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GLOSSARY 

Asynchronous Error: Spindle Error that does not include integer multiples of the rotational 
frequency, but all other frequency errors, for example, spindle bearings. (Lions Precision, 2017)

Hysteresis: Referring to pressure or thermal sensors hysteresis is the acceptable range of a 
sensors capability to monitor and record. (Ifm Efector 2019). 

Industry 4.0: “4th Generation Industrial Revolution based on Cyber-Physical System-enabled 
manufacturing and service innovation” (J. Lee, H. Kao, & S. Yang, 2014). 

Laser Tracker: Portable coordinate measuring instrument that is often used to measure machine 
geometry due to its size and flexibility (R. Acero, J. Santolaria, M. Pueo1 & A. Brau, 2015). 

Machine Health Checks: Health assessment can be performed by using a data-driven algorithm 
to analyze data/information collected from the given machine (J. Lee, H. Kao, & S. Yang, 2014). 

Multi Axis Laser: “A multi-dimensional laser measurement system that simultaneously 
measures linear, angular, straightness and roll errors for rapid machine tool error assessment” 
(Automated Precision Incorporated, 2018) 

Preventive Maintenance: Implements preventive maintenance on equipment at fixed periods in 
time, for example, monthly filter changes (Y. He, C. Gu, Z. Chen, & X. Han, 2017).

Reactive Maintenance: It is used to restore the operating state of the equipment after failure 
occurs (Y. He, C. Gu, Z. Chen, & X. Han, 2017).

Smart Machines: Being able to assess the current or past condition of a machine, using 
established communication protocols, Internet of Things devices, and the Cloud to enable life 
cycle cost reductions and machine performance improvements (Machine Design, 2013). 

Smart Sensors: Smart sensors make machines self-aware. Smart sensors contain Internet of 
Things technology, which enables the sensor to communicate data, allowing machines to operate 
more effectively (Rockwell Automation 2018). 

Synchronous Error: Spindle error that does not synchronize with rotation speed, integer 
multiples of the rotational frequency often referred to as average error (Lions Precision, 2017). 
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ABSTRACT 

Manufacturing today is increasingly competitive and every organization around the world 

is looking to decrease costs.  Maintenance costs generated an average of 28 percent of total 

manufacturing cost at the Fiat Chrysler Indiana Transmission Plant One in 2018, states Rex 

White, Head Maintenance Planner at Fiat Chrysler (2018). Maintenance is a supportive expense 

that does not generate a profit, which makes maintenance an attractive expense to decrease. The 

cost for components and skilled labor are expensive; however, the downtime is exponentially a 

larger threat to production cost. One most feared scenarios within a manufacturing facility is that 

one machine takes down several as it backs up the entire production process. 

The three major types of maintenance are reactive, preventive, and predictive. The 

research project focused on applying the principles of predictive maintenance to the Fiat 

Chrysler facilities in Indiana. The report explains the techniques and principles of applying the 

technology currently available to reduce downtime and maintenance cost. The predictive 

maintenance procedures and saving are compared with reactive and preventive methods to 

determine a value of return. The report will examine the benefits of using the Internet of Things 

technology to create autonomous self-diagnosing smart machines. The predictive maintenance 

plan in this research illustration will introduce health check equipment used to implement longer 

lasting machine components. In conclusion, the project developed out an entire predictive 

maintenance plan to reduce downtime and maintenance costs. 
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CHAPTER 1. INTRODUCTION 

Maintenance is an essential segment of all things that use mechanical or electrical 

components. The manufacturing world relies on equipment to produce products.  Mechanical and 

electrical equipment efficiency relies on proper maintenance practices. Maintenance is a broad 

term covering many applications, for example, preventive maintenance, reactive maintenance, 

and predictive maintenance (Y. He, C. Gu, Z. Chen, & X. Han 2017).  

Fiat Chrysler in Kokomo and Tipton, IN has four facilities, the smallest being 160,000 

square feet and the largest at 3.1 million square feet of covered floor space. The facilities offer 

machining of engine block castings and transmission components (aluminum and steel); 

transmission assembly. Fiat Chrysler is a transportation manufacturing company that follows six 

sigma and lean manufacturing processes and is considered a world class manufacturer (Bob 

Vavra, 2016). Assembly lines, machining lines and casting lines run 24 hours a day, five days a 

week with opportunities for weekend hours.  

Maintenance procedures are set as reactive maintenance with planned preventive 

maintenance schedules. Reactive maintenance focuses on fixing equipment after a failure has 

occurred creating downtime for repairs. The cost of downtime is related to the dollar amount of 

parts, production loss, direct and indirect labor. Direct labor cost will be the amount of time 

maintenance is working on the equipment. Indirect cost will be operators waiting on product to 

perform their responsibilities. The Fiat Chrysler assembly line has a window of ten minutes 

before the next operation can be taken down by the previous operation. Preventive maintenance 

procedures are set in place to assist in avoiding downtime. A schedule is in place to inspect 

equipment for loose electrical connection, filters, cleanings, air, hydraulic lines, and inspection 
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of wires. These procedures also schedule component replacements, for example, electric motors 

and switches. The components are often still working and are replaced for a just in case scenario. 

Preventive maintenance will decrease downtime by means of upkeep and replacing parts. 

However, preventive maintenance often leads to replacing parts that may still be in good 

working condition, which can create additional costs (Y. He, C. Gu, Z. Chen, & X. Han 2017).  

Reactive/corrective maintenance is fixing or replacing components after detection of a 

failure. Reactive maintenance is an unavoidable cost for management of assets, however; it will 

be reduced by means of predictive maintenance practices and standards. 

Predictive maintenance produces a forward-thinking concept to upkeep and repairs. 

Predictive maintenance will give a facility the ability to increase equipment reliability, 

productivity and reduce the overall maintenance cost. Equipment failure will be reduced by 

collecting data on the equipment’s performance to better detect future failures. The data collected 

can be graphed to produce a performance chart when equipment is running at peak performance 

building a footprint of the equipment. The footprint can then be periodically analyzed to 

determine if components have changed through physical alteration or internal damage providing 

data history capability for compliance reporting (J. Lee, J. Ni, D. Durdjanovic. H. Qiu, & H. Liao, 

2006).  

Fiat Chrysler does not have predictive maintenance procedures being utilized in the four 

facilities in Indiana.  Fiat Chrysler is currently researching techniques and equipment available to 

generate a successful predictive maintenance program.  Research has shown emerging and 

innovative technologies that have been conceived through the Internet of Things (IoT) is a game 

changer.  Internet of Things technology that is focused on predictive maintenance concepts and 

practices will assist in collecting useful data. 
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STATEMENT OF PROBLEM 

There will always be a need for maintenance in a manufacturing setting. Mechanical and 

electrical systems break down due to wear from friction and environmental corrosion. The past 

maintenance mentality has been directed to the “fixing it” process. However, due to innovative 

intricate technologies, waiting for breakdowns is a slow and expensive maintenance practice. 

Predict and Prevent (PAP) principles (J. Lee, J. Ni, D. Durdjanovic. H. Qiu, & H. Liao, 2006) are 

efficient and will reduce expensive downtime during maintenance processes.  

Unplanned downtime is expensive. For example, at Fiat Chrysler assembly downtime can 

range from $300.00 to $400.00 a minute states Bruce Frytz (2018 October 14), supervisor of the 

Fiat Chrysler maintenance assembly team. Costly downtime will add increased pressure upon 

maintenance to make fast repairs or “bandages” to keep machines running and product moving. 

Preventive maintenance programs are in place to reduce the amount of downtime. Predictive 

maintenance can be the least intrusive and diminish downtime exponentially (Machine Design, 

2013).  

Imagine a machine that provides data offering trend charts or hysteresis measurements 

illuminating the health condition of the mechanical and electrical components. Procedures can be 

put into practice that will divulge the condition of mechanical components without disassembling 

one component on the machine (Keith Mobley, 2002). 

The Internet of Things has allowed the development of innovative technologies.  Smart 

sensors combined with communication devices have taken predictive maintenance to a new level 

allowing machines to collect and communicate valuable information.  

According to Parpala and Iacop (2017) predictive maintenance is centered off of Condition-

Based Maintenance (CBM) with three primary phases. Steps include data acquisition, data 
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processing, and maintenance decision making. The data is collected by using smart sensors that 

track the machines behavior and records changes over time. Smart sensors will allow the user to 

determine what may need to be replaced before it breaks down. Predictive maintenance 

combined with smart machines generates scheduled repairs rather than reactive repairs; thus 

reducing downtime and in turn increasing productivity (Parpala and Iacop, 2017). 

The National Academy of Engineering Grand Challenges relies on machinery and 

maintenance. The grand challenge involving fusion generators will need robotics and a variety of 

mechanical working mechanisms to function (National Academy of Engineering, 2017). 

Predictive maintenance will provide more reliable and stable equipment for manufacturing 

transportation products in urban advancements. Engineering tools for scientific discovery will 

depend on reliable and functioning equipment. Maintenance is a function of all moving parts and 

each grand challenge will rely on dependable equipment that will be maintained by a successful 

maintenance program.   

RELEVANCE OF PROBLEM 

Industrial manufacturing is a competitive market across the world. Systems have been 

experimented and implemented to save small and large amounts of manufacturing cost. Lean 

manufacturing, Six Sigma and World Class Manufacturing (WCM) are just a few of the 

programs that are being implemented in facilities across the world to become more efficient.  

Today’s competitive manufacturing environment has forced companies to look at new and 

revolutionary ways to become more proactive and improve performance and quality.  

The developing standards for world class manufacturing have risen beyond reactive maintenance 

practices (J Lee, H. Kao, & S. Yang, 2014). Industry 4.0 will set new standards to better achieve 

efficiency in manufacturing processes.  
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Rex White, Head Maintenance Planner at Fiat Chrysler states that Chrysler's policy is to 

focus maintenance towards a zero breakdown concept at the lowest cost possible. The reduction 

in capital towards maintenance while focusing on zero breakdowns is a frustrating scenario.  

Maintenance managers are forced to look for new avenues to obtain corporate goals and policies. 

Rex states that in long term thinking, managers are focusing on the life cycle of the machine 

components by recording when a component is replaced. World Class Manufacturing 

maintenance principles focus on using Emergency Work Orders (EWO) (Appendix A) to 

determine the replacement cycle of machine components. The machine components are replaced 

as a preventive method, to replace the components before they break. Preventive methods lead to 

an increase in workforce, equipment cost and rely heavily on data collected over a large period 

of time (J. Vaidya, 2017).  

The standard for a successful maintenance program is the reduction of downtime during 

production hours (Amman, 2018). Off time or nonproduction times are considered weekends or 

low production hours. Low production hours at Fiat Chrysler are considered weekends and third 

shift. The low production hours are when preventive maintenance is scheduled. The maintenance 

workforce is often increased during these hours to achieve machine component replacement and 

preventive checks. Preventive maintenance is comparable to replacing spark plugs in a vehicle 

every 50,000 miles. They may not need it; however, it may prevent a breakdown on the road.  

Predictive maintenance will improve cost during low production times, increasing lengths 

between machine downtimes, and a reduction in the amount of time it takes to troubleshoot and 

repair machines (J. Vaidya, 2017). Predictive maintenance is using the condition of the 

equipment to schedule replacements of machine components. A predictive maintenance program 

will provide the least impact on production for repairs. (Parpala and Iacop, 2017). 
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CHAPTER 2. REVIEW OF LITERATURE 

INTRODUCTION 

Predictive Maintenance (PdM) is not a new practice. “William Murphy has worked with 

predictive maintenance since 1968, using vibration and balance rotation equipment”, states 

Richard Wilson, author of Establish a Predictive Maintenance Program at Hanford Site (1994) 

prepared for the Department of Energy found in the Purdue Library database. Wilson (1994) 

focuses on the early stages of portable technology available that could collect and save machine 

data.  The infant stage of predictive maintenance was based on vibration analysis equipment that 

could record vibration results of machinery in excellent working conditions developing a 

footprint. The footprint would be used to retest periodically comparing the data to determine if 

equipment conditions had changed from wear or corrosion. Predictive maintenance has made 

many strides in technology and capability over the past two decades. The Internet of Things has 

revolutionized all industries, bringing in Industry 4.0. Bond (2017) stated in the article PwC and 

MAPI Release Survey on State of IoT in Manufacturing retrieved from the Purdue Library 

database. 

 “Thirty-one percent of manufacturers are implementing Internet of enhancements to their 

internal operations, with another 56% exploring, doing so to cut operational costs, achieve 

supply-chain efficiencies and improve predictive maintenance capabilities” (Bond, 2017 p.1).  

The Internet of Things provides a platform for supporting predictive maintenance goals in 

reducing cost and downtime frequency. The Internet of Things will deliver the ability for 

applications to receive information from multiple machines throughout a facility. Radu 

Constantin, Parpala, and Robert Iacob authors of “Application of IoT Concept on Predictive 
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Maintenance of Industrial Equipment” retrieved from the Purdue Library database refer to the 

IoT as a platform for a device to speak to one another (2017). The communication abilities of the 

IoT will allow machine sensors to communicate with a commercial or open source platform. 

Machine sensors can deliver data from the machine to a cloud platform. The data will then be 

viewed on a computer or any other communication device, for example, smart phones and tablets.  

APPROACHES TO PREDICTIVE MAINTENANCE 

 “Predictive maintenance provides new opportunity to reduce the operational cost on 

equipment replacements and increase enterprises’ economy” declares Meiling and Chen Liu 

authors of A Correlation Driven Approach with Edge Services for Predictive Industrial 

Maintenance (2017), retrieved from the Purdue Library database. Sensors, give the capability to 

monitor machines behavior or performance. Communication networking and data analysis 

technology, along with maintenance can become autonomous to generate information regarding 

the health status of a machine. This gives you the ability to predict failures before they occur (J. 

Vaidya, 2017). 

Predictive maintenance has three approaches: analytical, model-based and hybrid 

methods (Meiling and Liu, 2018). The analytical approach is learning from new data, recording 

points of failures to set limits for future opportunities to repair before the failure occurs. The 

model-based approach is basing limits on alterations of change from the footprint of the machine. 

Hybrid method uses both, modeling the data from the machines best-running condition and 

updating the data over a set period of time. The hybrid method will generate a framework that 

will be able to predict when failure will occur (Meiling and Liu, 2018), and retain data to avoid 

prematurely replacing equipment. The combination of preventive machine upkeep and predictive 

analysis data can reduce downtime significantly more than either process by itself. Developing 
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the mindset with the maintenance team that collected data through examinations, history and 

sensors is necessary to implement a successful program (J. Vaidya, 2017).  

PREDICTIVE MAINTENANCE TECHNIQUES 

Predicting failures can be done with many techniques and strategies. Maintenance 

strategy and quality production are connected. The more maintained the equipment is, the better 

chance at highly improving the quality of the product it produces. One technique of predictive 

maintenance is health checks. Health checks of a machine are scheduled checks by a trained 

technician using proper tools and equipment on essential components of a machine.   

Predictive maintenance checks can restore and maintain a machine to near perfect 

running condition by controlling variables (Y. He, C. Gu, Z. Chen, and X. Han (2017).  

Recording the information collected during machine health checks and comparing new data to 

old data can divulge any changes in machine components while simultaneously improving the 

quality of the product produced by the machine. Literature is provided by companies for 

examining devices and developing manual health checks. Examples of machine tools used for 

health checks: are Automated Precisions Trackers, Renishaw Balbar and Lions Spindle Analyzer.   

Smart machines designed from Industry 4.0 sensors and monitoring equipment have 

created a unified information grid of self-maintenance machines (Jay Lee, Hung-An Kao, and 

Shahn Yang 2014). There are a variety of brands of smart sensors, for example, Allen Bradley, 

Efector, Keyence, Mitsubishi, Siemens, Omron, Turk, Vydas, Honeywell, etc. For the purpose of 

this research project, literature will be reviewed from Ifm Efector Electronics and Keyence. 

Efector and Keyence were chosen for their working relationship already established with the Fiat 

Chrysler’s maintenance team in Kokomo Indiana. The project experiments will be done with the 

assistance of associates from both companies. 
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Sensors will fall in six categories: vibration, fluid, air, thermal, ultrasonic, and proximity. 

The vibration analysis will identify vibration patterns for machinery imbalance, bearing wear, 

misalignment and gearing distortion. Infrared imaging can identify high temperatures that could 

result in bearing issues, lubrication failure, and electronic contacts.  

Flow and pressure sensors determine that lines are sealed and fluid is moving. The 

electric motor analysis will verify current loads and resistance. Ultrasonic sensors will check air 

and gas leaks and cracked lines.  

Proximity sensors indicate the position of equipment, such as the homing position and the 

advanced or retracted position for fixtures. Placement of the sensor is important as well. 

Determining the optimal location for each sensor will provide “identification, structural control, 

damage detection, and structural health monitoring”, declares D. Borissova, I. Mustakerov, and L. 

Doukovska (2012) reported in the article Predictive Maintenance Sensors Placement by 

Combinatorial Optimization retrieved from the Purdue Library database. 

The main objective for designing and implementing predictive maintenance producers is 

to meet production goals with the least interference from machine failures (M. Zhu and C. Liu 

2018). The research from peer-reviewed articles and product information packets for equipment 

manufacturers will assist in developing a predictive maintenance plan. Fiat Chrysler will be 

introduced to the process of reexamining maintenance practices which will show machines 

quality capabilities. The Internet of things advantage will change the way machines are evaluated 

and repaired. Industry 4.0 will reduce labor costs and provide an innovative and supportable 

working environment (R. Morrar, H. Arman, and S. Mousa, 2017). 
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CHAPTER 3. RESEARCH METHODOLOGY  

INTRODUCTION 

Fiat Chrysler in Kokomo, Indiana started recruiting skilled trades in 2012 and still in 

2019 the demand has not been met. The lack of workforce availability in maintenance and a 

growing demand for Chrysler products calls for new practices in maintenance. Predictive 

maintenance is an evolving trend in manufacturing of all areas according to Jay Lee, Edzel 

Lapira, Behrad Bagheri, Hung-an Kao (2014). The first step in research to developing a 

predictive maintenance program is determining the technology available. 

Internet of Things has provided innovative ways for all things to communicate through 

the internet (R. Parpala and R. Lacob 2017). The Kokomo Transmission facility is applying 

world-class manufacturing to meet the needs of the consumer. The quality of the product and the 

process of manufacturing set the high expectations of upper management to constantly improve 

and adapt to a growing market. The cost of maintenance last year was over 28% of the 

manufacturing cost to develop the product says Rex White, Head Planner of Maintenance (2018, 

October 24) in a personal interview. The cost of maintenance includes lengthy downtime, 

equipment replacement, engineering, labor, quality improvements, and service support. The 

majority of the downtime cost ranges from $300.00 to $400.00 per minute unless a machine 

takes down the entire line, then it could cost thousands, states Bruce Frytz, 2018. The cost and 

inefficiency of the preventive and reactive maintenance programs are what drove the industrial 

4.0 age to focus on predictive maintenance practices (Bond, 2017). Reducing downtime, 

increasing reliability and efficiency in maintenance and machine conditions are primary goals for 

a predictive maintenance process. 
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PREDICTIVE METHODOLOGY 

Efector works with many facilities on applying and replacing new innovative sensors. 

Efector hardware and software will be used in the research for developing smart machines for 

predictive maintenance procedures and techniques. Ifm Efector’s availability and willingness to 

assist has provided knowledgeable technical expertise with smart sensors has been an asset in 

determining the correct equipment. Sensors will include pressure, flow, depth, position, photo, 

vibration, temperature, and laser measuring sensors provided by Efector.   

Smart machines will assist in collecting data on machine conditions by constant 

examination of bearings, spindles, ways, roller packs, ball screws, ball nuts, and position 

repeatability. Electrical systems of the machine will focus on current load and thermal reading to 

determine if current loads have changed and if connections have come loose. Keyence will 

provide the imaging sensors to examine thermal temperatures in machine cabinets. Servo drives 

will monitor motor temperatures, current loads, and speeds during operations. 

The smart machine sensors will provide information on changes in the machine functions 

to prevent future failures and reduce unplanned repairs. Scheduled checks for recording data and 

machine examinations are protocol towards achieving a successful preventive maintenance 

program. Determining the capability to manufacture a quality product is related directly to 

predictive maintenance through maintaining machine health. Machine health checks will need to 

be developed using specialized equipment such as trackers, spindle analyzers, and axis laser. The 

equipment will be used to design footprints of machines to improve predicting failures and 

resolving them before they occur. 

Geometric tools, for example, multi-axis lasers will be used to decrease wear and tear on 

machinery by alignment adjustments. Using a multi-axis laser to determine position movement 
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and geometry of a machine will decrease defective parts and friction upon the equipment. Axis 

lasers will monitor position and geometric dimensioning of a machines axis while moving.  

Laser trackers offer the ability to check machine geometry and compare it to machine 

components, for example, squaring an axis to the movement of the spindle. Vibration equipment 

will record the footprint of the machines. Spindle analyzers offer a large window into the inner 

working of a spindle unit. The spindle analyzer will allow a true picture of a spindle condition 

without removing equipment or covers. 

Determining an acceptable frequency for a machines health check is necessary for 

collecting data and comparing old to new data. Below is Figure 3.1, a rotation was developed for 

machine health checks to be done on a regular basis, depending on the constraint of the machine 

will determine the frequency. The machine health check will include the measurement 

equipment required, the machine number and manufacturer. Figure 3.1 includes machines in the 

red that will be considered overdue while the green shows the machine as up to date.  

Figure 3.1 Machine Health Check Schedule 
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Figure 3.2 on page 13 and Figure 3.3 on page 14 are spreadsheets designed to record 

health check information. Keeping a record of machine health checks and results is a priority for 

data examination. Figure 3.2 displays a data sheet for a multi-axis laser machine health check. 

Tolerances for geometric dimensions are displayed by allowable error. The actual error is the 

recorded measured error found with the laser. The deviation is the amount of error that is higher 

than the allowable error. The data sheet is recorded and stored for future reference by machine 

number, axis measured and date.  

Figure 3.2 Multi Axis Laser Health Check Data Sheet, 

Larger Image Appendix B 
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Figure 3.3 is one example of a spindle analysis data sheet. The data sheet relays 

information about each machine. Figure 3.3 displays Revolutions per Minute (RPM) that will be 

determined by the max RPM value for each machine. Every spindle will be rated at 10%, 50% 

and 100% with an allowable error determined by each spindle manufacture. Figure 3.3 includes 

the asynchronous error and the average error. Synchronous error or average error is the motion of 

error synchronized with the rotation of the spindle. Asynchronous is an error that does not sync 

up with rotation, for example, a flat spot in a bearing would increase this reading. 

Figure 3.3 Spindle Health Check Data Sheet, Larger Image Appendix C  
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IMPLEMENTATION PROCEDURE 

The following implementation plan/procedure is original work developed with assistance from 

WCM, quality, engineering, and maintenance teams. 

1. Purchase Measuring Equipment 

2. Skill Developments 

•  Automated Precision Inc. training laser tracker and 6D axis laser 

• SEA Lions spindle analyzer training 

• Renishaw ball bar training 

• Bruel and Kjaer vibration analyzer training 

• Keyence vision system training 

• Ifm Efector training for smart sensors 

• Parameter compensating training for controllers 

• Training in coordinate measuring machines

3. Data Retrieval 

• Developing drive for predictive maintenance recordables 

• Developing excel sheets for health check rotation 

• Developing health check records and machine tolerances 

• Building network drives to store and receive smart sensor data 

• Building initial data for machine footprint.  

4. Upgrade Machines with Smart Sensors and Control Configurations 

• Determine starting point machine/line  

• Set time frame for installation 

• Install smart sensors 

• Install communication and smart controller 

5. Programming 

• Program machine controllers 

• Program smart controller to record sensor data and store in predictive 

maintenance drive 

• Generate computer numerical control programs for health check equipment 

6. Results 

• Examine documented results in cost saving 

• Examine document quality improvement 

• Examine scrap reduction 

7. Purchasing New Equipment 

• Setting up purchasing agreements for future machines to meet predictive 

maintenance standards 
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DEFINING RESULTS 

Researching and deciding on proper equipment for smart machine sensors, network, and 

software will be the first step in a successful predictive maintenance plan. Ifm Efector has smart 

sensors for all avenues of manufacturing, implementing the correct sensor for the right process is 

key to achieving machine reliability.  The correct smart sensors will offer acceptable feedback 

time, ranges, digital displays, and network communication capabilities. Defining the correct 

vision system with the appropriate capabilities to meet the needs of each machine and 

maintaining the same software and company will need to be achieved. Keyence offers a variety 

of vision system to choose from; finding the correct one for the Fiat Chrysler facility will assist 

in defining smart machine results. Machine health checks will rely on precision instruments to 

achieve zero downtime goals. 

 Properly used predictive maintenance will improve all aspects of improving efficiency 

and reliability (Amman, 2018). Successful implementation will display a reduction of unplanned 

maintenance repairs. This will reduce the cost of replaced machine components, by decreasing 

damage and identifying issues before failures occur (M. Zhu and C. Liu 2018). Mechanical 

failure due to friction and wear, if detected early, will prevent major repairs. Quality 

improvements on a product will increase due to geometry adjustments being made to avoid wear 

from friction. Scrap will decrease due to the constant monitoring of sensor data and machine 

geometry checks. The overall reduction of maintenance costs will be revealed within the first 

year of implementation. “Sensors and instrumentation are central driving forces for innovation, 

not only for Industry 4.0, but also for other megatrends that are described with the adjective 

smart, e.g. smart factory, smart production, smart mobility, smart home, or smart city” (A. 

Schütze, N. Helwig, and T. Schneider, 2018 p. 368). 
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CHAPTER 4. RESULTS 

INTRODUCTION 

Developing a foundation for predictive maintenance is the means for successful 

implementation. Deciding on the correct equipment will be the first step to developing a strong 

foundation platform for a predictive maintenance plan (M.T. Dulman and S.M. Gupta, 2018). 

Mentioned in previous pages, Ifm Efector and Keyence have been two companies’ that have 

been assisting in developing a plan for the correct sensor and vision systems. Developing the 

correct plan and equipment will be the first step in initiating interest in a predictive maintenance 

program among executives. Understanding smart sensors capability and limitation is a significant 

part of choosing the correct sensors (M.T. Dulman and S.M. Gupta, 2018). To implement health 

checks successfully standards must be met with equipment able to achieve the goals of a 

predictive maintenance plan. 

 The Fiat Chrysler company and associates developed the WCM practices in 2005 (B. 

Vavra 2016) to improve maintenance and manufacturing procedures. The development of a team 

of individuals that offered a technical perspective was an important factor in the implementation 

process. The predictive maintenance team involves WCM focused engineering, maintenance 

technicians, supervisors, and planners. The system developed from the research was examined 

and resulted in a determined approach of implementation that meets Fiat Chrysler needs. 

Developing a set of standards alters at each facility. Decisions depend on mathematical models 

and the available skill sets of maintenance technicians in each department or facility. (H. Wang, 

X. Ye and M Yin, 2016)  
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World Class Manufacturing in February, 2019 focuses on preventive methods based on 

planning for equipment to be replaced by measuring the past failures periodically. Predictive 

maintenance will focus on analyzing equipment behavior rather than components life span. 

Predictive maintenance predicts failures by examining the data collected through sampling points 

over time and comparing them to initial equipment readings. (H. Wang, X. Ye, and M. Yin, 

2016). 

SMART SENSORS 

Flow Sensors 

Predictive maintenance data is assessing the current data and data collected over time of 

the equipment operations (H. Wang, X. Ye and M Yin, 2016). Data is collected through smart 

sensors, for example, flow sensors that monitor the flow of fluid. Ifm Efector flow switch SM 

series in Figure 4.1, is installed on every lube line throughout the machine. “The conductive 

medium flowing through a pipe in a magnetic field generates a voltage that is proportional to the 

flow velocity” (Ifm Efector, n.d., p.4). The flow switch allows data to be collected and recorded 

for lube and fluid trends.  

The SU series ultrasonic flow sensor offers a temperature sensor as well (Efector n.d.). 

The SU series will work with coolant lines, for example, high-pressure spindle coolants. The 

unique feature of temperature measurement, as well as the flow, will be perfect for coolant 

applications. Monitoring coolant temperature at a machining position increases precision by 

reducing thermal growth. Figure 4.2 is an image of the SU series ultra-sonic flow sensor with 

display module for flow and temperature readings. 

Figure 4.1 Ifm Efector SM Flow 
Sensor (Ifm Efector, n.d.) 

Figure 4.2 Ifm Efector SU Flow 
Sensor (Ifm Efector, n.d) 
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Level Sensors 

Ifm Efector level sensor LT series seen in Figure 4.3. They offer integrated temperature 

monitoring as well as level monitoring (Ifm Efector, 2019). The smart level sensor will monitor 

the level of a fluid tank and the temperature for best practices of machine coolant monitoring. 

The level switch will offer adjustable probe levels for emersion depth monitoring. Combining 

temperature and level of fluid will reduce holes in tanks.  

The number of sensors will be reduced due to the option for maximum and minimum 

levels with one sensor (Ifm Efector, 2019). The sensor will be used to maintain coolant levels for 

filter systems and machine cutting coolant. Machining metal will create thermal growth that 

could lead to an out of tolerance product. The temperature feature will assure that the coolant 

maintains set temperature to reduce thermal growth during the machining process. 

Industrial scenarios do change for each machining process.  A scenario in which a level 

sensor is needed that has no influence from foam or temperature, the Ifm Efector PY/PN series is 

available. The PY/PN series level sensor is a high precision level design for industrial 

environments (Efector, 2019). The PY/PN series seen in Figure 4.4 exhibits a more rigid design 

with a display unit. The PY/PN series uses analog outputs to provide an effortless examination of 

trends. 

Figure 4.4 Ifm Efector PY/PN Level Sensor 
(Efector, 2019)

Figure 4.3 Ifm Efector LK Level Sensor 
(Efector, 2019)
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Pressure Sensors

Ifm Efector offers a variety of pressure switches. The one that displays the most robust 

construction and efficient response times is the PN series switch. The PN series pressure and 

vacuum sensor seen in Figure 4.5 is used for both hydraulic and pneumatic applications (Ifm 

Efector, n.d.). The PN series sensor is a solid state sensor, using no moving mechanical parts. 

The PN series offers multiple set points and is structured for trend data monitoring. Pressure 

sensors are used for air and hydraulic supply lines to machines. The sensors are constantly 

monitored through the machine’s programmable logic controller. Trend data is networked for 

examination periodically highlighting any significant changes. 

 Ifm Efector has design specific pressure sensors for pneumatic application in robotics. 

The PQ series pressure switch is smaller and costs less than its PN counterpart (Efector, n.d.). 

The design is compact with a display unit as seen in Figure 4.6. The PQ series does not offer the 

rigid design the PN series offers and is best used in clean environments without contamination 

from fluids. The PQ series is not a switch, it is a sensor that provides recordable data trends and a 

display unit to see pressure values. The PQ is easily programmed with a two button display or 

Efector’s parameter software. The PQ series can measure vacuum as well as pressure much like 

its counterpart the PN series. 

Figure 4.5 Ifm Efector PN Pressure 
Sensor (Efector, n.d.)

Figure 4.6 Ifm Efector PQ Pressure Sensor 
(Efector, n.d.)
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Temperature Sensor  

High-pressure temperature sensors for hydraulic machine settings can reveal mechanical 

wear or binding in a machine. Ifm offers the TR series temperature sensor constructed for 

industrial applications (Ifm Efector, 2019). The sensor is all solid state with a digital display as 

seen in Figure 4.7 The pressure sensor has an adjustable probe with broad ranges in temperature 

and pressure settings. The TR series is set up effortlessly for recording trend data while 

upkeeping real-time monitoring. The TR temperature sensor hysteresis window offers normally 

open and normally closed positions with the option for minimum and maximum temperature set 

points (Efector, 2019).  

 The zero set point can be set by calibration for more precise temperature readings. The 

temperature sensor is placed appropriately for each machine to monitor thermal changes in 

fluids. Fluid temperature changes that occur from extensively damaged equipment components. 

Example are components shavings in transmissions or spindles will increase the temperature of 

the fluid and can be found before significant damage occurs. The TR sensor holds a tolerance of 

+/- .3 Kelvin with measuring ranges from -40 to 150 Celsius (Efector, 2019). The TR 

temperature sensor is an elaborate device designed for recording data trends allowing fast access 

to live data. The setup for the sensor can be done through Efector's parameter software or using 

the buttons under the digital display. 

Figure 4.7 Ifm Efector TR Series 
Temperature Sensor (Efector, 2019) 
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Vibration Sensor 

Vibration sensors are an imperative component for successful predictive maintenance 

practices. Ifm Efector has developed basic vibration sensors, intelligent vibration sensors with 

integrated diagnostic electronics, accelerations sensors, and software (Ifm Efector, 2017). 

Sensors are constructed to integrate monitoring, networking, and controllers.  

Crash situations can result from a variety of causes; for example, wrong tooling, incorrect 

parameter settings and damaged components (Ifm Efector, 2017). Figure 4.8 is an image of an 

intelligent vibration sensor that can be easily placed throughout different machine components. 

The vibration monitoring will be integrated into a machine's control and networked to the facility 

server through field bus. Initial readings are used to develop threshold parameters for each 

individual machine. The sensor will continuously monitor and collect vibration data. 

 Figure 4.9 (Efector 2017) is an image displayed by an Efector vibration sensor threshold 

setting with vibration data collected. Figure 4.9 demonstrates how vibration trends and 

thresholds can detect or prevent mechanical damage to machine components. Figure 4.9 displays 

a nominal vibration reading with a rise in vibration before a crash situation. The machine can be 

set to give a warning message at the yellow line. The machine will shut itself down at the 

vibration limit in red (the alarm fault) reducing further damage. 

Figure 4.8 Ifm Efector 
Vibration Sensor (Ifm 

Efector, 2017) 

Figure 4.9 Ifm Efector 
Vibration Sensor Trend (Ifm 

Efector, 2017) 
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Monitoring Sensors 

Ifm Efector has developed data logger equipment that can be easily networked through an 

ethernet interface. The device and software were developed to integrate with higher software, for 

example, Supervisory Control and Data Acquisition (SCADA) and Manufacturing Execution 

System (MES) (Ifm Efector, 2015).  

The electronic diagnostic device is connected to a laptop or networks allowing more 

efficient troubleshooting at the machine location or a network accessible computer. The 

diagnostic device connects to the machines programmable logic controller, providing local faults 

and threshold monitoring. Figure 4.10 is an image of two types of electric diagnostic devices. 

The smaller version is for fewer inputs and outputs, when working with smaller machines. The 

larger diagnostic device offers more connections to smart sensors. Through the diagnostic device, 

parameters can be changed online or offline (Ifm Efector, 2015). The diagnostic device is a local 

hub of communication between sensors, programmable logic controller and networking software 

connections.  

 Figure 4.11 is displaying an example of how the electronic diagnostic device connects to 

the smart sensors. The smart sensors will send data to the diagnostic device and then disperse the 

information to the network remote terminal units (RTU’s) (Efector, 2015). The diagnostic device 

then directs data to the supervisory control.  

Figure 4.10 Ifm Efector Diagnostic Device 
(Ifm Efector, 2015) 

Figure 4.11 Ifm Efector Diagnostic Device 
Network (Ifm Efector, 2015) 
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Supervisory Control and Data Acquisition 

 The Supervisory Control and Data Acquisition system is used to employ a control 

system to monitor industrial machine components. Control systems involve the transfer of data 

between a control data acquisition, diagnostic device, central network (Appendix D) and a 

number of RTU’s, (Lu Zhou, Chunhua Su, Zhen Li, Zhe Liu, and Gerhard P. Hancke, 2018). 

Figure 4.12 is an image example of how supervisory control and data acquisition software are 

working together to collect data. The IO-Link is the diagnostic device delivering information to 

the programmable logic controller and to the networked data acquisition software (Ifm Efector, 

2016). The Enterprise Resource Planning (ERP) is the cloud-based storage center for the sensor 

collected data. 

 The supervisory control and data acquisition software formats the collected data with the 

ability to be viewed and used for diagnostic purposes. The ability to analyze and store the data 

separate from the machine creates a straightforward and fast process for parameter adjustments 

and a clear representation of the data (Efector, 2016). 

Figure 4.12 Supervisory Control and Data Acquisition Pyramid 
(Ifm Efector 2016) 
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 Keyence IV Vision System 

Keyence IV vision sensor delivers a vision system designed for straightforward setups 

and programming. The IV vision series is compact with automatic adjustments offering a sensor 

robust enough for a manufacturing environment (Keyence, 2018).  Figure 4.13 is an image of the 

IV vision sensor displaying two sizes. The two size are used to meet input and output 

requirements for multiple machine sizes. The compact vision system offers network connection 

and a programmable controller connection. The IV vision system can detect changes in pixels, 

shade, area, size, pitch, position edge counts and can be used as a two-dimensional scanner 

(Keyence, 2018).  

 The multitude of applications the vision sensor is capable of makes it an effective sensor 

for predictive maintenance requirements. The vision sensor is used for fixture features positions, 

part location, part type, tool size, and product quality. The two-dimensional scanning option is 

used for product serial codes to track part location and inventory in the facility. The Keyence IV 

sensor uses its own software for setup and programming, IV Navigator, which is formatted to 

work with all controllers and supervisory control data acquisition software (Keyence, 2018). The 

IV camera can be directly connected to computers and monitors for visual displays or networked 

through a facilities system to be monitored from a distance.  

The Keyence vision sensor is the ideal vision systems for improving quality, inventory 

location and assists in achieving a successful predictive maintenance plan. Keyence has 

developed sensor heads that can be exchanged on the IV vision sensor to offer increased pixel 

definition and infrared imaging (Keyence, 2018). 

Figure 4.13 Keyence IV Vision Sensors (Keyence, 2018) 
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Smart Machine Sensors 

The combination of smart sensors and networking technology software provide the 

ability to continuously monitor the mechanical condition of a machine. Data is an important 

factor in manufacturing. Processes that use the data correctly can create efficiencies that drive 

more profitability per unit. The combined effort of smart sensors and communication devices 

create an abundant amount of valuable data that is readily accessible. 

Moving forward in the experimental stage with the combined effort from Efector and 

WCM in 2018, a whiteboard was developed as seen in Figure 4.14. The whiteboard displayed 

pressure, flow, thermal, vibration and distance Ifm Efector sensors. The communication was set 

up to diagnostic devices with a small power supply composing all sensors to simulate as they 

would inside a machine. The whiteboard gave a unique perspective of a visual simulation to 

explain how all components work together. The goal was to demonstrate how clearly the data 

was collected and compared with prior readings. The demonstration revealed how efficient a 

machine can troubleshoot itself. The whiteboard displayed how data can be used to demonstrate 

a change in the working mechanisms to prevent major damage. The diagnostic device can be 

hooked up to a laptop with parameter software or communicate through a network for 

examination of data from a distance. 

Figure 4.14 White Board Display of Smart Sensors 
(FCA, 2019), Larger Image Appendix E 
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MACHINE HEALTH CHECK EQUIPMNET 

Machine condition monitoring processes are driven by the intent to eliminate machine 

damage (National Instrument, 2017). Vibration, thermal measurements, noise, axis synchrony, 

and laser testing are used as decisive instruments to obtain the state of the machine. The machine 

health checks will be used accordingly with smart sensor data. The smart sensors detect a change 

in machines health conditions. The next step will be determining the cause of the change and 

what exactly needs to be done. Machine health check equipment is used to examine the machine 

anomalies and determine a course of action. A variety of actions can take place, for instance, 

making an adjustment, replacing components and adjusting mechanical positioning through 

control parameters. 

 The smart sensors will provide real-time data and identify that an anomaly is occurring 

with the machines running condition (National Instrument, 2017). The sensors will define what 

has changed, for example, a machine axis is found to be oscillating. This is caused by a faulty 

scale or bearings in a motor or ball screw. The sensors have identified the issue; next the health 

check equipment will narrow the possibilities to an exact condition. Figure 4.15 is a graph 

displaying warning signs of machines condition monitoring. The issue starts with vibration until 

the machine no longer is functional (National Instrument, 2017). Machine health check 

equipment will find the issue to the precise faulty component when vibration is detected by the 

smart sensors.

Figure 4.15 Machine Health Condition 
(National Instrument, 2017)
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Renishaw Balbar QC20-W 

Renishaw’s Balbar detects geometric errors, dynamic errors, positioning errors and axis 

play errors (Renishaw, 2019). The Renishaw Balbar software is designed to be compatible with 

most CNC controllers on the market. Installing is simplistic, set the Balbar between the spindle 

and an axis with a magnetically mounted fixture as seen in Figure 4.16. “The machine performs 

two consecutive circular arcs (clockwise and counterclockwise) in any one of the machines test 

planes (XY, YZ, ZX) and very accurately measures any variations in the test circle radius traced 

by the machine during the test” (Renishaw, 2013, p.8). The Balbar program will run three times, 

to calculate the repeatability of the test. The Renishaw software highlights readings that are not 

nominal, then software request to retest due to the high amount of anomalies found. 

 The Balbar than examines the data and develops a chart defining the error as seen in 

Figure 4.17. The chart displays error and the percentage of error that relates to the backlash, 

reversal error, positioning, and squareness for each axis. The Balbar QC20-W is a wireless tool 

that communicates through a Bluetooth connection with software installed on a laptop. The 

unique capabilities of the Balbar are not limited to determining where the error comes from. 

Figure 4.16 Renishaw Balbar QC20-W 
(Renishaw, 2019) 

Figure 4.17 Renishaw Balbar Data Image 
(Renishaw, 2013), Larger Image Appendix F 
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The software additionally offers the capability of determining which machine parameters 

is adjusted to resolve the error. The parameter data is obtained by identifying the manufacturers' 

information, controller type, and the machine layout on Renishaw’s software. The software will 

write the Balbar program for the CNC to an extent of only a few program modifications for each 

individual machine by a programmer. The Balbar has a sensor resolution of one micron 

(Renishaw, 2013) making it a valid tool designed for interpreting machine error on behalf of 

predictive maintenance health checks. 

Automated Precision Incorporated. Multi- Axis Laser XD6 

The Automated Precision Incorporated (API) XD6 series laser has the unique ability to 

do all axis measurements in one setup, which separates this laser from others. The XD6 series 

offers the capability to measure flatness, parallelism, velocity, acceleration, repeatability, and 

position error in one setup for each axis (Automated Precision Inc, 2016). Figure 4.18 is a typical 

setup for measuring CNC machine axis with a multi-axis laser.  

 The CNC completes the program three times moving back and forth in increments on 

one axis. The laser will record each stopping point comparing all three runs to calculate the 

errors. The software VeriComp develops the number of position offsets needed to correct the 

position error. In Figure 4.19 is a screenshot of VeriComp software displaying the result of a 

linear position test. The machine alignment error will be calculated and separated into each type 

of error allowing the technician to determine if adjustments are needed. The receiver and the 

laser communicate wirelessly. The software communicates through Ethernet connections 

between laser and laptop. 

Figure 4.18 Multi Axis XD6 Laser (API, 
2016) 

Figure 4.19 API Results Screen Shot (Total Machine 
Service n.d), Larger Image Appendix G 
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Automated Precesion Incorperated Radian 3D/6D Laser Tracker 

The API Radian series laser tracker is the smallest and lightest tracker available today 

(Automated Precision Incorporated, 2016). The size and weight make the Radian tracker a 

valuable instrument in machine health checks due to its flexibility in small areas, displayed in 

Figure 4.20. The Raiden offers Interferometer (IFM) allowing precision measurements at longer 

distances and Absolute Distance Measuring (ADM) offering quick reconnection with no 

minimum distance (API, 2016). The Radian is the newest laser tracker available to offer both 

IFM and ADM. 

The Radian allows the technician the ability to create three-dimensional digital drawings 

of an object with precise measurements using the Spatial Analyzer (SA) tracker software (API, 

2016). Figure 4.21 is an image of a typical SA report. The report displays the image and the 

recorded measurements. The tracker is used for machine geometry adjustment to reduce strain on 

mechanical components. The Radian has the ability to precisely make fixture adjustments and 

measure repeatability, for instance, loading and unloading fixtures in a machine. The Radian is 

comparable to a portable CMM, which makes the API Radian useful in more than just predictive 

maintenance. The Radian can be used for part inspection, facility uses, and asset installs. 

Tolerances can be achieved with the Radian to the smallest of +/-.5 microns per meter (API, 

2016) making it a reliable and precise measurement tool for maintenance and metrology alike.  

Figure 4.20 API Radian Laser Tracker 
(API, 2016) Figure 4.21 Spatial Analysis Report (New River 

Kinematics 2018), Larger Image Appendix H 
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Lions Precision Spindle Error Analyzer(SEA) 

“The Spindle Error Analyzer System (SEA) is a hardware and version 9.0 software 

package for measuring and analyzing the accuracy of spindle rotation on machine tools, hard-

disk drives etc.” (Lions Precision, 2017 p.1). The Lions SEA offers both a five channel and three 

channel system.   

The five-axis analyzer reduces the number of setups. The five channels offer 

measurements in all axis direction simultaneously. The five channel analyzer can be used with 

axis displacement sensors, temperature sensors and encoder sensors (Lions Precision, 2015). The 

ability to alter the setup on the five channel elite series gives the technician a multifunctional tool. 

When checking a spindle for error the five channel analyzer is set up with three axis direction 

sensors, and two thermal sensors. The three axis sensors and cards measure the axis displacement 

typically the X, Y and Z direction of the spindle. The thermal sensor will measure spindle change 

due to thermal growth from an increase in heat.  

 The SEA software is interpreted through imaging and numeric values allowing a trained 

technician to diagnose quickly. Figure 4.22 is screenshot of a one-micron scale result of a spindle 

bearing test. The screenshot displays the synchronous error, asynchronous error, total run out, 

RPM, machine name, channel number and an image of the measured spindle bearings (Lions 

Precision, 2017). The plot scale changes as the error increases, using the smallest scale 

Figure 4.22 Lion’s SEA Software Screen Shot (Lions Precision, 2017), 
Larger Image Appendix I 
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needed to display the error. The plot scale can be manually changed as well for closer images if a 

technician finds the need to examine the test in smaller increments. The plot scale would be used 

for examining an error that does not show up on the graph, zooming in on the image to define if 

the damage is a bearing issue or a rotational error. 

Figure 4.23 displays the five channel setup using an eight-slot enclosure and options for 

additional setups.  The image in Figure 4.23 displays the flexibility and options offer with Lions 

Spindle Analyzer. The Lion's analyzer is robust for a manufacturing environment and easily 

setup inside a variety of machine structures.  

The data retrieved from Lion’s analyzer can determine spindle damage and where the 

origins of the damage are internally. The analyzer provides run out data, bearing damage, and 

much more in a trivial amount of time in comparison to dismantling a spindle (Lions Precision, 

2015). The flexibility and significant amount of data retrieved from Lion’s Elite Spindle 

Analyzer makes it ideal for a predictive maintenance health check. 

Figure 4.23 Lion’s Spindle Analyzer Hardware (Lions Precision, 2015) 
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Vibrotest 60 

The Schenck Vibrotest 60 is a handheld vibration analyzer. The Vibrotest 60 offers the 

abilities of a vibration analyzer, data collector and field balancer (Bruel & Kjaer Vibro, n.d). The 

Vibrotest 60 offers absolute bearing vibrations, relative shaft vibrations, Bearing Condition Unit 

(BCU), band pass measurements, process values and speed measurement (Bruel & Kjaer Vibro, 

n.d). The Vibrotest 60 offers dual-channel vibration sensors offer the capability to inspect two 

positions rotor-synchronous vibrations, for example, examining a large rotating shaft (Bruel & 

Kjaer Vibro, n.d). The real-time data allows vibration to be examined in running conditions 

through coast positions allowing vibration measurements to record machines behavior. 

 The initial vibration readings are done when the machine is installed or all components 

have been inspected and cleared as working properly. The analysis will develop a footprint of the 

machine condition, for future examinations and health checks. The Vibrotest 60 unit in Figure 

4.24 exhibits a handheld unit and a vibration sensor. The vibration sensors are magnetic and will 

mount to a clean metal surface of a machine component. The display size is adequate for viewing; 

the unit itself is light and can be held with minimal effort. The image displayed in Figure 4.25 is 

the screen on the handheld unit displaying a bearing test with two vibration sensors. The 

software for a technician’s computer is Extended Monitoring Software (XMS) version 4.020. 

The image in Figure 4.26 is a screenshot of the software spectrum graph taken over a cycle. The 

software displays peaks of vibration during production process of a machine and is archived for 

future reference in a photo or video format. 

Figure 4.24 Vibrotest 60 
(Bruel & Kjaer Vibro, n.d) 

Figure 4.25 Vibrotest 60 
Display (Bruel & Kjaer 

Vibro, n.d) 

Figure 4.26 Vibrotest 60 XMS Software 
(Bruel & Kjaer Vibro, n.d) 
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Thermal Imaging Camera 

The Fluke Ti450 features autofocus and has a built-in laser distance sensor that will 

display distances from the targeted device (Fluke, n.d.). The Fluke Ti450 is perfect for electrical 

cabinet inspection due to its point and click technology. The Ti450 offers a super-resolution that 

can produce four times the information to create a 640 x 420 image (Fluke, n.d). The Ti450 is 

efficient for on the floor maintenance inspections. Figure 4.27 displays the cameras design for 

handheld use with a display unit. The camera can be used to inspect cabinets for loose 

connections or bad contacts. The handheld unit can be used for a safety inspection before 

powering off machines to avoid arc flashing. 

 The Fluke Thermal camera uses a Fluke Smart Connect Software allowing images to be 

examined in a picture to picture mode (Fluke, n.d). The Fluke software displays before and after 

picture to examine side by side, making it efficient for troubleshooting. The software also 

provides the ability to document descriptions and other critical information with the image for 

future examinations. The smart view software saves data to the fluke connect cloud allowing all 

information transferred directly from the job site to the database. The size and durability of the 

camera combined with network capabilities and easy to use software makes Ti450 an excellent 

tool for predictive maintenance. 

. 

Figure 4.27 Fluke Ti450 Infrared 
Camera (Fluke n.d)
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DATA STORAGE 

 To implement predictive maintenance effectively, manufacturing engineers will need to 

set the parameters of warnings and alarms for each machine (Ifm Efector, 2016). Implementing 

correct set points can be done through algorithms with autonomous maintenance. Engineering 

analyzes the captured data of the machine at best running condition and manually compares it to 

new data. Analytics can be applied to the machine data to predict conditions of a failure that may 

occur (T. Le, M. Luo, J. Zhou and H. L. Chan, 2014).  

The collection of data is vast including sensor identification, machine data, sensor trends, 

health check equipment identification, software, dates, etc. The data is typically originating from 

sensors attached to programmable logic controllers that are networked to the facility’s drives. 

The data is formatted through the company’s SCADA to create data that is capable of being 

examined by technicians or machine learning algorithms.  

Fiat Chrysler in Indiana has network drives for each of the transmission and casting 

facilities as of 2019. The network drives are expanded in terabyte increments to meet each 

facility’s needs. The network provides all backups for CNC programs, machine ledgers, WCM 

data, machine history, and PLC programs. The network drive for each facility archives folders to 

store all predictive machine data. The smart sensor data is recorded and directly uploaded to the 

folder straight from the machine floor. The Microsoft Excel 2016 sheets and machine equipment 

software, for example, Renishaw’s Balbar software and API multi axis software, are stored in the 

same department folder. The network drives can only be accessed from company computers with 

assigned asset tags/serial numbers for each folder. 

The network drive includes all sensor information and health check equipment software, 

manuals, serial numbers, and calibration certifications. The originally designed certification 
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spreadsheet will highlight red when equipment is past due for recertification and green when up-

to-date. The health check equipment is sent out yearly for recertification and recorded on a 

spreadsheet as seen in Figure 4.28. The health checks are done yearly, recording machine 

information on spreadsheets similar to Figure 3.2 and 3.3 found on pages 13 and 14. Health 

check software files are stored and filed by machine number and date to create a retrievable 

archive of all the recorded machine data.  

VALUE OF RETURN 

The research problem statement refers to reducing maintenance cost, downtime, and 

production increase through a predictive maintenance system. The Indiana transmission plant 

one (ITP1) has been the focus of much of the research. Through research and data comparing, a 

true interest has collected throughout the facility. Predictive maintenance programs have been 

implemented to improve maintenance cost; however, a true machine health program has not been 

established as of February, 2019. Machine condition programs that showed great potential have 

faded away through a lack of ability to provide and collect useable data to make improvements. 

The vibration unit mentioned prior has been used and displaced due to the lack of an evolving 

system that implements the tools and the ability to collect precise data. The lack of understanding 

restrictions and specification for each device was one of the downfalls. Additionally, there was a 

Machine Health Check Equipment Serial Number  Last Certification Date Due Date

Renishaw Balbar 145895676 1/10/2018 1/10/2019

Renishaw Balbar 1392940066 3/15/2018 3/15/2019

API Laser Tracker 4598-55 2/23/2018 2/23/2019

API Laser Tracker 4598-56 4/8/2018 4/8/2019

API Multi Axis Laser XD6 7936-12 2/23/2018 2/23/2019

API Multi Axis Laser XD6 7936-11 3/28/2018 3/28/2019

Lions Spindle Analyzer 3206-8146 5/6/2018 5/6/2019

Lions Spindle Analyzer 3206-8146 1/20/2018 1/20/2019

Schenck Vibrotest 60 23410879699 2/25/2018 2/25/2019

Schenck Vibrotest 60 17637600865 6/14/2018 6/14/2019

Figure 4.28 Health Check Equipment Certification Spreadsheet  
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misunderstanding of how the separate equipment works together to complete a united 

representation of the machine's condition. 

Tracey Aber, Indiana Transmission Plant one’s (ITP1) Master Six Sigma Black Belt over 

the entire assembly maintenance division, took the time to meet on January, 30th 2019. Tracey 

went over examples of the 2018 overall machine efficiency chart (Appendix C).  Mr. Aber 

explained how machine efficiency relates to tooling, supplies, chemicals, scrap, and maintenance. 

The efficiency of a machine is the first step, then defining what maintenance is and breaking 

down the individual elements to achieve cost reduction. Mr. Aber gave detailed explanations of 

what maintenance cost is by using the “Blue Room”. The Blue Room was a large area separated 

by cubical walls displaying the cost of manufacturing and defined what each expense correlated 

to. Maintenance expenses were separated by efficiency, downtime, loss time, micro stoppages, 

etc. 

The image in Figure 4.29 is a loss of productive time and cost chart for all machines at 

ITP1. Figure 4.29 indicates that micro stoppages are the second highest cost. Micro stoppages 

are considered faults that bring the machine down and the operator resets and runs. Micro 

stoppages are typically caused by one of the following issues, failing sensors, axis sloppiness, 

ball screw damage, scale or encoder issues, and high vibration states Mr. Aber. Smart machines 

record anomalies concerning all variables of the machine. The data would display a flickering 

sensor or any of the errors Mr. Aber stated, ultimately reducing micro stoppages at the first sign 

of an issue. The micro stoppage is a primary example of how predictive maintenance reduces 

production loss time and maintenance cost. 

Figure 4.29 2018 Production Loss Time Chart (FCA, 2019), Larger Image Appendix K  
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The Image in Figure 4.30 is a manufacturing parts tracking system quality histogram, 

provided by Mr. Aber. The histogram is data from a machine recording how many parts are 

running at measured points within +/- 3 Sigma. The point at which the measurement leaves the 

bell curve is an anomaly. The anomaly displays change; in this case, it wasn’t significant due to 

the small increments of the chart. However, the histogram divulges the effortless ability that goes 

into locating anomalies and identifying an issue (Abu Md Ariful Islam, 2017). Figure 4.30 is a 

sensor histogram identifying a flicker and calling for a replacement would end the micro 

stoppage error within minutes. The exact principle would work for a variety of errors, for 

example, position error, backlash, and looseness in an axis movement. The smart machine self-

diagnosis displays enough evidence of the anomaly to request and perform a health check during 

a non-production weekend. 

.  

World Class Manufacturing held a meeting at FCA on January, 2019 focused on using 

preventive maintenance strategies. The WCM representative explained the average cost to run 

one machine for a year was $58,000.00. The WCM team focused on one machine and researched 

Figure 4.30 Manufacturing Parts Tracking System Quality: Histogram (FCA, 2019), 
Larger Image Appendix L 
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all the components that have been replaced in the last two years of production. The experiment 

was to replace all these components that had failed in the past at the beginning of the year 2018. 

The end result was an eight percent decrease in cost. The cost of running the machine in 2018 

was less than the previous year. Including the additional purchases and replacement of all new 

components that may have been in good working condition, the experiment still showed a 

reduction in cost.  

The report, The Internet of Things: Mapping the Value of Beyond the Hype, presented 

that predictive maintenance has the potential to reduce maintenance cost by 10 to 40 percent with 

a 50 percent decrease in downtime (McKinsey Global Institute, 2015). The eight percent 

decrease in the WCM experiment was achieved by avoiding downtime with no savings in 

machine components. Predictive maintenance strategy will increase the saving by eliminating 

unnecessary purchases of equipment while avoiding unscheduled downtime. Figure 4.31 shows a 

loss of time cost for the top 15 departments due to downtime for the year 2018 calculated to 

$54,997,897.00. A 50 percent reduction in all 15 departments of maintenance equals a 

$27,498,948.50, savings by reducing downtime during production hours. The capital spent on 

predictive maintenance equipment and strategies is inconsequential compared to the savings. 

Figure 4.31 2018 Losses by Department due to Downtime (FCA, 2019), 
Larger Image Appendix M



40 

Figure 4.32 is original work displaying examples of three types of maintenance 

procedures. The example shows three scenarios examining the behavior of reactive, preventive, 

and predictive maintenance procedures. The first scenario is an example of reactive procedures 

of a ball screw failing. The machine will run until the ball screw can no longer move to the 

machine parameter settings. The result is replacing it and shutting the assembly line down for 24 

hours, if all goes according to plan. The loss of production time is estimated at $248.00 per 

minute, this being at the low end of the spectrum for an assembly plant at Fiat Chrysler in 

Kokomo Indiana. 

 The second scenario is an example of a preventive maintenance procedure of replacing 

the ball screw yearly. The preventive maintenance procedure included replacing the ball screw 

during a weekend when production is not running. The preventive application does reduce loss 

time cost significantly. The ball screw replacement and alignment cost is calculated from the 

February, 2019 skilled labor rate at Fiat Chrysler Indiana facilities. 

 The third scenario provides an example of predictive maintenance procedures. The smart 

sensors warning displayed an increase in current or vibration on the axis months before the ball 

screw failed. The next step is to schedule a health check finding a miss alignment in the rails or 

roller packs. Thus, allowing an alignment adjustment to fix the issue with no increase strain on 

the ball screw. Predictive maintenance procedures greatly reduce equipment replacement and 

loss of labor cost. The scenarios demonstrated in Figure 4.32 display a significant savings by 

implementing a predictive maintenance plan. 

Maintenance Procedures Ball Screw Replacement Loss Production Time Ball Screw Cost Alignment Adjustemt Total Cost

SCENARIO 1 (Reactive) 16 Hrs.=1824 24 Hrs. = 357000 $2,200.00 8hrs = 912 Labor $361,936.00

SCENARIO 2 (Preventive) 16 Hrs.=1824 0 $2,200.00 8hrs= 912 Labor $4,936.00

SCENARIO 3 (Predictive) 0 0 0 8hrs = 912 Labor $912.00

Figure 4.32 Examples of Maintenance Procedures and Cost 
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Maintenance Technician Time on Issue (No Data) Failed Attempts Time on Issue (With Data)

Electrician 1 4 Hours 3

Electrician 2 1.5 Hours 2

Electrician 3 36 Minutes 0

Electrician 4 2 Hours 2

Electrician 5 6 Hours 5

Electrician 6 0 5 Minutes

Electrician 7 0 3 Minutes

Electrician 8 0 3 Minutes

Electrician 9 0 3 Minutes

Electrician 10 0 2 Minutes

Mr. Brayden Lucas is a maintenance planner at the ITP1 facility in the 5495 department 

on January, 2019. Mr. Lucas gave the WCM team permission to do an experiment with a laptop, 

software and a CNC machine. The training exercise was to set the main disconnect settings lower 

than the current rating for the machine. The main disconnect would trip due to over current, the 

machine wasn’t being used for production so no loss time cost was contributed. Ten Electricians 

were assigned to the machine as a training exercise. Five were given a laptop to hook up to the 

main disconnect and monitor settings. Five others were given prints and a multimeter. The 

experiment was to see how long it took different electricians to find that the main disconnect was 

tripping due to the current limit settings. The experiment also supplied a good troubleshooting 

training event on the newer employees. 

Figure 4.33 is an image of the roughly recorded results from the ten electricians on 

various shifts attempting to troubleshoot the machine. Figure 4.33 shows the amount of time it 

spent on troubleshooting the anomaly. The next column is the number of things tried to fix the 

issue, for example removing the disconnect cover, checking the contacts, checking resistance, or 

using a handheld amp meter. The final column is the results of finding the issue with laptop 

examining the live representation of the disconnect set points and amperage fluctuation. The 

results revealed that a picture is worth a thousand words. The five electricians found the issue 

almost immediately. The experiment was not an incredibly complicated; however, the 

experiment clearly displays a difference in the downtime between data-driven maintenance and 

reactive maintenance.  

Figure 4.33 Main Disconnect Experiment
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Figure 4.34 is a histogram similar to what the electricians saw when they hooked the 

laptop to the main disconnect. The rating was originally set at 80 amperages. The new setting 

was placed at 60 amperages. The moment the amperage reached over 60 amps the main 

disconnect tripped and shut all power off to the machine. The experiment was used as a training 

tool; however, it articulates a perfect example of data-driven predictive maintenance. The 

reduction in downtime is not from completely eliminating all issues with the machine 

components. The predictive maintenance tools create a more efficient source of troubleshooting. 

Micro stoppages often happen fast and can be complex happening within the minimum clock 

speed of a PLC. Timers are often as low as 150 milliseconds, examining many inputs and outputs 

simultaneously. 

Figure 4.35 is an example of how a PLC program is using several inputs simultaneously 

to turn on an output. Figure 4.35 is one of many lines of logic in a working program. The image 

in Figure 4.35 is an example of how an input coming from a sensor could shut a machine down 

faster than a PLC could display it on a laptop. Smart sensors record data similar to Figure 4.34, 

where the anomaly was found promptly. Preventive maintenance equipment gives maintenance 

technicians a new advantage in resolving down machines more efficiently.  

Figure 4.35 PLC Example Figure 4.34 Main Disconnect Histogram
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VERACITIES OF DATA 

“One of the main goals of data science in this context is to effectively predict abnormal 

behaviors in industrial machinery, tools and processes so as to anticipate critical events and 

damage, eventually causing important economical losses and safety issues” (A. Diez-Olivana, J. 

D. Ser, D. Galar, and B. Sierrae, 2019 p. 92). Developing a predictive maintenance plan is a 

challenging hypothesis without all the equipment necessary to collect a large amount of data. 

The null hypothesis of this research is that predictive equipment does not reduce downtime or 

extend the life-cycle of equipment. The fact is that data creates a picture of a machine's health 

that aides in keeping machines at constant best working conditions.    

 The results define each piece of equipment that is used to develop a foundation for a 

machines condition. Using smart sensors and health check equipment creates a hybrid method of 

maintenance combining preventive and predictive attributes. Collected data with smart sensors 

generates a constant data stream of a machine’s condition. Setting alarm points or using anomaly 

recognition algorithms gives the maintenance team a substantial advantage in troubleshooting 

machines. The machine health check equipment will allow a trained technician or engineers to 

examine machines internal components without removing covers or major components. 

The data provided information through examples, visualization, financial gain, efficiency 

in troubleshooting and a true concept of the equipment’s use. The one most difficult handicap in 

the implementation of predictive maintenance is assimilating the technicians to value the use of 

the data. The amount of machine data collected is large and from several pieces of equipment, 

the visualization and easy interpretation are factors to success (A. Ismail, H. Truong and W. 

Kastner, 2019). The predictive maintenance will be successful through transparency and training 

of the equipment used to achieve an efficient maintenance department.  
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CHAPTER 5. SUMMARY, CONCLUSIONS, AND 
RECOMMENDATIONS 

SUMMARY 

Efficient equipment is one key to success for all engineering developments (National 

Academy of Engineering, 2017). Whether it be reducing carbon footprint through wind turbines, 

energy fusion, solar panels or reducing the manufacturing cost of with zero downtime. The true 

meaning of maintenance is increasing the life cycle and the reliability of equipment to produce 

an improved environment in everyone’s day to day life. Predictive maintenance is the practice of 

developing a zero downtime environment for all mechanical moving devices (J. Vaidya, 2017). 

The primary goal of predictive maintenance is to “fix it” before it is broken.   

Through the examination of maintenance procedures, the general consciences among 

manufacturing companies are that there is always room for improvement. Maintenance is much 

more than fixing machines as seen in the machine efficiency cost (Appendix J) and production 

lost time charts (Appendix K). Maintenance is responsible for quality, programming, tooling, 

design, energy efficiency, chemical cost, downtime and the overall well-being of all facility 

assets.  

The example seen on page 41, Figure 4.33, is a table that shows a large reduction in time 

during the troubleshooting of a main disconnect through data driven maintenance. The reduction 

in troubleshooting and repairs is a potentially large costs saving for manufacturing companies. 

The ability to predict failures to reduce work stoppages and repairs during non-production hours 

is eliminating wasted time, which is a key factor in improving the process. Predictive 

maintenance offers a function requirement to the internal customer by reducing wasted time in 

the diagnosis stage setting a tone for success.  
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CONCLUSIONS 

The research project has been informing in unexpected ways. The plan was difficult to 

focus in one direction with the amount of new technology available to achieve a predictive 

maintenance plan. The number of companies that offer smart sensors, machine conditioning 

equipment, and software was numerous and often overwhelming. The research project focused 

on companies that already had working relationships with FCA, this made retrieving research 

data more accessible. Fiat Chrysler is currently working through growing pains with WCM 

preventive/proactive maintenance procedures. The resistance from the maintenance technicians 

due to the extra paperwork involved in creating machine ledgers and EWO's has been a 

challenge. Introducing a new maintenance concept in the middle of an already difficult transition 

appeared to be impossible. However, after speaking to planners, supervisors, engineers and the 

WCM team it was encouraging how enthusiastic FCA’s management and engineering staff was 

involving predictive maintenance technology. 

The assistance from my coworkers and superiors demonstrated how quickly the 

predictive maintenance plan was accepted. The support from technicians and supervisors, 

showed how predictive maintenance was more than a process. Predictive maintenance displays 

potential benefit for the company and all technicians involved. Indiana Transmission Plant One 

already had some of the health check equipment, that could have been used to create more data 

experiments to further develop the results section. Predictive maintenance technology is 

available in ways that have never been offered before (Mckinsey Global Institute, 2015). The 

vibration devices are small and easily placed throughout machine components for constant 

monitoring, for example vibration sensors have exponentially decreased in size just in the last 

couple of years (Ifm Efector,2017). Smart sensors have new communication capabilities due to 
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the advancement of the Internet of Things, for example, the Ifm diagnostic device that 

communicates sensors and controls.  Manufacturing equipment is networked allowing each 

machine to be monitored from a computer in an office a mile away. Machine health check 

equipment is smaller and more flexible making machine condition checks faster than in prior 

years. 

Industry 4.0 is creating a more efficient manufacturing with increased communication 

abilities for manufacturing equipment. The predictive maintenance technology will be a 

significant part of Industry 4.0 in the coming years. Predictive maintenance will give the Industry 

the equipment reliability to make precise adjustments and track the feedback (Appendix L) in 

real-time. The smart sensors relay data that will improve process, quality and equipment 

reliability by increasing the ability to track multiple processes. 

The intentions of the research project were to declare predictive maintenance as a 

solution to already rising maintenance costs in manufacturing. The results have shown that 

predictive maintenance technology goes much further than just reducing costs.  Predictive 

maintenance begins with asset management which is a crucial subject in advanced manufacturing. 

Machinery is expensive in the initial stage of purchase followed by the rising cost of depreciation 

value of the asset. The technology available for predictive maintenance plan extends the life of 

the asset and reduces downtime. The mindset and tone of the project is important. Setting 

predictive maintenance up to improve internal functions through consistent training and ongoing 

practices will be detrimental to the program’s success. Predictive maintenance will present a 

display of forethought thinking to maintenance groups and technicians involved with highly 

technical machines. The training will increase the skilled labor work force efficiency in technical 

fields. The equipment used for predictive maintenance will improve process, and efficiency 



47 

throughout the entire manufacturing process (Mckinsey Global Institute, 2015). Applying the 

equipment is a physical solution to meet the functional needs of a modern manufacturing 

environment. The WCM team is focused on continues improvement in all areas of manufacturing 

at FCA. The predictive maintenance program will implement continues improvements in the 

quality of product, reliability of equipment and improve data for machine ledgers. 

RECOMMENDATIONS 

Predictive maintenance procedures meet the criteria for a successful maintenance 

program by reducing maintenance cost and downtime. The research project results have 

displayed a new direction in which implementation process should change. Speaking with 

Tracey Aber (2019) FCA’s Master Black belt divulged costs of equipment and training come 

into play when making investment decisions. Meetings with Ifm Efector, Keyence and API 

(2019) confirmed the costs for implementation would be exponential. The capital cost for smart 

sensors, software, and networking drive for a large manufacturing facility is significant, even 

with the proof of savings. The smart sensor prices range from $200.00 to $600.00 per unit and 

the vision systems can cost up to $3000.00 depending on the size of the unit. The networking and 

SCADA software implementation process is expensive as well. Health check equipment is only 

purchased once and can be used on all manufacturing assets; however, it is costly equipment 

with a lengthy learning curve. The tracker system price tag is over $100,000.00 per unit and the 

additional equipment such as stands and spherically mounted retroreflector can increase that by 

thousands. The spindle analyzer cost in the $50,000.00 range, not considering the sensors and the 

cards needed to perform an accurate test. The training in which one would have to undergo just 

to be adequate with the tracker is a long process. API suggested initial two-week training course 

and a return one-week training course a year after purchase. 
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The cost of equipment is miniscule compared to the savings as seen in the research 

project, there is a potential decrease in downtime by 50% with a 10% to 40% reduction in 

maintenance costs (McKinsey Global Institute, 2015). However, the initial cost can be a 

deterrent for many companies. The recommendation suggested in this research project is to 

separate the implementations of machine health check and smart machines. Although both health 

checks and smart machines are necessary tools to achieve an optimal predictive maintenance 

program. Introducing the combination of costs for both areas along with the amount of training 

needed is a difficult undertaking for any company to do all at once. The implementation process 

needs be slowly introducing a few pieces of technology at a time allowing the maintenance team 

to get on board and spreading initial cost over time. 

Moving forward the research project needs altered the functional requirement of any 

manufacturing company is to continually improve. Continues improvement is motivated by 

employees and managers that are engaged within the company. The first step in the new process 

continuing forward is to create engagement within the maintenance, engineering and WCM 

teams. Building an application for each piece of technology. An example for this stepping 

process would be that the FCA facility has noticed a large amount of spindles have been replaced 

in the last quarter. The solution would be purchasing a spindle analyzer and training to prevent 

the spindles from going bad, after all each one is $36,000.00 and we have replaced six this year. 

Speaking with facility management, maintenance management, and WCM representatives (2019) 

this is a more appealing approach versus trying to purchase and implement all the equipment at 

once. The process would be done one piece of equipment at a time when there is ample 

justification for purchasing the equipment and the training to resolve an immediate issue that 

requires a physical solution. 
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APPENDIX A 

EMERGENCY WORK ORDER (WCM FIAT CHRYSLER, 2019) 
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APPENDIX B 

FIGURE 3.2 MULTI AXIS LASER DATA SHEET 
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APPENDIX C 

FIGURE 3.3 SPINDLE ANALYZER DATA SHEET 
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APPENDIX D 

NETWORK AND PROCESS CONTROL (EFECTOR 2017) 



APPENDIX E 

FIGURE 4.14 WHITE BOARD DISPLAY OF SMART SENSORS (FCA, 2019) 
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APPENDIX F 

FIGURE 4.17 RENISHAW BALBAR DATA IMAGE (RENISHAW, 2013) 
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APPENDIX G 

FIGURE 4.19 API RESULTS SCREEN SHOT (TOTAL MACHINE SERVICE N.D) 



APPENDIX H 

FIGURE 4.21 SPATIAL ANALYSIS REPORT (NEW RIVER KINEMATICS 2018) 
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APPENDIX I 

FIGURE 4.22 LION’S SEA SOFTWARE SCREEN SHOT (LIONS PRECISION, 2017)



 APPENDIX J 

2018 OVERALL MACHINE EFFICIENCY COST (FCA, 2019) 
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APPENDIX K 
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FIGURE 4.29 2018 PRODUCTION LOSS TIME CHART (FCA, 2019) 



APPENDIX L 

FIGURE 4.30 MANUFACTURING PARTS TRACKING SYSTEM QUALITY: HISTOGRAM (FCA, 2019) 
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APPENDIX M 

FIGURE 4.31 2018 LOSSES BY DEPARTMENT DUE TO DOWNTIME (FCA, 2019) 
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