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ABSTRACT

Figuerola, Andres Ph.D., Purdue University, August 2019. Quasi-Toroidal Varieties
And Rational Log Structures In Characteristic 0 . Major Professor: Jaros law
W lodarczyk.

We study log varieties, over a field of characteristic zero, which are generically

logarithmically smooth and fs in the Kummer normally log étale topology. As an

application, we prove an analog of Abramovich-Temkin-Wlodarczyk’s log resolution

of singularities of fs log schemes in the Kummer fs setting.
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1. INTRODUCTION

Log structures, as conceived by Fontaine and Illusie, were developed by Kato in

[1]. Most of the applications of logarithmic geometry focus on the case where log

structures are coherent. A log structure is coherent if, étale locally at every point,

we can find a strict morphism (called a chart) X → spec(Z[P ]), where P is a finitely

generated monoid. That is, the log structure on X coincides with the pullback of

the canonical log structure on spec(Z[P ]). However, in the context of logarithmic

resolution of singularities, one is naturally led to consider log schemes which are not

necessarily coherent.

Already in [2, II (2.6.4)], certain examples of non-coherent log structure are pre-

sented. In [3], motivated by functorial logarithmic resolution of singularities, a class

of log schemes where we can find a morphism X → spec(Z[P ]) of Kummer type (but

not necessarily strict) was introduced, they were called rational log schemes. Rational

log schemes were defined to be normal, and they come with an associated notion of

log smooth morphism which is called normally log smooth. Also in [3], a subclass

of rational log schemes which should be interpreted as being log smooth over a field

was identified. A “log smooth” rational log variety was called quasi-toroidal. Quasi-

toroidal varieties can locally be viewed as a quotient of a toroidal scheme by a finite

abelian group action. However, quasi-toroidal varieties are not, in general, normally

log smooth over a field.

The main construction of this thesis is a category of rational varieties over a field

of characteristic zero, whose log structures are fs (i.e. coherent with saturated charts)

in the Kummer normally log étale topology. We call its objects, Kummer fs varieties.

This category has a notion of log smooth morphism, containing the class of normally

log smooth morphisms, which we call quasi log smooth.
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Proposition 1.0.1 Let (X,M) be a generically fs rational log variety over a field k

of characteristic zero. Then (X,M) is quasi-toroidal at x ∈ X, if and only if X is

Kummer fs and the structure morphism X → spec(k) is quasi log smooth.

One of the main theorems in [3], Theorem 1.3.4, states that there is a functorial

logarithmic desingularization of (generically logarithmically smooth) fs log varieties

over a field of characteristic zero. Starting from an fs log variety X, it produces a quasi

toroidal variety X ′ and a projective morphism X ′ → X, which is an isomorphism on

the toroidal locus. This desingularization is functorial with respect to logarithmically

smooth morphisms. In fact, requesting the functoriality of the algorithm naturally

forces one to depart from the category of fs varieties. One cannot expect X ′ to

be toroidal and still have functoriality of the resolution with respect to log smooth

morphisms (see 2.4). This motivates the need to study Kummer fs varieties.

In the same spirit, restricting to a subclass of quasi log smooth morphisms (which

we call quotient log smooth), we show the following result.

Theorem 1.0.2 Let (X,M) be a Kummer fs variety over a field k of characteristic

zero. Suppose that M is generically fs. Then, there exists a quasi-toroidal variety

D(X) and a projective morphism D(X) → X, which is an isomorphism over the

quasi-toroidal locus of X. The assignment X 7→ D(X) is functorial with respect to

quotient log smooth morphisms.

A similar theorem, in a more general context, is proved in [4] using stacks. This

thesis circumvents the language of stacks and develops a different framework using

only basic algebraic geometry.

1.1 Outline

The study is divided into three chapters.

In the first chapter we develop the necessary background and introduce rational

log varieties in the non necessarily normal setting. We recall the rank stratification
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associated to its log structure and show that any rational generically fs log variety X

has a Kummer cover from an fs variety p : X ′ → X.

In the second chapter we restrict to normal rational varieties. We recall the notion

of normally log smooth morphism from [3], and list some of its properties. Then, we

define Kummer fs varieties and quasi log smooth morphisms. The definition of quasi

log smooth morphisms extends the notion of logarithmically smooth morphism of

toroidal varieties. We show that they are stable under composition and dominant

base change.

We later go on to study minimal fs covers of Kummer fs varieties and analyze the

structure of quasi log smooth morphisms of quasi toroidal varieties. In particular, we

deduce that a morphism of quasi toroidal varieties is quasi log smooth if and only if

it has a lift on minimal Kummer covers which is classically log smooth (see 3.7.4).

We end with a discussion on the Kummer quasi log étale site of Kummer fs varieties.

In the third chapter, we start by constructing local embeddings into quasi toroidal

varieties. We define the notion of quotient log smooth morphisms and show that

they are stable under composition. The class of quotient log smooth morphisms

contains strict smooth morphisms of Kummer fs varieties and log smooth morphisms

of fs varieties. Quotient log smooth morphisms can be thought of as quotients of

classically log smooth morphisms of fs varieties. Then, using the main theorems

in [3], we construct a functorial logarithmic desingularization of Kummer fs varieties.

1.2 Conventions and pre-requisites

After a brief review of the definitions of log structures and toroidal varieties,

starting in 2.5, we work exclusively with varieties over a field k of characteristic 0.

Although we recall the definitions and standard theorems in basic logarithmic

geometry, we assume familiarity with log structures as presented in [1] and [5].
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For details of the algorithm of logarithmic resolution of singularities in character-

istic 0, we refer to [6] and [3]. For a general (non-logarithmic) algorithm of functorial

resolution of singularities in characteristic 0, we refer to [7].
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2. RATIONAL LOG VARIETIES

2.1 Notation and Background

All monoids considered are commutative with unit. A monoid P is called integral

if ac = ab implies c = b. We say P is fine if it is finitely generated and integral.

For any monoid P , there is an associated group P gp which is constructed from

P ×P modulo the equivalence relation: (a, b) ∼ (c, d) if and only if there exists f ∈ P

such that acf = dbf . The morphism P → P gp is initial with respect to morphisms

from P to a group.

A monoid P is integral if and only if the canonical map P → P gp, sending p 7→

(p, 1), is injective.

For any monoid P , there is a canonical integral monoid P int and a morphism

P → P int which is universal with respect to maps from P to integral monoids. P int

can be constructed as the image of P in P gp.

Given a monoid P , we let P ∗ ⊂ P be the subgroup of units and denote P := P/P ∗.

An integral monoid P is said to be saturated if for any p ∈ P gp, such that pn ∈ P

(for some n > 0), then p ∈ P . A fine and saturated monoid is said to be fs.

Similarly as in the case of ()int, for an integral monoid P , there is a saturated

monoid P sat and a morphism P → P sat, which is universal with respect to morphisms

from P to saturated monoids. P sat can be constructed as {p ∈ P gp | pn ∈ P for some

n > 0}.

An ideal of an fine monoid P , is a subset I ⊂ P , such that pI ⊂ I for all p ∈ P .

An ideal I ⊂ P is prime, if P \ I is a submonoid of P . The height of a prime ideal I

is defined as ht(I) := rank(P gp)− rank((P \ I)gp). See [5] for details.

A morphism of monoids P → Q is said to be Kummer, if it is injective and for

any q ∈ Q, the exists n > 0, such that qn ∈ P .
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A morphism of fine monoids P → Q is called log smooth (étale) if the induced

morphism on groups P gp → Qgp has finite kernel and torsion part of the cokernel

(finite kernel and cokernel).

For any monoid P , we let Z[P ] denote the monoid algebra generated by P . We

have an associated scheme spec(Z[P ]).

Given a scheme X, a log structure is a sheaf of monoids M on the étale site of X,

together with a monoid sheaf map α : M → OX , such that α−1(O∗X) ∼= O∗X .

A log scheme is a pair (X,M), where X is a scheme and M is a log structure on

X.

Let π : X → Y be a morphism of schemes. Given a log structure MY on Y there

is a canonical way to construct a pullback log structure π∗MY on X, this is the log

structure associated to π−1MY → π−1OY → OX . Similarly, for a log structure MX on

X, there is a pushforward log structure π∗MX on Y , it is the log structure associated

to π∗MX ×f∗OX OY → OY (see [1, 1.4]).

Given x ∈ X, x will denote a geometric point above x and the étale stalks will

be denoted as Mx. Whenever we write Mx, for a point x ∈ X, we mean the Zariski

stalk of M at x. Same goes for OX,x and O∗X,x.

The logarithmically trivial locus of (X,M) is the maximal Zariski open subset

U ⊂ X such that MX,u = O∗X,u for all u ∈ U . We sometimes denote it as Xtr.

We say M is integral (saturated) if for any x ∈ X, we have that Mx is integral

(saturated).

Given a scheme X and a monoid morphism α : P → OX , there is a associated

log structure P a which is constructed as the monoid pushout P ⊕α−1(O∗X) O∗X . A log

structure M is said to be coherent if, étale locally, we can find a finitely generated

monoid P and a morphism P → M , such that P a ∼= M . Such a morphism P → M ,

is called a chart of M . If we can choose P which is fine, we say that M is fine, and

similarly M is called fs if we can find P fs.

In particular, a fine log structure is integral and an fs log structure is saturated.
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There is an adjoint functor to the inclusion functor {coherent log schemes }→

{fine log schemes}, which sends a coherent log scheme X to a fine log scheme denoted

as X int. It can be described, étale locally, when we have a chart X → AP as (X)int :=

(X ×P P int). Similarly, the inclusion functor {fs log schemes} →{fine log schemes}

has an adjoint which sends a fine log scheme X to a fs log scheme Xsat. It can also be

described, étale locally, when we have a fine chart X → AP as (X)sat := (X ×P P sat)

(see [8]).

The schemes spec(Z[P ]), for P finitely generated, come equipped with a canonical

coherent log structure associated to P → Z[P ].

A morphism of log schemes (X,MX) → (Y,MY ) is a morphism of underlying

schemes, together with a compatible morphism of log stuctures MY →MX .

A morphism of log schemes f : (X,MX)→ (Y,MY ) is said to be strict if f ∗(MY ) ∼=

MX . In particular, a chart of a fine log structure M can be identified with a strict

morphism U → spec(Z[P ]), on some étale neighborhood U of X.

A morphism of fine log schemes f : X → Y is said to be log smooth (étale) if, étale

locally, we can find charts P → MY , Q → MX , and an induced monoid morphism

P → Q such that:

1. P → Q is log smooth (étale)

2. The order of the kernel, and the torsion part of the cokernel, of P gp → Qgp is

invertible on X.

3. X → Y ×spec(Z[P ]) spec(Z[Q]) is étale.

We usually denote Y ×spec(Z[P ]) spec(Z[Q]) as Y ×P Q.

A morphism of log schemes f : (X,MX)→ (Y,MY ) is Kummer if for any y ∈ Y ,

x := f(y) ∈ X, the induced morphism of monoids (MY,y)
gp → (MX,x)

gp is Kummer

and the order of its cokernel is invertible in X.

For a log scheme (X,M) and a point x ∈ X, we denote by I(M,x) the ideal

generated by the image on Mx \M∗
x in OX,x.
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Let P be a fine monoid. Whenever we are working over a field k, we let AP denote

the scheme spec(k[P ]).

2.2 Toric varieties

Definition 2.2.1 A toric variety is a normal variety X, containing a torus T = (k∗)n

as a dense open subset and such that the action of the torus extends to X.

This gives rise to a logarithmic pair (X,T ), with log structure M := OX ∩ O∗T .

Affine toric varieties can be described as Xσ := spec(K[σ∨ ∩M ]), where M :=

Hom(T, k∗) is the lattice of characters of the torus, N := Hom(M,Z) is the dual, σ is

a strongly convex rational polyhedral cone inN⊗Q and σ∨ := {F ∈M⊗Q | F |σ ≥ 0}.

Setting Pσ :=M(X) = σ∨∩M , we see that giving an affine toric variety Xσ is the

same as giving AP , where P is an fs torsion free monoid which can be identified with

Pσ. For the converse direction, we identify M := P gp and T := AP gp = spec(k[P gp]).

2.3 Toroidal embeddings and regular log schemes

Let X be a scheme over a field k, and let U ⊂ X be a non-empty open subset.

Consider the log structure on X given by M := OX ∩O∗U . Then, we say that (X,U)

is a toroidal embedding if M is fs, and for any point x ∈ X, étale locally we can find

a chart fP : X → spec(k[P ]), where P is an fs monoid, such that f is étale. This is

equivalent to the definition given in [9].

The notion of logarithmic regularity was introduced in [5], and its definition in-

dependent of the base scheme.

Definition 2.3.1 ( [5, 2.1] [10, II 4.5] ) An fs log scheme (X,M) is regular at a

point x ∈ X if the following two conditions are satisfied.

1. OX,x/I(M,x) is a regular local ring.

2. dim(OX,x) = dim(OX,x/I(M,x)) + rank(MX,x
gp

)
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A log scheme is regular, if it is regular at every point.

It is shown in [5, 8.3], that for an fs log scheme (X,M) over a perfect field, the

notion of toroidal embedding, as above, is equivalent to (X,M) being logarithmically

regular.

Whenever we have a chart X → AP for X as above, the definition of regularity is

independent of whether we take the étale or Zariski topology for M ( [10, II lemma

4.6]).

2.4 A motivating example

The following example is taken from [3], it justifies the need for defining non-

coherent log structures in the context of log resolution of singularities.

The usual Hironaka approach to embedded resolution of singularities in charac-

teristic zero, is to solve the problem of principalization of ideals on smooth ambient

schemes. In the logarithmic context, the analogue result is to consider principaliza-

tion of ideals on toroidal schemes. Let X := spec(C[x, y]), with log structure coming

from y = 0 and consider the ideal I := (x2, y2). This ideal is principalized after blow-

ing up the origin (x, y). Let X ′ be another copy of X, and consider the log smooth

morphism of p : X → X ′, induced from the ramified cover y 7→ y2. Note also, that

p∗(x2, y) = I in X. Hence, if the algorithm of principalization of ideals were to be

functorial with respect to logarithmically smooth morphisms, then the principaliza-

tion of (x2, y) should naturally restrict to the principalization of I on X. This forces

to blow up an ideal of the form (x, y1/2) on X ′. We can interpret this modification

as blowing up the ideal (x2, y) on X ′. Locally, on an affine chart of this blow up, the

variety that we get is spec(C[u2, uv, v2]), with log structure induced from v = 0. This

variety is no longer toroidal. Moreover, its log structure is not even coherent.



10

2.5 Quasi toroidal varieties

From now on we will work over a field k of characteristic zero.

We recall the definition and some properties of quasi-toroidal varieties. For further

details we refer to [3, 4.].

Definition 2.5.1 A toric doubleton is a pair (Xσ, Xτ ) where:

• Xσ is a toric variety corresponding to a cone σ with torus embedding given by

a lattice Nσ. That is, Xσ = spec(k[σ∨ ∩Mσ]) where Mσ is the dual lattice to

Nσ, and σ∨ is the dual cone to σ in Mσ ⊗Q.

• τ is a regular face of σ, for which there exists a face δ of σ, such that σ = τ + δ

and there is a Q-isomorphism σ ∼= τ × δ (preserving τ and δ but not necessarily

the lattices). We let Xτ be the open toric subvariety of Xσ induced from the

face inclusion.

We give Xσ the log structure coming from regular functions which are invertible

on Xτ .

Let p : σ → δ be the face projection and let Nδ0 := p(Nσ). Denote by Xδ0 the toric

variety corresponding to δ with lattice structure Nδ0 . We give Xδ0 the log structure

induced from the torus. Then we get an induced Kummer morphism of log varieties

Xσ → Xδ0 .

Denote by Xδ the toric variety associated to δ with lattice structure Nδ = Nσ ∩ δ.

We give Xδ the log structure induced from the torus embedding. There is a Kummer

morphism of fs varieties Xδ → Xδ0 induced from the inclusion Nδ → Nδ0 .

The normalized fiber product of the maps Xσ → Xδ0 ← Xδ, corresponds to Xτ×δ

with it’s induced log structure coming from the projection Nτ × Nδ → Nδ. That is,

the morphism Xτ×δ → Xδ is strict. The log structure on Xτ×δ gives rise to a toroidal

embedding since τ is a regular face of σ.

Let Gδ := Nδ0/Nδ, then Gδ is a finite group acting on Xδ with quotient Xδ0 . The

action of Gδ, extends to Xτ×δ with quotient Xσ.
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Definition 2.5.2 A quasi-toroidal variety is a log variety (X,M) for which, étale lo-

cally at each point, there is a strict étale map to a toric doubleton (X,M)→ (Xσ, Xτ ).

Example 2.5.3 The simplest example of a quasi toroidal variety which is not log

regular is given by spec(k[x2, xy, y2]), with log structure induced from regular functions

which are invertible at points where y 6= 0. Note that this log structure is not coherent

at the origin.

2.6 Simplicial Kummer fs varieties

As a generalization of quasi toroidal varieties, we can consider toric pairs (Xσ, Xτ ),

such that:

• τ is a simplicial face of σ with respect to the Nσ lattice structure.

• There exists a face δ, such that τ ∩ δ = 0, τ + δ = σ and there is an Q-

isomorphism σ ∼= τ × δ (preserving τ and δ but not necessarily the lattices).

We call (Xσ, Xτ ) a simplicial toric doubleton.

Remark. Toric doubletons, as in the above section, should perhaps be thought

of as simplicial toric doubletons which are regular in the Kummer topology. That is,

after Kummer extension they become toroidal, and hence regular on the logarithmi-

cally trivial locus. Analogously, after Kummer extension, simplicial toric doubletons

become fs log varieties with at most simplicial toroidal singularities on the locus where

the log structure is trivial.

As above, we get an induced morphisms Xσ → Xδ0 ← Xδ whose normalized prod-

uct gives Xδ×τ with log structure coming from regular functions which are invertible

on Xτ .

Example 2.6.1 As an example of a simplicial toric doubleton which is not quasi

toroidal, we can take spec(k[x2, y2, z2, xyz]) with log structure given by regular func-
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tions which are invertible away from points where z 6= 0. In this case the face τ

corresponds to x = y = 0, which is simplicial but not regular in the associated cone

σ = R3
≥0, Nσ =< [1, 0, 0], [1/2, 1/2, 0], [0, 1, 0], [0, 1/2, 1/2], [0, 0, 1], [1/2, 0, 1/2] >.

2.7 Conditions for being a chart

Lemma 2.7.1 Let (X,M) be a log scheme, and let P be a monoid together with a

morphism α : P → M . Then α : P → M is a chart (in particular M is coherent) if

and only if the following two conditions are satisfied for all x ∈ X:

1. P →MX,x is surjective .

2. For any p, p′ ∈ P such that α(p′) = α(p)u in Mx, for some u ∈ O∗X , there exists

v, v′ ∈ α−1(O∗X), such that α(v′) = uα(v) and pv′ = pv in P .

Remark. As we shall see in the proof, the second condition is equivalent to the

fact that the induced map αa : P a →M is injective.

Proof If P → M is a chart, then the induced map P a → M is an isomorphism, so

we can replace α by P → P a. It is clear then that P → P a = (P ⊕α−1(O∗X) O∗X)/O∗X
must be surjective. On the other hand if α(p′) = α(p)u in P a, then the second

condition is the definition of (p′, 1) ∼ (p, u) in P ⊕O∗X to obtain P a.

Conversely, suppose α : P → M satisfies 1) and 2). Denote β := αa : P a → M

the induced map. We will show that β is an isomorphism. By 1), given m ∈ Mx

there exists p ∈ P , u ∈ O∗X,x such that α(p)u = m in Mx. So β is surjective since is

surjective on stalks.

If we have (p, u), (p′, u′) ∈ P a such that β(p, u) = β(p′, u′) then, denoting u′′ :=

u(u′)−1, we have that α(p)u′′ = α(p) in M . So by 2) we can find v, v′ ∈ α−1(O∗X)

such that pv′ = pv and α(v′) = u′′α(v). Therefore (p, u′′) ∼ (p′, 1) in P a and hence

(p, u) ∼ (p′, u′), so β is injective.
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Corollary 2.7.2 Let α : P → M be a chart and p, p′ ∈ P such that α(p) = α(p′).

Then, there exists v′, v ∈ α−1(O∗X) such that pv = p′v′. In particular, if P is integral

and α restricted to α−1(O∗X) is injective, then α is injective.

Proof Immediate from condition 2. in 2.7.1.

2.8 Reduced induced monoid

Given an integral monoid P , we consider on it the equivalence relation given by

p1 ∼ p2 if and only if there exists n > 0 such that np1 = np2. Then P red := P/ ∼ has

an induced structure of an integral monoid and P → P/ ∼ is a monoid morphism.

Example. Let P = [(1, 0), (0, 1)] ⊂ N × Z/2Z. Then P red = N and the map

P → P red, corresponds to the projection onto first component.

For any monoid P (not necessarily integral) we write P red for (P int)red.

2.9 Rational log varieties

By a variety we mean a finite disjoint union of reduced, irreducible schemes of

finite type over a field k (in our case char(k) = 0).

Definition 2.9.1 A rational log variety (X,M), consists of a variety X, together

with a log structure M ⊂ OX \ {0}, such that at every point x ∈ X, there exists an

étale neighborhood U → X of x, and a morphism P →M |U from a finitely generated

monoid P , satisfying the following conditions:

1. The induced morphism P a →M |U is Kummer.

2. P ∼= Mx.

3. The restriction M |U is Zariski (i.e. for any étale morphism π : V → U we have

M |V = π∗(M |UZar), where UZar denotes U with its Zariski topology).

We say P → M is a rational chart optimized at x. A rational log variety X will be

called rationally fine (respectively fs) if we can choose P to be integral (saturated).
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A monoid morphism P → M satisfying 1) in the definition above, will be called

a rational chart.

2.9.2 Remark. If X is rationally fine (fs) then, from choosing a rational chart

optimized at x ∈ X, we see that Mx = Mx
int

( Mx = Mx
sat

).

Lemma 2.9.3 (cf. [3, 4.5.8]) Suppose that Mx is finitely generated and saturated.

Let P →M be a rational chart in a neighborhood of x ∈ X, with P saturated. Then,

étale locally, we can construct a rational chart P ⊂ Q→M which is optimized at x.

In particular, condition 2 in the above definition is automatically satisfied.

Proof After localizing P , we can assume P → Mx is Kummer. As P is saturated,

we have a morphism P → P giving a section to the projection P → P . Let Q be the

pushout Mx ← P → P . Then the induced morphism P → Q is Kummer. We have

an induced morphism i : Q→Mx factoring the identity on Mx. Hence i is surjective.

We must show there is an injective map Qa →M .

Let q ∈ Q and choose a lifting m ∈ Mx of i(q). Since P → Q is Kummer, we

must have that qn ∈ P . Hence there is a unit v ∈ O∗X , such that qn = vmn. By the

characteristic 0 assumption, we can find an étale neighborhood where q/m is defined,

and we have a lifting m′ ∈Mx of i(q) such that m′n = qn. Repeating the argument for

a set of generators of Q we get an inclusion morphism Q ⊂ M(X ′) (where X ′ → X

is an étale neighborhood) lifting Q→Mx.

Thus, Q→M is a rational chart with Q = Mx.

2.10 Charts of saturated rational log varieties

2.10.1 . Let (X,M) be a saturated rational log variety. That is, X is a variety and

M a rational log structure on X, for which Mx is fs for every x ∈ X. By the remark

following definition 2.9.2, this is equivalent to M being rationally fs.
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Lemma 2.10.2 Let (X,M) be a saturated rational log variety. Étale locally, for any

x ∈ X, we can find a neighborhood of x with a sharp and optimized rational chart.

That is, a rational chart P →M , such that P = Mx.

Proof We can find a rational chart Q → M optimized at x. Since Q is saturated,

then we have a splitting Q = Q⊕Q∗. Thus the inclusion Q→ Q→M gives a sharp

and optimized rational chart. Let P := Q.

2.11 Zariski optimized charts

Lemma 2.11.1 Let (X,M) be a rationally fine log variety and let x ∈ X. Then in

an étale neighborhood U → X of x, there is an rational chart U → AP optimized

at a point u (above x), such that (M |UZar)u = PO∗UZar,u. Here, (−)Zar means in the

restriction to the Zariski topology of U .

Proof At any x ∈ X, we can find an étale neighborhood V → X, and a chart

V → AP , optimized at a point v ∈ V above x, such that M |V is Zariski. If we take the

stalk of M |V Zar at v and take the sharpification M |V Zar,v := M |UZar,v/O∗UZar,v, then

we get an induced map M |V Zar,v →MV,v (where v is a geometric point above x). Since

M is rationally fine, P ∼= MV,v, P
a → M |V is Kummer, then M |V Zar,v

gp
→ MV,v

gp
is

surjective and it’s kernel is torsion. Let t ∈ M |V Zar,v
gp

be a torsion element. Étale

locally at v, we can lift t to an element in O(V Zar)∗ . Repeating the same process for a

set of generators of the torsion of M |V Zar,v
gp

, and since M |V is Zariski, we get an étale

neighborhood U → V , and a point u ∈ U above v ∈ V , such that M |UZar,u
gp
→MU,u

gp

is an isomorphism. Hence, MUzar,u = P .

Remark. By the above lemma and condition 3 in the definition of rational log

variety, we may assume that (up to an étale cover) rationally fine log varieties are

Zariski with optimized rational charts in Zariski topology. Hence, we will usually

think of M as defined in Zariski topology, where we can find optimized charts up

to pulling back the log structure to an étale neighborhood. Moreover, whenever
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we have an optimized rational chart X → AP at x, we will always assume that

PO∗XZar,x = MXZar,x.

Example 2.11.2 Consider the Whitney umbrella X := spec(k[x2, xy, y]) with y 6= 0

log structure. Then at the point p with coordinates x = 1, y = 0, the log structure is

fine but not saturated in Zariski topology. In the étale topology the log structure is fs.

This log structure is Zariski.

Example 2.11.3 Consider A2 with log structure coming from the nodal curve {f =

y2 − x2(x+ 1) = 0}. Then Zariski locally, the log structure is fs given by N→ k[x, y]

(1 7→ f). At the origin, considering the étale neighborhood

k[x, y]→
( k[x, y][T ]

(T 2 − (x+ 1))

)
x+1

=: R

the log structure is given by N2 → R ( e1 7→ y−Tx, e2 7→ y+Tx). This log structure

on spec(R) is not the pullback of the log structure on A2.

2.12 The rank stratification

Lemma 2.12.1 Let X be a variety and x ∈ X. Let f : X → AP be a morphism,

such that (P \ P ∗) maps into the maximal ideal mx of OX,x. Then for any z ∈ X,

such that f(z) = f(x), we have P = (P a)z.

Proof (cf. [2, Proposition 1.1.8 (1) ]) For any z, such that f(z) = f(x), the subset

(P \ P ∗) ⊂ k[P ] maps to maximal ideal mz in OX,z.

Consider the induced map P → P a
z , we will show it is injective. Let p1, p2 ∈ P ,

be such that p1 = p2 in P a
z . Then we can find u ∈ O∗X,z, such that (p1, u) ∼ (p2, 1)

in P a
z = P ⊕P ∗ O∗X,z (In this description we are using that (P \ P ∗) maps to mz,

since then the inverse image of O∗X,z in P coincides with P ∗). Thus, by definition of

pushout, there exists z, w ∈ P ∗, such that zp1 = wp2. But then p1 = p2 in P .

Since P → P a
z must also be surjective, then P = (P a)z.
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Lemma 2.12.2 Let (X,M) be a rational log variety and P →M be a rational chart

optimized at x. Then (locally) the set {y ∈ X | rank(My
gp

) = rank(Mx
gp

)}, coincides

with {z ∈ X | (P \ P ∗) maps to mz in OX,z}.

Proof Suppose z ∈ {z ∈ X | (P \ P ∗) maps to mz in OX,z}. Since P a
z → Mz

is Kummer, then rank(Mz
gp

) = rank(P a
z

gp
). By the above lemma P a

z = P , so

rank(Mz
gp

) = rank(P
gp

) = rank(Mx
gp

).

Conversely, let z ∈ {y ∈ X | rank(My
gp

) = rank(Mx
gp

)}. Suppose there is an

element p ∈ (P \P ∗) which maps to O∗X,z. Then p cannot be a torsion element in P
gp

,

because that would imply p ∈ P ∗. The morphism P →Mz factors as P → Pz →Mz.

Since P → Pz is surjective, then so is P
gp → Pz

gp
. On the other hand, the non torsion

element p ∈ P gp
is in the kernel of P

gp → Pz
gp

, hence rnk(P
gp

) > rnk(Pz
gp

). But

since Pz →Mz is Kummer, then rank(Mz
gp

) = rank(Pz
gp

). This contradicts the fact

that z is in the same stratum as x.

Lemma 2.12.3 (Rank Stratification) Let (X,M) be a fine rational log variety.

Then the subsets {x ∈ X | rank(Mx
gp

) = n} define a stratification on X.

Proof Étale locally, we can find a rational chart P optimized at a point x′ above x.

Note that the rank of Mx
gp

and Mx′
gp

are the same for any geometric point x above

x′ and is given by the rank of P
gp

. Hence, we may assume that the optimized chart

exists Zariski locally.

First consider the case whenX = AP where P is a fine monoid. Let n := rank((P \

P ∗)gp), and note that the rank n locus corresponds to V (P \ P ∗), the vanishing of

the ideal generated by P \ P ∗. Then {x ∈ X | rank(M
gp

x ) ≥ n − 1} coincides with

the union ∪ht(p)=1V (P \ (p∪ P ∗)), where each p ∈ spec(P ) is a prime ideal of P , and

V (P \(p∪P ∗)) is the vanishing locus of the ideal generated by P \(p∪P ∗). Inductively,

by the analogue formula, we see that each set {x ∈ X | rank(M
gp

x ) ≥ n− k} is closed

in AP . Hence AP has a rank stratification.

Now let X be a general fine rational log variety. Let x ∈ X, then (by definition)

we can find an optimized chart X → AP . The inverse image of the rank strata from
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AP form a (local) stratification for X. Since any point has an optimized chart, we see

from 2.12.2, this stratification glues on all of X. In particular, the local stratification

is independent of the chart and the point x at which P is optimized at.

2.13 First assumption on the log structure of rational log varieties

2.13.1 . From now on, we make the following assumption on rational log varieties.

In the rank stratification of (X,M), every point is in a unique irreducible

component of its stratum.

For example on X := spec(k[x, y]), the log structure N → k[x, y] (1 7→ xy) does

not satisfy this requirement at the origin, but the log structure N → k[x, y] (1 7→ y)

does.

Assuming the above condition and considering the irreducible components of each

stratum, we get a finer stratification on (X,M). For a point x ∈ X, we denote by

s(x) the generic point of the stratum of x.

We give an example of a kind of log scheme for which this condition is always

satisfied.

Lemma 2.13.2 Let X be a variety and U ⊂ X be the complement of a codimension

1 closed subset. Let M be the log structure OX ∩O∗U induced on X, and suppose that

M is rationally fs. Then, condition 2.13.1 is satisfied for (X,M).

Proof Let s be a stratum and let x ∈ s. Suppose s has two irreducible components

s1, s2 containing x. By abuse of notation, we denote the generic points of this

components as s1 and s2. Let P → M be a rational chart optimized at x. Then,

since X is separated, there is p ∈ P which vanishes on s1, but not on s2. Thus

the image of p in Mx, lies in the kernel of the induced cospecialization morphism

M
gp

x → M
gp

s2
. Since P a → M is Kummer in a neighborhood of x, and P = Mx is

saturated, then the induced morphism P ∼= Mx →M s2 is Kummer (see the argument
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in 2.14.3) . Therefore p must be a unit at x. Given that X is reduced, and p vanishes

on s1, then p must vanish at x, a contradiction.

A pair (X,U) as above is called a solid log scheme.

2.14 A finer stratification for rational log varieties

Lemma 2.14.1 Let (X,M) be a rationally fine log variety and let x ∈ X. Let s(x)

denote the the generic point of the rank stratum of x. Suppose Mx →Ms(x) is injective,

then Mx →Ms(x) is Kummer.

Proof Locally, we can find a rational chart P → M , such that P = Mx. Then we

have the following commutative diagram :

P a
x Mx

P a
s(x) Ms(x)

From the surjectivity of P → P a
s(x), and the factorization P → P a

x → P a
s(x), we

get that P a
x → P a

s(x) is surjective. Since by assumption Mx →Ms(x) is injective, then

P a
x = P a

s(x). On the other hand P a
s(x)

gp → Ms(x)
gp

is Kummer (up to torsion) since P

is a rational chart. Thus Mx →Ms(x) is Kummer.

2.14.2 . Remark. As a corollary of the proof, note that, if Mx →Ms(x) is injective

then P a
x = P a

s(x).

Lemma 2.14.3 If Mx is saturated, then Mx
gp →M

gp

s(x) is injective.
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Proof As above, let P be a rational chart optimized at x. Recall that P a
x → P a

s(x)

is surjective (see the proof of 2.14.1), and that both Mx
gp

and M
gp

s(x) have the same

rank. Considering the following diagram

P a
x

gp
Mx

gp

P a
s(x)

gp
Ms(x)

gp

we see that, since the horizontal arrows are Kummer, any element in the kernel of

Mx
gp → M

gp

s(x), must be torsion in Mx
gp

. On the other hand, given that Mx is

saturated, then Mx
gp

is torsion free.

Remark. In general, if Mx is not necessarily saturated, since any element in the

kernel of Mx
gp → M

gp

s(x) is torsion in Mx
gp

, then we have that Mx
red → M

red

s(x) is

Kummer.

Definition 2.14.4 For a monoid M , we denote by M (n), the image of M under the

n-th power map M → M (m 7→ mn). Let (X,M) be a rationally fine log variety

with a rational chart X → AP . We define the multiplicity of P at a point x ∈ X as

mP (x) := min{n > 0 | (MX,x
gp

)(n) ⊂ P a
x

gp}. Since P is a rational chart, mp(x) exists

and is finite.

Lemma 2.14.5 Let (X,M) be a rationally fine log variety and P → M a rational

chart at x ∈ X. If M
(n)
X,s(x) ⊂ P a

s(x), and Mx → Ms(x) is injective, then mp(x) ≤ n.

Moreover, the multiplicity mP is lower semi-continuous on the stratum corresponding

to s(x).

Proof Let s := s(x), and sα be the stratum corresponding to s. Since (by 2.14.2)

P a
x = P a

s , we have the following diagram,
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0 0

0 P a
x

gp
MX,x

gp

0 P a
s

gp
MX,s

gp

0

Hence, given m ∈ MX,x
gp ⊂ MX,s

gp
, if mj ∈ P a

s

gp
, then mj ∈ P a

x

gp
. This proves

the first claim.

To prove semi-continuity, let m ∈MX,x
gp

be such that mj /∈ P a
x

gp
for some j > 0.

There exist a neighborhood U of x, such that for any y ∈ U∩sα, we have m ∈MX,y
gp

.

So for every y ∈ U ∩ sα we must also have mj /∈ P a
y

gp
, because s ∈ U ∩ sα. Hence

{y ∈ sα | mp(y) > j} is open in sα.

Corollary 2.14.6 Let x ∈ X. If Mx = M s(x), then in s(x) (the stratum) there exists

a neighborhood U ⊂ s(x) of x , such that for any y ∈ U , we have My = M s(x).

Proof This is a direct consequence of 2.14.5.

Lemma 2.14.7 Let X be a rationally fine log variety. Let sα, sβ be two generic

points of a strata, such that sα specializes to sβ. Let P → M be a rational chart at

sβ ∈ X. Furthermore suppose the cospecialization map Msβ →Msα is surjective, then

mP (sα) divides mP (sβ).

Proof Denote nα := mP (sα) and nβ := mP (sβ). By definition of nβ, we have that

M
nβ
sβ
⊂ P a

sβ . Any two elements m1,m2 ∈ M
nβ
sβ , mapping to the same m in M sα ,

must differ by a unit in sα. So there exists a morphism M
nβ
sα → P a

sα filling in the

diagram.

M
nβ
sβ

M
nβ
sα

P a
sβ P a

sα
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Moreover, M
nβ
sα → P a

sα must be injective. To see this, consider any two elements

m1,m2 ∈M
nβ
sα mapping to the same element m ∈ P a

sα . Let m′1,m
′
2 ∈M

nβ
sβ be liftings

of m1,m2 respectively. As m′1,m
′
2 both map to m ∈ P a

sα , then m′1,m
′
2 must differ by

a unit in sα and so m1 = m2.

Hence nα ≤ nβ. Let nβ = knα + r for 0 ≤ r < nα. For any m ∈ M sα , we have

mr = mnβ/mknα ∈ P agp

sα , and since nα is minimal with respect to this property, we

must have r = 0.

2.15 Second assumption on the log structure of rational log varieties

2.15.1 . Let (X,M) be a rationally fine log scheme satisfying 2.13.1. In the rest

of the paper, in order to avoid pathologies, we will generally require that (X,M)

satisfies the following extra assumption:

(*) For any two generic points of strata s, s′, such that s′ specializes to

s, the cospecialization map Ms →Ms′ is surjective.

Lemma 2.15.2 Let (X,M) be a rationally fine log variety satisfying 2.13.1. Then

(X,M) satisfies 2.15.1 if and only if at every generic point of strata, we can find a

neighborhood where the log structure is fine.

Proof Sufficiency is clear since condition 2.15.1 holds for a fine log structure.

We prove necessity. Let s be a generic point of strata, consider a rational chart

P → M optimized at s, i.e. Ms = P . Then by 2.14.5, there is a neighborhood U of

s, where P is defined, and such that for every y ∈ U ∩ s, we have that mP (y) = 1.

Restricting U , we may suppose that it contain only points of strata specializing to s.

Let s′ be a stratum specializing to s, then for any point y ∈ U in the same stratum of

s′, we have the following factorization P →My →Ms′ . By 2.14.7, we must have that

P → Ms′ is surjective and hence, so is My → Ms′ . The cospecialization morphism

must also be Kummer My →Ms′ , therefore an isomorphism, so P →My is surjective.

Thus by 2.7.1 we have M |U = P a .
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The above lemma suggests the following definition.

Definition 2.15.3 We say a rational log structure is generically fine (fs) if it is

rationally fine (fs) and it satisfies 2.13.1 and 2.15.1 (*) above.

Example 2.15.4 Let X = spec(k[x, y]), with log structure along y = 0 defined by

(x2, y), and at y 6= 0, to be induced from [x] → k[x, y]. Then (x2, y)a → M is

Kummer, but it does not satisfy (∗) for the rank strata s′ := {x = y = 0} and

s := {x = 0, y 6= 0}.

2.16 Condition for being coherent

2.16.1 . Let (X,M) be a rationally fs log variety. Given x ∈ X, let s(x) denote the

generic point of the rank stratum of x. We let s(x) denote the actual stratum (not

just the generic point). Consider the cospecialization map α : Mx → Ms(x). Since X

is rationally fs, this morphism is a Kummer extension (2.14.1, 2.14.3).

Denote by Xcoh the points in X where the log structure is coherent, by definition

Xcoh is open.

Lemma 2.16.2 Let (X,M) be a generically fs rational log variety and let x ∈ X.

Then, x ∈ Xcoh if and only if α : Mx →Ms(x) is an isomorphism.

Proof Necessity is clear since any chart P at x must also be a chart at s(x), hence

PO∗X,x/O∗X,x = Mx → Ms(x) = PO∗X,s(x)/O∗X,s(x) is surjective. Since by hypothesis α

is also injective (it is Kummer), then it is an isomorphism.

For the sufficiency, note that for each stratum s the set Us := {y ∈ s | My →

M s is an isomorphism } is open in s by 2.14.6. Choose an open neighborhood U of

x containing only points in strata specializing to s(x) and which has an optimized

rational chart P at x. Given a stratum s specializing to s(x), then we claim that

s \ Us (as defined above) does not contain any component specializing to x.

To see this, suppose that l is the generic point of a component of s\Us, specializing

to x. Then Mx →M s factors as Mx →Ml →Ms. Since by assumption Mx = Ms(x),
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andMs(x) →Ms is surjective, thenMl →Ms must be surjective. Given thatMl →Ms

is Kummer, then Ml →Ms must be an isomorphism, and so l ∈ Us, a contradiction.

Therefore, no component of s \ Us specializes to x. So there is an open V ⊂

∪s(Us ∩ U) containing x. For any y ∈ V we have a surjective morphism Mx =

M s(x) →M s(y) = My. The optimized rational chart P must actually be a chart on V

by 2.7.1, since P a →M is injective (it is Kummer) and P →M is surjective on V .

Remark. In fact, in the above proof, we do not need that the strata are irreducible.

One could instead take the generic points of the components of a stratum, and require

that the cospecialization map is surjective on the sharpened stalks of the log structure

at those points.

2.17 Kummer modification towards fs

In this section, (X,M) will denote an irreducible generically fs rational log variety,

such that M ⊂ OX \ {0}.

Proposition 2.17.1 Let (X,M) be a saturated rational log variety over a field k of

characteristic zero, which is generically fs and M ⊂ OX \ {0}. Then, étale locally at

every x ∈ X, there exists a finite morphism of Kummer type f : X ′ → X, where X ′

is fs above x. If X is normal, then f is étale over the logarithmically trivial locus of

X.

2.17.2 Outline of the strategy. In view of 2.16.2, we seek to make α : Mx →

Ms(x) an isomorphism. Our approach is given by constructing a normalized Kummer

cover of X. That is, given a point x ∈ X and an optimized rational chart X → AP ,

we want to find a Kummer extension P ⊂ P ′, such that on some components of the

normalized fiber product X1 := (X ×P P ′)n, we have that MX1 is fs.
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We emphasize that X ×P P ′ might not be reduced or irreducible. By the nor-

malization (X ×P P ′)n, we mean the disjoint union of the normalized components of

X ×P P ′ with reduced induced structure.

Example 2.17.3 Consider A1 = spec(k[x]) with the log structure induced from x 6=

0. Let A1 → A1 be the Kummer morphism induced from x → x2. Then, in the

category of varieties Z := A1 ×A1 A1 = A1 t A1 and MZ is induced from x 6= 0 on

each copy of A1.

Proof (Proof of Proposition 2.17.1)

Étale locally, we can find a rational chart X → AP , with P ∼= MX,x. Denoting

P ′ := Ms(x) and X0 := X ×P P ′, we have the following diagram where the vertical

arrows are Kummer.
X0 AP ′

X AP

Let X1 be the closure of Xtr ×P P ′ in the normalized fiber product (X ×P P ′)n,

whose log structure is that associated to (MX ⊕P P ′)sat. We will show that for any

point x1 ∈ X1, above x ∈ X, we have that X1 is fs above x.

Since X1 is normal, then (MX ⊕P P ′)sat does in fact have a map to OX1 .

For any point x1, above x, the map MX,x → MX1,x1 is Kummer. Therefore, the

groups MX,x
gp

, MX1,x1

gp
have the same rank. Hence, X1 → X0 preserves the rank

strata.

Consider a generic point of a component of strata s′ ∈ X1, lying above the generic

point of strata s ∈ X, which specializes to s(x). Then as X0 is generically fs at

s(x), étale locally, we have Ms = P ′O∗X,s. Hence, the stalk of MX1,s′ is associated to

(P ′O∗X,s⊕PP ′)sat. SinceMs is saturated, we have a map (Ms ⊕P P ′)sat →Ms (induced

from a chart P ′ →Ms) which is a section to the Kummer map Ms → (Ms ⊕P P ′)sat.

Therefore, (Ms ⊕P P ′)sat
red
→Ms is an isomorphism. As (Ms ⊕P P ′)sat is saturated,

then (Ms ⊕P P ′)sat
red

= (Ms ⊕P P ′)sat. Thus MX1,s′ = MX,s.
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Let s′1, s′2 be generic points of components of strata on X1, such that s′1 specializes

to s′2. Let s1 and s2 be their corresponding images in X. Then, by the above, the

cospecialization morphism MX1,s′2
→ MX1,s′1

coincides with MX,s2 → MX,s1 , which is

surjective.

Thus, by 2.16.2, and the remark immediately afterwards, it is enough to show

that MX0,x0 = MX0,s(x0).

Since X is rationally fs then, by 2.9.3, étale locally we may construct a Kummer

extension P ⊂ Q, such that Q is a saturated optimized chart at s(x). As Q is

saturated, moding out by the torsion, we may suppose that Q is reduced, so Q =

Q = MX,s(x). By definition of X1, we have that (Q⊕P P ′)sat is an optimized chart at

s(x0). Given that Q = MX,s(x) = P ′, then we may compute MX0,s(x0) as (P ′ ⊕P P ′)sat.

Since P ′ is saturated, we have an induced morphism (P ′ ⊕P P ′)sat → P ′ which

is a section to the Kummer map P ′ → (P ′ ⊕P P ′)sat. Hence, as (P ′ ⊕P P ′)sat is

saturated, then (P ′ ⊕P P ′)sat = P ′ ⊕ τ , where τ is a torsion group. Therefore,

MX0,s(x0) = (P ′ ⊕P P ′)sat = P ′ = MX0,x0 .

Suppose the X that we started with, is already normal. Given that Xtr ×P P ′ →

Xtr is étale (since all the elements in P are invertible in Xtr), then X1 → X is étale

over the logarithmically trivial locus.

Remark. The condition of taking the closure of (Xtr ×P P ′) in (X ×P P ′)n is

imposed so that we don’t get components in X1, where the structure map MX1 → OX1

sends an element m ∈ M1 to 0. It is not strictly necessary at this point, but it will

become important in the following sections. Hence, we prefer to include it.
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3. KUMMER FS VARIETIES

In this section, unless stated otherwise, all log varieties considered will be normal

and rationally fs over a field k of characteristic zero. Moreover, we assume that for

every rational log variety (X,M), the log structure M is locally (on every component)

contained in OX \ {0}. Note that this last condition implies that the logarithmically

trivial locus Xtr is dense in X.

3.1 Normal rational log varieties

Notation. For a variety X, non necessarily irreducible, we denote it’s normaliza-

tion (i.e. the disjoint union of normalized components) as Xn.

Example 3.1.1 Saturating a rational log variety with respect to rational charts, as in

the case fine schemes, is not well defined. For example, consider X = spec(k[x2, xy, y])

with log structure y 6= 0. At the origin N → k[x2, xy, y] (1 7→ y) is an optimized ra-

tional chart. Hence X ×NNsat = X. On the other hand at any point (x0, 0) (x0 6= 0),

we have that P := [x±2, xy, y] is an optimized rational chart. So X ×P P sat =

spec(k[x±1, y]) which is not a Zariski open neighborhood of X ×N Nsat = X. Thus

saturation does not glue in Zariski topology.

Even if we consider a normal variety, saturation of rational log schemes is not

well defined. For example, let X = spec(k[x, y]), and consider the morphism π :

spec(k[x, y])→ spec(k[x2, xy, y2]). Give spec(k[x, y]) the pullback log structure π−1(y 6=

0). Even though, as in the lemma below, for an optimized rational chart P →MX , X

is a component of (X ×P P sat)n, the induced sheaves do not glue for charts optimized

at different points.
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Lemma 3.1.2 Let (X,M) be a normal rational log variety (not necessarily saturated)

and let X → AP be an rational chart optimized at some point x ∈ X. Then (scheme

theoretically) X is a component of (X×P P sat)n, and the rational log structure induced

by (M ⊕P P sat) (on X) is independent of P .

Remark. Note that this log structure does depend on the point x.

Proof We show first that X is a component of (X ×P P sat)n. Note that AP sat

corresponds to some components of AnP . Given that X → AP is a chart, then X×PP gp

is a nonempty open subset of X. Since X is normal, we see by 3.2.1, that X → AP

lifts to a morphism X → AP sat . Also by 3.2.1, we get an induced morphism X →

(X ×P P sat)n which gives a right inverse to the projection (X ×P P sat)n → X. Thus

X is a component of (X ×P P sat)n.

To see that the log structure induced by M⊕P P sat is independent of P , note that

given any other rational chart R→M (which we can assume injective), for any r ∈ R,

there is p ∈ P and u ∈M∗
x such that r = pu. Moreover for any r′ ∈ Rsat, then as OX

is normal, then r′ ∈ OX and there exists an n such that (r′)n := r ∈Mx. So (r′)n = up

for some u ∈ O∗X and p ∈ P . On the other hand since P is optimized, there exists a

unit v ∈ O∗x, such that r′ = vp1/p2 for some p1, p2 ∈ P . Since (p1/p2)n = (r′/v)n ∈Mx

and P is localized (i.e. p = uq ⇒ u ∈ P for p, q ∈ P , u ∈ O∗x), then p′ = p1/p2 ∈ P sat.

Hence O∗X,x ⊕R Rsat ⊂ O∗X,x ⊕P P sat.

To address the situation in the above remark, we instead consider the sheaf M sat

(i.e. the sheaf associated to U 7→M(U)sat).

Note first that for a normal variety, M sat is a well defined log structure, since

M ⊂ OX \ {0} and OX is normal, then M sat ⊂ OX \ {0}.

We check that for a normal, fine rational log variety (X,M), the sharpened stalks

(M sat)x are finitely generated, and so M sat defines a rational log structure on X.

Let U ⊂ X be an open subset. Since M(U) ⊂ K(X) (the function field of X),

M gp
x ⊂ K(X) and we have a factorization Lim M(U)gp → M gp

x ⊂ K(X), then

Lim M(U)gp ⊂ M gp
x . On the other hand, we have that each M(U)sat ⊂ M(U)gp
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so Lim M(U)sat ⊂ M sat
x ⊂ M gp

x . Hence, we must have that Lim M(U)sat ⊂ M sat
x .

Let P be an optimized rational chart at x. Since M is rational then, P is finitely

generated. The morphism P sat → M sat
x must be surjective. To see this, take m1,m2

in Mx such that (m1/m2)n ∈ Mx. Because P is an optimized chart, we get that

m1/m2 = up1/p2, where p1, p2 ∈ P and u ∈ O∗X . Hence (p1/p2)n ∈ Mx, and since

MX,x = PO∗X , then pn1/p
n
2 ∈ P . Thus p1/p2 ∈ P sat. Hence, as P is finitely generated,

then P sat is finitely generated and so M sat also finitely generated.

Definition 3.1.3 Let f : X → Y , g : Z → X be a morphisms of rational log

varieties. Let UZ ⊂ Z (resp. UX ⊂ X) denote the locus where the log structure

on Z (resp. X) is trivial. We define the fiber product, denoted by (Z ×Y X)n−log,

as the closure of (UZ ×Y UX)n in (Z ×Y X)n. Let πX : (X ×Y Z)n−log → X, πZ :

(X ×Y Z)n−log → Z, πY : (X ×Y Z)n−log → Y be the induced projections. The

log structure on (X ×Y Z)n−log is given by ((π−1
Z MZ ⊕π−1

Y MY
π−1
X MX)a)sat under the

induced morphism φ : π−1
Z MZ ⊕π−1

Y MY
π−1
X MX → O(Z×YX)n−log .

Lemma 3.1.4 (cf. [3, 4.6.16]) The log structure defined above on (X ×Y Z)n−log is

rational.

Proof We follow the argument in [3, 4.6.16] and adapt it to our setting.

Let W := (X×Y Z)n−log, w ∈ W . Denote x ∈ X, z ∈ Z, y ∈ Y the corresponding

images of w. Pick a rational chart P → MY , together with compatible rational

charts R→MZ , P → R, Q→MX , P → Q at the points y, x, z respectively. Denote

T := (R ⊕P Q)sat. Let P ⊂ P1 be an optimization of P . Note that (Q ⊕P P1)sat

is still a rational chart on some étale neighborhood of X (similarly for (R ⊕P P1)sat

and Z). Let (Q ⊕P P1)sat ⊂ Q1 be an optimization of (Q ⊕P P1)sat at some point

x1 above x, and (R ⊕P P1)sat ⊂ R1 an optimization of (R ⊕P P1)sat at some point
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z1 above z. Let T1 := (R1 ⊕P1 Q1)sat, then for some point w1 above w, (T1)aw1
=

((MZ,z1 ⊕MY,y1
Mx,x1)

sat)aw1
. Here is a diagram illustrating the situation.

T1 (T ⊕Q Q1)sat Q1

(T ⊕R R1)sat T Q (Q⊕P P1)sat

R P

R1 (R⊕P P1)sat P1

The morphisms T → (T⊕QQ1)sat, T → (T⊕RR1)sat correspond to optimizations,

hence T a → ((T ⊕Q Q1)sat)a, T a → ((T ⊕R R1)sat)a are both Kummer. Since T1 =

(T ⊕Q Q1)sat ⊕T (T ⊕R R1)sat, then (T )aw1
→ (T1)aw1

must be a Kummer. This works

for any points x ∈ X, y ∈ Y , z ∈ Z, where Q,P,R are rational charts (even though

the Q1, P1, R1 might be different depending on the points chosen), hence α : (T )a →

((π−1
Z MZ ⊕π−1

Y MY
π−1
X MX)a)sat is Kummer.

Remarks. We note that (Z ×X Y )n−log might be empty even if the underlying

scheme of (Z ×Y X) is non empty.

Let UY ⊂ Y be the logarithmically trivial locus. Then UZ ×Y UX = UZ ×UY UX ,

because logarithmic morphisms must restricts to morphism on logarithmically trivial

loci (these follows because morphisms of schemes induce local homomorphisms of

local rings).

This definition does not give a categorical fiber product of rational log varieties.

However, it will satisfy the universal property of fiber product when we restrict to

Kummer étale maps (see 3.8.6).

Example 3.1.5 Let P → Q, P → R be morphisms of fs monoids and let T :=

(R ⊕P Q). Suppose R,P,Q are torsion free, then (AR ×AP AQ)n−log = AT sat. To

see this, note that AT int is the closure of AT gp in AT (AT gp → AT is always an open

immersion). Then we have that AT sat is the normalization of AT int (this can be seen
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from the universal property of normalization and using the fact that AT sat is normal).

Finally note that (Rgp ⊕P Qgp) is a group, and hence (Rgp ⊕P Qgp) = (R ⊕P Q)gp =

(Rgp ⊕P gp Qgp) by the universal property of pushouts and groupification.

3.2 Normally log smooth morphisms

We revisit normally log smooth morphisms introduced in [3]. Most of the results

in this section can be found there. We rewrite the proofs for completeness.

Lemma 3.2.1 Let X, Y be irreducible varieties. Denote by Ynor ⊂ Y , the maxi-

mal open subset of Y which is normal. Let f : X → Y be a morphism such that

f−1(Ynor) 6= ∅. Then there is a unique component C in (X ×Y Y n) which dominates

X, and moreover Cn ∼= Xn.

Proof Let X0 := f−1(Ynor). Since Y n → Y is birational, the morphism X ×Y
Y n → X is an isomorphism above X0. Given that X0 is not empty, there is a

unique component C on X ×Y Y n which dominates X. Since the morphism C →

X is dominant, then by the universal property of normalization we get an induced

morphism Cn → Xn. Moreover Cn → Xn must be birational and finite, thus Cn ∼=

Xn.

Remark. The hypothesis for f : X → Y in the above lemma is satisfied, in

particular, if f is dominant.

Lemma 3.2.2 Let P → Q be an injective log smooth morphism of fs monoids. Then

AQgp → AP gp is surjective in the underlying schemes. Moreover, given a rational log

variety Z, together with a log morphism Z → AP , then Z ×P P gp is non empty and

Z ×Q Qgp → Z ×P P gp is surjective.

Proof Consider the exact sequence 0 → P gp → Qgp → Qgp/P gp → 0. Choosing

a splitting Qgp/P gp = Zn ⊕ T (where T is torsion), we get a factorization P gp →

Zn ⊕ P gp → Qgp of the inclusion P gp ⊂ Qgp. The first map is the canonical inclusion
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and the second map has finite cokernel. Therefore AP gp⊕Zn → AP gp is surjective and

AQgp → AP gp is finite surjective. Hence AQgp → AP gp is surjective.

For the second assertion, since Z → AP is a log morphism, and no element of

P goes to zero on OZ , the localization OZ [P−1] is non zero (OZ has no nilpotent

elements since Z is a variety) and thus Z ×P P gp is non empty. Since surjectivity is

preserved by base change, then Z ×Q Qgp → Z ×P P gp is surjective.

Lemma 3.2.3 Let f : X → Y be a morphism of non-empty normal irreducible

rational log varieties. Suppose there exists a chart P → Q of f , which is log smooth

as a morphism of monoids. Then the induced morphism j : X → (Y ×P Q), has a

factorization X → (Y ×P Q)n−log → (Y ×P Q).

Proof Let Y0 be the logarithmically trivial locus, that is Y0 := Y ×P P gp. Note that,

since we assume MY ⊂ OY \ {0}, then Y0 is non-empty. Since P → Q is log smooth,

then the restriction AQgp → AP gp is classically smooth. Therefore Y0 ×P gp Qgp → Y0

is also classically smooth. Since AQgp → AQ is an open immersion, then Y0 ×P gp Qgp

is open in Y ×P Q. Given that Y0 ×P gp Qgp → Y0 is smooth, then Y0 ×P gp Qgp must

lie within the locus where Y ×P Q is normal.

On the other hand, let X0 := X ×Q Qgp be the logarithmically trivial locus of

X. Similarly as above X0 is non-empty. Since j(X0) ⊂ Y0 ×P gp Qgp, we get that

j−1(Y0 ×P gp Qgp) is non empty in X. Thus by 3.2.1, we have an induced map X →

(Y ×P Q)n factoring j. Now, as X0 is non empty and maps to Y0, then (from the

definition of (Y ×P Q)n−log) we see that the morphism X → (Y ×P Q)n, factors as

X → (Y ×P Q)n−log → (Y ×P Q)n.

Definition 3.2.4 [3] Let f : X → Y be a morphism of normal rationally fs varieties.

We say f is normally log smooth (étale) if we can find a rational chart (P →MX , Q→

MY , P → Q), which is log smooth (étale) and such that the induced map X →

(Y ×P Q)n−log is étale.

Such a chart P → Q, will be called a smooth (étale) chart of f .
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Lemma 3.2.5 Let f : X → Y be a morphism of normal rationally fs varieties. Let

(P → Q,P → MY , Q → MX) be a rational chart of f . There exists an optimized

rational chart of f containing (P → Q).

Proof By 2.9.1, étale locally, we can find an optimized rational chart P ′ → MY ,

containing P → MY . Let Q′ be the saturated pushout P ′ ← P → Q. Then, since

MX is saturated, there is an induced map α : Q′ → MX , factoring Q → MX . For

any q1, q2 ∈ Q′ such that α(q1) = α(q2), we have that qn1 = qn2 (because Q → Q′ is

Kummer and Qa → MX is injective). Thus after localizing α : Q′ → MX (that is,

replacing Q′ by Q′[(α−1(M∗
X))gp]) then Q′ →MX becomes a rational chart. Let Q′′ be

the optimization of Q′. Considering the induced map P ′ → Q′′, we get an optimized

chart of f containing the original P → Q.

Lemma 3.2.6 (Kato’s Lemma) [8](lemma 3.1.6), (c.f. [11] (lemma 2.8)). Let φ :

P → Q be an injective smooth morphism of fs monoids. Let P ′ → P be an inclusion

of fs monoids such that (P ′)/(P ′)∗ = P/P ∗. Then, after an étale extention of P ,

there exists an fs monoid Q′ ⊂ Q, such that:

1. P ′ ⊂ φ−1(Q′)

2. the restriction P ′ → Q′ is smooth.

3. Q = P ⊕P ′ Q′.

Proof Consider the induced group exact sequence 0→ P ′gp → P gp → T → 0. After

applying Hom(−, P gp/Qgp), we get a short exact sequence

Ext1((P ′)gp, P gp/Qgp)→ Ext1(P gp, P gp/Qgp)→ Ext1(T, P gp/Qgp).

We must show that the class in Ext1(P gp, P gp/Qgp), corresponding to

0→ P gp → Qgp → P gp/Qgp → 0,

maps to zero in Ext1(T, P gp/Qgp).
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Let R denote the pushout T ← P gp → Qgp. We will show that, after an étale

extension of P , the exact sequence

0→ T → R→ P gp/Qgp → 0

splits.

Let m ∈ P gp/Qgp be a torsion element. Let m ∈ Qgp be a lift of m. Then, for

some n > 0, we have that mn ∈ P gp. Since (P ′)/(P ′)∗ = P/P ∗, multiplying by an

appropriate u ∈ P ∗, we can lift umn to P ′.

Consider the extension P ∗ → P ∗[u1/n], and let P ′′ be the pushout P ∗[u1/n] ←

P ∗ → P . By definition P ⊂ P ′′, is an étale extension.

Now replace Q with the (saturated) pushout P ′′ ← P → Q. Replace T with the

pushout (P ′′)gp ← P gp → T . Then replace R with the pushout T ← (P ′′)gp → Qgp.

Note that, after pushout, P gp/Qgp remains unaltered.

In P ′′ we have v := u1/n ∈ (P ′′)∗, thus (vm)n ∈ P . So the image of (vm)n must be

zero in T (and hence also in R). Thus the image of vm ∈ Qgp in R is a n-th torsion

element above m.

Repeating this process for a set of generators of the torsion part of P gp/Qgp, we

can construct a splitting of R→ P gp/Qgp.

Corollary 3.2.7 Let f : X → Y be a normally log smooth (étale) morphism. Let

Y → AP be a rational chart. Then, étale locally on X, we can find a smooth (étale)

rational chart P → Q,Q→MX of f , extending P .

Proof We only address the smooth case, the étale case has the same proof after

replacing “smooth” by “étale”.

Let R → T,R → MY , T → MX be a smooth chart of f . Recall that we always

assume that charts are saturated, hence both R and T are saturated.

Let K be the kernel of Rgp → T gp. Since R→ T is smooth, then K is finite. Since

R is saturated, then K ⊂ R∗. Hence, considering a section R → R, and replacing T

with (T ⊕R R)sat, we get an injective log smooth chart R→ T of f .



35

Hence, we can assume Rgp → T gp is injective.

Find a chart S → MY containing both, R and P . For instance consider α : (R ⊕

T )gp →M gp
x and let S be the inverse image of Mx (S is saturated by construction).

Let L := (S ⊕R T ) (it is already saturated since S = RS∗). Then S → L is a log

smooth chart of f .

By Kato’s lemma, applied to P → S, S → L, étale locally on X, we get a chart

Q→MX and a smooth morphism P → Q such that L = (Q⊕P L). Thus P → Q is

a smooth rational chart of f , extending P .

3.2.8 . By the above corollary, 3.2.5, and Kato’s lemma (see the proofs in [8] [lemma

3.1.6], c.f. [11](lemma 2.8)), any normally log smooth morphism has an optimized

smooth chart.

Corollary 3.2.9 Let f : X → Y be normally log étale and of Kummer type. Then,

étale locally we can find a log smooth chart P → Q of f which is Kummer. We call

such morphisms Kummer normally log étale.

Proof Étale locally, for any points x ∈ X, y := f(x), we can find a log étale

optimized rational chart P → Q of f . Moreover, we can assume that P is sharp.

Hence, as MY,y →MX,x is Kummer and the cokernel of P → Q is finite, then P → Q

must actually be Kummer.

Lemma 3.2.10 Let X → Y , Z → Y be morphisms of normal rational log varieties.

Assume that Xtr → Ytr is smooth (e.g. if X → Y is normally log smooth). Suppose

that (Xtr ×Ytr Ztr) 6= ∅. Then for any normal rational log variety W with morphisms

W → Z, W → X which coincide after composing with X → Y , Z → Y respectively,

we get a unique factorization W → (X×Y Z)n−log. That is, if Xtr → Ytr is classically

smooth and (Xtr×YtrZtr) 6= ∅, then the n−log fiber product is a colimit in the category

of normal rational log varieties.

Proof Given that under out assumptions of rational log varieties are MX ⊂ OX\{0}

(same for Y and Z) then Wtr maps to Xtr and Ytr and so we get a morphism Wtr →
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Xtr ×Ytr Ztr. Since Xtr → Ytr is smooth, then so is Xtr ×Ytr Ztr → Ztr and hence

Xtr ×Ytr Ztr is already normal. Thus if W 6= ∅, then by 3.2.1, and the definition of

()n−log, we get a unique morphism W → (X ×Y Z)n−log.

Corollary 3.2.11 Let X → Y , Y → Z, W → Z be morphisms of normal rational log

varieties, such that X → Y and Y → Z are smooth on their respective logarithmically

trivial loci. Suppose that (Wtr ×Ztr Xtr) 6= ∅. Then ((W ×Z Y )n−log ×Y X)n−log =

(W ×Z X)n−log

Proof This is immediate from the universal property above.

Proposition 3.2.12 [3] Normally log smooth (étale, Kummer étale) morphisms are

preserved under composition.

Proof Let f : X → Y , g : Y → Z, be normally log smooth morphisms. By 3.2.7,

we can construct smooth optimized charts P → MZ , Q → MY , R → MX , P → Q,

Q→ R (same monoid Q) of f and g respectively.

The following diagram, with normalized Cartesian squares (see 3.2.11), illustrates

the situation.

X (Y ×Q R)n−log (Z ×P R)n−log AR

Y (Z ×P Q)n−log AQ

Z AP

Since Y → (Z ×P Q)n−log is étale, base changing with respect to R, we get that

(Y ×Q R)n−log → (Z ×P R)n−log is also étale. Now, given that Q → R is a smooth

chart of f , we get that the composition X → (Y ×QR)n−log → (Z×P R)n−log is étale.

The cases of étale and Kummer étale follow from the analogous argument.

Lemma 3.2.13 Let f : Y → X be a normally log smooth morphism of normal

rational log varieties , and g : Z → X a morphism of normal rational varieties.

If (Z ×Y X)n−log is non empty, then the induced morphism (Z ×Y X)n−log → Z is

normally log smooth.
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Example 3.2.14 (cf. [12, Appendix B.1.]) Consider the morphism of monoids N2 →

N2 ( (1, 0) 7→ (1, 0), (0, 1) 7→ (1, 1) ), inducing the morphism of monoschemes

spec(k[x, y/x]) → spec(k[x, y]). This morphism is classically log étale. Consider

the open subset U ⊂ spec(k[x, y/x]) where y/x 6= 1. Let N2 → N be the sum inducing

the diagonal morphism spec(k[t]) → spec(k[x, y]). Denote Y := spec(k[x, y]), Z :=

spec(k[t]), then (U ×Y Z)n−log is empty.

Proof (Proof of Lemma 3.2.13)

Let z ∈ Z, y ∈ y such that f(y) = x = g(z). Étale locally we can find a smooth

injective rational chart P → Q of f , and a rational chart P → R of g (same P for

both charts).

Since P → Q is log smooth, then X ×P Qgp → X ×P P gp is classically smooth.

Hence, as X×P P gp → X is an open immersion, X×P Qgp must be normal. By 3.2.2,

Z ×P Qgp is nonempty.

Given that Z ×P Qgp is the inverse image of X ×P Qgp under Z ×P Q→ X ×P Q,

then (by 3.2.1) the folowing diagram is normalized Cartesian (upto components of

Z ×X (X ×P Q)n which do not dominate Z).

(Z ×P Q)n (X ×P Q)n

Z X

Similarly, letting T := (P⊕QR)sat, we get that the following diagram is normalized

Cartesian (upto non dominating components above Z)

(Z ×P Q)n AT

Z AR

In particular, the induced morphism (Z×PQ)n → (Z×RT )n is an open immersion.

Let (Z ×X Y )n, denote only those components in the normalized fiber product

which dominate Z. Since Y → (X ×P Q)n is étale (P → Q was chosen as a smooth

chart), then the following diagram is Cartesian.
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(Z ×X Y )n Y

(Z ×P Q)n (X ×P Q)n

Hence (Z ×X Y )n → (Z ×P Q)n → (Z ×R T )n is étale. We conclude that R→ T

is a log smooth chart making (Z ×X Y )n → Z normally log smooth.

Since log morphisms restrict to morphisms of logarithmically trivial loci, we can

replace all normalizations ()n by ()n−log and get that (Z ×X Y )n−log → Z is normally

log smooth (whenever (Z ×X Y )n−log 6= ∅).

Finally we end with a lemma which we shall use in the following sections.

Lemma 3.2.15 Let f : X → Y and g : Y → Z be two morphisms of normal rational

log varieties. If g ◦ f is normally log smooth (étale, Kummer normally log étale)

and g is Kummer normally log étale, then f is normally log smooth (étale, Kummer

normally log étale).

Proof By Kato’s lemma, up to an étale cover we can assume that there are common

smooth charts (P → P ′, P →MZ , P
′ →MY ), (P → T, P →MZ , T →MX) (same P

in both charts, P → P ′ Kummer) optimized at points x ∈ X, y ∈ Y , z ∈ Z above

each other.

Let R := (T ⊕P P ′)sat.

Consider the normalized Cartesian diagram

(X ×T R)n−log (Z ×P R)n−log AR

X (Z ×P T )n−log AT

Since X → (Z ×P T )n−log is étale, then (X ×P R)n−log → (Z ×P R)n−log is also étale.

Similarly from the diagram

(Y ×P ′ R)n−log (Z ×P R)n−log AR

Y (Z ×P P ′)n−log AP ′
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We conclude that (Y ×′P R)n−log → (Z ×P R)n−log is étale.

Then letting X ′ be the base change

X ′ (X ×T R)n−log

(Y ×P ′ R)n−log (Z ×P R)n−log

We see that both X ′ → (X ×T R)n−log and X ′ → (Y ×′P R)n−log are étale .

Since X is saturated, we get a morphism X → AR. Let X → (X×T R)n−log be the

induced morphism. This is a right inverse to (X ×T R)n−log → X. So X must be a

component of (X×TR)n−log, since (X×TR)n−log → X is finite. Moreover, the image of

X ′ in (X×TR)n−log contains theX component since the morphismX → (X×TR)n−log

factors through X ′. Hence, restricting to a component of (X×TR)n−log, we have found

an étale neighborhood X ′ → X, such that X ′ → Y is normally log smooth (étale,

Kummer normally log étale).

Note also that the induced morphism X → R is in fact a rational chart. To see

this, note first that the composition T a → Ra → MX and the morphism T → R are

Kummer. Let α : R→MX be the induced morphism. Since R is saturated, any two

elements r1, r2 ∈ R mapping to the same monomial in MX must differ by a torsion

element in R∗. Therefore, r1 and r2 are identified in Ra, so Ra →MX is Kummer.

3.3 Saturation of log structures and definition of Kummer fs variety

Definition 3.3.1 Let (X,M) be a normal rational log variety. We denote by Xsat

the log variety whose underlying scheme is X, and whose log structure MXsat is the

sheaf associated to the presheaf by U 7→ {f ∈ OX(U) | fn ∈M}. Since X is normal,

then M sat ⊂ MXsat ⊂ OX . We call MXsat the saturation of M in OX . We say M is

saturated in OX if M = MXsat.
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Example 3.3.2 Consider X := spec(k[x2, xy, y2]) with fs log structure M induced by

the chart spec(k[x2, xy, y2])→ spec(k[y2]). Then, (X,M) is not saturated since away

from the origin (xy)2 is in the log structure, but (xy) is not.

Remark. Let (X,M) is an rational normal log variety. Then (X)sat → X need not

be strict, even if X and (X)sat are fs. For example, X = spec(k[x]) with log structure

associated to N → k[x] (1 7→ x2). Then Xsat → X is not strict. If M = MXsat we

say M is saturated in OX .

3.3.3 . We recall the conditions satisfied by generically fs rational log varieties from

the last section.

• 2.13.1 In the rank stratification of (X,M), every point is in a unique irreducible

component of its stratum.

• 2.15.1 If s′, s are generic points of rank strata, such that s′ specializes to s, then

the cospecialization map M s →M s′ is surjective.

Definition 3.3.4 Let X be a rational log variety, X → AP a rational chart and

P ⊂ P ′ be a Kummer extension. We call the induced morphism (X ×P P ′)n−log → X

a Kummer cover.

Definition 3.3.5 A Kummer fs variety is a normal rational log variety (X,M) with

MX saturated in OX and such that, étale locally at every point x ∈ X, there is a

Kummer cover X ′ → X which is fs.

Remark. Let X be a generically fs rational log variety. By 2.17.1, étale locally

at every x ∈ X, there is a Kummer cover X ′ → X, such that X ′ is fs. Hence, a

saturated generically fs rational log variety is Kummer fs.

Definition 3.3.6 Let X be a Kummer fs variety and U → X an étale neighborhood.

A Kummer cover U ′ → U , where U ′ is fs, will be called an fs Kummer neighborhood.
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3.3.7 . Let (X,M) be a generically fs rational log variety over a field K. For x ∈ X,

denote n(x) := |Ms(x)
gp

: Mx
gp|. We say K has sufficient roots of unity with respect

to (X,M) if K has n(x) distinct n(x)-th roots of unity for every x ∈ X.

3.3.8 . Let X be a rational log variety. Given a point x ∈ X, whenever we speak

of the generic point of it’s stratum s(x), we implicitly assume that X satisfies 2.13.1.

This is satisfied for all log structures induced from a codimension one closed subset

D in a variety X (see 2.13.2). In particular, quasi-toroidal varieties satisfy 2.13.1.

Lemma 3.3.9 Let X be a Kummer fs variety. Given an fs Kummer neighborhood

f : X ′ → X, and an optimized smooth Kummer chart P → P ′ (at x′ ∈ X ′, x =

f(x′) ∈ X respectively), we must have that P ′ is actually a chart of X ′ at x′.

Proof The log structure on (X ×P P ′)n−log is locally induced at any y ∈ (X ×P
P ′)n−log by taking (MX⊕P P ′)sat. Since P ′ is an optimized rational chart at x′, it must

also be an optimized chart along the rank stratum of x′ because (X×P P ′)n is fs at x′.

Therefore, in a neighborhood of x′, P ′ → (MX ⊕P P ′)sat is surjective (since (X×PP ′)n

satisfies 2.15.1). The result follows from 2.7.1 and because X ′ → (X ×P P ′)n is étale

strict.

3.3.10 . If X is fs and X ′ → X is normally Kummer log étale, then X ′ is fs.

This follows because, locally, we can find an optimized chart P → Q, such that

X ′ → (X ×P Q)n−log is étale strict, and (X ×P Q)n−log is fs.

3.3.11 . As a consequence of 3.3.10, we have the following. Suppose X is Kummer

fs and Y → X is Kummer normally log étale morphism of rational log varieties. Then

Y is has an fs Kummer neighborhood. To see this, let X ′ → X be an fs Kummer

neighborhood and let Y ′ := (Y ×X X ′)n−log. Then Y ′ → Y is Kummer normally log

étale. Moreover, Y ′ must be fs since X ′ is fs and Y ′ → X ′ is Kummer normally log

étale.
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3.4 Quasi log smooth morphisms

Definition 3.4.1 A morphism f : X → Y of rationally fs varieties will be called

quasi log smooth is at every x ∈ X, we can find a Kummer normally log étale neigh-

borhood X ′ → X, such that the composition X ′ → X → Y is normally log smooth.

Proposition 3.4.2 Let X → Y be a quasi log smooth morphism and let Z → Y be

a morphism of rationally fs log varieties. Suppose that (Z ×Y X)n−log 6= ∅. Then

(Z ×Y X)n−log → Z quasi log smooth.

Proof Let X ′ → X be a Kummer étale neighborhood, such that X ′ → Y is normally

log smooth. Restricting X, we have that X ′ → X is surjective and smooth above Xtr.

Similarly as X ′ → Y is normally log smooth, then X ′tr → Ytr is smooth. Therefore

Xtr → Ytr must also be smooth [13, Tag 02K5]. So, by 3.2.11, we have the following

normalized pullback diagram.

(Z ×Y X ′)n−log X ′

(Z ×Y X)n−log X

Z Y

Given that normally log smooth (Kummer normally log étale) morphisms are

preserved under base change (when the n-log product is nonempty), then (Z ×Y
X ′)n−log → (Z ×Y X)n−log is Kummer normally log étale. Similarly, as X ′ → Y is

normally log smooth, then so is (Z ×Y X ′)n−log → Z.

Proposition 3.4.3 Quasi log smooth morphisms are preserved under composition.

Proof Let X → Y , Y → Z be quasi log smooth morphisms. Consider a Kummer

normally log étale neighborhood Y ′ → Y such that Y ′ → Z is normally log smooth.

Since (Xtr ×Ytr Y ′tr) 6= ∅, then (X ×Y Y ′)n−log → Y ′ is quasi log smooth. Find

a Kummer étale neighborhood X ′′ → (X ×Y Y ′)n−log, for which the composition
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X ′′ → Y ′ is normally log smooth. Hence the composition X ′′ → Y ′ → Z is normally

log smooth. On the other hand, by base change, (X ×Y Y ′)n−log → X is Kummer

normally log étale. Hence, X ′′ → X is a Kummer étale neighborhood.

Remark. It follows by definition that normally log smooth morphism are quasi

log smooth.

3.4.4 . Quasi log smooth morphisms are not necessarily normally log smooth. Con-

sider the following example X := spec(k[x2, xy, y2])→ spec(k). Give X the log struc-

ture induced from y 6= 0 and spec(k) the trivial log structure. Then we can find

an fs Kummer neighborhood X ′ := spec(k[x, y]) → X such that X ′ → spec(k) is

log smooth (hence normally log smooth since the log structure on spec(k) is trivial).

However, f : X → spec(k) is not normally log smooth since the normalized base

change (spec(k)×P Q)n of spec(k), with respect to any rational chart P → Q of f , is

fs and X is not.

Example 3.4.5 Let X = spec(k[x2, xy, y2]) with log structure coming from X →

A1 = spec(k[y2]). Give A1 the standard log structure at the origin. Then the following

square shows that X → A1 is Kummer log smooth.

spec(k[x, y]) spec(k[y])

spec(k[x2, xy, y2]) spec(k[y2])

However, X = spec(k[x2, xy, y2]) → spec(k[y2]) = A1 cannot be normally log

smooth. To see this, choose the standard chart on A1 and notice that no rational chart

Q of X at the origin will give a strict étale map X → AQ, since the log structure on

X is not fs.

3.5 Quasi log smooth varieties

As a preliminary, we recall the definition of strongly equivariant morphism, and

Luna’s fundamental lemma for equivariant étale morphisms (for details see [14]).
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Since we will be working only with finite (hence diagonalizable) group actions on

affine varieties, we restrict to that situation in the definition and the statement of the

lemma, even though in [15] and [14], they are stated in much greater generality. In

particular, for an action of G (finite) on X, we may speak of the geometric quotient

X/G := spec(k[X]G).

Definition 3.5.1 ( [15], [14]) Let G be a diagonalizable algebraic group acting on

normal affine varieties X, Y , and let f : X → Y be a G-equivariant morphism. We

say that f is strongly G-equivariant if X = (X//G×Y//G Y ). Furthermore, if we also

have that f//G : X//G→ Y//G is étale, then we say that f is strongly étale.

Proposition 3.5.2 (Luna’s Fundamental lemma for étale morphisms)( [15], [14,

5.6.4])

Let G be a diagonalizable algebraic group acting on normal affine varieties X, Y ,

and let f : X → Y be a G-equivariant morphism. Then f is strongly étale if and only

if f is étale, it sends closed orbits to closed orbits and it preserves stabilizers.

Using Luna’s fundamental lemma, we can characterize generically fs rational log

varieties which are, Kummer locally, smooth over a field.

Proposition 3.5.3 Let (X,M) be a Kummer fs variety over field k (of characteristic

zero) with enough roots of unity. Suppose M is generically fs. Let x be a point in X.

Let P be a sharp optimized chart at x, and let P ′ ⊃ P be a Kummer extension, with

P ′ sharp, such that the associated Kummer cover is X ′ := (X ×P P ′)n−log is fs. If X ′

is classically log smooth over k, then (X,M) is quasi-toroidal.

Proof Step 1. By [5](proof of 8.3) we have that the underlying map of schemes

X ′ → AP ′ is smooth.

Step 2. Let x′ ∈ X ′ be a point above x ∈ X. Then GP = (P ′gp/P gp)∨ acts on

X ′. The induced map from the quotient X ′/GP → X must be finite and birational,

because GP acts transitively on the generic points of X ′ and these correspond to the
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inverse image of the generic point of X. Thus since X is normal, then X ′/GP → X

is an isomorphism.

Step 3. Let Gx ⊂ GP be the stabilizer at x′. Since X ′ → AP ′ is GP -equivariant,

we get a G := GP/Gx-equivariant map in the quotient X := X ′/Gx → A(P ′)Gx . Let

φ : X ′ → X be the quotient morphism. Now, G acts on X with no fixed points above

x, hence (restricting X) the quotient morphism X → X is étale at x0 := φ(x′).

Since P is an optimized sharp chart, P ′ is sharp, and X → X is étale, then

P ∼= MX,x
∼= MX,x0

∼= (P ′)Gx . Since GP acts effectively on P ′ this can only be the

case if GP = Gx. Thus x′ is fixed by GP .

Step 4. Given that the stratum s(x′) is fixed by the GP action, restricting X,

we can choose global semi-invariant functions generating the cotangent space to the

stratum s(x′). In this way, we obtain a factorization of X ′ → AP ′ through an GP -

equivariant morphism g : X ′ → An×AP ′ . Given that, by hypothesis, X ′ is log regular

(toroidal), g is in fact étale, as X → AP ′ , An × AP ′ → AP ′ are both smooth and

X → An×AP ′ is unramified. Since x′ is fixed by the GP action, by further restricting

X, we can assume that g respects stabilizers. The morphism g must send closed orbits

to closed orbits since GP is finite. Hence, by Luna’s fundamental lemma [14](5.6.4),

g is strongly étale and descends to an étale morphism X → AQ := (An × AP ′)/GP .

Step 5. Consider AP ′ ×An with the toric structure coming from P ′ and the semi-

invariant coordinates in An. Let σ be an associated cone to the toric structure on

AP ′ × An, with lattice structure N .

The action of GP factors through the action of the torus. That is, letting M :=

Hom(N,Z), then GP ⊂ Hom(M,k∗). Let Mσ := {m ∈M | g(m) = 1 for all g ∈ GP},

and denote Nσ := Hom(Mσ,Z).

Then, AQ coincides with a toric variety Xσ associated to σ and lattice Nσ ⊃ N .

The toric structure on Xσ is compatible with that on AP ′ ×An, making the quotient

morphism AP ′ ×An → Xσ toric. We emphasize that the rational log structure on Xσ

is coming from the quotient of the log structure induced by P ′ on AP × An (not the

toric structure).
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The toric structure on AP×An, coincides with that induced by σ, but with different

lattice structure than in the quotient Xσ. The triviality locus of the log structure

induced by AP ′ on AP ′ × An, comes from a face τ in σ. The chart AP ′ × An → AP ′ ,

corresponds to a face δ of σ. It is readily seen that σ = δ + τ and τ ∩ δ = 0. The

lattice structure on AP ′ × An is then given by N = Nτ ×Nδ.

Since the action of GP on AP ′ × An is toric, the locus where the rational log

structure on the quotient Xσ is trivial comes from the same face τ ≤ σ as above. The

rational chart AP corresponds to the face δ ≤ σ.

Step 6. The morphism An × AP ′ → Xσ is étale above Xτ (the locus where the

rational log structure is trivial on Xσ). This follows because the elements of P are

invertible on Xτ , and the fact that AP ′ × An is obtained as a component of the

normalized fiber product (Xσ ×P P ′)n.

Step 7. In particular, since An × AP ′ is toroidal, Xτ must be regular. Therefore,

τ must be a regular face of σ and so (Xσ, Xτ ) = (AQ, (P
′a)GP ) is a toric doubleton.

Step 8. Let M ′ := (P ′a)GP . Since M is invariant under the GP -action, then

M ⊂ M ′ ⊂ OX \ {0}. Moreover, M ⊂ M ′ must be Kummer as P is a rational chart

and P ⊂ P ′ is Kummer. Therefore, as M is saturated in OX , we get that M = M ′.

Hence, (X,M) is quasi-toroidal.

Remark. The hypothesis on sufficient roots of unity was used to ensure that the

group GP acts on X ′ with quotient X. If k does not have enough roots of unity, this

may not be the case. For example, consider X := spec(R[x3, x2y, xy2, y3]) with log

structure y 6= 0. It has a Kummer fs neighborhood at the origin given by A3 → X,

with induced group Z/3Z. However, this group acts trivially on A3, and hence X is

not a quotient of A3.

Lemma 3.5.4 [3, lemma 4.6.23] Let f : X → Y be a normally log smooth morphism,

with Y toroidal. Then X is toroidal and f is classically log smooth.

Proof Since Y is toroidal, at any point y ∈ Y we can find a chart Y → AP which is

étale. By Kato’s lemma, there exists a smooth chart P → Q of f , containing P . Then
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Y ×P Q → Q is étale, and hence Y ×P Q (before taking normalization) is toroidal.

Since, étale locally , the morphism X → (Y ×P Q)n = Y ×P Q is étale strict, we get

that X must be fs, with étale chart X → AQ. Moreover, X → Y is classically log

smooth.

Lemma 3.5.5 Let (X,M) be a Kummer fs variety over a field k of characteristic

zero, with enough roots of unity, and M generically fs. Suppose there exists a Kummer

cover X ′ → X, such that X ′ → k is log smooth. Then, there exists a Kummer cover

X ′′ → X, induced from a sharp optimized chart Kummer extension P ⊂ P ′ (with P ′

sharp), such that X ′′ → spec(k) is classically log smooth.

Proof Given a sharp optimized rational chart P at x ∈ X , by Kato’s lemma

for normally log smooth morphisms, we can find a Kummer extension P ⊂ P ′ (P ′

a saturated optimized chart of X ′) such that (X ×P P ′)n−log is fs and log smooth

over spec(k). Since P ′ is saturated, P is sharp, and P ⊂ P ′ is Kummer, then

the monoid morphism P ′ → P ′ := P ′/P ′∗ is log smooth. Therefore (X ×P P ′)n

must be normally log smooth over spec(k). Since spec(k) is toroidal then, by 3.5.4,

(X ×P P ′)n−log → spec(k) is log smooth.

Proof [ of Proposition 1.0.1.] From the discussion in 2.5, we see that quasi-toroidal

varieties are Kummer fs varieties and are quasi-log smooth over k. The strata are

locally irreducible since they coincide étale locally with toric strata of a toric variety.

Conversely, since the property of being quasi-toroidal is étale local, we can take a

finite field extension k ⊂ k′, where k′ has sufficient roots of unity and work instead

with X ×k k′. Hence, we may assume that k sufficient roots of unity.

The result now follows immediately from 3.5.5 and 3.5.3.

3.6 Minimal Kummer covers

We define the notion of minimal Kummer cover at a point. This extends the

notion of minimal toroidal cover of quasi-toroidal varieties in [3, 5.2.8., 5.2.10.]. In

this section all Kummer fs varieties are assumed to be generically fs.
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Lemma 3.6.1 Let (X,M) be a Kummer fs variety and let P → M be a rational

chart optimized at x ∈ X. Let P ⊂ P ′ be a Kummer extension, such that (P ′)∗ = P ∗,

giving a Kummer fs neighborhood X ′ → X. There exists a sharp and optimized

rational chart Q (i.e. Q = Mx), and a Kummer extension Q ⊂ Q′, where Q′ = Ms(x),

such that the morphism X ′ → X factors through X ′ → (X ×Q Q′)n−log.

Proof Consider the following diagram whose rows are exact.

0 P ∗ P gp P
gp

0

0 P ′∗ (P ′)gp P ′
gp

0

Since P ′ is fs, then it has a splitting P ′ = P ′∗ ⊕ P ′, induced from a retraction

P ′gp → P ′∗. Given that P ⊂ P ′, P ′∗ = P ∗, then any retraction P ′ → P ′∗ induces a

retraction P → P ∗. Hence we have compatible splittings

P ′ P ⊕ P ′∗

P P ⊕ P ∗

Consider the induced section P ′ → P ′ ⊕ P ′∗ → P ′. From the diagram below, we

conclude that P ′ is isomorphic to the pushout of the induced section P → P , and the

Kummer extension P → P ′.

P P ⊕ P ∗ = P

P ′ P ′ ⊕ P ∗ P ′

Hence, we can assume that P and P ′ are both sharp and P = Q = Mx.

Now P ′ is a sharp fs chart optimized at a point x′ ∈ X above x. Since X ′ is fs,

then P ′ = Mx′ = Ms(x′). On the other hand, as X ′ → X maps strata to strata, we get
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an induced map Ms(x) →Ms(x′). Thus we have a factorization of Kummer extensions

P → Q′ → P ′ (see the diagram below).

Mx Ms(x)

Mx′ Ms(x′)

With this we obtain a morphism X ′ = (X ×P P ′)n−log → (X ×Q Q′)n−log.

Definition 3.6.2 Let (X,M) be a Kummer fs variety, P → M be a sharp rational

chart optimized at x ∈ X and P ′ := Ms(x). We call X ′ = (X ×P P ′)n−log a minimal

Kummer cover of X at x.

Whenever we have an optimized chart R→M which is not necessarily sharp, making

choice of splitting R→ R, we get a minimal Kummer cover X ′ associated to R. Then,

X ′ → X is a minimal Kummer cover induced from R and the Kummer extension

R ⊂ (R⊕R R
′
)sat. We refer to X ′ as a minimal Kummer cover associated to R.

Lemma 3.6.3 Given a quasi log smooth morphism f : X → Y , a point y ∈ Y , and a

minimal Kummer cover Y ′ → Y at y, there exists an Kummer neighborhood X ′ → X

and a morphism X ′ → Y ′ which is normally log smooth.

Proof Let X ′ → X be a Kummer cover, such that X ′ → Y is normally log smooth.

Let X ′′ := (X ′ ×Y Y ′′)n−log. By base change X ′′ → X ′ is a Kummer neighborhood.

On the other hand, by base change, X ′′ → Y ′ must be normally log smooth.

Lemma 3.6.4 Let f : X → Y be a quasi log smooth morphism with a sharp and

optimized rational chart (P → Q). For any x ∈ X, y = f(x) ∈ Y , there is a lifting

of f on minimal Kummer covers X ′ → Y ′.

Proof Since f must map strata to strata, we get the following diagram.

P My Ms(y)

Q Mx Ms(x)
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Hence, we get an induced lifting of minimal Kummer covers (X ×P Ms(x))
n →

(Y ×QMs(y))
n.

If we work étale locally, we can strengthen 3.6.4 and 3.6.1.

Proposition 3.6.5 Let f : X → Y be a quasi log smooth morphism of Kummer

fs varieties and let x ∈ X. Let Y ′ → Y a minimal Kummer neighborhood at y =

f(x) ∈ Y . Then (étale locally) there exists a minimal Kummer cover X ′ → X, and a

morphism f ′ : X ′ → Y ′ lifting f .

Proof Suppose Y ′ is given by the rational chart Y → AP (where P = My) and

the Kummer extension P ′ := Ms(y) ⊃ P . After étale localization, we can find an

optimized rational chart (X → AQ, f# : P → Q) of f extending Y → AP .

Since Q is saturated we can find a splitting Q = Q ⊕ Q∗, and two projections

p1 : Q → Q, p2 : Q → Q∗. Let α : P → Q, β : P → Q∗ be the morphisms induced

from the composition of f# with the projections.

Consider the morphism f# ◦ β : P → Q∗, and let H be the following pushout.

P Q∗

P ′ H

Let β′ : P → H be the induced composition. Note that X ×Q∗ H → X is étale.

Hence, after an étale extension, we can assume there is a morphism β′ : P ′ → Q∗

which lifts f# ◦ β : P → Q∗.

Let T := Ms(x) ⊃ Q be the minimal Kummer extension, and let Q′ be the pushout

(T ← Q→ Q). Then Q→ Q′ is Kummer and Q′∗ = Q∗. In particular, Q′ = Q∗ ⊕ T .

Since f is quasi log smooth, it must preserve generic points of strata, so we get a

morphism P ′ = Ms(y) →Ms(x) = T , making the following diagram commute.

P Q

P ′ T
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Let Q′ be the pushout (T ← Q → Q). In particular, X ′ := (X ×Q Q′)n−log is a

minimal Kummer cover at x ∈ X. Note also that, from the splitting of Q, we get

Q′ = T ⊕Q∗. Consider the induced morphism (α′, β′) : P ′ → Q′. Since f# : P → Q

coincides with (f# ◦ α, f# ◦ β) : P → Q⊕Q∗, we get the following diagram.

P Q

P ′ Q′

Therefore, since X → Y is dominant, we get an induced morphism X ′ = (X ×Q
Q′)n−log → (Y ×P P ′)n−log = Y ′ lifting f .

Remark. The lifting f ′ : X ′ → Y ′ is not canonical, it depends upon the splitting

Q⊕Q∗ = Q.

Corollary 3.6.6 Let f : X ′′ → X be an fs Kummer cover and let X ′ → X be a

minimal Kummer cover. Then, étale locally, there exists a Kummer normally log

étale morphism X ′′ → X ′ factoring f . In particular, any two minimal Kummer

covers at the same point must be étale locally isomorphic.

Proof Since X ′′ is fs, then it is its own minimal Kummer cover. Hence, by 3.6.5,

étale locally on X ′′, we can find a factorization X ′′ → X ′ → X. Finally, by 3.2.15,

X ′′ → X ′ must be Kummer normally log étale.

To see the last assertion, note that if both X ′′ and X ′ are minimal Kummer covers,

then the Kummer normally log étale morphism X ′′ → X ′ locally has a Kummer chart

Q′ → Q′′ where Q′ = Q′′. Hence, (X ′×Q′ Q′′)n−log → X ′ must actually be étale since

the Kummer extension Q′ → Q′′ coincides with the pushout Q′′∗ ← Q′∗ → Q′.

3.7 Quasi log smooth morphisms of quasi-toroidal varieties.

Lemma 3.7.1 Let (X,MX) → (Y,MY ) be a quasi log smooth morphism, where

(Y,MY ) is quasi-toroidal, and (X,MX) is a Kummer fs variety with MX contained

and saturated in OX . Then X is quasi-toroidal.
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Proof By 3.6.3, for a minimal Kummer cover Y ′ → Y , there is an Kummer cover

X ′ → X and a normally log smooth morphism X ′ → Y ′. Since Y ′ is toroidal, then

(by 3.5.4) X ′ must be toroidal. Hence, X must be quasi log smooth over spec(k). So,

by 3.5.3, X is quasi-toroidal.

Lemma 3.7.2 Let X be a quasi-toroidal variety, and X ′ → X be a minimal Kummer

cover associated to a sharp optimized chart X → Xδ0. Let X → Xσ → Xδ0 be a

toric chart associated to X → Xδ0. Then, X ′ has an étale map to the toroidal pair

(Xδ×τ , Xτ ), where τ is a regular face of σ.

Proof As in the proof of 3.5.3, étale locally on X, the minimal Kummer cover X ′

is induced from a toric chart X → Xσ → Xδ0 , where X → Xσ is étale, σ = τ + δ and

τ is a regular face of σ . Then, X ′ coincides with X ×Xσ X(σ×δδ0)sat = X ×Xσ Xδ×τ .

Since X ′ → X is a Kummer cover, with smooth chart Xδ0 → Xδ, we have an induced

strict étale morphism (X ′,MX′)→ (Xδ×τ , Xτ ). Note that (Xδ×τ , Xτ ) is toroidal since

τ is regular.

We recall the statement of Kummer descent from [16]. We only state the of log

smooth and étale case of [16, Theorem 0.2.], but the theorem works also in the log

flat case which we will not use in this work.

Theorem 3.7.3 [16, Theorem 0.2.] Let f : X → Y , g : Y → Z be morphisms of

fs log schemes, and suppose that f is surjective and Kummer. If f and g ◦ f are log

smooth (étale), then g is also log smooth (étale).

Proposition 3.7.4 A morphism of quasi-toroidal varieties f : X → Y is quasi log

smooth if and only if (étale locally) for any minimal Kummer cover Y ′ → Y , there

exists a lifting on minimal Kummer covers X ′ → Y ′ which is classically log smooth.

Proof By 3.6.5 we can, étale locally, find a lifting on minimal Kummer covers f ′ :

X ′ → Y ′. The morphism f ′ factors through (X ×Y Y ′)n−log (since the induced

morphism X ′ → X ×Y Y ′ must dominate a component).
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By base change we have that (X ×Y Y ′)n−log → Y ′ is quasi log smooth.

On the other hand, since X ′ → X and (X×Y Y ′)n−log → X are Kummer normally

log étale, then (by 3.2.15) X ′ → (X ×Y Y ′)n−log is also Kummer normally log étale.

Thus, the composition X ′ → Y ′ is quasi log smooth. Hence, there is a Kummer

cover X ′′ → X ′, such that the composition f ′′ : X ′′ → X ′ → Y ′ is normally log

smooth.

Since X is quasi-toroidal, then X ′ is toroidal. Similarly Y ′ must also be toroidal.

Given that k : X ′′ → X ′ is Kummer normally log étale, then X ′′ is also toroidal by

3.5.4.

Then (by 3.5.4) f ′′ must be classically log smooth and k is classically Kummer

log étale. Finally, from [16, theorem 0.2], we see that X ′ → Y ′ must be classically

log smooth.

Corollary 3.7.5 A quasi log smooth morphism of toroidal varieties f : X → Y ,

must be classically log smooth.

Proof Since Y and X are toroidal, their minimal Kummer covers are isomorphisms.

3.7.6 . Remark. In the proof of 3.7.4 we used Kummer étale descent [16]. How-

ever, as the example below shows, there is no (Kummer) normally log étale descent.

3.7.7 . Example. Consider the log smooth morphism

(spec(k[x, y]), y 6= 0)→ (spec(k[y2]), y 6= 0),

induced from the inclusion k[y2] → k[x, y]. This morphism factors through the sur-

jective Kummer normally log étale morphism spec(k[x, y]) → spec(k[x2, xy2, y2]).

However, f : spec(k[x2, xy2, y2])→ spec(k[y2]) is not normally log smooth.

Definition 3.7.8 Let X be a quasi-toroidal variety. Let X → (Xσ, Xτ ) be an étale

toric doubleton chart. We call X with the toroidal structure induced from σ an en-

riched log structure on X.
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Note that enriched log structures on quasi-toroidal varieties depend upon the

choice of toric doubleton charts.

The following lemma can be also found in [3]. We give a proof for completeness.

Proposition 3.7.9 [3, Proposition 4.7.5.(2)] Normally log smooth morphisms of

quasi-toroidal varieties are log smooth with respect to enriched log structure.

Proof Let f : X → Y be a normally log smooth morphism of quasi-toroidal varieties

and let Y → (Xσ, Xδ) be a toric chart. Let Xδ1 → Xδ, X → Xδ1 be a smooth

optimized rational chart of f , including Xδ. Then X → X(σ×δδ1)sat is étale. Letting

σ1 := (σ ×δ δ1)sat, then we see that X → (Xσ1 , Xδ1) is a toric doubleton chart of

X. Moreover Xσ1 → Xσ is log smooth (with enriched log structures), and hence f is

smooth with respect to this enriched log structures.

Proposition 3.7.10 Quasi log smooth morphisms of quasi-toroidal varieties are log

smooth with respect to enriched fs log structures.

Proof It is enough to check the result on toric doubletons. Let f : (Xσ1 , Xτ1) →

(Xσ2 , Xτ2) be a quasi log smooth morphism of quasi-toroidal varieties. By 3.7.4 we

have an induced log smooth morphism on minimal Kummer covers f ′ : (Xτ1×δ1 , Xτ1)→

(Xτ2×δ2 , Xτ2). Making an appropriate choice of local parameters we may suppose that

τ1 maps to τ2. Hence f ′ is log smooth with respect to enriched log structures τ1× δ1,

τ2 × δ2. Since (Xτ1×δ1 , Xτ1)→ (Xσ1 , Xτ1), (Xτ2×δ2 , Xτ2)→ (Xσ2 , Xτ2) are both Kum-

mer log étale with respect to enriched log structures, then by [16, theorem 0.2] applied

to (Xτ1×δ1 , Xτ1)→ (Xσ1 , Xτ1)→ (Xσ2 , Xτ2), we see that f is log smooth.

3.8 Quasi Kummer étale site for normal rational varieties

Lemma 3.8.1 Let X be a rational log variety and let X → AP be a rational chart

optimized at x ∈ X. Let P ⊂ P ′ be a Kummer extension. Then (X ×P P ′)n−log → X

is surjective.
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Proof Since P ⊂ P ′ is Kummer, then AP ′ → AP is finite and surjective. Let

U ⊂ X be the locus where the log structure is trivial. Then U ×P P ′ (which is equal

to (U ×P gp P ′gp) in this case) surjects onto U . Hence, by properness of X×P P ′ → X,

we get that the (X ×P P ′)n−log (which is the closure of (U ×P P ′) in X ×P P ′) must

be surjective onto X.

Lemma 3.8.2 Let Y ′ → Y be a surjective normally Kummer log étale morphism.

Given another rational log variety X, and a morphism f : X → Y , then (X ×Y
Y ′)n−log → X is a surjective normally Kummer log étale .

Proof It is sufficient to work étale locally on Y . Let y ∈ Y , Y → AP be an

optimized rational chart at y = f(x) and let y′ ∈ Y ′ be a point above y. Let P ⊂ P ′

be a Kummer extension, which gives a smooth optimized chart for Y ′ → Y .

Consider (Y ×P P ′)n−log → Y (this is surjective by 3.8.1). Let UX ⊂ X (resp.

UY ⊂ Y ) be the log triviality locus of X (resp. Y ). Since AP ′ → AP is surjective,

then UX ×P P ′ → UX is also surjective. On the other hand, given that UX maps to

UY , then UX ×P gp (P ′)gp = UX ×P P ′. Given that the log structures considered never

map to the zero element in the coordinate ring, then UX and UY are nonempty. Since

X ×P P ′ → X is proper (because A′P → AP is), then (X ×P P ′)n−log → X must be

surjective.

Hence, UX ×P P ′ → UY ×P P ′ is a morphism of normal varieties and we have an

induced morphism (by 3.2.1) (X×P P ′)n−log → (Y ×P P ′)n−log giving (X×P P ′)n−log =

(X ×Y (Y ×P P ′)n−log)n−log.

Since Y ′ → (Y ×P P ′)n−log is étale, then

(X ×P P ′)n−log ×(Y×PP ′)n−log Y
′ = ((X ×P P ′)nlog ×(Y×PP ′)n−log Y

′)n−log

= (X ×Y Y ′)n−log

.

Hence, by base change, (X ×Y Y ′)n−log → (X ×P P ′)n−log is étale and (since

y = f(x)) there is a point x′ ∈ (X×Y Y ′)n−log mapping to x. Thus (X×Y Y ′)n−log → X

must then be surjective normally Kummer log étale.
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Lemma 3.8.3 Let f : X → Y , g : Y → Z be dominant morphisms of Kummer fs

varieties. If g ◦ f and g are quasi Kummer log étale, then so is f .

Proof Let X ′ → X be a Kummer neighborhood such that X ′ → Z is normally

log étale. Similarly, let Y ′ → Y be a Kummer neighborhood such that Y ′ → Z is

normally log étale. Then by base change, (X ′×Z Y ′)n−log → Y ′ is Kummer normally

log étale. Hence the composition (X ′ ×Z Y ′)n−log → Y ′ → Y is Kummer normally

log étale. On the other hand, also by base change, (X ′ ×Z Y ′)n−log → X ′ is Kummer

normally log étale and hence so is the composition (X ′ ×Z Y ′)n−log → X ′ → X.

Hence, X → Y is quasi Kummer log étale.

Example 3.8.4 We give an example of a quasi Kummer étale morphism, which is

not normally Kummer log étale .

Let X := spec(k[x2, xy, y2, xz, yz, z2]) with z 6= 0 log structure. Let

Y := spec(k[x2, xy, y2, z2]) with z 6= 0 log structure, and consider the finite morphism

f : X → Y induced from the inclusion of rings. We claim that f is quasi Kummer

étale. To see this, note that X ′ := spec(k[x2, xy, y2, z])→ X gives a minimal Kummer

cover at the origin and the induced morphism X ′ → Y is a Kummer étale cover.

However X → Y cannot be normally Kummer log étale at the origin since Y is

toroidal and X is not (3.5.4).

3.8.5 . Let X be a Kummer fs variety. We can form the category Xkét whose objects

are Kummer fs varieties with a quasi Kummer étale morphism Y → X. Morphisms,

are morphisms over X. By 3.8.3, all morphisms are quasi Kummer étale.

Lemma 3.8.6 Given two morphisms f : Y → Z, g : W → Z in Xkét, their product

(Y ×Z W )n−log (as defined in 3.1.3) is a categorical fiber product in Xkét.

Proof Let Y ×ZW denote the usual fiber product of schemes. Let V → W , V → Y

be two morphisms in Xket, which coincide after composing with g and f respectively.

Then, since all morphisms are Kummer étale, they must be dominant and quasi-

finite. So Y ×Z W → W , is also quasi-finite dominant. Since the composition
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V → Y×ZW → W is also quasi-finite dominant, then V → Y×ZW must be dominant

onto a component. So we get a unique induced morphism V → (Y ×Z W )n−log,

factoring V → (Y ×Z W ).

3.8.7 . By the above lemma, we can form a Kummer étale topology on Xkét,

whose coverings are collections of jointly surjective quasi Kummer étale morphisms

{∪Vi → V }.

Remark. It is shown in [12, 2.2.2], that surjectivity of log morphisms for fs

schemes is preserved for Kummer log étale maps, but not for general morphisms.

The main point of this issue happens when we consider so called hollow log schemes

(e.g. spec(k) with log structure N→ k sending every element to 0). In the definition

of Kummer fs varieties, we always assume that M ⊂ OX \ {0}, so hollow log schemes

don’t apply.
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4. LOG RESOLUTION OF KUMMER FS VARIETIES

Similarly as in the above sections, k will denote a field of characteristic 0. All Kummer

fs varieties are assumed to be generically fs. Given a Kummer fs variety over k,

then the assumption that locally M ⊂ OX \ {0} ensures that (X,M) is generically

logarithmically smooth.

4.1 Embeddings into quasi-toroidal varieties

By definition, any variety can locally be embedded into affine space. In the context

of logarithmic varieties the analog result, shown in [3] (3.7), is that (étale locally) any

log variety may be strictly embedded into a toroidal variety. The goal of this section

is to show that, étale locally, any Kummer fs variety can be strictly embedded into

a quasi-toroidal variety. Moreover, we can construct such a local closed immersion

which lifts to an equivariant closed immersion on minimal Kummer covers.

4.1.1 . Let X be a Kummer fs variety over k and assume that k has enough roots of

unity. Given a minimal Kummer fs cover X ′ → X at x ∈ X, choose x′ ∈ X ′ above x.

Let s′ denote the stratum of x′. Suppose X ′ is obtained from X by a sharp optimized

chart X → AP and a sharp Kummer extension P ⊂ P ′ coming from a generic chart

along the stratum. Recall, from the proof in 3.5.3, that GP := Hom((P ′)gp/P gp,Z)

acts effectively on X ′, with quotient X and fixing x′. Since s′ is invariant under

the GP action, in a neighborhood of x′, we can find semi-invariant global functions

t1, ...tn generating the cotangent space to s′ at x′ and a GP -equivariant morphism

X ′ → AP ′ × An .
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Lemma 4.1.2 [3](3.7.2). After restricting X, the morphism f : X ′ → AP ′ × An is

strict and unramified at x′. This morphism factors as a closed immersion i : X ′ → Z

followed by an étale morphism Z → AP ′ × An.

Proof We repeat the proof found in [3]. By abuse of notation, let s(x′) denote the

closure of the stratum of x′. Then, locally, P ′ generates the ideal of s(x′) and hence

Os(x′) := OX′/(P ′), where (P ′) denotes the ideal generated P ′. Let mx′ ⊂ OX be the

maximal ideal corresponding to x′. Since the functions t1, ...tn ∈ mx′ , were chosen

such that their images form a basis of ms(x′),x′/m
2
s(x′),x′ , then by Nakayamma’s lemma

we have that (P ′, t1, ...tn) generates mx′ ⊂ OX,x′ .

On the other hand, let o denote the origin in AP ′ × An. Since we are working

over characteristic zero, the extension of residue fields k(o) → k(x′) is finite and

unramified. Therefore f is unramified at x′.

The last statement follows from [13, Tag 0395].

Proposition 4.1.3 The quotient morphism X → (AP ′×An)/GP is unramified at x.

Proof The following argument is taken from ideas in the proof of [14, Lemma 4.6.7].

Step 1. Since GP = spec(Z[P ′gp/P gp]), and x′ ∈ X ′ is fixed under the GP -action,

we get a G∨P := P ′gp/P gp-grading on OX′,x′ and on the local ring of the origin in

AP ′ × An. The induced morphism OX′,x′ ← k[t1, ...tn, P
′](t1,...,tn,P ′) preserves the GP -

grading.

Step 2. Let z ∈ Z be the image of x′ ∈ X ′ under X ′ → Z and denote by k(z) the

residue field of z. Given that Z → AP ′ ×An is étale, then by [14, Theorem 2.2.9] we

get a (non-canonical) isomorphism ÔZ,z = k(z)[[t1, ..., tn, P
′]]. Therefore there is an

induced G∨P -grading on ÔZ,z, which is compatible with that on k[[t1, ..., tn, P
′]], trivial

on k(z), and makes the morphism ÔZ,z → k[[t1, ..., tn, P
′]] strongly étale.

Step 3. Since GP acts trivially on the residue field of x′ (because P ′ maps to

the maximal ideal m′x), then the induced grading on ÔZ,z is compatible with that on

ÔX′,x′ . That is, ÔZ,z → ÔX′,x′ preserves the G∨P -grading. Hence, we have an induced

surjection ÔGPZ,z → ÔX,x.
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Step 4. By the above, the induced quotient morphism k[[t1, ..., tn, P
′]]GP → ÔX,x

factors as an étale morphism k[[t1, ..., tn, P
′]]GP → ÔGPZ,z , followed by a surjection

ÔGPZ,z → ÔX,x. Therefore X → (AP ′ ×An)/GP is unramified at x since it’s unramified

on completions.

Lemma 4.1.4 The variety W := (AP ′ × An)/GP , has the structure of a toric dou-

bleton.

Proof The argument is quite similar to that in 3.5.3.

Step 1. There is an induced finite morphism An × AP ′ → (W ×P P ′)n. To

see this, first note that AP ′ × An → W is dominant (because it’s a finite quotient

morphism). Secondly, AP ′ × An → W factors as AP ′ × An → W ×P P ′ → W

(both morphisms which are quasi-finite). We conclude that AP ′ × An → W ×P P ′

is dominantes a component, and hence (by the universal property of normalization)

we get an induced morphism An × AP ′ → (W ×P P ′)n. Now this morphism must be

finite since (An ×AP ′)/GP = W = (W ×P P ′)n/GP , and both (An ×AP ′)→ W and

(W ×P P ′)n → W are finite.

Step 2. Let W ′
0 denote the component of (W ×P P ′)n which is dominated by

(An × AP ′). From the factorization (An × AP ′) → (W ×P P ′)n → W , we get the

following inclusion of function fields K(W ) ⊂ K(W ′
0) ⊂ K(An×AP ′). The inclusions

K(W ) ⊂ K(W ′
0), K(W ) ⊂ K(An × AP ′) are Galois and both have automorphism

group GP , thus K(W ′
0) = K(An × AP ′). Since both (An × AP ′) and (W ×P P ′)n are

normal, then An × AP ′ must be a component of (W ×P P ′)n.

Step 3. Let U ⊂ (AP ′ × An) be the open subset there where the log structure is

trivial. Then by step 2, we get that (AP ′×An)→ W is étale on U (since the elements

of P and P ′ are invertible on U).

Step 4. (AP ′ × An) is toric when it’s log structure is enriched with respect to

the semi-invariant coordinates in An. The open subset U is torus invariant, and

corresponds to a regular face of the associated cone. Moreover, the action of GP

factors through the action of the torus. Hence, W has the scheme structure of a



61

toric variety, corresponding to some cone σ, with lattice structure Nσ. By step 3,

U/GP must be regular and corresponds to a regular face τ of σ (in the quotient toric

structure). From the toric structure on (AP ′ × An), we see that there exists a face δ

of σ for which τ ∩ δ = 0 and τ × δ = σ (over Q). Hence, W corresponds to a toric

doubleton (Xσ, Xτ ).

4.1.5 . By [17, V, theoreme 1.], we can locally find a factorization of X → W into

a closed immersion X → Y followed by an étale morphism Y → W . Therefore, by

the above lemma, Y is a quasi-toroidal variety. Hence, étale locally, any Kummer fs

variety can be embedded in a quasi-toroidal variety.

We now construct a strict closed embedding of a Kummer fs variety into a quasi-

toroidal variety, which lifts to an equivariant closed immersion on Kummer covers.

The following preliminary lemma is a G-equivariant version of [17, V, theoreme

1.] and is probably known to experts. Since we were unable to find an appropriate

reference we provide a proof.

Lemma 4.1.6 Let G be a finite abelian group acting on normal affine varieties X

and Y over a field of characteristic 0. Let f : X → Y be a G-equivariant morphism.

Suppose that G fixes a point x ∈ X, G acts trivially on the residue fields k(x), k(f(x)),

and f is unramified at x. Then, locally at x, f can be factorized as a G-equivariant

closed immersion X → Y ′, and a G -equivariant étale morphism Y ′ → Y .

Proof The proof is almost verbatim to that in [17, V, theoreme 1.]. We follow the

proof found there and make the necessary adjustments.

Using a G equivariant version of Zariski’s main theorem, see for instance [15, 4.],

we can assume, after localizing, that f : X → Y is finite. In our case, (following the

proof in [15, 4.]) G-equivariant Zariski’s main theorem follows by taking the integral

closure R of OY in OX . Since OY and OX , are of finite type over a field, then

so is R. Given that X is normal, then so is spec(R). Hence as X → spec(R) is

quasi-finite birational, it must be an open immersion. It is clear, by construction of
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R, that spec(R) → Y is finite. On the other hand, from the universal property of

normalizations, we get that the factorization X → spec(R)→ Y is G-equivariant.

Denote y := f(x), and let k(y) be it’s residue field. Then, since f is unramified,

OX ×OY k(y) is a product of local rings. One of the factors must be k(x).

Since f is unramified at x, then k(x) ⊃ k(y) is a finite separable field extension

(this is immediate in our case since we are working over characteristic 0). Let u be

a function in OX ⊗OY k(y), which vanishes at all components of the fiber except for

the k(x) factor, and which generates k(x) as a k(y)-algebra. Take any lift u ∈ OX of

u and notice that, since x is fixed and G acts trivially on the residue field k(x), then

for any g ∈ G, we have that gu must also vanishes on every component of X ×Y k(y)

except the one corresponding to k(x). Hence, we may lift u to some G-invariant

u ∈ OX (for example, we could take |G|−1
∑

g∈G gu for any lifting u of u). Consider

the subring OY [u] ⊂ OX . Let z be the image of x under the induced G-equivariant

morphism φ : X → spec(OY [u]) =: Z. Then, since φ is equivariant, z must also be

fixed under the G action.

We claim that X and Z are locally isomorphic on a G-invariant neighborhood

of x and z. Since OY ⊂ OX is finite, then so is OZ = OY [u] ⊂ OX and thus so

is OZ,z ⊂ OX ⊗OZ OZ,z. By the construction of u, we have that x is the unique

point in the fiber of z. Moreover, since u generates k(x) over k(y), then we have that

OZ,z ⊗OY k(y) → k(x) must be surjective. From Nakayama’s lemma, we infer that

OZ,z → OX,x must be surjective. Since it is also injective (given that it is a finite

extension), then it must be an isomorphism. Hence, as z and x are fixed, we can

choose f ∈ (OGZ,z)∗, such that (OZ)f = (OX)f . Thus X and Z are locally isomorphic.

Then, restricting X and Y , we may suppose that OX = OY [u].

Let k be the rank of OX ⊗OY k(y) over k(y). Then, by Nakayama’s lemma

1, u, u2, ...uk generate OX over OY , and u corresponds to a root of a monic poly-

nomial P (X) on OY [X]. Now P may not be G invariant, but we can take

Q :=
1

|G|
∑
g∈G

gP
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Since u is G invariant, then gP (u) =
∑

(gai)u
i = g

∑
aiu

i = g(P (u)) = 0. Hence,

Q is G invariant, monic, of the same degree as P and u is a root of Q. Therefore OX
is a quotient of OY [X]/Q . Let x′ be the image of x under X → spec(OY [X]/Q).

Given that k(y)[X]/Q ∼= OX ⊗OY k(y), then OY [X]/Q is unramified over OY at

y. This follows since the property of being unramified can be checked on fibers

see [17, chap.III prop 10.]. Hence, the derivative of Q is invertible at x′. We may

then find a function h, which is G invariant, does not vanish at x′ (since x′ is fixed),

and makes (OY [X]/Q)h a standard étale G equivariant algebra over OY which, locally

at x, surjects G-equivariantly onto OX .

Lemma 4.1.7 Let X be a Kummer fs variety and X ′ → X be a minimal Kummer

cover at a point x ∈ X, associated to a minimal Kummer extension P ⊂ P ′ of a sharp

optimized chart P → OX , with associated character group GP . Let X ′ → AP ′ × An

be a GP -equivariant strict unramified morphism as constructed above. Denote Xσ :=

(AP ′ × An)/GP . Then, étale locally at x, there exists a factorization X → Y → Xσ,

where X → Y is a closed immersion, Y → Xσ is étale, and such that the induced

morphism X ′ → Y ×Xσ (AP ′ × An) is a closed immersion.

Proof Restricting X, we can assume that GP fixes a point x′ ∈ X ′ above x. Note

that since P is assumed to be a sharp optimized chart, then P maps to the maximal

ideal mx in OX,x. Thus GP acts trivially on the residue fields k(x), k(x′). By 4.1.6,

we can locally find a GP -equivariant factorization X ′ → Y ′ → AP ′ × An where the

first map is a closed immersion and the second map is étale. Since X ′ → Y ′ is GP

-equivariant, the image of x′ is fixed by the GP action in Y ′. Hence, locally the map

Y ′ → AP ′×An preserves stabilizers. Let Y := Y ′/GP . By Luna’s fundamental lemma

we have that Y → Xσ is étale. Since X ′ → Y ′ is a GP -equivariant closed immersion,

then so is X → Y .

Given that Y → Xσ is étale, then Y ′ = Y ×Xσ (AP ′ × An) (this also follows from

Luna’s fundamental lemma since Y ′ → AP ′ × An must be strongly étale).



64

Note that, in general, X ′ → Y ′ is not automatically a closed immersion for any

closed immersion X → Y . For example, consider the embedding spec(k[x2, xy, y2])→

spec(k[u, v, w]), and the finite cover spec(k[u, v, w1/2]) → spec(k[u, v, w]). The nor-

malized fiber product is spec(k[x, y]), whose induced morphism spec(k[x, y])→ spec(k[u, v, w1/2])

is not a closed immersion since u 7→ x2, v 7→ xy, w1/2 7→ y.

4.2 Functoriality of log resolutions

The following result is shown in [3]. This lemma provides functoriality of the

resolution algorithm in [3, Theorem 1.3.4]. For completeness, we repeat the argument.

Lemma 4.2.1 [3, lemma 3.7.6] Let X → Y be a strict embedding of an fs variety

into a toroidal variety Y . Let f : X ′ → X be a log smooth morphism. Then, étale

locally, we can find a strict embedding X ′ → Y ′, where Y ′ is a toroidal variety, and

a log smooth morphism Y ′ → Y , such that X ′ = X ×Y Y ′.

Proof Étale locally, at any x ∈ X, we can find a log smooth chart of P → Q of f ,

such that X ′ → X×PQ is étale. Let z ∈ X×PQ, be a point above x. Lifting the chart

P →MX to Y , we find a strict embedding X ×P Q→ Y ×P Q. We can assume that

X ′, X, Y are affine varieties. Let R := OY×PQ, and S := OX×PQ, by hypothesis the

induced morphism R→ S is a surjection. Then, locally we can express X ′ → X×P Q

as a standard étale morphism, so we can assume OX′ = (S[t]/f(t))g(t) where f ′(t)

in invertible in (S[t]/f(t))g(t) above z. Lifting f and g to R, then f ′ must still be

invertible in a neighborhood above z. Hence, making Y ′ := spec((R[t]/f(t))g(t)), we

get the desired result.

4.3 Étale independence upon embedding of the same dimension

Also in [3], it is shown that, étale locally, any two strict embedding of an fs log

variety into toroidal varieties of the same dimension are étale locally isomorphic. We

recall the statement, and repeat the proof for convenience of the reader.
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Theorem 4.3.1 [3, Theorem 3.7.8] Let X be an fs variety and let i1 : X → Y , i2 :

X → Y ′ be two strict embeddings of X into toroidal varieties of the same dimension.

Then, étale locally at any x ∈ X, we can find a common étale neighborhood f1 : Z →

Y , f2 : Z → Y ′, which are isomorphisms over i1(X), i2(X) (respectively). Moreover

the embeddings f−1
1 ◦ i1 and f−1

1 ◦ i2 coincide.

Proof Let x ∈ X, and take a sharp optimized chart X → AP at x. Lift the chart

to charts Y → AP , Y ′ → AP . Since the statement is local, we may assume that

X is affine. Consider global functions f1, ...fn ∈ k[X] which restrict to a basis of

the cotangent space to the stratum s(x). Lift f1, .., fn to k[Y ] and extend them

to a functions f1, ...fm which restrict to a family of parameters at i1(x) ∈ s(i1(x)).

Similarly we lift f1, .., fn to k[Y ′] and extend them to a functions f ′1, ...f
′
m which restrict

to a family of parameters at i2(x) ∈ s(i2(x)). The m’s are the same since Y and Y ′

are of the same dimension. Consider the induced morphisms Y → AP × Am ← Y ′.

Since Y and Y ′ are toroidal, then the morphisms Y → AP ×Am, Y ′ → AP ×Am are

étale. Let x1, ...xm denote coordinates in the Am factor. Note that the restrictions

X → Y → AP × Am coincide as the image of X is contained in the locus where

xn+1 = ... = xm = 0. Let Z := Y ×AP×Am−n Y ′, and note that Z → Y , Z → Y ′

are both étale by base change. The induced morphism X → Z must then be a

closed immersion as we have a factorization X → Z → Y , where X → Y is a closed

immersion and Z → Y is separated.

4.4 Quotient log smooth morphisms

Definition 4.4.1 Let X be a Kummer fs variety and let X ′ → X be a Kummer

cover. We say X ′ → X is an étale minimal Kummer neighborhood if étale locally for

any x ∈ X, we can find a minimal optimized Kummer chart Q → Q′, such that the

induced morphism X ′ → (X ×Q Q′)n is étale.



66

Lemma 4.4.2 Let X be a Kummer fs variety and x ∈ X. Let X ′ → X be a minimal

Kummer cover at x. Then, after restricting X, the morphism X ′ → X is an étale

minimal Kummer neighborhood.

Proof Restricting X, we may suppose that X ′ = X ×P P ′, where P ⊂ P ′ is a sharp

minimal Kummer extension. Let z ∈ X be a point whose stratum specializes to s(x).

Then, after taking an étale neighborhood U → X, we can optimize P to a chart P1

at z. We may assume P1 is torsion free.

Let P ′1 := (P ′ ⊕P P1)sat. Consider the following diagram.

P ′ P ′1 Ms(z)

P P1 P1

Since P ′ = Ms(x) → Ms(z) is surjective, then there is an induced surjective mor-

phism P1 → Ms(z). On the other hand, since P1 → P ′1 is Kummer, then so is the

induced morphism P1 → P ′1. Given that P1 = Mz → Ms(z) is Kummer, and P ′1 is

reduced, then from the factorization P1 → P ′1 →Ms(z), we see that Ms(z) = P ′1.

Let P0 := ((P ′1)∗ ⊕P ∗1 P1)sat. Note that as P ∗0 = (P ′1)∗, then a splitting P ′1 =

P1 ⊕ (P ′1)∗ induces a compatible splitting P0 = P0 ⊕ P ∗0 . Denote P ′0 := (P0 ⊕P P ′)

and note that, by the above, it is already saturated. We replace U by the étale

neighborhood obtained from the Kummer extension P1 → P0.

Consider the pullback diagram.

U ′ AP ′1 AP ′1

U0 AP0 AP0

U AP1
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Since P ′1 = Ms(z), then U ′ → U0 is a minimal Kummer cover. Then we let U ′0 :=

(U0 ×P P ′). Note that, by base change, U ′0 → U ′ is étale. We get the following

diagram.

U ′0 U ′ AP ′

U0 U AP

Let Γ := (P ′1
gp
/P1

gp
)∨, Γz := (P ′1

gp
/P0

gp
)∨, and Γz := (P gp

0 /P gp
1 )∨. Then, U ′0 → U ′

is the quotient of the induced Γz-action. From the inclusion Γz ⊂ Γ, we get a Γz action

on U ′0, which is compatible with the action of Γz on U ′ under U ′0 → U ′. The morphism

U ′0 → U ′ is obtained via base change of the finite étale extension k[P ∗1 ] ⊂ k[P ∗0 ], which

are elements of degree zero with respect to the induced P ′1
gp
/P0

gp
-grading. Hence,

U ′0 → U ′ must be strongly Γz- étale. Thus, the quotient morphism U ′0/Γz → U ′/Γz is

étale. Moreover, since U ′ → U0 is minimal and U ′0 → U ′ is finite strongly equivariant,

then Γz may be identified with the stabilizer of a point z′ ∈ U ′0 above z.

From the factorization U ′0 → U ′ → U0, we see that X ′ → X is an étale minimal

cover at z.

Remark. It follows from the definition that an étale minimal Kummer neighbor-

hood X ′ → X is normally log smooth.

Definition 4.4.3 Let f : X → Y be a morphism of Kummer fs log varieties. We say

f is quotient log smooth if, étale locally, for any y ∈ Y , there is a minimal Kummer

fs cover Y ′ → Y , such that

1. X ′ := (Y ′ ×Y X)n−log → X is an étale minimal Kummer neighborhood.

2. The induced morphism X ′ → Y ′ is log smooth.

Remark. A quotient log smooth morphism of fs log varieties is classically log

smooth. This follows because the minimal Kummer cover of any fs log variety is the

identity. On the other hand, a quotient log smooth morphism is quasi log smooth.
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Example 4.4.4 Let X = spec(k[x2, xy, y2]) and X ′ = spec(k[x, y]). Then X ′ → X

is an is a minimal Kummer cover, and it is also quotient log smooth. To see that it is

quotient log smooth, note that the normalized fiber product of the minimal Kummer

cover with itself gives to copies of X ′ above X ′. Thus (X ′×X X ′)n−log → X ′ is étale.

Example 4.4.5 Let X = spec(k[x2, y2, z2, xy, yz, xz]), and Y = spec(k[x2, xy, y2])

both with log structure y 6= 0. The morphism X → Y induced from the inclusion of

rings is quotient log smooth as the normalized fiber product of the minimal Kummer

cover A2 → Y , with X → Y , gives the minimal Kummer cover A3 → X

Lemma 4.4.6 Let Z → X be a quotient log smooth morphism. Let X ′ → X be

a minimal Kummer cover, with character group Γ. Denote Z ′ := (Z ×X X ′)n, the

induced étale minimal Kummer neighborhood. Then, étale locally for any z ∈ Z,

there exists a subquotient Γ → Γz, acting on Z ′, for which Z ′ → Z ′/Γz is étale and

Z ′/Γz → Z is a minimal Kummer cover at z. Let Γz be the character group of

Z ′/Γz → Z . Then, Γz can be identified with the stabilizer of a point z′ ∈ Z ′ above z

and Z ′ → Z ′/Γz is strongly Γz-equivariant.

Proof The proof is very similar to 4.4.2. Étale locally, since Z ′ is obtained as the

pullback of a minimal Kummer cover X ′ → X, we can find an optimized chart Q→ Q′

(at z) of Z ′ → Z, such that Z ′ = (Z ×QQ′)n−log. Thus, Γ = (Q′gp/Qgp)∨. Since Q′ is

fs, we have a splitting Q′ = Q′ ⊕ Q′∗. Consider the monoid Q0 := ((Q′)∗ ⊕Q∗ Q)sat.

Denoting Z0 := (Z ×QQ0)n−log, then the induced morphism Z0 → Z is étale because

Q0 = Q.

Since Q∗0 = Q′∗, we get compatible splittings Q0 = Q0 ⊕ Q∗0, Q′ = Q′ ⊕ Q′∗. By

hypothesis Z ′ → Z is an étale minimal Kummer cover, hence Q′ = Ms(z). Given that

(Q′)∗ = Q∗0, then Z ′ → Z0 is a minimal Kummer cover. Let Γz := (Qgp
0 /Q

gp)∨, and

note that Γz = ((Q′)gp/Qgp
0 )∨. By base change, (Z0 ×Q Q′)n−log → Z ′ is étale. The

subquotient Γz acts on (Z0 ×Q Q′)n−log with quotient Z ′.

Same as in 4.4.2, Γz acts on (Z0 ×Q Q′)n−log, and since (Z0 ×Q Q′)n−log → Z ′ is

induced from the finite étale extension k[Q∗] ⊂ k[Q∗0], which are elements of degree
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zero with respect to the (Q′)gp/Qgp
0 -grading, then (Z0×QQ′)n−log → Z ′ étale and Γz-

strongly equivariant. Hence, the quotient morphism (Z0×QQ′)n−log/Γz → Z ′/Γz = Z0

is étale. By minimality of Z ′ → Z0, Γz may be identified with the stabilizer of a

point z′ ∈ (Z0 ×Q Q′)n−log above z.

Lemma 4.4.7 (c.f. [3, 5.1.24]) Let Z ′ → Z, Z ′′ → Z, be two minimal Kummer

covers at z ∈ Z, with character group Γ. Then, étale locally at z, Z ′ and Z ′′ are

Γ-equivariantly isomorphic.

Proof Let (Z → AP , P ⊂ P ′), (Z → AQ, Q ⊂ Q′) be the data inducing Z ′ and Z ′′

respectively. Then, we have P ∼= Mz
∼= Q and P ′ ∼= Ms(z)

∼= Q′. Consider a chart R

containing both P and Q, such that R = PR∗ = QR∗. Let RP ′ := (R ⊕P P ′)sat and

R′′ := ((Q′⊕QRP ′)
sat)red. Consider the induced Kummer extension R∗ → R′′∗ and let

R′ := (R⊕R∗ R′′∗)sat. Note that, in fact, the construction of R′ is independent of the

order that we take P and Q. Letting Z1 := (Z ×R R′)n−log, then (in a neighborhood

of z) the induced morphism Z1 → Z is étale since the elements of R∗ map to units in

OZ,z.

Let RQ′ := (R′ ⊕Q Q′)sat. Given that R′ = QR′∗ = PR′∗, we have the following

the exact sequences.

0 Qgp R′gp R′∗ 0

0 Q′gp (RQ′)
gp R′∗ 0

Given that R′∗ and Q′gp are torsion free, we see that Rgp
Q′ is torsion free. Hence,

RQ′ is reduced. We have a factorization R′ → RQ′ → R′′, where R′ → R′′, R′ → RQ′

are both Kummer. Since Q′ = RQ′ = R′′, R′∗ = R′′∗, and R′′ is reduced, we conclude

that RQ′ = R′′. Similarly, (R′ ⊕P P ′)sat = R′′.

From the factorizations Z1 → AR′ → AP , Z1 → AR′ → AQ, we have induced

isomorphisms (Z1 ×R R′′)n−log → (Z1 ×Q Q′′)n−log and (Z1 ×R R′′)n−log → (Z1 ×P
P ′′)n−log.
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As above, we have the following pushout diagram.

0 P gp P ′gp P ′gp/P gp 0

0 R′gp R′′gp R′′gp/R′gp 0

0 Qgp Q′gp Q′gp/Qgp 0

We can identify Γ = spec(Z[R′′gp/R′gp]). Then, φ : R′′gp → R′′′gp/R′gp gives a

R′′gp/R′gp grading on k[R′′] which induces a Γ-action on AR′′′ .

From the above diagram, we see that the isomorphisms (Z1×QQ′′)n−log ← (Z1×R
R′′)n−log → (Z1 ×P P ′′)n−log are Γ-equivariant.

Example 4.4.8 The following example illustrates the construction in the proof of

the above lemma. Let Z = spec(k[y, u±1]) with y 6= 0 log structure. Consider the two

charts Z → spec(k[y]) = AP , Z → spec(k[uy]) = AQ, with respective Kummer covers

k[y] → k[y1/2] = k[P ′], k[uy] → k[(uy)1/2] = k[Q′]. Then, using the above notation,

we have R′′ = [y1/2, u±1/2] and Z1 = spec(k[y, u±1/2]). We see that (Z1 ×P P ′)n−log =

spec(k[y1/2, u±1/2]) = (Z1 ×Q Q′)n−log.

Lemma 4.4.9 Let f : X → Y be a quotient log smooth morphism. Let Y ′1 → Y be an

étale minimal Kummer neighborhood at a point y = f(x) ∈ Y . Then (X×Y Y ′1)n−log →

Y ′1 is log smooth. Moreover, (X ×Y Y ′1)n−log → X is an étale minimal Kummer

neighborhood.

Proof As Y ′1 → Y is an étale minimal Kummer cover, étale locally it factors through

a minimal Kummer cover Y ′ → Y . By 4.4.7, as any two minimal Kummer covers are

étale locally isomorphic, then (after replacing Y by an étale neighborhood and taking

pullbacks of X and Y ′1) we have that (X×Y Y ′)n−log → X is an étale minimal Kummer

cover and (X×Y Y ′)n−log → Y ′ is log smooth. Since by base change (X×Y Y ′1)n−log →

(X×Y Y ′)n−log is étale, then (X×Y Y ′1)n−log → X is an étale minimal Kummer cover.
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Lemma 4.4.10 Quotient log smooth morphisms are preserved under composition.

Proof Let X → Y and Y → Z be quotient log smooth morphisms. Then we can

find a minimal Kummer cover Z ′ → Z, such that Y ′ := (Y ×Z Z ′)n−log → Z ′ is log

smooth and Y ′ → Y is an étale minimal Kummer neighborhood. By 4.4.9, we have

that (X×Y Y ′)n−log → Y ′ is log smooth and (X×Y Y ′)n−log → X is an étale minimal

Kummer neighborhood.

4.5 Central Charts

Definition 4.5.1 (cf. [18, 2.2.7]). Let X be a Kummer fs variety and let X → AP

be a rational chart. Let C(P ) := {x ∈ X | P ∼= MX,x}, we call C(P ) the center of

P . We say the chart is central if C(P ) 6= ∅.

Remark. Note that if X → AP is a rational optimized chart at x, then AP is

a central chart. Moreover, any two points x, x′ in the center are in the same rank

stratum, and hence any minimal Kummer cover at x is also a minimal Kummer cover

at x′. Also, by 2.12.2 and 2.14.5 we see that C(P ) is closed.

Lemma 4.5.2 Let X be a Kummer fs variety. Then, we can cover X with finitely

many étale neighborhoods ∪Xi → X, such that for every x ∈ X, there is an Xi,

having a central chart Xi → APi with xi ∈ C(Pi) (for a point xi ∈ Xi above x).

Proof Any point x ∈ X, has an étale neighborhood Ux → X, with a rational

chart Ux → AP optimized above x. By quasi-compactness of X, we can find a finite

refinement {Ui}i of {Ux}x covering X.

For each Ui, we have a central chart Ui → APi . Let si denote the rank stratum

of C(Pi). By 2.14.5, si has a stratification by multiplicity. Therefore, for each multi-

plicity stratum si,j ⊂ si we can find an étale cover ∪kUi,j,k → Ui, such that for every

u ∈ si,j there is an Ui,j,k which has an optimized chart above u. By quasi compactness

of si,j we can find a finite refinement of {Ui,j,k}.
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Repeating the argument for every rank stratum of X, we obtain the desired cover.

4.6 Functorial non embedded log resolution of Kummer fs varieties

The main ingredients in the proof of 1.0.2 are [3, Theorem 1.3.2, Theorem 1.3.4].

We recall the statements.

Theorem 4.6.1 ( [3](1.3.2)) Let I be a nonzero ideal sheaf on a quasi-toroidal va-

riety X over a field of characteristic zero. Then, there exists a sequence of blowings

up Xn → ... → X1 → X, at smooth-monomial centers supported on V (I), such that

IOXn is locally monomial on a Kummer normally log étale covering. Up to trivial

blowups, the sequence is functorial with respect to normally log smooth morphisms.

Theorem 4.6.2 ( [3](1.3.4)) Let X be a generically logarithmically smooth, locally

equidimensional, fs log variety of finite type over a field of characteristic zero. Then,

there exists a projective birational morphism D(X) → X, where D(X) is quasi-

toroidal, and which is an isomorphism over the toroidal locus of X. The assignment

X 7→ D(X) is functorial with respect to logarithmically smooth morphisms.

We emphazise that [3, Theorem 1.3.4] works in the more general context where

the fs log varieties are not necessarily normal. Hence, Theorem 1.0.2 is only a partial

extension of this result.

Remark. By functoriality in the statement of Theorem 1.0.2, we mean that, given

a quotient log smooth morphism Y → X, then D(Y ) = (Y ×X D(X))n−log.

Proof (Proof of Theorem 1.0.2)

Step 0. It is enough to construct a resolution étale locally. To see this, we follow

the argument in [3, 8.4]. Suppose that Z → X is étale, and we have a resolution

Z ′ → Z, obtained by the sequence of blowups (Z ′, In)→ (Zn−1, In−1)→ ...(Z1, I1)→

(Z, I0). Then, by functoriality with respect to étale morphisms, we get that Z ′′ :=
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Z ′ ×Z (Z ×X Z) is the resolution of Z ×X Z. Let p1, p2 : (Z ×X Z) ⇒ Z denote

the projections. At each step, by functoriality, π∗1(Ii) = π∗2(Ii). Hence, the centers

Ii descend and give a sequence of blowups (Xn, Jn)→ (Xn−1, Jn−1)→ ...→ (X, J0),

where Zn → Xn is étale. We get that Xn is quasi-toroidal and gives a log resolution

for X which is compatible with that of Z.

Step 1. First we construct the resolution locally by taking a minimal Kummer

cover, and show that it is independent of the chosen cover. We do this by following

the proof in [3, theorem 1.3.4].

Then we go on to prove functoriality with respect to quotient log smooth mor-

phisms, which in turn gives that the procedure glues and is independent of the chosen

point.

Let X be a Kummer fs variety and x ∈ X a closed point. Since it suffices to

work étale locally, we may suppose that X has a global minimal Kummer cover at

x ∈ X. By 4.1.7, locally, any minimal Kummer cover X ′ → X can be Γx equivariantly

embedded into a toroidal variety Y ′. By [3, Theorem 1.3.2] we get an embedded, Γx

equivariant, resolution D(X ′)→ X ′, where D(X ′) is quasi-toroidal.

We claim that given any other embedding of X ′ into a toroidal variety Z ′, of

the same dimension as Y ′, the resolutions obtained from either embedding coincide.

By 4.3.1, we can construct a common étale covering Z ′ ← T ′ → Y ′, which are

isomorphisms on the images of X ′, and moreover the induced embeddings X ′ → T ′

coincide. Let X1 := (X ′ ×Y ′ T ′), X2 := (X ′ ×Z′ T ′). Then, as T ′ → Z ′ is an

isomorphism on the image of X ′, similarly for T ′ → Y ′, we get that X1
∼= X ′ ∼= X2.

From the embedding X ′ → T ′, we get sections X ′ → X1, X ′ → X2, which coincide

after composing them with embeddings X1 → T ′ and X2 → T ′ (respectively). Let

D1(X ′) be the resolution obtained from X ′ → Y ′ (similarly for D2(X ′) and X ′ → Z ′)

and let DT (X ′) be the resolution obtained from X ′ → T ′. By functoriality of [3,

Theorem 1.3.2], we get that D(X1) ∼= (D1(X ′) ×X′ X1)n−log ∼= D1(X ′), similarly

D(X2) ∼= (D2(X ′)×X′ X2)n−log ∼= D2(X ′). Moreover, as the embeddings X ′ → X1 →
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T ′, X ′ → X ′2 → T ′ coincide, then the ideals of X1 and X2 are the same ideal sheaf in

T ′. Therefore D1(X ′) ∼= DT (X ′) ∼= D2(X ′).

By the above, to check that the resolution obtained from embeddings of different

dimension coincide, it is enough to check that, given a strict embedding X ′ → Y ′ into

a toroidal variety, we get the same resolution if we instead consider the embedding

X ′ → Y ′ × A1. In this case the coordinate t in the A1 factor becomes a maximal

contact element for the ideal of X ′ in Y ′ × A1. The algorithm then proceeds by

restricting X ′ to a maximal contact hypersurface, so we can restrict to the original

embedding X ′ → Y ′ (see the proof in [3, Theorem 8.2.1]). Hence, these resolutions

coincide.

Step 2. Given a log smooth morphism Z ′ → X ′, then by functoriality of [3,

Theorem 1.3.4] we have that D(Z ′) = (Z ′ ×X′ D(X ′))n−log. Moreover, if Z ′ → X ′

is Γx equivariant, then so is D(Z ′) → D(X ′). To see this let g ∈ Γx and consider

the following diagram (a priori without the dashed arrow) induced from functoriality

of [3, Theorem 1.3.4] and Γx equivariantness of Z ′ → X

D(Z ′) D(X ′)

Z ′ X ′

Z ′ X ′

D(Z ′) D(X ′)

gg g

As g : Z ′ → Z ′ is log smooth (it is an automorphism preserving the log structure),

then by the functoriality in [3, Theorem 1.3.4] we get an induced morphism D(Z ′)→

D(Z ′) making the above diagram commute.

Thus, there is a Γx equivariant desingularization D(X ′) → X ′, where D(X ′) is

quasi-toroidal, which is functorial with respect to log smooth morphisms. By func-

toriality with respect to log smooth morphisms, we have that X ′ 7→ D(X ′) preserves

the toroidal locus.
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Step 3. Define D(X) := D(X ′)/Γx. The morphism D(X) → X must also be

projective and birational as it is a quotient of a projective birational morphism by

a finite group. Moreover since D(X ′) → D(X) is Kummer normally log étale, then

D(X) must also be quasi-toroidal, as it is quasi log smooth over a field. We note that

the definition of D(X) is independent of the minimal Kummer cover at x, since (by

4.4.7) any two minimal Kummer covers are étale locally Γ-equivariantly isomorphic.

Let X ′ → X be a global minimal Kummer cover at x ∈ X, such that X ′ has a

Γ equivariant embedding into a toroidal variety. We have defined D(X) = D(X ′)/Γ.

Let Z → X be a quotient log smooth morphism. Taking normalized pullback, we

get an induced log smooth morphism of fs Kummer neighborhoods Z ′ → X ′. By

the above, we find that D(Z ′)→ Z ′ is a Γ-equivariant resolution. Then we have the

quasi-toroidal resolution D(Z ′)/Γ→ Z. Let z ∈ Z be any point, and let Z ′′ → Z be

a minimal Kummer cover at z with character group Γz. Then, we claim that, étale

locally at z, D(Z ′′)/Γz and D(Z ′)/Γ coincide. As D(Z ′′)/Γz is independent of the

minimal Kummer cover at z, then it is sufficient to show the claim for any Z ′′.

Since Z → X is quotient log smooth, then by 4.4.6, étale locally at z, we have a

factorization Z ′ → Z ′′ → Z , where Z ′′ → Z is a minimal Kummer cover at z, and

Z ′ → Z ′′ is an étale quotient by Γ → Γz. Let Γz be the character group induced

from the minimal Kummer cover Z ′′ → Z. Also by 4.4.6, the morphism Z ′ → Z ′′,

is strongly Γz-equivariant and the stabilizer in Γ of a point z′ ∈ Z ′, above z, can

be identified with Γz. Hence, the quotient morphism Z ′/Γz → Z ′/Γ = Z is étale

at the image of z′ in Z ′/Γz and Z ′ → Z ′/Γz is minimal. By functoriality of the

resolution with respect to log smooth morphisms, we get that D(Z ′) → D(Z ′′) is

an étale quotient by Γz and is Γz-strongly equivariant. Therefore, we get a common

finite étale neighborhood D(Z ′)/Γ ← D(Z ′)/(Γz) → D(Z ′′)/Γz. On the other hand,
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D(Z ′)/Γ → Z and D(Z ′′)/Γz → Z are proper birational and make the following

diagram commute.

D(Z ′)/(Γz) D(Z ′)/Γ

D(Z ′′)/Γz Z

By considering the fiber product D(Z ′)/Γ ×Z D(Z ′′)/Γz we see that D(Z ′)/(Γz) →

D(Z ′)/Γ×ZD(Z ′′)/Γz is finite onto a component W ⊂ D(Z ′)/Γ×ZD(Z ′′)/Γz. Then

the restriction W → D(Z ′)/Γ must be birational, and finite (since D(Z ′)/Γ ←

D(Z ′)/(Γz) is finite). Hence as D(Z ′)/Γ is normal, then W ∼= D(Z ′)/Γ. Simi-

larly D(Z ′′)/Γz ∼= W . Also, note that D(Z ′)/(Γz) is the induced resolution on Z ′/Γz

(which is an étale neighborhood of Z).

At this point, we have that D(Z ′′)/Γz and D(Z ′)/Γ coincide étale locally. That

is, there exists an étale neighborhood U → Z, such that (D(X ′) ×X U)n−log/Γ ∼=

D(U ′′)/Γz = D(U). The argument below shows that (D(X ′)×XU)n−log/Γ ∼= ((D(X ′)/Γ)×X
U)n−log, and hence the resolution X 7→ D(X ′)/Γ is independent of the fs Kummer

cover X ′ → X.

Step 4. Suppose we are given a quotient log smooth morphism f : Y → X,

and a global minimal Kummer cover X ′ → X, with character group Γ. Since f

is quotient log smooth, then Y ′ := (X ×Y Y ′)n−log → X ′ is classically log smooth

and Γ equivariant. As the resolution X ′ 7→ D(X ′) is functorial with respect to Γ

equivariant log smooth morphisms, we get that D(Y ′) ∼= Y ′ ×X D(X ′) and that

D(Y ′) → D(X ′) is Γ equivariant. Call D1(Y ) := D(Y ′)/Γ. We get an induced

morphism D1(Y )→ D(X). Then, we claim that D1(Y ) ∼= (D(X)×X Y )n−log.

Given that X ′ → X, D(X ′)→ D(X) are finite and D(X ′)→ X ′ is birational, we

get that there is an induced morphism D(X ′) → (D(X) ×X X ′)n−log which must be

finite. Note that, as D(X) → X is birational, and X ′ → X is a minimal Kummer

cover, then by the definition of ()n−log we see that (D(X) ×X X ′)n−log has the same

number of components as X ′. As D(X ′)→ X ′ is birational on each component and we

have the factorization D(X ′)→ (D(X)×X X ′)n−log → X ′, then D(X ′)→ (D(X)×X
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X ′)n−log is birational on every component. Thus D(X ′) ∼= (D(X) ×X X ′)n−log since

both varieties are normal. Similarly we obtain that D(Y ′) ∼= (D1(Y ) ×Y Y ′)n−log.

Following the diagram,

D(Y ′) D(X ′)

D1(Y ) D(X)

Y X

Y ′ X ′

we see that D(Y ′) ∼= (D(X)×D1(Y )D(Y ′))n−log. Since D(Y ′) ∼= Y ′×X′D(X ′), then

we must also have that D(Y ′) ∼= ((Y ×X D(X))n−log ×Y Y ′)n−log. Thus, the induced

morphism D(Y ′) → (Y ×X D(X))n−log, must be finite. Given that D(Y ′) → D(Y )

is finite and surjective, then from the factorization D(Y ′) → D1(Y ) → (D(X) ×X
Y )n−log, we get that the induced morphism D1(Y )→ (D(X)×XY )n−log must be finite

also [13, Tag 0AH6]. The morphism D1(Y )→ (D(X)×X Y )n−log must be birational,

since both have function field K(Y ′)Γ = K(Y ). Hence D1(Y ) ∼= (D(X) ×X Y )n−log

since both varieties are normal.

Applying this argument to X ′ → X and U → Z → X in Step 3, we get that

D(U) = (D(X) ×X U)n−log. This establishes functoriality with respect to quotient

log smooth morphisms.

Step 5. The functoriality with respect to quotient log smooth morphisms, implies

the resolution glues on all of X. This is because, from 4.5.2, we can pick an étale

covering ∪Xi → X (finitely many Xi’s) where each Xi has a central chart and the

images of all of this centers cover X. Hence, each Xi has a global minimal Kummer

cover at every point of its center. By the argument in Step 0, we get a resolution of

X.

Step 6. Finally, we prove that the quasi-toroidal locus is preserved. Since the

minimal Kummer cover of a quasi-toroidal variety X ′ → X is toroidal, and the
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desingularization X ′ → D(X ′) preserves the toroidal locus, then D(X) = X. Now for

a general Kummer fs variety X, the quasi-toroidal locus of is an open sub log scheme

U ⊂ X. Thus by functoriality with respect to quotient log smooth morphisms, U is

preserved on D(X).

Remarks.

• The use of the Γx-equivariant embedding of X ′ into a toroidal variety is not

strictly necessary, as the log resolution of X ′ is already functorial and so it

commutes with group actions which preserve the log structure. We chose to

use the equivariant embedding in the proof above as to show an application of

4.1.7.

• Whenever X → AP is a central chart, with x ∈ C(P ), then the definition of

the resolution at x (D(X ′)/Γx where X ′ → X is a minimal Kummer cover) is

simultaneously a resolution for every other point x′ ∈ C(P ) as they have the

same minimal Kummer cover.

• Since quasi-toroidal varieties are Kummer fs varieties which are quasi log smooth

over a field (1.0.1), one would expect the resolution algorithm to be functorial

with respect to quasi log smooth morphisms. We do not know if this is true.

However, we can show the following result.

Proposition 4.6.3 Let X → Y be a morphism of Kummer fs log varieties, with Y

an fs log scheme. Suppose that at every x ∈ X, we can find a minimal fs Kummer

neighborhood such that X ′ → X → Y is classically log smooth (in particular X → Y

is quasi-log smooth). Then D(X) ∼= (D(Y )×Y X)n−log.

Proof As above, we only need to build the resolution étale locally, so we can assume

that X has a central chart at a given x ∈ X. Then, we can find a minimal Kummer

fs neighborhood X ′ → X (with character group Γx), such that X ′ → Y is classically

log smooth. Hence D(X ′) = (D(Y ) ×X′ Y )n−log by the functoriality of [3, Theorem
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1.3.4]. On the other hand, by the same functoriality D(X ′) → D(Y ) must be Γx-

equivariant (with trivial action on D(Y )). Recall that we defined D(X) := D(X ′)/Γx.

Using similar arguments as above, we find that there is an induced finite birational

morphism D(X)→ (X×Y D(Y ))n−log. We conclude that D(X) ∼= (X×Y D(Y ))n−log

since both varieties are normal.

Example 4.6.4 Consider the log scheme spec(K) (K a field), with log structure

given by M := N ⊕ K× (N maps to zero). We remark that this example is not a

Kummer fs variety in out sense, since M 6⊂ OX \ {0}. We have a strict embedding

of (spec(K),M) into the toroidal variety (spec(K[T ]),N). Note that (spec(K),M) is

not generically log smooth. If there was an embedded resolution of (spec(K),M), then

(by the nature of admissible Kummer blowups) it would have to be some monoscheme

AP over (spec(K),M). However, since the generator of N maps to zero in K, there is

no logarithmic morphism AP → (spec(K),M). Thus, there is no embedded resolution

for such kind of log scheme.

Example 4.6.5 Similarly, consider X := spec(K[T ]) with log structure coming from

N2 → [t] sending (1, 0) 7→ T , (0, 1) 7→ T . Then (X, (N2)a) has a log resolution,

namely (X,Na), with log structure induced from N→ T . The morphism (X, (N)a)→

(X, (N2)a) is the identity on underlying schemes and N2 → N is the sum.

With a similar argument as above, log resolution works even when M 6⊂ OX ,

provided no element in M gets sent to zero. That is, on the first step, one just replaces

M by its image N in OX and then resolves (X,N). Note that (X,N) → (X,M)

preserves the quasi-toroidal locus (by definition if x ∈ (X,M) is in the quasi-toroidal

locus, then Mx ⊂ Ox \ {0}).

Example 4.6.6 For rational log varieties (X,M) which do not satisfy 2.13.1, the

algorithm above may not produce a log resolution. Consider for example X :=

spec(k[x, y]) with log structure given by N → [x, y] ( 1 7→ xy). Then X is quasi-

toroidal everywhere but at the origin. X can be embedded strictly into the toroidal
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variety Z := spec(k[x, y, z]) with z = 0 log structure. However, since the ideal of X

in Z is already monomial the algorithm stops without modifying X.
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