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ABSTRACT

Xiaokai Yuan Ph.D., Purdue University, August 2019. Direct and Inverse Scattering
Problems for Elastic Waves. Major Professor: Peijun Li.

In this thesis, both direct and inverse elastic scattering problems are considered.
For a given incident wave, the direct problem is to determine the displacement of wave
field from the known structure, which could be an obstacle or a surface in this thesis;
The inverse problem is to determine the structure from the measurement of displace-
ment on an artificial boundary. In the second chapter, we consider the scattering of
an elastic plane wave by a rigid obstacle, which is immersed in a homogeneous and
isotropic elastic medium in two dimensions. Based on a Dirichlet-to-Neumann (DtN)
operator, an exact transparent boundary condition is introduced and the scattering
problem is formulated as a boundary value problem of the elastic wave equation in
a bounded domain. By developing a new duality argument, an a posteriori error
estimate is derived for the discrete problem by using the finite element method with
the truncated DtN operator. The a posteriori error estimate consists of the finite
element approximation error and the truncation error of the DtN operator which
decays exponentially with respect to the truncation parameter. An adaptive finite
element algorithm is proposed to solve the elastic obstacle scattering problem, where
the truncation parameter is determined through the truncation error and the mesh
elements for local refinements are chosen through the finite element discretization
error. In chapter 3, we extend the argument developed in chapter 2 to elastic surface
grating problem, where the surface is assumed to be periodic and elastic rigid; Then,
we treat the obstacle scattering in three dimensional space; The direct problem is
shown to have a unique weak solution by examining its variational formulation. The

domain derivative is studied and a frequency continuation method is developed for



pal

the inverse problem. Finally, in chapter 4, a rigorous mathematical model and an
efficient computational method are proposed to solve the inverse elastic surface scat-
tering problem which arises from the near-field imaging of periodic structures. The
surface is assumed to be a small and smooth perturbation of an elastically rigid plane.
By placing a rectangle slab of a homogeneous and isotropic elastic medium with larger
mass density above the surface, more propagating wave modes can be utilized from
the far-field data which contributes to the reconstruction resolution. Requiring only
a single illumination, the method begins with the far-to-near field data conversion
and utilized the transformed field expansion to derive an analytic solution for the
direct problem, which leads to an explicit inversion formula for the inverse problem;
Moreover, a nonlinear correction scheme is developed to improve the accuracy of the
reconstruction; Numerical examples are presented to demonstrate the effectiveness of

the proposed methods for solving the questions mentioned above.



1. INTRODUCTION

Scattering problems consider the interaction between incident wave and some struc-
tures it hits on. Roughly speaking, it can be classified to direct problems and inverse
problems. Direct problem considers the wave propagation after a given incident wave
scattered by a known structure, in this thesis the structure could be an obstacle or
a periodic surface; For a given incident wave, the inverse problem concerns to recon-
struct some properties of the structure, like the geometry of the structure, from the
measurement on some artificial boundary.

Generally speaking, scattering problems can be acoustic wave scattering, elec-
tromagnetic wave scattering and elastic wave scattering. Specifically, in this thesis,
we focus our attention on elastic wave scattering which is more complicate due to
the coupling of compressional wave and shear wave with different speeds. For time

dependent problem, the displacement of elastic wave is governed by
~V -0+ pdiU =0, (1.1)

where p is elastic mass density and o is the stress, vector U is the displacement of

elastic wave. In homogeneous and isotropic medium, by Hooke’s law
o =2ue+ Atr(e)l,

where A, i are Lamé parameters and [ is the identity matrix, tr is trace operator and

€ is strain tensor defined as

e=VU + (VU)'.

For time harmonic problem, we assume the solution U (z,t) has form as U (z,t) =
Re {u(z)e**'}, where w is angular frequency. Plug it to (1.1), we can get the Navier
equation

pAu + (A + p)VV - u + w?pu = 0.



For simplicity, throughout this thesis, we assume the elastic mass density p = 1.

The goal of thesis is fourfold:

« Convergence analysis of adaptive finite element method with DtN map for e-

lastic obstacle scattering;

« Convergence analysis of adaptive finite element method with DtN map for e-

lastic periodic surface grating;
o Analysis of direct and inverse elastic obstacle scattering in three-dimensions;
o Numerical algorithm for the inverse elastic surface scattering with a slab.

In Chapter 2, consider the scattering of an elastic plane wave by a rigid obstacle,
which is immersed in a homogeneous and isotropic elastic medium in two dimensions.
Based on a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary
condition is introduced and the scattering problem is formulated as a boundary value
problem of the elastic wave equation in a bounded domain. By developing a new d-
uality argument, an a posteriori error estimate is derived for the discrete problem by
using the finite element method with the truncated DtN operator. The a posteriori
error estimate consists of the finite element approximation error and the truncation
error of the DtN operator which decays exponentially with respect to the truncation
parameter. An adaptive finite element algorithm is proposed to solve the elastic ob-
stacle scattering problem, where the truncation parameter is determined through the
truncation error and the mesh elements for local refinements are chosen through the
finite element discretization error. Numerical experiments are presented to demon-
strate the effectiveness of the proposed method.

In Chapter 3, we consider the problem of a time harmonic elastic plane wave by
a periodic structure; Transparent boundary condition is introduced to reformulate
the unbounded physical problem to a boundary value problem in a bounded domain;
Through duality argument and Helmholtz decomposition, the a posteriori error es-

timate, which consists of finite element error and truncation error of DtN operator



is deduced; Based on the a posteriori error estimate, an adaptive algorithm which
determine the TBC truncation parameter and mesh refinement is developed; Some
numerical examples are presented to demonstrate the proposed adaptive algorithm
works well.

Chapter 4 considers an exterior problem of the three-dimensional elastic wave
equation, which models the scattering of a time-harmonic plane wave by a rigid
obstacle. The scattering problem is reformulated into a boundary value problem by
introducing a transparent boundary condition. Given the incident field, the direct
problem is to determine the displacement of the wave field from the known obstacle;
the inverse problem is to determine the obstacle’s surface from the measurement of
the displacement on an artificial boundary enclosing the obstacle. In this chapter,
we consider both the direct and inverse problems. The direct problem is shown to
have a unique weak solution by examining its variational formulation. The domain
derivative is studied and a frequency continuation method is developed for the inverse
problem. Numerical experiments are presented to demonstrate the effectiveness of the
proposed method.

In Chapter 5, a rigorous mathematical model and an efficient computational
method are proposed to solve the inverse elastic surface scattering problem which
arises from the near-field imaging of periodic structures. We demonstrate how an
enhanced resolution can be achieved by using more easily measurable far-field data.
The surface is assumed to be a small and smooth perturbation of an elastically rigid
plane. By placing a rectangular slab of a homogeneous and isotropic elastic medium
with larger mass density above the surface, more propagating wave modes can be
utilized from the far-field data which contributes to the reconstruction resolution.
Requiring only a single illumination, the method begins with the far-to-near (FtN)
field data conversion and utilizes the transformed field expansion to derive an analytic
solution for the direct problem, which leads to an explicit inversion formula for the

inverse problem. Moreover, a nonlinear correction scheme is developed to improve the



accuracy of the reconstruction. Results show that the proposed method is capable of

stably reconstructing surfaces with resolution controlled by the slab’s density.



2. THE DIRECT ELASTIC OBSTACLE SCATTERING
PROBLEM

2.1 Introduction

A basic problem in classical scattering theory is the scattering of time-harmonic
waves by a bounded and impenetrable medium, which is known as the obstacle s-
cattering problem. It has played a crucial role in diverse scientific areas such as
radar and sonar, geophysical exploration, medical imaging, and nondestructive test-
ing. Motivated by these significant applications, the obstacle scattering problem has
been widely studied for acoustic and electromagnetic waves. Consequently, a great
deal of results are available concerning its solution [37,80,82]. Recently, the scat-
tering problems for elastic waves have received ever-increasing attention due to the
important applications in seismology and geophysics [11,75,76]. For instance, they
are fundamental to detect the fractures in sedimentary rocks for the production of
underground gas and liquids. Compared with acoustic and electromagnetic waves,
elastic waves are less studied due to the coexistence of compressional waves and shear
waves that have different wavenumbers [34, 66].

The obstacle scattering problem is usually formulated as an exterior boundary val-
ue problem imposed in an open domain. The unbounded physical domain needs to be
truncated into a bounded computational domain for the convenience of mathematical
analysis or numerical computation. Therefore, an appropriate boundary condition is
required on the boundary of the truncated domain to avoid artificial wave reflection.
Such a boundary condition is called the transparent boundary condition (TBC) or
non-reflecting boundary condition. It is one of the important and active subjects in
the research area of wave propagation [19,44-46,55,56,91]. Since Berenger proposed
a perfectly matched layer (PML) technique to solve the time-dependent Maxwell e-



quations [20], the research on the PML has undergone a tremendous development due
to its effectiveness and simplicity. Various constructions of PML have been proposed
and studied for a wide range of scattering problems on acoustic and electromagnetic
wave propagation [18,26,33,51,58,92]. The basic idea of the PML technique is to
surround the domain of interest by a layer of finite thickness fictitious medium that
attenuates the waves coming from inside of the computational domain. When the
waves reach the outer boundary of the PML region, their values are so small that the
homogeneous Dirichlet boundary conditions can be imposed.

A posteriori error estimates are computable quantities which measure the so-
lution errors of discrete problems. They are essential in designing algorithms for
mesh modification which aim to equidistribute the computational effort and opti-
mize the computation. The a posteriori error estimates based adaptive finite element
methods have the ability of error control and asymptotically optimal approximation
property [4]. They have become a class of important numerical tools for solving
differential equations, especially for those where the solutions have singularity or
multiscale phenomena. Combined with the PML technique, an efficient adaptive fi-
nite element method was developed in [29] for solving the two-dimensional diffraction
grating problem, where the medium has a one-dimensional periodic structure and
the model equation is the two-dimensional Helmholtz equation. It was shown that
the a posteriori error estimate consists of the finite element discretization error and
the PML truncation error which decays exponentially with respect to the PML pa-
rameters such as the thickness of the layer and the medium properties. Due to the
superior numerical performance, the adaptive PML method was quickly extended to
solve the two- and three-dimensional obstacle scattering problems [26, 28] and the
three-dimensional diffraction grating problem [16], where either the two-dimensional
Helmholtz equation or the three-dimensional Maxwell equations were considered. Al-
though the PML method has been developed to solve various elastic wave propagation

problems in engineering and geophysics soon after it was introduced [32, 36,48, 65],



the rigorous mathematical studies were only recently done for elastic waves because
of the complex of the model equation [22,30, 60, 62].

As a viable alternative, the finite element DtN method has been proposed to solve
the obstacle scattering problems [61,63] and the diffraction grating problems [59,94],
respectively, where the transparent boundary conditions are used to truncate the
domains. In this new approach, the layer of artificial medium is not needed to en-
close the domain of interest, which makes is different from the PML method. The
transparent boundary conditions are based on nonlocal Dirichlet-to-Neumann (DtN)
operators and are given as infinite Fourier series. Since the transparent boundary
conditions are exact, the artificial boundary can be put as close as possible to the
scattering structures, which can reduce the size of the computational domain. Nu-
merically, the infinite series need to be truncated into a sum of finitely many terms by
choosing an appropriate truncation parameter /N. It is known that the convergence
of the truncated DtN map could be arbitrarily slow to the original DtN map in the
operator norm. The a posteriori error analysis of the PML method cannot be ap-
plied directly to the DtN method since the DtN map of the truncated PML problem
converges exponentially fast to the DtN map of the untruncated PML problem. To
overcome this issue, a duality argument had to be developed to obtain the a posteriori
error estimate between the solution of the scattering problem and the finite element
solution. Comparably, the a posteriori error estimates consists of the finite element
discretization error and the DtN truncation error, which decays exponentially with
respect to the truncation parameter N. The numerical experiments demonstrate that
the adaptive DtN method has a competitive behavior to the adaptive PML method.

In this chapter, we present an adaptive finite element DtN method and carry out
its mathematical analysis for the elastic wave scattering problem. The goal is three-
fold: (1) prove the exponential convergence of the truncated DtN operator; (2) give a
complete a posteriori error estimate; (3) develop an effective adaptive finite element
algorithm. This chapter significantly extends the work on the acoustic scattering

problem [61], where the Helmholtz equation was considered. Apparently, the tech-



niques differ greatly from the existing work because of the complicated transparent
boundary condition associated with the elastic wave equation.

Specifically, we consider a rigid obstacle which is immersed in a homogeneous and
isotropic elastic medium in two dimensions. The Helmholtz decomposition is utilized
to formulate the exterior boundary value problem of the elastic wave equation into
a coupled exterior boundary value problem of the Helmholtz equation. By using
a Dirichlet-to-Neumann (DtN) operator, an exact transparent boundary condition,
which is given as a Fourier series, is introduced to reduce the original scattering
problem into a boundary value problem of the elastic wave equation in a bounded
domain. The discrete problem is studied by using the finite element method with
the truncated DtN operator. Based on the Helmholtz decomposition, a new duality
argument is developed to obtain an a posteriori error estimate between the solution
of the original scattering problem and the discrete problem. The a posteriori error
estimate consists of the finite element approximation error and the truncation error of
the DtN operator which is shown to decay exponentially with respect to the truncation
parameter. The estimate is used to design the adaptive finite element algorithm
to choose elements for refinements and to determine the truncation parameter N.
Since the truncation error decays exponentially with respect to IV, the choice of the
truncation parameter N is not sensitive to the given tolerance. Numerical experiments
are presented to demonstrate the effectiveness of the proposed method.

The chapter is organized as follows. In Section 2.2, the elastic wave equation
is introduced for the scattering by a rigid obstacle; a boundary value problem is
formulated by using the transparent boundary condition; the corresponding weak
formulation is discussed. In Section 2.3, the discrete problem is considered by using
the finite element approximation with the truncated DtN operator. Section 2.4 is
devoted to the a posteriori error analysis and serves as the basis of the adaptive
algorithm. In Section 2.5, we discuss the numerical implementation of the adaptive

algorithm and present two numerical examples to illustrate the performance of the



Figure 2.1. Schematic of the elastic wave scattering problem.

proposed method. The chapter is concluded with some general remarks and directions

for future work in Section 2.6.

2.2 Problem Formulation

Consider a two-dimensional elastically rigid obstacle D with Lipschitz continuous
boundary 0D, as seen in Figure 2.1. Denote by v and 7 the unit normal and tangent
vectors on 0D, respectively. The exterior domain R?\D is assumed to be filled with
a homogeneous and isotropic elastic medium with a unit mass density. Let Br =
{x = (z,9)T e R? : |z| < R} and By = {x € R*: |z| < R} be the balls with radii
R and R, respectively, where R > R > 0. Denote by 0Br and 0B} the boundaries
of Br and Rp, respectively. Let R be large enough such that D By < Bp.
Denote by Q = Bg\D the bounded domain where the boundary value problem will
be formulated.

Let the obstacle be illuminated by an incident wave u°. The displacement of the

scattered field w satisfies the two-dimensional elastic wave equation

pAu+ A+ p)VV-u +w?u =0 inR*\D, (2.1)
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where w > 0 is the angular frequency and A, u are the Lamé constants satisfying
> 0,4+ > 0. Since the obstacle is assumed to be rigid, the displacement of the

total field w 4+ u'™° vanishes on the boundary of the obstacle, i.e., we have
u=g ondD, (2.2)

where g = —u'™. In addition, the scattered field w is required to satisfy the

Kupradze—Sommerfeld radiation condition

lim p2(0,u, — ikiuy,) = 0,  lim p2(0,us — ikgus) =0, p = |z, (2.3)
p—0 p—0
where
1
u, = ——VV-u, wus=—curlcurlu,
k1 K3

are the compressional and shear wave components of u, respectively. Here

w w
,{ = —m - f{ = —_—
O T

are knowns as the compressional wavenumber and the shear wavenumber, respectively.
Clearly we have ki < kg since g > 0, \+p > 0. Given a vector function u = (uy, us)"

and a scalar function u, the scalar and vector curl operators are defined by
curlu = dyus — dyuy, curlu = (O u, —0,u)" .
For any solution u of (2.1), we introduce the Helmholtz decomposition
u = Vo + curly, (2.4)

where ¢, are called the scalar potential functions. Substituting (2.4) into (2.1)
yields that ¢, ¢ satisfy the Helmholtz equation

Ap+rKip=0, Ap+r3h=0 inR*\D. (2.5)
Taking the dot product of (2.2) with v and 7, respectively, we get

Ovp— 00 = fr, Qb+ 0:¢0 = fr ondD, (2.6)
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where f; = —g-v and fy = g-7. It follows from (2.3) that ¢, ¢ satisfies the Sommerfeld

radiation condition

lim p'2(0,0 — k1¢) = 0, lim p'?(0,0) — ko)) = 0. (2.7)
pP—>00 p—>00

Based on the Helmholtz decomposition, it is easy to show the equivalence of the
boundary value problems (2.1)—(2.3) and (2.5)—(2.7). The details are omitted for
brevity.

Lemma 2.2.1 Let u be the solution of the boundary value problem (2.1)—(2.3). Then
¢ = —K{*V-u,1p = K, curlu are the solutions of the coupled boundary value problem
(2.5)(2.7). Conversely, if ¢, are the solution of the boundary value problem (2.5)—
(2.7), then w = V¢ + curly is the solution of the boundary value problem (2.1)—(2.3).

Denote by L*(Q) the usual Hilbert space of square integrable functions. Let H'()
be the standard Sobolev space equipped with the norm

1/2
Julin oy = (lula@) + IVula)

Define H2,(Q) = {u € H(Q) : w = 0 on ¢D}. For any function u € L*(0Bg), it
admits the Fourier series expansion

. 1 21 .
u(R,0) = Z A, (R)e™,  in(R) = _J u(R, 0)e" ™40,
neZ 2T 0

The trace space H*(0Bg), s € R is defined by

H*(0Bg) = {u e L*(0Bg) : ||u|

Hs(Br) < O},

where H*(0Bg) norm is given by

i

eiom = (20 21+ 2 i (B

neZ
Let H'(Q) = HY(Q)? and H},(Q) = H},(2)? be the Cartesian product spaces e-
quipped with the corresponding 2-norms of H'(Q2) and H},(Q2), respectively. Through-
out the chapter, we take the notation of a < b to stand for a < Cb, where C' is a

positive constant whose value is not required but should be clear from the context.
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The elastic wave scattering problem (2.2)—(2.3) is formulated in the open domain
R\ D, which needs to be truncated into the bounded domain €. An appropriate
boundary condition is required on 0Bpg.

Define a boundary operator for the displacement of the scattered wave
PBu = oyu + (A + )V -ue, ondBg,

where e, is the unit outward normal vector on dBg. It is shown in [75] that the
scattered field w satisfies the transparent boundary condition on ¢Bg:
Bu = (Tu)(R,0) = > Myu,(R)e™,  w(R,0) = > un(R)e", (2.8)
nez nez
where .7 is called the Dirichlet-to-Neumann (DtN) operator and M, is a 2 x 2 matrix
whose entries are given in Appendix A.
Based on the transparent boundary condition (2.8), the variational problem for

(2.1)-(2.3) is to find w € H*(Q) with u = g on ¢D such that
bu,v) =0, Yve Hj,(9), (2.9)
where the sesquilinear form b : H'(Q) x H'(Q) — C is defined as
b(u,v) = ,uLVu : Vodx + (A + p) L (V-u) (V- -0)de
—w2f u - vdx — T u - vds. (2.10)
Q oBR

Here A : B = tr(ABT) is the Frobenius inner product of square matrices A and B.
Following [75], we may show that the variational problem (2.9) has a unique weak

solution w € H'() for any frequency w and the solution satisfies the estimate

HUHHl(Q) < HQHHW(aD) < ||umCHH1(Q)- (2.11)

It follows from the general theory in [3] that there exists a constant v > 0 such that
the following inf-sup condition holds

wp P2

> y|ulgrq), Yue HY(Q).
0£veH(Q) HUHHl(Q)
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2.3 The Discrete Problem

Let us consider the discrete problem of (2.9) by using the finite element approx-
imation. Let M, be a regular triangulation of €2, where h denotes the maximum
diameter of all the elements in M,,. For simplicity, we assume that the boundary 0D
is polygonal and ignore the approximation error of the boundary dBpg, which allows
to focus of deducing the a posteriori error estimate. Thus any edge e € My, is a subset
of 0Q2 if it has two boundary vertices.

Let V), ¢ H*(Q) be a conforming finite element space, i.e.,
Vi i={veC(Q)’:v|, € Pu(K)* for any K € M,,},

where m is a positive integer and P,,(K’) denotes the set of all polynomials of degree
no more than m. The finite element approximation to the variational problem (2.9)

is to find u" € V', with u" = g on 0D such that
b(u" v") =0, Vo'"e V,ap, (2.12)

where Vi op = {ve V) :v =0on dD}.
In the variational problem (2.12), the DtN operator .7 is given by an infinite
series. In practical computation, the infinite series must be truncated into a finite

sum. Given a sufficiently large IV, we define the truncated DtN operator

INu = Z Mu,(R)e™. (2.13)

In|<N
Using (2.13), we have the truncated finite element approximation: Find u% € V,

with uf, = g on 0D such that
by (uh,v") =0, Yo'"eVyap, (2.14)
where the sesquilinear form by : V', x V', = C is defined as
by(u,v) = pLVu : Voda + (A + p) L (V-u) (V- -v)dx

—wzf u - vdx — INu - vds. (2.15)
Q oBr
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For sufficiently large N and sufficiently small h, the discrete inf-sup condition of
the sesquilinear form by may be established by following the approach in [90]. Based
on the general theory in [3], the truncated variational problem (2.14) can be shown
to have a unique solution u”, € V. The details are omitted since our focus is the a

posteriori error estimate.

2.4 The a Posteriori Error Analysis

For any triangular element K € M, denoted by hg its diameter. Let B, denote
the set of all the edges of K. For any edge e € Bj, denoted by h, its length. For
any interior edge e which is the common side of triangular elements K, Ky € My,

we define the jump residual across e as
Jo = uVul |k, v+ A+ )V - ul| g, vy + pVulsl g, - ve + (A + )V - uly g0,

where v, is the unit outward normal vector on the boundary of Kj, 7 = 1,2. For any

boundary edge e = 0Bg, we define the jump residual
Jo =2 (Invuly — p(Vuly - e,) — (A + p)(V-ule,).
For any triangular element K € M,,, denote by nx the local error estimator which is

given by

ec0K

1/2
1
Nk = hKH%jUHLQ(K) + (5 Z heHJe’?ﬂ(e)) )

where & is the residual operator defined by
Fu = pAu+ A+ p)V (V- u) + w’u.
For convenience, we introduce a weighted norm || - [|| g1 () which is given by
‘Humiﬂ(g) = ,uJQ IVul2dx + (A + u) JQ IV - ulrdz + w? L lu|*dz. (2.16)
It can be verified for any w e H'(Q) that

min (p, w?) HUHQH{(Q) < \Hu\“fql(m < max (2X + 3p, w?) Huﬂzl(m, (2.17)
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which implies that the two norms | - | g1(q) and || - || g (q) are equivalent.

Now we state the main result of this chapter.

Theorem 2.4.1 Let w and u®; be the solution of the variational problem (2.9) and
(2.12), respectively. Then for sufficiently large N, the following a posterior error

estimate holds

1/2 AN\ |7
R inc
|w —U}&HHI(Q) < ( Z W%) + ﬁg%’”\ (E) 1™ g1 (-

KeMy,

We point out that the a posteriori error estimate consists of two parts: the first
part arises from the finite element discretization error; the second part comes from the
truncation error of the DtN operator. Apparently, the DtN truncation error decreases
exponentially with respect to N since R < R. In the rest of the chapter, we shall
prove the a posteriori error estimate in Theorem 2.4.1.

Denoted by &€ = u — u”; be the error between solution of the original variational
problem (2.9) and the solution of the finite element approximation to the truncated

variational problem (2.12).

Lemma 2.4.2 Let £ = u — u’y, where w and u% are the solutions of the problems

(2.9) and (2.12), respectively. Then

€130y = REE +R | (7= T Els 2 | € Edo s R [ Tg-Eds
0BRr Q 0BRr
(2.18)
and
b(&,v) + J (T — In) € -vds = —by(uhy,v —v")
0BR

+ f (7 — In)u-vds, Yve Hi,(Q), v" € Vyap. (2.19)
B
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Proof Combining (2.16), (2.10), and (2.15), we have from straightforward calcula-

tions that
€130y = | V& VEe+ O p) | (V-6 (VB des i [ €€
Q Q Q
= %b(ﬁ,ﬁ)—I—QwQJﬁ-de%—?R TE - €ds
Q oBR
= RO E+R (f—fN)ﬁ-st+2w2J£~de+§R INE - Eds
0BRr Q 0BRr

and

b(g,v)+J (9—QN)g-EdSZb(u,v)—b(uél\,,v)+LB (T — )€ - Tds

dBr

= b(u,v) — by (uh,v) + by (uh,v) — b(uly, v) + J (T — Iy) € -vds
oBR

= b(u,v) — bN(ufjﬁ,,'vh) — bN(u}jV,v — vh) + J (T — Tn) u’}, -vds
0Bp

+J (g—yN)E'EdS
0BRr

= —by(ul, v —v") + J (7 — Iy)u-vds.

0BR

which complete the proof. [ |

The above result is the error representation formula. In the following, we discuss
the four terms in (2.18) one by one. Lemma 2.4.3 gives the a posteriori error estimate
for the finite element approximation; Lemma 2.4.6 presents the a posteriori error

estimate for the truncation of the DtN operator.

Lemma 2.4.3 Let ul, be the solution of the finite element approzimation to the

truncated variational problem (2.12). Then

1/2
[ (uy, v — ") < ( > 77%) [v|mi), Yve Hip(Q), v" € Viop.  (2:20)
KeMy,
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Proof For any v e H}, () and v € V, 5p, it follows from the integration by parts

that
—by(ufy, v —v")
_ %{ Lqu V(v—vh)dm+(/\+u)fK(V uy)V - (T -3")d }
Zj\/t { L (T — " )dm—LBRmaKﬂu?V-ﬁ—ﬁds}
— KZM LK[Wu?V-w(Mu)(vu’&)] (T —o") dw+LBWK
N ZJ (1At + (A + )V -l + wPul] - (B — oF)dae

KeMy,

= [J%u]\, v—vhda:+2 f -v—vh ]
KeMy, eec‘)K

We take v" = II,v € Vj, op, where II;, is the Scott—Zhang interpolation operator [89)],

which has the following interpolation estimates
lv =yl 2k) < x|Vl 2y, 1o — o] g2 < hi/QH’UHHI(ke)-

Here K and f(e are the union of all the triangular elements in M,, which have
nonempty intersection with the element K and the side e, respectively. Using the

Holder inequality in (2.21), we get

1/2
(a0 — o) < ( 3 77%) ol

KeMy,

which completes the proof. [ |

The following result concerns the trace regularity for functions in H*(Q2). The

proof can be found in [61].
Lemma 2.4.4 For any u € H'(Q), the following estimates hold

lulmreepn s lulare,  lulmzes, < lulaw

Ty (am)ds}

(2.21)
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Lemma 2.4.5 Let 0 < k1 < ky and 0 < R < R. For sufficiently large n, the
following estimate holds for j = 1,2:

HY(siR)  HY(kR)
HP (i R)  HY (koR)

AN\ |7
Ko (Ko — K1) 2 2 E
S T=1 (72~ #) (R !

where HYY and HY are the Hankel functions of the first and second kind with order

n, respectively.

Proof Since the Hankel functions of the first and second kind are complex conjugate
to each other, we only need to show the proof for the Hankel function of the first kind.
Let J, and Y,, be the Bessel functions of the first and second kind with order n,

respectively. For a fixed z > 0, they admit the following asymptotic properties [95]:

T(2) ~ \/2177&(%)" Yn(z)~—\/%(%)_”, n— o, (2.92)

Define S(2) = J,(2)/Y,(2). A simple calculation yields

{In(zR)
Y. R)
(In(2R)

HY (2R) Ju(2R) +iY,(zR) Y, (:R)1—
HY(2R) Jo(zR1) +1Y,(2R) Y, (2R)1 —

n(Z

Yn(ZR)
Yo(2R)1—i8,(2R) _ Ya(2R) | Ya(2R) Su(2R) — S,(2R),
Y, (2R) 1 — iSn(zR) Y, (2R) Yn(z}?) 1—iS,(zR)

By (2.22)-(2.23), we have

(2.23)

s - e ()
and
HY(R)  HY (k2R)| _ [Ya(miR)  Ya(kaR)|  |Ya(miR) S(/@'lR)
‘Hé”(mf?) HM (ko R) Yn(mﬁ)_Yn(mﬂ) Yo(k1R) 1 —i8, (k1 R)
Y, (kiR) S, (1 R) Y, (keR)  Sp(koR) Y, (k2R)  Sn(k2R)

Y, (koR) 1 —iS, (ko R) Y, (koR) 1 —iS,(koR)|

N 2n
ezR
< -

Y, (mR) 1— 1Sn(fi1R)

(ezR) n
<
2n

It is easy to verify that

S, (zR)
1 —iS,(zR)

Sn(zR)
1 —iS,(zR)
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and

YuzR) 2n-1) " Y,(zR)

A\ |
R2Y!(zR) 2’ R? Y,(2R) R

I :
Combining the above estimates, we have for R > R and ks > k; that

L YalsiR)  Su(miR) || Ya(keR) Sn(kaoR)
Yn(ﬁlé) 1-— iSn(lilﬁ) Yn(K/QR) 1-— lsn(ligR)

s (63_23)2" ( Yo(s1R)|  |Y(kaR) ) |

Yu(siR)|  |Ya(k2R)
Define F(z) = Y,(2R)/Y,(zR). By the mean value theorem, there exits ¢ €
(K1, k2) such that

A

Yn(KZlR) Sn(/‘ilR)
Y, (k1R) 1 —iS, (k1 R)
HQR) Sn(KJQR>
koR) 1 —iS, (ko R)

_|_

; =
Y,
Yy

(
(

Fle) = F(v) = F©lm—ra) A
RY,(ER)Y, (€R) — RY, (€R)Y,(¢R)

= = (K1 — k2)

Y, (ER)?
~ (RM(&R) - R&Ki(&l?)) Yu(ER) k1 — ra

~

Y, (§R) Y, (ER)
§ (K1 — ko) (Rz B R2> Ya(€R)

2(n —1) Y, (€R)
Therefore,
H7(11>(,.@1R) B H;p(@}z) ‘g(m — ko) <R2 B 1%?) Y,.(£R)
HV (s R)  H (k2R) 2(n—1) Y, (ER)
2(4)” (] )
2n Y, (k1 R) Y, (ko R

AN\ |7
Ko (l€2 — I€1> ( 2 A2> R
ez MR R =
In] —1 R ’
which completes the proof. [ |

Lemma 2.4.6 Let u € H'(Q) be the solution of the variational problem (2.9). For
any v e H'(Q), the following estimate holds

~\ Inl
R inc
<Oy ( () )u i ol

where C' is a positive constant independent of N.

J (7 — Tn)u-vds
0BRr
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Proof Recalling the Helmholtz decomposition u = V¢ + curly, we have from the

Fourier series expansions in (2.54) that

Hr(Ll)(lilR)

-1y, ~. . ¥n R?
HT(LI)(IQR)QS ( )

an(R) =

Hy(Ll)(I{QR)
W(R) = =2
¢ ( ) Hr(Ll)(K/QR)

b (R).

Comparing the Fourier coefficients of u and ¢, in the Helmholtz decomposition

gives
_a n(R m ] (R
'u,n(R) _ 1.( ) R (%5( )
B g (R) | | Ua(R)
in _H,(Ll) k1R
B Oéln(R) B Hy(Ll)EIﬂR;
o —a(R)| |0
in _H,(lwnR
I I S B b oy
| % _a%(R)_ | 0
1 A A R
_ ] 11 12 un(R),
An(R) | Ay Aoy

where aj,, A, is given in (2.58) and

H7(Ll)(H2R)
HY (ko R) |

Hy(Ll)(an)

HY (k2 R) |

—ag(R) =B |4y (R)
—iag(R) | Aa(B)

Hqgl) k1R n? H7(11) kolR
Ay = (1)( - A)aln(R)O‘%( ) (1)( ZA)’
Hy' (k1 R) RE Hy" (k> )
HO (5, R in _in o B (kR
A = (1)< 1 A) n(R)= — Zon(R) (1)< : A)’
H (51 R) R R Hn (k2F?)
HP(:R) . in in H (k2R
Ay = (1)< 1 A)O‘Zn( )5 — & 0an(R) (1)< : A)’
Hn (KlR) R R Hn (HZR)
HP (kR R n2 H" (xR
Ay = (1)( QA)O‘M(R>042"<R) A (1)( : A)'
Hy (ko R) RE Ha (10 R)
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By Lemma 2.4.5, we have

HM (k1 R)
HV (k1R)

_ (BN mr o\ ([ R a\ w?
S \R 2n—1) R)\2(n—-1 R/} RR
n? ko (K1 —Ka) [0 29\ (1 Il
_ R? - R2) (=L
+RR In| —1 ( >(R>

.\ Inl .\ Inl
Lo\ 2 R R
< Ko (Ky — K1) (R2 - R2> ]i|’7;%| (f_%) < C|nl <}—%> :

where C'is a positive constant independent of n. Similarly, it can be shown that there

~ n?

| A a1 (R)agn(R) —

exists a positive constant C' independent of n such that

AN\ |7
451 < Clnl (%) =12

The proofs are omitted for brevity. Combining the above estimates and Lemma 2.7.1,

we obtain

™ (R)| < Clnl (E) ‘u(”)(f%)‘.

Combining the above estimate with Lemma 2.4.4 and (2.11) yields

f (7 — ) u - wds
0BRr

—L& 4“0, (R) in(—ﬁ—i-“’—l
=27TR2 R A, "2 RT AR

A\ Inl
<2nR Y (%) ol (Il 2un(R)) (In 0, (R))

|n|>N

<Cmax (Inl (5 ) |Iulonylolnon,

< C max | |n]
[n|>N

A\ |7
R
< C"Ig‘li% n| <E> |u] g2 o) V] g o)

A\ In|
R inc
= |w™| e @) |0l 2 )
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which completes the proof. [ |

In Lemma 2.4.6, it is shown that the truncation error of the DtN operator decay
exponentially with respect to the truncation parameter N. The result implies that N

can be small in practice. The following result is to estimate the last term in (2.18).

Lemma 2.4.7 For any 0 > 0, there exists a positive constant C(9) independent of

N such that

z R
R f &5 < CONE mm, + 018,

Proof Using (2.13), we get from a simple calculation that

R IvE-&ds =2mRR ). (M) &,

6BR |n\SN

Denote M, = (M, + M#)/2. Then R (M,¢,) - €, = (M,¢£,) - €,. It is shown in [75]
that M, is negative definite for sufficiently large |n|, i.e., there exists Ny > 0 such

that (Mnén) -€,, <0 for any |n| > Ny. Hence

R| Ing-&ds=2qR Y (ME,) &, +27R > (M€,) - €,

9Br |n|<min(No,N) N=|n|>min(Np,N)
(2.24)

Here we define

(M,£,) - €, =0, N> N,

N>|n|>min(Ng,N)
Since the second part in (2.24) is non-positive, we only need to estimate the first part

which consists of finite terms. Moreover we have

R| Iwe €s < 2tR Y (ME,) €,

9Br |n|<min(Ng,N)

< C Y &L <l

[n|<min(No,N)

Consider the annulus

Bp\Bp={(r,0): R<r <R, 0<86<2n}.
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For any 6 > 0, it follows from Young’s inequality that

(R— B)[u(R J|u |dr+JJ Ju(r)Prr

< " u(r)|2dr + (R — R)JR 2Ju(r)[|u’(r)|dr

JR

L. ()|
—L|<ﬂd+m Rﬂ;2¢VI(M

f lu(r))?dr + 6 (R — R) f lu(r)|?dr + 6(R — R) f () [Pdr,
JR R R

N

which gives

u(B <[5+ (R R)] J: fu(r)? + 6 f: (1) 2dr

On the other hand, we have

nwﬁmww::%Zf )+ ()

neZ

H’UJH%Q(BR\BR) = 27 Z J\ T’un 2d’["

neZ

Using the above estimates, we have for any u € H*(Bg\Bj) that

HUH%Q((?BR) = 27TRZ |un (R)[?

nez
< 27R [5 +(R-R)~ Zf |t (1) +27TR5ZJ ! (r)|2dr
neL nez
<27 [5_1 1] Z f 7w, (1) 2dr 4 275 = Z J |u 24 —2|un( )|2>dr
neZ neZ

_ 11 R R
sﬁwk1+m—R>1Rmmbﬂ+6wwm%w>

R
< C@)HUH%?(BR\BR) + E(SHVU’H%%BR\BR)'
Therefore,

R| s < Clelnen, < OO mn, + 5f|vamv
R

< COEIT2ppz,) + ?Hfﬁﬂwm%w

which completes the proof. [ |
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To estimate the third term on the right hand side of (2.18), we consider the dual

problem
b(v,p) = f v €&z, Yve Hy,(Q). (2.25)
Q

It is easy to check that p is the solution of the following boundary value problem

-

pAp + (XN + p)VV - p + w?p = —¢ in Q,

{p=0 on dD, (2.26)

Bp = T*p on 0Bg,
\
where 7 * is the adjoint operator to the DtN operator 7. Letting v = £ in (2.25),
we obtain

(7 — Tn) € Pds — J (7 — T)€-Pds.  (2.27)

0BRr

€220 = bE,P) + f

0BR
To evaluate (2.27), we need to explicitly solve system (2.26), which is very com-
plicate due to the coupling of the compressional and shear wave components. We

consider the Helmholtz decomposition to the boundary value problem (2.25). Let
& = V& + curlé,,
where ;, 7 = 1,2 has the Fourier series expansion

&(r,0) = > &n(r)e™, R<r<R

nez
Meanwhile, we assume that
E(r,0) = Y (&(r)e. + &(r)eq) ™. (2.28)
nez

Lemma 2.4.8 The Fourier coefficients &, 7 = 1,2 satisfy the system

Ein(r) + i7n§2n(r) = ffl(r), re (R7 R)?
| Fn(r) = &,(r) = &(r), re (R, R), (2.29)
\fln(R) = O, £2n<R> = O, r = R,
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which has a unique solution given by

ani) = 5[[G) - (8) Jama—5 [ [G)+ (2) | awarso

s T

) = 5[ 1) - @) ]ewa—3 [[G)+ (4) ]amaes

Proof Following from the Fourier series expansions and the Helmholtz decomposi-

tion, we get

£r.0) = > [&(r)e. +&h(r)eg| €™ = V& + curl,

neL
= r;Z lgin(r)eT + i?ngln(T)EQ + i7n§2n(7ﬂ)er — gén<r>69] ein@
= T;Z l(gin(ﬂ + ig&n(r))er + (%ﬁln(T) — fén(r)>e9] e,

which shows that |[. 7(11)’&(?)] satisfies

~

Enlr) + 60(r) = €4(), () ~ G, () =€), 7 e (RR)

Denote

0 -
An(T) - in 0

r

By the standard theory of the first order differential system, the fundamental solution
®,,(r) is

r 0 —inln %
D,(r) = eaAnMIT — exp
inln % 0
1 (_>” 1 i
_ | || \=& vz =
i1 r i 1
v ol 0 (E Vi v
The inverse of ®,, is
I O <L>7n 0 I i
O (r) = V2 V2 R V2 V2
n i1 )" i 1
I 0 (E) ERGING
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Using the method of variation of parameters, we let

(€1n(r), E2a(r)) " = @u(r)Cu(r),

where the unknown vector C,,(r) satisfies

CL(r) = @, (r)(¢ T),fﬁ(r))T

£) | €
- B ] - R) (2.32)
: [(%) - (}g) ] ) + (;) +(5)" g0
Using the boundary condition yields
(fln(R)vé.Qn(R))T = q)n(R)Cn(R) = (O’ O)Tv
which implies that C,,(R) = (0,0)". Then
R
Cu(r) = *J C (t)dt. (2.33)

Combining (2.32) and (2.33), we have

oy L § <%>__:+ (é)nn er)dt + 11" (g):—(g):: £0(1)dt |
I (5) "= () |gmar 5| (5) = (5) " |enan

Substituting C,,(r) into the general solution, we obtain

i < ) oG [ (3)
) L@ 1) (e
o = G T () o s(3) L (3 e

P e T

which completes the proof. [ |
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Let p be the solution of the dual problem (2.26). Then p satisfies the following

boundary value problem in Bg\Bp:
pAp + (A + ) VV - p +w’p = —§

A

1 P(R.6) = p(R,6)

Bp =T *p
\
Introduce the Helmholtz decomposition for p:
p = V¢ + curlg,

where ¢;,7 = 1,2 admits the Fourier series expansion

0(r.0) = 3 ()™,

neZ

in BR\B_R,
on 0By, (2.34)
on 6BR

(2.35)

Let &n,j = 1,2 be the solution of the system (2.29). Consider the second order

system for ¢;n,7 = 1,2:
(

| an<R> = an(R)>

|6, (R) = (),

@) + 205, (1) + (52 = (8)" ) 4jn(r) = ¢i€n(r),

re (R, R),

r R7 (2.36)
r=R,

where ¢; = —1/(A +2p), ¢ = —1/p, and «;, is given in (2.58). The boundary condi-

tion ¢j,(R) = @jnqjn(R) comes from (2.55), i.e., ¢; satisfies the boundary condition

Orq; = I77q; 1= Z&_man(R)ei”H on 0Bg,

ne’

where 7% is the adjoint operator to the DtN operator 7.

Lemma 2.4.9 The boundary value problem (2.34) and the second order system (2.36)

are equivalent under the Helmholtz decomposition (2.35).

Proof It suffices to show if the Fourier coefficients g;,, satisfy the second order system

(2.36), then p = V¢, + curlg, is the solution of (2.34).
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In the polar coordinates, we let

A

p(r.0) = > (pi(r)e, + pi(r)eg)e™, re (R, R). (2.37)

neZ

It follows from the Helmholtz decomposition that

Do) = )+ ), ) = () — o 1) (2.3%)

Using (2.37)—(2.38), we have from a straightforward calculation that

Bp = (uop+ A+ )V -pe)l—r
2

— 2 [()\ +21) g}, (R) + (X + ,u)%qin(R) (A + M)%QM(R)]ei”eer

nez
in in in
+] [u ¢ (R uﬁqln(R)] Yeg+ [u (1) — uﬁan(R)]e ‘e,
nez neZ
Z /JJan m9 €o
nez

On the other hand, it is easy to verify that

7°p = Y A[MPoR) + TR e, + M0 (R) + MR R |e )

nez
_ IVl in e , -
= 7;2 {Mn [(hn(R) + Ean(R)] + My, [R(hn(R) — q2n(R)] } e e
i_n (n) _ A ind
+ é { I:Q1n Ran(R)] MQZ I:RQ1TL<R) q2n(R)] } epe,
where Mz(] ,i,7 = 1,2 are given in (2.57).

Using the boundary condition ¢}, (R) = @5,qn(R), we get
in T in n
(ME - Ml(z)) Gin(R) — (MZ(Z) 7 MRQ) in(R)

in . oin 1 , win oin Qg in
S (PR P S N0 Ty B ) (R
(“R TR RAn(R))%"( ) ( RR " “ RAn(R)+’”‘R2> n(B)

= wo (41,(R) — @1ngin(R)) = 0
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and
(u% + W) G (R) — (W% + M%) Gon(R)
G ) AL B R ey PR
— in o ()~ T () = 0

Since ¢, satisfies the second order equation
1 n\ 2 1 R
5 +_/ + 2_<_) n = T T Q2ny € RaR7
o)+ () + (1= (§) ) o) = €. re (o)

we obtain from the boundary condition &, (R) = 0 that

——min

() — (M o ()~ M (1))

p in (. p oin 1 7 9 Oip ,
= — R)— S |ing —wo=——|q@uR)+ |5 tw=——| ¢.(R

. 2 _
n 1 Oy,
= &on(R) + p1#2q20(R) + w? (—) Gon(R) + W =—"=g},(R)

R/ Au(R) An(R)
= &n(R) + O3] ((E> @on(R) — 1n02nqon(R) — (}—%> G2n(R) + Tm%@))
= &on(R) + w W;%) (—02nq2n(R) + ¢5,(R)) = 0.

Similarly, combining the equation

n 1 A

)+ 200+ (2= () ) anlr) =~ re (R
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and the boundary condition &;,,(R) = 0, we have

2 n ()

(A+2u)Qi’n(R)+(/\+u)%Q’1 (1) = O+ 1) T (R) = Mg}, (R) = Mg (R)
= O 2 |y - () - (2 ()) ()
+ (A %2“ — w’l‘%) q;,(R) + (—(A + 2u) <%>2 +w2ﬁ (%)2) ¢in(R)
5 Ol 9 5 1 n\2
- () —w i T B+ <—w +wie (%) >qm<R>

(042n‘hn %)2 qin(R) — Q1n02nqin(R) — (%)2 QM(R))

= _§1n<R> -

Qap, [QIn(R) aan1n<R)] =0.

An<R)
Hence we prove that Zp = 7 *p on 0Bg.

Moreover, we get from the Helmholtz decomposition that

pAp + (A + p)VV - p + w’p
=V (()\ +2u)Aqy + wqu) + curl (,qug + w2q2)
= —V¢§ —curl, = =&,

which completes the proof. [ |

Based on Lemma 2.4.8 and Lemma 2.4.9, we have the asymptotic properties of

the solution to the dual problem (2.34) for large |n|.

Theorem 2.4.10 Let p be the solution of (2.34) and amdit the Fourier series ex-

pansion

p(r.0) = > (ph(r)e, + ph(r)eg) €.

nez

For sufficient large |n|, the Fourier coefficients p’,p’ satisfy the estimate
R 2|n|+2
LR+ (R < n? (E) (I (R + P8 (R)2)

r 612
| ‘2 (Hg H RR]) + an “([R’RD) ’
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where £, &0 are the Fourier coefficients of &€ in the polar coordinates and are given in

(2.28).

Proof It is shown in [61] that the second order systems (2.36) have a unique solution

given by
(1) = Bunan(B) + T [ Wil )61 (0)1
R
+lﬂ tﬁm( HWin(R, 7)Em(t)dL, (2.39)
() = Ponlr)aon(R >+Z | W
+f wzn( ) Wan (R, 7)o (t)dt, (2.40)
where
_HI ) e A HO () HO (e ) O
Bin(r) —ma n(rst) = Hy (kyr) Hy (kjt) — Hy, (kt) Hy (k).

Taking the derivative of (2.39)—(2.40) respective to r gives

halr) = Badmn () + 7 | 60 Winlr ) (B

im

+ t@m( )0 Whn (R, 7)1, (1)d, (2.41)

Gnlr) = BB > T gt

i

+ wzn( )0, Wan (R, )0 (t)dL. (2.42)

Evaluating (2.39)-(2.40) and (2.41%(2.42) at r = R and r = R, respectively, we may
verify that
im

Gn(R) = Bun(Baun(R)+ f Bun(R) W (B, £)600 (1)t

don(R) = fon(R)gon(R) + ”f B (R)Won (R, 1) (1)1

A

Gn(B) = Br(Ban(R) + ; f Bun (1)1 (1)

A

. 1 (B
ol ) = Bu(Ran(R) + f Bon(£)an (1)l



32

It follows from the Helmholtz decomposition that

Phr) = o) + (), ) = () — (). (243

Evaluating (2.43) at r = R, noting 8}, (R) = a;,(R) and ¢;,(R) = a;jn(R)gjn(R), we

obtain
~ R a
B _ var) |2 Ry | A L (2.44)
Pr(R) G2n (1) §2 tWan (R, t)Ean(t)dt
where
B al”(R) % ﬁln(R> 0
% —agn(R) 0 62n(R)
Similarly, evaluating (2.43) at r = R and noting Bin( (R) = R) yield that
PR n(
(A> — Ko () | (2.45)
Pr(R) Gon(R)
where
R Oéln R
K,(R) A
—Oégn R
and
1 (R 1 (R
I j B0 =~ |t
RJR R
Solving (2.45) for qin(R), gan(R) in terms of p! (R),p" (R) gives
n R n ; z R - n
0] vt [ = | o)
Gon(RR) An(R) pﬁ(R) — T2n
where
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Substituting (2.46) into (2.44) yields

PAR) | URV(R) [ PhR | §i W1 (R, €0 | U (R)V(R) | m1n
P(R) MR | pE)| P SRR 0eandt | AJR) |
(2.47)

Following proofs in Lemmas 2.4.6 and 2.7.1, we may similarly show that for suf-

e gl 2]

ficiently large |n

An(R)
For fixed t and sufficiently large |n|, using (2.30) and (2.31), we may easily show that
R\ Inl
n® < (I + mqem) | () o (2.48)
R\ Inl
n®l 5 (IEilieqim * 1Ehogam) [ () (2.49)

By (2.48)—(2.49) and

. o | /e (R\™ 2\
an(Rat)”—m (E) —<?> ; 5jn(t)~<?> :

we get
R . ; 1 R t In| rR ~
[ g < (1€l + 1hegm) g [, 1 (5) [ () ar
t
|n
<

T 1 R
(||§n\|Loo([R,R]) + ||5Z||L°°([R,R])) In|2 (E) ’

o\ Inl
1 (F R (R By Inl

— | 8., (DAt < 0 . A [ t| = -} drdt
= [, 1800600 5 (IEeqm * 1€mgrm) | (t | G)

< (”gn”L”([RRD—i_ngan([R’R]))_ (_) '

n> \ R
Substituting the above estimates into (2.47), we obtain
2|n\+2
PL(R)? + DA (R ( ) (I (R) + [ (R) )
1 T
o (T A

which completes the proof. [ |
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Using Theorem 2.4.10, we may estimate the last term in (2.27).

Lemma 2.4.11 Let p be the solution of the dual problem (2.34). For sufficiently
large N, the following estimate holds

1 2
S ﬁHsHHl(Q)-

f (7 — T) € - Bds
0BRr

Proof Using the definitions of the DtN operators .7 and 9y and Lemma 2.4.4, we

have

J (7 — Z3) € pids
0Br

<2tR Y (Mo, (R) - B,(R)|

In|>N

<2rR Y [nf (E(R) + &/ (R)) (Ip,(R)] + o (R)])
[n|>N
1/2

< S (a2 ST (1 a2 (6 (R) + (R
In|>N [n|>N
1/2

< | S InfP (IR + 1 (R)|)?

[n|>N
1/2

S N Yelmr@sy | 25 0P (IR (R + ph(R)IP)

In|>N
1/2

SN elm@ | D, Il (Ip(RP +1K5(R)IP) | (2.50)
[n|>N
Following [61], we let ¢ € [R, R] and assume, without loss of generality, that ¢ is
closer to the left endpoint R than the right endpoint R. Denote ( = R — R. Then we
have R —t > g Thus

EOOF = 5 | (R R) as
R

- Rt J; (HIEF D) +2(R— ) R(E () (5)) ) ds

rR R
0O ()ds +2 | 1€0s) e )1 ds,
¢ R

N



35

which implies that
I ey < I Egamy * 25 a6 L
2
(r,0))2 —1)¢(r,0)7)12
< (Z 1) 165 gy 10 0 gy
Using Lemma 2.4.10 and the Cauchy—Schwarz inequality, we get

>, Il (1L (R + pn(R))

[n|>N

2|n|+2
R r > 1 r
< Y i n? <E> (rpn<R>12+|pz<R>|2)+—|n,2 (16212 e gy + 102 )

AN\ 21|
< 2 Il (%) (IR + I R)E) + X5 Il (1012 iy + 162020 g )

[n|>N

Noting that the function t*¢=2¢ is bounded on (0, +o0), we have

A\ |21
R o .
I < max [ o' (E> S Il (Ia@P + RP) < Iplnnes,y < 1€l

In|>N
In|>N

where the last inequality uses the stability of the dual problem (2.34). For I, we can

show that
2 T
L Y [|n| (—+|n|) (16212 g + VRIS )+(|sn’igm)+|sf;§2(m]))]
In[>N ¢ 7 7
2
< 3| Ginl+n?) lealZagray + 60 ||L2(RRD]
In|>N

On the other hand, a simple calculation yields

T n2 T T !
IO Ry = 27 Y f [(+ ) e + i o] a

nez
> o 3 [ (R ) O + R ar
nez

It is easy to note that

2 9 A N
S|+ < R+ —.
g'”' " R
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Combining the above estimates, we obtain

I, < H&HiIl(BR\BRl) < €13 @)

which gives
, 2
O P (B + PA(R))” < €l5 (o)
[n|>N

Substituting the above inequality into (2.50), we get

_ 1
[ 7 70epas| < ek, (2:51)
R
which completes the proof. u

Now, we prove the main result of this chapter.

Proof By Lemma 2.18, Lemma 2.4.3, Lemma 2.4.6, and Lemma 2.4.7, we obtain

€130 = RUEO+R [ (7~ T B2 | € Edov R | gl
0BRr Q 0BRr
1/2 E In|
< G Dok Amaxinl (5] 1w™lm | 1€la@
Ko, [n|>N R

R
+(Cy + C(9)) €] 320y + E(;Hﬂ@ﬂ(m'

Using (2.17) and choosing § such that £ —2 . < 1 we get

R min(p,w?) 27
1/2 A\ |7
2 2 R inc
H|€‘HH1(Q) < 204 Z Uit + max |n| R |lw HHl(Q) HéHHl(Q)
KeM In|>N
h
+2(Cy + C(0)) €130y (25

It follows from (2.27), (2.51), and (2.17) that we have

<9—9N>£~z—»ds—f (7 — T3)€ - pds

dBr

€1 = bER) + |

dBr

1/2 5 In| .
<Z 77%() +‘1g|13>]\<[|”| (ﬁ) 1w o) HEHHl(Q)'i_N”aﬁ{l(Q)'

KeMy,

A
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Substituting the above estimate intro (2.52) and taking sufficiently large N such that

2(Cy+ C(9)) 1
N min(p, w?)

<1,

By the equivalence of weighted norm || - || g1 () with the standard norm || - | g1(q), We

obtain

1/2 N\ In|
R inc
Ju — ul| g o) < < > ni) + max n| (E) || 1 -

KeM,,

which completes the proof of theorem. [ |

2.5 Implementation and Numerical Experiments

In this section, we discuss the algorithmic implementation of the adaptive finite
element DtN method and present two numerical examples to demonstrate the effec-

tiveness of the proposed method.

2.5.1 Adaptive Algorithm

Based on the a posteriori error estimate from Theorem 2.4.1, we use the FreeFem
[50] to implement the adaptive algorithm of the linear finite element formulation. It
is shown in Theorem 2.4.1 that the a posteriori error estimator consists two parts:
the finite element discretization error ¢, and the DtN truncation error ey which

dependents on the truncation number N. Explicitly

1/2 A\ |7
R .
2 mc
€ = < Z 77T> y EN = ‘Iqﬂgﬁ n| <}_%> | HHl(Q)' (2.53)

TeMy,

In the implementation, we choose }A%, R, and N based on (2.53) to make sure that
the finite element discretization error is not polluted by the DtN truncation error,
i.e., ey is required to be very small compared to €, for example, ey < 107%. For
simplicity, in the following numerical experiments, R is chosen such that the obstacle

is exactly contained in the disk By, and N is taken to be the smallest positive integer
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Table 2.1.
The adaptive finite element DtN method for the elastic wave scattering problem.

1. Given the tolerance € > 0,0 € (0, 1);

2. Fix the computational domain = Bg\D by choosing the radius R;

3. Choose R and N such that ey < 1078;

4. Construct an initial triangulation M, over ) and compute error estimators;
5. While ¢, > € do

6. Refine the mesh M), according to the strategy:

if n; > 0 max np, then refine the element T e My;
TeMy,

7. Denote refined mesh still by My, solve the discrete problem (2.12) on the

new mesh My;
8. Compute the corresponding error estimators;

9. End while.

such that ey < 1078, The algorithm is shown in Table 1 for the adaptive finite

element DtN method for solving the elastic wave scattering problem.

2.5.2 Numerical Experiments

We report two examples to demonstrate the performance of the proposed method.
The first example is a disk and has an analytical solution; the second example is
a U-shaped obstacle which is commonly used to test numerical solutions for the
wave scattering problems. In each example, we plot the magnitude of the numerical

solution to give an intuition where the mesh should be refined, and also plot the
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actual mesh obtained by our algorithm to show the agreement. The a posteriori error
is plotted against the number of nodal points to show the convergence rate. In the
first example, we compare the numerical results by using the uniform and adaptive
meshes to illustrate the effectiveness of the adaptive algorithm.

FEzxample 1. This example is constructed such that it has an exact solution. Let the
obstacle D = By 5 be a disk with radius 0.5 and take 2 = B1\§0'5, ie., R= 05,R=1

. If we choose the incident wave as

| o 2\ g
umc(m) _ _h OT (K“lr) R OT (K’QT) Yy L or= <x2 + y2>1/27
Y —T

then it is easy to check that the exact solution is

1) 1)
u(z) = /slHé ) (kar) [ N /€2H(g ) (kor) [ Y |

T Y T —r

where k1 and ks are the compressional wave number and shear wave number, respec-
tively.

In Table 2, numerical results are shown for the adaptive mesh refinement and
the uniform mesh refinement, where DoF) stands for the degree of freedom or the
number of nodal points of the mesh My, ¢, is the a posteriori error estimate, and
en = |lu — uly|| g1 ) is the a priori error. It can be seen that the adaptive mesh
refinement requires fewer DoF, than the uniform mesh refinement to reach the same
level of accuracy, which shows the advantage of using the adaptive mesh refinement.
Figure 2.2 displays the curves of loge;, and loge;, versus log DoF), for the uniform
and adaptive mesh refinements with w = m,A\ = 2,4 = 1, ie, k1 = /2Ky =
7. It indicates that the meshes and the associated numerical complexity are quasi-
optimal, ie., |u — w}| g = O(DOF,ZI/Z) holds asymptotically. Figure 2.3 plots
the magnitude of the numerical solution and an adaptively refined mesh with 15407
elements. We can see that the solution oscillates on the edge of the obstacle but it is
smooth away from the obstacle. This feature is caught by the algorithm. The mesh

is adaptively refined around the obstacle and is coarse away from the obstacle.



Comparison of numerical results using adaptive mesh and uniform

Table 2.2.

mesh refinements for Example 1.

Adaptive mesh

Uniform mesh

DoF,, e €n DokF,, e €
1745 | 0.4632 | 3.9693 | 1745 | 0.4632 | 3.9693
2984 | 0.3256 | 2.6723 | 2667 | 0.3717 | 3.2365
5559 | 0.2253 | 1.9293 | 5857 | 0.2494 | 2.0625
9030 | 0.1778 | 1.5054 | 10630 | 0.1851 | 1.5856

15407 | 0.1384 | 1.1686 | 20224 | 0.1330 | 1.1257

100,

Figure 2.2. Quasi-optimality of the a priori and a posteriori error

estimates for Example 1.

Number of nodal points

10t
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Ezxample 2. This example does not have an analytical solution. We consider

a compressional plane incident wave u™(x) = de'*'*? with the incident direction

d = (1,0)T. The obstacle is U-shaped and is contained in the rectangular domain

{xreR?: -2 <12 <22 —0.7 <y < 0.7}. Due to the problem geometry, the solution

contains singularity around the corners of the obstacle. We take R = 3, R =231. Fig-

ure 2.4 shows the curve of log ¢;, versus log DoF', at different frequencies w = 1, 7, 27.
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Figure 2.3. The numerical solution of Example 1. (left) the magnitude
of the numerical solution; (left) an adaptively refined mesh with 15407
elements.

Slope -1/2

10°F 1

10° Number of nodal points 10*

Figure 2.4. Quasi-optimality of the a posteriori error estimates with
different frequencies for Example 2.

It demonstrates that the decay of the a posteriori error estimates are O(DOF ,:1/ 2).
Figure 2.5 plots the contour of the magnitude of the numerical solution and its cor-
responding mesh by using the parameters w = m, A = 2, 4 = 1. Again, the algorithm
does capture the solution feature and adaptively refines the mesh around the corners

of the obstacle where the solution displays singularity.
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Figure 2.5. The numerical solution of Example 2. (left) The contour
plot of the magnitude of the solution; (right) an adaptively refined
mesh with 12329 elements

2.6 Conclusion

In this chapter, we present an adaptive finite element DtN method for the elastic
obstacle scattering problem. Based on the Helmholtz decomposition, a new duality
argument is developed to obtain the a posteriori error estimate. It not only takes into
account of the finite element discretization error but also includes the truncation error
of the DtN operator. We show that the truncation error decays exponentially with
respect to the truncation parameter. The posteriori error estimate for the solution of
the discrete problem serves as a basis for the adaptive finite element approximation.
Numerical results show that the proposed method is accurate and effective. This work
provides a viable alternative to the adaptive finite element PML method to solve the

elastic obstacle scattering problem.

2.7 Appendix: Transparent Boundary Conditions

In this section, we show the transparent boundary conditions for the scalar po-

tential functions ¢, 1 and the displacement of the scattered field w on 0Bp.
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In the exterior domain R?\ By, the solutions of the Helmholtz equations (2.5) have
the Fourier series expansions in the polar coordinates:

(1) (1)
H,, (K1T) qbn(R>€in97 Qﬁ(?”, Q) _ Z M¢n(R)eine’ (254)

(r,0) =
= HY (k1 R) = H" (k3R)

where H\" is the Hankel function of the first kind with order n. Taking the normal
derivative of (2.54), we obtain the transparent boundary condition for the scalar
potentials ¢, 1 on 0Bg:

Fip e 3 ) (11 F) W(R)E T KQH (maR) W(R)e™. (255
1¢ 7;2 HS)(KJIR) (ZS( )6 w é /ng ¢( )6 ( )

The polar coordinates (r,6) are related to the Cartesian coordinates @ = (z,y)
by z = rcosf,y = rsinf with the local orthonormal basis {e,, eg}, where e, =
(cosf,sinf)" ey = (—sin®, cosd)’. Given a scalar function u and a vector function

u = u,e, + ugey, introduce the differential operators in the polar coordinates:

1
Vu = o,ue, + —0guey,
r
1 o
curlu = —dyue, — d,uey,
r

1 1
V- -u = du, + —u, + —0Opug.
r r
Define a boundary operator for the displacement of the scattered wave
PBu = po,u+ (A + p1)(V-u)e, ondBpg.

Based on the Helmholtz decomposition (2.5) and the transparent boundary condition
(2.55), it is shown in [75] that the scattered field w satisfies the transparent boundary

condition
Bu = (Tu)(R,0) = Y Myu,(R)e"™  ondBg, (2.56)
nez
where

Z w,(R)e™ = Z (ul(R)e, + ul(R)ey)e™”

nez nez
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and M, is a 2 x 2 matrix defined by

MY My 1 (NP NG
Mo=1 o v | T A®) | e e | (2.57)
My" My, n(1) Nyi” Ny
Here @
n\ 2 kiHy' (k;R)
AnR=<—) — i (R)ag,(R), a,(R) = n Wt 2.58
( ) R 1 ( ) 2 ( ) J ( ) HT(LI)(FLJ'R) ( )
and

ﬁfH "(k1R)

0 n 3 ot 3)- i

+ ) (ganm) - (3))],
H (IilR)

i 1 in k2HY" (k2 R)
N = — W(R) = %) + ppy
8 = = o)) = ) = n g =
2 1 K2H (ko R)
N —p (2 W(R) = ) — pon, (R) 2020,
22 “(R) (cn(R) R) poan(B)= (2R)

The matrix entries NV, (J ), 1,7 = 1,2 can be further simplied. Recall that the Hankel

1

function H.' )(z) satisfies the Bessel differential equation

ZQHT(LI)”(Z> + ZHT(LI)/(Z) + (22 — n2)H,(Ll)(z) =0.



45

We have from straighforward calculations that

Hﬁl),(“jR) 2 2
H" (k;R) + () = ))]

+ (A + ) (%am(}z) - (%)2) ] ey (g)ﬂ <a2n(R) ~ %)

- (“;“) onn(R) = (4 2003+ O 20 () + <A;“) a1n(R)

N = —asn(R)

(A + 2/1)[— %(/@R

= —Oégn(R)

n| p n 9 in
- [—Eam(R) +p (§> — (A + 2,u)/fl] + I a1 (R) o, (R) Rz“aln(R>
iy i
=5 AL (R) 7Y
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Substituting the above into (2.56), we obtain

Pu=Tu=Y Ain{ [( - %AR(R) + a%(}z)w?)u;(m
(AR + Yt (R e + [ (A (R) BV (R)
s~ Eam s a1n<R>w2)uz<R>]ee}ei"9. (2.59)

Lemma 2.7.1 Let z > 0. For sufficiently large |n|, A,(2) admits the following
asymptotic property

1 1
A (2) = 5(/4;% + K3) + (’)<W>
Proof Using the asymptotic expansions of the Hankel functions [95]

HY' () |n|

— Do ! )
HY(z) 2 2| nf?/”
we have ay
Hy : K22 1
a]n(z) = & (1) (K,]Z) = _M + I + O<—2>
Hy/(kjz) z  2In| n
A simple calcuation yields that
ny 2 1 1
Aa(z) = (2) = cun(2)aza(2) = 503 + 63) + O<W)’

which completes the proof. [ |
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3. THE DIRECT ELASTIC SURFACE SCATTERING
PROBLEM

3.1 Introduction

The scattering theory in periodic structures, which are known as gratings in optics,
has many significant applications in micro-optics including the design and fabrication
of optical elements such as corrective lenses, anti-reflective interfaces, beam splitters,
and sensors [8,86]. Driven by the optical industry applications, the time-harmonic
scattering problems have been extensively studied for acoustic and electromagnetic
waves in periodic structures. We refer to [10,27] and the references cited therein
for the mathematical results on well-posedness of the solutions for the diffraction
grating problems. Computationally, various numerical methods have been developed,
such as boundary integral equation method [83,96], finite element method [5, 6],
boundary perturbation method [23]. Recently, the scattering problems for elastic
waves have received much attention due to the important applications in seismology
and geophysics [1,2,72]. This chapter concerns the scattering of a time-harmonic
elastic plane wave by a periodic surface. Compared with acoustic and electromagnetic
wave equations, the elastic wave equation is less studied due to the complexity of
the coexistence of compressional and shear waves with different wavenumbers. In
addition, there are two challenges for the scattering problem: the solution may have
singularity due to a possible nonsmooth surface; the problem is imposed in an open
domain. In this chapter, we intend to address both issues.

In this chapter, we present an adaptive finite element DtN method for the elastic
wave scattering problem in periodic structures. The goal is threefold: (1) prove the
exponential convergence of the truncated DtN operator; (2) give a complete a poste-

riori error estimate; (3) develop an effective adaptive finite element algorithm. This
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chapter significantly extends the work on the acoustic scattering problem [94], where
the Helmholtz equation was considered. Apparently, the techniques differ greatly
from the existing work because of the complicated transparent boundary condition
associated with the elastic wave equation. A related work can be found in [77] for
an adaptive finite element DtN method for solving the obstacle scattering problem of
elastic waves.

Specifically, we consider the scattering of an elastic plane wave by a one-dimensional
rigid periodic surface, where the wave motion is governed by the two-dimensional
Navier equation. The open space above the surface is assumed to be filled with a
homogeneous and isotropic elastic medium. The Helmholtz decomposition is utilized
to reduce the elastic wave equation equivalently into a coupled boundary value prob-
lem of the Helmholtz equation. By combining the quasi-periodic boundary condition
and a DtN operator, an exact TBC is introduced to reduce the original scattering
problem into a boundary value problem of the elastic wave equation in a bounded
domain. The discrete problem is studied by using the finite element method with
the truncated DtN operator. Based on the Helmholtz decomposition, a new duality
argument is developed to obtain an a posteriori error estimate between the solution
of the original scattering problem and the discrete problem. The a posteriori error
estimate contains the finite element approximation error and the DtN operator trun-
cation error, which is shown to decay exponentially with respect to the truncation
parameter. The estimate is used to design the adaptive finite element algorithm to
choose elements for refinements and to determine the truncation parameter N. Due
to the exponential convergence of the truncated DtN operator, the choice of the trun-
cation parameter N is not sensitive to the given tolerance. Numerical experiments
are presented to demonstrate the effectiveness of the proposed method.

The outline of the chapter is as follows. In Section 3.2, the model equation is
introduced for the scattering problem. In Section 3.3, the boundary value problem is
formulated by using the TBC and the corresponding weak formulation is studied. In

Section 3.4, the discrete problem is considered by using the finite element method with
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Figure 3.1. Schematic of the elastic wave scattering by a periodic structure.

the truncated DtN operator. Section 3.5 is devoted to the a posterior error estimate.
In Section 3.6, we discuss the numerical implementation of the adaptive algorithm
and present two examples to illustrate the performance of the proposed method. The
chapter is concluded with some general remarks and directions for future work in

Section 3.7.

3.2 Problem Formulation

Consider the scattering of a time-harmonic plane wave by an elastically rigid
surface, which is assumed to be invariant in the z-axis and periodic in the z-axis
with period A. Due to the periodic structure, the problem can be restricted into a
single periodic cell where z € (0,A). Let & = (z,y) € R% Denote the surface by
S={xeR?:y= f(r), € (0,A)}, where f is a Lipschitz continuous function. Let
v and 7 be the unit normal and tangent vectors on .S, respectively. Above S, the open
space is assumed to be filled with a homogeneous and isotropic elastic medium with
unit mass density. Denote Qf = {x € R* : y > f(z), v € (0,A)}. Let T' = {x € R*:
y=bre(0,AN)}and " ={xeR?:y =10, 2e(0,A)}, where b and b’ are constants
satisfying b > b/ > max,e(oa) f(z). Denote Q = {x e R* : f(z) <y < b, z € (0,A)}.

The problem geometry is shown in Figure 3.1.
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The incident wave u"® satisfies the two-dimensional elastic wave equation

pAU + (A + p)VV - u™ + 0*u™ =0 in Q7,

where w > 0 is the angular frequency and p, A are the Lamé parameters satisfy-
ing o > 0,\ + p > 0. Specifically, the incident wave can be the compressional
plane wave u™(z) = de"™®® or the shear plane wave u™(x) = d*e"** 4 where
d = (sinf,—cosf)",d" = (cosh,sinh)",0 = (—xw/2,7/2) is the incident angle,
k1 = w/(A+ 2u)"? and Ky = w/p? are known as the compressional and shear
wavenumbers, respectively. For clarity, we shall take the compressional plane wave
as the incident field. The results will be similar if the incident field is the shear plane
wave.

Due to the interaction between the incident wave and the surface, the scattered

wave is generated and satisfies
pAu+ A+ p)VV-u+w?u=0 in QF. (3.1)

Since the surface S is elastically rigid, the displacement of the total field vanishes and
the scattered field satisfies
u=—u" onS. (3.2)

For any solution u of (3.1), it has the Helmholtz decomposition
u = V¢, + curlg,, (3.3)

where ¢;,j = 1,2 are scalar potential functions and curlgy = (Jy¢a, —0x¢2)". Sub-

stituting (3.3) into (3.1), we may verify that ¢, satisfies the Helmholtz equation
Ag; + Kig; =0 inQF. (3.4)
Taking the dot product of (3.2) with v and 7, respectively, yields that

8y¢1 — 8T¢2 = 'l,l,mC -V, &,gzﬁg + 87—9251 = —’U,inC -7 on S.

Let a = kpsinf. It is clear to note that w™ is a quasi-periodic function with

respect to x, i.e., u'"(x,y)e"® is a periodic function with respect to x. Motivated
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by uniqueness of the solution, we require that the solution u of (3.1)—(3.2) is also a
quasi-periodic function of x with period A.
We introduce some notations and functional spaces. Let H'(2) be the standard

Sobolev space. Denote a quasi-periodic functional space
1 1 ) _ iaA
qu(Q) = {u € H (Q) . U(A7y> - U(O,y>€ }

Let Hg () = {u € H,(Q) : u = 0on S}. Clearly, H} (Q) and Hg  (Q) are
subspaces of H'(Q) with the standard H'-norm. For any function u € Hg (€2), it

admits the Fourier expansion on I":

(n) ian® (n) 1 A —lapz 2m
u(x,b)=2u (bye*  u'"™(b) = — | wu(x,b)e”*dx, «a,=a+n Sk

The trace functional space H*(I'), s € R is defined by

H¥T) = {ue L*I) : ||ul

He(r) < 0},

where the norm is given by

1/2
nez

Let H (), Hg,(Q), H*(T') be the Cartesian product spaces equipped with the cor-

responding 2-norms of H} (), Hg ,,(Q), H*(T'), respectively. Throughout the chap-

ter, the notation a < b stands for a < Cb, where C' is a positive constant whose value

is not required but should be clear from the context.

3.3 The Boundary Value Problem

The scattering problem (3.1)-(3.2) is formulated in the open domain Q7F, which
needs to be truncated into the bounded domain . An appropriate boundary condi-

tion is required on I' to avoid artificial wave reflection.
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Let ¢; be the solution of the Helmholtz equation (3.4) along with the bounded
outgoing wave condition. It is shown in [72] that ¢; is a quasi-periodic function and

admits the Fourier series expansion

n i(anx () (4
oi(z,y) = Y ¢ (p)el(anet BT 00) -y oy, (3.5)
neZ
where

2 _92\1/2 ,

ﬁ(n) _ (’ij an) ) |an| < R]u (36)
J ./ 9 o\ 1/2
i(a2—=r2)"7, an| > k.

We assume that k; # |ay,| for n € Z to exclude possible resonance. Taking the normal
derivative of (3.5) on I yields

0y (x,0) = D18\ (b)eine.

neZ

As a quasi-periodic function, the solution w(z,y) = (ui(z,y),us(z,y))" admits
the Fourier expansion

u(z,y) = Y (W (y), ud” (y)) "™,y > b,

nez

(n)

where u; " is the Fourier coefficient of u;. Define a boundary operator

Pu = poyu+ (A +p)(0,1)'V-u onT.

It is shown in [60] that the solution of (3.1) satisfies the transparent boundary con-
dition

Bu = Tu:=Y MW" (b),uf” (b)) onT, (3.7)

neZ

where .7 is called the Dirichlet-to-Neumann (DtN) operator and M™ is a 2 x 2

matrix given by
1 w2/8£n) HCp Xn — w2an

An WQO‘TL — HCQnXn Uﬂﬁén)
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By the transparent boundary condition (3.7), the variational problem of (3.1)—
(3.2) is to find w € Hép(Q) with u = —u™ on S such that

a(u,v) =0, Yve Hg (), (3.9)
where the sesquilinear form a : H (llp(Q) x H (llp(Q) — C is defined as
a(u,v) = uf Vu : Vodz + (A +u)f (V-u)(V-2)dx
Q Q

—wzf u~6daz—f Tu - vds.
Q r

Here A : B = tr(ABT) is the Frobenius inner product of two square matrices A and
B.

The well-posedness of the variational problem (3.9) was discussed in [41]. It was
shown that the variational problem (3.9) has a unique solution for all frequencies if
the surface S is Lipschitz continuous. Hence we may assume that the variational

problem (3.9) admits a unique solution and the solution satisfies the estimate

[ull o) < Ju™ e

lere(s) < [w™ ] mq)- (3.10)

By the general theory of Babuska and Aziz [3], there exists v > 0 such that the

following inf-sup condition holds

ja(u, v)|

sup = v||lullgrq), VYue H(]ip(Q)'

0#veH ., (Q) |v] 1 (0

3.4 The Discrete Problem

We consider the discrete problem of (3.9) by using the finite element approxima-
tion. Let M}, be a regular triangulation of €2, where h denotes the maximum diameter
of all the elements in M. Since our focus is on the a posteriori error estimate, for
simplicity, we assume that S is polygonal and ignore the approximation error of the
boundary S. Thus any edge e € M, is a subset of € if it has two boundary vertices.

Moreover, we require that if (0,y) is a node on the left boundary, then (A,y) is also
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a node on the right boundary and vice versa, which allows to define a finite element
space whose functions are quasi-periodic respect to z.

Let V), H(llp(Q) be a conforming finite element space, i.e.,
Vi i={veC(Q)’: v|x € Pp(K) for any K € My, v(0,y) = e (A, y)},

where m is a positive integer and P,,(K’) denotes the set of all polynomials of degree
no more than m. The finite element approximation to the variational problem (3.9)

is to find u” € V', with 4" = —u™° on S such that
a(u" v") =0, Yo"eV,g, (3.11)

where Vs ={veV,:v=0on S}
In the variational problem (3.11), the boundary operator .7 is defined as an
infinite series, in practice, it must be truncated to a sum of finitely many terms as

follows

Tvu = Y MO (b),u” (b)) e, (3.12)

In|<N
where N > 0 is a sufficiently large constant. Using the truncated boundary operator,
we arrive at the truncated finite element approximation: Find u}, € V), such that it

satisfies uf% = —u™ on S and the variational problem

an(uh,v") =0, Yo'e Vg, (3.13)
where the sesquilinear form ay : V', x V), — C is defined as
ay(u,v) = uL Vu : Vodz + (A + p) L(V ~u)(V-v)de
—w2f u-vde — J Inu - vds.
Q r

It follows from [90] that the discrete inf-sup condition of the sesquilinear form ay
can be established for sufficient large N and small enough h. Based on the general
theory in [3], it can be shown that the discreted variational problem (3.13) has a

unique solution u®, € V. The details are omitted for brevity.
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3.5 The a Posteriori Error Analysis

For any triangular element K € M, denoted by hg its diameter. Let B, denote
the set of all the edges of K. For any e € B, denoted by h. its length. For any
interior edge e which is the common side of K; and Ky € M, we define the jump

residual across e as
Je = I’Lvu?\fh(l "V + ()‘ + :U')(v ' 'u’}](f|K1>V1 + Mvu}]tf|K2 "V + ()‘ + :u)(v : u}]HKz)V?v

where v is the unit outward normal vector on the boundary of K, j = 1,2. For any

boundary edge e < I', we define the jump residual
J, = 2(Tyuly — Bul).

For any boundary edge on the left line segment of 0, i.e., e € {x = 0} n 0K for
some K, € My, and its corresponding edge on the right line segment of 012, i.e.,

e € {x = A} n 0K, for some K, € My, the jump residual is
Je = [:uawu}]if‘Kl + <)‘ + M)(lv O)TV ’ u}]LV|K1] - eiiaA [Mawu}](f|K2 + (>‘ + M)(lv O)TV ’ u]]i/’fﬁ] )

Je/ = eiaA [/Laxu}lif‘fﬁ + (>‘ + H)(la O>Tv ’ U?V‘Kl] - [:uaxu}]l\f‘KQ + ()‘ + ,u)(l, O)Tv ’ u}ltf‘fﬁ] :

For any triangular element K € M,,, denote by ng the local error estimator which is

given by

1/2
1
Nk = hKH%U}ﬁ/HL?(K) + (5 2 he||Je|2L2(e)> )
ec0K
where Z is the residual operator defined by
Fu = pAu+ (A + )V (V- u) + w’u.
For convenience, we introduce a weighted norm of H'(Q) as
H|u\Hiﬂ(Q) = uL [Vul?dz + (A + p) L IV - ul?dz + w? L lu|?de.

It is easy to check that

min (11, 0°%) |3 o) < [wllfn gy < max (23 + 3,0%) [ulf o), Yue HY(Q).

(3.14)
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which implies that the weighted norm is equivalent to standard H'(2) norm.

Now we state the main result of this chapter.

Theorem 3.5.1 Let u and u® be the solutions of the variational problem (3.9) and
(3.13), respectively. Then for sufficient large N, the following a posteriori error
estimate holds
1/2
lw — wl | ) < ( Z 77%) + max <|n|@—|ﬁ§n>|(b_b')> 6] g1 .
KeMy,

It is easy to note that the a posteriori error consists of two parts: the finite element
discretization error and the truncation error of the DtN operator. We point out that
the latter is almost exponentially decaying since b > b and | ﬁén) | > 0. In practice,
the DtN truncated error can be controlled to be small enough such that it does not
contaminate the finite element discretization error.

In the rest of the chapter, we shall prove the a posteriori error estimate in Theorem
3.5.1. First, let’s state the trace regularity for functions in Hg,(€2). The proof can be
found in [29].

Lemma 3.5.2 For any u e H} (Q), the following estimates hold

lulnw,) < lulm@,  lulmee,) < luloo.

Denote by € = u — u”; the error between the solutions of (3.9) and (3.13). It can
be verified that

€100 = # | VE:VEd+ (i) | (V-)(V-Edoru? | £
= Ra(¢ &)+ 2w2f £ - &dx + ﬂ%f TE - €ds (3.15)
Q T
= Ra(§€) + ERJ (T — Tn) & - €ds + QwZJ £ - &dx + %J InE - Eds.
I Q I

In the following, we shall discuss the four terms in the right hand side of (3.15).
Lemma 3.5.3 gives the error estimate of the truncated DtN operator. Lemma 3.5.4
presents the a posteriori error estimate for the finite element approximation and the

truncated DtN operator.
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Lemma 3.5.3 Let u € H} (Q) be the solution of the variational problem (3.9). For
any v € Hép(Q), the following estimate holds:

187 (b—b' in
< O mae (e 500) 1™ a0

L(ﬁ— IN)u-vds

where C' > 0 is a constant independent of N.
Proof Using (3.3) and (3.5) yields
n n i (n) _p
&7 (0) = 6 W),

It follows from the straightforward calculations that we obtain

") T R e e ey i ] [ @)
()
- ’ (3.16)
W)
where
n 1 n ) . ,
Pl(l) _ X_ (aielﬁ§ ) (b—b') 51 5 l/gé ) (b— b)> |
(n)
Pl(g) = % <eiﬁ§n)(b—b') . eiﬁén)(b—b’)> ’
(n)
Pz(?) = % (eiﬂgn)(bfb’) B eigén)(bfb,)) |
1 (n ) . /

It is clear to note from (3.6) that ,8](.") is purely imaginary for sufficiently large
|n|. By the mean value theorem, for sufficiently large |n|, there exists 7 € (iﬁ%"), iﬁén))

such that

Py = (ai + /3@55”)) (81" 6-Y) + B 52” (eiﬁén)(b‘b') — eiﬂgm(b_b,)) ,

n) p(n 1(”) 4 . n n)\ _7(b—b
= (a2 4 B7BL) O 1 BB b ¥)iB” — ).
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A simple calculation yields

on + BV =l — (ah — w0} — R
_ ap (KT + K3) — KiK3 < k24 K2
1 2
ap + (o — s1)12(0f — K3)1?
and
i85 =18 = (o} — )Y — (o] — k)"
_ - o __m-s
I R G R T e i
which give

|PD] < @7 O) g | |em®b) < ||t 0-) (3.17)
Similarly, we may show that
P < |70, = 1,2,
Combining the above estimates lead to
W OF + g O £ w0 (ju @) + g7 ()P

By (3.7) and (3.12), we have from Lemma 3.5.2 that

L(y—yN)u-ms

= A D (MU () o) (b)

In|>N
1o 1=
< 2 |(inlFu@®) - (Inlo@®)))|
In|>N
1/2 1/2

<X (I @F 1 OR) | el (R OR +  0)2)

|n|>N |n|>N

1/2

<X WP (W )R + S R | ol ey

|n|>N

i85 (=)
< max (Infe™” ) Jul g [0

i8y") (b-b')
< max (Infe™” ) Jul oy oo
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Using (3.10), we get

L(y—yN)u-vds

. o(n) / .
< ifs  (b—0 )) wine v
< max (Infe L PP
which completes the proof. [ |
In the following lemmas, the first two terms in (3.15) are estimated.

Lemma 3.5.4 Let v be any function in H}qup(Q), the following estimate holds

1/2
i85 (b—b/ in
S <2 @) + max (|nle™ ) [ g | 0]y

KeM,

a(€,v) +L(<7— In) € -vds

Proof For any function v € H} (), we have
a(€,v) + L (T — In) €& -vds = a(u,v) — a(uy,v) + L (T — In) € -vds
— alu,v) = ah(u,0) + dilu ) —aluly,0) + | (T T € s
— afuv) — (o) — (kv = ")+ | (7 = Tyl ws
+L(9—9N)§-Eds
= —al (uly, v —v") + L (7 — In)u-vds.

For any function v e H }qup(Q) and v" € V, g, it follows from the integration by parts

that
— (b0 — o)
_ _K§4h {uLvuﬁz V(B = oF)dz + (A + 1) L(V-U’fv)v- (@_m)dw}
_K;h{_ﬁﬁ(u?v. (E—W)dm—frm% Tl (g_m)ds}
- K;A]Ah{_LK[“V“?V'VJF()\JFN)(V'U?\/)] (v—v)dﬁﬁmwyug.@_m)ds}
+K§4J [pdul + (A + )9V - uly +wPuly] - (0 - o) da

— [J ,%’UN v—vh de + Z f v—vh s]. (3.18)
KeM,,

ee&K
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We take v" = II,v € V}, g, where II;, is the Scott—Zhang interpolation operator and

has the following interpolation estimates
[ = ) g2y € hiel Vol gaiy: o = vz < B2 ol i,

Here K and f(e are the unions of all the triangular elements in M), which have
nonempty intersection with the element K and the side e, respectively. By the Holder

equality, we get from (3.18) that

1/2
- o) < ( 3 ?7%) ol

KeMy,

which completes the proof. [ |

Lemma 3.5.5 Let M) — —L(M™ + (M™)*), where M™ is defined in (3.8). Then

MW s positive definite for sufficiently large |n).

Proof It follows from (3.6) that 53(@) is purely imaginary for sufficiently large |n|.
By (3.8), we have

. 1 inBYL) i (pan X — w?ay)

Since x,, = a2 — (a2 — k2)V2(a? — k2)Y? > 0, we get

N i w
M = ——wQﬂ(n) = —(a? - K? 12 > 0.
11 o Xn( 1)
A simple calculation yields that
“r(n n) o(n 2
Xadet M = —w' BB — (jaxn — wen,)

= —2kh (xn — %) — 1202 (xn — K2)

1 Xn (—H% —alxn + 2@%/@%) .

Since ky > k1 and a2 has an order of n? for sufficiently large |n|, we obtain

265 — X = 265 — o + (o] — k3)"(ag, — )

= 3+ (o —63)"* (a7 — £)"? = (o7, — 5)"?) >0,

which gives that det M® > 0 and completes the proof. [ ]
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Lemma 3.5.6 Let Q) ={xeR?>: 0 <y <b, 0<x<A}. Then for any § > 0, there

exists a positive constant C'(0) independent of N such that
R f Tt - Eds < C0)|E12 00, + 01E N2 e,

Proof Using (3.12), we get from a simple calculation that

%J TugEds =AY R(MOED) €0 = A S (g0 €W

In|<N In|<N

By Lemma 3.5.5, M™ is positive definite for sufficiently large In|. Hence, for fixed
w, A\, i, there exists N* such that — (M(”)S(”)) @ < 0 forn > N*. Correspondingly,
we split R {. Iv& - €ds into two parts:
R| wggs--n N () E-a Y (i) €,
r [n|<min(N#*,N) N>|n|>min(N*,N)
(3.19)

where > <M(")£n> €, = 0if N > N*. Since the second part in the
N>|n|>min(N*,N)
right hand side of (3.19) is non-positive, we only need to estimate the first part in

the right hand side of (3.19), which has finitely many terms. Hence there exists a
constant C' depending only on w, u, A such that | (M(”)ﬁ(")> @\ < ClEMP for all
In| < min(N*, N).

For any 0 > 0, it follows from Yong’s inequality that

(b— ) |6(0) fw» |dy+” 6(s) )’ dsdy

< [1otras+ 61 [ 20wl0way
:Jf:|¢( )[2dy +(b—b’)ﬁ ‘qi([)‘\flcb( )|dy
< | 10Par+ 255 [ o Pay +56-) | 160,

which gives

b b
o < |5+ -0 | [ okan+s [ 10k
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Let ¢(z,y) = Y ¢n(y)e'*®. A simple calculation yields that

nez

IVol2ay = A j 6. (0)? + o216u()P) dy,

neZ

18172y = Z |¢n )[Pdy.

neZ

Using the above estimates, we have for any ¢ € H' (') that

181122y = AZ | ()]

nez
1
A{ng (b—b)~ ]ZJWH ]dy+A62J ¢/ (y) |2y
neZ neL
1 /
<al5+0-07] 5 [ ks 83 [ (0 +adioul) ay
neL nez
1 e
< |5+ =716k + 619602

< CO) DNy + IVl c)-
Combining the above estimates, we obtain
Re | Tv€-Eds < Clelieg < COIElng +5 | [VéFdo
< CO)€qy + 01€ 2
which completes the proof. [ |

To estimate {, [¢|*de in (3.15) , we introduce the dual problem

a(v,p) = L v &z, VYve Hg,(Q). (3.20)

It can be verified that p is the weak solution of the boundary value problem

-

pAp + (A + p)VV - p+w?p = —¢ inQ,

- on S, (3.21)

Bp = T*p onl,

where .7* is the adjoint operator to the DtN operator .7 .
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It requires to explicitly solve the boundary value problem (3.21). We consider the

Helmholtz decomposition and let
& = V(i + curl(y, (3.22)

where (;,j = 1,2 has the Fourier series expansion

Glz,y) =Y. e, W <y <b.

nez

Consider the following coupled first order ordinary different equations

e (y) = 1l (y) + &' (),
& () = ¢ (y) — i (),
¢ =0, V) =0

It follows from straightforward calculations that the solution is

) = peo |

b

n

: b
efozn(tfb)&(ll)(t)dt_i_; an(yb)J e (=t e (1)t

)
1 b 1 b
__ean(yb)J efozn(tfb)&(f)(t) e an (y—b) J an(t— b dt,
2 ) 2 )
1 b L b
Cg(n)(y) _ __ean(y—b)J n(t— b)g () n(y— b)J ay (t— b dt
2 , 2
i b b
+§ean(y_b) J e_an(t_b)é'r(f) (t) _an y b) J an(t b dt
Yy

It is easy to verify the following estimate

|an |(b—y) j=1,2

Y

n n n 1
‘C}( )(y)‘ < <H€§ Mo + 1€ )||L°°<b””)) nl

|
Let p be the solution of the dual problem (3.21). Then it satisfies the following

boundary value problem

-

pAp + (A + p)VV - p + w?p = —¢ in Y,

\ Pz, V) =p(x, V) onT" (3.23)

\e%’pz T*p onT".
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Let function g;,7 = 1,2 have the Fourier expansion in )"

gi(z,y) = D q\" (y)e

nez

The Fourier coefficients ¢'™

;" are required to satisfy the two point boundary value

problem
¢ (y) + (k2 — a2)g (y) = —¢;¢" (),
(n) _ ()
14" (V) = ¢ (), (3.24)

\q](-”) (b) = —iB" " (b),

where ¢; = (A +2u) ! and ¢y = p7 !, C](-") are the Fourier coefficients of the potential

functions ¢; for the Helmholtz decomposition of £ in (3.22).
Lemma 3.5.7 Let p = V¢, + curlgs. Then p satisfies (3.23).
Proof If (3.24) holds, then it is easy to check that

A +20) (Aq + Kiq1) = =G, p(Age + K3g2) = —Go
Noting p = V¢, + curlg,, we obtain

pAp + (A + p)VV - p + w’p

= uV (Aq)) + peurlAgy + (A + p)VAqg + w?Vq + w?curlg,
= (A +2u)V (Aqi + ki) + peurl (Ags + K3g2)

= —V( —curl(; = —¢.

Next is to verify that the boundary condition on y = b. Assume that p admits

the Fourier expansion p = 3 (p{" (1), p{™ (y))Te*»*. Tt follows from the Helmholtz

nez
decomposition that

() g (y) + ¢ (v)

J

P (y) 0" (y) — iomad" (y)



which gives

P (y) g (y) + 5" (y)

8" () " (y) — iongd” (y)
A straightforward calculation yields that

Bp = poyp+ (A+p)(0,1)'V-p

_y z <ianq§") () + 05" (y))
2 | O+ i (i0na () + a8 (1)) + O+ 200) (6" () — i ()
¥ M (ianqin) (v) + ¢ (y)) Jans

w2 | 4+ 20a™ () — (A + wa2el™ (y) — ipangd™ (y)

Evaluating the above equations at y = b, we get

Fplys - T inang;”™ (0) + pay"”" (b) o
p y=b = " ’ e
n | (A + 200" (0) = (A + paday”™ (b) - inangs™ (0)

Noting Cj(")(b) — 0, we have from (3.24) that ¢\ (b) = —(x2 — a2)¢\™ (b). Hence

j i )4
pan B —w? +ped | V() |
Bply-p = Z — " ent,
nel | pag —w? - —pon B g (b)

On the other hand, we have

g*p _ Z(M(n))*p(n)<b)eianz

nez
i W26§n) w?ay, — O X, .
= Z___ L p(n)(b)elanx
nez X | o, — wa, w2
.l w2ﬁ wa, — oY | o —iﬁ (")(b)
B Z i 1 n = HOn Xy n 2 5
ez XX, - wlan  w?ByY —ip" e, | a5 ()

pen B —w? + a2 | | g (0)

— Z eianx’

ne | pod —w? —ponfy” | | a5 ()

which shows #p = 7 *p and completes the proof.

65

ianx

e



66

It follows from the classic theory of second order differential equations that the

solution of the system

¢ () — 18P (y) = —¢;,¢" (),
1) = M),
" (0) = =151 ()

is

. 1 Va0 g o Y8 () (.
C]j(' )(y) — _(n){ — cjf elfi 1 )CJ(. )(s)ds + ch el It y)C](- )(S)ds
21;™| b g

b
—¢; J €|ﬁ§ /)l(Qb/*yfs)C](-n)(S)dS 4 2|B]('n) |6|/3’J(- )(b/y)q]('”)(b/)}‘ (3.25)

Lemma 3.5.8 Let p = (p1,p2)' be the solution of the dual problem problem (3.20).
For sufficiently large |n|, the following estimate hold

n (n / n n n
P (B)] < Il (1p0 )]+ 16§ (1)) + ||QQNW/+w$HmW@),

where p] is the Fourier coefficient of p;, 7 = 1,2.

Proof Evaluating (3.25) at y = b yields

n 1 (n) s n b (n) /_b_s n
0= o |{ [ e a7 - gas

+2|80 el ](-”)(b/)}. (3.26)

Taking the derivative of qﬁn) with respect to y in (3.25) and then evaluating at y = ¥/,

we have

b
n) ()1 ) ~(n n n .
@>wﬂ=qff@'“>¢>@Mx4@>M’w» j=12
which is equivalent to

g (v) -8 0 " (1) X {m

&' (1) o —189| || |
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where
b
~(n M| —s) ~(n
C](- ) = Cj L elBi 1 )g‘j(. )(s)ds.

It follows from Lemma 3.5.7 and the Helmholtz decomposition p = V¢; + curlg,

that
() g™ () + g (v) i, —185] [ @) &
— — + ,
Py (¥) g (V) — iangs” (V) —1BM —ia, | [P W) (™

which gives
GO N S e TN N P RTUON IR W OT O Fel
n B _n n . n B _n n) 3 2(n
@@y | X B e | 8@ | X LA e |G
Substituting the boundary condition
AR O] I 1 B B PR ()
a5 (0) 0 15" |47

into the Helmholtz decomposition p = V¢, + curlg,, i.e.,

O | | iend™ ) + a8 (0)
00| [0 - el o) |
we obtain
PO || e 8| a7 0)
s (b) —1B] —ian | |8 (0)
By (3.26),
0N I L a’w)| |
ol | 0 e ][] |
where

(n) ¢ (" (BN _ -9 )
T]j = T (@ J — e > Cj (s)ds.
2’53‘ | Jv
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Combining the above equations leads to

n . n (n)ypr_ n
pi™ () ia,  —|B]] | el 0 " (v')
n N n . (n)ypr_ n
s (b) —18"7 —ia, 0 el 100 | g8 (v
i, 185 | | ™
- (n)
- |51n) | —lay, 772n
P (1) (v i 8] |
- pm _ pm n ,
Py (b)) ¢ —18M —ian | | pd"

where P™ is defined in (3.16).
Recall that

n 1 n n 6] —S
576 S 1oy (1 e + 1687 L ) 10

Since s — b > 20 — b — s and |a,| ~ |n|, |BJ(-”)| ~ |n| for sufficiently large |n|, we have

from (3.17) and the mean-value theorem that

n n n 1 b (m))(g— 1 o l(bes
Ol < (I8 e wn + 167 o) m>fe@'<w——euw>@
|/6j | Iy |t
" " 1 —1 an|— 18 ]) (b—b/

= (16l + 1 o) T o (1= ellon Do)

’O‘”HBJ‘ | ‘O‘n‘ - |BJ |
1 n "
s o (167w + 1 o) -

Combining the above estimates yields

n)

™ — (65" -

1B —iannS?| £ = (165 e + 168 [ eern) ) -
n]

)

Following the similar steps of the estimate for nj(-n , we can show that

b
2(n n n My —s) |a —s 1
[SRiE= (Hf% Mooy + €5 )HLOO(b/,b)> J el 17=s) glaml(® )mds
1

n n (n) ’_ o Y
g (n) <H€§ )HLOO(b/,b) + Hgé )HL()O(b',b)) ‘6"3] |(b b) _ €| |(b b)
vl (laa] + [80))

1 N . o
L (16 miry + 167 mry) €169,

A
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which gives
_ (n) / n o N
P < Iole 0 (e ey + 1657 Loy ) €10

L (1o 12189 (b—/ . .
< me(l nl=185M1) (1) (H& oy + IS )HL"O(b’,b))-

Since for sufficiently large |n|, we have

(n) 2 2\1/2 K3 1
ol =Bl e ) o] + (02 — k3)"? Sl
Hence
#(n)
P Atn) S ﬁ (Hén)HLw(bhb) + Hgén)Hwa',b)) )

2

which proves

n) / n n 1 n n
B0 5l (@) + 1)) + o (67w + 16 )
The proof is completed. [ |
Taking v = £ in (3.20), we have

H€H2L2(Q) =a(&,p) — L (7 —In)€-Pds+ f (7 —In)€-pds. (3.27)

T

By Lemma 3.5.8, we obtain

<A Y [(MDe, 1) - 0)

|n|>N

L(g_yN)ﬁ‘Z_)dS

<A Y fol (P @)1+ 10 0)1) (1601 + B8 o)1)

In|>N
12 1/2
9 2
SN Y a2 (€0l ) || X P (0] 17 0))
In|> N In|>N
1/2

SN Uelgng | X Il (1B OF + b 0)F)
In|>N
1/2

SN el | X 1P (IO + OO)F) | (3.28)

[n|>N
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Following the similar proof in [61, eq. (30)], we may show that

n 2 n — n
67 e < (5 + 10) 1€ Ol + 1 OB (529

It follows from the Cauchy—Schwarz inequality that

> 1l (1" @) + 57 0) )

In|>N
<) |n|3{ IO )(|p§”)<b'>|2+|p§"><b>|)+ﬁ(|sf“%w<b/,b>+|§§">|%w<b/,b))}
|n|>N

< X PEIOD (@) + 1 @) + Y 0l (167 ey + 167 o)
n|>N n|>N

L !

Noting that the function t*¢=! is bounded on (0, +0), we have

(n) | n
< ma (080D S ol (@) + 68 O < 12l < 1610

|n|>N
[n|>N

Substituting (3.29) into I, we get

2 n n n)’ n)’
nos Y [|n| (3+|nr) (|f£>riz<b/7b)+5;>\%2(b/,b>)+(gﬂniz(b,,b)ﬂ&é)\%zw,b))]

[n|>N

2
< ¥ [(5|n|+n2> |sn||iz<bl,b>+|€%Hi2<bab>]-

In|>N
A simple calculation yields

b
6 By = AX | [0+ a2 €W + 167 W] v

neZ
It is easy to note that
2 2 2
g|n| +n°<1l+a;.
Then
I < €l ) < 1€0En o)

Therefore,

2
> ol (1B 0) + O)) < 1€ ) (3.30)

[n|>N
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Plugging (3.30) to (3.28), we obtain

_ 1
[ (7= 7€ pasl < el (331)
Now, we prove Theorem 3.5.1.

Proof By Lemma 3.5.3, Lemma 3.5.4, and Lemma 3.5.6, we have

€12 q = Ra(€,€)+ R f

T

(9—9N)§-st+2w2f £-Zdaz+§RJ InE - €ds
Q T

1/2
() — inc
<G (2 n%) + max (|nlel”10D) ™| 10 | 18] erio

N
TeM, Inl>

+(Cy + C(6)) H€||2L?(Q) + 5H€”iﬂ(9)’

where C4,C5, C(6) are positive constants. From (3.14), by choosing § such that

) 1
W < E,We get

1/2
A inc
‘HE‘H?F(Q) <20G; ( Z 77%) * \maX <\n|@\ﬂz |(b b)> |u HHl(Q) H€||H1(Q)

Ter, n|>N
+2(Cy + C(9)) €] 72 (3:32)

It follows from (3.27) and (3.31) that

620y = &)+ [ (7= )€ pas— [ (7 - TE pas
I N

1/2
) — inc -
< (2 n%) + max ([nfel10) [ g ) | €] e o) + N7 1€l33D)

N
TeM,, Inl>

Taking sufficiently large N such that Q(CQTVC(‘S)) min(L -7 < 1 and substituting (3.33)

into (3.32), we obtain
1/2
)y — inc
lw — u}]\,\HHl(Q) < ( Z n%) + max <|7’L|e|f32 |(b b)) |u ||H1(Q)'
TeM, Inl>

The proof is completed by noting the equivalence of the norms |- || g1 () and |- | g1 (q)-
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3.6 Numerical Experiments

In this section, we introduce the algorithmic implementation of the adaptive fi-
nite element DtN method and present two numerical examples to demonstrate the

effectiveness of the proposed method.

3.6.1 Adaptive Algorithm

Our implementation is based on the FreeFem [50]. The first-order linear element
is used to solve the problem. It is shown in Theorem 3.5.1 that the a posteriori error
consists of two parts: the finite element discretization error ¢, and the DtN operator

truncation error €y, where

1/2
_ (n) _ K in
€p = ( 2 77%() , €Ny = max <|n|@ 185 1(b b)) HU CHHl(Q)' <3.34)

KeM,, Inl>N
In the implementation, we choose the parameters b, and N based on (3.34) to
make sure that the DtN operator truncation error is smaller than the finite element
discretization error. In the following numerical experiments, b’ is chosen such that
V' = max,ea) f(x) and N is the smallest positive integer that makes ey < 1075,

The adaptive finite element algorithm is shown in Table 1.

3.6.2 Numerical Experiments

We report two examples to illustrate the numerical performance of the proposed
method. The first example concerns the scattering by a flat surface and has an
exact solution; the second example is constructed such that the solution has corner
singularity.

Ezxample 1. We consider the simplest periodic structure, a straight line, where
the exact solution is available. Let S = {y = 0} and take the artificial boundary
I' = {y = 0.25}. The space above the flat surface is filled with a homogenenous

and isotropic elastic medium, which is characterized by the Lamé constants A = 2,
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Table 3.1.
The adaptive finite element DtN method.

1. Given the tolerance € > 0 and the parameter 7 € (0,1).

2. Fix the computational domain €2 by choosing b.

3. Choose V' and N such that ey < 1075.

4. Construct an initial triangulation M, over ) and compute error estimators.
5. While ¢, > € do

6. refine mesh M, according to the strategy that

if nz > 7 max ng, refine the element Ke My,
KeMy,

7. denote refined mesh still by My, solve the discrete problem (3.13) on the

new mesh My,
8. compute the corresponding error estimators.

9. End while.

u = 1. The rigid surface is impinged by the compressional plane wave u!"® = del1%¢,
where the incident angle is # = 7/3. The compressional and shear wavenumbers are
k1 = w/2 and Ky = w, respectively, where w is the angular frequency. It can be
verified that the exact solution is

2
w(@) = 2| @ | etersn _ L (BN eargy L (208 N T sy
“ | s e em) | o\ >

where a = k1sinf, 8 = kicosf,y = (k3 — a?)¥2. The period A = 0.5. Figure 3.2

—

shows the curves of loge;, versus log DoF), with different angular frequencies, where

en = |u—uly|| g ) is the a priori error and DoF}, stands for the degree of freedom or
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the number of nodal points. It indicates that the meshes and the associated numerical

complexity are quasi-optimal, i.e., e, = O(DOF;l/ 2) holds asymptotically.

107

HY Error

10° Number of Nodal Points

Figure 3.2. Quasi-optimality of the a priori error estimates for Example 1.

FEzxample 2. This example concerns the scattering of the compressional plane wave
by a piecewise linear surface, which has multiple sharp angles. The incident wave u™°
and the parameters are chosen the same as Example 1, i.e., b = 0.25,A = 0.5,0 =
7/3,\ = 1,u = 2. Clearly, the solution has singularity around the corners of the
surface. Since there is no exact solution for this example, we plot in Figure 3.3 the
curves of loge;, versus log DoF), at different angular frequencies, where ¢, is the a
posteriori error. Again, it indicates that the meshes and the associated numerical
complexity are quasi-optimal, i.e., €, = O(DOF;U 2). Figure 3.4 plots the contour of
the magnitude of the numerical solution and its corresponding mesh at the angular
frequency w = 2. It is clear to note that the algorithm does capture the solution

feature and adaptively refines the mesh around the corners where solution displays

singularity.

3.7 Conclusion

In this chapter, we have presented an adaptive finite element DtN method for the

elastic scattering problem in periodic structures. Based on the Helmholtz decomposi-
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10

Posterior Error

.
°,

3
10 Number of Nodal Points 10

Figure 3.3. Quasi-optimality of the a posteriori error estimates for Example 2.

Figure 3.4. The numerical solution of Example 2. (left) The con-
tour plot of the magnitude of the solution; (right) The corresponding
adaptively refined mesh.

tion, a new duality argument is developed to obtain the a posteriori error estimate. It
contains both the finite element discretization error and the DtN operator truncation
error, which is shown to decay exponentially with respect to the truncation param-
eter. Numerical results show that the proposed method is effective and accurate.
This work provides a viable alternative to the adaptive finite element PML method
for solving the elastic surface scattering problem. It also enriches the range of choic-
es available for solving wave propagation problems imposed in unbounded domains.
One possible future work is to extend our analysis to the adaptive finite element DtN
method for solving the three-dimensional elastic surface scattering problem, where a

more complicated TBC needs to be considered.
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4. THE INVERSE ELASTIC OBSTACLE SCATTERING
PROBLEM

4.1 Introduction

In this chapter, we consider the direct and inverse obstacle scattering problems
for elastic waves in three dimensions. The goal is fourfold: (1) develop a transparent
boundary condition to reduce the scattering problem into a boundary value problem;
(2) establish the well-posedness of the solution for the direct problem by studying its
variational formulation; (3) characterize the domain derivative of the wave field with
respect to the variation of the obstacle’s surface; (4) propose a frequency continua-
tion method to reconstruct the obstacle’s surface. This chapter significantly extends
the two-dimensional work [75]. We need to consider more complicated Maxwell’s e-
quation and associated spherical harmonics when studying the transparent boundary
condition (TBC). Computationally, it is also more intensive.

The obstacle is assumed to be embedded in an open space filled with a homo-
geneous and isotropic elastic medium. The scattering problem is reduced into a
boundary value problem by introducing a transparent boundary condition on a sphere
enclosing the obstacle. The non-reflecting boundary conditions can also be found
in [45,46] for the two- and three-dimensional elastic wave equation. We show that
the direct problem has a unique weak solution by examining its variational formu-
lation. The proofs are based on asymptotic analysis of the boundary operators, the
Helmholtz decomposition, and the Fredholm alternative theorem.

The calculation of domain derivatives, which characterize the variation of the wave
field with respect to the perturbation of the boundary of an medium, is an essential
step for inverse scattering problems. The domain derivatives have been discussed

by many authors for the inverse acoustic and electromagnetic obstacle scattering
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problems [47,64,87]. Recently, the domain derivative is studied in [68] for the elastic
wave by using boundary integral equations. Here we present a variational approach
to show that it is the unique weak solution of some boundary value problem. We
propose a frequency continuation method to solve the inverse problem. The method
requires multi-frequency data and proceed with respect to the frequency. At each
frequency, we apply the descent method with the starting point given by the output
from the previous step, and create an approximation to the surface filtered at a higher
frequency. Numerical experiments are presented to demonstrate the effectiveness
of the proposed method. A topic review can be found in [15] for solving inverse
scattering problems with multi-frequencies to increase the resolution and stability of
reconstructions.

The chapter is organized as follows. Section 2 introduces the formulation of the
obstacle scattering problem for elastic waves. The direct problem is discussed in
section 3 where well-posedness of the solution is established. Section 4 is devoted to
the inverse problem. The domain derivative is studied and a frequency continuation
method is introduced for the inverse problem. Numerical experiments are presented
in section 5. The chapter is concluded in section 6. To avoid distraction from the
main results, we collect in the appendices some necessary notation and useful results

on the spherical harmonics, functional spaces, and transparent boundary conditions.

4.2 Problem Formulation

Consider a three-dimensional elastically rigid obstacle D with a Lipschitz contin-
uous boundary ¢D. Denote by v = (v1, 1, v3) the unit normal vector on ¢D pointing
towards the exterior of D. We assume that the open exterior domain R3\D is filled
with a homogeneous and isotropic elastic medium with a unit mass density. Let
Br = {z € R®: |z| < R} be a ball with radius R > 0 such that D < Bg. Denote by
I'r = {x € R?®: |x| = R} boundary of Bg. Let Q = Bg\D be the bounded domain
which is enclosed by 0D and I'g.
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Let the obstacle be illuminated by a time-harmonic plane wave
,uinc _ deinpm-d or uinc _ dJ_einsw-d (4 1)

where d is the unit incident direction vector and d* is the unit polarization vector
satisfying d - d*=0. In (4.1), the former is called the compressional plane wave while

the latter is called the shear plane wave. Here

w w

Kkp=-——— and kK;= ——
P e

O 207 (42)

are known the compressional wavenumber and the shear wavenumber, respectively,
where w > 0 is the angular frequency, p and A\ are the Lamé parameters satisfying
p>0and A+ p > 0. It is easy to verify that both the compressional plane wave and

the shear plane wave in (4.1) satisfy the three-dimensional Navier equation:
pAU + (A + p)VV - u™ + w?u™ =0 in R\ D. (4.3)
The displacement of the total wave field w also satisfies
pAu+ A+ p)VV-u +w?u =0 in R)\D. (4.4)
Since the obstacle is elastically rigid, the total wave field vanishes on 0D:

u=0 ondD. (4.5)

The total wave field u can be decomposed into the incident wave u'™ and the scattered

wave v:

u=u" +v.
Subtracting (4.3) from (4.4) yields the Navier equation for the scattered wave v:
pAv + (A + p)VV v +w?o =0 in R¥\D. (4.6)

An appropriate radiation condition is needed for the exterior scattering problem.

For any solution v of (4.6), we introduce the Helmholtz decomposition:

v=Vop+Vx1, V- =0, (4.7)



79

where ¢ and 1 is called the scalar potential function and the vector potential function,

respectively. Substituting (4.7) into (4.6) yields
VI +20)A¢ + w?d] + V x (uAY + w’yp) = 0,
which is fulfilled if ¢ and 1) satisfy the Helmholtz equation:
Ap+rop =0, Atp+rip=0. (4.8)

where x, and ks are defined in (4.2). Hence, we request that ¢ and v satisfy the

Sommerfeld radiation condition:

lim 7 (0,¢ — ikpp) = 0, lij&r (0 —iks®) =0, r=|x| (4.9)

7—00

Using the identity
V x (Vx)=—-Ap+V(V-1),
we have from the Helmholtz equation (4.8) that 1 satisfies the Maxwell system:
V x (V x ) — k29 = 0. (4.10)

As is known, the Silver—Miiller radition condition is commonly imposed as an ap-
propriate radiation condition for Maxwell’s equations. It is shown (cf. [38, Theorem
6.8]) that the Sommerfeld radiation for 4 in (4.9) is equivalent to the Silver—Miiller

radiation condition:

lim (V x ¢) x & —ikgrp) =0, r = x| (4.11)

r—o

Given the incident field «™¢, the direct problem is to determine the displacement
of the total field u for the known obstacle D; the inverse problem is to determine
the obstacle’s surface dD from the boundary measurement of the displacement w on
['g. The purpose of this chapter is to study the well-posedness of the direct problem
and develop a continuation method for the inverse problem. Hereafter, we take the
notation of a < b or a 2 b to stand for a < Cb or a = Cb, where C' is a positive
constant. Some commonly used functional spaces, such as H;,(Q2), H*(I'y), and

H (curl, Q), are list in appendix 4.7.2.
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4.3 Direct Scattering Problem

In this section, we study the variational formulation for the direct problem and

show that it admits a unique weak solution.

4.3.1 Transparent Boundary Condition

We derive a transparent boundary condition on I'p to reformulate the problem
from the open domain R*\D into the bounded domain €.
Given v € L*(I'g), it follows from Appendix 4.7.1 that v has the Fourier expansion

R 97 90 Z Z Uln + UQan(g ) + U3nWm(9 )7

n=0m=—n

where the Fourier coefficients

o = [ w(R6,0) - T (0, 0)dn.
JFR

i — [ w(r.0.0)- V70, 0)dn.
JFR

i = [ w(R.0.0) W0, 0)dy.
JFR

Define a boundary operator
PBv = po,v+ (A+p)(V-v)e, onlg, (4.12)
which is assumed to have the Fourier expansion:

(Bv)(R.0,¢) = Z Z whT™ (6, 0) + Wi V™0, ) + wrW™(6, ). (4.13)

n=0m=—n

Taking ¢, of v in (4.60), evaluating it at »r = R, and using the spherical Bessel
differential equations [95], we get

o,0(R,0, ) = ii [V it DO (rpR) — 1) — n

) = (1 + 2 (KsR)

N IS I
nn+ 1) nl SR)]V" - [R2< (n+1)

— (Rkp)? — 22 (kpR)) + Y ”<”R+2 DV, (k) — 1)] w, (4.14)

+ (Rrg)? — n(n + 1))]T;" +
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where z,(t) = th (t)/ h%l)(t), hY is the spherical Hankel function of the first kind
with order n, ¢;' and 97, are the Fourier coefficients for ¢ and 1) on I'g, respectively.

Noting (4.60) and using V - v = A¢ = %&qﬁ + 0%¢ + %AFRQS, we have

SIRY $n |24, 0 d
T 0,(,0 z;) Z hl Tdrh ( T)+@hn (/fp’l“)
n(n+1) m
e hgll)(/{pr)]Xn , (4.15)

where Ar, is the Laplace-Beltrami operator on I'p.

Combining (4.12) and (4.14)—(4.15), we obtain

_ Z Z [\/Tn(zn(ﬁpm — 1)@ — (14 2,(ksR) + (Rry)?

2 1
—n(n + 1))¢;§]T;ﬂ + %zn(fw) mym ﬁ[u(n(n +1) — (Rky)?

— 2z, (kpR )qu + p/n(n 4+ 1)(z,(ksR) — D)) — (A + u)(/ipR)z(bff] W, (4.16)

Comparing (4.13) with (4.16), we have

m m m 1 m m m
(w1n7 w2n7 w3n)T = EGTL( n 7¢2n7 ¢3n)T7 (417)
where the matrix
o o G
Go= G5 G5 o
Gy G0

Here

n (ks R)?zn (ks R "
o) - MBIt G — o+ D) 1),

G — (n(n+1) = (ksR)* = 1 = z,(ksR)) |
GSY = (n(n +1) = (5pR)? = 22, (s R)) — (A + p) (ki R)?,
Gg’; = pv/n(n + 1)(z,(ksR) — 1).
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m o_ m ,m ,m\T m _ pm _ (pm pm jm T :
Let v = (v, vk, o), Myom = b = (b7, b5, b)) ", where the matrix

M®™ 0 0
M. — () )
0 Mg M

Here

M _ (%) n(maR), M — (g) (1 N (KSR)%n(npR)) |

M® = \/n(n + 1) (%) (1 + (“Z}:)Q) ,
Még) =+/n(n+1) <% + (A —;%2/0 (Kj\]j)2> ,

A+ 2p) (5, R)?
B (L (e R) 2 (E) ,

where A, = 2,(kpR)(1 + 2, (ksR)) — n(n + 1).

=

n (
M:s(3) ==

Using the above notation and combining (4.17) and (4.64), we derive the trans-

parent boundary condition:

0

Bo=Tvi=> > WLTr+bVe+ b Wr on g (4.18)

In*tn
n=0m=—n

Lemma 4.3.1 The matriz M, = —%(Mn + M) is positive definite for sufficiently

large n.

Proof Using the asymptotic expansions of the spherical Bessel functions [95], we

may verify that

- _ L 4 i 2 i
Z"<t> (n 1> 16nt Qnt 0 <n2) ’

— _i 4 _ i 4 _ 1 2 _ 1 2 l
An(t) 16(/<apt) 16(11575) Q(Iipt) 2(/1375) + 0 ~

It follows from straightforward calculations that
M0 0
M. — rm)  r(n)
0 My My
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where

~(n U 1 ~(n WwlR
Ml(l):<}—%>(n+1)+0<ﬁ>, M2(2):—<A )(n+1)+0(1),
. °R

MQ(Q) = — (% + wA ) v/n(n+1)+0(1)
. °R

Mé;) = — (% + wA ) AVn(n+1)+0(1),
~my 20 WR _(wQR

Mgy = 5+ S (L4 z(maR) = — (5 )n+0(1).

For sufficiently large n, we have
MY >0 and MY >0
11 22 )

which gives

det[(My) 212 ] = MNP > 0.

Since A,, < 0 for sufficiently large n, we have
w?R\? i w?R\’
() - (5+50) | +om=o

~ N ~ ~ 2
derliy] = a1 () - (315)) > o

“r(n) 1°r(n “r(n 2
M2(2)M:§3) - <M2(3)> =n(n+1)

A simple calculation yields

which completes the proof by applying Sylvester’s criterion. [ |

Lemma 4.3.2 The boundary operator F : HY?(Tg) — H~Y*(TR) is continuous,
i.e.,

| Tl g1y S 6l gy, Yue H(Tg).
Proof For any given u € HY 2(I'g), it has the Fourier expansion

w(R,0,0) = > > ulTr(0,9) + up V(0. @) + ug, Wi(0, ).
n=0m=—n

Let u™ = (uf,udt, uf)". Tt is easy to verify from the definition of M, and the

asymptotic expansion of z, () that

|M<" | < (1+n(n+1)"2%
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Hence we have

o0 n
| T w3z p =30 (L+nm+1) | Mur)?

n=0m=-—n
n

0
> (L+n(n+ 1)) g = Jul e

m

A

)7

[en]

n=

which completes the proof. [ |

4.3.2 Uniqueness

It follows from the Dirichlet boundary condition (4.5) and the Helmholtz decom-
position (4.7) that

v=Vo+Vxtp=—u" ondD. (4.19)

Taking the dot product and the cross product of (4.19) with the unit normal vector

v on 0D, respectively, we get
oo+ (Vxp) v=—u, (Vx)xv+Voxrv=—us,
where
Uy = uinc ‘v, Uy = uinc N7

We obtain a coupled boundary value problem for the potential functions ¢ and 1:

-

Ap+r2p=0, Vx(Vxap)—rlp=0, in Q,

{(3,,(]5+(V><’¢)-V=—U1; (Vxy)xv+Voxv=—us on 0D, (4.20)

Orp— 10 =0, (Vx)xe —ingFhtpr, =0 on I'p.

where .77 and 7 are the transparent boundary operators given in (4.46) and (4.54),
respectively.

Multiplying test functions (p,q) € H'(2) x H(curl,Q), we arrive at the weak
formulation of (4.20): To find (¢, 1) € H'(2) x H(curl, ) such that

a(p,¥;p,q) = (ur,pyap + (w2, @op, Y (p,q)€ HI(Q) x H (curl, ), (4.21)
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where the sesquilinear form

a(d,¥;p,q) = (Vo,Vp) + (V x ¥,V x q) — k2(¢,p) — k2 (¥, q)
—A(Vx ) -v,ppap = Vo x v, @ap = (10, p)ry, — 16 Tary, Gy )rp-
Theorem 4.3.3 The variational problem (4.21) has at most one solution.
Proof It suffices to show that ¢ = 0,4 =0in Q if u; = 0,us = 0 on ¢D. If (¢, v)
satisfy the homogeneous variational problem (4.21), then we have
(V6, Vo) + (V x 9,V x ) = (¢, 0) — (4, 9) = ((V x ¥) - v, $ap
—(Vo x v, )ap = (F1¢, O)ry — kTP, Yrpr, = 0. (4.22)

Using the integration by parts, we may verify that

<(v X ’()b) ‘v, ¢>(9D = _<¢7V X v¢>aD = <1/)7V¢ X V>(3D7

which gives

(V xp)-v,¢)sp + (Vo x v,v)sp = 2Re(Vo x v, 9)sp. (4.23)

Taking the imaginary part of (4.22) and using (4.23), we obtain

Im<°%¢7 ¢>FR + HSR6<%¢FR7 17/)1"R>FR = 07

which gives ¢ = 0,1 = 0 on I'g, due to Lemma 4.7.1 and Lemma 4.7.2. Using (4.46)
and (4.54), we have 0,0 = 0, (V x 9) x e, = 0 on '. By the Holmgren uniqueness
theorem, we have ¢ = 0,1 = 0 in R*\ B. A unique continuation result concludes that

¢ =0, =01in Q. m

4.3.3 Well-posedness

Using the transparent boundary condition (4.18), we obtain a boundary value

problem for u:
.

pAu+ A+ p)VV-u+w?u =0  in Q,

1u=0 on 0D, (4.24)

PBu=Tu+g on I'p,
\
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where g = (% — 7 )u™™. The variational problem of (4.24) is to find w € H},(Q)
such that
b(u,v) ={g,v)r,, YveHsy), (4.25)

where the sesquilinear form b : H}, () x H5,(Q) — C is defined by

b(u,v) = ,uL Vu:Vodz + (A + p) L(V ~u)(V-v)de
—w? Lu -vdx — (T u,v)r,.

Here A : B = tr(ABT') is the Frobenius inner product of square matrices A and B.
The following result follows from the standard trace theorem of the Sobolev spaces.

The proof is omitted for brevity.
Lemma 4.3.4 [t holds the estimate
[l < I, Yue Hip(Q).
Lemma 4.3.5 For any ¢ > 0, there exists a positive constant C(g) such that
lulLzy) < elulag) + CE)lulz g, Yue Hap(Q).

Proof Let B’ be the ball with radius R’ > 0 such that B’ ¢ D. Denote ) = B\B'.

Given u € H},(Q), let @ be the zero extension of u from Q to Q, i.e.,

0, x e O\Q.

The extension of w has the Fourier expansion

u(r,0, ) = Z Z Wl (r)T5 (0, ) + U, (r) V310, 9) + g, (r)W N0, ¢).

A simple calculation yields

o0 n
[al e = >, D) [EL(R)P +las, (R)P + |a5, (R)[.

n=0m=—n
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Since w(R',0,p) = 0, we have aJ, (R') = 0. For any given ¢ > 0, it follows from

Young’s inequality that
~ 2 Fd 2 B d
nR)F = | P < | 20 \Eum

< (Re)™ fj|ﬂ%(r)|2dr+ (Re)” J ’

dr

/

which gives

2
r2dr.

R R d
P <0 | et e |

, | dr ujn (T)

The proof is completed by noting that

H'&’HLQ(FR) = HU’HL2(FR)a ||ﬁHL2(Q) = HUHL2(Q)> Hﬁ’HHl(fl) = HU”Hl(Q)-

Lemma 4.3.6 It holds the estimate
|wl ) < [Vulpzq)y, Yue Hpp(9Q).

Proof As is defined in the proof of Lemma 4.3.5, let w be the zero extension of u

from © to Q. It follows from the Cauchy—Schwarz inequality that

T

oru(r, 0, )dr
R/

2 R
S f |arﬂ’(r7 97 @)’2 dT.

/

a(r,0,9)|* =

Hence we have

rR 27 pw
il = [ [ [ tat0.ppearasa
Jr'Jo Jo

3

"R 2n R
< J J |0, (r, 0, ) [2drdodedr
Jre Jo Jr

rR ™
< J 0,a(r, 0, ) Pdrdode < Va3,
Jrrdo Jo

The proof is completed by noting that
lulz20) = |0l 2@y, [Vulrz) = [V q),

”’U/H%(l(g) = HUH?F(Q) + HVUH?;Q(Q)
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Theorem 4.3.7 The variational problem (4.25) admits a unique weak solution w €

H;p(Q).

Proof Using the Cauchy—Schwarz inequality, Lemma 4.3.2, and Lemma 4.3.4, we

have

[b(w, )| <pl V|2 )| Volrae) + A+ w)IV - uloolV - vl
+ Wl g2 ) [Vl p20) + [T 12 [0

Slul o) |v] g @)

which shows that the sesquilinear form b(-, ) is bounded.
It follows from Lemma 4.3.1 that there exists an Ny € N such that M, is positive
definite for n > Ny. The sesquilinear form b can be written as

b(u, v) =MJ

Q(V'u, : Vo)de + ()\+,u)f

Q

- Z Z <Mn’U/ZLa’UZL>— 2 2 <Mnu:?7v;n>’

[n|>Ng m=—n [n|<Ng m=—n

(V~u)(V-'v)dm—w2Lu-'vdm

Taking the real part of b, and using Lemma 4.3.1, Lemma 4.3.6, Lemma 4.3.5, we
obtain

Reb(w,u) = p|Vulfeg + A+ )|V ulfeg + X, D, Muuy,ul)

|n|>Ng m=—n

—Plullpo) + Y, ) M up)

[n|<No m=-n
= Cifu] o) — W2HU||L2(Q) — Collufl g2y
= OlHUHHl(Q) - W2HUHL2(Q) - C2€H“HH1(Q) - C(‘C’:)HUHLQ(Q)

= (C1 — CZE)HUHHl(Q) - 03||UHL2(Q)'

Letting € > 0 to be sufficiently small, we have C| — Cye > 0 and thus Garding’s
inequality. Since the injection of H}, () into L*(€2) is compact, the proof is com-
pleted by using the Fredholm alternative (cf. [82, Theorem 5.4.5]) and the uniqueness

result in Theorem 4.3.3. [ ]
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4.4 Inverse Scattering

In this section, we study a domain derivative of the scattering problem and present

a continuation method to reconstruct the surface.

4.4.1 Domain Derivative

We assume that the obstacle has a C? boundary, i.e., 0D € C?. Given a sufficiently
small number h > 0, define a perturbed domain €2, which is surrounded by ¢D), and
I'r, where

0Dy, = {x + hp(x) : € 0D}.

Here the function p € C*(D).
Consider the variational formulation for the direct problem in the perturbed do-

main Q,: To find u, € H}p, (€) such that

bh(uh, ’Uh) = <g, ’Uh>FR, V’Uh € HéD;L(Qh)v (426)
where the sesquilinear form b" : Hjp, (Q5,) x HYp () — C is defined by

bh(uh, ’Uh) = Uu Vuh : V’Dh dy + ()\ + [IJ) J (V : uh)(V : ’l_)h) dy

Qh Qh
—wQJ uy, - Oy dy — (T up, vp)k. (4.27)
Qp

Similarly, we may follow the proof of Theorem 4.3.7 to show that the variational
problem (4.26) has a unique weak solution u, € H}p, () for any h > 0.

Since the variational problem (4.3.7) is well-posed, we introduce a nonlinear scat-
tering operator:

B 6Dh i uh|pR7

which maps the obstacle’s surface to the displacement of the wave field on I'g. Let
uy, and u be the solution of the direct problem in the domain €2, and €2, respectively.

Define the domain derivative of the scattering operator . on ¢D along the direction

D as
. Y(&Dh) — y(@D) . ’U,h|p — ’U,|F
(AT . = Rk TR
L' (0D;p) := }lllné h = hlur:10 - :
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For a given p € C*(0D), we extend its domain to {2 by requiring that p € C*(2) n
C(Q),p = 0on g, and y = &"(x) = x + hp(z) maps Q to Q. It is clear to
note that &" is a diffeomorphism from Q to Q, for sufficiently small h. Denote by
n"(y) : Q, — Q the inverse map of &".

Define @(x) = (4, iy, it3) 1= (u,0€")(x). Using the change of variable y = £"(x),

we have from straightforward calculations that
3
J (V’U,h : Vﬁh) dy = ZJ VﬂjJthJhV%)j det(Jgh) diL‘,
Qp j=1 Q

L (Vup)(V-v,)dy = L(va ) (VO 2 T ) det(Jen) da,

f uy, - v dy = f U - %det(Jgh)da:,
Qh Q

where ¥(z) = (01,0, U3) 1= (vj, 0 €")(x), J,n and Jen are the Jacobian matrices of
the transforms n" and &", respectively.

For a test function vy, in the domain €2y, it follows from the transform that © is a
test function in the domain 2. Therefore, the sesquilinear form b in (4.27) becomes

3
V' (u,v) = Z ;LL VitgJyn Jpn V0 det(Jen) dae + (A + 1) L(vfa ) (Vo s T
j=1

xdet(Jer) dx — wzj - vdet(Jgn) de — (T, v)r,,
Q
which gives an equivalent variational formulation of (4.26):
Vi(it,v) = {g,v)r,, YveH), ).

A simple calculation yields

b(i — w,v) = b(it,v) — (g, v)r, = b(w,v) — b"(&,v) = by + by + b,

where
3
b=y “J iy (I = JyJ T, det(Jgn)) Vo da, (4.28)
j=1 <9
by = (A + ,u)f (V-u)(V-0)—(Vu: JJh)(V'E : JJh,) det(Jgr) de, (4.29)
Q

b = aﬂf w-v (det(Jen) — 1) de. (4.30)
Q
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Here I is the identity matrix. Following the definitions of the Jacobian matrices, we
may easily verify that
det(Jen) = 1+ hV - p + O(h?),
Typ = Jgl o n" =1 —hJ,+ O(h?),

JopIndet(Jen) = T —h(Jp + Jy ) + (V- p)I + O(h?),

where the matrix J, = Vp.
Substituting the above estimates into (4.28)—(4.30), we obtain

3
by =) MJ Vii; (h(Jp + Jy ) = h(V - p)I + O(h?)) Vi, de,
j=1 Y9

by = (>\+u)J WMV -a)(Vo:J)) +h(V-0)(Va: J,)
— WV -p)(V-u)(V - 0)+ O(h?)dx,
b3=w2f w-v (hV-p+ O(h?)) de.

Hence we have

b (u ; -, v) = 31(p)(@, v) + g2(p) (%, ) + g3(p)(@, v) + O(h), (4.31)

gzz()\+u)J(V-&)(Vv:J;)Jr(V-v)(V'&:J;)—(V-p)(v-&)(v-v)dw,

ggszJ(V'p)iL-'ﬁdm.
Q

Theorem 4.4.1 Given p € C*(0D), the domain derivative of the scattering operator
S is S'(0D;p) = u|r,, where u' is the unique weak solution of the boundary value

problem:

-

pAu' + A+ p)VV -’ + w?u’ =0 in Q,
fu' =—(p-v)i,u on 0D, (4.32)

Bu' = Tu on I'g,
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and w is the solution of the variational problem (4.25) corresponding to the domain

Q.

Proof Given p € C*(0D), we extend its definition to the domain  as before. It
follows from the well-posedness of the variational problem (4.25) that ¢ — w in

H},(Q) as h — 0. Taking the limit h — 0 in (4.31) gives

b (131 i v) 0 (P) (W) + 0a(p)(w,0) + gs(P)(ww),  (4.33)

which shows that (@ — u)/h is convergent in H,(f2) as h — 0. Denote the limit by

u and rewrite (4.33) as
b(w,v) = g1(P)(u, v) + g2(p)(u, ) + g5(p) (u, v). (4.34)
First we compute g;(p)(u,v). Noting p = 0 on 0B and using the identity

Vu ((Jp+Jy) = (V-p)) Vo=V -[(p- Vu)Vi + (p- V0)Vu — (Vu - V0)p]
— (p-Vu)Av — (p - Vv)Au,

we obtain from the divergence theorem that
91 23: f (p-Vu)(v- Vo) + (p- Vi) (v - Vi) dy
j=1
—i—Z J (p-v)(Vu; - Vo;)dy
- Z p JQ(P - Vu;)Av; + (p - V) Au; da
j=1
- —MLD(P'VU)'(V'V@)+(P'V@)'(V'VU)

+ ,uLD(p -v)(Vu : Vo)dy

—,uj(p-Vu)-Ava(p'V'v)‘Audm.
Q

Noting
pAu+ (A +p)VV-u+w?u =0 in Q,
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we have from the integration by parts that

,LLL(}%V’U)-AUdﬂE = —(\+ p) L(p-V’U) (VV - u)dz — w? L(p-v'v)-uda:
~ O [ (Vv (- Volde + () | (V- w)e (b Vo) by
Q oD
—w2J (p-Vo) - - ude.
Q

Using the integration by parts again yields

,uL(p-V’u,) -Avdx = —MJQV(p-Vu) : Vode +MLD(p-Vu) (v -Vo)dy.

Let 71(x), To(x) be any two linearly independent unit tangent vectors on ¢D. Since

u=v = 0on dD, we have
a-,-lu]' = 872uj = &rlvj = 67-21)]' = 0.
Using the identities

Vu; = 710,45 + To0r,u; + VO, u; = VO, U,

Vv; = T10.,0; + T207,0; + VO, U; = VOLV;,
we have
(p- V) (v - Vuy) = (p-vd,v;)(v-viyu;) = (p-v)(00;0,u;),
which gives
f (p-Vo)- (v -Vu)—(p-v)(Vu:Vo)dy = 0.
oD
Noting v = 0 on 0D and
(V-p)(u-v)+(p- Vo) - u=V-((u-v)p)—(p-Vu)- v,

we obtain by the divergence theorem that

L(V-p)(u-@)+(p-w:)-udw= —J (p-Vu) - vdx.

Q
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Combining the above identities, we conclude that

91(P)(u,v) + g3(p)(u, v)

ZMLV(p-Vu) ; Vz‘;dw—()\Jru)L(V-u)V-(p-V@)dzc

—w? L(p -Vu) -vde + (A + p) LD(V ~u)(v- (p-Vo))dy. (4.35)

Next we compute gs(p)(u,v). It is easy to verify that

J(V~u)(V'v:J;)Jr(v-'v)(Vu:J;)d:czf(V~u)V-(p-V'v)da:
Q Q

— L(v ~u)(p- (V- (Vo)"))dx + L(V -v)V - (p-Vu)dz

- L(V B)p (V- (Va)T)) dz.

Using the integration by parts, we obtain
J (V-p)(V-u)(V -v)dx = —f p-V({(V-u)(V-v))dx
Q Q

—LD(V'U)(V-@)(V'p)dv

| (V0 (V- (Ve | (7w (V- (To))da

- | @w©oe-pa

Let 71 = (—13,0,v1) ", 79 = (0, —13,19) ", 73 = (=1, 11,0) . It follows from 7;-v = 0
that 7; are tangent vectors on 0D. Since v = 0 on dD, we have dr,v = 0, which

yields that

Vla$3vl = V3a:c1U1, V15z3U2 = V35z1?}27 Vlaazgvl = VQamUl’
e — _ ja
V10gyU3 = V303, V3, V105, V2 = Va0, Va, V10, V3 = U0y, Vs,

Van3U1 = 1/3(312711, I/Zaa:gv? = 1/35932?12, V25x3?)3 = V3912U3-

Hence we get

oD



95

Combining the above identities gives

() (,0) = () [ (V-w)V-(p- Vo) da+ (A4 ) | V-0 V)V 0)da

Ot [ (Vo (- Vo) (4:36)

oD

Noting (4.34), adding (4.35) and (4.36), we obtain

b(u,v) = ,uLV(p-Vu) : Voda+(A+u) LV-(p-Vu)(V"D) dx—w? L(p-Vu)-T) de.

Define v’ = w — p - Vu. It is clear to note that p- Vu = 0 on I'g since p = 0 on I'y.
Hence, we have

b(u',v) =0, Yve Hs,(Q), (4.37)

which shows that ' is the weak solution of the boundary value problem (4.32). To

!/

verify the boundary condition of w' on 0D, we recall the definition of w' and have

from @ = w = 0 on dD that
u—u
u’ —}lllﬂ%T—p Vu=—-p-Vu ondD.
Noting u = 0 on 0D, we have

p-Vu=(p-v)i,u, (4.38)

which completes the proof by combining (4.37) and (4.38). u

4.4.2 Reconstruction Method
Consider a parametric equation for the surface:

D ={r(0,¢) = (r(0,0).2(0,¢),5(0,¢))", 0 & (0,7), 0 (0,2m)},

where r; are biperiodic functions of (6, ¢) and have the Fourier series expansions:

= i Zn: az,ReY, ™" (0, ) + b ImY, " (0, ),

n=0m=—
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where Y™ are the spherical harmonics of order n. It suffices to determine aj;, b7, in

order to reconstruct the surface. In practice, a cut-off approximation is needed:

rin (0 Z Z aj,ReY, ™ (0, ¢) + b7 ImY,;™(0, ).

n=0m=—n

Denote by Dy the approximated obstacle with boundary ¢Dy, which has the

parametric equation

aDN = {TN<97 90) = (7”17]\[(«9, 90)7 TQ,N(& 30)7 T3,N(Q7 QO))T? 0 e (07 7T>7 ¢ € (07 27T)}

Let QN = BR\DN and

a; = (a%?... ,a%,--- 7a§\7N)7 b (b?o,-- 75%7... 75%\/)7
where n =0,1,..., N, m = —n, ..., n. Denote the vector of Fourier coefficients
C = (a1,b1,a2,b2,a3,b3)" = (c1,0a,...,Coni1y2) | € RO(NV+1)
and a vector of scattering data
U = (u(xy),...,u(zg)) e C¥K,
where @y, € ',k = 1,..., K. Then the inverse problem can be formulated to solve

an approximate nonlinear equation:

where the operator .% maps a vector in REV+D? into a vector in C3K.

Theorem 4.4.2 Let uy be the solution of (4.25) corresponding to the obstacle Dy .

The operator % is differentiable and its derivatives are

0.74(C)

5 =ui(x), i=1,....,6(N+1)?* k=1,...,K,
C;

where w; is the unique weak solution of the boundary value problem

-

pAu;+ (A + p)VV ) +w?uf =0 in Qy,

| Ui = —@iduyun on 0Dy. (4.39)

Bu, = Tu, on I'g.
\
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Here vy = (Vn1, Un2, I/Ng,)T 18 the unit normal vector on 0Dy and

-

vniReY,™(0,0), i=n*+n+m+1,
v ImY™(0,), i=(N+1)2?+n>+n+m+1,

vnaReY,™(0, ¢), 20N +1)*+n*+n+m+1,

4%(0,¢) = 1
BAIN+1)?*+n*+n+m+1,

(
(
(
(

vnsReY,™ (6, p), 4N +1)22+n>+n+m+1,

l
vnImY ™ (0, ), i
1
l

VNglenm(e, QO),

\

5(N+1)2+n>+n+m+1,

wheren =0,1,..., NNm = —n,...,n.

Proof Fixie {l,...,6(N +1)* and ke {1,...,K}, and let {ey,...,esn+1)2} be

(N+1)2

the set of natural basis vectors in R6 . By definition, we have

——— = lim .
oc; h—0 h

A direct application of Theorem 4.4.1 shows that the above limit exists and the limit

is the unique weak solution of the boundary value problem (4.39). [ |

Consider the objective function
1, , 1S )
fC) =5I7(C) ~U|" =5 D F(C) = u(ay) .

2 k=1

The inverse problem can be formulated as the minimization problem:
win f(C), Ce RONV+1?

To apply the descend method, we compute the gradient of the objective function:

of(C) 1) )T.

dey aC6(N+1)2

vio) - (

We have from Theorem 4.4.2 that

of(C)
@cz-

= Re ) uj(zy) - (Fi(C) — ().
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We assume that the scattering data U is available over a range of frequencies w e
[Winin, Wmax ], Which may be divided into wyi, = wp < wy <+ < W5 = Wpax. We NOW

propose an algorithm to reconstruct the Fourier coefficients ¢;,i = 1,...,6(N + 1)%

Algorithm: Frequency continuation algorithm for surface reconstruction.

1. Initialization: take an initial guess co = —cy = 1.44472Ry and c3(ni1y242 =
C3(N+1)24+4 = 1.44472Ry, cyn+1)243 = 2.0467Ry and ¢; = 0 otherwise. The initial

guess is a ball with radius Ry under the spherical harmonic functions;

2. First approximation: begin with wy, let kg = [wp], seek an approximation to

the functions 7 n:

Tiko = 2 > alReY (0, ¢) + b7 ImY; (0, ¢).

n=0m=—n

Denote C,(i)) = (c1,¢5 -+, Co(ko+1)2) | and consider the iteration:

C}(€1+1) _ C;(fo) _ va(cgo)), l=1,...,L, (4.40)

0

where 7 > 0 and L > 0 are the step size and the number of iterations for every

fixed frequency, respectively.

3. Continuation: increase to wy, let ky = [w;], repeat Step 2 with the previous

approximation to 7; 5 as the starting point. More precisely, approximate r; x

by

Tk = Z D alReYM (0, ¢) + b7 ImY; (6, ¢),

n=0m=—n

and determine the coefficients ¢;,7 = 1,...,6(k; + 1)® by using the descent

method starting from the previous result.

4. Tteration: repeat Step 3 until a prescribed highest frequency w; is reached.
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4.5 Numerical Experiments

We present two examples to show the effectiveness of the proposed method. The
scattering data is obtained from solving the direct problem by using the finite element
method with the perfectly matched layer (PML) technique, which is implemented via
FreeFem++ [50]. The research on the PML technique has undergone a tremendous
development since Berenger proposed a PML for solving the Maxwell equations [20].
The basic idea of the PML technique is to surround the domain of interest by a layer
of finite thickness fictitious material which absorbs all the waves coming from inside
the computational domain. When the waves reach the outer boundary of the PML
region, their values are so small that the homogeneous Dirichlet boundary conditions
can be imposed. However, the PML technique is much less studied for the elastic wave
scattering problems, especially for the rigorous convergence analysis [22, 30, 60]. In
contrast, the transparent boundary condition (TBC) is mathematically exact. It helps
to reduce the scattering problem equivalently from an open domain into a boundary
value problem in a bounded domain, which makes the analysis feasible. The finite
element solution is interpolated uniformly on I'g. To test the stability, we add noise
to the data:

uw’(xy) = u(xy)(1 +6rand), k=1,..., K,

where rand are uniformly distributed random numbers in [—1, 1] and § is the noise
level, x; are the data points. In our experiments, we pick 100 uniformly distributed
points x; on I'g, i.e., K = 100. We take A = 2,4 = 1, R = 1. The radius of the
initial Ry = 0.5. The noise level § = 5%. The step size in (4.40) is 7 = 0.005/k; where
k; = [w;]. The incident field is taken as a plane compressional wave.

Example 1. Consider a bean-shaped obstacle:

T(@,g@) = (7’1(9, 90)7T2(9>90)7r3<9790))T7 NS [0?7(]7 Y e [0’27]7
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where

(6, ) = 0.75 ((1 — 0.05 cos(m cos ) sin 0 cos ©)"/? |

r2(6, ) = 0.75 ((1 — 0.005 cos(m cos #)) sin @'sin ¢ + 0.35 cos (7 cos 8))"/? |

r3(0, @) = 0.75cos 6.

The exact surface is plotted in Figure 4.1(a). This obstacle is non-convex and is
usually difficult to reconstruct the concave part of the obstacle. The obstacle is
illuminated by the compressional wave sent from a single direction d = (0,1,0)"; the
frequency ranges from wpi, = 1 t0 wmax = 5 with increment 1 at each continuation
step, i.e., w; =1+ 1,7 = 0,...,4; for any fixed frequency, repeat L = 100 times with
previous result as starting points. The step size for the decent method is 0.005/w;.
The number of recovered coefficients is 6(w; + 2)? for corresponding frequency. Figure
4.1(b) shows the initial guess which is the ball with radius Ry = 0.5; Figure 4.1(c)
shows the final reconstructed surface; Figures 4.1(d)—(f) show the cross section of the
exact surface along the plane x; = 0,29 = 0,23 = 0, respectively; Figures 4.1(g)—(i)
show the corresponding cross section for the reconstructed surface along the plane
x1 = 0,29 = 0,23 = 0, respectively. As is seen, the algorithm effectively reconstructs
the bean-shaped obstacle.

Example 2. Consider a cushion-shaped obstacle:

r(0,p) = (0, ¢)(sin(0) cos(¢), sin(#) sin(y), cos(9)) ", 6 € [0,7], ¢ € [0,27],

where

r(0,¢) = (0.75 + 0.45(cos(2p) — 1)(cos(46) — 1))/2 .

Figure 4.2(a) shows the exact surface. This example is much more complex than the
bean-shaped obstacle due to its multiple concave parts. Multiple incident directions
are needed in order to obtain a good result. In this example, the obstacle is illuminated
by the compressional wave from 6 directions, which are the unit vectors pointing to
the origin from the face centers of the cube. The multiple frequencies are the same

as the first example, i.e., the frequency ranges from wyy, = 1 to wpax = 5 with
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Figure 4.1. Example 1: A bean-shaped obstacle. (a) the exac-
t surface; (b) the initial guess; (c) the reconstructed surface; (d)—
(f) the corresponding cross section of the exact surface along plane
x1 = 0,29 = 0,23 = 0, respectively; (g)—(i) the corresponding cross
section of the reconstructed surface along plane x; = 0,29 = 0,23 = 0,
respectively.

w; =1i+1,2=0,...,4. For each fixed frequency and incident direction, repeat L = 50
times with previous result as starting points. The step size for the decent method is
0.005/w; and number of recovered coefficients is 6(w; +2)? for corresponding frequency.
Figure 4.2(b) shows the initial guess ball with radius Ry = 0.5; Figure 4.2(c) shows

the final reconstructed surface; Figure 4.2(d)—(f) show the cross section of the exact
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surface along the plane x; = 0,25 = 0,23 = 0, respectively; while Figure 4.2(g)—(i)
show the corresponding cross section for the reconstructed surface along the plane
r1 = 0,29 = 0,23 = 0, respectively. It is clear to note that the algorithm can also

reconstruct effectively the more complex cushion-shaped obstacle.

Figure 4.2. Example 2: A cushion-shaped obstacle. (a) the exact
surface; (b) the initial guess; (c) the reconstructed surface; (d)—(f)
the corresponding cross section of the exact surface along the plane
x1 = 0,29 = 0,23 = 0, respectively; (d)—(f) the corresponding cross
section of the reconstructed surface along the plane z; = 0,25 =
0,z3 = 0, respectively.
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4.6 Conclusion

In this chapter, we study the direct and inverse obstacle scattering problems for
elastic waves in three dimensions. An exact transparent boundary condition is de-
veloped. The direct problem is shown to have a unique weak solution. The domain
derivative is derived for the total displacement. A frequency continuation method is
proposed to solve the inverse problem. Numerical examples are presented to demon-
strate the effectiveness of the proposed method. The results show that the method is

stable and accurate to reconstruct surfaces with noise.

4.7 Appendix
4.7.1 Spherical Harmonics

The spherical coordinates (r,0,¢) are related to the Cartesian coordinates & =
(1,9, x3) by 21 = rsinf cosp, x9 = rsinfsin p, 3 = rcosf. The local orthonormal

basis is

e, = (sinf cos p,sin @ sin p, cos §),
ey = (cosf cos p, cos O sin @, —sin b)),

€p = (_ sin ¥, COS @, 0)7

where 6 and ¢ are the Euler angles. Note that e, is also the unit outward normal
vector on I'p.
Let {Y"(0,¢) :n =0,1,2,...,m = —n,...,n} be the orthonormal sequence of

spherical harmonics of order n on the unit sphere. Define rescaled spherical harmonics

1
X(0,0) = =Y"(6, ).
w(09) = BY."(0,)
It can be shown that {X]"(0,¢) : n = 0,1,...,m = —n,...,n} form a complete

orthonormal system in L?(I'g), which is the space of square integrable functions on

Tk
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For a smooth scalar function u(R, 6, @) defined on I'g, let
Vr,u = Ogu ey + (sin 9)_1é‘¢u e,
be the tangential gradient on I'g. The surface vector curl is defined by
curlp,u = Vp u x e,.

Denote by divr, and curly,, the surface divergence and the surface scalar curl, respec-
tively. For a smooth vector function u tangential to I'g, it can be represented by its

coordinates in the local orthonormal basis:
U = Ug€y + Uy€,,

where
Ug = U - €y, Up = U - €.
The surface divergence and the surface scalar curl can be defined as
divp,u = (sin8) ™" (0(ug sin6) + d,u,,)
curlp,u = (sin ) ™" (Op(uy sin 0) — O, uy) .

Define a sequence of vector spherical harmonics:

1

n

T:LrL(ev @) = VFRXVTLn(ea 90)7

=
+
=

Vi0,0) = T30, ) x e,
W0, ) = X, (0, )er,

n

where n = 0,1,...,m = —n,...,n. Using the orthogonality of the vector spherical

harmonics, we can easily show that

L {Tr, v W") :n=0,1,2,...,m = —n,...,n} form a complete orthonormal

system in L*(I'g) = L?(T'r)%;

2. {(T7",v™) - n =0,1,2,...,m = —n,...,n} form a complete orthonormal

system in L}(I'g) = {w e L*(T'g), w - e, = 0}.
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4.7.2 Functional Spaces

Denote by L?(€2) the square integrable functions on Q. Let L*(Q) = L%(Q)3 be

equipped with the inner product and norm:
(o) = | wevde, fulg - (ww
Q
Denote by H'(Q) the standard Sobolev space with the norm given by

[l ) = (L [u()[* + [Vu(z)[? dw) " :

Let H},(Q) = HXp ()3, where H},(Q) := {u e HY(Q) : w = 0 on 0D}. Introduce

the Sobolev space
H(curl,Q) = {ue L*(Q),V x ue L*(Q)},
which is equipped with the norm
) ) 1/2
[l sy = ([l + IV < wldag) -

Denote by H*(I'g) the standard trace functional space which is equipped with the

norm

|l

o 1/2
He(Tg) = (2 Z (1+n(n+1))° \um2) ,
where
o0 n
u(R, 0, ) 2 Z " X™(0
Let H°(T'g) = H*(T'g)? which is equipped with the normal

0 n 1/2
|l fewg = (Z Z (1+n(n+1))° IUS|2> )
n=0m=

m __ m m m
where w" = (ufl,, ul},, uj) and

0 n
R 97 SD Z Z u1n + u2nvm(0 ) + u?me(e )

n=0m=—n
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It can be verified that H*(T'g) is the dual space of H*(I'g) with respect to the inner

product

<U, ’U>FR = J

a0 n
_ m =m m =m m =m
- Z Z U1 U1n + UgpVap, + U3pVsp;
FR n=0m=

where
o0 n
U(R7 07 (p) = Z Z me + UQan(e ) + USnWm(e )
Introduce three tangential trace spaces:
H;(Tr) = {ue H*(I'g), u-e, =0},
H'"2(curl, Tg) = {u e HY*(Ty), curlp,u e HY2(T'y)},
H'"2(div,Tg) = {ue H, "*(Tg), divp,ue H *(Tp)}.

For any tangential field w € H;(I'g), it can be represented in the series expansion

u(R,@,g)):i i uln T (0, ) + us VI(6, o).

Using the series coefficients, the norm of the space H;(I'g) can be characterized by

0 n
[l en = >, 25 (L n(n+ 1)) (Jufnf* + us, )

n=0m=—n

the norm of the space H~"?(curl, ') can be characterized by

‘um’Q +4/1 +n(n+ 1)|us %

0 n

HIU’HI-I—l/2 1,0 Z Z
(curl,T'R) o Sl /1+n

the norm of the space H~"?(div,I's) can be characterized by

0
1
(PR Z Z V64 n(n+ D * + s |-

L+n(n+1)

3

Given a vector field u on I'g, denote by

ur, = —e, X (e, x u)

the tangential component of w on I'. Define the inner product in C3:
(u,v) = v*u, Yu,veC’

where v* is the conjugate transpose of v.
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4.7.3 TBC for Potential Functions

It follows from the Helmholtz decomposition (4.7) that any solution of (4.6) can

be written as

v=Vo+Vxp, V=0,

where the scalar potential function ¢ satisfies (4.8) and (4.9):

A+ K20 =0 in R3\D,
’ \ (4.41)
Or — ikpg = o(r~1) as r — oo,
and the vector potential function 9 satisfies (4.10) and (4.11):
V x (V x) — k2 =0 in R\ D,
( ) \ (4.42)

(V x 1) x & —ikgp = o(r— 1) as r — oo,
where r = |x| and & = x/r.

In this section, we introduce the TBC for the scalar potential function ¢ and the
vector potential function 4, respectively. The TBCs help to reduce (4.41) and (4.42)
equivalently from the open domain R*\D into the bounded domain €.

In the exterior domain R*\Bg, the solution ¢ of (4.41) has the following Fourier
expansion in the spherical coordinates:

(1,0, 0) =Z Z :(1) )qsmxm( 0, 0), (4.43)

where A is the spherical Hankel function of the first kind with order n and the

Fourier coefficient

o= | (R, 0,0) X0, p)dy.

I'r
We define the boundary operator .7; such that

(Z16)(R,0,¢) = 2 Z Za(RpR)OT X (0, ), (4.44)

where
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satisfies (cf. [82, Theorem 2.6.1])
—(n+1) <Rez,(t) < -1, 0<Imz,(t) <t (4.45)

Evaluating the derivative of (4.43) with respect to r at 7 = R and using (4.44), we

get the transparent boundary condition for the scalar potential function ¢:
orp = ¢ on I'p. (4.46)
The following result can be easily shown from (4.44)—(4.45).

Lemma 4.7.1 The operator 7 is bounded from HY*(I'r) to H=Y/?(I'g). Moreover,

it satisfies
Re( Ziu, uyr, <0, Im{Fu,u)r, =0, Yue H*Tg).
If Re{ A u, uyr, = 0 or Im{ Au, uyr, =0, then u =0 on I'g.

Next is to derive the TBC for the vector potential function 9. Define an auxiliary

function ¢ = (irs) "'V x 1. We have from (4.42) that
Vx—ikgp =0, Vxep+iky =0, (4.47)

which are Maxwell’s equations. Hence ¢ and 1 plays the role of the electric field and
the magnetic field, respectively.

Introduce the vector wave functions

o = x:cg)/isr "0, 0)),
M (r,0,0) = V x (@hn (k1) X3'(0, ) (4.48)

N3 (r,0,¢) = (k) 'V x M (r,0, ¢),

which are the radiation solutions of (4.47) in R*\{0} (cf. [80, Theorem 9.16]):
V x M (r,0,0) — ik N (r,0,0) =0, VYV x N"(r0,0)+ ik M, (r,0,¢) = 0.
Moreover, it can be verified from (4.48) that they satisfy

M™ = hV) (k) Ve, X™ % e, (4.49)
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and
+1 / 1
N = YD Gy erh® (e + O 0w (4.50)
1KgT 1RgT
In the domain R3\ Bg, the solution of 9 in (4.47) can be written in the series
0 n
Y=, >, arNy+BIMY, (4.51)
n=0m=—n

which is uniformly convergent on any compact subsets in R*\Bg. Correspondingly,
the solution of ¢ in (4.47) is given by
o0 n
@ =(ir) 'V xp= > Y BINT — M) (4.52)
n=0m=—n

It follows from (4.49)—(4.50) that

—e, x (e, x M™) = —/n(n + 1)hD (k) V™,

_ )
+1 :
e, x (e x N7 = YD 0y b () T

and

e, x M™ = +/n(n + 1) (kgr)T™,
(

+1 ,
e, x N = —n(n )(hnl)(/isT) + /fsrhg) (ksr)) V.
iker

Therefore, by (4.51), the tangential component of ¢ on ' is

N n(n+1) : R
’l/)FR - Z _Z W(hnl)(lisR> + KSRhS) (l{SR»Oén Tn

Similarly, by (4.52), the tangential trace of ¢ on I'g is

o0 n
@xe =Y > /nln+ D (kR Ty

n=0m=—n

/nln+ 1 ,
- %(hgﬂ(ﬁsm + ko RhY (k,R))BmV™,
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Given any tangential component of the electric field on 'y with the expression

a0 n
= Z Z ul, It 4+ ug Vo

n=0m=—

where

ugr:z = f U’(Ra (9’ @) ’ Tnm(ea Sp)d'% U;’; = J ’LL(R, 97 90) ’ ‘_/Zl<9’ (,O)d")/,
FR FR
we define

o0 n .
iksR 1+ z,(ksR)
y — - > qmrm P m‘/m_ 4.53
2 Z Z_ 1+ 2 (roR) M0 + R 2V (4.53)

Using (4.53), we obtain the TBC for the vector potential 1):
(V x ) x e, =ikgTptpp, on g (4.54)
The following result can also be easily shown from (4.45) and (4.53)

Lemma 4.7.2 The operator J is bounded from HY?(curl,I'r) to H™Y?(div,T'z).

Moreover, it satisfies
Re( Zou, wdr, =0, VYue HY*(curl, T'y).
If Re{. u, u)r,, =0, then u =0 on I'p.

apt

4.7.4 Fourier Coefficients
Recalling the Helmholtz decomposition (4.7):
v=Vo+Vxvy, V-¢=0,

we derive the mutual representations of the Fourier coefficients between v and (¢, ).

First we have from (4.43) that

0 n (1)
$(r,0,0) = > ; P )) PTXT(0, ). (4.55)

n=0m=—



Substituting (4.49)—(4.50) into (4.51) yields

oV +1) : .
P(r, 0, ) Z Z e h WD (kr) + kerh Y (kgr))am T
n=0m=—n S
1
+/n(n+ DD (k) gmV™ + %hw(ﬁsﬂagwgﬁ

Given 9 on I'g, it has the Fourier expansion:
0 n
»(R,6,¢) = Z 2 VLT (0, 0) + U5 V0, 0) + VR W0, ),

where the Fourier coefficients

Uiy = ) Y(R,0,0) T, (0, 0)dv,
Yy = . Y(R.0,0) -V, (0, 0)dy,

Evaluating (4.56) at » = R and then comparing it with (4.57), we get

m ikgR o m 1 o
a/n/ = mn? n = n*
n(n + 1)) (k,R) ’ n(n + DAY (keR) ?

Plugging (4.58) back into (4.56) gives
2 & (RN WP (ker) + rerhSY (ko)
P(r.0.0) = (3 (Mmnmel ) gy
;T;n r Vi + DD (kR) )

WY (k) R h%l)(lﬁ T)
e (S gy () (55 ) g
(hELl)(mSR) ? r) \nP(wR))

In the spherical coordinates, we have from (4.55) and (4.59) that

1
Vo = ard) €, + ;VFRQS
0 n (1) (1)
-3 (e B)) e, —h’gl)(“p” SV XD
hy (kpR) rhy’ (kpR)
(thg)’(/{pr)>¢ _— («/ n+1h
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(4.56)

(4.57)

(4.58)

(4.59)
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and
0 n
Vxap= > Y Iy +1Ip + 15,
n=0m=—n
where
- R hg)(/fsr) + /ﬁsrhél)/(/fsr) R
Iln =V x — ) 3nTn
r vn(n+ 1)hy’ (ksR)
Rh%l)(/fsr) o n(n+1)\ crm
= 1) Ke = — 5 3nvn )
v/ + 1)hy’ (ksR) r
hg)(/ﬁ r)
I =V x —— |V
i (hgll)(’{sR) i
hg)(&sr) + /isrhgl)/(ms «/ (n+1 h( ) (KsT)
= 0 2n n an n7
rhy’ (ksR) rh{ ( sR)
RY [ h%) (ks
I3 =V x <—> # V3, W
r hn (KSR)

R«/ n+1h

r2h(1)(/<;sR)

an

Combining the above equations, we obtain

v(r,0,0) =Vo(r,0,0) +V x (r,0, )

o N [l DB pr) e (B (k) + b (5r) e
n=0m=—n h (KPR) T’hn (HSR)
p{D + 1)AY (kg
n /{p(l) (K’PT) qbzz + \/TL(T(D) (H T) wgzl W
hn (IipR) rhy, (HSR>

an Vo, (4.60)

n

which gives

v(R,H,@)ZZ Z %(\/Téﬁ + (14 2n(ks ))WL)T?

(4.61)



On the other hand, v has the Fourier expansion:
o0 n
R 97 90 = Z Z ?;LLTZZ + UQn + /U?me'

Comparing (4.61) with (4.62), we obtain

-

n(n+1 1+ 2p(KsR)) .0
o = VIOED gy Lt AT
K2R
o = s m’
2n n(n+ 1)¢3n
Zn(kp R n(n+1
’ngl = (Rp )gbzl + ( )wZna
\
and
( R(1 + z, (ks R Ry/n(n+1
g = B S0) o BOOED)
Rz, (kpR) . n(n+1)
\ ¢2n A L Uin — A U3y
. A/nm+1)
V= Tar
where

An = 2o (kpR) (1 + 2z (ks R)) — n(n + 1).

Noting (4.45), we have from a simple calculation that

ImA,, = Rez,(kpR)Imz, (ksR) + (1 + Rez,(ksR))Imz, (k,R) < 0,

which implies that A,, # 0 forn =0,1,....
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(4.62)

(4.63)

(4.64)
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5. THE INVERSE ELASTIC SURFACE SCATTERING
PROBLEM

5.1 Introduction

In this chapter we focus on the inverse elastic scattering problem in periodic
structures. The direct elastic scattering problem has been studied by many researchers
[1,2,41,43]. The uniqueness result of the inverse problem can be found in [25]. The
numerical study can be found in [42] and [54] for the inverse problem by using an
optimization method and the factorization method, respectively.

It is known that there is a resolution limit to the sharpness of the details which can
be observed from conventional far-field optical microscopy, one half the wavelength,
referred to as the Rayleigh criterion or the diffraction limit [39]. The loss of resolution
is mainly due to the ignorance of the evanescent wave components. Near-field optical
imaging is an effective approach to obtain images with subwavelength resolution. The
inverse scattering problems via the near-field imaging for acoustic and electromagnetic
waves have been undergoing extensive studies for impenetrable infinite rough surfaces
[12], penetrable infinite rough surfaces [14], two- and three-dimensional diffraction
gratings [9,13,31,57], bounded obstacles [71], and interior cavities [70]. The two- and
three-dimensional inverse elastic surface scattering problems have been investigated
by using near-field data in [72-74]. However, there exits some difficulties of near-field
optical imaging in practice, for example, it requires a sophisticated control of the
probe when scanning samples to measure the near-field data. Recently, a rigorous
mathematical model and an efficient numerical method are proposed in [17] to over the
aforementioned obstacle in near-field imaging. The novel idea is to put a rectangular
slab of larger index of refraction above the surfaces and allow more propagating wave

modes to be able to propagate to the far-field regime. This work is devoted to the
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inverse elastic surface scattering problem with far-field data. We point out that
this is a nontrivial extension of the method from solving the inverse acoustic surface
scattering problem to solving the inverse elastic surface scattering problem, because
the latter involves the more complicated elastic wave equation due to the coexistence
of compressional and shear waves propagating at different speeds.

In this chapter, we develop a rigorous mathematical model and an efficient nu-
merical method for the inverse elastic surface scattering with far-field data. The
scattering surface is assumed to be a small and smooth perturbation of an elastically
rigid plane. A rectangular slab of homogeneous and isotropic elastic medium is placed
above the scattering surface. The slab has a larger mass density than that of the free
space, and has a wavelength comparable thickness. The measurement can be took
on the top face of the slab, which is in the far-field regime. The method makes use
of the Helmholtz decomposition to consider two coupled Helmholtz equations instead
of the elastic wave equation. It consists of two steps. The first step is to do the far-
to-near (FtN) field data conversion, which requires to solve a Cauchy problem of the
Helmholtz equation in the slab. Using the Fourier analysis, we compute the analytic
solution and find a formula connecting the wave fields on the top and bottom faces
of the slab: a larger mass density of the slab allows more propagating wave modes
to be converted stably from the far-field regime to the near-field regime. The second
step is to solve an inverse surface scattering problem in the near-field zone by using
the data obtained from the first step. Combining the Fourier analysis, we use the
transformed field expansions to find an analytic solution for the direct problem. We
refer to [23,69,78,84] for the transformed field expansion and related boundary per-
turbation methods for solving direct surface scattering problems. A general account
of theory on scattering by random rough surfaces can be found in [85]. Using the
closed form of the analytic solution, we deduce expressions for the leading and linear
terms of the power series solution. Dropping all higher order terms, we linearize the
inverse problem and obtain explicit reconstruction formulas for the surface function.

Moreover, a nonlinear correction scheme is also developed to improve the reconstruc-
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tion. The method requires only a single illumination and is implemented efficiently
by the fast Fourier transform (FFT). Numerical examples show it is effective and
robust to reconstruct the scattering surfaces with subwavelength resolution.

The remaining part of the chapter is organized as follows. The mathematical mod-
el problem is formulated in Section 5.2. Sections 5.3 and 5.4 introduce the Helmholtz
decomposition and the transparent boundary condition, respectively. In Section 5.5,
we show how to convert the measured elastic wave data into the scattering data of
the scalar potentials introduced from the Helmholtz decomposition. In Section 5.6,
a reduced problem is modeled in the slab and the analytic solution is obtained to
accomplish the FtN field data conversion. In Section 5.7, the transformed field ex-
pansion and corresponding recursive boundary value problems are presented. We give
the reconstruction formulas for the inverse problem in Section 5.8. Numerical exper-
iments are presented in Section 5.9 to demonstrate the effectiveness of the proposed

method. Finally, we conclude some general remarks in Section 5.10.

5.2 Model Problem

Let us first introduce the problem geometry, which is shown in Figure 5.1. Con-
sider an elastically rigid surface I'y = {& = (z,y) e R* : y = f(x), 0 < z < A}, where
f is a periodic Lipschitz continuous function with period A. The scattering surface

function f is assumed to have the form

f(x) = eg(x), (5.1)

where € > 0 is a sufficiently small constant and is called the surface deformation
parameter, g is the surface profile function which is also periodic with the period
A. Hence the surface I'y is a small perturbation of the planar surface I'y = {x €
R? :y = 0,0 < 2 < A}. Let a rectangular slab of homogeneous and isotropic
elastic medium be placed above the scattering surface. The bottom face of the slab
isTy ={xeR*:y=>,0<z < A}, where b > maxye) f(z) is a constant and

stands for the separation distance between the scattering surface and the slab. The
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free space U

elastic slab R

Figure 5.1. The problem geometry.

top face of the slabis Ty, = {x € R? : y = a, 0 < # < A}, where a > b is a positive
constant and stands for the measurement distance. Denote by €2 the bounded domain
between I'y and Ty, ie., Q ={x e R?: f <y < b, 0 <x < A}. Let R be the domain
of the slab, i.e., R={x e R?*:b <y <a, 0 <z < A}. Finally, denote by U the open
domain above [y, ie., U={xeR*:y>a,0 <z <A}

In this chapter, we assume for simplicity that the Lamé parameters u, A are con-

stants satisfying p > 0, A + p > 0; the mass density p is a piecewise constant, i.e.,

po, x*xe€uUU,
plx) =
P1, il}'ER,

where py and p; are the density of the free space and the elastic slab, respectively,

and they satisty p; > pp > 0. Define

1/2 1/2
K1 = W Po Ko = W @
A+ 2 ’ o ’

which are known as the compressional wavenumber and the shear wavenumber in the

free space, respectively. We comment that the method also works for the case where
i, A take different values in the free space and the elastic slab. Let \; = 27/k;,7 = 1,2
be the corresponding wavelength of the compressional and shear waves.

Let 4™ be a time-harmonic plane wave which is incident on the slab from above.

The incident plane wave can be taken as either the compressional wave u™™*(x) =

inc _ dleingw-d

de™1® 4 or the shear wave u , where d = (sinf, —cos)" is the unit
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incident direction vector, § € (—m/2,7/2) is the incident angle, and d*= = (cos 6, sin )
is an orthonormal vector to d. In this work, we use the compressional incident plane
wave as an example to present the results, which are similar and can be obtained with
obvious modifications for the shear incident plane wave. Practically, the simplest
configuration is the normal incidence for experiments, i.e., # = 0. Hence we focus on
the normal incidence since our method requires only a single illumination. Under the

normal incidence, the incident field reduces to
u™(xz) = (0, 1) e Y, (5.2)
It can be verified that the incident field u™¢ satisfies the elastic wave equation:
pAU + (A + p)VV - u™ + w?ppu™ =0 in U. (5.3)

A transmission problem can be formulated due to the interaction between the
elastic wave and the interfaces I', and I'y. Let w, v, w be the displacements of the total

field in the domains U, R, €2, respectively. They satisfy the elastic wave equations:

pAu + (A + p)VV - u + w?pou =0 in U, (5.4a)
pAv + (A + p)VV-v +w?pv=0 in R, (5.4b)
pAw + A+ p)VV - w + w?pow = 0 in Q. (5.4¢)

In addition, the total fields are connected by the continuity conditions:

u=v, pdu+A+p)0,1)'V-u=pdv+A+up)(0,1)'V-v onT, (55a)

v=w, pdw+A+up)0,1)'V-v=pdw+\+p)0,1)'V-w onTy (5.5b)
Since I'; is elastically rigid, we have the homogeneous Dirichlet boundary condition:
w=0 only. (5.6)

In the open domain U, the total field u consists of the incident field ™™ and the

diffracted field ud:

u=u" + u, (5.7)
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d

where u“ is required to satisfy the bounded outgoing wave condition.

Throughout, we assume that the measurement distance a = O(\;) and the sepa-
ration distance b « A;, i.e., a is comparable with the wavelength and I', is put in the
far-field region; b is much smaller than the wavelength and I', is put in the near-field
region. Now we are ready to formulate the inverse problem: Given the incident field
u'"°, the inverse problem is to determine the scattering surface f from the far-field

measurement of the total field w on T',.

5.3 The Helmholtz Decomposition

In this section, we introduce the Helmholtz decomposition for the total fields
by using scalar potential functions, and deduce the continuity conditions for these
scalar fields. Let w = (up,u2)" and u be a vector and a scalar function, respectively.

Introduce the scalar and vector curl operators:
curlu = d,us — Oyuy, curlu = (0 u, —0,u)" .
For any solution w = (uy,us)" of (5.4a), the Helmholtz decomposition reads
u = V¢, + curlg,, (5.8)
where ¢;,j = 1,2 are two scalar potential functions. Explicitly, we have
U = Opr + Oyp2, Uz = Oyp1 — Do (5.9)
Substituting (5.8) into (5.4a) yields
V (A +21)Agy + w?podr) + curl (uAgs + w?poda) = 0,
which is fulfilled if ¢; satisfies
A¢; + ki¢; =0 inU. (5.10)

Combining (5.10) and (5.8), we obtain



120

which give

@Cul + é’yuQ = *I{%le, &}uz — é’yul = K%qbg. (511)

For any solution v = (v, v2) " of (5.4b), we introduce the Helmholtz decomposition

by using scalar functions ;:
v = V1 + curlyy, (5.12)
which gives explicitly that
U1 = Opn + Oytha, Vo = Oyth1 — Opba. (5.13)
Plugging (5.12) into (5.4b), we may have
A +mip; =0 in R, (5.14)

where 7; and 7, are the compressional and shear wavenumbers in the elastic slab,

respectively, and are given by

o 1/2 n 1/2
frd = i . 5.].5
m w<A+2,u> , T2 w(,u) ( )

Combing (5.14) and (5.12), we get

1 1
Yy = -V v, = —curly,
m 2
which give
axvl + ay'U2 = —77%??1, axv2 - ayvl = 773¢2 (516)

Since I', is a horizontal line, it is easy to verify from the continuity condition
(5.5a) that

U; = vy, aij = aij. (517)

Using (5.11), (5.16)—(5.17), we deduce the first continuity condition for the scalar

potentials on I',:

K0; = ;. (5.18)
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It follows from (5.9), (5.13), and (5.17) that we deduce the second continuity condition

for the scalar potentials on T',:

aygbl - a:z:¢2 = 5y¢1 - a:c¢27 ay¢2 + a:z:¢1 = yw2 + ax¢1 (519)

Similarly, for any solution w = (w;,wy)" of (5.4c), the Helmholtz decomposition
is
w = Vi + curly,. (5.20)

Substituting (5.20) into (5.4c), we may get
Ap; + /f?goj =0 in Q.

Noting (5.5b), we may repeat the same steps and obtain the continuity conditions on
IS

Ny = K (5.21)
and

5y¢1 — Oxtpy = 6yg01 — Oz4p2, ayw2 + 01 = aySOQ + Oztp1. (5'22>

Finally, it follows from the boundary condition (5.6) and the Helmholtz decomposition
(5.20) that
Opp1 + Oyp2 =0,  Oyp1 — Opp2 =0 on I'y. (5.23)

5.4 Transparent Boundary Condition

It follows from (5.3), (5.4a), and (5.7) that the diffracted field u¢ also satisfies the

elastic wave equation:
pAut + (A + p)VV - ud + wiput =0 in U. (5.24)
Introduce the Helmholtz decomposition for the diffracted field w?:

u! = V¢! + curleg, (5.25)
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Substituting (5.25) into (5.24) may yield
d 2d -
Ag + k505 =0 in U. (5.26)

It follows from the uniqueness of the solution for the direct problem that gb‘} is a
periodic function with period A and admits the Fourier series expansion:

o5 (x,y) Z elont (5.27)

nez

where a,, = 2nm/A. Plugging (5.27) into (5.26) yields

afly }in( ) + ]n( ) = 07 Yy >a, (528)
where
(k3 —a2)'?, || < K,
ﬁjn =
i(a? — Ii?)l/Q, || > Kj.

Here we assume that 3;, # 0 to exclude possible resonance.
Using the bounded outgoing wave condition, we may solve (5.28) analytically and

obtain the solution of (5.26) explicitly:

¢d .I‘ y Z¢jn 1anm+5]n(y zzL))7 (529>

nez
which is called the Rayleigh expansion for the scalar potential function gzﬁjl Taking
the normal derivative of (5.29) on I', gives
0y (x,a) = ) iBjndf, (a)e*" (5.30)
nez
For a given periodic function u(x) with period A, it has the Fourier series expan-

sion:
. I .
= Z upe " uy = — | u(x)e " da.
Ao
nez

We define the boundary operator:

(Fyu)(x) = 3 Bt

nez
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It is easy to verify from (5.30) that
0y = F;07 onT,. (5.31)

Recalling the incident field (5.2), we may also consider the Helmholtz decomposi-
tion for the incident field:

u™® = Vol + curlgh™, (5.32)
which gives

- 1 ; 1 ; 1 .
(ZSEIIC — _2v . ulnC = ——_ ¢ llﬁ?ly’ ¢12IIC — _26ur1u1n0 — 0

A simple calculation yields
a inc __ _e—ima <7¢1nc - —mla
yvrlr ’ - )

which gives

y¢1nc 1nc+gh ay i2nc % 1nc+gz. (533)

Here g, = —2e7%1% and g, = 0.
Letting ¢; = ¢! + ¢ and recalling w = u™ + u?, we get (5.8) by adding (5.32)
and (5.25). Moreover, we obtain the transparent boundary condition for the total

scalar potentials by combing (5.31) and (5.33):
Oyt; = T;0; +g; onl,. (5.34)
It follows from (5.18)—(5.19) that

8,1 = By — ety + Buhy = Oythr — Bty + ( >a "

— 0,0 + <"2fi )a b,

2

2
Oya = Oythg + Opthy — Oupy = Oytha + Outh1 — (%) Oxth1

1

—aw—("l ) " (5.35)
= Uy%2 KJI z¥1- .
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Combining (5.34)-(5.35) and (5.18) yields the boundary condition for ; on I':

2 .2 2
Oy1 + (%) Oty = <%) S + ¢,

2 1
2 2

2 J—
Oyths — (%) Oth1 = <%) Toths + go. (5.36)

1 2
Let u be a periodic function of x with period A. It admits the Fourier series

expansion:
. 1 (A .
u(zr) = Z w, et u, = KJ u(x)e " "dx.
nez 0

Define the boundary operator on I',:

2"‘)2/8171, ,UCV _ 2"‘)20‘%
. az+B1nB2n o ai+Binfan -
(Tu)(z) = )i o . U, e
ne?Z | L% w*Baon
O‘%J’_ﬁl’ﬂﬁ?n Iuan a%""ﬁlnBQn

It is shown in [72] that a? + B1,52, # 0 for n € Z and the diffracted field u? satisfies

the transparent boundary condition:
pout + A+ p)(0,1)'V-ut = Fu? onT,.
A simple calculation yields that
10, ™ + (A + 1) (0, 1) TV - ™ = ik (A + 2u)(0,1) e e

and

Tu™ = —ik; (A +2p)(0,1)Te e,

Hence we obtain the boundary condition for the total displacement field u:
o+ A+ p)(0,1)'V-u=Ju+h onl,,
where b = 2ir; (A + 2u)(0, 1) Te7*1%, Noting the continuity condition (5.5a), we have

pov + A+ p)(0,1)'V-v=Jv+h onl,.
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5.5 Scattering Data

We assume that the total field u is measured on Ty, i.e., u(z,a) = (ui(z, a),us(x,a))’
is available for = € (0,A). In this section, we show how to convert u(x,a) into the
scattering data of the scalar potentials ¢;(z, a).

Evaluating (5.9) on I',, we have

Outr(x,a) + Oypo(z,a) = us(z,a), Oyp1(x,a) — Oxpa(x,a) = us(x,a). (5.37)

Let ¢;(x, a) admit the Fourier series expansion

j(x,a) = ) dine ™. (5.38)

nez
It suffices to find all the Fourier coefficients of ¢;,, in order to determine ¢;(z, a).
Taking the derivative of (5.38) with respect to = yields

Ox0j(x,a) = Z i, e (5.39)

nez

It follows from the transparent boundary condition (5.34) that

ay¢j (3:7 CL) = Z iﬁjngbjneianx + g;- (540)

nez

Substituting (5.39) and (5.40) into (5.37), we obtain a linear system of equations for
the Fourier coefficients ¢;y,:

an n n n
B o1 _|m | (5.41)

ﬂ in —0p ¢2n D2on

where pi, = Uin, — Gon, P2n = U2n — G1n and uj, are the Fourier coefficients of u;, i.e.,

1 .
Wjn, = KL w;j(z,a)e” " dx

and

—2e~ima for n =0,
Jin = Ggon, = 0 for n € Z.

0 for n # 0,
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Using Cramer’s rule, we obtain the unique solution of (5.41):

. OpPin + ﬁ2np2n . QnPon — ﬁlnpln
¢1n - ( Oé% + ﬁlnﬁ2n ) ’ ¢2n - ( Of% + ﬁlnﬁ2n ) ‘ <542)

Hence, we may assume that ¢;(x,a),j = 1,2 are measured data. From now on,

we shall only work on the potential functions.

5.6 Reduced Problem

Recall the continuity condition (5.18) and the boundary condition (5.36). Given

the data ¢; on I'y, we consider the Cauchy problem for 1;:

A +m5; =0 in R, (5.43a)
m2
Y = < ) ¢; only, (5.43Db)
U
2 — K2
%wl + < 2 /<L2 2) axwg = ( ) «%% + g on Fa, (5430)
2 K
n — K1 %
ang — zwl =\ %wg + g2 on Fa. (543(?1)
K K3
Since 1); is a periodic function of z, it has the Fourier series expansion
x,y) = Z Vin(y)eon®. (5.44)

neZ

Substituting (5.44) into (5.43), we obtain a final value problem for the second order

equation in the frequency domain:
02, 0in(y) + V7in(y) =0, b<y<a, (5.45a)

2
Yin(a) = (—;) Gjns Y = a, (5.45b)
j

2

2
aywln(a) + iO‘n (772 <2 HQ) w2n<a) = 1B1n < ) wln( ) + Gg1n, Y =a, (5450)

2

2
K1
2 _ .2 2
ayw2n(a) - ian (7] 2 ﬁl) w1n< ) 1ﬁ2n < 2%) 1/}271( ) + Gon, Y =a, (545d)

1

where ¢, is given in (5.42) and

(n} — a?)'?, || < m,
Yin =

i(on —n)%, lan] > ;.
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Again we assume that 7;, # 0 to exclude possible resonance.
Using the continuity condition (5.18) again, we may further reduce (5.45) into the

following final value problem:

aijﬂl(y) + anwﬂl(z» = 07 b < Yy <a, (546&)
Vjn = Ojns Y = 4, (5.46b)
ay¢]n - IB]nwjn = gjnv Yy =a, (546(3)
where
~ 2 R 77J2_
¢jn = <_;) ¢jm 5jn = (?) 6jn
1;j J
and

Qm = gin — ian (772 ) ¢2n7
772

§]2n = (on + 10y, (771 ) len

771

It follows from Lemma (5.11.1) that the final value problem (5.46) has a unique

solution which is
Un() =25 (O + By — i) €20
+ (2’7‘7',1)71 ((’)/jn — Bjn)(zgjn + 1§jn> eivj”(aiy). (547)
Evaluating (5.47) at y = b yields
%n(b) 2(27]-”)*1 ((’an + Bjn)(%jn — 1gjn) e*i’an(afb)
+ (295m) ((%‘n — Bin)bjn + i%) ein(a=b) (5.48)

where 1;,(b) are the Fourier coefficients of ¢;(x,b). Taking the partial derivative of
(5.47) with respect to y and evaluating it at y = b, we obtain

i A n N —ivi (a—
Oythjn(b) =3 ((’an + Bin)bjn — lgjn) e in(a=t)

i 3 n N ivi (a—
3 ((an — Bin)jn + lgjn> ein(a=t) (5.49)
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We point out that (5.48) gives the far-to-near (FtN) field data conversion formula.

We observe from (5.48) that it is stable to convert the far-field data for the propagat-

ing wave components where the Fourier modes satisfy |a,,| < n;; it is exponentially

unstable to convert the far-field for the evanescent wave components where the Fouri-

er modes satisfy |a,| > n;. Thus it is only reliable to make the near-field data by

converting the low frequency far-field data ¢;, with |a,| < n;. Noting p; > po in the

elastic slab, we are allowed to include more propagating wave modes to reconstruct

the surface than the case without the slab, which contributes to a better resolution.

It follows from the continuity condition (5.21) that
n?
on®) = (%) vt
R
Using the continuity conditions (5.21)—(5.22) on I'y, we obtain
ay(pl = 5y"¢1 - a:]ch + ax@Q = aywl 0 1/}2 + (772) wa

2
= 0,0 + ("QR )a b,

2

2
ay‘@ = 5y¢2 + Op1 — Opp1 = ay% + 01 — (%) Ox1

1
2
= ay¢2 - <771 ) z¢17
“1

which give in the frequency domain that

Oypun®) = 001 (0) i (22 ) ),

2
Oypan®) = 0yt (®) i (L2 ) ),
Combining (5.50) and (5.52), we get
(Oy — 1Bjn)@jn = Tjn,

where

Tin = aywlna)) - 131n¢1n(b) + ian (77 - R2) an( )

Ton = ayw2n<b> - 162n¢2n(b) - ian (n Ii

(5.50)

(5.52)

(5.53)

(5.54)
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Here the Fourier coefficients 1;,(b) and 0,1;,(b) are given in (5.48) and (5.49), re-
spectively.
Using the boundary conditions (5.23) and (5.53), we may consider the following

reduced boundary value problem for the scalar potential ¢; in €2

Apj+ k3p; =0 inQ, (5.55a)
Oupr +0yp2 =0, Oyp1 —Ouipp =0 onTy, (5.55b)
Oyp; = Jjp;+7; only, (5.55¢)

where the Fourier coefficients of 7; are given in (5.54). The inverse problem is re-
formulated to determine the periodic scattering surface function f from the Fourier
coefficients ¢, (b) forne M; = {neZ: |a,| < n;}.

5.7 Transformed Field Expansion

In this section, we introduce the transformed field expansion to derive an analytic

solution to the boundary value problem (5.55).

5.7.1 Change of Variables

Consider the change of variables:



130

which maps I'y to I'y but keeps I', unchanged. Hence the domain €2 is mapped into
the rectangular domain D = {(Z,7) e R*: 0 < Z < A, 0 < ¢ < b}. It is easy to verify

the differential rules:

We introduce a function ¢;(z, ) in order to reformulate the boundary value prob-
lem (5.55) using the new variables. Noting (5.55a), we have from the straightforward

calculations that ¢, upon dropping the tilde for simplicity of notation, satisfies

(clﬁix + cgajy + cgﬁiy + 40y + cm?) v; =0 in D, (5.56)
where )
G = (b - f>2a
c2 = [f'(b—y)]” + 0%,
Je=l ) (5.57)

ez ==2f"(b—y)(b—f),
e = =) [O— 1)+ 2P,
The boundary condition (5.55b) becomes

[(1=b7"f) 0 — [0, o1+ Oy =0, Oyor — [(1=b"f) s — ['0y] 2 = 0. (5.58)
The boundary condition (5.55¢) reduces to

Oypi = (L=b7"1) (Fip; + 15). (5.59)
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5.7.2 Power Series Expansion

Noting the surface function (5.1), we resort to the perturbation technique and

consider formal power series expansion of ¢; in terms of e:

(x,y;¢ Z gpj (x,y)e (5.60)

Substituting (5.1) into (5.57) and plugging (5.60) into (5.56), we may obtain the

. k) .
recurrence equations for g0§- ) in D:

AP + /ijgz); = u®), (5.61)

J J

where

k k—1 2) (k-2
u® = VD | GO ), (5.62)

Here the differential operators are
2" =b"'[2902, + 29'(b— )2, + g (b — y)d, + 2k3g]
(2 _ —2f 242 2 242 2
—[2()* = 99"] (b—y)dy, + Kig*} -

Substituting (5.1) and (5.60) into (5.58), we obtain the recurrence equations for the

boundary conditions on I'y:

k k
a’t@l + a24902 - p(k)7 8}/(705 ) - 590905 ) = q(k)a
where

pF) = (b0, + g0 ) (b=1) k) — (b~'g0x + ¢'0y) goékil). (5.63)

Substituting (5.1) and (5.60) into (5.59), we derive the recurrence equations for the

transparent boundary conditions on I'y:

where

Ty =T, T 9(%‘%05'0) +75), T](k =—b" gy@(k Y (5.64)
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In all of the above recurrence equations, it is understood that wgk), ugk) ,p®) ) rj(»k)

are zeros when k < 0. The boundary value problem (5.61)—(5.64) for the current

terms goék)

cp;k 1),@5-]“72). Thus, the boundary value problem (5.61)—(5.64) can be recursively

; k) (k) (k) ,.(k) : .
involve u; . p*) g ),rj , which depend only on previous two terms of
solved from k = 0.

5.7.3 Fourier Series Expansion

(%)

Since ;" are periodic functions of z with period A, they have the Fourier series
expansions
k ianx
) = D5 (). (5.65)
nez

Substituting (5.65) into the boundary value problem (5.61)—(5.64), we obtain a cou-
pled two-point boundary value problems:

k
angoln + ﬁln‘pl ’U,gn), 0< y < b,

0,00 = ¢® i,y =0, (5.66)

k
y901n 15 nsoln = T§n)7 Yy= b

and

k
a2y(p2n + ﬁ2n()02n - u;n)7 0< y < b7

(7y902n = p;k) - 105%()0%71)7 y = 07 (567>

k
ZJ(IDQn ﬂ n(PQn = Tén?? Yy = ba

k)

Y ] Y

(k) (k) (k) (k)

where u;,", pn”, gn ', 7}, are the Fourier coefficients of uj , p( ), g respectively.

It follows from Lemma 5.11.2 that the solutions of (5.66) and (5.67) are
P (¥) =K1 (y; B1n) (gF + ey (0))
k ’ k
- KQ(y; ﬂln)’rgn) + f KS(ya Z5 /Bln)ugn)<z)dz7 (5683)
0
®) () = o™ (0
(p2n< ) 1(y /BZTL)( lOénQOIn( ))

b
— Ky (y; /Bgn)réi) + f Ks(y, z; Bgn)ugfl)(z)dz, (5.68Db)
0
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(k)

Jn

(k)

where ;,'(0) are to be determined. Evaluating ¢, (y) at y = 0 in the above equations

and recalling K; in Lemma 5.11.2, we obtain

b
eiﬁlnzug?(z)dz,

J
J

iB1np™) (0) = (¢® + i s (0)) — eifmbr ) 4

b
iBanp) (0) = (pF) — i) (0)) — eP2nbrl) | etz {9 (2)dz,

which yields a system of algebraic equations for go(k)(()):

jn

ﬁln —0p 90511? (0) ,UY;)
i - : (5.69)

an B | |00 i)

where

b
o) = gl el s [ )
0

b
ol =) = il [l

It follows from Cramer’s rule again that the linear system has a unique solution which

is given by

() (k) (k) _ (k)
@%m=4<%M"“W%>,wQ@={&W% %%j.

Oé% + Blnﬂ?n CY% + ﬂlnﬁZn

k)

(0) are determined, goék) (y) can be computed from (5.68a) and (5.68b) ex-

n

Once gog
plicitly for all £ and n.
5.7.4 Leading Terms

For k = 0, it follows from (5.62), (5.63), and (5.64) that we obtain

Their Fourier coefficients are

ul = pO =@ —g O 7 (5.70)

jn — Pn n ) in
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Substituting (5.70) into (5.69) yields

0
U§n) — 16]71 n

and

] lﬁlnb ] 152nb
102n€ 1€
nggz) (0) - ( /82 ) Tin + < ) Ton,

05721 + 5lnﬁ2n 04121 + ﬁlnﬁ2n

1 iﬁan ] 1ﬂlnb
5 (0) = (—15 in )Tzn - <—IO‘"€ )nn. (5.71)

CY% + 51nﬁ2n O{% + 51716277,

Plugging (5.71) into (5.68), we get

@g(:l) (?/) = iOénKl(?J?ﬁln)SOg:L)(o) - KQ(?J; 511@)7'171

= Ml(?)(y>7—1n + Ml(;) (Y)T2n, (5.72a)
O3 () = iK1 (y; Ban) 30 (0) — Ko (y: Bon) Ton
= ME (y)710 + M ()72, (5.72b)

where

12 ,iB1nb s iB1nb
10 € : 1€ . .
7\1(”) y) = — ( n ) elﬁlny + elﬂlny + eflﬁlny ,
H ( ) 5171(@721 +B1nﬁ2n) 261n ( )

] lﬁan
n 10, € iB1n
M1(2)<y) = <&2 +Blnﬁ2n) 661 y’

] i/81nb
" ia,e iBo
Mél)(y) T (a2 + 51nﬁgn) e,

1 iBanb iBanb
100 € 1e . .
M (y) = - n B2y | 1€ iBony | —iBanyy
2 (y) (5271(05% + BlnﬁZn)) 26271 ( )

5.7.5 Linear Terms

For k = 1, it follows from (5.62)—(5.64) that we obtain

W = 5 [2g02, + 29/ (b— )@, + 9" (b — )0, + 2629] &,
p 1 (b ga + g 6 ) 901 3
¢V == (b9, + g'0,) ¢,

M = b7 g( " + 7).
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Using the convolution theorem and (5.72a)—(5.72b) yields

uly) (y) = %U}"’m)(y)gn—m, (5.73a)
pin(y) = %Pm(y)gn_m, (5.73b)
qin(y) = ZEZQm(y)gnm, (5.73¢)
i (y) = =7 ZGZ(RJ- (¥) + Tim) Gn—m> (5.73d)

where

U () = b7 208m)PM W) + (02— a2)(b = )M (4) | 71
#0728 MG () + (02, — a2)(b = 1), M5 ()| 72,
Puly) = ienb™ (M ()71 + M ()72
+ilan = am) (M )i + M (1) 7m )
Qun(y) = —iapnb™! (Méin) () T1m + Mé?)(y)mm)
— ifan = am) (8, M5 ()i + 0, M3 (y) 7 )
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When k = 1, recalling the expressions of gagz)(O) and evaluating (5.68) at y = b,

we have

b
1 (1) = Ky (b; B1n) (¢ + 1St (0)) — Ko (b; Brn)rs) +f K3 (b, 2 Bra)ull (2)dz
0

nd if1nb
° i ! € iB1n —iB1nby (1
= T (0 b (0)) = G (e 4 ety
st s B1n7y, (V)
+ | ——— (""" + e )uy, (2)dz
JO 2161n( ) 1 ( )
1ﬁlnb
e .
= (1) 1 _ iBanb, (1)
(a — Binf ) lﬁlnb (a + Binfo ) lﬂmbrsl)

b b
+ Qa,ﬁlnf eiﬁ?nzugz) (z)dz — 204721[ eiﬁlnzu&)(z)dz
0 0

b
+ (02 + Binfon) J (efin? +elﬁln2)u§g(z)dz),

0

and

b
P () = K1 (5; Ban) (0 — il (0)) — Ko (b; Ban)rss + f K3(b, 2; Ban)us) (2)dz
0

2nd ifnb
! e iBan —ifan 1
= Ty ) 10001 (0)) = (e 4 ey,
Lt s 8207, (1)
+ | ——— (7 + e )uy, (2)dz
JO 215271( ) 2 ( )
152nb
: i 1)
(2 21,3 npg) — 200, 8 nqr(Ll) + 200, Bone /Blnb,r(n
(216211)(0[% + 611@5271) < niz 2 2 1

b
+ (a2 — Binfon)e?? 7”2n (02 4 BinBan)e P2nb ( *204n52nj eiﬁlnzuﬁ)(z)dz
0

b
(eiﬁ?nz + e_iBQ"z)ugi)(z)dz> )
0

b
— QQZJ eiﬂ?nzu;}(z)dz + (a2 + ﬁ1n62n>J
0

Substituting (5.73) into (5.68) and evaluating at y = b, after tedious but straight

forward calculations, we obtain the key identities:

1ﬁlnb
) - : 7 g 5.74a
Spln( ) T%:Z (21ﬁ1n)<a% + ﬁmﬁzn)(afn =+ ﬁlmBQm) In—m> ( )
15277,17
e Amm) n—ms (5.74b)

My —
Pan (b) Z (216271)(04% + Blnﬁ?n)(a?’n + 617”527”)

meZ



where

Ag’%m) :{b [ - QBlnEZnOéz i(B1m +B2m)b + _Oéng:nﬁln< - Blmﬁ ) 2iimb

+ Q{Qmﬁln(anﬁZm + amﬁ2n) + lbﬁln [anamBQm(BQn - B2m)

- (Oén&m)2 + 5%mﬁ2m62n] }eiﬁlmb - %mﬁhw&gn + Blmﬁ2m)]

N iﬁl"(an - Oém) l2amﬁ2mﬁ2nei(ﬁlm+ﬁ2m)b - ozn(ozfn — BlmﬁQm)emﬁlmb

_ an(ozfn + 51mﬁ2m)] }7’1m + {b [ — Qana Bine i(Bim+B2m)b
o amﬁlnEZn
ﬂ?m
+ bS5, |:Oln(CY72n52n + ﬁ%mﬁlm) + Ogmﬂlm(oéi + 51mﬁ2n)] }eiﬁzmb
amﬁlnﬁ?n
i 62m

+ Bon(aZ, — BimfBam)e 2iPamb Ban (a2, + 51mﬁ2m)] }sz,

(Oé?n - ﬁlmﬂ?m)emﬁzmb + Q{Qmﬂln (OénOém - ﬁlmﬁQn)

and

Im

- Q{QmBQn(anam - ﬂlnﬁZm) + 1b52n [an(agnﬁln + B%m/BQm)

- %(Cﬁn + 51m62m)]
1m

+ Bon(an = am) [20%0%52 Bt ol 1 81, (02, — BimBom )PP

+ 0 B (0, + Blnﬁm)] }eiﬁlmb

+ Bin(ag, + BlmﬁQm)] }Tlm + {bl[ — 281, Boni?, elPrmFPam)b

amanﬁ%z (Oé2

— BimBom )€ + 2{04m52n (0 Brm + QmbBin)

(a2, + 51m62m)] — 1By — ) lQanamﬁl oi(BLm-+B2m)b
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62m
+ 10800 @nBun(Bin = Bin) = (@num) + BB | 20"
_ %ﬂﬁ%(afﬂ + 51mﬁ2m)] — ifon(ay — ) lQamﬁlnﬁlmei(ﬁlm+ﬂ2m)b
2m

- an( - 51mﬁ2 ) 2famb _ O‘n(agn + BlmﬁQm)] }TQm'
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5.8 Inverse Problem

In this section, we give reconstruction formulas for the inverse problem by drop-
ping the higher order terms in the power series. Moreover, a nonlinear correction

scheme is proposed to improve the accuracy of the reconstruction.

5.8.1 Reconstruction Formula

First, we rewrite the power series expansion (5.60) of ¢; and @9 as follows,

oi(z,y) = 305»0)(:6, y) + 89051)(9:, y) +ej(x,y), (5.75)

where e;(z,y) = O(g?) denote the remainder consisting of all the high oder terms.

Evaluating (5.75) at y = b and dropping e;(x,y), we get the linearized equation:
pi(w.0) = @ (2,b) + e (),
which, in the frequency domain,
pin(b) = @5, () + el (0). (5.76)

Substituting (5.74) into (5.76) and noting f = €g, we obtain an infinite dimensional

linear system of equations:

Z C](‘mm)fn—m = ijn(b) - §0§‘?1)(b)7

meZ
where .
omm) _ et Almm)
/ (21ﬁ]n>(a% + 61n62n)(04%1 + 61m62m) J
In order to obtain a truncated finite dimensional linear systems, the cut-off
A
2]

2m

is chosen such that |o,| < n; for all |n| < N;, where n; is given by (5.15). In view of

the definition of 7;, the density p; of the elastic slab is crucial to the reconstruction
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resolution, a bigger p; gives a higher resolution. Keeping only the Fourier coefficients

of the solution in [—N;, N,], we obtain the truncated equations
Cij = t]’, (577)

where C} is the (2N; +1) x (2N, + 1) portion of C](.n’m), and s;, t; are (2N, +1) column

vectors given by

Sim = frs tin = @jn(b) — @2 (b), —N; <n,m < Nj.

We observe from (5.54) and (5.74) that when |m| > N; there could have exponentially
amplified errors of Ag-n’m) due to the data noise. Therefore, the equations need to be
regularized further by letting Ag-n’m) = 0 if |n — m| > N;. Let the solution of (5.77)
be given by

s; = Clt;, (5.78)

where C]T denote the Moore-Penrose pseudo-inverse of Cj. Finally, the scattering

surface function is reconstructed as follows:

f(z) = Re Z 8jm€ . (5.79)

\m|<Nj
5.8.2 Nonlinear Correction Scheme

In the previous subsection, an explicit reconstruction formula (5.79) is given. It
is effective for a sufficiently small deformation parameter . For a relatively large ¢,
it is necessary to develop a nonlinear correction scheme to improve the accuracy of
the reconstruction.

Firstly, we solve the linearized problem and compute (5.78) to obtain s;, which is
[0]

denoted as s;°. Let fo be the reconstructed surface function by using st in (5.79).

J
Next we solve the direct problem using f; as the surface function, and evaluate the

total field w at y = a denoted by ul/ol. The data ¢E-f°] (x,a) is computed from (5.42)
by using ulfol, which is then used to compute 7']-[7{0] from (5.47), (5.49) and (5.54). We



construct the coefficient matrices Cj[f o] and the right hand side vectors ¢

using 7'}7{0]. Now we have approximated equations:

[fol _[0] _ ,[fol
Cjosj —tjo.

Subtracting the above equation from (5.77) yields

from which we compute the updated Fourier coefficients:

1l _ [fo] J[0] __ 4[fo]

Then the surface function is updated as follows
fi(z) = Re Z sj[-’l,]neio‘mw.
|m|<N]~

Repeating the above procedure gives the nonlinear correction scheme:

1] [fima] [1=1] _ 4[fia]

J

fi(z) = Re Z ng]meiamm, [=1,....

|m|<Nj

[fol
J
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of (5.77)

Essentially the above nonlinear correction scheme is similar to Newton’s method

for solving non-linear equations. From the numerical experiments in the next sec-

tion, we only need few iterations to obtain accurate reconstructions because good

initial guesses are available from the reconstruction formula (5.79) when solving the

linearized equation.

5.9 Numerical Experiments

In this section, we present some numerical experiments to show the effectiveness

of the proposed method. We solve the direct scattering problem (5.4) to get the

synthetic data of the displacement of the total field w by using the finite element

method with the perfectly matched layer (PML) technique. Then the measured data
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is obtained by interpolating the finite element solution with 500 uniform grid on I',.
In order to test the robustness of the proposed method, we add random noise to the
data:

us(z;,a) = w(z;,a)(l + ory),

where x; = —A/2 + iA/500,i = 1,...,500, r; are vectors whose two components are
random numbers uniformly distributed on [—1, 1], and ¢ is the noise level.

In our numerical experiments, the Lamé parameters pu, A are taken as A = 2, u = 1.
The density pg of the free space is py = 1, while the density of the elastic slab p; is
chosen to be three different numbers p; = 1.0, 2.0 and 4.0 in order to compare the
reconstruction results. The noise level § = 2%. The angular frequency w = 27. Thus
the compressional wavenumber k; = 7 and the shear wavenumber ko = 27, which
indicate that A\ = 2, Ay = 1, where \; and Ay are the compressional wavelength
and the shear wavelength, respectively. The bottom of the slab is positioned at
y = b = 0.05)\2 and the top of the slab is put at y = a = 2.0\,. Hence the slab
is put in the near-field regime while the data is measured in the far-field regime.
The incident wave is generated by (5.2). In all numerical examples, the deformation
parameter is fixed at € = 0.01. According to (5.79), there are two possible choices
to obtain the reconstructed surface function f, which are mathematically equivalent.
Thus we always take j = 1 in (5.77) to compute the Fourier coefficients and to
reconstruct the surface.

Example 1. The exact surface profile function is given by

( ) 1 . 20mx . 407 x i 607z
x) = —sin — sin sin
g 5 31 31 31 )

which is a periodic function with the period A = 3.1. This is a simple example as the

surface function only contains a few Fourier modes.

Figure 5.2 shows the reconstructed surfaces (dashed line) against the exact surface
(solid line). Figure 5.2(a), (b), and (c) plot the reconstructed surfaces by using
p1 = 1.0,2.0,4.0, respectively. Clearly, the reconstruction resolution is increased with

respect to p;. For p; = 1.0, the slab is absent and the cut-off N; = 1. Hence only the
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(@ (d)

Figure 5.2. Example 1: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) p; = 1; (b) p1 = 2;
(c) p1 = 4; (d) 1 step of nonlinear correction when p; = 4; (e) 2 steps
of nonlinear correction when p; = 4; (f) 3 steps of nonlinear correction
when p; = 4.

zeroth and first Fourier modes may be reconstructed and the resolution is at most
one wavelength. More frequency modes are able to be recovered and the resolution
increases to the subwavelength regime by increasing p;. Using Figure 5.2(c) as the
initial guess, we adopt the nonlinear correction scheme to improve the reconstruction
accuracy. As shown in Figure 5.2(d), (e), and (f), the reconstruction is almost perfect
after 3 steps of the iteration, which indicates that the algorithm is effective to improve

the accuracy of the reconstruction.
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0.015

0.01

0.0051 /

Figure 5.3. Example 2: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) p; = 1; (b) p; = 2;
(c) p1 = 4; (d) 1 step of nonlinear correction when p; = 4; (e) 2 steps
of nonlinear correction when p; = 4; (f) 3 steps of nonlinear correction
when p; = 4.

Example 2. Consider the following surface profile function in the interval [—1, 1]:

1 — cos(2mz), —-1<2z<0,
g(x) =
0.5 — 0.5 cos(2mx), 0<z<l1.
The period A = 2. Although this function is continuous, it is not smooth since the
first derivative is not continuous at x = 0. Figure (5.3) shows the reconstructed
surface (dashed line) against the exact surface (solid line) for different density p;
and the first three steps of the nonlinear correction. The similar conclusions can be

drawn as those for Example 1: the density p; helps the resolution and the nonlinear

correction improve the reconstruction.
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5.10 Conclusion

In this chapter, we have proposed an effective mathematical model and developed
an efficient numerical method to solve the inverse elastic surface scattering problem
by using the far-field data. The key idea is to utilize a slab with larger density to
allow more propagating modes to propagate to the far-field zone, which contributes
to the reconstruction resolution. The nonlinear correction improves the accuracy by
using the initial guess generated from the explicit reconstruction formula. Results

show that the proposed method is robust to the data noise.

5.11 Appendix: Second Order Equations

Consider the final value problem of the second order equation in the interval (b, a):

u +nfu=0, b<y<a, (5.80a)
u=p, y-=a, (5.80b)
v —ifu=gq, y=a, (5.80c¢)

where 0 # 7, 3, p, ¢ are constants.

Lemma 5.11.1 The final value problem (5.80) has a unique solution which is given

by
u(y) = ((77 + g;p _ iq) e—inla—y) <<77 _ B2)np + iq> einla=y)

Proof The general solution of the homogeneous second order equation (5.80a) is
u(y) = c1e + cpe™ W,

where ¢; and ¢, are constant coefficients to be determined. It follows from the final

conditions (5.80b)—(5.80c) that

u=p, u=ifp+q, y=a
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Plugging the final values of u and v’ into the general solution, we obtain
2n 2n
which completes the proof. [ |

Consider the two-point boundary value problem of the second order equation in

the interval (0, h):

W+ fPu=v, 0<y<h, (5.81a)
u=r y=0, (5.81Db)
W —ipu=s, y=nh, (5.81c¢)

where 0 # (3,7, s are constants.

Lemma 5.11.2 The two-point boundary value problem (5.81) has a unique solution

which is given by

u(y) = K (y; B)r — Ka(y; B)s + L Ks(y, z; f)v(z)dz,

where
K A P By ify
l(yaﬁ)_ 1/6 ) 2(:%6)_%(6 +e )7
and
SH(E” H o), 2 <y,
KS(yvza/B) =

%(eiﬁy +e ), 2>

Proof A fundamental set of solutions for the second order equation (5.81a) is
ui(y) = €%, us(y) = e,

A simple calculation yields that the Wronskian W (uy,us) = —2if. It follows from
the variation of parameters that the general solution to the inhomogeneous second
order equation (5.81a) is

e~ By v

28 Jo

' ) By ry .
u(y) = 16V + coe PV + 62.6 J e Py (2)dz — P u(2)dz, (5.82)
10 Jo
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where ¢; and ¢y are undetermined constants.
Taking the derivative of (5.82), evaluating at y = 0, and using the boundary
condition (5.81b) give
u'(0) =if(c1 — ¢) = 7. (5.83)

It follows from the boundary condition (5.81c) that

Cy = ﬁ (Jh e u(z)dz — Seiﬁh) . (5.84)

0
Combining (5.83) and (5.84) yields

B +r_ 1
ATe2TIET 93

Substituting (5.84) and (5.85) into (5.82), we obtain the solution. [

h
f P (2)dz — seiﬁh) + L (5.85)
0 i8
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