered. In

addition to increasing the probability of detecting a bug, ASan provides a detailed

backtrace to help developers understand and patch the underlying bug. ASan is im-

plemented as a compiler pass and instruments code at compile-time. The availability

4

of source information allows ASan to be far superior in terms of performance and bug

detection rate when compared to binary-only solutions [10, 19]. Valgrind memcheck,

the state-of-the-art binary-only memory checker, relies on dynamic binary translation

(DBT) to instrument binaries at runtime. Valgrind’s overhead (about 2x - 20x) due to

DBT and heavyweight instrumentation makes it unsuitable for fuzzing. To the best

of our knowledge, there are no lightweight alternatives to fuzz binaries with Valgrind

memcheck. We develop Binary Address Sanitizer (BASan) as an instrumentation pass

in RetroWrite to retrofit binaries with memory checks to aid in fuzzing binaries. Our

approach is similar to and inspired by ASan as implemented in the compiler. BASan

is both lightweight and finds more bugs when compared to Valgrind memcheck. Ad-

ditionally, BASan is compatible with ASan, thereby enabling blackbox components

of a software, e.g., closed-source or legacy libraries, to be rewritten by BASan while

compiling the rest of the codebase with ASan. In short, BASan is better than existing

binary-only memory checkers while being compatible with source-based solutions.

We evaluate RetroWrite’s AFL coverage instrumentation, afl-retrowrite, for

fuzzing throughput and effectiveness in finding bugs. We compare afl-retrowrite

against compile-time instrumentation mechanisms, afl-clang-fast and afl-gcc, and

binary-only instrumentation mechanisms, afl-dyninst and afl-qemu. On LAVA-M

bechmarks, afl-retrowrite finds more bugs than the other binary-based solutions

and is equivalent to the compiler-based counterparts — finding a total of 25 bugs

across runs of the benchmarks, 22 more than the other binary-based solutions. afl-retrowrite

is a viable replacement to afl-qemu for binary only applications, achieving about 4.5x

higher fuzzing throughput compared on QEMU instrumentation on real-world appli-

cations and comparable in performance to compiler-based instrumentation.

We evaluate BASan for performance and bug detection rate. Our performance

evaluations show that BASan has a massive 3x speedup against Valgrind memcheck

and is only 0.65x slower than ASan (due to the lack of compiler optimization and

register pressure). We evaluate BASan’s capability to find bugs on the Juliet test

suite, a curated set of test cases representative of real-world bugs. On the Juliet

5

test suite, BASan has a higher bug detection rate1 of 0.55 when compared to 0.30

Valgrind memcheck, while it still falls short of ASan (0.75). In short, BASan is

better in terms of performance and bug detection rate compared to the state-of-the-

art binary-only memory checker, Valgrind memcheck. To summarize, our BASan

and AFL instrumentation implemented in RetroWrite are significantly better than

current state-of-the-art tools for fuzzing blackbox binaries, integrate with source-

based tools for compatibility, and are viable drop-in replacements. In short, our

contributions are:

• A static binary rewriting framework2 that allows sound, efficient rewriting of

64 bit PIC binaries (chapter 2),

• An instrumentation pass2 that allows binaries to be run with AFL with the

same performance as compiler-based AFL instrumentation (chapter 4),

• An instrumentation pass2 that retrofits binaries with ASAN checks, increasing

by orders of magnitude the efficiency of memory safety analysis for binaries

(chapter 3),

• A comprehensive evaluation of BASan and AFL instrumentation (chapter 5) on

benchmarks and real-world applications, followed by a discussion of limitations

(chapter 6).

1Number of bugs detected / Total number of bugs
2Implementation will be open-sourced on acceptance.

6

2. STATIC BINARY REWRITING

Binary rewriting allows for post-compilation modification of binaries. In particu-

lar, instructions can be added or deleted to enforce new security properties or re-

move unwanted functionality, while still maintaining an executable binary. Conse-

quently, binary rewriting can be an incredibly powerful mechanism for increasing

security through, e.g., coverage-guide greybox fuzzing on binaries, and binary-only

memory checkers with near source-based performance. However, rewriting binaries

is not as straightforward as editing source code, mainly due to the fact that bina-

ries lack source-like abstractions. Binaries lack type information, and data-structure

abstractions are flattened to raw memory accesses. Using binary rewriting for secu-

rity auditing therefore faces many reverse engineering challenges to recover sufficient

information about the binary to enforce the desired security properties. The ideal

rewriter, for security and fuzzing applications, should:

• Performance: Have low runtime and memory overhead when the binary is

recompiled with instrumentation.

• Correctness: Preserve as much of the original program characteristics (barring

changes made by the instrumentation) as possible. This ensures that any bugs

found directly translate to the original binary.

• Scalability: Scale to real-world software.

Existing DBT-based techniques [10,15,20–22] do not satisfy our performance cri-

teria while existing work on static binary rewriting [12–16, 23, 24] do not satisfy at

least two of the three requirements.

7

2.1 Background

This section introduces the reader to building blocks of binary analysis and binary

rewriting.

Disassembly Disassembly is the first step on binary rewriting, and is used to re-

cover the existing instructions for analysis / modification. Disassembling a binary

compiled for a variable length instruction set architecture is hard as the disassem-

bler has to identify the instruction length. With an architecture as extensive as x86,

nearly every sequence of bytes can be disassembled to some valid instruction. To

counter this problem, the established strategies for disassembling binaries are linear

sweep and recursive descent, which are discussed extensively in [25]. Linear sweep

goes through the entire .text section top-down and eventually disassembles the entire

binary while recursive descent follows the control flow of the program and disassem-

bles all reachable code in the binary. IDA Pro [26] has been the industry standard

for disassembling and reverse engineering, but there are other viable contenders such

as radare2 [27], Binary Ninja [28], and static binary analysis frameworks such as

angr [29]. All these tools use recursive descent to disassemble binaries.

Beyond instruction length, many ISAs intermix code and data, making it hard

to distinguish between these sections. In general, deciding whether bytes represent

code or data is undecidable [30]. However, as pointed out by Andriesse et al. [31],

the undecidablilty is driven by corner cases and disassembling executables generated

by mainstream compilers, e.g., gcc, clang, and Visual Studio, is possible with high

accuracy (nearly 100%), even when compiled with high optimization.

Binary Rewriting Binary rewriting techniques can be broadly classified into two

categories based on when they instrument the binary:

• Dynamic Binary Translation (DBT). DBT translates the binary as it is

executing. Consequently, they leverage runtime information and do not depend

on complex static analysis that may not scale. This makes them an attractive

8

solution for rewriting large software. Several off-the-shelf solutions for DBT

exist, including Intel PIN [20], DynamoRIO [32, 33], QEMU [22], DynInst [15]

and Valgrind [10]. The lightest weight DBT techniques, i.e., Intel PIN and

DynamoRIO, have anywhere between ∼10% to ∼20% rewriting overhead, i.e.,

with no instrumentation.

• Static Binary Rewriting. Static rewriting translates binaries before they

are executed. Since the instrumentation is performed ahead of time, the rewriter

can utilize complex analysis and optimize the memory and runtime overhead,

similar to compiler optimizations for source code. No off-the-shelf tool exists

to rewrite any generic piece of software. However, static rewriting is an active

area of research with several research prototypes [12–14, 16, 23, 34]. Existing

prototypes vary by runtime overhead, memory overhead, and the characteristics

of rewritten binary.

No existing rewriter meets our design criteria for a security oriented rewriter. DBT

suffers from prohibitive runtime overhead. Though optimizations such as inlining can

reduce the overall instrumentation overhead, DBT remains prohibitively expensive,

and cannot compete with static rewriting techniques which optimize instrumentation

offline. Static rewriting suffers from its reliance on static analyses, which adds both

imprecision and complexity. Consequently, existing static techniques do not scale. A

solution with the scalability of DBT and the overhead of static rewriting that remains

precise enough to add security instrumentation is required. We design reassembleable

assembly to fit this niche.

Reassembly The key observation of reassembleable assembly is that assembly files

produced by disassemblers have a rigid structure, i.e., code and data are pinned

to their original locations and cannot be moved. Moving code or data breaks all

references in the binary, which were hardcoded from labels to specific addresses by

the assembler. In contrast, a compiler-generated assembly file maintains some of the

source-level abstractions, such as variable names, in the form of assembler labels.

9

These files usually do not have hardcoded addresses as these are assigned at link

time.

Reassembleable assembly creates assembly files that appear to be compiler gen-

erated, i.e., they do not contain hardcoded values but instead assembly labels. The

core of generating reassembleable assembly is thus the process of symbolization, i.e.,

converting reference constants into assembler labels. Symbolizing the assembly allows

security rewriters to directly modify binaries, much like editing compiler generated

assembly files. Once modified, the symbolized assembly files can be assembled using

any off-the-shelf assembler to generate an instrumented binary.

Reassembly was first introduced by Uroboros [13]. Wang et al. designed a set

of heuristics based on common compiler idioms to classify constants as reference or

scalars and symbolize reference constants into assembler labels. ramblr [12] then

advanced the state-of-the-art for reassembleable assembly by identifying several sim-

plifying assumptions in Uroboros that led to non-functional binaries, and developed

static analyses to improve the symbolization accuracy. Additionally, ramblr acknowl-

edges that their rewriting can never be complete and develop heuristics to abort the

reassembly safely when they cannot guarantee rewriting correctness.

Reassembly is the most promising rewriting technique for our requirements: in-

strumentation can be inlined thereby reducing the overall overhead, while still main-

taining original program characteristics in terms of control flow, instruction selection,

and register and memory access patterns. As an additional benefit, reassembly allows

post-processing on symbolized assembly files. Consequently, using a security rewriter

built on reassembleable assembly is inherently modular. Once the framework exists

for producing the reassembleable assembly, security transformations can be added as

modules in the framework that transform the assembly files before they are finally

reassembled to produce the instrumented binary.

The main drawback of reassembly based techniques is the requirement of com-

pleteness — no constant can be misclassified as a reference or a scalar. Without

being complete, there is no guarantee that the reassembled binary will function cor-

10

rectly. However, it has been shown that statically disambiguating whether a constant

represents a scalar or a reference is infeasible [35]. Therefore, existing techniques

are empirical and use heuristics to approximate a sound static analysis. While these

work in most cases they are generally insufficient to rewrite real-world binaries, e.g.,

ramblr (the current state-of-the-art) reports false negatives in identifying references

on coreutils built for x86-64. With larger, real-world applications, we expect a large

number of missclassifications, which prevent the binary from being rewritten cor-

rectly. However, while this restriction holds for the general case, there is hope for

position independent binaries.

Position-Independent Code (PIC) Executables compiled to be position-independent

may be loaded at any virtual address by the loader. PIC is required both for ASLR

and for shared libraries. Shared objects, such as libraries, are position-independent

out of necessity — different processes may have different address space layouts and

libraries need to be loaded at arbitrary addresses. Traditionally, executables are com-

piled to be loaded at a fixed address, because PIC introduces overhead by requiring

offsets to be calculated at runtime rather than being fixed. However, recent architec-

tural advancements, e.g, being able to reference instruction pointer (rip) on x86 64,

have made this overhead negligible. Dynamic linkers are now smarter and have addi-

tional relocations to further reduce this overhead, making their performance identical

to non-PIC while improving security.

All major Linux distributions such as Ubuntu [36], Fedora [37], and Gentoo [38],

have switched over to compiling and shipping binaries as PIC by default. In the

smartphone ecosystem, Android has removed support for non-PIE linker and com-

piled binaries have to be PIE since Lollipop [39]. Though iOS does not forbid non-PIC

binaries as Android does, it strongly encourages PIC and emits warnings for non-PIC

binaries [40]. As PIC improves security guarantees with minimal performance im-

pact, we anticipate PIC to be the de-facto standard on all platforms in the future.

Therefore, we focus our efforts on developing principled techniques to rewrite position

11

independent code by leveraging the relocation information it contains for symboliza-

tion, and rely on existing approaches to support non-PIC binaries.

2.2 RetroWrite

RetroWrite implements static rewriting through reassembleable assembly. The

core of generating reassembleable assembly is the process of symbolization, i.e., stat-

ically disambiguating between reference and scalar type for constants and replacing

references with appropriate assembler labels. In the general case, this requires heuris-

tics. However, for PIC we present a principled symbolization strategy without any

reliance on heuristics. RetroWrite leverages the relocation information in PIC bina-

ries that enables the dynamic linker/loader to load the binary at arbitrary addresses

for symbolization. This information is sufficiently detailed to allow us to reconstruct

all labels that the compiler originally emitted before the binary was assembled.

RetroWrite is designed as a framework, with the reassembleable assembly based

rewriter at its core. The rewriter serves as a central framework, on top of which

other modules can be added to transform the assembly files to, e.g., track coverage

for greybox fuzzers or add redzones for ASAN. The rewriting framework exposes an

API to the modules for these transformation, and includes useful information such as

register liveness for transformations to use. At a high-level, our rewriting framework

has three major steps:

1. Binary loading and Disassembly. The first step is to load the sections

required for reassembly. These include both the text and the data sections.

Additionally, RetroWrite also loads auxiliary information, such as symbols and

relocations from the binary. After loading, RetroWrite performs a linear-sweep

to disassemble the text section.

2. Control Flow Recovery. After disassembling the binary, RetroWrite ana-

lyzes the disassembly to generate a best-effort CFG — identifying and adding

12

edges for direct control-flow transfers. However, RetroWrite does not resort to

heavyweight analyses to infer indirect control-flow targets.

3. Symbolization. Finally, RetroWrite uses relocation information from the

loading phase and the recovered control-flow graph to identify symbolizable

constants, in both the data and code sections, and convert them to assembler

labels. At the end of the symbolization phase, RetroWrite dumps reassem-

bleable assembly which may further be instrumented by other modules within

the framework, much like editing assembly files.

The reassembleable assembly produced by the symbolization step is then available

for the security modules to perform their transformations on. Once the final assembly

file has been generated, it can be assembled using any off-the-shelf assembler to

generate a working binary.

One advantage of our technique is that we do not need to lift assembly to a higher-

level intermediate language, a process that requires precise modeling of the instruction

set architecture (ISA). Capturing instruction semantics to lift from disassembly to an

intermediate language is hard, must be implemented on a per-architecture basis,

and is known to be error-prone. Our technique is lightweight and directly works on

disassembly generated from any off-the-shelf disassembler. Consequently, our design

makes it straightforward to extend the RetroWrite rewriting framework to support

multiple architectures.

Symbolization. Our symbolization procedures runs in three different phases,

corresponding to symbolizing different types of references between code and data:

1. Control Flow Symbolization. Operands to all identified control-flow instruc-

tions, i.e., calls and jumps, are converted into assembler labels as these have to

be code-to-code references.

2. PC-relative Addressing. As position-independent code cannot reference

fixed addresses, references are calculated relative to the program counter (in

13

x86-64, this is rip). We identify instructions that compute such pc-relative

addresses and convert the operand to use an assembler label instead. Then,

at the location referenced by the instruction (calculated statically) the corre-

sponding assembler label is defined. Such labels encompass both code-to-code

and code-to-data references. Note that this implicitly covers cases of indirect

jumps and calls as the reference to functions are symbolized at the point where

address is taken, thereby making up for the imprecise CFG.

3. Data Relocations. Lastly, we handle data references. In essence, we mimic the

dynamic linker / loader in performing the relocations — at the offset pointed

to by the relocation entry, we replace the bytes by an assembler label. The

corresponding label is then defined at the address pointed to by the relocation

(exact formula depends on the type of relocation). This process handles both

data-to-data and data-to-code references.

Note that our approach to symbolization is fundamentally different from existing

work — rather than using heuristics and analyses to categorize a constant as a scalar

or a reference, we use relocations, pc-relative addressing, and recovered control flow

to determine reference constants and symbolize them. Therefore, our approach is

sound by construction and has zero false positives and false negatives. This means

our approach is generic, and applicable to any real-world position-independent code.

2.3 Implementation

Our current implementation supports Linux x86-64 position independent executa-

bles. RetroWrite is implemented in about 2,000 lines of Python code and uses Cap-

stone (a disassembly framework with support for multiple architectures) to disassem-

ble raw bytes into x86-64 instructions. RetroWrite uses pyelftools, an ELF parsing

library to load ELF files and parse relocation information.

Though our current implementation is restricted to the x86-64 architecture, other

architectures supported by Capstone may easily be added with minimal engineering

14

effort. We believe our prototype is robust and suitable for real-world binary rewriting.

We will open-source our framework on acceptance.

Generating reassembleable assembly is the first step towards rewriting binaries.

In practice, writing instrumentation passes to safely instrument binaries at a low-

overhead requires three things: (i) A logical abstraction for analysis and instrumen-

tation passes to operate on, e.g., modules, functions, or basic block level granularity

based on the use-case, (ii) working around the ABI to ensure the instrumentation

does not break the binary, and (iii) automatic register allocation to achieve compiler-

like overhead. The following paragraphs discuss the implementation details about

our instrumentation API built in RetroWrite.

Function Identification Our reassembly step does not strictly need function start

and size information. However, the rewriter and the instrumentation API greatly

benefit from function information as it provides a natural way to structure analysis

and instrumentation at function granularity. Our implementation uses the symbol

table to identify function start and sizes. To support stripped binaries, users may

reuse function identification as provided in commercial tools such as IDA Pro, or open

source frameworks such as radare, as a part of a pre-processing step. An alternative

is to use other existing research in function identification [41–44]. These options are

discussed further in related work section and may be reimplemented in our framework

with additional engineering effort.

ABI Dependencies The instrumentation API must also be aware of the ABI lim-

itations to ensure the binary is instrumented as intended. For example, the System V

ABI for x86-64 (the default ABI on Linux) specifies that leaf functions (functions that

do not call other functions) may use 128-bytes below the stack-pointer as an implicit

stack, without allocating it explicitly. This means that pushing or popping from the

stack to save state before and after instrumentation is not possible in such functions

as it would overwrite the stack-local variables and lead to incorrect execution. To

work around this, RetroWrite uses a static analyses to find such leaf functions. The

15

instrumentation API is aware of the ABI and maintains a separate stack to save and

restore state when instrumenting leaf functions. Other ABI dependencies include the

calling convention, which influences the register allocation analysis as arguments may

be passed in registers, and registers are used for the return value.

Register Allocation Unlike a compiler-based instrumentation, binary-only tools

do not have the luxury of relying on virtual registers and allowing the compiler to

assign physical ones, but must choose their own physical registers. The instrumen-

tation cannot clobber any program state, i.e., registers, conditional flags, program

stack, or global state, as this can have unintended side-effects, leading to crashes or

inconsistencies that are hard to debug. Therefore, the safest option is to save all

state before entering instrumented code, and restore the saved state before exiting.

However, this is prohibitively expensive and infeasible in practice.

To reduce overhead from saving program state, RetroWrite performs a conser-

vative (over-approximate) intra-function liveness analysis to find all registers (and

flags) that are live at instrumentation sites. In short, our liveness analysis is equiv-

alent to a compiler-based liveness analysis with variables replaced by registers. As

the analysis relies on control-flow graph, which is incomplete (imprecise), the analy-

sis has to over-approximate the set of live registers — we can tolerate false positives

(register belongs to live set according to the analysis, but is not actually live) but

not false negatives. False positives translate to fewer registers available for allocation

and hence greater number of register spills for instrumentation while false negatives

lead to clobbering a register in use and consequently errors during execution. To

reduce overall overhead, the instrumentation API ensures that non-live registers are

allocated first before allocating live registers. Any live register that is allocated is also

automatically saved before and restored after the instrumentation. Similarly, if the

instrumentation clobbers conditional flags, these are detected, saved, and restored

automatically as a part of the API.

16

3. BINARY ADDRESS SANITIZER

Software written in low-level languages, i.e., languages without memory-safety guar-

antees, such as C and C++ are susceptible to memory corruption bugs. These mem-

ory corruption bugs are the root cause of several vulnerabilities that an attacker

exploits to gain arbitrary code execution capabilities. Efforts to enforce full runtime

memory safety (spatial and temporal) for these applications have been prohibitively

expensive [45, 46] as they require every memory access to be checked in addition to

tracking allocation information for every memory object. An alternate approach is

to catch these bugs during software testing, before the code makes it production.

However, these bugs may be subtle and may not always be detected through a crash.

Even if the software does crash, isolating the root cause is usually non-trivial for

large software. Memory checkers are a class of software testing tools that detect

these memory corruption bugs and terminate the application. They also provide a

detailed backtrace that led to the crash, making bug isolation and patching easier.

The usual practice is to use memory checkers in conjunction with unit tests and fuzz

testing to catch memory corruption vulnerabilities before release.

Valgrind is a popular dynamic binary instrumentation (DBI) framework that al-

lows one to develop dynamic analysis tools, such as memory checkers, for binary-only

applications. While most other dynamic binary instrumentation frameworks, such as

PIN [20] and DynamoRIO [21, 33], focus on performance, Valgrind is a framework

designed for heavyweight binary analysis. Valgrind provides an efficient mechanism

for dynamic analyses to associate and track metadata to every register and memory

value, i.e., shadow values. Valgrind memcheck is a state-of-the-art memory checker

implemented on top of Valgrind. Memcheck uses Valgrind’s shadow value capability

to detect accesses to undefined memory locations, e.g., either uninitialized variables

or out-of-bound accesses for buffers, by tracking undefined bit values. However, this

17

is expensive and incurs anywhere between 2x to 300x overhead. This makes mem-

check unattractive for use with fuzzing where higher throughput directly correlates

to deeper coverage and consequently greater probability of triggering bugs.

3.1 Address Sanitizer Semantics

Address Sanitizer (ASan) [7] is a trip-wire based approach to detect memory

corruption. In short, ASan modifies the memory allocation of an application to

pad every memory object with a redzone, forbidden regions of memory whose access

triggers a crash. Then, ASan instruments every memory access to check if it is

an access to an allowed address, i.e., not a redzone. ASan provides probabilistic

guarantees in detecting spatial and temporal memory safety violations— it increases

the probability that a memory corruption triggers a crash close to the location of the

bug, but is not guaranteed to detect every instance of memory corruption. ASan is

implemented as a compiler pass in gcc and clang.

ASan utilizes shadow memory to keep track of allocated bytes of memory. As

tracking allocation status for every single byte of memory in an application is pro-

hibitively expensive, ASan maps eight bytes of memory to a single byte of shadow

memory. The shadow byte value represents the state of memory. If an access to a

memory location is forbidden, e.g., because it is deallocated or a redzone, then the

corresponding shadow byte is poisoned, i.e., stores the value 0xff. ASan uses two

kinds of instrumentation:

ASan Allocation. All memory objects are padded with redzone — regions

around allocated memory objects accessing which is illegal and triggers a fault. The

specific redzone policy depends on the allocation region:

• Heap. ASan implements an instrumented version of malloc and free as a part

of ASan runtime library. The specialized allocator allocates additional bytes for

the redzones and poisons them before returning memory to the application. To

detect use-after-free the free implementation poisons the freed memory region

18

and tries to delay reuse of freed memory for as long as possible by maintaining

a free-list.

• Stack. For stack objects, redzones for individual stack objects are created and

poisoned at runtime, when a function enters. By default, the size of the stack

redzone is 32 bytes. Allocations are padded to 32-byte alignment.

• Global. A redzone is inserted below every global statically. The size of the

redzone is so chosen that the total size of the object (original size + redzone) is

64-byte aligned. Redzones for globals are poisoned at runtime as a part of an

initialization routine.

ASan Memory Check. To enforce the ASan policy, every memory access needs

to be checked to ensure they point to valid, allocated memory. Since the number of

memory accesses in a program is typically much larger than the number of allocations,

the memory check instrumentation needs to be highly optimized to reduce overhead.

As ASan keeps track of legal bytes using shadow memory, its memory check compiles

to a couple of bitwise operations, a single memory access, and two comparisons. Es-

sentially, the instrumentation checks if the shadow byte corresponding to the memory

accessed is poisoned. Failing the check implies the memory access is illegal, thereby

terminating the application with a backtrace to help debug the memory error.

3.2 Design

Our goal in RetroWrite is to implement a version of the memory checker that

closely resembles and integrates seamlessly with the source-based sanitizer. We want

to work with source-based solutions to instrument parts of an application where source

code is unavailable, e.g., when linking against closed-source or legacy libraries, while

re-using existing compiler based instrumentation where source code is available. In

short, we do not want to implement an all or nothing solution. The main difficulty

in porting source ASan directly to binaries, even with a rewriting framework, is the

19

// Foo is a global buffer

int i = 0;

while(i < 32) {

// Access to global Foo

Foo[i] = <expr>;

i += 1;

}

(a)

1 lea 0x40000(%rip), %rbx

2 lea 0x40100(%rip), %r15

3 .loop:

4 # loop body

5 addq 0x10, %rbx

6 cmp %rbx, %r15

7 jle .loop

(b)

.Foo allocated @ 0x40000

Compiler-ASM

lea .Foo(%rip), %rbx

lea .Foo+0x100(%rip), %r15

Reassembly

lea .LC40000(%rip), %rbx

lea .LC40100(%rip), %r15

(c)

Figure 3.1.: Code snippets to illustrate difficulty in modifying global data section. (a)

Source code (simplified) provided for clarity, (b) Shows disassembly when the binary is

compiled with optimization (-O2), (c) Compares a compiler generated assembly file which

has the correct semantic connection between the two labels, while the reassembly misses this

connection, and treats them as two independent labels. Making this semantic connection

is in general undecidable, but a requirement for modifying the layout of global data.

20

lack of abstractions: binaries do not have any information about variables, types, or

buffer bounds as these are stripped away during compilation. Recovering some of

this information is possible through static analysis. But these analyses are expensive

and impacts scalability of systems that build on them. As our focus is on building

a practical binary equivalent of ASan to aid the fuzzer in finding bugs, rather than

replicating ASan, we trade some precision to scale to real-world software. Qualita-

tively, this is how our implementation of BASan compares to ASan across memory

regions:

Heap. On the heap, BASan is equivalent to ASan. Linking against the ASan

runtime library ensures that calls to the memory allocator such as malloc are inter-

cepted by ASan’s implementation of malloc, which inserts a redzone around allocated

memory objects before returning memory to the application. This means that our

implementation utilizes the same mechanism as ASan to redzone objects on the heap.

Stack. BASan treats the entire stack-frame of a function as one giant struct, i.e.,

we redzone at a stack-frame granularity. This may miss rare bugs where the overflow

is contained within the stack-frame that a ASan would catch. However, such bugs are

rare in real-world applications, and therefore we do not focus on improving precision

beyond stack-frame granularity. This limitation is fundamental to binary-only tools:

recovering accurate stack variable information, i.e., location and size, is well studied

in decompilation literature [47–50]. Popular reverse-engineering tools,such as IDA

Pro, identify stack variables using architecture specific heuristics.

Our use-case for variable information is different from existing work — decom-

pilation can tolerate misidentified stack objects as they are geared towards human

readability, while BASan cannot as this results in false positives. We note that it

is infeasible for any static analysis recover stack objects with high precision while

being sound as this translates to solving the halting problem, e.g., accessing a stack

buffer sequentially within a loop whose invariant is not known. As determining the

number of loop iterations statically is undecidable, we cannot infer the size of this

buffer. In short, we can tolerate loss of precision but not soundness. To support

21

real-world use cases, such as fuzzing, where we cannot tolerate false positives, we

trade-off fine-grained precision on the stack for soundness. In theory, we could elimi-

nate this limitation by relying on auxiliary methods, such as using debug information

or information reverse engineered by an analyst, to identify and redzone stack ob-

jects at a finer granularity. This can be implemented in our current framework as a

pre-instrumentation analysis pass to recover stack variable information.

Global. BASan does not redzone globals for a couple of reasons. In general,

symbolizing the disassembly is insufficient to perform arbitrary transformations on

data section layouts and requires recovery of semantic information lost during compi-

lation. To illustrate this problem, Figure 3.1 shows a snippet of disassembly alongside

the source code, compiler generated assembly, and the reassembly. The access to the

global buffer Foo is converted into an access through a pointer in the compiled code,

where %rbx is the iterator and %r15 is the bounds for the loop. As these addresses are

symbolized to assembler labels independently, i.e., without understanding the seman-

tic connection between labels, the reassembly generated has two independent labels

that point to the beginning and end of Foo respectively. This is the cause of the

problem — if we add bytes below Foo for the purposes of a redzone, the above label

will no longer point to the semantic end of object Foo, and therefore the loop bounds

will be incorrect. In general, if there is an object below Foo, we cannot be sure if the

instruction references the beginning of the next object or the end of Foo. This is a

semantic difference that the reassembleable assembly fails to capture. More generally,

for every two adjacent globals, there are two labels that separate them. One for the

end of the first object, the other for the beginning of the second object. These two

labels are collapsed into a single indistinguishable offset.

Unfortunately, this is a common compiler optimization. Any binary rewriting tool

that needs to modify the data layout needs to disambiguate the semantic meaning of

such references. We could design an analysis to track pointer capabilities (track base

pointers for every derived pointer), and propagate this information at every pointer

operation involving two reference operands, e.g., subtraction to find length or com-

22

parison to check for bounds. This would allow us to semantically disambiguate the

meaning of a reference use, i.e., is the address used to refer to start of an object or

is it used to denote the end of the previous object, by checking the pointer base.

However, to precisely track pointer capabilities statically on a language that allows

arbitrary pointers (such as assembly) we need precise alias information, which is un-

decidable to compute statically [51]. Alternatively, this information can be recovered

through heuristics, but would hurt BASan’s soundness and introduce false positives.

Therefore, we leave such efforts to future work. We acknowledge this limitation, but

the number of global objects in an application is fixed and relatively small when

compared to the number of allocations on the heap or stack. Therefore, compared to

ASan, BASan may miss a fixed number of overflows between global objects. Despite

these limitations BASan outperforms Valgrind.

To reduce overhead and amount of instrumentation, BASan does not redzone stack

frames for every function. During compilation, the compiler performs a conservative

analysis to identify functions that have a potential stack-based buffer overflow, and

selectively adds stack-canaries to protect the saved return address. We leverage this

observation to our advantage and redzone only stack frames that have such canaries;

as other functions are proved to be free from stack-based overflows at compile-time.

Additionally, rather than enlarging the stack frame by adding new bytes for the

redzone, we reuse the slot occupied by the canary and poison the corresponding byte

in shadow memory to disallow access to it. This is equivalent to adding additional

bytes in terms of detection capabilities while not incurring the memory overhead.

Lastly, as the stack frame is implicitly freed on function return and may be reused

by the next function call, we identify every function exit, and unpoison the redzone

before exiting from the function. Mechanisms that unwind the stack frame, such as

longjmp, require us to unpoison all the stack frames that are unwound. To handle

this case, we add additional instrumentation to iteratively unpoison every byte from

the current stack top to the saved stack pointer (saved during the corresponding call

to setjmp).

23

3.3 Binary Address Sanitizer Implementation

BASan is implemented on top of RetroWrite. We use the disassembly from

RetroWrite to identify all memory accesses and instrument them with memcheck

instructions. The memcheck instructions themselves are written in assembly with

actual registers replaced by symbolic register names. This allows us to leverage the

register allocation capabilities of RetroWrite to reduce the overhead. We identify

functions that use stack-canaries, and instrument the stack frames of such functions

with redzones as described earlier. For each redzoned function, we identify all exits

(including longjmp), and unpoison the stack before the exit. ASan initialization

and de-initialization functions are registered as new entries in .init array and

.fini array respectively. Finally, RetroWrite emits the instrumented reassembly

file, which is then compiled and linked against the ASan runtime library, libasan.so,

to produce the BASan instrumented executable. Note that this allows interaction with

other code that may already have been instrumented with ASan. Our experience in

implementing BASan in RetroWrite suggests that other source-based sanitizers can

be ported to support binaries with minimal engineering effort.

24

4. BINARY FUZZING INSTRUMENTATION

Fuzzing is one of the most effective forms of software testing. At its core, fuzzing

is a form of random software testing where an application is run with random (po-

tentially malformed) inputs while monitoring the runtime for unexpected behaviors,

e.g., crashes, memory exhaustion, or infinite loops. Due to its simplicity, generality,

and ease of parallelization, fuzzing is widely adopted as a part of software testing

pipelines, and has been instrumental in uncovering several important bugs. However,

blackbox fuzzing, i.e., fuzzing without any knowledge about the application under

test, may not be effective in most cases as a majority of inputs are likely to explore

very shallow code paths. This severely limits a fuzzer’s ability to uncover bugs in

deep parts of code.

Coverage-guided fuzzing tackles this problem by using program traces generated

by the inputs as a feedback mechanism to decide future sequence of inputs to the fuzz

target. As program tracing can be expensive, most fuzzers trade accuracy for a more

coarse-grained coverage, either at basic block or edge granularity.

AFL AFL is one of the most popular fuzzers in both academia and industry due

to its ease of use and effectiveness in finding real-world bugs. As collecting and an-

alyzing full program traces can be expensive, AFL takes a more practical approach

by tracking edge-coverage as an approximation of a program trace. AFL maintains a

bitmap (64KB by default, configurable) in shared memory to keep track of edge hit

statistics during a run of the application. At compile time, every basic block start

in the CFG is instrumented to collect edge coverage statistics. Statically, each basic

block is assigned a key and the bitmap index Ie for an edge e is computed dynam-

ically as: Ie = cur ⊕ (prev >> 1), where cur and prev correspond to keys of the

current and predecessor basic blocks respectively. AFL instruments applications dur-

25

ing compilation, either through afl-gcc or through the more optimized llvm-mode,

afl-clang-fast. For blackbox binaries, AFL resorts to QEMU to instrument bi-

naries dynamically at runtime. However, this has a significant overhead (1̃0x) when

compared the source-based solution, reducing the fuzzer’s throughput. Another sig-

nificant drawback of using QEMU is its inability to support sanitizers, such as ASan,

severely limiting AFL’s bug finding capabilities.

4.1 Binary AFL

Implementing coverage instrumentation in our rewriting framework requires CFG

recovery and instrumenting basic block starts with coverage instrumentation — calcu-

lating of edge index and updating the bitmap state. This CFG is implicitly recovered

as a part of the symbolization procedure. However, the original AFL implementation

instruments the application at the assembly level, i.e., afl-gcc (a utility packaged

with AFL) parses and instruments assembly files during compilation to generate an

instrumented application. Since the assembly files that we generate closely resembles

compiler generated assembly files, afl-gcc works out-of-the-box to generate AFL in-

strumented binaries, with no additional effort. This showcases a useful feature of our

framework: the reassembly we produce is compatible with existing tools that operate

on assembly, and extends the tools’ capabilities to support binary-only applications.

26

5. EVALUATION

Our evaluation is guided by the following research questions that directly support our

earlier claims:

RQ1: Have we significantly improved state-of-the-art binary-only memory checkers in

terms of: (a) runtime overhead, and (b) coverage, i.e., bug detection rate.

RQ2: Are we competitive to source based memory corruption detectors, such as Ad-

dress Sanitizer, in terms of: (a) runtime overhead, and (b) coverage, i.e., bug

detection rate.

RQ3: How does our coverage instrumentation compare to source-based AFL instru-

mentation? Is our solution a viable alternative to using QEMU based instru-

mentation of AFL.

To validate our earlier claims and answer our research questions, we perform the

following evaluations:

1. Performance evaluation on SPEC CPU2006 comparing: baseline benchmarks

(no instrumentation), ASan, BASan, and Valgrind (the most popular off-the-

shelf binary-only memory checker);

2. Comparative security evaluation of the above targets on the Juliet testsuite on

CWEs related to memory corruption; and

3. Evaluation of RetroWrite for coverage guided fuzzing with AFL, comparing

source-based AFL instrumentation, binary-only AFL-instrumentation (our im-

plementation), and QEMU mode for AFL. We compare: (i) Fuzzer throughput,

and (ii) their effectiveness in finding bugs in LAVA-M testsuite.

27

Hardware and Environment All our evaluations were performed on a desktop

equipped with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor and 32 GiB

of memory running Ubuntu 16.04.

Rewriter Overview To show scalability of RetroWrite, a list of all the binaries

successfully rewritten as a part of the evaluation and their sizes is shown in Table 5.1.

These binaries are substantially larger that binaries evaluated by previous work on

reassembleable assembly.

5.1 Memory Checker — Performance

We evaluate the performance of our BASan on the SPEC CPU2006 C bench-

marks. Since the original benchmarks have memory safety violations in some of

the benchmarks, we applied patches provided in Google’s Address Sanitizer reposi-

tory [52] to enable execution with ASAN. All code was compiled with default options:

-O2 -std=gnu89 and gcc-5.4.0. Additionally, we added flags to produce position-

independent executables. Valgrind was configured to track the same set of features

as ASan.

The source code patch for ASan blacklists certain functions in perlbench, e.g., char

*move no asan, from being instrumented by the sanitizer as they cause violations.

Our initial evaluation of binary-only ASan reported a use-after-free in the above

function, after which we manually removed ASan checks from the same function for

evaluation.

Our evaluation indicates that on an average we are about 300% better than Val-

grind, and 65% slower than ASan. We present a detailed view of our results in Fig-

ure 5.1. Though our BASan is significantly better than Valgrind memcheck, it is

still 0.65x slower than ASan. One of the main reasons for ASan’s low-overhead when

compared to other memory checkers is its highly optimized memory check instrumen-

tation. Therefore, any additional overhead is clearly visible in long-running bench-

28

Binary Test Suite Size

bzip2 SPEC CPU2006 256K

gcc SPEC CPU2006 12M

gobmk SPEC CPU2006 7.0M

h264ref SPEC CPU2006 1.9M

hmmer SPEC CPU2006 1.2M

lbm SPEC CPU2006 48K

libquantum SPEC CPU2006 176K

mcf SPEC CPU2006 76K

milc SPEC CPU2006 532K

perlbench SPEC CPU2006 4.0M

sjeng SPEC CPU2006 424K

sphinx livepretend SPEC CPU2006 804K

base64 LAVA-M 64K

md5sum LAVA-M 76K

uniq LAVA-M 64K

who LAVA-M 576K

Juliet-CWE121 Juliet 12M

Juliet-CWE122 Juliet 7.6M

Juliet-CWE124 Juliet 3.5M

Juliet-CWE126 Juliet 2.7M

Juliet-CWE127 Juliet 3.4M

Table 5.1.: Overview of binaries rewritten by RetroWrite.

29

400.perlbench

401.bzip2
403.gcc

429.mcf
433.milc

445.gobmk

456.hmmer

458.sje
ng

462.libquantum

464.h264ref
470.lbm

482.sphinx3

benchmark

0

1000

2000

3000

4000

5000

6000

7000

Ru
nt

im
e

(s
)

Baseline
Source Asan
Binary Asan
Valgrind

Figure 5.1.: Evaluation on SPEC CPU2006 C Benchmarks. Mean Runtime (in s) v/s Bench-

mark, comparing: baseline (no instrumentation), ASan, BASan (our implementation), and

Valgrind memcheck (state-of-the-art binary-only memory checker). Lower numbers indicate

better performance.

30

marks. We identified the following as causes for BASan overhead when compared to

ASan:

1. Instrumentation Locations. Our binary ASan instruments more locations

than source based ASan. The compiler-based instrumentation removes some

checks if it can prove accesses are safe.

2. Register Spills. As register allocation happens in later phases of code gener-

ation, the compiler can take the instrumentation into account when allocating

registers, thereby generating better register allocation schemes with lesser spills.

Our BASan is limited to a conservative register liveness analysis and opportunis-

tically use dead registers to reduce register spills, but cannot change the register

allocation scheme as a whole.

3. Optimal Placement of Checks. To reduce register pressure, or flag recom-

putations, source based ASan is free to move the memory check instrumentation

to any program point before the memory access (flexible). However, our binary

ASan cannot do this as hoisting checks is not always safe and needs more prin-

cipled compiler-like analysis.

4. Loop Hoisting. Checking contiguous memory accesses in a hot loops can

be expensive. As a part of the optimization pipeline, a compiler may choose to

hoist such checks out of the loop and perform a single check to reduce the overall

overhead. Though possible, implementing such loop-hoisting mechanisms are a

lot harder, mainly due to lack of abstractions such as loops in the binary level.

5.2 Memory Checker — Coverage

We compare our implementation of BASan against ASan and Valgrind on Juliet

test suite, a collection of test cases containing common vulnerabilities. Each test

case has two variants: a good variant that does not contain a vulnerability and a bad

variant that does. Tools are evaluated based on their capability to report errors on

31

Table 5.2.: Overview of Bug Detection Rate on Juliet on CWEs related to memory cor-

ruption: CWE121, CWE122, CWE124, CWE126, and CWE127. False postive is when a

system reports a bug in a testcase with no bug. False negative is when a system reports no

bug in a testcase with a bug. Timeout is when the testcase fails to terminate in 3 seconds.

Source ASAN Binary ASAN Valgrind Memcheck

Total 11828 11828 11828

True Positive 4489 3257 1785

True Negative 5914 5912 5914

False Positive 0 2 0

False Negative 1382 2614 4086

Timeout Vuln 43 43 43

Timeout Safe 0 0 0

32

129 131 135 170 193 805 806 839
Secondary CWE-ID

121

122

124

126

127

Pr
im

ar
y

CW
E-

ID

345

345

864

5115

95

54

152

2283

236

15

340

228

38152

207

360

152

152

180

42

185

76

79

78

50

102

78

38

175

114

78 54

12

41

38

75

3

545

5

128

117

115

345

15

204

72

79

116 340

120

1

54

6

84

152

Source ASan
Binary ASan
Valgrind Memcheck

Figure 5.2.: Clusters comparing false negatives on Juliet for the three systems: Source

ASan, Binary ASan, and Valgrind memcheck. X and Y axes are categorical and represent

CWEs. Numbers next to points denote the number of FN of system that belong the cluster.

Explanation of CWEs are provided in Table 5.3

33

Table 5.3.: CWE Descriptions

CWE-ID Description

CWE-121 Stack-based Buffer Overflow

CWE-122 Heap-based Buffer Overflow

CWE-124 Buffer Underwrite (’Buffer Underflow’)

CWE-126 Buffer Over-read

CWE-127 Buffer Under-read

CWE-129 Improper Validation of Array Index

CWE-131 Incorrect Calculation of Buffer Size

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-170 Improper Null Termination

CWE-193 Off-by-one Error

CWE-805 Buffer Access with Incorrect Length Value

CWE-806 Buffer Access Using Size of Source Buffer

CWE-839 Numeric Range Comparison Without Minimum Check

34

the bad cases while not flagging errors on the good ones. A false positive is when

a tool reports a vulnerability on a good case. Similarly, a false negative is when a

tool misses an error on the bad case. Test cases are organized based on Common

Weakness Enumeration (CWE), an ID that indicates the kind of vulnerability that

the test case represents. We selected CWEs that represent memory corruption bugs,

namely CWE121, CWE122, CWE124, CWE126, and CWE127, and compiled them

with source ASan, binary-ASan (our solution), and without any instrumentation for

Valgrind memcheck. We run Valgrind memcheck with the same parameters as we did

for the performance evaluation, i.e., disabling leak and uninitialized checks.

An overview of the accuracy of the three systems is shown in Table 5.2. All three

systems perform equally well identifying true negatives and have 0 false positives, i.e.,

they do not report errors on any of the safe variants in the Juliet test suite (looking

through the two false positive cases for binary ASan manually, both the cases are

due to a segmentation fault when calling strcpy as a part of the test case and

not an actual violation report). In terms of detecting vulnerable cases, ASan has the

highest detection rate of 4,489/5,914, followed by BASan with 3,257/5,914, and finally

Valgrind memcheck with 1,785/5,914. This reflects the trade-off made in adapting

source ASan to a binary-only ASan. However, binary ASan is far more effective than

Valgrind memcheck which is the state-of-the-art binary-only memory checker, making

it a viable alternative to Valgrind memcheck for binary-only applications.

Finally, we analyze the false negatives qualitatively to identify common trends

and differences in the kind of bugs missed by the three systems. Figure 5.2 clus-

ters the false negatives based on the types of bugs missed, identified by the CWE

assigned to the test cases. The descriptions of relevant CWE, taken from MITRE

CWE database [53], is summarized in Table 5.3. The figure agrees with the gen-

eral trend in accuracy of the three systems: source ASan, followed by binary ASan,

and finally Valgrind memcheck. However, it is interesting to notice the differences,

e.g., both source and binary ASan miss 38 bugs related to Heap-based Buffer Over-

flow (CWE122) arising due to Incorrect Calculation of Multi-Byte String Length

35

(CWE135) while Valgrind memcheck misses none. This result is surprising as we do

not expect a binary-only tool to detect bugs that a source-based solution fails to. On

further inspection, we found that all the testcases in CWE135 trigger an overflow in

the destination buffer through a call to wcscpy (strcpy equivalent for wide-character

strings), which is not intercepted by the ASan runtime library and hence is not in-

strumented. The crux of the failing test is shown in Figure 5.3. Similarly, both the

binary-only tools miss equal number of Off-by-one Errors (CWE193) while source

ASan misses none when its on the heap (CWE122) and misses far fewer when on the

stack (CWE121), this difference can probably be attributed to due to more accurate

object size information available in source allowing source ASan to perform more

accurate checks.

On the heap (CWE122), BASan has more false negatives than ASan, even though

the redzone policy is identical. This is because BASan misses some checks on rep

prefixed instructions, i.e., rep stos. This is commonly used to implement operations

that loop over buffers, such as memcpy and memset. To guarantee that an overflow

due to such instruction is caught BASan would need to check if any of the accesses

are in the redzone by, e.g., checking if the first and last bytes accessed are within the

allowed region. The current implementation only checks the first access and therefore

misses some of the overflows that could otherwise be caught. Implementing support

for rep prefixes requires additional engineering that we leave for future work.

5.3 Fuzzer Evaluation

To evaluate the effectiveness of our binary-only coverage instrumentation, we com-

pare our approach against the current alternatives for instrumenting code to collect

coverage. To summarize, we evaluate the following systems:

CF: Source code instrumentation at LLVM-IR level, through afl-clang-fast,

G: Source code instrumentation at assembly level, through afl-gcc,

36

// Allocate source and destination buffers

wchar_t* src = (wchar_t*) malloc(32 * sizeof(wchar_t));

wchar_t* dst = (wchar_t*) malloc(16 * sizeof(wchar_t));

wmemset(src, L'A', 31);

src[31] = L'\0';

// Overflow!

(void) wcscpy(dst, src)

// Not reported by ASan, caught by Valgrind memcheck!

Figure 5.3.: Code snippet showing failing bad-case for ASan. ASan fails to report the

above overflow as wcscpy is not intercepted while Valgrind memcheck successfully detects

this overflow.

Table 5.4.: Number of unique bugs found in five fuzzing trials. All trials used input provided

with the LAVA-M dataset as initial seeds. Each trial was run for 24 hours. Legend. CF:

afl-clang-fast, G: afl-gcc, Q: afl-qemu, DI: afl-dyninst, RW: afl-retrowrite.

RW CF DI G Q

base64 [5, 2, 0, 6, 1] [4, 2, 2, 1, 2] [1, 2, 0, 0, 0] [2, 1, 2, 2, 3] [0, 0, 0, 0, 0]

md5sum [1, 0, 0, 1, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]

uniq [1, 1, 3, 2, 2] [1, 1, 3, 1, 2] [0, 0, 0, 0, 0] [1, 3, 1, 0, 0] [0, 0, 0, 0, 2]

who [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0]

37

CF DI G RW Q
0

1000

2000

3000

4000

5000

Ex
ec

ut
io

ns
 /

s

base64

CF DI G RW Q
0

1000

2000

3000

4000

5000
md5sum

CF DI G RW Q
0

1000

2000

3000

4000

5000

Ex
ec

ut
io

ns
 /

s

uniq

CF DI G RW Q
0

1000

2000

3000

4000

5000
who

Figure 5.4.: Box plot of fuzzing executions per second on LAVA-M across five, 24 hour trials.

Legend: CF=afl-clang-fast, DI=afl-dyninst, G=afl-gcc, RW=afl-retrowrite (our solution),

Q=QEMU. Higher numbers indicate better performance.

38

CF DI G RW Q
500

2500
4500

Ex
ec

ut
io

ns
 /

s binutils

CF DI G RW Q
500

2500
4500

bzip2

CF DI G RW Q
500

2500
4500

Ex
ec

ut
io

ns
 /

s file

CF DI G RW Q
500

2500
4500

libarchive

CF DI G RW Q
500

2500
4500

Ex
ec

ut
io

ns
 /

s libpng

CF DI G RW Q
500

2500
4500

libtiff

CF DI G RW Q
500

2500
4500

Ex
ec

ut
io

ns
 /

s tcpdump

Figure 5.5.: Box plot of fuzzing executions per second on real-world targets across five, 24

hour trials. Legend: CF=afl-clang-fast, DI=afl-dyninst, G=afl-gcc, RW=afl-retrowrite (our

solution), Q=QEMU. Higher numbers indicate better performance.

39

Q: Runtime instrumentation through afl-qemu

DI: Static rewriting through trampolines, through afl-dyninst, and

RW: Static rewriting through afl-retrowrite (our solution).

As discussed, the number of executions per second (the fuzzer throughput) is im-

portant as exploring more inputs directly correlates to larger probability of finding

bugs through fuzzing. Just the fuzzer throughput does not give us a complete pic-

ture as a high throughput can be achieved by not instrumenting the binary to collect

coverage. Such a fuzzer would achieve low coverage and hence discover fewer bugs.

Therefore we evaluate along two axes: (i) executions per second, and (ii) number

of unique bugs triggered, on the LAVA-M benchmarks [11]. To compare real-world

fuzzing performance, we also evaluate the above systems on seven different libraries:

(i) readelf (binutils), (ii) bzip2, (iii) file, (iv) bsdtar (libarchive), (v) pngfix (libpng),

(vi) tiff2rgba (libtiff), and (vii) tcpdump. All binaries are statically linked agaisnt

their respective libraries to ensure both the executable and the library are instru-

mented to collect coverage. We were unable to run the md5sum binary from LAVA-M

when compiled with afl-clang-fast — the resulting binary crashes (segfault) on

any input. Hence, this result for afl-clang-fast has been skipped.

As fuzzing is random, a single fuzz trial fails to give us a complete picture. We

follow guidelines for fuzzing as presented in [54] and conduct five trials with a 24

hour timeout per trial. For LAVA-M, the testcase included with the source is used

as the initial seed for fuzzing. For fuzzing real-world applications, we used the test-

cases provided with the library as the initial fuzz seed (tcpdump), and fuzzing seeds

included as a part of AFL for the other applications (readelf, bzip2, file, bsdtar, png-

fix, tiff2rgba). The box plot for fuzzing performance across these trials is presented

in Figure 5.4 and Figure 5.5. For LAVA-M, the number of unique bugs found in each

of the five trials is presented in Table 5.4.

Our performance evaluation shows that afl-qemu is consistently the slowest mech-

anism for coverage instrumentation. This is expected as afl-qemu instruments the

40

binary at runtime thereby incurring a higher overhead when compared to the other

approaches that instrument statically. afl-dyninst has the highest throughput

among the systems that we tested, out-performing compiler based instrumentation,

afl-clang-fast, on targets such as bzip2. This is surprising as we do not expect

a trampoline-based binary rewriting solution to perform better than compiler based

instrumentation. This is likely due to the coverage instrumentation by afl-dyninst

being ineffective at guiding the fuzzer through deeper program paths, thereby achiev-

ing a shallow coverage and a larger number of executions per second. Our evaluation

of bugs found indicates that this is indeed the case — afl-dyninst fails to find bugs

despite having a high fuzzing throughput. The other three systems, afl-clang-fast,

afl-gcc, and afl-retrowrite achieve roughly similar throughputs across all runs of

benchmarks.

Due to fuzzing randomness, we need a statistical test to determine if the de-

viations in throughput values are statistically significant or just an artifact of the

randomness. To do so, we perform Mann-Whitney U test as suggested by Kless et

al. [54]. We compare afl-retrowrite v/s afl-qemu and afl-gcc in Table 5.5. All

p-values comparing binary AFL and QEMU are < 0.05 indicating that the difference

in performance may be statistically significant, while p-values comparing binary and

source AFL are > 0.05 indicating that the differences in performance are likely due

to fuzzer’s randomness.

The number of bugs discovered by AFL directly shows the effectiveness of cover-

age instrumentation and fuzzer throughput. From Table 5.4, it is evident that the

qemu based instrumentation, afl-qemu, only finds two bugs in a single run of uniq.

The low throughput of afl-qemu prevents fuzzer from exploring a large input space

and achieving high coverage leading to lower number of bugs found. In contrast,

afl-dyninst has a high throughput, but fails to find many bugs in our evaluation —

only finding a total of 3 bugs across all runs on base64. This is likely due to inef-

fective coverage instrumentation preventing afl fuzzer from exploring deeper paths

and uncovering bugs. Lastly, we see that afl-retrowrite and the two source based

41

Table 5.5.: Overview of p-values from Mann-Whitney U Test, comparing afl-retrowrite

(RW) v/s afl-gcc (G), and afl-retrowrite (RW) v/s afl-qemu (Q). p < 0.05 indicates the

results are statistically significant. Values rounded to sixth decimal place.

RW v/s Q RW v/s G

binutils 0.006093 0.105038

bzip2 0.010786 0.018357

file 0.006093 0.417266

libarchive 0.006093 0.265435

libpng 0.006093 0.417266

libtiff 0.006093 0.500000

tcpdump 0.006093 0.417266

base64 0.006093 0.071836

md5sum 0.006093 0.338052

uniq 0.006093 0.148135

who 0.006093 0.047346

42

solutions, afl-clang-fast and afl-gcc, are roughly similar in the number of unique bugs

found across all the runs and benchmarks (barring the failed evaluation of afl-clang-

fast on md5sum benchmark). Our evaluation shows that our solution, afl-retrowrite,

is a viable alternative to afl-qemu for binary-only applications and is identical to

source-based solutions, both in terms of performance and bug-finding capabilities.

43

6. CONCLUSION

Support for C++ Binaries The current implementation of RetroWrite cannot

rewrite C++ binaries safely. This is primarily due to missing symbolization for C++

exception handlers. Information required to unwind stack-frames are stored in com-

pressed DWARF format [55] which contain code references that we do not symbolize.

This is in line with previous work on reassembleable assembly and a limitation shared

by all the three approaches. Theoretically, we do support C++ binaries that do not

make use of exception handling. However, this but has not been tested extensively.

We leave the engineering work of adding support for exception handling as future

work.

Closing the Performance Gap Although BASan is significantly faster than Val-

grind memcheck, there is still a slowdown when compared to ASan. Our current

memcheck instrumentation is directly taken from assembly generated by the com-

piler for instrumenting several crafted test cases. We did not invest additional effort

in hand-optimizing assembly. Therefore, our current memcheck instrumentation may

not be the most optimized version possible. Another area of focus to reduce overhead

is to remove unnecessary checks when a memory access is known to be safe, e.g.,

accessing variables on stack through constant offsets from the stack top. We notice

through a preliminary study that BASan instruments about 50% - 70% more sites

than ASan.

Limitations of BASan The limitations of BASan on stack and global sections

are fundamental to static binary rewriting. To improve precision on stack and data

sections, we may need to trade-off soundness or scalability. Though the above holds

for the general case, a soundy analysis may work for most compiler generated binaries,

44

and it may still be possible to push towards higher precision without introducing

false positives. One attractive option is to use local symbolic execution to track base-

pointers and disambiguate references. We leave this as an option for future work.

Hybrid Approach Current DBT based approaches translate all code during ex-

ecution, i.e., the main executable and all its dependencies. Such approaches can be

combined with RetroWrite to improve both generality and performance — the main

binary that is not position-independent may be instrumented using DBT while the

shared libraries could be instrumented using RetroWrite thereby reducing the overall

overhead.

Obfuscation To protect their intellectual property, many vendors ship obfuscated

binaries. Our framework does not address obfuscation, and assumes that no such

techniques have been employed on binaries presented for analysis. Unpacking binaries

is usually dependent of the obfuscation scheme used. Such obfuscated binaries may

be rewritten by RetroWrite after pre-processing by a deobfuscation step. Similar to

previous work in binary analysis we do not consider adversarial binaries, i.e., binaries

crafted to defeat our rewriting efforts, to be in-scope of this work.

6.1 Related Work

In this section we discuss related work that are both complementary and orthog-

onal to our efforts in rewriting, fuzzing instrumentation, and memory checker.

Fuzzing RetroWrite allows seamless implementation of binary AFL without any

changes being made to the original AFL framework itself. This enables any advance-

ments made towards improving AFL to be integrated into our binary AFL solution

without any additional effort. These advancements could range from smarter seed

selection [56–58] to even transformational fuzzing [59].

45

Binary Rewriting Several approaches to binary rewriting have been proposed,

these can be broadly divided in to two categories based on time of instrumentation: (a)

Dynamic Binary Translation (DBT) based approaches [10,15,20–22] that instrument

binary at runtime, and (b) Static Binary Rewriting based approaches [12–16, 23, 24]

that instrument binaries on disk. While DBT based approaches are scalable and

widely used for real-world rewriting, they have higher overhead making them un-

suitable for highly performant instrumentation. Static Binary Rewriting approaches

have been limited to smaller binaries, have higher memory or runtime overhead, or

are limited by the types of transformations that they support.

Reassembable Assembly RetroWrite uses reassembleable assembly at its core

to perform rewriting. Reassembleable assembly was first introduced by Uroboros [13]

and then improved upon by ramblr [12]. As noted by Wang et al. symbolizing a

binary is undecidable in general as it requires analysis to distinguish between scalars

are references statically, which has been shown to be undecidable [35]. Our work is

inspired by these existing approaches, but we trade-off generality for soundness and

target position-independent code. Consequently, though we are limited to position-

independent code, we ensure that RetroWrite is correct by construction, not requiring

any heuristics. Furthermore, our approaches are scalable allowing us to rewrite larger,

real-world applications. Lastly, both Uroboros and ramblr were focussed on rewriting

x86 32-bit binaries (and had symbolization false negatives on 64-bit binaries) while

RetroWrite focusses on x86-64 bit position-independent binaries.

Disassembly and Control Flow Recovery Most binary analyses use disassem-

bly as a first step in the tool-chain. For architectures that allow variable length

instructions and intermixing of code and data, disassembling an executable is an un-

decidable problem as it requires analysis to make this distinction between code and

data. Two established techniques in disassembly are linear sweep and recursive de-

scent and are discussed in depth by Schwarz et al. [25]. As pointed out by Andriesse

et al. [31], achieving high-level of disassembly accuracy for mainstream compilers,

46

such as clang, gcc, and Visual Studio, is possible with techniques such as linear sweep

even when the binary is optimized. Surprisingly, their evaluation shows that linear

sweep as implemented in objdump outperforms tools that use more sophisticated tech-

niques. Though our current implementation uses linear sweep and has been sufficient

for all our evaluations, we can reuse existing tools [26,27] to handle other edge-cases.

Control flow recovery has been the topic of discussion in [60–64]. Control flow re-

covery improves disassembly coverage and vice-versa, and therefore is implemented

as tightly coupled passes in angr [29]. RetroWrite does not require precise recov-

ery of the CFG as indirect calls and jumps are symbolized at program point where

the address is taken, rather than at the point of control-flow transfer. However, the

rewriter API can support a richer set of transformations at basic block granularity

with a more precise CFG and therefore these works are of interest to us.

Function Identification Modern approaches [41–44] use machine learning to de-

tect function start and sizes. Tools such as IDA [26] and radare [27] implement

architecture and compiler specific heuristics to detect function boundaries. These

techniques have different trade-offs in terms of precision and accuracy. Any of these

existing techniques may be reused in our framework, as a pre-processing step, to

support instrumentation of stripped binaries. Note that the accuracy of function

identification does not affect our rewriting correctness, but has implications on the

instrumentation API, e.g., a function level instrumentation pass may miss instru-

menting some functions if they are not identified.

Variable and Type Information Recovery Recovering types and variable in-

formation is an important step in decompilation as it leads to more natural looking

code, and hence much effort has been spent on this subject [47–50]. These techniques

are inherently geared towards readability and can tolerate some degree of unsound-

ness. Any of these techniques can be used to identify stack variables and instrument

BASan checks at a finer-granularity. However, this is a trade-off between precision

47

and soundness of error reporting. Any errors in variable recovery may lead to false

positives, which may or may not be desirable based on an individual use-case.

6.2 Conclusion

To summarize, we develop RetroWrite, a principled, zero-cost rewriter for position-

independent code. To aid in fuzzing blackbox binaries, we develop two instrumenta-

tion passes in RetroWrite: (i) BASan, a binary-only memory checker, based on and

compatible with ASan, and (ii) binary-AFL to collect coverage for greybox fuzzing.

We showed that BASan is significantly better than the current state-of-the-art binary-

only memory checker, Valgrind memcheck, both in terms of performance and coverage.

Additionally, BASan is compatible with ASan, thereby allowing users to selectively

rewrite closed-source parts of code with BASan while still compiling the rest of the

code with ASan For coverage-guided fuzzing, we showed that our binary-only AFL

instrumentation is at least as good as the source-based AFL instrumentation, and far

better than the current coverage collection for blackbox binaries using QEMU.

REFERENCES

48

REFERENCES

[1] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An efficient
approach to combat a broad range of memory error exploits.”

[2] M. Corporation, “A detailed description of the data execution prevention (dep)
feature in windows xp service pack 2, windows xp tablet pc edition 2005, and
windows server 2003,” https://support.microsoft.com/en-us/kb/875352, 2013.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-
gle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks.” in SEC ’98, 1998.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in
CCS ’05, 2005.

[5] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer,
“Control-flow integrity: Precision, security, and performance,” CSUR, 2017.

[6] M. Zalewski, “american fuzzy lop,” 2017, [Online; accessed 1-December-2018].
[Online]. Available: http://lcamtuf.coredump.cx/afl/

[7] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker.” in USENIX Annual Technical Conference, 2012,
pp. 309–318.

[8] “Radamsa,” https://gitlab.com/akihe/radamsa, accessed: 2018-11-24.

[9] “Afl blackbox,” [Online; accessed 1-December-2018]. [Online]. Available:
https://github.com/mirrorer/afl/tree/master/qemu mode

[10] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007,
pp. 89–100.

[11] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnerability addition,”
in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 110–
121.

[12] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen,
C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great again,” 2017.

[13] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling.” in USENIX
Security Symposium, 2015, pp. 627–642.

https://support.microsoft.com/en-us/kb/875352
http://lcamtuf.coredump.cx/afl/
https://gitlab.com/akihe/radamsa
https://github.com/mirrorer/afl/tree/master/qemu_mode

49

[14] P. O’sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. D. Keromytis,
“Retrofitting security in cots software with binary rewriting,” in IFIP Interna-
tional Information Security Conference. Springer, 2011, pp. 154–172.

[15] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instrumentation,” in
Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program anal-
ysis for software tools. ACM, 2011, pp. 9–16.

[16] Z. Deng, X. Zhang, and D. Xu, “Bistro: Binary component extraction and em-
bedding for software security applications,” in European Symposium on Research
in Computer Security. Springer, 2013, pp. 200–218.

[17] M. Zalewski, “The bug-o-rama trophy case,” 2017, [Online; accessed
1-December-2018]. [Online]. Available: http://lcamtuf.coredump.cx/afl/#bugs

[18] “Afl dyninst,” [Online; accessed 1-December-2018]. [Online]. Available:
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst

[19] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,” in
Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. IEEE Computer Society, 2011, pp. 213–223.

[20] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi, “Pin-
pointing representative portions of large intel R©itanium R©programs with dynamic
instrumentation,” in Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 37. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 81–92.

[21] D. Bruening and S. Amarasinghe, “Efficient, transparent, and comprehensive
runtime code manipulation,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer Science, 2004.

[22] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX Annual
Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[23] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua, “Static binary
rewriting without supplemental information: Overcoming the tradeoff between
coverage and correctness,” in Reverse Engineering (WCRE), 2013 20th Working
Conference on. IEEE, 2013, pp. 52–61.

[24] E. Bauman, Z. Lin, K. W. Hamlen, A. M. Mustafa, G. Ayoade, K. Al-Naami,
L. Khan, K. W. Hamlen, B. M. Thuraisingham, F. Araujo et al., “Superset dis-
assembly: Statically rewriting x86 binaries without heuristics,” in Proceedings of
the 25th Network and Distributed Systems Security Symposium (NDSS), vol. 12.
Springer, pp. 40–47.

[25] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code revis-
ited,” in Reverse engineering, 2002. Proceedings. Ninth working conference on.
IEEE, 2002, pp. 45–54.

[26] “Ida pro,” https://www.hex-rays.com/products/ida/, accessed: 2018-11-24.

[27] “Radare,” http://rada.re/r/, accessed: 2018-11-24.

http://lcamtuf.coredump.cx/afl/#bugs
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://www.hex-rays.com/products/ida/
http://rada.re/r/

50

[28] V. 35, “binary.ninja : a reversing engineering platform,” https://binary.ninja/,
accessed: 2018-11-24.

[29] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis,” in IEEE Symposium
on Security and Privacy, 2016.

[30] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and B. Thuraisingham,
“Differentiating code from data in x86 binaries,” in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 2011,
pp. 522–536.

[31] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An
in-depth analysis of disassembly on full-scale x86/x64 binaries,” in 25th
USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, 2016, pp. 583–600. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/andriesse

[32] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for adaptive
dynamic optimization,” in Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, ser.
CGO ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 265–275.

[33] B. Derek, G. AI, A.-J. Chris, G. E. Edmund, and Z. Kevin, “Building dynammic
tools with dynamorio on x86 and armv8,” 2018, [Online; accessed 28-Feb-2018].

[34] E. Bauman, Z. Lin, and K. Hamlen, “Superset Disassembly: Statically Rewriting
x86 Binaries Without Heuristics,” in Proceedings of the 25th Annual Network and
Distributed System Security Symposium (NDSS’18), 2018.

[35] R. N. Horspool and N. Marovac, “An approach to the problem of detranslation of
computer programs,” The Computer Journal, vol. 23, no. 3, pp. 223–229, 1980.

[36] “Ubuntu Newsletter,” https://lists.ubuntu.com/archives/ubuntu-devel/
2017-June/039816.html, accessed: 2018-11-24.

[37] “Fedora Harden All Packages,” https://fedoraproject.org/wiki/Changes/
Harden All Packages, accessed: 2018-11-24.

[38] “Gentoo Profiles 17.0,” https://www.gentoo.org/support/news-items/
2017-11-30-new-17-profiles.html, accessed: 2018-11-24.

[39] “Android Lollipop Security Enhancements,” https://source.android.com/
security/enhancements/enhancements50.html, accessed: 2018-11-24.

[40] “iOS Building PIE,” https://developer.apple.com/library/archive/qa/qa1788/
index.html, accessed: 2018-11-24.

[41] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt, “Learning to analyze binary
computer code.” in AAAI, 2008, pp. 798–804.

[42] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in binaries with
neural networks.” in USENIX Security Symposium, 2015, pp. 611–626.

https://binary.ninja/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/andriesse
https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html
https://lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://www.gentoo.org/support/news-items/2017-11-30-new-17-profiles.html
https://www.gentoo.org/support/news-items/2017-11-30-new-17-profiles.html
https://source.android.com/security/enhancements/enhancements50.html
https://source.android.com/security/enhancements/enhancements50.html
https://developer.apple.com/library/archive/qa/qa1788/_index.html
https://developer.apple.com/library/archive/qa/qa1788/_index.html

51

[43] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT:
Learning to Recognize Functions in Binary Code,” in USENIX Security Sympo-
sium, 2014, pp. 845–860.

[44] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function detection in
binaries,” in Security and Privacy (EuroS&P), 2017 IEEE European Symposium
on. IEEE, 2017, pp. 177–189.

[45] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
compatible and complete spatial memory safety for c,” ACM Sigplan Notices,
vol. 44, no. 6, pp. 245–258, 2009.

[46] ——, “Cets: compiler enforced temporal safety for c,” in ACM Sigplan Notices,
vol. 45, no. 8. ACM, 2010, pp. 31–40.

[47] G. Balakrishnan and T. Reps, “Divine: Discovering variables in executables,” in
International Workshop on Verification, Model Checking, and Abstract Interpre-
tation. Springer, 2007, pp. 1–28.

[48] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures
from binary execution,” in Proceedings of the 11th Annual Information Security
Symposium. CERIAS-Purdue University, 2010, p. 5.

[49] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering of
types in binary programs,” 2011.

[50] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for machine
code,” in ACM SIGPLAN Notices, vol. 51, no. 6. ACM, 2016, pp. 27–41.

[51] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 16, no. 5, pp. 1467–1471,
1994.

[52] “Asan patch for spec cpu2006,” [Online; accessed 1-December-
2018]. [Online]. Available: https://github.com/google/sanitizers/blob/master/
address-sanitizer/spec/spec2006-asan.patch

[53] “MITRE CWE Database,” https://cwe.mitre.org/, accessed: 2018-11-24.

[54] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz test-
ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 2123–2138.

[55] “Dwarf standard specification,” [Online; accessed 1-December-2018]. [Online].
Available: http://dwarfstd.org/Dwarf5Std.php

[56] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed grey-
box fuzzing,” in Proceedings of the 24th ACM Conference on Computer and
Communications Security, ser. CCS, 2017, pp. 1–16.

[57] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing
as markov chain,” 2018, pp. 1–18.

https://github.com/google/sanitizers/blob/master/address-sanitizer/spec/spec2006-asan.patch
https://github.com/google/sanitizers/blob/master/address-sanitizer/spec/spec2006-asan.patch
https://cwe.mitre.org/
http://dwarfstd.org/Dwarf5Std.php

52

[58] C. Lemieux and K. Sen, “FairFuzz: Targeting Rare Branches to Rapidly In-
crease Greybox Fuzz Testing Coverage,” ASE 2018- Proceedings of the 33rd
IEEE/ACM International Conference on Automated Software Engineering, pp.
475–485, 2018.

[59] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by Program Trans-
formation,” in Proceedings - IEEE Symposium on Security and Privacy, vol.
2018-May, 2018, pp. 697–710.

[60] C. Cifuentes and M. Van Emmerik, “Recovery of jump table case statements
from binary code,” in Program Comprehension, 1999. Proceedings. Seventh In-
ternational Workshop on. IEEE, 1999, pp. 192–199.

[61] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” ACM
SIGARCH Computer Architecture News, vol. 33, no. 5, pp. 63–68, 2005.

[62] J. Kinder and H. Veith, “Jakstab: A static analysis platform for binaries,” in
International Conference on Computer Aided Verification. Springer, 2008, pp.
423–427.

[63] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly of
obfuscated binaries,” in USENIX security Symposium, vol. 13, 2004, pp. 18–18.

[64] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing
binary programs for security applications.” in USENIX Security Symposium,
2014, pp. 829–844.

[65] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing untrusted code via
compiler-agnostic binary rewriting,” in Proceedings of the 28th Annual Computer
Security Applications Conference on - ACSAC ’12, 2012, p. 299.

[66] E. Athanasopoulos, “Control Flow Integrity for COTS Binaries - draft2,” in
Usenix Security, no. 2013, 2013, pp. 1–5.

[67] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization.
IEEE Computer Society, 2004, p. 75.

[68] “Mcsema,” https://www.trailofbits.com/research-and-development/mcsema,
accessed: 2018-11-24.

[69] T. Dullien and S. Porst, “Reil: A platform-independent intermediate represen-
tation of disassembled code for static code analysis,” 2009.

[70] A. Sepp, B. Mihaila, and A. Simon, “Precise static analysis of binaries by ex-
tracting relational information,” in Reverse Engineering (WCRE), 2011 18th
Working Conference on. IEEE, 2011, pp. 357–366.

[71] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Ef-
ficiently computing static single assignment form and the control dependence
graph,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 13, no. 4, pp. 451–490, 1991.

https://www.trailofbits.com/research-and-development/mcsema

53

[72] “Cve-2012-0809,” http://seclists.org/fulldisclosure/2012/Jan/att-590/
advisory sudo.txt, accessed: 2018-02-26.

[73] “Cve-2014-2299,” https://bugs.wireshark.org/bugzilla/show bug.cgi?id=9843,
accessed: 2018-02-26.

[74] “Cve-2014-0195,” https://www.rapid7.com/db/modules/auxiliary/dos/ssl/
dtls fragment overflow, accessed: 2018-02-26.

[75] “Cve-2013-2028,” http://mailman.nginx.org/pipermail/nginx-announce/2013/
000112.html, accessed: 2018-02-27.

[76] “Nginx test suite,” https://github.com/nginx/nginx-tests, accessed: 2018-02-37.

[77] “Qemu tcg,” https://wiki.qemu.org/Documentation/TCG, accessed: 2018-02-
26.

[78] A. Di Federico, M. Payer, and G. Agosta, “Rev.ng: A unified binary
analysis framework to recover cfgs and function boundaries,” in Proceedings
of the 26th International Conference on Compiler Construction, ser. CC
2017. New York, NY, USA: ACM, 2017, pp. 131–141. [Online]. Available:
http://doi.acm.org/10.1145/3033019.3033028

[79] G.-R. Uh, R. Cohn, B. Yadavalli, R. Peri, and R. Ayyagari, “Analyzing dynamic
binary instrumentation overhead,” Workshop on Binary Instrumentation and
Application, October 2006, San Jose, CA., 2006.

[80] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz, H. Bos,
E. Athanasopoulos, and C. Giuffrida, “Marx: Uncovering class hierarchies in
c++ programs,” in Proceedings of the 24th Annual Symposium on Network and
Distributed System Security (NDSS’17), 2017.

[81] M. Elsabagh, D. Fleck, and A. Stavrou, “Strict virtual call integrity checking for
c++ binaries,” in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security. ACM, 2017, pp. 140–154.

[82] G. Ramalingam, J. Field, and F. Tip, “Aggregate structure identification and its
application to program analysis,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM, 1999, pp.
119–132.

[83] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what you exe-
cute,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 32, no. 6, p. 23, 2010.

[84] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An in-depth
analysis of disassembly on full-scale x86/x64 binaries.” in USENIX Security Sym-
posium, 2016, pp. 583–600.

[85] J. Kinder, “Static analysis of x86 executables,” Ph.D. dissertation, Technische
Universitat Darmstadt, 2010.

[86] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen, “Instrumentation and optimization of win32/intel executables using
etch,” in Proceedings of the USENIX Windows NT Workshop, vol. 1997, 1997,
pp. 1–8.

http://seclists.org/fulldisclosure/2012/Jan/att-590/advisory_sudo.txt
http://seclists.org/fulldisclosure/2012/Jan/att-590/advisory_sudo.txt
https://bugs.wireshark.org/bugzilla/show_bug.cgi?id=9843
https://www.rapid7.com/db/modules/auxiliary/dos/ssl/dtls_fragment_overflow
https://www.rapid7.com/db/modules/auxiliary/dos/ssl/dtls_fragment_overflow
http://mailman.nginx.org/pipermail/nginx-announce/2013/000112.html
http://mailman.nginx.org/pipermail/nginx-announce/2013/000112.html
https://github.com/nginx/nginx-tests
https://wiki.qemu.org/Documentation/TCG
http://doi.acm.org/10.1145/3033019.3033028

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Static Binary Rewriting
	Background
	RetroWrite
	Implementation

	Binary Address Sanitizer
	Address Sanitizer Semantics
	Design
	Binary Address Sanitizer Implementation

	Binary Fuzzing Instrumentation
	Binary AFL

	Evaluation
	Memory Checker — Performance
	Memory Checker — Coverage
	Fuzzer Evaluation

	Conclusion
	Related Work
	Conclusion

	REFERENCES

