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ABSTRACT

Prateek Gupta PhD, Purdue University, August 2019. Theoretical and Numerical In-
vestigation of Nonlinear Thermoacoustic, Acoustic, and Detonation Waves. Major
Professor: Carlo Scalo, School of Mechanical Engineering.

Finite amplitude perturbations in compressible media are ubiquitous in scienti�c

and engineering applications such as gas-turbine engines, rocket propulsion systems,

combustion instabilities, inhomogeneous solids, and tra�c �ow prediction models, to

name a few. Small amplitude waves in compressible �uids propagate as sound and

are very well described by linear theory. On the other hand, the theory of nonlinear

acoustics, concerning high-amplitude wave propagation (Mach<2) is relatively under-

developed. Most of the theoretical development in nonlinear acoustics has focused on

wave steepening and has been centered around the Burgers' equation, which can be

extended to nonlinear acoustics only for purely one-way traveling waves. In this disser-

tation, theoretical and computational developments are discussed with the objective

of advancing the multi-�delity modeling of nonlinear acoustics, ranging from quasi

one-dimensional high-amplitude waves to combustion-induced detonation waves.

We begin with the theoretical study of spectral energy cascade due to the prop-

agation of high amplitude sound in the absence of thermal sources. To this end, a

�rst-principles-based system of governing equations, correct up to second order in

perturbation variables is derived. The exact energy corollary of such second-order

system of equations is then formulated and used to elucidate the spectral energy

dynamics of nonlinear acoustic waves. We then extend this analysis to thermoacous-

tically unstable waves � i.e. ampli�ed as a result of thermoacoustic instability. We

drive such instability up until the generation of shock waves. We further study the

nonlinear wave propagation in geometrically complex case of waves induced by the

spark plasma between the electrodes. This case adds the geometrical complexity of
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a curved, three-dimensional shock, yielding vorticity production due to baroclinic

torque. Finally, detonation waves are simulated by using a low-order approach, in a

periodic setup subjected to high pressure inlet and exhaust of combustible gaseous

mixture. An order adaptive fully compressible and unstructured Navier Stokes solver

is currently under development to enable higher �delity studies of both the spark

plasma and detonation wave problem in the future.
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1. INTRODUCTION

Nonlinear wave processes are observed in a variety of engineering and physics appli-

cations such as acoustics [1, 2, 3], thermoacoustics [4, 5, 6, 7, 8, 9], surface waves [10],

plasma-physics [11], and inhomogeneous solids [12]. In acoustics, nonlinear wave

propagation (�nite amplitude acoustics) has been an active area of research since

more than �ve decades now and can be classi�ed as both hyperbolic and dispersive,

based on the medium of propagation [3]. Planar nonlinear waves in compressible

�uids primarily exhibit non-dispersive hyperbolic nature. Propagation of such waves

causes two main nonlinearities known, acoustic streaming [2, 13] and wave steepen-

ing [1, 14]. While acoustic streaming is a kinematic nonlinear e�ect, wave steepening

is caused by the variation of speed of propagation (local speed of sound) due to vari-

ation in pressure. For very high pressure variations, nonlinear acoustic waves form

shock waves, which can also cause combustion of the medium due to intense tem-

perature variation, depending on the ignition properties of the medium. Moreover,

non-planar nonlinear waves can cause intense hydrodynamic events such as vorticity

generation [15], which can be eventually utilized for changing scalar and momentum

mixing properties of �ows.

The scope of the present work includes theoretical and numerical study of such

nonlinear wave propagation e�ects, in particular, mathematically quantifying the pla-

nar nonlinear acoustic waves identifying the extent of second order nonlinear theory,

e�ect of boundary heating and combustion heating on such nonlinear waves, followed

by the hydrodynamic e�ects of such waves on �ows. We begin with the basic de�-

nition and mathematical identi�cation of such nonlinearities. As the high amplitude

planar waves propagate, multiple length scales are generated which modify the energy

dissipation dynamics signi�cantly. Moreover, such nonlinear waves can be generated

from a variety of heat sources such as thermoacoustic instability, heat release in deto-
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(a) (b)

(c) (d) (e) (f)

Figure 1.1. : Q-criterion iso-surfaces colored with the local velocity magnitude ob-
tained from a direct numerical simulation of a Taylor-Green vortex in a triply-periodic
domain [−π, π]3 [16], exhibiting breakdown into hydrodynamic turbulence (a), veloc-
ity perturbation �eld in a high amplitude nonlinear traveling acoustic wave (TW)
(b), evolution of normalized spatial average of u2 (c), (e), and velocity spectra |ûk|2
(d), (f) at times t0, t1, t2, t3. The spectral broadening occurs due to the nonlinear
terms in the governing equations generating smaller length scales resulting in energy
cascade from larger to smaller length scales.

nation waves, spark plasma discharges etc. We outline the analysis of such nonlinear

wave-heat source interactions for compressible �uids. Throughout, theoretical devel-

opments are supported by high-�delity canonical numerical simulations.

This dissertation is organized in �ve chapters, each summarized brie�y below.

Summary of Chapters 2 and 3: Decaying nonlinear acoustics

Nonlinear acoustic wave steepening occurs due to gradients in the wave speed asso-

ciated with thermodynamic nonlinearities, and it entails generation of smaller length
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scales (harmonics) via a nonlinear energy cascade, which can be realized mathemati-

cally via the multiplication of two truncated Fourier series,(
n∑

k=−n

ake
ikx

)(
m∑

l=−m

ble
ilx

)
==

∑
k

akb−k +
∑
k

∑
l

k+l 6=0

akble
i(k+l)x. (1.1)

The left hand side of the Eq. (1.1) represents any quadratic nonlinear term ap-

pearing in a governing equation. Continued nonlinear evolution results in further

generation of smaller length scales, as depicted by the second term on the right hand

side of Eq. (1.1), ultimately leading to spectral broadening, as shown in �gure 1.1.

In the speci�c case of steepening of nonlinear acoustic waves, the shock thickness

denotes the smallest length scale generated in the �ow, governed by the viscous dissi-

pation. The latter causes saturation of energy spectra, hence establishing an energy

�ow among various scales.

In this work, we focus on the characterization of the spectral energy cascade in

nonlinear acoustics. In particular, we study the spatio-temporal and spectro-temporal

evolution of decaying �nite amplitude planar nonlinear acoustic waves in three canoni-

cal con�gurations, traveling waves (TW), standing waves (SW), and randomly initial-

ized Acoustic Wave Turbulence (AWT). Utilizing the second order nonlinear acoustics

approximation, we derive analytical expressions for the spectral energy, energy trans-

fer function, and dissipation. Analogous to the study of small scale generation in

hydrodynamic turbulence, well quanti�ed by the K41 theory [17, 18, 19], we de�ne

relevant length scales associated with fully developed nonlinear acoustic waves eluci-

dating the scaling features of the energy spectra.

Summary of Chapter 4: Thermoacoustic shock waves

The acoustic energy cascade in the spectral space due to nonlinear acoustic wave

propagation is analogous to the turbulent spectral energy cascade in which vortex

stretching (hydrodynamic nonlinearity) causes breakdown of large length scale eddies
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into smaller eddies up to a point where the viscous dissipation dominates and pre-

vents generation of further smaller scales [20]. In equilibrium energy cascade, mean

shear causes injection of turbulent kinetic energy into large eddies which breakdown

into smaller eddies thus establishing an equilibrium energy spectrum [21]. Usually,

hydrodynamic instabilities are associated as the mechanisms of energy injection into

large length scales by mean shear, such as Tollmien-Schlichting instability in low

speed hydrodynamic boundary layers [22]. Analogously, acoustic energy cascade due

to nonlinear acoustic wave propagation can be sustained via acoustic instabilities.

(a) (b)

(c)

Figure 1.2. : Physical setup of a looped thermoacoustically unstable resonator (a),
pressure probed inside the resonator (b), and the isentropic acoustic energy spectrum
of the probed signal (c) depicting spectral energy cascade.
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We show such existence of equilibrium spectral energy cascade in which energy in

large length scales (harmonics) is injected by thermoacoustic instabilities resulting in

formation of thermoacoustically sustained shock waves (see �gure 1.2).

Thermoacoustic ampli�cation of waves in a compressible �ow is the result of a

�uid dynamic instability emerging from the favourable coupling between pressure and

heat-release �uctuations. The wavelength of thermoacoustically unstable waves is set

by the size of the enclosing resonant chamber, while the heat release, providing the

energy source for the ampli�cation, is con�ned to a compact region. The heat release

rate is a function of local velocity and pressure �uctuations, a�ecting for example the

instantaneous �ame surface area in a combustion chamber or the rate of convective

heat extraction from a hot wire-mesh screen in a Rijke tube. The resulting �uctuations

in the heat release rate drive a cycle of compressions and dilatations, which act

as a source for pressure �uctuations that, if within a quarter phase from the heat

release itself, become thermoacoustically ampli�ed, as identi�ed by the Rayleigh's

criterion [23]), ∫
Ω

p′q′dΩ > 0. (1.2)

Variables p′ and q′ denote the pressure and heat release rate perturbations in a con-

�ned domain Ω.

In this work, we show the application of the previously discussed theory on nonlin-

ear acoustic energy cascade. We investigate the high amplitude (or macrosonic) limit

of thermoacoustically driven nonlinear waves characterized by the formation of self-

sustaining resonating shock waves and inter-scale energy transfer. A comprehensive

nonlinear theoretical and high-�delity modeling approach is adopted to accurately

describe macrosconic thermoacoustic waves. To this end, a canonical travelling-wave

looped resonator, inspired by Yazaki et al.'s [24] experimental setup but geometrically

optimized via linear theory [25, 26, 27], has been designed to maximize the growth rate

of the quasi-travelling-wave second harmonic and thus achieve rapid shock wave for-

mation. Yazaki et al.'s [24] looped con�guration allows quasi-travelling-wave acoustic

phasing which facilitates faster nonlinear energy cascade compared to standing wave



6

Figure 1.3. : Evolution of the normalized baroclinic torque Γn normal to the x − y
plane in the initial stages of the shock wave propagation for slip electrode walls.

resonators [28]. It is shown that the energy content in spectral domain resembles

the equilibrium energy cascade observed in turbulence, similar to the spectral energy

distribution of an ensemble of acoustic waves interacting nonlinearly among each

other [29, 30].

Summary of Chapter 5: Spark Plasma induced shock waves

For planar weak shocks, the acoustic nonlinearities constitute the primary non-

linearities in the �ow. However, for weak (or strong) shocks in 2D or 3D, more

interesting features appear. One such interesting feature is the generation of vorticity

behind a curved shock. As �rst derived by Truesdell [15], a steady 2D curved shock

induces a vorticity jump across the shock directly proportional to the curvature of the

shock. Later, this calculation was generalized and analyzed by Kevlahan [31] for an

unsteady 2D shock, who showed the baroclinic moment applied by the curved shock

also causes vorticity generation.

In general, the baroclinic moment acting on the �ow is given by,

Γ =
∇p×∇ρ

ρ2
. (1.3)
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For an isentropic perturbation, the pressure gradient ∇p and density gradient

∇ρ are parallel. Consequently, isentropic waves can not apply baroclinic moments

on the �uid. However, waves generated due to intense heat release may exhibit

entropy gradients (even though perturbations are weak) not aligned with pressure

perturbations. Such entropy variations result in baroclinic moments which cause

vorticity changes in a �ow.

In this work, we analyze the �ow �eld generated by the heat deposition between

two electrodes due to dielectric breakdown. Such setups are utilized in controlling �ow

�elds and combustion mixing due to coherent structures generated near the region of

dielectric breakdown. We show that the baroclinic moment plays an important role

in generating coherent structures near conical shaped electrodes. We model the spark

plasma heat deposition be a spato-temporally varying heating kernel.

Summary of Chapter 6: High pressure detonation waves

Combustion waves are primarily classi�ed as de�agration or detonation waves,

the latter being high amplitude pressure waves propagating at supersonic speeds.

Heating caused by a propagating adiabatic shock-compression results in ignition of

fuel-oxidizer mixture. The �uid containing reaction products expands behind the

shock wave and depending on downstream boundary conditions, further accelerates

the wave front sustaining its propagation [32]. The classical Zel'dovich, von Neumann

and Döring (ZND) model postulates equilibrium one-dimensional detonation waves.

In experiments and detailed theoretical studies, unstable detonation wave propagation

with complex reactive chemistry and compressible �ow physics interactions are often

observed [32, 33]. Consequently, unsteady dynamics of unstable one-dimensional

pulsating detonation waves have received wide-spread attention [34, 35, 36].

Detonation waves result in very high pressure gains, which exhibit higher thermo-

dynamic e�ciencies when utilized for mechanical work [37, 38]. Rotating Detonation

Engines (RDEs) are propulsion devices, which utilize such pressure gains through con-
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(a)

(b)

Figure 1.4. : Schematic illustrating the one-dimensional model reduction based on the
OH∗ chemiluminescence visualization of experimental study by Schwinn et al. [8] (a)
and sketch of the spatial pro�le of pressure corresponding to the visualized detonation
wave (b). Dashed line (- -) shows the stagnation injection pressure.

tinuously spinning detonation waves for generating thrust [39]. Fuel-oxidizer mixture

is injected axially into an annular shaped device which is undergoing combustion due

to the rotating detonation waves. High pressure combustion expels products axially

from the opposite end thus generating thrust. However, the complex combustion wave

propagation dynamics in such devices require further attention and careful analysis

for e�ective design [8].

In this work, we perform numerical investigations of such sustained detonation

dynamics in a periodic domain, inspired by the recent experimental study of Schwinn

et al. [8] in which a straight-line detonation chamber was analyzed experimentally

exhibiting sustained resonance of detonation waves. We numerically investigate the

e�ect of fuel-oxidizer injection rates on the dynamics of detonation waves and sus-

tenance in a periodic one-dimensional domain. To this end, we model fuel-oxidizer

injection rates utilizing a one-dimensional model reduction which represents solving

the governing equations close to the injector plate in an experimental setup. More-

over, we adopt a device-scale dynamical system perspective in the current study to

elucidate the wave propagation dynamics.
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Figure 1.5. : Advection of an isentropic vortex in a subsonic base �ow (top) and
adaptive order re�nement of the underlying mesh (bottom).

Summary of Chapter 7: Mesh adaptive Navier Stokes solver

In the previous two topics investigated, an extremely wide spectrum of length

scales is observed. In vortex breakdown behind a curved shock wave induced by spark-

plasma heat deposition, vortex rings have been observed in experiments [40], which

are generated by the curved shock wave. These vortex rings collide and break down

generating very small scale structures in the �ow. For detonation wave resonance in a

periodic domain, the detonation waves propagate in a domain 106 times longer than

the thickness [41, 42]. As a result, very high numerical resolution is required in only

a very small region inside the domain which mandates the mesh adaptive approach

in multiple dimensions for e�cient computations.

To this end, a high �delity mesh adaptive Navier-Stokes solver is developed and

presented in this work, as a tool for future development and study of the topics

discussed above. The solver adapts the local order of interpolation and derivative

calculation upon detecting shock waves and vorticity, thus enabling higher degrees of

freedom locally for higher resolution. Test results on cases involving high gradients

in �ow �elds due to shock waves and vorticity (see �gure 1.5) are presented.



10

2. PLANAR SECOND ORDER NONLINEAR ACOUSTICS

The contents of this chapter have been published in Physical Review E [43] (see

Section II) and have been reported here in abridged form with minor modi�cations.

2.1 Introduction

High amplitude planar nonlinear acoustic waves exhibit two main nonlinearities :-

acoustic streaming [2, 13] and wave steepening [1, 14]. Usually, problems in nondis-

persive nonlinear wave propagation are studied utilizing the model Burgers equation

[3, 11, 14, 44]. However, in this work, we focus on quantifying the spatio-temporal

and spectro-temporal evolution of �nite amplitude planar nonlinear acoustic waves

exactly via second order nonlinear governing equations, as derived from the contin-

uum gas dynamics (compressible Navier Stokes) equations in this chapter. In later

chapters, we study the evolution of �nite amplitude planar nonlinear acoustic waves

in three canonical con�gurations, traveling waves (TW), standing waves (SW), and

randomly initialized Acoustic Wave Turbulence (AWT) utilizing these equations.

2.2 Governing equations and scaling analysis

In this section, we derive the governing equations for nonlinear acoustics truncated

up to second order (in the acoustic perturbation variables) for a single-component

ideal gas. We begin with fully compressible one-dimensional Navier-Stokes equations

for continuum gas dynamics and analysis of entropy scaling with pressure jumps in

weak shocks formed due to the steepening of nonlinear acoustic waves (Section 2.2.1).

We then brie�y discuss the variable decomposition and non-dimensionalization in Sec-

tion 2.2.2, followed by the derivation of second order governing equations for nonlinear

acoustics in Section 2.2.3.
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2.2.1 Fully compressible 1D Navier-Stokes and entropy scaling in weak

shocks

One-dimensional governing equations of continuum gas dynamics (compressible

Navier-Stokes) for an ideal gas are given by,

∂ρ∗

∂t∗
+
∂(ρ∗u∗)

∂x∗
= 0, (2.1)

∂

∂t∗
(ρ∗u∗) +

∂

∂x∗
(
ρ∗u∗2

)
= −∂p

∗

∂x∗
+

∂

∂x

((
4

3
µ∗ + µ∗B

)
∂u∗

∂x∗

)
, (2.2)

ρ∗T ∗
(
∂s∗

∂t∗
+ u∗

∂s∗

∂x∗

)
=

∂

∂x∗

(
µ∗C∗p
Pr

∂T ∗

∂x∗

)
+

(
4

3
µ∗ + µ∗B

)(
∂u∗

∂x∗

)2

, (2.3)

which are closed by the ideal gas equation of state,

p∗ = ρ∗R∗T ∗, (2.4)

where p∗, u∗, ρ∗, T ∗, s∗, respectively, denote total pressure, velocity, density, temper-

ature, and entropy of the �uid, x∗ and t∗ denote space and time, and µ∗ denotes

dynamic viscosity. Results in this chapter and subsequent chapters have been ob-

tained by DNS of Eqs. (2.1)-(2.3), to resolve all the length scales of planar nonlinear

acoustic waves. For our simulations (see Section 3.3), we choose the gas speci�c

constants for air at standard temperature and pressure (STP),

R∗ = 287.105
m2

s2 ·K , µ∗B = 0, P r = 0.72. (2.5)

Planar nonlinear acoustic waves steepen and form weak shocks. For weak shocks, the

smallest length scale (shock-thickness) is also signi�cantly larger than the molecular

length scales. Hence, in this work, we neglect the molecular vibrational e�ects in the

single component ideal gas (µ∗B = 0) , typically modeled via bulk viscosity e�ects [45].
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(a)

(b)

Figure 2.1. : Weak shock wave structure (a) pressure p∗ and (b) entropy s∗ propagating
with a speed a∗s > a∗0 obtained from DNS (see Section 3.3). ∆s∗/R∗ and s∗max/R

∗ are
the entropy jump and maximum entropy respectively. With increasing viscosity, the
peak in entropy remains constant. The DNS data has been obtained for base state
viscosity values given in Table 3.1.

Across a freely propagating planar weak shock (�gure 2.1), the entropy jump (∆s∗ =

s∗2 − s∗1) is given by the classical gas-dynamic relation [46],

∆s∗

R∗
=

1

γ − 1
ln

(
1 +

2γ

γ + 1

(
M2 − 1

))
− γ

γ − 1
ln

(
γ + 1

γ − 1 + 2/M2

)
, (2.6)

where M is the Mach number, given by,

∆p∗

γp∗1
=
p∗2 − p∗1
γp∗1

=
2

γ + 1

(
M2 − 1

)
, (2.7)
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and ∆p∗ = p∗2− p∗1 is the pressure jump with p∗1 and p
∗
2 being the pre-shock and post-

shock pressures, respectively. Near the in�ection point of the �uid velocity pro�le,

the entropy reaches a local maximum (s∗ = s∗max). According to Morduchow and

Libby [47], maximum entropy s∗max assuming µ∗B = 0 and Pr = 3/4, can be obtained

as,
s∗max

R∗
=

1

γ − 1
ln

(
1 +

γ − 1

2
M2 (1− ξ) ξ γ−1

2

)
, (2.8)

where,

ξ =
γ − 1

γ + 1
+

2

γ + 1

1

M2
. (2.9)

Figure 2.2. : Entropy jump ∆s∗ = s∗2−s∗1 and maximum entropy generated s∗max versus
pressure jump ∆p∗ across a planar shock wave. In the labeled region (∆p∗/γp∗1 <
1, referred as `weak shocks' hereafter), the entropy jump ∆s∗ scales as O (∆p∗3),
whereas the maximum entropy generated s∗max scales as O (∆p∗2), approximately.
Markers denote DNS data (see Section 3.3), ( , ) µ∗ = 7.5 × 10−3 kg·m−1·s−1; ( , ),
µ∗ = 7.5 × 10−4 kg·m−1·s−1; ( , ), µ∗ = 7.5 × 10−5 kg·m−1·s−1 for varying values of
∆p∗. Solid lines correspond to Eqs. (2.6) and (2.8).
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For weak shock waves, (∆p∗/γp∗1 < 1), the entropy jump ∆s∗ and maximum

entropy s∗max scale with pressure jumps as (cf. �gure 2.2),

∆s∗ = O
(
∆p∗3

)
, s∗max = O

(
∆p∗2

)
, (2.10)

independent of µ∗ (cf. Eqs. (2.6) and (2.8)). The overall entropy jump ∆s∗ is due to

irreversible thermoviscous losses occurring within the shocks. However, the overshoot

in entropy (s∗max > ∆s∗) is due to both reversible and irreversible processes, and is

not in violation of the second law of thermodynamics [47]. Moreover, in the range of

pressure jumps considered in the DNS (see Section 3.3), the maximum Mach number

of the shock is around M ≈ 1.4, which is well within the limits of validity of the

continuum approach [48]. Hence, it is physically justi�ed to draw conclusions regard-

ing the smallest length scales through the governing equations based on continuum

approach and assuming thermodynamic equilibrium.

2.2.2 Perturbation variables and non-dimensionalization

In this section, we utilize the previous consideration on the second order scaling

of the maximum entropy s∗max inside a weak shock wave to derive second order non-

linear acoustics equations. To this end, we decompose the variables in base state

and perturbation �elds and derive equations containing only linear and quadratic

terms in perturbation �elds. Denoting the base state with the superscript ()0 and the

perturbation �elds with the superscript ()′, we obtain,

ρ∗ = ρ∗0 + ρ∗′, p∗ = p∗0 + p∗′, (2.11a)

u∗ = u∗′, s∗ = s∗′, T ∗ = T ∗0 + T ∗′, (2.11b)
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where no mean �ow u∗0 = 0 is considered and s∗0 is arbitrarily set to zero. We neglect

the �uctuations in the dynamic viscosity as well, i.e.,

µ∗ = µ∗0. (2.12)

While in classic gas dynamics, pre-shock values are used to normalize �uctuations or

jumps across the shock (e.g. see Eq. (2.7)), hereafter we choose base state values to

non-dimensionalize the nonlinear acoustics equations,

ρ =
ρ∗

ρ∗0
= 1 + ρ′, p =

p∗

γp∗0
=

1

γ
+ p′, (2.13a)

u =
u∗

a∗0
= u′, s =

s∗

R∗
= s′, T =

T ∗

T ∗0
= 1 + T ′, (2.13b)

x =
x∗

L∗
, t =

a∗0t
∗

L∗
. (2.13c)

where L∗ is the length of the one-dimensional periodic domain. As also typically

done in classical studies of homogeneous isotropic turbulence [20, 49, 50, 51, 52, 53],

periodic boundary conditions represent a common (yet not ideal) way to approximate

in�nite domains; as such, a spurious interaction between the �ow physics that one

wishes to isolate and the periodic box size may occur. For the TW and SW test cases

analyzed herein, L∗ corresponds to the initial (and hence largest) reference length

scale of the acoustic perturbation; in the AWT case, the value of L∗ should be chosen

as much larger than the integral length scale ` or Taylor microscale λ (see Section 3.4),

which truly de�ne the state of turbulence.

Due to thermodynamic nonlinearities, wave propagation velocity increases across

a high-amplitude compression front, resulting in wave-steepening [3] and hence gen-

eration of small length scales associated with increasing temperature and velocity

gradients responsible for thermoviscous dissipation. The increase in thermoviscous

dissipation results in positive entropy perturbations peaking within the shock struc-

ture. For pressure jumps ∆p∗/γp∗1 < 1, the maximum entropy scales approximately as

O (∆p∗2) (cf. �gure 2.2). Moreover, as we discuss in a later section (see Section 3.2),
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the second order nonlinear acoustic equations impose a strict limit of |p′| < 1/γ

(' 0.714 for γ = 0.72) for base state normalized (Eq. (2.13)) (not pre-shock state

normalized (Eq. (2.7))) perturbations. Hence, in our simulations (see Section 3.3),

we consider a suitable range of 10−3 < p′ < 10−1, which satis�es the aforementioned

constraints. Thus, the second order scaling of entropy holds in our simulations.

Below, we utilize this entropy scaling to derive the correct second order nonlinear

acoustics equations governing the spatio-temporal evolution of dimensionless pertur-

bation variables p′ and u′, as de�ned in Eq. (2.13).

2.2.3 Second order nonlinear acoustics equations

For a thermally perfect gas, the di�erential in dimensionless density ρ can be

related to di�erentials in dimensionless pressure p and dimensionless entropy s as,

dρ =

(
∂ρ

∂p

)
s

dp+

(
∂ρ

∂s

)
p

ds,

=
ρ

γp
dp− ρ(γ − 1)

γ
ds. (2.14)

Nondimensionalizing the continuity Eq. (2.1) and substituting Eq. (2.14), we obtain,

∂ρ

∂t
+
∂ρu

∂x
= 0,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= (γ − 1)p

(
∂s

∂t
+ u

∂s

∂x

)
. (2.15)

Substituting the dimensionless forms of Eqs. (2.3) and (2.4) and utilizing the decom-

position given in Eqs. (2.13), we obtain the following truncated equation for pressure

perturbation p′,

∂p′

∂t
+
∂u′

∂x
+ γp′

∂u′

∂x
+ u′

∂p′

∂x
= ν0

(
γ − 1

Pr

)
∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
. (2.16)
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Similarly, the truncated equation for velocity perturbation u′ is obtained as,

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u′2

2
− p′2

2

)
=

4

3
ν0
∂2u′

∂x2

+O
(
ρ′2p′, ρ′3p′

)
. (2.17)

In Eqs. (2.16) and (2.17), ν0 is the dimensionless kinematic viscosity given by,

ν0 =
µ∗0

ρ∗0a
∗
0L
∗ , (2.18)

and quanti�es viscous dissipation of waves relative to propagation. Equations (2.16)

and (2.17) constitute the nonlinear acoustics equations truncated up to second order,

governing spatio-temporal evolution of �nite amplitude acoustic perturbations p′ and

u′. The entropy scaling (s∗max = O (∆p∗2)) discussed previously results in the dissi-

pation term on the right hand side of Eq. (2.16). The left hand side of Eqs. (2.16)

and (2.17) contains terms denoting linear and nonlinear isentropic acoustic wave prop-

agation. The Detailed derivation of Eqs. (2.16) and (2.17) is given in Appendix A,

where we also show that the nonlinear terms on the left hand side (LHS) of Eqs. (2.16)

and (2.17) are independent of the thermal equation of state. The functional form of

the second order perturbation energy norm (E(2), Eq (3.10)) � being exclusively dic-

tated by such terms (see Section 3.2) � is independent of the thermal equation of

state of the gas. The results shown in this work focus on ideal-gas simulations merely

for the sake of simplicity, with no loss of generality pertaining to inviscid nonlinear

(up to second order) spectral energy transfer dynamics.

We note that, Eq. (2.16) consists of the velocity derivative term (γp′∂u′/∂x), and is

di�erent from those obtained by Naugol'nykh and Rybak [54], which in dimensionless

form read,

∂p′

∂t
− (γ − 1)p′

∂p′

∂t
+
∂u′

∂x
+ p′

∂u′

∂x
= 0, (2.19)

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u′2

2
− p′2

2

)
= 0. (2.20)



18

We adopt Eqs. (2.16) and (2.17) throughout the study since they represent the trun-

cated governing equations exactly. Unlike Naugol'nykh and Rybak [54], we do not

approximate the density ρ using the Taylor series and only use the total di�erential

form given in Eq. (2.14).

Additionally, we note that Eqs. (2.16) and (2.17) can be combined into Wester-

velt's equation [1] only if the Lagrangian de�ned as,

L =
u′2

2
− p′2

2
, (2.21)

is zero, which holds only for linear pure traveling waves. The derivation of Burgers'

equation in nonlinear acoustics follows from the Westervelt's equation [1]. Hence,

it is inadequate in modeling general nonlinear acoustics phenomena involving mixed

phasing of nonlinear waves which occurs in the Standing Wave (SW) and Acoustic

Wave Turbulence (AWT) cases analysed here.
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3. ENERGY CASCADE AND DECAY OF NONLINEAR ACOUSTIC WAVES

The contents of this chapter have been published as a regular article in Physical

Review E [43] (see Sections III - VII) and have been reported here in abridged form

with minor modi�cations.

3.1 Introduction

In this chapter, we analyze the energy dynamics of decaying nonlinear acoustic

waves utilizing three canonical con�gurations, traveling waves (TW), standing waves

(SW), and randomly initialized Acoustic Wave Turbulence (AWT) utilizing the second

order equations derived in the previous chapter and DNS of the fully compressible

Navier-Stokes equations. The spectral energy and decay dynamics of 1D Burgers'

turbulence have been studied extensively by Kida [55], Gurbatov et al. [56, 57], Woy-

czynski [58], Fournier and Frisch [59], and Burgers [60]. However, the equations

of second order nonlinear acoustics can be reduced to Burgers' equations only with

the restrictive assumption of pure traveling waves (TW). Consequently, we utilize the

continuum gas dynamics governing equations to elucidate the spectral energy cascade

and decay dynamics of nonlinear acoustics. The decay of nonlinear perturbations is

governed by viscosity and thermal conductivity (thermoviscous di�usion). The decay

exhibits a power law in time due to the gradual increase of the length scale over which

the thermoviscous di�usion acts. Such decay dynamics occur due to the separation

of energy containing and di�usive length scales and resemble those of decaying ho-

mogeneous isotropic turbulence (HIT), which also have been studied extensively in

the literature both theoretically and experimentally [49, 61, 62, 63].

We develop theoretical arguments based on the second order nonlinear acoustics

equations derived in the previous chapter, and compare our results with DNS re-
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sults of fully compressible Navier Stokes Eqs. (2.1)-(2.3). We analyze various length

scales associated with the decaying nonlinear acoustic waves, as well as the spectra

of waveforms.

3.2 Second order perturbation energy

In this section we derive a new perturbation energy function for nonlinear acoustic

waves utilizing Eqs. (2.16) and (2.17). To this end, we derive the perturbation energy

conservation relation (energy corollary) for high amplitude acoustic perturbations.

We show that the spatial average of the perturbation energy function satis�es the

de�nition of the Lyapunov function for high amplitude acoustic perturbations and

evolves monotonically in time (cf. �gure 3.2). Utilizing the energy corollary, we derive

spectral energy transport relations in further sections.

Multiplying Eqs. (2.16) and (2.17) with p′ and u′, respectively, and adding, we

obtain,

∂

∂t

(
p′2

2
+
u′2

2

)
+

∂

∂x

(
u′p′ +

u′3

3

)
+ γp′2

∂u′

∂x
= ν0

(
γ − 1

Pr

)
p′
∂2p′

∂x2
+

4

3
ν0u

′∂
2u′

∂x2
.

(3.1)

Spatial averaging of Eq. (3.1) over a periodic domain [0, L] yields,

d
〈
E(1)

〉
dt

= −
〈
γp′2

∂u′

∂x

〉
− ν0

(
γ − 1

Pr

)〈(
∂p′

∂x

)2
〉
− 4

3
ν0

〈(
∂u′

∂x

)2
〉
, (3.2)

where 〈.〉 is the spatial averaging operator,

〈.〉 =
1

L

∫ L

0

(.) dx, (3.3)

and

E(1) =
u′2

2
+
p′2

2
, (3.4)
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is the �rst order isentropic acoustic energy. Equation (3.2) suggests that, in a lossless

medium (ν0 → 0),
〈
E(1)

〉
would exhibit spurious non-monotonic behavior in time

due to the �rst term on right hand side. Such non-monotonic behaviour is con�rmed

by the DNS results shown in �gure 3.2. Consequently, the linear acoustic energy

norm E(1) does not quantify the perturbation energy correctly for high amplitude

perturbations since the spatial average
〈
E(1)

〉
supports spurious growth and decay in

the absence of physical sources of energy. The corrected perturbation energy function

can be obtained upon recursively evaluating the velocity derivative term (γp′2∂u′/∂x

in Eq. (3.1)) utilizing Eq. (2.16) as,

γp′2
∂u′

∂x
= − ∂

∂t

(
γp′3

3

)
− ∂

∂x

(
γu′p′3

3

)
−γ
(
γ − 1

3

)
p′3
∂u′

∂x
− ν0(γ − 1)

Pr
γp′2

∂p′

∂x
.

(3.5)

Figure 3.1. : Comparison of perturbation energy function for nonlinear acoustic waves
E(2) with the linear acoustic energy E(1) in the case of p′ = u′ (assumed for illustrative
purpose). The correction f(p′) is independent of u′.
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Furthermore, the third term in above Eq. (3.5) on the right can be further evaluated

as,

γ

(
γ − 1

3

)
p′3
∂u′

∂x
= − ∂

∂t

(
γ

4

(
γ − 1

3

)
p′4
)

− ∂

∂x

(
γ

4

(
γ − 1

3

)
u′p′4

)
− γ

(
γ − 1

3

)(
γ − 1

4

)
p′4
∂u′

∂x
− ν0(γ − 1)

Pr
γ

(
γ − 1

3

)
p′3
∂2p′

∂x2
,

(3.6)

and so on. Continued substitution according to Eqs. (3.5) and (3.6) yields the closure

of the system and the following energy corollary,

∂E(2)

∂t
+
∂I

∂x
= ν0

(
γ − 1

Pr

)
h(p′)

∂2p′

∂x2
+

4

3
ν0u

′∂
2u′

∂x2
, (3.7)

where,

I(p′, u′) = p′u′ +
u′3

3
+ u′f(p′), (3.8)

is the intensity (energy �ux) of the �eld, h(p′) is given by,

h(p′) = p′ +
∂f(p′)

∂p′
=
∂E(2)

∂p′
. (3.9)

and E(2) is given by,

E(2)(p′, u′) =
u′2

2
+
p′2

2
+ f(p′) = E(1) + f(p′), (3.10)

and de�nes the second order perturbation energy for high amplitude acoustic per-

turbations. The energy corollary Eq. (3.7) is mathematically exact for the governing

Eqs. (2.16) and (2.17).

The correction term f(p′) in E(2) appears due the thermodynamic nonlinearities

and can be derived in the closed form as,

f(p′) =
∞∑
n=2

Tn =
∞∑
n=2

(−1)n+1γp
′n+1

n+ 1

n∏
i=3

(
γ − 1

i

)
, (3.11)
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where T2 and T3 can be identi�ed in Eqs. (3.5) and (3.6), respectively. Upon isolating

the nth term of the above in�nite series as,

Tn = (−1)n+1γp
′n+1

n+ 1

(
γ − 1

3

)(
γ − 1

4

)
· · ·
(
γ − 1

n

)
︸ ︷︷ ︸

n−2 terms

. (3.12)

Multiplied fractions in the Eq. (3.12) above yield the nth term as,

Tn = − 2γ

(γ − 1) (2γ − 1)
(γp′)

n+1

(
1/γ

n+ 1

)
. (3.13)

(a) (b) (c)

Figure 3.2. : Spatial pro�le of �nite amplitude waves (top) for TW(a), SW(b), and
AWT(c). Evolution of the average perturbation energy (

〈
E(2)

〉
(�);

〈
E(1)

〉
(−−))

evaluated from the DNS data (bottom) scaled by the initial value against scaled time
t/τ (cf. Eq. (3.33)) for increasing values of perturbation amplitude Arms de�ned in
Eq. (3.16) at ν0 = 1.836×10−7 (see Table 3.1). The curves are shifted vertically by 0.25
for illustrative purpose only. With increasing perturbation amplitude Arms, the vari-
ation of linear acoustic energy norm < E(1) > becomes increasingly non-monotonic.
The vertical dashed line (bottom) highlights the end of approximately inviscid spec-
tral energy cascade regime. In this regime, the energy is primarily redistributed in
the spectral space due to the nonlinear propagation (ε ' 0).
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Finally, the energy correction f(p′) can be recast as,

f(p′) =
∞∑
n=2

Tn =− 2γ

(γ − 1) (2γ − 1)

(
(1 + γp′)

1/γ − 1− p′ + (γ − 1) p′2

2

)
. (3.14)

The correction function f(p′) de�ned in Eq. (3.14) accounts for second order isentropic

nonlinearities and is not a function of entropy perturbation. Hence, E(2) accounts

for the e�ect of high amplitude perturbations on perturbation energy isentropically.

We note that this separates E(2) fundamentally from generalized linear perturbation

energy norms, such as the ones derived by Chu [64] for small amplitude non-isentropic

perturbations, and by Meyers [65] for acoustic wave propagation in a steady �ow.

Moreover, as discussed in the previous section (and shown in Appendix A), since the

isentropic nonlinearities on the LHS of Eqs. (2.16) and (2.17) are independent of the

thermal equation of state, the functional form of E(2) and I are also independent of

the equation of state. However, the dissipation term on the right hand side of the

energy corollary Eq. (3.7) may change with the thermal equation of state.

The energy correction f(p′) is in�nite order in pressure perturbation p′ and con-

verges only for perturbation magnitude |p′| < 1/γ thus naturally yielding the strict

limit of validity of second order acoustic equations in modeling wave propagation

and wave steepening. Figure 3.1 shows the newly derived second order perturbation

energy E(2) compared against the isentropic acoustic energy E(1). Both E(2) and E(1)

are non-negative in the range |p′| < 1/γ (p′ = u′ is assumed for illustrative purpose).

Furthermore, E(2) is asymmetric in nature, with larger energy in dilatations compared

to compressions of same magnitude, as shown in �gure 3.1. Such asymmetry signi�es

that the medium (compressible ideal gas in the present study) relaxes towards the

base state faster for �nite dilatations compared to compressions.

For compact supported or spatially periodic perturbations, the energy conserva-

tion Eq. (3.7) shows that the spatially averaged energy
〈
E(2)

〉
decays monotonically
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in time (in the absence of energy sources) accounting for the nonlinear interactions

i.e.,

˙V =
d
〈
E(2)

〉
dt

= −ν0

(
γ − 1

Pr

)〈
∂2E(2)

∂p′2

(
∂p′

∂x

)2
〉
− 4

3
ν0

〈(
∂u′

∂x

)2
〉

= 〈D〉 = −ε ≤ 0, (3.15)

where D is the perturbation energy dissipation and ε is the negative of its spatial

average. The spatial average
〈
E(2)

〉
is non-negative (E(2) ≥ 0), and Eq. (3.15) and

�gure 3.2 con�rm that
〈
E(2)

〉
evolves monotonically in time in the absence of physical

energy sources. Hence, the spatial average of the perturbation energy function
〈
E(2)

〉
de�nes the Lyapunov function V of the nonlinear acoustic system governed by the set

of second order governing Eqs. (2.16) and (2.17) exactly. The spatial average
〈
E(2)

〉
should be used for studying the stability of nonlinear acoustic systems [66, 67], which,

however, falls beyond the scope of this work.

Wave-front steepening entails cascade of perturbation energy into higher wavenum-

bers thus broadening the energy spectrum. A fully broadened spectrum of acoustic

perturbations exhibits energy at very small length scales which causes high thermo-

viscous energy dissipation. We analyse the separation of length scales and energy

decay caused by nonlinear wave steepening and thermoviscous energy dissipation in

the following sections. To this end, we utilize the direct numerical integration of

Navier-Stokes Eqs. (2.1)-(2.4) resolving all the length scales (DNS) and the exact

energy corollary Eq. (3.7) for second order truncated Eqs. (2.16) and (2.17).

3.3 High Fidelity Simulations with Adaptive Mesh Re�nement

We perform shock-resolved numerical simulations of 1D Navier-Stokes (DNS)

Eqs. (2.1)-(2.4) with Adaptive Mesh Re�nement (AMR). We use the perturbation
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Table 3.1. : Simulation parameter space for TW, SW, and AWT cases listing base
state dimensionless viscosity ν0 (cf. Eq. (2.18)), initial characteristic perturbation
amplitude Arms,0 (cf. Eq. (3.16)), and dimensional characteristic perturbation in
velocity u∗rms and pressure p∗rms �elds (Eq. (3.17)).

ν0 1.836×10−5 1.836×10−6 1.836×10−7

Arms,0 10−3 10−2 10−1

u∗rms (m/s) 0.347 3.472 34.725

p∗rms (kPa) 0.142 1.419 14.185

energy E(2) de�ned in Eq. (3.10) to de�ne the characteristic dimensionless perturba-

tion amplitude Arms as,

Arms =
√
〈E(2)〉, (3.16)

which is varied in the range 10−3 − 10−1. The dimensionless kinematic viscosity at

base state ν0 is also varied from 1.836×10−5 to 1.836×10−7. The base state conditions

in the numerical simulations correspond to STP, i.e. p∗0 = 101325 Pa and T ∗0 = 300 K.

The goal of spanning Arms and ν0 over three orders of magnitude is to achieve

widest possible range of energy cascade rate and dissipation within computationally

feasible times. Equation (3.16) yields the de�nitions of the perturbation Reynolds

number ReL , characteristic perturbation velocity �eld u∗rms, and pressure �eld p∗rms

as,

ReL =
Armsa

∗
0L
∗

ν∗0
, u∗rms = a∗0Arms, p∗rms = ρ∗0a

∗
0

2Arms, (3.17)

where ReL denotes ratio of di�usive to wave steepening time scale over the length L.

In the simulations, we keep ReL � 1, which corresponds to very fast wave steepening

rates compared to di�usion. In further sections (see Section 3.4), we de�ne the wave

turbulence Reynolds number Re` based on the integral length scale `. Below, we

brie�y discuss the numerical scheme utilized for shock-resolved simulations and out-
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Figure 3.3. : Illustration of the binary tree implementation of Adaptive Mesh Re�ne-
ment (AMR) technique (top left). The mesh is re�ned based on the resolution error
in pressure �eld in each cell acting as a node of a binary tree. The pressure �eld
shown (middle) corresponds to the randomly initialized AWT case with Arms = 10−1,
ν0 = 1.836×10−6 (Table 3.1) at t/τ = 0.04. The inset shows the resolved shock wave
with (+) denoting the cell interfaces. The mesh re�nement levels (bottom) show the
depth d of the binary tree.

line the initialization of the three con�gurations (TW, SW, and AWT) for numerical

simulations.

3.3.1 Numerical approach

We integrate the fully compressible 1D Navier-Stokes Eqs. (2.1)-(2.3) in time

utilizing the staggered spectral di�erence (SD) spatial discretization approach [68]. In

the SD approach, the domain is discretized into cells. Within each cell, the orthogonal

polynomial reconstruction of variables allows numerical di�erentiation with spectral
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accuracy. We refer the reader to the work by Kopriva and Kolias [68] for further

details.

To accurately resolve spectral energy dynamics at all length scales, i.e. for resolved

weak shock waves, we combine the SD approach with the adaptive mesh re�nement

(AMR) approach as �rst introduced by Mavriplis [69] for spectral methods. The

SD-AMR approach eliminates the computational need of very �ne grid everywhere

for resolving the propagating shock waves. To this end, we expand the values of a

generic variable φ local to the cell in the Legendre polynomial space as,

φ =
N∑
i=1

φ̂iψi(x) (3.18)

where ψi(x) is the Legendre polynomial of (i−1)th degree. The polynomial coe�cients

φ̂i are utilized for estimating the local resolution error ε de�ned as [69],

ε =

(
2φ̂2

N

2N + 1
+

∫ ∞
N+1

2f 2
ε (n)

2n+ 1
dn

)1/2

, fε(n) = ce−σn, (3.19)

where fε is the exponential �t through the coe�cients of the last four modes in the

Legendre polynomial space. When the estimated resolution error ε exceeds a pre-

de�ned tolerance, the cell divides into two subcells, which are connected utilizing a

binary tree (shown in �gure 3.3). The subcells merge together if the resolution error

decreases below a pre-de�ned limit.

3.3.2 Initial conditions

We utilize the Riemann invariants for compressible Euler equations to initialize

the propagating traveling and standing wave cases in the numerical simulations. The
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Riemann invariants in terms of perturbation variables assuming nonlinear isentropic

changes are given by,

R− =
2

γ − 1

(
(1 + ρ′)

γ−1
2 − 1

)
− u′, (3.20)

R+ =
2

γ − 1

(
(1 + ρ′)

γ−1
2 − 1

)
+ u′, (3.21)

where R− and R+ are the left and right propagating invariants, respectively, and u′

and ρ′ are normalized velocity and density perturbations, as de�ned in Eq. (2.13).

Initial conditions for TW and SW cases correspond to R− = 0 and R− = R+ respec-

tively.

To initialize the broadband noise case, we �rst choose p′ and u′ pseudo-randomly

from a uniform distribution for the whole set of discretization points in x. Low-pass

�ltering of p′ and u′ yields,

˜̂pk(t = 0) = p̂kb0(k), ˜̂uk(t = 0) = ûkb0(k)

b0(k) =

1 k0 ≤ |k| ≤ kE

e−(|k|−kE)2 |k| > kE

. (3.22)

where p̂k and p̂k are the Fourier coe�cients of pseudo-random �elds p′ and u′, respec-

tively. ˜̂pk and ˜̂uk are the low-pass �ltered coe�cients. The inverse Fourier transform

of Eq. (3.22) yields smooth initial conditions with the initial spectral energy Êk, as

Table 3.2. : Initial spectral compositions for traveling wave (TW), standing wave
(SW), and acoustic wave turbulence (AWT). δ (·) is the Dirac delta function.

TW SW AWT

k0 1 1 1

kE 1 1 100

b0(k) 0 0 e−(|k|−kE)2

Êk A2
rmsδ(k0) A2

rmsδ(k0) A2
rms
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de�ned in Section 3.4 (cf. Eq. (3.27)). For TW and SW, only the single harmonic

(k = 1 in the current work) contains all of the initial energy. However, for AWT, Êk

is governed by the correlation function of velocity and pressure �elds. In Table 3.2,

we summarize the initial spectral energy for all three cases based on Eq. (3.22).

3.4 Scales of acoustic energy cascade and dissipation

In this section, we derive the analytical expressions of spectral energy, energy cas-

cade �ux, and spectral energy dissipation utilizing the exact energy corollary Eq. (3.7)

(see Section 3.2). We then identify the integral length scale `, the Taylor microscale λ,

and the Kolmogorov length scale η for TW, SW, and AWT cases in a periodic domain

utilizing the DNS data (see �gures 3.4 and 3.5 and Table 3.3). Temporal evolution

laws of these length scales yield energy decay laws, which are used for dimensionless

spectral scaling relations (see Section 3.5).

3.4.1 Spectral energy �ux and dissipation rate for periodic perturbations

The exact perturbation energy conservation equation is given by (cf. Eq. (3.7)),

∂E(2)

∂t
+
∂I

∂x
= D (3.23)

Integrating over the periodic domain, the above energy corollary can be converted

into the following statement of conservation of perturbation energy in the spectral

space,
d

dt

∑
|k′|≤k

Êk′ + Π̂k =
∑
|k′|≤k

D̂k′ , (3.24)

where the �rst term corresponds to the temporal rate of change of cumulative

spectral energy density,

dÊk
dt
≈ d

dt

( |ûk|2
2

+
|p̂k|2

2

)
+ <

(
p̂−k

dĝk
dt

)
, (3.25)
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(a)

(b)

Figure 3.4. : Schematic illustrating the comparison of various length scales associated
with spectral energy cascade in nonlinear acoustics in both spatial (a) and spectral
(b) space. (a) shows the perturbation velocity u′ (−−) and pressure p′ (�) �elds
in AWT obtained from the DNS data for ν0 =1.836×10−7 and Arms = 10−1. (b)

shows the corresponding spectral energy Êk in log-log space. The integral length
scale ` corresponds to the characteristic distance between the shock waves traveling
in the same direction. The Kolmogorov length scale η corresponds to the shock
wave thickness. The Taylor microscale λ is the di�usive length scale and satis�es
`� λ� η. L corresponds to the length of the domain.

and ĝ is the Fourier transform of g(p′) given by,

g(p′) =
γ

γ − 1

(
(1 + γp′)

1/γ − 1− p′
)
. (3.26)
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(a)

(b)

Figure 3.5. : Schematic illustrating the comparison of various length scales associated
with spectral energy cascade in nonlinear acoustics in the spectral space, and corre-
sponding variation of spectral energy �ux Π̂k (a) and spectral dissipation Dk (b). The
integral length scale ` corresponds to the characteristic distance between the shock
waves traveling in the same direction. The Kolmogorov length scale η corresponds to
the shock wave thickness. The Taylor microscale λ is the di�usive length scale and
satis�es `� λ� η. L corresponds to the length of the domain.

The spectral energy Êk is given by,

Êk =
|ûk|2

2
+
|p̂k|2

2
+ <

(
p̂−k

(
f̂(p′)

p′

)
k

)
. (3.27)

It is noteworthy that the correction in spectral energy does not follow directly from

the nonlinear correction function f(p′) derived in the physical space. In Eq. (3.25),

we have made the following approximation,

d

dt

(
<
(
p̂−k

(
f̂(p′)

p′

)
k

))
≈ <

(
p̂−k

dĝk
dt

)
(3.28)
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Table 3.3. : Summary of the three length scales `, λ, and η, respective de�nitions, and
the range of spectrum characterized by them. The integral length scale characterizes
the energy containing range (k0, kE). The Taylor microscale is the characteristic
of the energy transfer and dissipation range (kE, kδ). The Kolmogorov length scale
corresponds to the highest wavenumber generated as a result of nonlinear acoustic
energy cascade.

Length scale
Integral Taylor Kolmogorov

length scale Microscale length scale

` λ η

De�nition

√∑
k Êk/k

2∑
k Êk

√
2δ〈E(2)〉

ε
δ√
〈E(2)〉

Characteristic
(k0, kE) (kE, kδ) (kδ,∞)

spectral range

The second term Π̂k in Eq. (3.24) is the �ux of spectral energy density from wavenum-

bers |k′| ≤ k to |k′| > k and is given by,

Π̂k =
∑
|k′|≤k

<
(
p̂−k′

(
∂(û′g)

∂x

)
k′

+ p̂−k′

(
̂
u′
∂p′

∂x

)
k′

+
1

2
û−k′

∂
∂x

(u′2 − p′2)k′

∧)
. (3.29)

Finally, the spectral dissipation D̂k is given by,

D̂k = ν0
γ − 1

Pr
<
(
p̂−k

((
1 + ∂g

∂p′

)(
∂2p′

∂x2

)∧)
k

)
− 16π2

3
ν0k

2|ûk|2. (3.30)

Detailed derivation of Eqs. (3.24)-(3.30) is given in appendix B. Figures 3.4 and 3.5

summarize the typical shape of the spectral energy Êk, spectral energy �ux Π̂k, and

the spectral dissipation D̂k along with the relative positions of the three relevant

length scales, the integral length scale, `, the Taylor microscale, λ, and the Kolo-

mogorov length scale η in the spectral space. The spectro-temporal evolution of any

con�guration of nonlinear acoustic waves can be quanti�ed utilizing these length scales
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(a) (b) (c)

Figure 3.6. : Spectro-temporal evolution of Êk (top) and spectral �ux Π̂k (bottom) for

a TW (a), SW (b) and AWT (c). Spectral �ux Π̂k for a traveling wave simply increases

towards high wavenumbers. For a standing wave, Π̂k oscillates at low wavenumbers
cyclically due to collisions of oppositely traveling shock waves while high wavenumber
behaviour resembles that of a traveling shock. For AWT, the spectral broadening
occurs for k > kE with small �uctuations in time for k < kE.

and the respective evolution in time which is discussed in detail in the subsections

below. Table 3.3 summarizes these length scales and the characteristic spectral range.

In further sections, we discuss all the spectral quantities as functions of absolute value

of wavenumbers and drop the |.| notation for convenience.

The spectral energy �ux Π̂k, de�ned in Eq. (3.29), is in terms of interactions of

the Fourier coe�cients of the pressure p̂k and velocity ûk perturbations. For com-

pact support or periodic perturbations, Π̂k approaches zero in the limit of very large

wavenumbers k →∞,

lim
k→∞

Π̂k =

〈
∂I

∂x

〉
= 0. (3.31)

The last two terms in Eq. (3.29) result in Π̂k → 0 for large k for general acoustic

phasing. Hence, they are most relevant in SW and AWT cases. In a pure traveling
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wave (TW), u′ = p′ at �rst order due to which the last two terms in Eq. (3.29) become

negligible. Furthermore, the sequence of Π̂k also converges monotonically i.e.,

lim
k→∞

(
Π̂k−1 − Π̂k

)
→ 0+, (3.32)

as shown in Figs. 3.5(a) and 3.6. The �attening of the spectral energy �ux Π̂k

(Eq. (3.32)) begins at a speci�c wavenumber kδ associated to the Kolmogorov length

scale, η, as shown in �gures 3.4 and 3.5. The spectral energy Êk deviates o� the k−2

decay near the wavenumber kδ. Figure 3.6 shows the spectro-temporal evolution of

the spectral energy Êk and the �ux Π̂k for TW, SW, and AWT prior to formation of

shock waves.

For TW, Π̂k increases in time due to spectral broadening. In SW, Π̂k, while

increasing, also oscillates at low wavenumbers due to the periodic collisions of oppo-

sitely propagating shocks. A combination of these processes takes place in a randomly

initialized smooth �nite amplitude perturbation, which at later times develops into

AWT. At later times, nonlinear waves in all three con�gurations fully develop in to

shock waves. Up to the shock formation, the spectral dynamics of all con�gurations

simply involve increase of the spectral �ux Π̂k. The dimensionless shock formation

time τ can be estimated as,

τ =
2

(γ − 1)Arms,0

. (3.33)

Upon shock formation, the dynamic evolution of TW and SW remains phenomenolog-

ically identical. The isolated shocks propagate and the total perturbation energy of

the system decays due to thermoviscous dissipation localized around the shock wave.

However, for AWT, along with collisions of oppositely propagating shocks, those prop-

agating in the same direction coalesce due to di�erential propagating speeds. As we

discuss below, this modi�es the energy decay and spectral energy dynamics in AWT

signi�cantly compared to TW and SW.

In the sub-sections below, we elucidate the energy dynamics before and after shock

formation for TW, SW, and AWT. To this end, we de�ne and discuss the relevant
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(a) (b) (c)

Figure 3.7. : Temporal evolution of scaled total energy <E(2)> A−2
rms,0 (�) (top), dis-

sipation rate εA−3
rms,0 (−−) (mid) and normalized Taylor microscale λ/

√
δτ (bottom)

for TW (a), SW (b) and AWT (c) against the scaled time t/τ for varying pertur-
bation Reynolds number ReL. The time t0 signi�es fully broadened spectrum of the
perturbation �eld.

length scales as mentioned above, namely: the Taylor microscale λ, the integral length

scale `, and the Kolmogorov length scale η. Particular focus is given to the AWT

case due to modi�ed dynamics caused by shock coalescence.

3.4.2 Taylor microscale

In hydrodynamic turbulence, the Taylor microscale λ separates the inviscid length

scales from the viscous length scales [20, 21]. Due to the spectral energy cascade in

planar nonlinear acoustics, we note that the spectral energy varies as Êk ∼ k−2

due to the formation of shocks and the spectral dissipation due to thermoviscous

di�usion varies as D̂k ∼ k2Êk. Consequently, the dissipation acts over most of the

length scales with k > kE (�gure 3.5(b)), unlike hydrodynamic turbulence where

the viscous dissipation dominates only the smaller length scales [20, 21]. As shown
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in �gure 3.5(a), length scales in the range (kE, kδ) exhibit both dissipation D̂k and

energy transfer Π̂k. For k > kδ, Π̂k begins to converge monotonically to 0 and the

interval (kδ, 1/η) primarily exhibits dissipation D̂k only. The Taylor microscale λ

quanti�es the length scale associated to the whole dissipation range.

Utilizing the de�nition of the total perturbation energy
〈
E(2)

〉
and the dissipation

rate ε (cf. Eq. (3.15)), the microscale λ can be de�ned as,

λ(t) =

√
2δ 〈E(2)〉

ε
, (3.34)

where δ is the thermoviscous di�usivity, given by,

δ = ν0

(
4

3
+
γ − 1

Pr

)
. (3.35)

Equation (3.34) indicates that the Taylor microscale can be identi�ed as the geomet-

rical centroid of full energy spectrum, i.e.

λ ∼

√√√√ ∑
k Êk∑

k k
2Êk

. (3.36)

As the smaller length scales (higher harmonics) are generated, the dissipation

rate ε tends to increase reaching a maximum in time. The increase of dissipation

rate ε implies decrease of the length scale λ in time. Minima of λ indicates the

fully-broadened spectrum of energy limited by the thermoviscous di�usivity at very

large wavenumbers. Further spatio-temporal evolution of the system is dominated by

dissipation thus indicating the purely di�usive nature of the Taylor microscale, i.e.,

λ→ C
√
δt. (3.37)

The temporal evolution of λ is qualitatively similar for TW, SW, and AWT, the

constant C in Eq. (3.37) di�ers for TW and SW compared with AWT due to the

di�erent spatial structure of perturbations. The time t0 at which λ reaches minimum
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signi�es fully developed nonlinear acoustic waves. In case of AWT, it signi�es fully

developed acoustic wave turbulence.

Figure 3.7 shows the decay of scaled total perturbation energy
〈
E(2)

〉
A−2

rms,0 and

total dissipation rate εA−3
rms,0 for the TW, SW, and AWT. We note that the total

energy decays as a power law t−2 for both TW and SW, whereas, for AWT, the initial

decay law is t−2/3. Asymptotic evolution (at large t) of the Taylor microscale follows

from the decay laws as λ =
√
δt and λ =

√
3δt, respectively. Since energy decay law

of a single harmonic traveling and standing waves is rather trivial, we focus primarily

on the AWT case for further discussion.

3.4.3 Integral length scale

We identify the integral length scale ` as the characteristic length scale of the en-

ergy containing scales. In general, random smooth broadband noise (AWT) develops

into an ensemble of shocks, propagating left and right in a one-dimensional system.

For an ensemble of shock waves distributed spatially along a line, ` corresponds to

the characteristic distance between consecutive shock waves traveling in the same

direction, as shown schematically in �gures 3.4 and 3.5. Formally, we de�ne ` as,

` =

√√√√∑k
Êk
k2∑

k Êk
, (3.38)

which is identical to the integral length scale de�ned in Burgers' turbulence [56].

De�nition in Eq. (3.38) yields the centroid wavenumber of the initial energy spectrum

(unlike the Taylor microscale, which corresponds to the full energy spectrum) and

hence is characteristic of the large length scales of fully developed AWT. To elucidate
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the evolution of the total perturbation energy
〈
E(2)

〉
utilizing the integral length

scale, we assume the following model spectral energy density Êk,

Êk =

C1k
n k0 ≤ k ≤ kE

C2k
−2 kδ > k > kE

, (3.39)

where kn corresponds to the shape of initialized energy spectrum in the range (k0, kE)

(�gures 3.4 and 3.5). In this work, we only utilize the white noise initialized AWT

cases which correspond to n = 0 (see Table 3.2). Moreover,

C2 = C1k
n+2
E . (3.40)

(a)

(b)

Figure 3.8. : Evolution of the integral length scale ` (a) and the Reynolds number Re`
(b) de�ned in Eqs. (3.38) and (3.47), respectively, for all the cases of AWT considered.
For small thermoviscous di�usivity, ` increases approximately as t1/3 before saturating
to the dimensionless domain length L = 1 and Re` remains approximately constant.
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The wave numbers kE and kδ vary in time due to decaying energy. By de�nition, the

mean of perturbations is zero. Hence, the smallest wavenumber containing energy k0

(cf. �gures 3.4 and 3.5) is the reciprocal of the domain length L, i.e.,

k0 = 1/L. (3.41)

We note that the above model spectral energy Êk holds for two primary reasons.

Firstly, the energy cascade results in the k−2 decay of the spectral energy Êk due

to formation of shock waves [56]. In the limit of vanishing viscosity δ → 0, such

decay extends up to k → ∞ in which case the developed shock waves render the

system C0 discontinuous. Secondly, the shape of the spectral energy Êk for k → k0

corresponds to kn, which is also the shape of initial energy spectral at time t = 0. Such

argument corresponds to the concept of permanence of large eddies in hydrodynamic

turbulence [50], which in spectral space can be written as,

Êk(t) ≈ Êk(t = 0), as k → k0. (3.42)

Gurbatov et al. [56] utilized a similar argument in the context of Burgers' turbulence.

Combining the Eqs. (3.38)-(3.42), the integral length scale ` is given by,

` ≈


√

n+1
n−1

(
kn−2
E +kn−3

E k0+···kn−2
0

knE+kn−1
E k0+···kn0

)
n 6= 1√

2 ln(kE/k0)

k2E−k
2
0

n = 1.

, (3.43)

where we have used the simplifying approximation of kδ � kE. We note that the

Eq. (3.43) indicates the dependence of ` and consequently the energy decay law on

n. In the present work, we perform numerical simulations for an uncorrelated white

noise (�ltered) which corresponds to n = 0, and

` ≈ 1√
k0kE

. (3.44)
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As a result of permanence of large eddies, the decay of energy in the initial regime

of AWT is associated only with the decreasing kE or increasing integral length scale

`. Integrating Eq. (3.39) in the spectral space and di�erentiating in time yields (for

n = 0 in the current simulations),

d
〈
E(2)

〉
dt

= C1

(
2
dkE
dt

(
1− kE

kδ

)
+

(
kE
kδ

)2
dkδ
dt

)
(3.45)

≈ − 2C1

k0`3

d`

dt
. (3.46)

Above relation shows that derivation of the energy decay power law amounts to �nding

the kinetic equations of the integral length scale ` and the limiting wavenumber kδ.

For TW and SW, ` remains constant by de�nition. Consequently, the energy decay

rate only depends on decrease of wavenumber kδ and the coe�cient C2 due to the

thermoviscous di�usion (cf. Eq. (3.50) ). However, for an ensemble of shock waves

in AWT, ` increases monotonically in time, as shown in �gure 3.8(a) due to the

coalescence of shock waves propagating in the same direction. At large times, the

domain consists of only two shock waves propagating in opposite directions.

In the context of Burgers' turbulence in an in�nite one-dimensional domain, Burg-

ers [60] and Kida [55] have derived the appropriate asymptotic evolution laws for the

integral length scale ` based on the dimensional arguments. However, in the present

work, the �niteness of the domain renders the asymptotic analysis infeasible. Our

numerical results indicate that ` ∼ t1/3 (kE ∼ t−2/3) for randomly distributed shock

waves at various ReL values considered, as shown in �gure 3.8(a). Equations (3.46)

and (3.44) show that such scaling is consistent with the observed energy decay law〈
E(2)

〉
∼ t−2/3 thus validating the result in Eq. (3.46). It is noteworthy that decay

kE ∼ t−2/3 is a result analogous to the one discussed in Burgers' turbulence [55, 56, 60]

considered in an in�nite one-dimensional domain. Due to in�nitely long domain, the

average distance between the shocks approaches 1/kE (not `) simply due to larger

number of shocks in the domain separated by the distance 1/kE since kE corresponds
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to the largest wavenumber carrying initial energy, thus implying that mean distance

between the shocks increases as t2/3 as noted by Burgers [60].

Based on the integral length scale, the Reynolds number Re` can be de�ned as,

Re` = ReL`, (3.47)

which captures the ratio of the di�usive time scale to the wave turbulence time. Upon

formation of shock waves, the perturbation energy decays due to coalescence. Shock

waves coalesce locally thus increasing the characteristic separation between the shock

waves thus causing ` to increase. In this regime, the Reynolds number Re` remains

constant (�gure 3.8(b)) which denotes that the ratio of shock coalescence time scale

(`L∗)/(a∗0Arms) and the di�usive time scale (`L∗)2/ν∗0 remains constant. As the wave

turbulence decays further, `→ L with continued decay of energy. Consequently, Re`

also begins to decay.

3.4.4 Kolmogorov length scale

For spectral energy Êk ∼ k−2 over the intermediate range of wavenumbers, k ∈
(kE, kδ) (cf. �gures 3.4 and 3.5), the Taylor microscale can be estimated as,

λ ∼ 1√
kEkδ

, (3.48)

utilizing the Eq. (3.36). Equation (3.48) shows that λ, despite being a dissipative

scale, is not the smallest scale generated due to the energy cascade. Analogous to the

hydrodynamic turbulence, we de�ne the Kolmogorov length scale η [21] as the smallest

length scale generated as a result of the acoustic energy cascade. The length scale η

can be approximated by the balance of nonlinear steepening and energy dissipation,

i.e.,
A2

rms

η
∼ δ

Arms

η2
, η ∼ δ

Arms

, (3.49)
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where Arms is de�ned in Eq. (3.16). Figures 3.4 and 3.5 illustrates the integral length

scale ` and the Kolmogorov length scale η in a typical AWT �eld. Visual inspection

indicates `� η which is as expected. We note that η and 1/kδ evolve in time similarly,

di�ering only by a constant value. For AWT, this is immediately understandable

since, Eq. (3.48) shows that kδ ∼ t−1/3 and Eq. (3.49) shows that η ∼ t1/3 which

implies kδη remains constant when the energy decays. For TW and SW, the spectral

energy given by Eq. (3.39) corresponds to the degenerate case of k0 = kE = 1. For

such a form of spectral energy, the energy evolution (cf. Eq. (3.46)) changes to,

d
〈
E(2)

〉
dt

=
1

k0

dC2

dt

(
1− k0

kδ

)
+
C2

k2
δ

dkδ
dt
. (3.50)

As shown in �gure 3.7, the Taylor microscale λ →
√
δt. Consequently, for kE = k0

constant, Eq. (3.48) shows that kδ ∼ t−1. Equation (3.50) shows that the decay of

perturbation energy is due to decay in C2 and kδ. Our numerical results (cf. �gure 3.7)

show that for TW and SW,
〈
E(2)

〉
∼ t−2 which suggests that C2 ∼ t−2 for kδ � 1

from Eq. (3.50). Hence, the compensated energy spectrum k2Êk ∼ t−2 for both TW

and SW indicating that dissipation D̂k remains active over all the length scales k > k0

while the energy decays.

Equation (3.49) shows that the Reynolds number based on the Kolmogorov length

scale or the shock thickness Reη = ηReL remains constant in time,

Reη =
ρ∗0a
∗
0L
∗ηArms

µ∗0
=

4

3
+
γ − 1

Pr
. (3.51)

Above relation shows that Reη = O (1) indicating that η is the length scale at which

di�usion dominates the nonlinear wave steepening.

3.5 Scaling of spectral quantities

In this section, we discuss the variation and scaling of the energy Êk, the spectral

energy �ux Π̂k, and the cumulative dissipation
∑

k′<k D̂k′ for high amplitude TW, SW,
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(a)

(b)

(c)

Figure 3.9. : Fully developed spectra of compensated energy (a), spectral energy �ux
(b), and cumulative dissipation (c) for TW at time instant t0 ≈ 0.03. Harmonics
with wavenumbers such that kη < 1 contain all the energy. The spectral energy �ux
vanishes at kη ≈ 1 thus indicating numerical resolution of all the energy containing
harmonics. The marked regime 0.1 < kη < 1 signi�es the dissipation range. The
constant C ≈ 0.075. (�) Arms,0 = 10−1; (−−) Arms,0 = 10−2; (· · · ) Arms,0 = 10−3
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and AWT cases utilizing the length scale analysis presented in the previous sections.

We show that the spectral energy Êk and the cumulative dissipation
∑

k′<k D̂k′ for all
the cases can be collapsed on to a common structure versus the reduced wavenumber

kη however, the �ux Π̂k lacks such a universality.

As discussed in previous section (cf. Eq. (3.50)), the decay of total energy
〈
E(2)

〉
and dissipation rate ε for TW is given by,

〈
E(2)

〉
∼ t−2, and ε ∼ t−3, (3.52)

which are well known results for the Burgers' equation as well [70].

While the results in Eq. (3.52) are well known, we note that such power law decay

results in a universally constant structure of shock waves in the spectral space, as

shown in Figs. 3.9 and 3.10. Utilizing the estimate of Kolmogorov length scale η

given in Eq. (3.49), the energy dissipation rate ε and the Kolmogorov length scale η

can be related as,

ε ∼ A3
rms

`
, and η ∼ δ

(ε`)1/3
. (3.53)

Hence, the energy spectrum Êk can be written in the following collapsed form (�g-

ure 3.9a).

Êkk
2ε−2/3`1/3 ∼ CF (kη). (3.54)

In Eq. (3.54), the integral length scale ` is used for making the left hand expression

dimensionless. For TW and SW, the integral length scale ` remains constant by

de�nition (` = L). Hence, C in Eq. (3.54) is constant and can be attributed to

the Kolmogorov's universal equilibrium theory for hydrodynamic turbulence. F (.)

is a function which decays as the reduced wavenumber kη increases to 1. From the

numerical simulations for cases listed in Table 3.1 we obtain,

C ≈ 0.075. (3.55)
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(a)

(b)

(c)

Figure 3.10. : Fully developed spectra of compensated energy (a), spectral energy �ux
(b), and cumulative dissipation (c) for SW averaged over one time cycle after t0 ≈ 0.04.
Harmonics with wavenumbers kη < 1 contain all the energy. The spectral energy �ux
vanishes at kη ≈ 1 thus indicating numerical resolution of all the energy containing
harmonics. The constant C ≈ 0.075. (�) Arms,0 = 10−1; (−−) Arms,0 = 10−2; (· · · )
Arms,0 = 10−3
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Scaling of Π̂k with the energy dissipation rate ε shows the relative magnitude of

spectral energy �ux compared to the energy dissipation. For increasing Reynolds

numbers ReL, we note that Π̂k/ε increases but still remains less than 1 in the en-

ergy transfer and dissipation range, as shown in �gure 3.9(b). This highlights the

primary di�erence between energy spectra of nonlinear acoustic waves and hydro-

dynamic turbulence, in which, the energy transfer range does not exhibit viscous

dissipation [20]. However, in nonlinear acoustics, the dissipation occurs over all the

smaller length scales which do not contain energy initially (�gure 3.5(b)). Moreover,

for kη ≈ 0.1, the �ux Π̂k rapidly approaches to zero. In the regime kη > 0.1, scaled

cumulative dissipation
∑

k′<k D̂k′/ε→ 1 as kη → 1. Such functional forms of spectral

energy, spectral energy �ux, and cumulative dissipation can also be realized for the

SW case. At later times, the nonlinear evolution results in two opposite traveling

shock waves which collide with each other twice in one time period. Such collisions

cause instantaneous peaks in the dissipation rate ε and corresponding oscillations in

the Taylor microscale λ, as shown in �gure 3.7. However, the total energy
〈
E(2)

〉
decays monotonically by de�nition. In the spectral space, such collisions generate

periodic oscillations in the spectral energy �ux Π̂k, as shown in �gure 3.6. Averaging

over one such time cycle yields the energy spectra forms similar to that for TW, as

shown in �gure 3.10. Such cycle averaging is allowed since the total energy
〈
E(2)

〉
and the dissipation rate ε decay such that averaged behavior is identical to the one

of traveling waves. Furthermore, the value of the constant C is identical for SW. We

further note that for the case with lowest Reynolds number ReL (ν0 = 1.836 × 10−5

and A0,rms = 10−3), the spectra exhibit energy for kη > 1 (�gure 3.10(a) since the

Eq. (3.49) underpredicts η. This suggests that the nonlinear spectral energy transfer

is small compared to the spectral dissipation, as shown by �gure 3.10(b).

As discussed in previous sections, the decay phenomenology of AWT is di�er-

ent from that of TW and SW. Typical acoustic �eld u′(x, t), p′(x, t) for a randomly

initialized perturbation at a time after shock formation is shown in �gure 3.4(a).

The velocity �eld corresponds to randomly positioned shocks connected with almost
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(a)

(b)

(c)

Figure 3.11. : Fully developed spectra of compensated energy, (a), spectral energy �ux
(b), and cumulative dissipation (c) against scaled wavenumber kη for the randomly
initialized broadband noise (AWT) cases with Arms,0 and ν0 listed in Table 3.1 at
dimensionless time t/τ = τ0 ≈ 6 × 10−4. The marked regime 0.1 < kη < 1 signi�es
the dissipation range. (�) Arms,0 = 10−1; (−−) Arms,0 = 10−2; (· · · ) Arms,0 = 10−3
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straight slant lines (expansion waves) and the pressure �eld with identical distri-

bution of shocks but connected with horizontal lines. Shocks traveling in the same

direction collide inelastically and coalesce, while those traveling in opposite directions

pass through. As discussed previously, the integral length scale ` de�nes the average

distance between the adjacent shock traveling in the same direction. Due to gradual

coalescence of the shocks, ` increases in time. Moreover, as t → ∞, it is obvious

that two opposite traveling shocks remain in the domain and ` → L. We note that

such behaviour is similar to the Burgers' turbulence [55]. Figure 3.11 shows the fully

developed compensated spectra at scaled dimensionless time t/τ = t0 ≈ 6 × 10−4.

For AWT, the compensated energy spectrum Êkk
2ε−2/3`1/3 de�ned in Eq. (3.54) does

not remain constant in the energy transfer range of wavenumbers due to decay laws

of energy and dissipation derived in the previous section. Moreover, for lowest ReL

case, the spectra exhibit energy for kη > 1 (�gure 3.11(a)) due to underprediction of

η obtained via balancing of nonlinear wave propagation and thermoviscous dissipa-

tion e�ects. The dissipation acts at large length scales also in the lowest ReL case.

Consequently, the spectral energy �ux Π̂k is very small compared to dissipation ε and

the length scale η is primarily governed by di�usion only.

3.6 Concluding remarks

We have studied the spectral energy transport and decay of �nite amplitude pla-

nar nonlinear acoustic perturbations governed by fully compressible 1D Navier-Stokes

equations through shock-resolved direct numerical simulations (DNS) focusing on

propagating single harmonic traveling wave (TW), standing wave (SW), and randomly

initialized Acoustic Wave Turbulence (AWT). The maximum entropy perturbations

scale as p′2 for normalized pressure perturbation p′ ∼ O (10−3 − 10−1). Consequently,

the second order nonlinear acoustic equations are adequate to derive physical con-

clusions about spectral energy transfer in the system. Utilizing the second order

equations, we derived the analytical expression for corrected energy corollary for �-



50

nite amplitude acoustic perturbations yielding in�nite order correction term in the

perturbation energy density. We have shown that the spatial average of the corrected

perturbation energy density can be classi�ed as a Lyapunov function for the second

order nonlinear acoustic system with strictly monotonic behaviour in time.

Utilizing the corrected energy corollary, we derived the expressions for spectral

energy, spectral energy �ux, and spectral dissipation, analogous to the spectral energy

equation studied in hydrodynamic turbulence. Utilizing the spectral expressions, we

performed theoretical study of three possible length scales characterizing a general

nonlinear acoustic system, namely, the integral length scale `, the Taylor microscale

λ, and the Kolmogorov length scale η.

In traveling waves (TW) and standing waves (SW), ` remains constant in the

decaying regime. Spatial average of perturbation energy decays as
〈
E(2)

〉
∼ t−2 and

dissipation rate as ε ∼ t−3 in time. The Kolmogorov scale increases linearly in time

(η ∼ t) in the decaying regime. Moreover, the spectral energy for both traveling and

standing waves assumes the self-similar form: Êkk
2ε−2/3`1/3 ∼ 0.075f(kη).

In acoustic wave turbulence (AWT), due to gradual increase of the integral length

scale ` caused by the shock coalescence, the approximate decay laws are
〈
E(2)

〉
∼ t−2/3

and ε ∼ t−5/3, similar to the Burgers' turbulence [60]. While, various cases for AWT

qualitatively collapse with the scaling Êkk
2ε−2/3`1/3, quantitative scaling can only be

obtained utilizing a statistically stationary ensemble of shock waves combined with

random forcing, which falls beyond the current scope.
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4. THERMOACOUSTIC NONLINEAR ENERGY CASCADE

The contents of this chapter were previously published by Gupta, Lodato, Scalo in

Journal of Fluid Mechanics [5] and have been reported here in abridged form with

minor modi�cations.

4.1 Introduction

In previous chapter, we discussed the spectral energy cascade and decay in ini-

tialized nonlinear acoustic waves. In this chapter, we discuss thermoacoustically sus-

tained spectral energy cascade in a canonical thermoacoustically unstable resonator

exhibiting high amplitude (macrosonic) thermoacoustic waves at limit cycle. A com-

prehensive nonlinear theoretical and high-�delity modeling approach is adopted to

accurately describe macrosconic thermoacoustic waves. The travelling-wave looped

resonator, inspired by Yazaki et al. [24]'s experimental setup but geometrically opti-

mized via linear theory developed by Rott [25, 26, 27], has been designed to maximize

the growth rate of the quasi-travelling-wave second harmonic and thus achieve rapid

shock wave formation. Yazaki et al.'s [24] looped con�guration allows quasi-travelling-

wave acoustic phasing which facilitates faster nonlinear energy cascade compared to

standing wave resonators [28]. It is shown that the energy content in spectral do-

main resembles the equilibrium energy cascade observed in turbulence, similar to the

spectral energy distribution of an ensemble of acoustic waves interacting nonlinearly

among each other [29, 30]. As demonstrated by the numerical simulation data and

companion low-order nonlinear modeling, thermoacoustically sustained shock waves

exhibit inter-scale energy transfer dynamics analogous to Kolmogorov's equilibrium

hydrodynamic turbulent energy cascade [71]. Throughout, the results obtained via
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the proposed nonlinear model are veri�ed and compared with fully compressible high-

�delity Navier-Stokes simulations.

The development of an accurate nonlinear thermoacoustic wave propagation the-

ory and modeling framework warrants the support of high-�delity numerical simula-

tions. A high-order spectral di�erence numerical framework [68, 72, 73, 74] combined

with an arti�cial Laplacian viscosity [75] shock-capturing scheme has been adopted

for the present study. Moreover, the computational setup has been reduced to a

minimal-unit (or single-pore) con�guration, as done by Rahman et al. [76], to reduce

the computational cost and ensure the maximum possible numerical resolution in the

direction of shock propagation for a given number of discretization points, or degrees

of (numerical) freedom. In spite of this choice, full resolution of the propagating

shocks was still not attainable with the available resources.

4.2 Problem Formulation

4.2.1 Design of the minimal-unit model

The proposed computational setup (�gure 4.1, top) is a straight, two-dimensional,

axially periodic minimal-unit (or single-pore) thermoacoustic device composed of four

constant-area sections (a, b, c, and d). Such con�guration represents an idealization of

a looped thermoacoustic resonator (�gure 4.1, bottom) similar�but not identical�to

the one adopted by Yazaki et al. [24]. Adiabatic slip conditions are applied every-

where, with the exception of the thermoacoustic regenerator, or core (section b),

where isothermal no-slip walls are used to impose a linear wall-temperature distribu-

tion Tw(x) from the cold, TC , to the hot side temperature, TH , resulting in the base

temperature distribution, T0(x). A body force is added to suppress Gedeon streaming

(Section 4.2.2), which would otherwise cause convective heat transport away from

the hot end of section b and require the introduction of a thermal bu�er tube and

a secondary ambient heat exchanger [77], thus introducing further complications in

the proposed canonical setup (discussed in Section 4.2.2). The resulting relaxation
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of base state from TH to TC outside the regenerator is due to molecular di�usion.

Consequently, a di�usive thermal layer develops which is very thin compared to the

acoustic wave length and is neglected in the subsequent analysis. The uniform base

pressure and cold-side values of density and temperature are set to be equal to the

reference thermodynamic quantities P0 = Pref , ρC = ρref , TC = Tref (table 4.1), chosen

for air (Section 4.2.2). Stacking of any number of thus-conceived single-pore models

in the y direction, i.e. preserving the area ratio and increasing the number of pores

in the regenerator, would yield the same numerical results.

The minimal-unit choice is dictated by the need to maximize the numerical reso-

lution in the propagation direction of the captured shocks. Although full resolution

of the propagating shocks is still not computationally feasible due to the very large

length of the setup (of the order of 1m) compared to the typical shock thickness

scale (of the order of 100µm). Performing a fully resolved three-dimensional simu-

lation of an equivalent experimental setup would be (even more so) unfeasible: for

instance, the setup studied by Yazaki et al. [24] consists of two heat exchangers and

a ceramic catalyst with approximately 1000 pores. By design, the minimal-unit con-

�guration neglects the thermoviscous losses outside the regenerator that attenuate

the thermoacoustic ampli�cation. The two-dimensional e�ects of the curvature of the

resonator walls are also neglected. The former become less important as the ratio of

the pore diameter to resonator diameter and number of pores increases (42 and 1000,

respectively, in Yazaki's setup), and the latter are only relevant for very small ratios

of the curvature radius to acoustic wavelength (∼ 0.3 in Yazaki's setup, assuming

curvature radius of L/6 where L is the total length). In conclusion, performing a full

three-dimensional simulation taking into account approximately 1000 thermoacoustic

pores, viscous losses in the resonator, and the curvature e�ects, would not lead to any

signi�cant additional insights into the physics of thermoacoustically generated shock

waves, especially within the theoretical scope of the present study.
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Figure 4.1. : Two-dimensional axially periodic computational setup for minimal-unit
simulations (top, not to scale), geometrical parameters (bottom left), and qualitative
illustration of the equivalent experimental build-up of a variable-area looped ther-
moacoustic resonator (bottom right). Top �gure: (� �), adiabatic/sip conditions; (�),
isothermal/no-slip conditions. The minimal unit is traced in the bottom right with
dashed lines (� �). The listed geometrical parameters provide sub-optimal growth
rates across all the values of TH , the boxed quantities have been determined via
optimization (cf. �gure 4.2 and table 4.1).

The total length of the device is �xed to `a + `b + `c + `d = 2.58 m, taken from

the experimental setup of [24]. The height of the regenerator has been chosen such

that hb ∼ 2δk, where

δk =

√
2ν

ωPr
, (4.1)

Table 4.1. : Thermodynamic parameters for base state. Base pressure and cold-side
values of density and temperature are set to reference values: P0 = Pref , ρc = ρref ,
TC = Tref .

P0 ρC TC TH

101325Pa 1.176 kg/m3 300K
400K, 450K,
500K, 550K
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ν is the kinematic viscosity, Pr is the Prandtl number, and ω is the angular frequency

of the unstable mode. This results in a porosity hb/hc = 0.91. The area ratio hd/hc

and the length `c have been chosen to yield sub-optimal values of growth rates across

all hot-side temperature settings (�gure 4.2), assuring high enough thermoacoustic

instability to achieve rapid shock wave formation. This optimization has been carried

out with the system-wide numerical approach developed by Lin et al. [27]. Further

details of the linear stability analysis are given in [5].

4.2.2 Navier-Stokes calculations

Governing Equations

Fully compressible Navier-Stokes simulations are carried out by solving the con-

servation laws for mass, momentum, and total energy in two dimensions, given by

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0, (4.2a)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂

∂xi
p+

∂

∂xj
τij + δ1ifB, (4.2b)

∂

∂t
(ρE) +

∂

∂xj
[uj (ρE + p)] =

∂

∂xj
(uiτij − qj) , (4.2c)

respectively, where xi(x1, x2 or equivalently, x, y) are the axial and cross-sectional

coordinates, ui are the velocity components in each of those directions, and p, ρ,

T , and E are the instantaneous pressure, density, temperature, and total energy per

unit mass, respectively. Due to the propagation of �nite amplitude nonlinear acoustic

waves and the periodic nature of the setup, Gedeon streaming [78] is expected. The

mean �ow caused by the Gedeon streaming results in the transport of heat away from

the hot side of the regenerator into the whole device a�ecting the mean temperature

distribution outside the regenerator. Such thermal leakage is usually mitigated by

a secondary cold heat exchanger and a thermal bu�er tube to achieve steady-state
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conditions. Due to the inhomogeneous mean temperature outside the regenerator,

such a setup would exhibit a very large design parameter space. Moreover, the mean

�ow caused by the streaming would further disperse the acoustic waves, a�ecting the

wave steepening and thus delaying the steady state further. Such e�ects fall beyond

the scope of the present investigation. Thus, acoustic streaming in the current work

is purposefully suppressed. To this end, a uniform mean pressure gradient fB in the

axial direction is dynamically adjusted to relax the net axial mass �ow rate to zero.

The relevant expression for fB is:

fB =
α

∆t
(ṁ− ṁ0) , (4.3)

where α = 0.3 is a relaxation coe�cient, ∆t is the time step, ṁ is the instantaneous

volume averaged mass �ow rate, and ṁ0 = 0 is the target value. The viscous stress

1.1 1.3 1.5 1.7
hd/hc

0.52

0.56

0.60

0.64

` c
(m

)

1.20

1.60

2.00

2.
40 2.80

3.20

1.1 1.3 1.5 1.7
hd/hc

0.52

0.56

0.60

0.64 5.40

5.40

6.
00

6.60

7.
20

7.808.40

1.1 1.3 1.5 1.7
hd/hc

0.52

0.56

0.60

0.64 10.80

10.8011.40

12.00

12
.6

0

13.20

13.80

1.1 1.3 1.5 1.7
hd/hc

0.52

0.56

0.60

0.64 16.80

17.60

18.40

19.20

(a) (b) (c) (d)

TH 400K 450 K 500K 550K
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Figure 4.2. : Iso-contours of thermoacoustic growth rate, α, of the second harmonic
versus resonator area ratio, hd/hc, and length `c (see �gure 4.1) for hot-side temper-
atures TH = 400 K (a), TH = 450 K (b), TH = 500 K (c), and TH = 550 K (d). (�),
α > 0; (- -), α < 0; ( ), sub-optimal values `c = 0.59 m and hd/hc = 1.28 chosen
for present investigation (�gure 4.1). Growth rate values for each TH at sub-optimal
geometry are listed in the table.
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Figure 4.3. : Illustration of selection portions of the unstructured mesh near duct
interfaces for Grid A with total number of elements Nel = 2004.

tensor, τij, and heat �ux, qi, are formulated based on the Stokes and the Fourier laws

as

τij = 2µ

[
Sij −

1

3

∂uk
∂xk

δij

]
, qj = −µCp

Pr

∂T

∂xj
, (4.4a)

respectively, where Sij is the strain-rate tensor, given by Sij = 1
2

(∂uj/∂xi + ∂ui/∂xj),

Pr is the Prandtl number, and Cp is the speci�c heat capacity at constant pressure.

The working �uid is air, assumed to be calorically and thermally perfect. The dynamic

viscosity, µ(T ), is varied with the temperature according to the Sutherland's law,

µ(T ) = µref(T/TS,ref)
1.5(TS,ref + S)/(T + S) where S = 120 K is the Sutherland

constant, TS,ref = 291.15 K and µref = 1.827 × 10−5 kg·m−1·s−1. The values of the

other unspeci�ed �uid parameters, valid for air, are Pr = 0.72, the ratio of isobaric to

isochoric speci�c heat capacities γ = 1.4, the reference density ρref = 1.176 kg·m−3,

the pressure pref = 101 325 Pa, the temperature Tref = 300 K, and the gas constant

R = pref/(ρref Tref).

The fully compressible high-�delity Navier-Stokes calculations have been carried

out with the discontinuous �nite element sd3DvisP solver, an MPI parallelized For-

tran 90 code employing the spectral di�erence local spatial reconstruction for hexa-

hedral elements on unstructured grids [68, 72, 73, 74]. The solver reconstructs the

local solution inside each element as the tensor product of polynomials up to the user-

speci�ed order p = Np − 1, where Np is the number of solution points per dimension

inside the element. Inter-element discontinuities in the solution are handled utilizing
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the [79]'s �ux with the entropy correction by [80]. The numerical dissipation at the

element interfaces scales as ∆
Np+1
h where ∆h is the characteristic length scale of neigh-

bouring elements [81, 82]. Sub-cell shock capturing is enabled through a Laplacian

arti�cial di�usion term applied in regions of steep gradients, which are detected by

means of a modal sensor based on a Legendre polynomial expansion [75, 83]. The

time integration is carried out explicitly with a 3rd order Runge-Kutta scheme and

discretization order p = 3 during the transient, whereas a 5th order Runge-Kutta

scheme is adopted at the shock-dominated limit cycle. The same solver has been

used and validated in a wide variety of �ow con�gurations, including turbulent chan-

nel �ow [84, 85] and unsteady shock-wavy wall interaction problems [83, 86].

Results shown at shock-dominated limit cycle hereafter correspond to the �nest

computational grid simulated. The reader is referred to [5] for the detailed grid-

sensitivity analysis.

4.3 Regimes of Thermoacoustic Ampli�cation

Three di�erent regimes of thermoacoustic wave ampli�cation can be identi�ed by

visual inspection of the pressure time series in �gure 4.4. We attempt a rigorous

classi�cation here based on the dimensionless collapse of the nonlinear growth regime

of the spectral energy density (�gure 4.5), derived in more detail in Section 4.7.

4.3.1 Spectral energy density

Any acoustic dynamical model (linear or nonlinear) can be written as

∂X

∂t
= f(X), with X =

(
u′

a0

,
p′

ρ0a2
0

)T

, (4.5)
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Figure 4.4. : Time series of pressure �uctuations at x = 1.54 m (�gure 4.1) for
TH =450 K with insets showing regimes (i) modal growth, (ii) hierarchical spectral
broadening, and (iii) the shock-dominated limit cycle.

where X is the state vector containing the dimensionless perturbation variables.

Throughout, we utilize the isentropic acoustic energy norm (see Section 3.2), which

is the squared L2 norm, as the perturbation energy density [54]:

E =
1

2
ρ0a

2
0X

TX =
1

2
ρ0u

′2 +
p′2

2ρ0a2
0

. (4.6)

In the nonlinear growth and limit cycle regimes, velocity and pressure �uctuations,

u′ and p′, respectively, are composed of higher harmonics of the linearly unstable

mode. Substituting velocity and pressure �uctuations, expressed as complex Fourier

expansions,

u′(x, t) =
+∞∑

k=−∞
k 6=0

ûk(x, εt) e
i k
2
ω0t, p′(x, t) =

+∞∑
k=−∞
k 6=0

p̂k(x, εt)e
i k
2
ω0t, (4.7)

û−k = û∗k, p̂−k = p̂∗k,
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into Eq. (4.6) and cycle averaging yields:

E = 2
∞∑
k=1

Ek, Ek =
1

2
ρ0|ûk|2 +

|p̂k|2
2ρ0a2

0

, (4.8)

where ε ∼ α/ω � 1 is the smallness parameter such that t and εt correspond to fast

and slow time scales, respectively, (·) denotes the cycle averaging operator de�ned as

(·) =
1

T0

∫ εt+T0

εt

(·)dt, T0 =
2π

ω0

, (4.9)

and (·)∗ denotes the complex conjugate. Here ω0 is the angular frequency of the

unstable second harmonic, and Ek is the spectral energy density of the kth mode.

The pressure and velocity amplitudes of the kth harmonic (|p̂k| and |ûk|, respectively)
are functions of the x coordinate and the slow time εt, and are extracted via a short

time-windowed Fourier transform (over 8 cycles of time period T0) of the time series

shown in �gure 4.4. In the nonlinear growth regime, the energy cascades from the

unstable second mode (k = 2) into its overtones only (k = 4, 6, 8, . . . ) with no energy

content in the odd-numbered harmonics.

4.3.2 Regime classi�cation

Based on a scale-by-scale analysis of the growth of spectral energy density (�g-

ure 4.5), the aforementioned three regimes of thermoacoustic wave ampli�cation are

identi�ed as:

1. Modal growth: Only the thermoacoustically unstable mode ampli�es expo-

nentially and all the other modes excited by the initial perturbation �eld decay.

Higher harmonics begin to grow after αt ≈ 3.2 (�gure 4.5), setting the end

of a purely harmonic growth. In the modal growth regime, the system is well

approximated by the linear system of equations.
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Figure 4.5. : Evolution of dimensionless spectral energy density of the unstable mode
k = 2 and its �rst seven overtones, scaled by the second mode angular frequency
ω0, base speed of sound a0, and rate of spectral energy transfer E Eq. (4.61). (�),
TH = 450 K; (- -), TH = 500 K; (· · ·), TH = 550 K.

2. Hierarchical spectral broadening: Energy cascades down to higher harmon-

ics hierarchically: the kth harmonic (k > 2) grows at a rate equal to k/2-times

the modal growth rate of the second harmonic (see Section 4.5 and Section

4.6), α, that is

αk = αk/2, k ∈ {4, 6, 8, . . . }. (4.10)

The saturation of the spectral energy density Ek occurs at αt ≈ 10 followed by

the formation of resonating shock waves at limit cycle.

3. Shock dominated limit cycle: In this regime (αt > 10), the continued

injection of energy in the second-mode harmonic is balanced by the cascade of

the spectral energy density into the overtones of the second mode and terminates

by viscous dissipation at very high overtones (k ≈ 300). The maximum number

of overtones generated is a function of the acoustic phasing of the unstable
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mode. Moreover, at the limit cycle, the spectral energy density scales with

instability growth rate α approximately as α3 (Section 4.7).

The harmonic growth analysis corresponds to the linear stability analysis of the

resonator by formulation of a system-wide di�erential eigenvalue problem. The reader

is referred to [5] for further details on eigenvalue analysis and thermoacoustic energy

budget analysis.

4.4 Harmonic growth analysis

In this section, the ampli�cation of acoustic waves in the linear regime in the pro-

posed minimal-unit model is discussed. A system-wide di�erential eigenvalue problem

is formulated and solved numerically utilizing the strategy adopted by [27] in (Section

4.4.1). Utilizing the eigenvalue analysis, the computational setup has been optimized

(Section 4.2.1) and the acoustic energy budgets are derived (Section 4.4.2). This

provides analytical expressions for the cycle-averaged thermoacoustic production and

dissipation, and elucidates the role of the acoustic phasing on thermoacoustic insta-

bility. Finally, the e�ects of varying the hot-side temperature and the geometry on

the thermoacoustic growth rates are discussed in Section 4.4.3. While the eigenvalue

analysis is restricted to the minimal-unit model, the physical conclusions and analysis

presented in this section hold for any thermoacoustically unstable device operating

in the low-acoustic amplitude regime.
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4.4.1 Linear thermoviscous quasi-planar wave equations

The time-domain linear thermoviscous governing equations for a two-dimensional

perturbation are:

∂ρ′

∂t
+ ρ0

∂u′

∂x
+ u′

dρ0

dx
+ ρ0

∂v′

∂y
= 0, (4.11a)

∂u′

∂t
+

1

ρ0

∂p′

∂x
− ν0

∂2u′

∂y2
= 0, (4.11b)

∂s′

∂t
+ u′

ds0

dx
− k0

ρ0T0

∂2T ′

∂y2
= 0, (4.11c)

where primed variables (·)′ represent the �uctuations in the corresponding quantities
and the subscript 0 denotes the base state. Axial di�usion terms and the y-momentum

equation in Eq. (4.11) have been neglected based on the scaling analysis reported in

Appendix D. Combining the cross-sectionally averaged Eq. (4.11a) and Eq. (4.11c)

and cross-sectionally averaging Eq. (4.11b), accounting for isothermal and no-slip

boundary conditions, yields

∂p′

∂t
+
ρ0a

2
0

h

∂U ′

∂x
=
ρ0a

2
0

h

q′

ρ0CpT0

, (4.12a)

1

h

∂U ′

∂t
+

1

ρ0

∂p′

∂x
=

1

h

τ ′w
ρ0

, (4.12b)

respectively, where h denotes the cross-sectional width of the duct, U ′ denotes the

�uctuations in the �ow rate,

U ′ =

∫ +h/2

−h/2
u′(x, y, t)dy, (4.13)

whereas q′ and τ ′w are the wall-heat �ux and the wall-shear, respectively:

q′ = 2k0
∂T ′

∂y

∣∣∣∣
y=+h/2

, τ ′w = 2µ0
∂u′

∂y

∣∣∣∣
y=+h/2

. (4.14)
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In sections a, c, and d, linear wave propagation is assumed to be inviscid and adia-

batic, hence isentropic, resulting in q′ = 0 and τ ′w = 0. Applying the normal mode

assumption to Eq. (4.12), namely,

p′(x, t) = p̂(x)eσt, U ′(x, t) = Û(x)eσt, (4.15)

where σ = α + iω is the complex eigenvalue of the system with growth rate α and

angular frequency ω, leads to the thermoviscous set of quasi-planar wave equations

in the frequency domain [27]:

σp̂ =
ρ0a

2
0

hb

[
1

1 + (γ − 1) fk

(
Θ(fk − fν)

(1− fν)(1− Pr)
− d

dx

)]
Û , Θ =

1

T0

dT0

dx
, (4.16a)

σÛ = −hb
ρ0

(1− fν)
dp̂

dx
, (4.16b)

where the thermoviscous functions fν and fk are given by

fν =
tanh(ηhb/2)

ηhb/2
, fk =

tanh(ηhb
√
Pr/2)

ηhb
√
Pr/2

, with η =
√
iω/ν0. (4.17)

4.4.2 Acoustic energy budgets for quasi-planar wave perturbations

Multiplying Eq. (4.12a) by p′/(ρ0a
2
0) and Eq. (4.12b) by ρ0U

′/hb and adding them,

yields the conservation equation

∂E

∂t
+
∂I
∂x

= P −D, (4.18)

for the one-dimensional acoustic energy density

E =
1

2

p′2

ρ0a2
0

+
1

2
ρ0

(
U ′

hb

)2

, (4.19)
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consistent with the de�nition Eq. (4.6). The instantaneous acoustic �ux I and the

net energy production P −D therein are given by

I =
p′U ′

hb
, P −D =

p′q′

hbρ0CpT0

+
τ ′wU

′

h2
b

. (4.20)

Averaging Eq. (4.18) over one acoustic cycle and integrating axially over the periodic

domain, L, yields:

d

d(εt)

∫
L

E(x, εt)dx =

∫
L

(
P −D

)
dx = R, (4.21)

where R is the Rayleigh index and εt is the slow time scale (cf. Eq. (4.8)). Relation

Eq. (4.21) allows to unambiguously identify the onset of an instability via the criterion

R > 0. This expression also accounts for wall-shear and wall-heat �ux losses outside

the regenerator (if present), which attenuate the thermoacoustic instability. Such

thermoviscous losses are captured in the heat �ux q′ and shear stress τ ′w terms (cf.

Eq. (4.20)) in the respective duct sections. Utilizing the frequency domain linear

equations Eq. (4.16), the wall-heat �ux q̂ and wall-shear τ̂w in the frequency domain

are given by

τ̂w = hb
∂p̂

∂x
fν , (4.22a)

q̂ = hb(iω)CpT0

(
Θ

(1− Pr)ω2

∂p̂

∂x
(fk − fν)−

γ − 1

a2
0

p̂fk

)
. (4.22b)

Combining Eq. (4.20), Eq. (4.22), and Eq. (4.16b), an analytical expression is ob-

tained for the cycle-averaged production P and dissipation D of the acoustic energy

density Eq. (4.19):

P =
Θ

2 (1− Pr)hb

[
ΦT
P Re

(
p̂∗Û

)
− ΦS

P Im
(
p̂∗ Û

)]
, (4.23a)

D = Re (ifk)
ω (γ − 1)

2ρ0a2
0

|p̂|2 − Im

(
fν

1− fν

)
ρ0ω

2h2
b

|Û |2. (4.23b)
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(a) (b) (c)

Figure 4.6. : Variation of thermoviscous functionals a�ecting the cycle averaged ther-
moacoustic production P (a), and dissipation D (b and c) of acoustic energy density
versus the ratio of the regenerator half-width hb/2 to the Stokes boundary layer thick-
ness δk (cf. Eq. (4.23)). (a): (�), ΦT

P ; (- -), −ΦS
P .

In the above relations, ΦT
P and −ΦS

P weigh the contributions to the thermoacoustic

energy production by the travelling-wave, Re(p̂∗Û), and the standing-wave, Im(p̂∗ Û),

components respectively. Their expressions read:

ΦT
P = Re

(
fk − fν
1− fν

)
, ΦS

P = Im

(
fk − fν
1− fν

)
. (4.24)

For hb/2δk ≤ 1.13, |ΦT
P | > |ΦS

P |, which implies that the regenerator half-width hb

must remain comparable to or smaller than the Stokes boundary layer thickness δk

to achieve higher thermoacoustic ampli�cation of travelling waves (ψUp ' 0◦) (�g-

ures 4.6a and 4.7). However, to maximize thermoacoustic energy production for

standing waves (ψUp ' ±90◦), a larger regenerator half-width (hb/2δk > 1.13) is re-

quired. While production alone for a purely travelling wave (ψUp = 0) is maximized

in the limit hb/2δk → 0 (�gure 4.7), for �xed temperature settings, dissipation also di-

verges (�gure 4.6c). Therefore, pure travelling wave phasing, if at all achieved, always

results in smaller net production of acoustic energy density compared to an optimal

combination of standing and travelling waves. Moreover, varying the temperature

inside the regenerator results in a local variation of the ratio hb/2δk which, in turn,

causes the optimum phase to vary along the regenerator (�gure 4.7). For the tem-

perature settings considered here (table 4.1), the optimum phasing angle, averaged



67

Figure 4.7. : Normalized thermoacoustic production ΦT
P cos(ψUp)− ΦS

P sin(ψUp) (cf.

Eq. (4.23a)) versus the phase angle di�erence between p̂ and Û , ψUp = ∠Û − ∠p̂,
for increasing values of hb/2δk = 0.5, 1.0, 1.5, 2.0. (�); (- -), Optimum phasing
maximizing the thermoacoustic production for continually varying hb/2δk.

over the regenerator length changes from 43.17◦ to 36.41◦ as the temperature TH is

increased.

4.4.3 E�ects of temperature gradient and geometry on growth rates

The variation of the instability growth rates with the temperature and the geom-

etry is further analysed utilizing the acoustic energy budget formulation developed

in the previous section. To this end, the production, dissipation, and Rayleigh index

(normalized by the pressure amplitude) are plotted in the convenient dimensionless

forms

P∗ =
Pτ
ρ0a2

0

, D∗ =
Dτ
ρ0a2

0

, R∗ =
Rτ

hbρ0a2
0

. (4.25)
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(a) (b)

Figure 4.8. : Dimensionless thermoacoustic growth rate, ατ (cf. Eq. (4.27)), versus the
natural logarithm of the temperature ratio TH/TC for TC = 300 K (a) and resonator
area ratio hd/hc (b). (a): (�), Linear stability analysis; (- -), logarithmic estimate of
ατ Eq. (4.29) �tted using values at TH = 450 K and TH = 550 K; (◦), Navier-Stokes
simulations.

Cycle averaged production of acoustic energy density due to travelling wave and

standing wave components given by

RT∗ =
τ

2(1− Pr)ρ0a2
0h

2
b

∫
b

Θ Re
(
p̂∗Û

)
ΦT
Pdx, (4.26a)

RS∗ = − τ

2(1− Pr)ρ0a2
0h

2
b

∫
b

Θ Im
(
p̂∗Û

)
ΦS
Pdx, (4.26b)

respectively, are also analysed, where

τ = h2
b/ν0 (4.27)

is a reference viscous time scale in the regenerator with ν0 evaluated at TC = 300K.

Increasing the hot side temperature TH , the thermoacoustic production P∗ in-
creases monotonically, approximately as

P∗ ∼ Θ =
d

dx
ln[T0(x)], (4.28)
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and more rapidly than the dissipation D∗, yielding positive values of the Rayleigh

index R∗ (�gure 4.9a) for TH/TC > 1.29 (�gure 4.8a). The Rayleigh index can thus

be used to quantify the thermoacoustic growth rate (�gure 4.8a, 4.9a) as

R∗ ∼ ατ ≈ A ln(TH/TC)−B, (4.29)

where A and B are geometry dependent �tting coe�cients.

With increasing resonator area ratio hd/hc, keeping hc �xed, the frequency de-

creases monotonically by approximately 4% in the range of hd/hc considered. How-

ever, the growth rates vary non-monotonically, reaching a local maximum at hd/hc ≈
1.28 (�gure 4.8b). Also, the net production of acoustic energy density due to the

travelling wave component RT∗ (�gure 4.9b) peaks at hd/hc ≈ 1.28. Moreover, the

high mechanical impedance of the section d (ρ0a0hd) for high values of hd increases

the standing wave component of the acoustic power RS∗ and decreases the travelling

wave component RT∗. The variation of the transverse geometrical parameters does

not signi�cantly alter the frequency. Therefore, changes in the ratio (fk−fν)/(1−fν)
are also negligible and do not in�uence the growth rates signi�cantly (cf. Eq. (4.24)).

(a) (b)

Figure 4.9. : Dimensionless Rayleigh index R∗ versus the natural logarithm of the
temperature ratio TH/TC for TC = 300K (a) and the resonator area ratio hd/hc (b).
(b): (�), R∗ ; (- -), RT∗ ; (· · ·), RS∗.
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4.5 Formulation of a Nonlinear Thermoacoustic Model

As a result of the modal thermoacoustic instability, large pressure amplitudes

(∼ 160 dB) are generated, which result in the nonlinear steepening of the wave-

form. In the spectral space, the nonlinear steepening can be viewed as the cascade of

energy from the unstable mode into higher harmonics with correspondingly shorter

wavelengths. Moreover, inside the regenerator, large amplitude perturbations in ther-

modynamic quantities are responsible for thermoacoustic nonlinearities. As a result

of nonlinear wave propagation, thermoacoustically sustained shock waves propagate

in the system. While the analysis above highlights that quasi-travelling wave phasing

is essential for high thermoacoustic growth rates, nonlinear steepening is also favoured

by such phasing [28].

In this section, a �rst-principles-based theoretical framework accounting for acous-

tic and thermoacoustic nonlinearities up to second order is developed, and a quasi

one-dimensional evolution equation is obtained for nonlinear thermoacoustic waves

Eq. (4.44). In Section 4.5.1 mass, momentum, and energy (combined with the sec-

ond law of thermodynamics) equations correct up to second order are introduced.

Furthermore, in Section 4.5.2 and Section 4.5.4, cross-sectionally averaged non-

linear spatio-temporal evolution model equations are derived with the time-domain

approximations of wall-shear and wall-heat �ux outlined in Section 4.5.3.

4.5.1 Governing equations for nonlinear thermoviscous perturbations

The nonlinear governing equations, correct up to second order, for a two-dimensional

perturbation read:

∂ρ′

∂t
+ ρ0

∂u′

∂x
+ u′

dρ0

dx
+ ρ0

∂v′

∂y
=

[
−ρ′∂u

′

∂x
− u′∂ρ

′

∂x

]
, (4.30a)

∂u′

∂t
+

1

ρ0

∂p′

∂x
− ν0

∂2u′

∂y2
− 1

ρ0

∂

∂x

[
µ0

(
ξB +

4

3

)
∂u′

∂x

]
=

[
− ρ

′

ρ0

∂u′

∂t
− 1

2

∂u′2

∂x

]
, (4.30b)
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∂s′

∂t
+ u′

ds0

dx
− Rk0

p0

∂2T ′

∂y2
− R

p0

∂

∂x

(
k0
∂T ′

∂x

)
=

[
− p

′

p0

(
∂s′

∂t
+ u′

ds0

dx

)
− u′∂s

′

∂x

]
,

(4.30c)

where, primed variables (·)′ represent the �uctuations in corresponding quantities,

the subscript 0 denotes the base state, whereas ξB = 2/3 is the ratio of the bulk vis-

cosity coe�cient µB to the shear viscosity coe�cient µ. The terms on the left-hand

side are linear in the perturbation variables while those on the right-hand side are

nonlinear. The entropy generation due to viscous dissipation is neglected, as well are

the pressure gradients and velocity in y direction (boundary layer assumption), and

the �uctuations in the di�usivity coe�cients µ and k. Higher harmonics with cor-

respondingly shorter wavelengths are generated due to the nonlinear spectral energy

cascade. Consequently, the axial di�usion terms in Eq. (4.30b) and Eq. (4.30c), which

have been neglected in the linear regime, become signi�cant and act as the primary

sink of energy at large harmonic scales in the spectral space.

We seek to collapse Eq. (4.30a)�(4.30c) to obtain a set of equations similar to

Eq. (4.5). To this end, the following quadratic thermodynamic constitutive equation

relating the density �uctuations ρ′ with the pressure and entropy �uctuations (p′ and

s′, respectively) is considered:

ρ′ = αsp
′ + αps

′ +
1

2

(
βsp
′2 + βps

′2 + 2βsps
′p′
)
, (4.31)

where the thermodynamic coe�cients α and β are given by

αs =

(
∂ρ

∂p

)
s

=
1

a2
0

, αp =

(
∂ρ

∂s

)
p

= − ρ0

Cp
, (4.32a)

βs =

(
∂2ρ

∂p2

)
s

= −γ − 1

ρ0a4
0

, βp =

(
∂2ρ

∂s2

)
p

=
ρ0

C2
p

, (4.32b)

βsp =

[
∂

∂s

(
∂ρ

∂p

)
s

]
p

=

[
∂

∂s

(
ρ

γp

)]
p

= − 1

Cpa2
0

. (4.32c)

The coe�cients αp and αs contribute to �rst order wave propagation and thermoa-
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Figure 4.10. : Thermodynamic cycle in p′−ρ′ plane for non-isentropic thermoacoustic
wave ampli�cation. (�), Nonlinear; (- -), Linear. Sample perturbation �elds are:
p′ = 0.5p0 cosωt and s′ = −Rp′/p0 + 250 sin (ω(t+ τ)) for τ = h2

b/ν = 0.0107 s.

coustic e�ects while the second-order coe�cients βs, βp, and βsp in Eq. (4.31) account

for the corresponding nonlinear e�ects. [87] have demonstrated the hysteretic e�ects

of nonlinear wave propagation retaining only the βs nonlinear term and αp term ac-

counting for irreversible entropy changes. Figure 4.10 shows the hysteresis cycle for

the second order constitutive relation in Eq. (4.31) in comparison with the �rst or-

der approximation. Nonlinear wave propagation outside the regenerator (sections a,

c, and d) is not a�ected by the no-slip and isothermal boundary conditions. Only

higher order irreversible entropy �uctuations are generated due to the axial conduc-

tion terms [1]. Consequently, the constitutive relation Eq. (4.31) can be approximated

with the terms corresponding to αs, αp, and βs retained. However, inside the regen-

erator, wall-shear and wall-heat �ux from the no-slip isothermal boundaries generate

�rst order reversible entropy �uctuations; hence, in order to capture the nonlinear

thermoacoustic wave ampli�cation inside the regenerator, nonlinear terms in entropy

perturbations need to be included, as shown in Eq. (4.31). Starting from the gen-

eral second order governing equations discussed above, the spatio-temporal evolution
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equations for the �uctuations in pressure p′ and �ow rate U ′ can be derived and the

�nal results are presented in the following sections.

4.5.2 Free-shear nonlinear wave propagation

Waves outside the regenerator (sections a, c, and d) in the minimal unit setup

(�gure 4.1) propagate in the absence of wall-shear and wall-heat �ux. As a result,

terms involving the transverse gradient of u′ in Eq. (4.30b) and T ′ in Eq. (4.30c) can

be neglected and entropy �uctuations remain second order in the nonlinear regime as

well [1]. Up to second order, the wave propagation in the duct sections a, c, and d is

governed by

∂p′

∂t
= −γp0

h

(
1 +

1 + γ

γ

p′

p0

)
∂U ′

∂x
+
k

ρ0

(
1

Cv
− 1

Cp

)
∂2p′

∂x2
, (4.33)

∂U ′

∂t
= − h

ρ0

∂p′

∂x
+ ν0

(
ξB +

4

3

)
∂2U ′

∂x2
, (4.34)

where h = ha, hc, or hd. Second-order nonlinearities in Eq. (4.33) cause the waveform

distortion and steepening.

4.5.3 Wall-shear and wall-heat �ux

By design, the regenerator width is comparable to the local viscous and thermal

Stokes layer thickness (hb/2δν ∼ 1, hb/2δk ∼ 1). Due to the wall-shear, the velocity

�uctuations inside the regenerator vary in the y direction as well. Moreover, the wall-

heat �ux contributes to the �rst order entropy �uctuations. Noting that nonlinear

acoustic waves can be decomposed into acoustic, viscous, and entropic modes [88,

89], the following decomposition for the entropy and velocity �uctuations inside the

regenerator is considered:

u′(x, y, t) = ũ(x, t) + u′ν(x, y, t), s′ = s̃(x, t) + s′q(x, y, t), (4.35)
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where u′ν is the viscous velocity �uctuation and ũ is the nonlinear acoustic wave �eld.

The former is di�used by viscosity and is governed by the unsteady di�usion equation

∂u′ν
∂t

= ν0
∂2u′ν
∂y2

, u′ν(x, y = ±hb/2, t) = −ũ(x, t). (4.36)

Similarly, s̃ accounts for the entropy changes due to the nonlinear acoustic wave

propagation and s′q corresponds to the �rst order entropy changes due to the wall-

heat �ux inside the regenerator and is governed by the equation

∂s′q
∂t

+ u′
ds0

dx
=

ν0

Pr

∂2s′q
∂y2

, s′q (x, y = ±hb/2, t) = −s̃+ s′w, (4.37)

where s′w corresponds to the entropy �uctuations at the isothermal walls driven by

pressure �uctuations

s′w = − 1

ρ0T0

p′ = −R
p0

p′. (4.38)

Equations (4.36) and (4.37) suggest the following in�nite series solution forms for the

viscous and the entropic �elds:

u′ν = −ũ+
∞∑
j=0

ǔj(x, t) cos(ζjy), s′q = −s̃+ sw +
∞∑
j=0

šj(x, t) cos (ζjy) , (4.39a)

with ζj = (2j + 1)
π

hb
. (4.39b)

Performing eigenfunction expansions along the y direction Eq. (4.39a) yields the fol-

lowing evolution equations for the Fourier coe�cients corresponding to the viscous

and entropic modes:

∂ǔj
∂t

+ ν0ζ
2
j ǔj = (−1)j+1 2

ζjhb

(
1

ρ0

∂p′

∂x

)
, (4.40)

∂šj
∂t

+ ǔj
ds0

dx
+
ν0

Pr
ζ2
j šj = (−1)j

2R

ζjhbp0

∂p′

∂t
. (4.41)

Equations (4.40) and (4.41) determine the evolution of the transverse modes of the

longitudinal velocity ǔj and entropy šj �uctuations.
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4.5.4 Nonlinear thermoviscous wave equations

The axial velocity �uctuations u′ are governed by Eq. (4.30b) up to second order

accuracy. However, nonlinearities in Eq. (4.30b) result in acoustic streaming, which

is suppressed in the current analysis, and is therefore neglected [1]. Integrating the

resulting momentum equation in y and substituting Eq. (4.39a) yields

∂U ′

∂t
+
hb
ρ0

∂p′

∂x
= τ ′w +

1

ρ0

∂

∂x

[
µ0

(
ξB +

4

3

)
∂U ′

∂x

]
, (4.42)

where

τ ′w = 2ν0

∞∑
j=0

(−1)j+1ǔj(x, t)ζj. (4.43)

Equation (4.33) governs the evolution of the pressure �uctuations up to second order

in the free-shear/adiabatic ducts. In order to derive an analogous governing equation

for the regenerator, Eqs. (4.30a), (4.30c), and (4.31) are combined to obtain

∂p′

∂t
+
ρ0a

2
0

hb

∂U ′

∂x︸ ︷︷ ︸
wave propagation

=
ρ0a

2
0

hb

(
q′

Cpρ0T0

+ q2 + T−Q︸ ︷︷ ︸
thermodynamic
nonlinearities

+Ds

)
− C, (4.44)

where

q′ =
2ν0ρ0T0

Pr

∞∑
j=0

(−1)j+1šj(x, t)ζj, (4.45)

de�nes the �uctuating wall-heat �ux and couples the pressure evolution Eq. (4.44)

with the entropic mode evolution Eq. (4.41), whereas Q denotes the nonlinear inter-

action of pressure and wall-heat �ux �uctuations,

Q =
γp′q′

Cpp0ρ0T0

, (4.46)

hereafter referred as macrosonic thermoacoustic interaction. The term denoted by

q2 corresponds to the second order heat �ux which is a quadratic function of the
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entropy gradient in y. The nonlinear terms denoted by the double faced T corre-

spond to the constitutive (thermodynamic) nonlinearities which account for the sec-

ond order density �uctuation due to �rst order entropic modes. The terms denoted

by the double faced C correspond to the convective nonlinearities in Eq. (4.30b)

and Eq. (4.30c) and those denoted by Ds account for the axial di�usion of gradi-

ents in highly nonlinear regimes of thermoacoustic wave ampli�cation. A detailed

derivation of (4.44) and expressions for the terms q2, Ds, T, and C are given in [5].

Equations (4.40), (4.41), (4.42), and (4.44) constitute the governing equations for

the spatio-temporal evolution of large amplitude acoustic perturbations inside the

regenerator. The macrosonic thermoacoustic interaction Eq. (4.46) breaks the ther-

modynamic symmetry between the interactions of compressions and dilatations with

the wall-heat �ux inside the regenerator, thus highlighting that the entropy of a

Lagrangian parcel of �uid changes by a small amount under high amplitude compres-

sions (ρ′ > 0), compared to dilatations (ρ′ < 0), for the same amount of heat input

or output.

In general, for thermoacoustic devices in looped con�guration, the length of the

regenerator is very short compared to the total length of the device. As a result,

higher order terms a�ecting only the propagation of the acoustic perturbations, such

as convective nonlinearities, can be neglected inside the regenerator. Under such

hypotheses, the following approximate nonlinear governing equation for the pressure

�uctuations p′ inside a short regenerator is obtained:

∂p′

∂t
+
ρ0a

2
0

hb

∂U ′

∂x
≈ ρ0a

2
0

hb

{
1

Cp

[(
1− γp′

p0

)
q′

ρ0T0

]}
. (4.47)

In the above equation, terms T, Ds, and q2 are neglected for simplicity. Equa-

tions (4.40) and (4.41) can also be integrated in time analytically to express the
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wall-shear τ ′w and wall-heat �ux q′ in terms of acoustic variables. The time integra-

tion of Eqs. (4.40) and (4.41) yields:

ǔj = (−1)j+1 2

ζjhbρ0

∫ t

−∞
e
− t−η

τj
∂p′

∂x
(x, η)dη, (4.48)

šj = −ds0

dx

∫ t

−∞
e
− t−η
Prτj ǔj(x, η)dη + (−1)j

2R

ζjhp0

∫ t

−∞
e
− t−η
Prτj

∂p′

∂η
(x, η)dη. (4.49)

where τj = 1/ν0ζ
2
j de�nes the viscous relaxation time for the j

th viscous mode. Hence,

writing the relaxation functional for some function φ(x, t), namely,

Gj(φ, τj) =

∫ t

−∞
e
− t−η

τj φ(x, η)dη, (4.50)

and summing (4.48) and (4.49) over j, the following expressions for the wall-shear

and wall-heat �ux are obtained:

τ ′w =
4ν0

ρ0hb

∞∑
j=0

Gj
(
∂p′

∂x
, τj

)
, (4.51)

q′ =
2ρ0ν0T0

Pr

∞∑
j=0

[
(−1)j

ds0

dx
Gj (ζjǔj, τjPr)−

2R

hbp0

Gj
(
∂p′

∂t
, τjPr

)]
. (4.52)

Equations (4.51) and (4.52) provide �rst order expressions for the wall-shear and the

wall-heat �ux as a function of a generic acoustic �eld near the walls and, together

with (4.42) and (4.47), complete the nonlinear wave propagation model equations.

However, in the present work,Eqs. (4.40) and (4.41) have been considered for time

integration for simplicity.

The solution technique for model Eqs. (4.33), (4.34), (4.40), (4.41), (4.42),

and (4.44) is discussed in detail in [5].

4.6 Nonlinear Spectral Energy Dynamics

In order to elucidate the physics of the hierarchical spectral broadening regime,

the results from the nonlinear model derived in the previous section are discussed here
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Figure 4.11. : Comparison of �ltered thermoacoustic signal as obtained from time
integration of nonlinear model Eqs. (4.33), (4.34), (4.40), (4.41), (4.42), and (4.44)
probed at x = 1.54 m in harmonic growth regime (a), hierarchical spectral broadening
regime (b), and limit cycle (c). (�), Model with macrosonic thermoacoustic interaction
Q; (- -), Model without Q, (◦), Navier-Stokes simulations.

and compared to the high-order Navier-Stokes calculations. Pressure time series from

the time integration of (4.47) are in fairly good agreement with the fully compressible

Navier-Stokes simulations (see �gure 4.11). Since several nonlinearities are neglected

in calculations via (4.47), time integration results in spurious temporal variations

of the time averaged pressure �uctuations which are removed in further discussions.

The time integration of the nonlinear model up to the limit cycle o�ers a signi�cant

reduction in computational cost (about 500 times faster than the fully compressible

Navier-Stokes simulations) and predicts the captured limit cycle amplitudes within

80% accuracy. Additionally, upon excluding the macrosonic thermoacoustic interac-

tion term from the model (4.46), the accuracy of the predicted limit cycle amplitude

gets reduced to 60%.

Figure 4.12 shows the time evolution of the spectral energy density Ek of the

unstable mode (cf. Eq. (4.8)) and its �rst seven overtones, as obtained from the

nonlinear model discussed in Section 4.5, and compares it to the results obtained from

the fully compressible Navier-Stokes simulations for the signal shown in �gure 4.11.

In the spectral broadening regime of thermoacoustic wave ampli�cation, the growth

of spectral energy density of the kth harmonic obtained from linear interpolation is

approximately kα2/2, where α2 = 2α (since E ∝ p′2) is the growth rate of the spectral
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energy density of the unstable mode, i.e., Ek ∼ ekα2t/2. For instance, �gure 4.12

corresponds to the case TH = 450K, for which the growth rate is α = 8.64 s−1;

therefore, the growth rate of the spectral energy density is α2 = 2α = 17.28 s−1 for

the unstable mode.

Nonlinear energy cascade in the spectral space can be further explained using

reduced order modeling. Assuming propagation of purely travelling waves in the

system and eliminating U ′ from Eqs. (4.33) and (4.34), the following Burgers equation

for the pressure �uctuations p′ is obtained:

∂p′

∂t
− (γ + 1)

4ρ0a0

∂p′2

∂ξ
=
δ

2

∂2p′

∂ξ2
, (4.53)

where ξ = a0t − x is the travelling wave coordinate and δ is the axial dissipation

coe�cient given by

δ = ν0

(
4

3
+ ξB

)
+
k

ρ0

(
1

Cv
− 1

Cp

)
. (4.54)

In general, the wall-shear and the wall-heat �ux expressions can be used as forcing

functions in the above Burgers equation. However, the abrupt area changes present

in the setup under study make the generalization and further time domain simpli�ca-

tion seemingly challenging. Hence, we seek to only qualitatively explain the temporal

evolution of the nonlinear cascade utilizing the Burgers equation. Introducing ther-

moacoustic ampli�cation by adding a simple linear forcing term in Eq. (4.53) yields:

∂p′

∂t
− (γ + 1)

4ρ0a0

∂p′2

∂ξ
=
δ

2

∂2p′

∂ξ2
+ αthp

′, (4.55)

where αth accounts for the thermoacoustic growth rate. Substituting a Fourier ex-

pansion for acoustic pressure p′, namely,

p′ =
∑
k

pk(t) sin

(
kω0

2a0

ξ

)
, where k = 2, 4, 6, 8, · · · (4.56)
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the following modal evolution equation is obtained:

dpk
dt

= αthpk +Q(pk)−
δ

16

(
ω0

a0

)2

k2pk, (4.57)

where

Q(pk) =
(γ + 1)ω0

8ρ0a2
0

(
n≤k−2∑

(k − n)pnpk−n − k
∑
n≥k+2

pnpn−k

)
, (4.58)

αth determines the rate of thermoacoustic ampli�cation of the kth mode (αth =

8.64 s−1 for k = 2), and ω0 is the angular frequency of the unstable mode. Q(pk)

Figure 4.12. : Comparison of evolution of the spectral energy density Ek for the
unstable mode and its �rst seven overtones as obtained from the signal shown in
�gure 4.11. (�), Nonlinear model; (◦), Navier-Stokes simulations; (- -), Linear in-
terpolation of spectral energy density evolution in hierarchical spectral broadening
regime.

is the nonlinear cascade function quantifying the scale-by-scale �ux of energy in the

spectral space from the unstable mode to the harmonics which are dissipated by

the molecular di�usion e�ects (momentum and thermal di�usivity). The third term

on the right-hand side of Eq. (4.57) signi�es dissipation of the kth mode through
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molecular di�usion. Assuming that the subsequent overtones of the unstable mode

are characterized by pressure amplitudes which are an order of magnitude smaller

(pk+2/pk � 1), the modal growth rate Eq. (4.57) can be approximated such that

dp2

dt
≈ αp2,

dp4

dt
≈ (γ + 1)

4ρ0a2
0

ω0p
2
2,

dp6

dt
≈ 3(γ + 1)

4ρ0a2
0

ω0p2p4, (4.59)

and so on for higher harmonics. Equation (4.59) shows that the growth rates of the

overtones of the unstable mode due to the energy cascade are proportional to the ratio

of the oscillation frequencies, that is to say, pk ∼ ekαt/2 in the hierarchical spectral

broadening regime. It is important to note that the growth of higher overtones is not

strictly exponential since they are not subject to thermoacoustic instability. Energy

is cascaded into the overtones of the thermoacoustically unstable mode via nonlinear

energy cascade due to the high acoustic wave amplitude. Nonetheless, it is possible

to assume modal growth for a small time interval in the spectral broadening regime

to quantify the exponential growth rate for each harmonic.

4.7 Scales of thermoacoustically sustained spectral energy cascade

At the limit cycle, the energy of the unstable mode continues to increase and fur-

ther cascades into higher harmonics on account of the nonlinear wave propagation.

Higher harmonics have correspondingly shorter wavelengths due to which gradients

in the longitudinal direction x become large. Through the bulk viscosity and the

thermal conductivity, the energy density is dissipated at higher harmonics, thus es-

tablishing a steady �ow of energy from the unstable mode to the higher harmonics.

The distribution of the spectral energy density in the harmonics can be derived utiliz-

ing an energy cascade modeling, analogous to the turbulent energy cascade [20, 29].
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Assuming travelling wave propagation, the total energy density of the kth harmonic

associated to planar wave propagation, E
(1D)
k , can be de�ned as

E(1D) =

∫ 2πa0
ω0

0

E dξ =
∑
k

E
(1D)
k , E

(1D)
k =

πa0

ω0

Ek, (4.60)

where E is the squared L2 norm de�ned in Eq. (4.6) where p′ and u′ are de�ned as a

function of the travelling wave coordinate ξ. At the limit cycle, the rate of cascade

of energy E in the spectral space balances the thermoacoustic wave ampli�cation. As

a result, higher harmonics (namely, the overtones of the unstable mode) are gener-

ated and later dissipated by molecular dissipation, as indicated by the presence of

the molecular dissipation factor δ in Eq. (4.54). Thus, E is purely governed by ther-

moacoustic wave ampli�cation at smaller harmonics and viscous dissipation at higher

harmonics and scales as
E

α2
effδ

= const., (4.61)

where αeff is the e�ective energy ampli�cation rate at the limit cycle. Based on the

macrosonic thermoacoustic interaction, αeff can be estimated as

αeff ≈ (1− γ|p′|/p0)α, (4.62)

where α is the growth rate of the unstable mode in the linear regime, and |p′| is the
amplitude of the pressure �uctuation at the limit cycle. Assuming that the total

energy per unit mass E
(1D)
k /ρ0 only depends on the rate of energy cascade E and on

the angular frequency of the harmonic ωk, the following scaling is obtained:

E
(1D)
k ω

5/2
k

ρ0E3/2
= const.. (4.63)
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Figure 4.13. : Scaled spectral energy density EkE−3/2 at the limit cycle against fre-
quency of the harmonics. (�), Time domain nonlinear model at TH = 450 ; Navier-
Stokes simulations at (◦), TH = 450 K; (+), TH = 500K; (�), TH = 550K; (- -)
compares the variation of the energy with harmonic frequency with the power law
derived in Eq. (4.64).

Substituting into Eq. (4.60) and eliminating ρ0, the scaling for the spectral energy

density Ek remains the same such that

Ekω
5/2
k

E3/2
= const.. (4.64)

The scaling derived in Eq. (4.64) shows that the distribution of the energy density

at limit cycle in the spectral space decays as ω
−5/2
k �where ωk is the frequency of

the harmonic�as shown in �gure 4.13. Moreover, in the spectral broadening regime,

the energy density in the spectral space varies with the e�ective growth rate as α3
eff

(�gure 4.5) which, in turn, allows the comparison among cases with varying hot side

temperature TH . Such a scaling arises purely from the mechanism of the nonlinear

saturation resulting from the spectral energy cascade. It is however challenging to

accurately estimate the acoustic energy production (quanti�ed by α3
eff) at the limit

cycle utilizing the time domain nonlinear model, or even the fully compressible Navier-
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Stokes simulations, due to the shock capturing arti�cial viscosity that has to be added

to ensure numerical stability in the presence of shocks. Overall, the spectral cascade

of the energy density is balanced by the thermoacoustic wave ampli�cation and the

viscous dissipation, i.e., the shock waves are thermoacoustically sustained. However,

as shown previously [90], at the location of the steepest gradient in pressure, the

wall-heat �ux from the acoustic �eld inside the isothermal walls and wall shear stress

are maximum inside the regenerator. Thus, the propagation of sharp gradients in

the acoustic �eld p′ and U ′ inside the regenerator are counteracted by the wall-shear

stresses and the wall-heat �ux resulting in smoothing of shock waves. Consequently,

the scaling argument Eq. (4.64) can be further improved accounting for propagation

of very large harmonics inside the regenerator.

4.8 Summary

The linear and nonlinear regimes of thermoacoustic wave ampli�cation have been

modelled up to the formation of shock waves in a minimal unit looped resonator with

the support of high-�delity fully compressible Navier-Stokes simulations. The com-

putational setup is inspired by the experimental investigations conducted by Yazakiet

al. [24] and geometrically optimized to maximize growth rates for the quasi-travelling

wave mode. Three regimes of thermoacoustic wave ampli�cation have been identi�ed:

(i) a monochromatic or modal growth regime, (ii) a hierarchical spectral broadening

or nonlinear growth regime and (iii) a shock-dominated limit cycle. The modal growth

regime is characterized by exponential ampli�cation of thermoacoustically unstable

modes. An acoustic energy budget formulation yielding a closed form expression of

the Rayleigh index has been developed and the e�ect of variations in geometry and

hot-to-cold temperature ratios on the thermoacoustic growth rates have been eluci-

dated. The limit cycle regime exhibits many features of Kolmogorov's equilibrium

turbulence, where energy, steadily injected at the integral length scale (wavelength

of the second-mode harmonic), cascades towards higher wave numbers via inviscid
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mechanisms (wave steepening) and is �nally dissipated at the Kolmogorov's length

scale (of the order of the shock thickness). A grid sensitivity analysis has been car-

ried out at the limit cycle to ensure that the entropy jump across the captured shock

waves is grid convergent, hence assuring the same �delity typically attributed to direct

numerical simulations of turbulent �ows, with the caveat that shocks in the present

study are not fully resolved by the computational mesh.

The existence of an equilibrium thermoacoustic energy cascade has thus been

shown. The spectral energy density at the limit cycle, in particular, has been found to

decay as ω−5/2 in spectral space, the relevant intensity scaling with growth rate as α3.

Such �ndings are con�rmed by a novel theoretical framework to model thermoacoustic

nonlinearities, which has lead to the formulation of a one-dimensional time-domain

nonlinear acoustic model. The model is correct up to second order in the perturbation

variables and addresses the fundamental problem of high amplitude wave propaga-

tion in the presence of wall-shear and wall-heat �ux, accounting for thermodynamic

nonlinearities such as the second-order interactions between the pressure �uctuations

and the wall-heat �ux, namely the macrosonic thermoacoustic interaction term.
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5. SPARK-PLASMA GENERATED SHOCK WAVES

The contents of this chapter were presented in the AIAA-Scitech presentation in

January 2019 [40] and have been reported here in abridged form. The work presented

here was motivated by the experimental study of wave propagation due to spark-

plasma heat deposition by Singh et al. [91]

5.1 Introduction

Plasma discharges are a growing �eld of interest with numerous applications across

a wide range of areas in science and engineering including �ow and combustion con-

trol, biomedicine, materials processing, nanotechnology, and environmental engineer-

ing [92]. In the area of aerodynamic �ow control, considerable work over the past

couple of decades has focused on using plasma actuators as active �ow control devices

on aerodynamic bodies. Nanosecond pulsed plasmas have recently been attracting

great interest due to their extremely e�cient generation of excited and ionized species

and relatively low power consumption. Recent studies have investigated the e�ect of

various parameters of the nanosecond pulse driven plasma discharges on the nature

of the plasma [93]. The aim of this study is to analyze the �ow �eld generated as

a result of high-frequency repeated plasma between two electrodes with the help of

high-�delity simulations, low order modeling, and experiments.

5.2 Experimental study and motivation (Credit: Ms. Bhavini Singh, Mr.

Lalit Rajendran, and Dr. Sally Bane)

Figure 5.1 shows the snapshots of repeated spark discharge between two elec-

trodes as seen in PIV measurements. Multiple bursts of pulses were sent to the

pulse-generator which creates the repeated spark discharge. The instantaneous heat
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Figure 5.1. : PIV measurements of repeated spark discharges at 1 kHz of frequency
between the electrodes 5 mm apart (Courtesy of Ms. Bhavini Singh, Mr. Lalit
Rajendran, and Dr. Sally Bane).

deposition due to the spark discharge generates a heat-induced cylindrical shock wave

which propagates outward and is de�ected by the electrode geometry. Behind the

shock wave, vortical structures are generated due to grazing of the shock wave over

hard no-slip walls of electrodes. Such vortical structures are utilized in the boundary

layer re-attachment over aerodynamic objects to improve lift characteristics. Fig-

Figure 5.2. : Shock wave induced due to the spark plasma heat deposition.
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ure 5.2 shows the preliminary simulation results obtained via modeling the heat de-

posited by a single spark event by a simplistic isothermal boundary condition.

5.3 Computational setup

A high-order unstructured, fully compressible Navier-Stokes solver (sd3DvisP)

is used to simulate the shocks induced by the heat deposition by the spark. The

sd3DvisP solver is an MPI parallelized fortran 90 code for compressible �ows based

on the high-order Spectral Di�erence (SD) scheme for unstructured hexahedral el-

ements. [94, 95] The solver is capable of running with arbitrary preselected orders

of accuracy and provides minimal numerical dissipation. [81] For the computation

of high-speed compressible �ows with shocks and discontinuities, a self-calibrating

shock capturing methodology is available in the solver. Originally developed for the

Discontinuous Galerkin scheme, [75] this method, enables sub-cell resolution of discon-

tinuities which are detected through a modal sensor. The sd3DvisP solver has been

successfully applied to the computation of �ows with shocks, including shock/vortex

interaction and shock/wavy-wall interactions. [83, 96] In the scope of the current work,

we investigate the �ow �eld generated in an axisymmetric computational setup (�g-

Figure 5.3. : Computational setup of the electrodes. The setup models axisymmetric
�ow conditions.
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ure 5.3). The governing equations solved are conservation laws for mass, momentum,

and total energy in three dimensions, given by,

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = σ (ρ∞ − ρ) , (5.1a)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂

∂xi
p+

∂

∂xj
τij + σ ((ρu)∞ − (ρu)) , (5.1b)

∂

∂t
(ρE) +

∂

∂xj
[uj (ρE + p)] =

∂

∂xj
(uiτij − qj) + Q̇spark + σ ((ρE)∞ − ρE) , (5.1c)

respectively, are solved where xi(x1, x2, x3 or equivalently, x, y, z) are the cartesian

coordinates, ui are the velocity components in each of those directions, and p, ρ, T ,

and E are the instantaneous pressure, density, temperature, and total energy per unit

mass, respectively. We model the energy deposition due to the spark plasma utilizing

the Q̇spark term in the energy equation given by,

Q̇spark = Q0 exp
(
−α (t− τ)2) , (5.2)

where,

Q0 = ρ0CpατTsg(x, y, z), (5.3)

Ts is the characteristic spark temperature, and α and τ are the spark energy deposition

rate parameters. Function g(x, y, z) determines the shape of the spark. For simplicity,

we model the spark as a straight channel with heat deposition such that,

g(x, y, z) = exp
(
−8× 108 (R−Rcut)

2) , (5.4)

where Rcut = 0.6 mm. The exponential relaxation terms (characterized by σ in

Eqs. 5.1a-5.1c) are used for non-re�ective sponge layers (borders distinguished by red
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line in �gure 5.3) which model the out�ow boundaries. Within the domain |x| < xs

and R < Rs, σ = 0 is used and outside the domain,

σ =
f(x, y, z)

∆t
=

1

4∆t
(1 + tanh (β|x− xs|)) (1 + tanh (β (R(y, z)−Rs))) , (5.5)

for |x| > xs, R > Rs,

is used. Parameter β determines the spatial variation of the sponge layers. In the

current simulations xs = 12.7 mm and Rs = 10 mm are chosen.

Below we discuss two simulation results, one corresponding to no-slip adiabatic

walls of the electrodes (viscous), and the other corresponding to hard-slip walls (invis-

cid). These simulations enable comparison of viscous and inviscid vorticity generation

mechanisms. The spark parameters used in the current simulations are,

Ts = 2000 K, τ = 20 ns and α = 1× 1017 s−2. (5.6)

5.4 Results

Figure 5.4 illustrates the basic �ow features observed behind the curved shock

induced by the heat deposition. As the temperature of the discharge region drops

after reaching a maximum, an expansion wave is generated behind the shock wave

which creates a backward �ow (�ow towards the electrode center) in the domain.

Moreover, due to the shock curvature, the vorticity generated also enhances the �ow

towards the domain. Below, we quantitatively discuss the e�ect of baroclinic torque

on the vorticity.

Figure 5.5 shows the initial stages of vorticity ωn normal to x − y plane. As the

heat deposition peaks, a cylindrical shock wave emanates from the spark. Due to

the slant boundaries, the shock wave di�racts and develops curvature. At the initial

stages, the shock wave di�raction from the walls causes high localized baroclinic

torque which results in production of vorticity. Moreover, behind the curved shocks,

boundary layer develops in case of no-slip electrode walls (�gure 5.5). The vorticity
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Figure 5.4. : Schematic illustrating the �ow features generated by the heat deposition
induced shock wave and the curvature in the shock wave caused by the electrode
geometry.

�eld near the electrode walls is modi�ed considerably due to no-slip walls (�gure 5.5)

compared to slip walls (�gure 5.6).

Behind the shock wave, due to sudden decrease in heat rate (after reaching maxi-

mum), an expansion wave is generated. As a result, the �ow decelerates and is directed

inward (towards the center of the spark) by the electrode walls. Since, the current

simulations model spark boundary as a symmetric boundary, the �ow is re-directed

upwards, hence driving the large scale vortices generated. While the magnitude of

vorticity is higher, the sense of vorticity is similar to the one observed in experiments.

Due to the simulations being axisymmetric, the vortices do not breakdown. Thus, no

smaller scale vortices are observed and the large scale vortices simply decay due to

�uid viscosity.

Figure 5.6 shows the the vorticity evolution for a simulation with identical α,

τ , and Ts but only hard-wall symmetric condition imposed on the electrode walls.

Due to �uid slip, the walls do not act as a source of vorticity. However, the large

scale vortices can still be observed with similar magnitude of ωn thus suggesting that

inviscid baroclinic terms result in initial generation of vorticity.



92

Figures 5.7 and 5.8 show the evolution of baroclinic torque Γn normal to the x-y

plane, given by,

Γn =
(∇ρ×∇p)n

ρ2

(
ρ2

0l
2

∆p∆ρ

)
, (5.7)

where l is the characteristic length scale of pressure and density gradients (l ∼ 1 mm),

∆p and ∆ρ are the pressure and density jumps across the shock wave. In the current

simulations (both no-slip wall and slip wall), the pressure jump varies from ∆p ∼
110 kPa in the center to ∆p ∼ 50 kPa near the electrode walls. Similarly, the density

jump varies from ∆ρ ∼ 0.8 kg/m3 in the center to ∆ρ ∼ 0.5 ∼ kg/m3 near the

electrode walls. Values near the electrode walls have been used for normalization in

Eq. 5.7.

Figure 5.5. : Evolution of the vorticity ωn normal to the x − y plane in the initial
stages of the shock wave propagation for no-slip electrode walls.

Figure 5.6. : Evolution of the vorticity ωn normal to the x − y plane in the initial
stages of the shock wave propagation for slip electrode walls.
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Figure 5.7. : Evolution of the normalized baroclinic torque Γn normal to the x − y
plane in the initial stages of the shock wave propagation for no-slip electrode walls.

Figure 5.8. : Evolution of the normalized baroclinic torque Γn normal to the x − y
plane in the initial stages of the shock wave propagation for slip electrode walls.

In �gures 5.7 and 5.8, we note that the baroclinic torque Γn in both the slip wall

and no-slip wall cases evolves similarly. Moreover, the sense of the torque matches

the vorticity alignment shown in �gures 5.5 and 5.6 thus indicating that baroclinic

torque indeed plays an important role in initial generation of the large scale vortices

observed in both the simulations and the experiments.
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6. NUMERICAL MODELING OF DETONATION WAVES

The contents of this chapter were presented in the AIAA-Aviation meeting in June

2018 [97] and have been reported here in abridged form. The work presented here

was motivated by the experimental study by Schwinn et al. [8] at Maurice J. Zucrow

Laboratories at Purdue.

6.1 Introduction

Combustion waves are primarily classi�ed as de�agration or detonation waves,

the latter being high amplitude pressure waves propagating at supersonic speeds.

Heating caused by a propagating adiabatic shock-compression results in ignition of

fuel-oxidizer mixture. The �uid containing reaction products expands behind the

shock wave and depending on downstream boundary conditions, further accelerates

the wave front sustaining its propagation [32]. Classical Zel'dovich, von Neumann

and Döring (ZND) model postulates equilibrium one-dimensional detonation waves.

In experiments and detailed theoretical studies, unstable detonation wave propagation

with complex reactive chemistry and compressible �ow physics interactions are often

observed [32, 33]. Consequently, unsteady dynamics of unstable one-dimensional

pulsating detonation waves have received wide-spread attention [34, 35, 36].

Detonation waves result in very high pressure gains, which exhibit higher thermo-

dynamic e�ciencies when utilized for mechanical work [37, 38]. Rotating Detonation

Engines (RDEs) are propulsion devices, which utilize such pressure gains through

continuously spinning detonation waves for generating thrust [39]. Fuel-oxidizer mix-

ture is injected axially into an annular shaped device which is undergoing combustion

due to the rotating detonation waves. High pressure combustion expels products

axially from the opposite end thus generating thrust. However, the complex combus-
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tion wave propagation dynamics in such devices require further attention and careful

analysis for e�ective design [8]. In this work, we perform numerical investigations

of such sustained detonation dynamics in a periodic domain, inspired by the recent

experimental study of Schwinn et al. [8] in which a straight-line detonation chamber

was analyzed experimentally exhibiting sustained resonance of detonation waves.

Numerical studies of RDEs usually focus on the general �ow features exhibited by

sustained detonation waves [41, 42, 98]. In this work, we numerically investigate the

e�ect of fuel-oxidizer injection rates on the dynamics of detonation waves and suste-

nance in a periodic one-dimensional domain. We model fuel-oxidizer injection rates

utilizing a one-dimensional model reduction which represents solving the governing

equations close to the injector plate in an experimental setup. Moreover, we adopt a

device-scale dynamical system perspective in the current study to elucidate the wave

propagation dynamics.

6.2 Experimental study and motivation (Credit: Mr. Kyle Schwinn and

Dr. Carson Slabaugh)

Schwinn et al. [8] conducted an experimental study on sustained detonation wave

resonance in a linear semi-bounded channel with CH4+O2 mixture. Figure 6.1 shows

a schematic of the experimental setup of Schwinn et al. [8] with the instrumentation

points and the two possible window locations for obtaining optical measurements.

The experimental setup provided modular capability between making single-point

measurements with pressure transducers and ion probes, and obtaining high frame

rate images of the chamber dynamics through large, fused quartz windows. Pressure

�uctuations in the chamber were measured using piezoelectric pressure transducers

(PCB 113B26).

Using di�erent diagnostics on opposites sides of the narrow chamber, simultaneous

pressure and chemiluminescence measurements of the chamber combustion dynamics

were performed. Figure 6.2(a) shows a detonation wave (6.2A) on the left side of the
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Figure 6.1. : Schematic diagram of instrumentation port nomenclature for the com-
bustion chamber (CC), the fuel manifold (FM), and the oxidizer manifold (OM).
White panels in the combustion chamber indicate regions of optical access.(Courtesy
of Schwinn et al. [8])

(a) (b)

Figure 6.2. : a) Detonation imaged using OH*-chemiluminescence (Window B), with
instrumentation port CC-09 marked with red circle. b) Overlay of intensity data with
pressure data from instrument at location CC-09. (Courtesy of Schwinn et al. [8])

image, propagating in the positive x-direction and approaching the instrumentation

port location CC-09 (see �gure 6.1). The average intensity at probe location CC-09,

which is proportional to the local combustion heat release, is shown in �gure 6.2(b)

along with the in-phase local pressure �uctuation.

Schwinn et al. [8] observed wave steepening and ampli�cation caused by the fuel-

oxidizer injection through a time series of OH*-chemiluminescence, as shown in �g-

ure 6.3. In the �rst frame (with arbitrary time assignment +0µs), a combustion

front (�gure 6.3A) propagates from an auto-ignition source at the interface between

the reactants and product gases. In this same frame, a high-intensity compact com-

bustion wave (6.3B) from the previous cycle is traveling in the positive x-direction.
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Figure 6.3. : Time series of OH*-chemiluminescence images (imaged in Window A)
detailing the combustion zones in the development region of the combustion chamber
(Scale is 10mm; see �rst frame).(Courtesy of Schwinn et al. [8])

The recently-ignited combustion front propagates upstream into the reactant jets and

reaches the injector face, and then travels along the injector face in the positive x-

direction (6.3C). Between two successive waves, de�agrative burning in the reactant

�ll is observed as a region of low intensity (6.3D). As the combustion front continues

to propagate in the positive x-direction into the reactants, a distinct contact sur-

face forms between the reactants and product gases (6.3E). The combustion wave

accelerates due to the heat release behind the shock, intensifying and becoming more

spatially compact (6.3F). As the steep-fronted combustion wave continues to prop-

agate through the channel, the expanding combustion front from an auto-ignition

event appears (6.3G), beginning the process for the next cycle.

By inspection of images in �gure 6.3, the combustion waves are determined to be

supersonic and the nature of the limit-cycle behavior of the chamber dynamics was

linked to periodic injection, ignition, ampli�cation, and acceleration processes. The

high-speed chemiluminescence images obtained in Window B, as seen in �gure 6.2

enable the identi�cation of structures in the reaction zone that con�rm the presence

of self-excited, periodic detonation waves.

Motivated by the experimental study conducted by Schwinn et al. [8], we study

the possibility of a reduced order one-dimensional detonation wave resonance model

in this work to elucidate the nature of sustained detonation wave resonance from the

perspective of dynamical systems. We note that the fuel-oxidizer injection and cou-
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pling of injector nozzles is crucial to allow the spatial variation of fuel injection coupled

with the local pressure variations caused by the detonation waves. In our study, we

assume premixed fuel-oxidizer injec human being tion of H2+O2+Ar (due to ease of

achieving detonations) mixture through sonic (converging) nozzles in the chamber.

Detailed model for hydrogen-oxygen-argon reaction is a 9-species and 19-step reac-

tion scheme based on Jachimowski's mechanisms for hydrogen-air combustion [99].

In the following sub-section, we discuss the validation of detailed chemistry model in

a high-order spectral di�erence solver, sd3DvisP [5, 81, 84, 85] used in the previous

chapter.

6.3 Numerical validation

Detonation systems are usually modeled with single step reactive chemistry models

based on induction times in which progress variable of reaction replaces the species

concentrations in dynamical equations. The dynamics of resonating detonations are

elucidated in this work based on detailed chemistry models utilizing the state-of-the-

art reaction mechanisms and spectral di�erence solver utilized in previous chapters.

6.3.1 Validation with Shock-to-detonation transition

The numerical model is validated against one-dimensional steady detonation wave

propagation, as shown in �gure 6.4. The validation setup is the one de�ned by Yung-

ster and Radhakrishnan [101]. In the validation study, the simulation is initialized

with a shock wave of mach number Ms = 3, propagating towards an adiabatic (sym-

metric) wall and �uid mixture at p1 = 6666.12 Pa, T1 = 300K. On the right hand

side, an inlet is de�ned driving the shock wave in a mixture of H2+O2+Ar with molar

ratio 2 : 1 : 7. The re�ection of the shock wave results in instantaneous shock-heating

at the adiabatic wall, which ignites the mixture. The combustion wave generated

due to the instantaneous heating initially lags behind the re�ected shock wave (�g-

ure. 6.4(a)). The combustion front accelerates (�gure. 6.4(b)) eventually merging with
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(a) (b)

(c)

Figure 6.4. : Validation test setup (a) identical to the one studied by Oran et al. [100]
and Yungster and Radhakrishnan [101]. The combustion front due to shock-heating
at the adiabatic (symmetric) wall accelerates (b) eventually merging with the re�ected
shock wave. The resulting steady state detonation wave propagates steadily at vD ≈
1600 m/s (c). The pressure peak in the detonation wave corresponds to the Von-
Neumann state pvn = 560156.5 Pa.

the re�ected shock wave and steadily propagates with the velocity vD thus resulting

in a steady propagating detonation wave. The steady state velocity vD saturates to

1600 m/s as approximated by the steady state ZND theory. The merging of com-

bustion wave front and the shock wave increases the peak pressure (�gure 6.4(c)) as

well. The peak pressure corresponds to the Von-Neumann state in the steady state

detonation propagation theory [32] and matches the value pvn = 560156.5 Pa. The

temperature of the Von-Neumann state is Tvn = 2459.33 K and the maximum heat

release rate behind the Von-Neumann state ωT = 2.58× 1011 W/m3.
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The shock-to-detonation transition validation study (�gure 6.4) validates the nu-

merical model for detailed chemistry implemented. We note that the shock-capturing

viscosity is approximately 100 times higher than the maximum physical di�usivity

in the system and hence only supports stable numerical computations. The inviscid

and chemical reaction based characteristics of the detonation waves are captured ac-

curately. In the section below, we outline the one-dimensional problem formulation

based on previous numerical studies [42, 98] and experimental studies [8, 102] for

sustained detonation waves.

6.3.2 Pre-mixed laminar �ame

The pre-mixed laminar CH4-air �ame was simulated at various equivalence ratios φ

for validating the combined implementation of transport and combustion terms in the

governing equations. Since the formulation in the current work is fully compressible,

the results di�er from the usual low-Mach number implementation results of the

energy conservation equation. The computation is initialized with a fully converged

steady state solution obtained from CANTERA [103]. Due to fully compressible

formulation and �xed Lewis numbers for all the species, the spatial distribution of

velocity and temperature adjusts to the steady state solution shown in �gure 6.5 with

a corresponding change in pressure. Relaxation sponges are used at the extremes

of the domain to eliminate thermoacoustic interactions and convergence to steady

state solution. The CH4 − air mixture (left) �ows towards a stationary �ame. Flow

speed before the �ame corresponds to the �ame velocity uf in an unsteady case.

Smaller intermediate species like H· and H2 have higher di�usivity coe�cients which

would tend to increase the �ame speed (uf ∝
√
KD where K is some measure of

rate of reaction and D is the species di�usivity). Hence, the simpli�ed assumption of

Lek = 1 for all species results in under-prediction of �ame speeds compared to the

experiments.
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(a) (b)

Figure 6.5. : Spatial distribution of �uid velocity and temperature (top) and mass
fractions of CH4 and CH.

3 (bottom) for a laminar �ame testcase for equivalence ratio
φ = 1 (a). Comparison of CH4-air laminar �ame speeds for various equivalence
ratios with experimental data [104], low-mach number unity lewis number calculation
(−) [9], and current calculations (◦) (b)

6.4 One-dimensional problem formulation

Detonation propagation can be sustained via fuel injection and exhaust purge

as shown in various experiments [8, 102]. Various numerical studies of such sus-

tained detonations in two dimensions have also been conducted [42, 98]. However,

two-dimensional studies focus more on the �ow characteristics induced by sustained

detonations and are computationally expensive. In this study, particular focus is

given to establishing which parameters a�ect the sustenance of detonation waves. To

the best of our knowledge, no previous attempt has been made to derive �rst-principle

based 1D model capable of simulating sustained detonation waves.

We reduce the problem to a one-dimensional problem as shown in �gure 6.6(a)

by considering a small region of height h in which gradients in y direction can be

neglected. Two dimensional governing equations can be written as,

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
= 0, (6.1)

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρvu

∂y
= −∂p

∂x
+

∂

∂x

(
4µ

3

∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
, (6.2)
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(a)

(b)

Figure 6.6. : Schematic illustrating the one-dimensional model reduction based on the
OH∗ chemiluminescence visualization of experimental study by Schwinn et al. [8] (a)
and sketch of the spatial pro�le of pressure corresponding to the visualized detonation
wave (b). Dashed line (- -) shows the stagnation injection pressure.

∂ρE
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+
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∂x
(u(ρE + p)) +
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∂y
(v(ρE + p)) =

∂
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(
k
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∂y

(
k
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(
u
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3

∂u

∂x
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(
∂u

∂y
+
∂v

∂x

))
+

∂

∂y

(
uµ

(
∂u

∂y
+
∂v

∂x

)
+ v

4µ

3

∂v

∂y

)
+

ωT −
∂

∂x

(
ρ

N∑
k=1

hs,kYkVk,x

)
− ∂

∂y

(
ρ

N∑
k=1

hs,kYkVk,y

)
, (6.3)

∂ρYk
∂t

+
∂

∂x
(ρ(u+ Vk,x)Yk) +

∂

∂y

(
ρ(v + Vk,y + V C

k,y)Yk
)

= ωk. (6.4)

Integrating the Eqs. (6.1)-6.4 in y within the region of height h shown in �gure 6.6(a)

and neglecting stresses, di�usion velocities, and temperature gradients at inlet and

outlet, we obtain the following system of equations in 1D,

∂ρ

∂t
+
∂ (ρu)

∂x
=

1

h
((ρv)inlet − (ρv)outlet) , (6.5)

∂(ρu)

∂t
+
∂(ρu2)

∂x
= −∂p

∂x
+

∂

∂x

(
4µ

3

∂u

∂x

)
+

1

h
((ρuv)inlet − (ρuv)outlet) , (6.6)
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∂(ρE)

∂t
+

∂

∂x
(u(ρE + p)) =

∂

∂x

(
k
∂T

∂x

)
+

∂

∂x

(
u

4µ

3

∂u

∂x
+ vµ

(
∂u

∂y
+
∂v

∂x

))
+ ωT −

∂

∂x

(
ρ

N∑
k=1

hs,kYkVk,x

)
+

1

h
((v(ρE + p))inlet − (v(ρE + p))outlet) , (6.7)

∂(ρYk)

∂t
+

∂

∂x
(ρ(u+ Vk,x)Yk) = ωk +

1

h
((ρvYk)inlet − (ρvYk)outlet) . (6.8)

Equations (6.5)-6.8 represent the one-dimensional model equations accounting for

fuel/oxidizer injection and outlet close to the injector plate in the full experimental

setup. We assume h = 1 mm in the current study based on experimental visualiza-

tions. We note that values of h should be much smaller than the overall transverse

dimension of the rig to account for negligible y gradients in the domain. Furthermore,

we assume that voutlet = vinlet = vinj where vinj is evaluated assuming isentropic ex-

pansion through injector nozzles, as introduced by Schwer and Kailasnath [41]. The

assumption of voutlet = vinlet will be corrected in future studies to account for the

�ux of reaction products out of the domain correctly. The outlet quantities ρ, p, ρu,

ρE, and ρYk correspond to the quantities in the domain. Consequently, the model

equations become,

∂ρ

∂t
+
∂ (ρu)

∂x
=
vinj

h
(ρinlet − ρ) , (6.9)

∂(ρu)

∂t
+
∂(ρu2)

∂x
= −∂p

∂x
+

∂

∂x

(
4µ

3

∂u

∂x

)
+
vinj

h
(− (ρu)) , (6.10)

∂(ρE)

∂t
+

∂

∂x
(u(ρE + p)) =

∂

∂x

(
k
∂T

∂x

)
+

∂

∂x

(
u

4µ

3

∂u

∂x
+ vµ

(
∂u

∂y
+
∂v

∂x

))
+ ωT −

∂

∂x

(
ρ

N∑
k=1

hs,kYkVk,x

)
+
vinj

h
((ρE + p)inlet − (ρE + p)) , (6.11)

∂(ρYk)

∂t
+

∂

∂x
(ρ(u+ Vk,x)Yk) = ωk +

vinj

h
((ρYk)inlet − ρYk) . (6.12)



104

To calculate vinj and ρinlet in the model Eqs. (6.9)-6.12, we specify the stagnation

conditions at the injectors p0,inj, T0,inj. Through isentropic nozzle expansion relations,

the mass �ow rate of the injected �uid is given by,

ρinletvinj = p0,inj

√
γ

RT0,inj

M

(
1 +

γ − 1

2
M2

)− 1
2( γ+1

γ−1)
, (6.13)

where M is the exit Mach number of the premixed fuel/oxidiser mixture governed by

the pressure in the domain as,

M =

√√√√ 2

γ − 1

((
p0,inj

p

) γ−1
γ

− 1

)
, (6.14)

and γ is the adiabatic exponent of the mixture. Where p > p0,inj, the mixture injection

does not take place. We note that, isentropic expansion relations also yield the density

injected ρinj inside the domain as,

ρinj = ρ0,inj

(
1 +

γ − 1

2
M2

) 1
1−γ

. (6.15)

For p > p0,inj, there is no fuel injection. For ps,inj < p < p0,inj the fuel injection rates

are determined by Eqs. (6.13)-6.15, where ps,inj is the sonic pressure corresponding

to M = 1 in equation (6.14). For p < ps,inj in the domain, all the quantities are

calculated at the sonic state, M = 1.

6.5 Results

In the current study, we restrict the analysis to stoichiometric H2+O2+Ar mixture

with molar fractions 2 : 1 : 3 and consider three injection pressures p0,inj to elucidate

the dynamics of detonation wave propagation with premixed fuel injection. We note

that increasing stagnation pressure p0,inj causes higher density of the mixture injected

in the domain which results in higher heat release rates due to combustion. Since
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Figure 6.7. : Initial propagation of detonation waves in a periodic domain at t1 = 0,
t2 = 10 µs, and t3 = 20 µs for p0,inj = 0.3 MPa and wi = 0.2.

high heat release rates cause very large gradients in species concentrations, the nu-

merical simulations become unstable. In this study, to achieve stable computations,

we assume the inlet density ρinlet as an average between the injected density ρinj and

the initialized density ρ∞ as,

ρinlet = wiρinj + (1− wi)ρ∞. (6.16)

We note that such choice of averaged inlet density is akin to a numerical under-

relaxation and is un-physical. However, it yields preliminary physical insights into

the detonation waves reproducible by one-dimensional model reduction. We consider

a periodic domain of length L = 5 cm (see �gure 6.6) and initialize the system with

a stoichiometric mixture of H2+O2+Ar with molar fractions 2 : 1 : 3. The pressure

Table 6.1. : Injection stagnation pressures p0,inj and the weighting factors wi consid-
ered.

p0,inj 0.2 MPa 0.3 MPa 0.4 MPa
0 0 0
0.1 0.1 0.1
0.2 0.2 0.2

wi - 0.4 -
- 0.6 -
- 0.8 -
- 1.0 -
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p, density ρ, and velocity u in the domain are initialized with an isentropic Gaussian

pulse (see �gure 6.7) propagating in +x direction. The initial �eld is given as,

p(x, t = 0) = p∞ + ∆pfx, (6.17)

ρ(x, t = 0) = ρ∞

(
p

p∞

)1/γ∞

, (6.18)

u(x, t = 0) =
2a∞
γ∞ − 1

((
ρ

ρ∞

) γ∞−1
2

− 1

)
, (6.19)

(a)

(b)

(c)

(d)

Figure 6.8. : Spatio-temporal evolution of pressure p (�) and heat release ωT (�) (left)
; mass fraction of Hydrogen YH2 (�) and temperature T (�) (right) for times t = 0 (a),
12 µs (b), 30 µs (c), and 58 µs (d) for p0,inj = 0.3 MPa and wi = 0.2. The initialized
pulse propagates to the right and steepens thus forming a shock wave of M ≈ 6.
The rapid temperature rise behind the shock wave causes the ignition of the fuel thus
resulting in detonation wave formation.
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where p∞ = 0.02 MPa, ∆p is the initial pressure jump and fx is the Gaussian given

by,

∆p = 0.82 MPa, fx = exp
(
−105 (x− 0.02)2) , (6.20)

respectively. The pulse propagates and steepens thus forming a shock wave ofM ≈ 6.

The temperature jump thus caused ignites the mixture of H2+O2+Ar such that a

combustion front is created behind the shock wave. Unlike the validation case shown

in �gure 6.4, the detonation wave is not driven by an external �ow as a result of which,

the pressure falls behind the wave instead of saturating to a constant value. As the

pressure falls below p0,inj the fuel injection is activated thus reducing the temperature

and increasing the fuel/oxidizer fractions in the mixture. Table 6.1 lists the di�erent

values of p0,inj and wi considered in the current study. Throughout the computations,

we assume constant injection stagnation temperature T0,inj = 700 K.

Figure 6.8 below shows the spatio-temporal evolution of pressure p, heat release

rate ωT , mass fraction of Hydrogen YH2 , and the temperature T in the domain for

p0,inj = 0.3 MPa and wi = 0.2. The shock wave formation due to steepening of the

initialized pulse causes rapid heating of the mixture behind the shock wave up to

temperature T ≈ 1000 K. As a result, the mixture in the domain ignites resulting

in detonation waves. Due to no driving support (for instance, a moving piston),

the pressure downstream of the detonation wave decreases generating an expansion

wave. As the pressure decreases below the injection stagnation pressure p0,inj, the

fuel injection is activated locally. As the detonation wave continues to propagate,

the fuel injection regime follows the wave. However, the expansion wave behind the

detonation front �attens in space thus causing the fuel injection zone to lag behind the

detonation front. The �attening of the expansion wave downstream of the detonation

wave results in widening of the gap between the fuel injection zone and the detonation

wave. Consequently, detonation wave eventually merges with the fuel injection zone

resulting in quenching of the reaction and failure of the detonation wave sustenance.

Figure 6.9 shows the evolution of maximum heat release ωT behind the detonation

wave as the wave propagates in the periodic domain for wi = 0, 0.1, 0.2 and increasing
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Figure 6.9. : Evolution of the maximum heat release ωT behind the detonation wave
in the system for wi = 0 (a), wi = 0.1 (b), and wi = 0.2 (c) for injection stagnation
pressures p0,inj = 0.2 MPa (�), 0.3 MPa (−−), and 0.4 MPa (· · · ).

values of injection stagnation pressures p0,inj = 0.2 MPa, 0.3 MPa, 0.4 MPa. With

increasing stagnation pressures, the density of the injected fuel increases. Since the

chemical composition of the mixture is �xed, the total amount of fuel and oxidizer

increases in the system thus causing higher heat release behind the detonation wave.

As shown in �gure 6.9, detonations exhibiting higher heat release sustain for more

time compared to those which exhibit lower heat release. However, for wi = 0, the

heat release is independent of the injection stagnation pressure since the density of the

�uid remains constant in the domain. For such conditions, lower injection stagnation

pressures increase the separation between the detonation front and the fuel injection

zone. Hence, the waves are quenched by the fuel injection at later times for lower

injection stagnation pressures sustaining waves for longer. Figure 6.10 shows the

trajectory of the combustion front in time compared with the corresponding C-J

velocities, obtained by CEA [105]. The combustion front velocity is very close to the
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Figure 6.10. : Evolution of the detonation wave trajectory xD in time for wi = 0 (a),
wi = 0.1 (b), and wi = 0.2 (c) for injection stagnation pressures p0,inj = 0.2 MPa
(�), 0.3 MPa (−−), and 0.4 MPa (· · · ). (�) are the C-J velocities for p0,inj = 0.4 for
various wi.

C-J velocity initially. However, the detonation wave decelerates to velocity slightly

below C-J velocity slowly and eventually gets quenched.

Similar to increasing the injection stagnation pressure p0,inj, with increasing the

weighting factor wi also, the density of the injected mixture increases thus causing

high heat release rates, as shown in �gure 6.11. With increasing release rates, the

detonation velocity becomes higher. This results in the merging of detonation front

and the fuel injection zone. Consequently, the detonation wave fails and the pressure

Figure 6.11. : Evolution of the maximum heat release ωT behind the detonation wave
in the system for wi = 0.4, 0.6, 0.8 and wi = 1.0 for injection stagnation pressure
p0,inj = 0.3 MPa (−−).
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becomes greater than the injection stagnation pressure everywhere in the domain.

Such over-pressure in the domain highlights the unphysical nature of the assumption

voutlet = vinlet. In reality, high pressure generated due to combustion of reactants

expels the products at very high speeds compared to the inlet speeds. Such increase

in outlet momentum, in-fact, results in generation of useful thrust.

6.6 Conclusions

A numerical investigation of planar detonation wave sustenance due to fuel in-

jection in a periodic domain, inspired by the experimental investigation of Schwinn

et al. [8], was performed utilizing spectral di�erence scheme. The detonation waves

were modeled using detailed chemical reaction scheme and the results were analyzed

for H2+O2+Ar mixture in a periodic domain of 5 cm length. The fuel injection

was modeled with one-dimensional model reduction representative of a region close

to the injector plates in an original experimental setup. The assumptions in the

fuel-injection model result in failure of detonation wave sustenance.

The initiation of detonation waves was done by a high pressure pulse which

steepens and forms shock waves. Rapid heating due to the shock wave causes the

fuel/oxidizer mixture in the domain to ignite. The combustion front thus formed

follows the shock wave resulting in a detonation wave. Downstream of the detonation

wave, an expansion wave is generated. The pressure pro�le becomes �attened as the

expansion and the detonation waves propagate. The fuel injection is activated as the

pressure falls below the injection stagnation pressure. The fuel injection zone travels

with the expansion wave, lagging behind the detonation wave. As a result, the deto-

nation wave merges with the fuel-injection zone, thus causing quenching of the wave.

We reported the wave propagation and failure for various densities and stagnation

pressure of injected fuel.

We note that, the model assumptions are highly restrictive in representing the fuel-

injection and exhaust phenomenon observed in experiments [8], or multi-dimensional
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simulations [41, 98] thus causing failure of detonation wave sustenance. Moreover, the

length of the domain, restricted by the computational cost in the current study, also

plays an important role in wave sustenance due to the time taken by the detonation

wave to merge with the fuel-injection zone.
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7. DEVELOPMENT OF AN ORDER ADAPTIVE NAVIER STOKES SOLVER

The contents of this chapter summarize the development of a mesh adaptive com-

pressible �ow solver, undertaken as a part of summer internship in 2018 at HySonic

Technologies, LLC. The numerical method discussed here-in is central to the numer-

ical results presented previously in this dissertation and all the computations showed

were performed utilizing the presented numerical method. However, the particular

mesh adaptive solver discussed here is developed as a future tool to conduct more

in-depth and e�cient analysis of the problems presented in previous chapters, in

particular, resonating detonation waves.

7.1 Introduction

High order discontinuous �nite element methods such as spectral element meth-

ods [106], spectral volume methods [107], and multidomain spectral di�erence meth-

ods [68] provide �exibility of obtain highly accurate solutions to partial di�erential

equations in geometrically complex domains [5, 108, 109]. In particular, spectral dif-

ference methods are characterized by very less numerical di�usion for increasing orders

of accuracy [81, 82] thus providing highly accurate solutions to nonlinear wave prop-

agation problems [5, 43, 83] and simulation of compressible turbulent �ows [84, 108].

In such methods, each subdomain is solved utilizing high order polynomial interpola-

tions local to the subdomain. Consequently, the methodology exhibits compactness

of the discretization stencil and can be optimally parallelized.

In this work, we develop a methodology to adapt the local orders of the subdomains

to obtain a high degree of polynomial reconstruction near the �ow features exhibiting

high gradients utilizing the spectral di�erence methods.
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7.2 Spectral di�erence methods : Overview

In this section, an overview of spectral di�erence methods for fully compressible

Navier Stokes equations for an ideal gas is given. We begin with presenting the govern-

ing equations, followed by discussing the discretized solution evaluation methodology

speci�c to unstructured hexahedral meshes with straight-edged elements. However,

we note that, such methods can be easily extended to generic shaped meshes contain-

ing tetrahedra and prisms [106, 110, 111]. In further sections, we discuss the adaptive

order re�nement strategy for multidomain spectral di�erence methods.

7.2.1 Governing equations

Fully compressible three dimensional Navier-Stokes equations can be written in

the following conservative form,

∂Q

∂t
+
∂Fi

∂xi
=
∂Fv

i

∂xi
, (7.1)

where t is time, xi represent spatial directions for i = 1, 2, 3, Q is the vector of

conservative variables, namely, mass, momentum in 1, 2, 3 directions, and total energy,

with Fi and Fv
i being the inviscid and viscous �ux vectors in i

th direction respectively,

given by,

Q =



ρ

ρu1

ρu2

ρu3

ρe


, Fi =



ρui

ρu1ui + pδi1

ρu2ui + pδi2

ρu3ui + pδi3

(ρe+ p)ui


, and Fv

i =



0

τ1i

τ2i

τ3i

τijuj − qi


. (7.2)

For an ideal gas, the total speci�c energy e is given by,

e =
p

ρ (γ − 1)
+
uiui

2
. (7.3)
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The viscous stress tensors τij, assuming a Newtonian �uid, are given as,

τij = 2µ

(
∂ui
∂xj

+
∂uj
∂xi

+

(
β − 2µ

3

)
∂uk
∂xk

δij

)
, (7.4)

where µ and β are the coe�cients of dynamic (shear) viscosity and bulk viscosity,

respectively. The heat �ux qi is given by,

qi = −k ∂T
∂xi

, (7.5)

where k is the coe�cient of conduction, and related to the dynamic shear viscosity

via the Prandtl number,

Pr =
µCp
k
, (7.6)

where Cp is the heat capacity at constant pressure.

7.2.2 Mapping and spatial discretization

In the spectral di�erence method, the domain is assumed to be divided into non-

overlapping subdomains or elements. The elements can be hexahedral, prismatic, or

even tetrahedral. However, in this work, we focus on development for hexahedral

elements only. Each hexahedral element is mapped on a standard computational

domain, with the mapping function given by,

xi =
N∑
n=1

χn (ξj) ξ
n
i , (7.7)

where χn is the mapping function corresponding to the nth vertex used for de�ning

the physical element, xi are the physical coordinates, and ξi are the computational

coordinates. The standard computational domain or element is assumed to extend

from [−1, 1] such that,

(ξ1, ξ2, ξ3) ∈ [−1, 1]× [−1, 1]× [−1, 1]. (7.8)



115

Figure 7.1. : Mapping χ between a standard hexahedral domain (left) de�ned in
computational space (ξ1, ξ2, ξ3) and a skewed trilinear hexahedral de�ned in physical
space (x1, x2, x3).

We note that the total number of vertices N depends on the physical shape of the

element. For quadratic or higher order elements, isoparametric mapping functions

of same order can be utilized for mapping. However, in this work, we focus only

on trilinear elements, i.e., linear in all directions, which correspond to N = 8 for

hexahedra.

For the mapping function χ in Eq. 7.7, the jacobian of transformation is given by

the determinant,

J =

∣∣∣∣∂xi∂ξj

∣∣∣∣ , (7.9)

which plays an important role in transformation of the conservation Eqs. 7.2, which

take the following form in the mapped computational coordinate system [112],

∂Q̃

∂t
+
∂F̃i

∂ξi
=
∂F̃v

i

∂ξi
, (7.10)

where ·̃ denotes quantities in the computational coordinate system and are given by,

Q̃ = JQ, and F̃i = J
∂ξi
∂xj

Fj, and F̃v
i = J

∂ξi
∂xj

Fv
j. (7.11)

Inside the standard hexahedron, two sets of points are de�ned namely, solution

points (�gure 7.2) and �ux points (�gure 7.2), which are staggered w.r.t. each other.
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(a) (b)

Figure 7.2. : Solution and �ux point distribution in 3D (a) and 2D projection on the
ξ1− ξ3 plane (b) for P = 5. Solution points are shown by black circles and red crosses
denote �ux points.

The conservative variables Q are stored on the solution points inside the hexahedron

and the �uxes are computed on the �ux points. The solution points and �ux points are

the tensor product of one-dimensional Gauss-Legendre and Gauss-Lobatto-Legendre

points, respectively [68]. Here onwards, we denote the set of solution points as,

Xi, for i = 1, 2, ..P, and Xi+1/2, for i = 0, 1, 2, ..P, (7.12)

respectively. With P solution points and P + 1 in each direction inside an element,

following Lagrange basis functions are used for interpolations and di�erentiations,

hi(X) =
P∏

j=1,j 6=i

(
X −Xj

Xi −Xj

)
, and li+1/2(X) =

P∏
j=0,j 6=i

(
X −Xj+1/2

Xi+1/2 −Xj+1/2

)
. (7.13)
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Polynomials in Eq. 7.13 yield the following reconstructions of the vectors Q̃ and

F̃i, F̃v
i in the computational space,

Q̃ =
P∑
k=1

P∑
j=1

P∑
i=1

Q̃ijkhi(ξ1)hj(ξ2)hk(ξ3), (7.14)

F̃1, F̃v
1 =

P∑
k=1

P∑
j=1

P∑
i=0

F̃1,ijk, F̃v
1,ijkli+1/2(ξ1)hj(ξ2)hk(ξ3), (7.15)

F̃2, F̃v
2 =

P∑
k=1

P∑
j=0

P∑
i=1

F̃2,ijk, F̃v
2,ijkhi(ξ1)lj+1/2(ξ2)hk(ξ3), (7.16)

F̃3, F̃v
3 =

P∑
k=0

P∑
j=1

P∑
i=1

F̃3,ijk, F̃v
3,ijkhi(ξ1)hj(ξ2)lk+1/2(ξ3), (7.17)

which are used to advance the conservative variable vector Q̃ in time at solution

points. Normal �ux at the element faces is calculated utilizing approximate Riemann

solver (HLLC) [113] and averaged di�usion �ux. For time integration, we utilize

the strong stability preserving, �ve step RK3 [114] scheme, however, we note that

any order time integration can be allowed by the spatial discretization methodology

described above.

7.3 Adaptive order re�nement

Local order of each computational subdomain can be adapted according to the

order of accuracy required. For steady state problems, Kopriva [115] deviced a way

utilizing mortar elements to calculate the interface �uxes for non-conforming set of

points for steady state problems. In this work, we extend the mortar element method

to the unsteady problems which require high spatial resolution locally.

Due to local order re�nement, interface of various computational subdomains

(called mortars hereafter) might be connected across non-conformal set of �ux points,

as shown in �gure 7.3. As a result, local interpolation along the face of computational

elements is required. To this end, we consider the reconstruction of left and right
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Figure 7.3. : Mortar element connecting elements with di�erent local orders with
non-conforming �ux points.

states along the interface, Q̃L, Q̃R respectively,

Q̃L(X) =

PL∑
i=1

PL∑
j=1

Q̃L
ijh

L
i (ξ1)hLj (ξ2), Q̃R(X) =

PR∑
i=1

PR∑
j=1

Q̃R
ijh

R
i (ξ1)hRj (ξ2), (7.18)

where PL and PR denote the orders of computational elements on the left and right

of the mortar and ξ1, ξ2 are the local coordinates on the mapped face. On the mortar,

we consider total number of points to be PM = max (PL, PR) in each direction. To

interpolate, we utilize the least squares approximation, as done by Kopriva [115].

To this end, we assume left and right interpolated states on the mortar to have the

following reconstruction,

Q̃LM ,RM =

PM∑
i=1

PM∑
j=1

Q̃LM ,RM
ij hMi (ξ1)hMj (ξ2). (7.19)

The least squares approximation yields the following relation for the interpolation

from element to mortar on the left side [115],

PM∑
i=1

PM∑
j=1

Q̃LM
ij

∫
mortar

hMi (ξ1)hMj (ξ2)hMp (ξ1)hMq (ξ2)dξ1dξ2 =

PL∑
i=1

PL∑
j=1

Q̃L
ij

∫
mortar

hLi (ξ1)hLj (ξ2)hMp (ξ1)hMq (ξ2)dξ1dξ2, (7.20)



119

and similar for the right side. Solving Eq. 7.20 for every mortar yields the interpo-

lated values Q̃LM
ij and Q̃RM

ij from the left and right sides of the mortar on the mortar

points. Utilizing these, �uxes F̃i,pq

(
Q̃LM
ij , Q̃RM

ij

)
on the mortar points are evaluated

and interpolated back on the left and right elements utilizing the Eq. 7.20.

To adapt the local element orders based on the �ow features, such as vortices

and shock waves, we detect the local �ow velocity gradients. For shock waves, we

also add a localized shock capturing bulk viscosity [116, 117, 118] based on the local

magnitude of divergence of the velocity �eld, which indicates the degree of compres-

sion/rarefaction in the �ow.

To detect the shocks, we calculate the local normalized divergence of the velocity

�eld

εs =
1

2

(
tanh

(
c1 − c2

∆x

a

∣∣∣∣∣
3∑
j=1

∂ui
∂ξj

∂ξj
∂xi

∣∣∣∣∣
)
− tanh (c1)

)
, (7.21)

where c1 > 0 and c2 > 0 are the tuning parameters, a is the local speed of sound,

and ∆x is the characteristic element thickness. The error is bounded by 0 and 1

0 < εs < 1, and based on prede�ned tolerances, the local order of the elements is

increased. Furthermore, a shock capturing bulk viscosity and corresponding increase

in thermal conductivity are also added in the stress tensor calculation (see Eq. 7.4 )

and heat �ux calculation (see Eq. E.8),

β∗ = cβρεs (∆x)2

∣∣∣∣∣
3∑
j=1

∂ui
∂ξj

∂ξj
∂xi

∣∣∣∣∣ , (7.22)

k∗ = Cpβ
∗/Pr. (7.23)

To detect the local vorticity, we utilize the ratio of vorticity to velocity magnitude

as the sensing parameter, and de�ne the vorticity sensor as,

εv =
1

2

(
tanh

(
c1 − c2∆x

ωiωi
uiui

)
− tanh (c1)

)
. (7.24)
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Local resolution error is de�ned as the ε = max (εs, εv) and re�nement or coarsening

is done comparing ε with prede�ned tolerances.

7.4 Test cases

In this section, we discuss the three test cases which test the shock and vorticity

detecting sensors for adaptive order re�nement.

7.4.1 1D Shock tube

The �rst test case that we consider is the 1D Sod shock tube problem [119]

with the dimensionless left and right states de�ned as, (ρL, u1,L, pL) = (1, 0, 1) and

(ρR, u1,R, pR) = (0.125, 0, 0.1) in a 1 unit length domain with 10×2 elements. Order

re�nement is also donw corresponding to the initial conditions so as to capture the

Figure 7.4. : Spatio-temporal evolution of the one dimensional Sod shock tube prob-
lem and the adaptive order re�nement.
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Figure 7.5. : Comparison of the solution obtained from the adaptive p-re�nement
strategy with the analytical solution of the Sod shock tube case at dimensionless
time t = 0.25.

initial conditions as accurately as possible. Figure 7.4 shows the spatio-temporal evo-

lution of the dimensionless pressure and adaptive order re�nement of the mesh. The

test case was initialized with P = 2 throughout and a maximum order of 7. We note

that the sensor tracks the right propagating shock and the left propagating expansion

wave very e�ectively. Figure 7.5 shows the comparison of the solution at t = 0.25

units with the analytical solution of the inviscid problem.

7.4.2 Convecting isentropic vortex

The second test case considered is a convecting isentropic vortex in a base �ow of

0.5 Mach number in domain with 19 × 10 elements. The vortex is de�ned through

the following dimensionless velocity and temperature values,

u1 = U∞ + ε
r

r0

eα(1−(r/r0)2) sin θ, (7.25)

u2 = −ε r
r0

eα(1−(r/r0)2) cos θ, (7.26)

T = T∞ −
(γ − 1) ε2e2α(1−(r/r0)2)

4αγ
, (7.27)
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Figure 7.6. : Spatio temporal evolution of the isocontours of u1 of the vortex de�ned
by velocity and temperature �eld in Eq. 7.27 (top), adaptive order re�nement as the
vortex core moves (mid), and comparison of the vertical velocity u2 at x2 = 0.5 with
the analytical solution.

where U∞ = 0.5 and T∞ = 1. Initial pressure and density are evaluated through

the isentropic relation p/ργ = const. and the ideal gas equation of state. The vortex

related parameters considered were ε = 0.3, r0 = 0.05, α = 0.204. [120]

The vortex core propagates at the base �ow velocity. Moreover, acoustic waves

are emanated from the vortex initialization which propagate due to temperature ini-

tialization and the corresponding pressure and density changes. The adaptive order

re�nement follows the vortex core as well as the acoustic waves propagating away

from the vortex, as shown in �gure 7.6. The domain is initialized with P = 1 in all

the cells and then pre-re�ned before the �rst time integration step based on the initial

conditions. The maximum allowed order is P = 7. In �gure 7.6, the comparison of

u2 with the analytical result of pure advection with a velocity of U∞ is also shown.
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Figure 7.7. : Spatio temporal evolution of pressure isocontours for the shock vortex
interaction test case and the corresponding dynamic mesh re�nement based on both
the shock sensor (see Eq. 7.21) and the vorticity sensor (see Eq. 7.24).

7.4.3 Shock Vortex interaction

The third and �nal test case considered in this work is the shock-vortex interaction

case with a shock of Mach number 1.1. Figure 7.7 shows the adaptive order re�ne-

ment and iso-contours of pressure �eld as the vortex passes through the shock in a 2D

domain with 32 × 16 elements. The domain is initialized with P = 1 in all the cells

and then pre-re�ned before the �rst time integration step based on the initial condi-

tions. The maximum allowed order is P = 7. We note that when the vortex passes

through the shock, the shock bifurcates thus creating triple points in the domain.

Moreover, due to the shock-vortex interaction, intense pressure oscillations at the ele-
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ment boundaries are generated due to high order polynomial interpolation. However,

the hydrodynamic features are captured very well by the high-order re�nement.

7.5 Summary and future work

In this work, we developed and tested an unstructured fully compressible Navier

Stokes solver which adaptively re�nes the mesh by increasing the local order of re�ne-

ment of the interpolation and derivative calculation. The solver is based on the spec-

tral di�erence technique which allows de�nition of order of interpolation local to the

mesh elements. We tested the solver on three test cases. Results for one-dimensionl

shock wave and a vortex advection show very good agreement with analytical results.

However, for the complex test case of shock vortex interaction, we note that element

boundaries exhibit large oscillations of pressure. Future research from the developed

solver includes further development of adaptive element re�nement (h−re�nement)
which breaks a given element into subelements thus allowing higher resolution with

low order interpolation as well.
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8. CONTRIBUTIONS, CONCLUSIONS, AND FUTURE RESEARCH

In this chapter, major contributions and conclusions of this dissertation are summa-

rized. We also present recommendations for future research.

8.1 Major contributions

8.1.1 Spectral energy dynamics in nonlinear acoustics

• Second order scaling of maximum entropy generated within weak shock waves

with pressure jump for an ideal gas was shown.

• Utilizing the second order scaling of maximum entropy, the correct second order

equations for planar nonlinear acoustics were derived which hold for any general

nonlinear acoustic system (within second order approximation), unlike Burgers

equation which holds only for a planar propagating wave.

• The second order equations yielded the correct perturbation energy corollary

for nonlinear acoustics and the analytical expression of the correct perturbation

energy norm for nonlinear acoustics.

• From the correct perturbation energy corollary, the spectral energy, spectral

energy �ux, and spectral energy dissipation expressions were obtained and an-

alyzed utilizing DNS of fully compressible one-dimensional Navier-Stokes equa-

tions.

8.1.2 Spectral energy cascade in thermoacoustic shock waves

• First high �delity numerical and analytical modeling of thermoacoustic shock

waves was done utilizing the fully compressible Navier-Stokes simulations, push-
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ing the thermoacoustic ampli�cation of acoustic waves to the formation of shock

waves.

• In the linear regime of thermoacoustic ampli�cation of waves, thermoacoustic

energy budgets were analyzed yielding the optimum phasing required for ther-

moacoustic growth.

• In the nonlinear regime, novel framework of nonlinear acoustic waves propagat-

ing near solid no-slip isothermal walls was developed, yielding the macrosonic

interaction of wall-heat �ux and wall-shear on the nonlinear acoustic waves.

• Scaling of spectral acoustic energy was shown (Êk ∝ ω
−5/2
k ), utilizing the com-

putational models and theoretical dimensionless scaling arguments.

8.1.3 Development of an order adaptive Navier-Stokes solver

• Motivated by the study of spark plasma shock wave induced �ow �eld and

sustained planar detonation wave dynamics, a high �delity order adaptive un-

structured Navier-Stokes solver was developed, which can be further utilized for

simulating even more complex �ow phenomena.

8.2 Conclusions and recommendations for future research

8.2.1 Spectral energy cascade and decay in planar nonlinear acoustic

waves

• The maximum entropy perturbations s′ in an ideal gas scale as p′2 for normalized

pressure perturbation p′ ∼ O (10−3 − 10−1).

• In traveling waves (TW) and standing waves (SW), spatial average of pertur-

bation energy decays as
〈
E(2)

〉
∼ t−2 and dissipation rate as ε ∼ t−3 in time.

Moreover, the spectral energy for both traveling and standing waves assumes
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the self-similar form: Êkk
2ε−2/3`1/3 ∼ 0.075f(kη), where ` is the integral length

scale and η is the Kolmogorov length scale.

• In acoustic wave turbulence (AWT), due to gradual increase of the integral

length scale ` caused by the shock coalescence, the approximate decay laws are〈
E(2)

〉
∼ t−2/3 and ε ∼ t−5/3.

• The correct energy corollary can be utilized to evaluate nonlinear interactions of

high amplitude sound and heat release due to combustion or thermal gradients.

• Spectral energy cascade due to the nonlinear acoustic e�ects plays an impor-

tant role in the study of high Reynolds number compressible turbulence [121].

Hence, importance of nonlinear compressible e�ects can be quanti�ed via spec-

tral energy transfer terms derived in this work.

8.2.2 Spectral energy cascade in thermoacoustic shock waves

• Three regimes of thermoacoustic wave ampli�cation were identi�ed: (i) a monochro-

matic or modal growth regime, (ii) a hierarchical spectral broadening or nonlin-

ear growth regime and (iii) a shock-dominated limit cycle. The modal growth

regime is characterized by exponential ampli�cation of thermoacoustically un-

stable modes.

• The existence of an equilibrium thermoacoustic energy cascade was shown. The

spectral energy density at the limit cycle, in particular, was found to decay as

ω−5/2 in spectral space, the relevant intensity scaling with growth rate as α3.

• Nonlinear wave propagation equations in the presence of wall-shear and wall-

heat transfer can be extended to higher dimensions establishing a generalized

framework for understanding nonlinear wave propagation and e�ects of wall-

shear and wall-heat transfer on the acoustic variables.
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8.2.3 Mesh adaptive Navier-Stokes solver

• Axisymmetric simulations of �ow �eld behind a spark induced shock wave were

carried out, revealing the importance of baroclinic torque in the generation of

vorticity �eld behind the shock wave.

• Utilizing the mesh adaptive solver, full three-dimensional simulations of the

�ow �eld behind the spark-plasma induced shock wave can be carried out, thus

enabling the study of low Reynolds number turbulence observed in the experi-

ments [40].

• Further development of the mesh adaptive solver (implementation of detailed

chemistry models) would enable the study of detonation wave propagation in

three dimensions and resonant dynamics sustained by fuel injection and exhaust.
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A. DERIVATION OF SECOND ORDER EQUATIONS

Decomposing the variables in base state and perturbation �elds, we obtain,

ρ∗ = ρ∗0 + ρ∗′, p∗ = p∗0 + p∗′, (A.1a)

u∗ = u∗′, s∗ = s∗′, T ∗ = T ∗0 + T ∗′, (A.1b)

where the superscript ()0 denotes the base state, the superscript ()′ denotes the per-

turbation values, no mean �ow u∗0 = 0 is considered, and s∗0 is arbitrarily set to zero.

We neglect the �uctuations in the dynamic viscosity as well, i.e.,

µ∗ = µ∗0. (A.2)

While in classic gas dynamics, pre-shock values are used to normalize �uctuations

or jumps across the shock (e.g. see Eq. (2.7)), here we choose base state values to

non-dimensionalize the variables,

ρ =
ρ∗

ρ∗0
= 1 + ρ′, p =

p∗

γp∗0
=

1

γ
+ p′, (A.3a)

u =
u∗

a∗0
= u′, s =

s∗

R∗
= s′, T =

T ∗

T ∗0
= 1 + T ′, (A.3b)

x =
x∗

L∗
, t =

a∗0t
∗

L∗
. (A.3c)
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where L∗ is the length of the one-dimensional periodic domain. For a chemically

inert generic gas, in�nitesimal changes in dimensionless density ρ(p, s) in terms of

pressure p and entropy s are given by,

dρ =

(
∂ρ

∂p

)
s

dp+

(
∂ρ

∂s

)
p

ds,

=
ρ

γp
dp−

(
ρ∗0T

∗
0R
∗

γp∗0

)
ρ2T

p

(
γ − 1

γ

)
ds. (A.4)

Substituting the above relation in the dimensionless continuity Eq. (2.15), we obtain,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)(
γ − 1

γ

)
ρT

(
∂s

∂t
+ u

∂s

∂x

)
. (A.5)

Non-dimensionalizing the entropy Eq. (2.3) utilizing the Eq. (A.3), we obtain,

ρT

(
∂s

∂t
+ u

∂s

∂x

)
=

ν0

Pr

C∗p
R∗

∂2T

∂x2
+

4ν0

3

a∗20

R∗T ∗0

(
∂u

∂x

)2

. (A.6)

Substituting the above equation in Eq. (A.5), we obtain,

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)
γ − 1

γ

(
ν0

Pr

C∗p
R∗

∂2T

∂x2
+

4ν0

3

a∗20

R∗T ∗0

(
∂u

∂x

)2
)
. (A.7)

Substituting the decomposition of variables (cf. Eq. (A.3)) in the above Eq. (A.7),

we obtain the pressure perturbation equation for a generic gas,

∂p′

∂t
+
∂p′

∂x
+ u′

∂p′

∂x
+ γp′

∂u′

∂x

=

(
ρ∗0T

∗
0R
∗

p∗0

)
γ − 1

γ

(
ν0

Pr

C∗p
R∗

∂2T ′

∂x2
+

4ν0

3

a∗20

R∗T ∗0

(
∂u′

∂x

)2
)
. (A.8)
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As shown in Section 2.2.2, the entropy perturbations are atmost 2nd order in pressure,

independent of viscosity. Consequently, the �rst and second term on right hand

side of Eq. (A.6) are second and third order in pressure perturbations, respectively.

Truncating the Eq. (A.8) up to second order, we obtain the second order equation for

pressure perturbations for a generic �uid as,

∂p′

∂t
+ u′

∂p′

∂x
+
∂u′

∂x
+ γp′

∂u′

∂x
=

ν0

Pr

(
ρ∗0T

∗
0R
∗

p∗0

)(
γ − 1

γ

)(
∂T

∂p

)
s,0

C∗p
R∗

∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
, (A.9)

Substituting the decomposition of variables (cf. Eq. (A.3)) in dimensionless Eq. (2.2)

and neglecting changes in kinematic viscosity, we obtain,

∂u′

∂t
+ u′

∂u′

∂x
+

1

1 + ρ′
∂p′

∂x
=

4

3
ν0
∂2u′

∂x2
. (A.10)

Equations (A.9) and (A.10) do not involve any assumption regarding the thermal

equation of state of the gas and hold for any chemically inert generic gas.

Assuming a thermal equation of state for an ideal gas in Eq. (A.9) and utilizing

binomial expansion in Eq. (A.10), we obtain Eqs. (2.16) and (2.17) as,

∂p′

∂t
+
∂u′

∂x
+ γp′

∂u′

∂x
+ u′

∂p′

∂x
= ν0

(
γ − 1

Pr

)
∂2p′

∂x2

+O
(
p′s′, s′2, p′3,

(
∂u′

∂x

)2
)
, (A.11)

∂u′

∂t
+
∂p′

∂x
+

∂

∂x

(
u′2

2
− p′2

2

)
=

4

3
ν0
∂2u′

∂x2

+O
(
ρ′2p′, ρ′3p′

)
. (A.12)
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We note that the LHS of Eqs (A.9) and (A.10) (up to second order) are identical to

those of Eqs. (A.11) and (A.12), respectively, hence independent from the thermal

equation of state. As shown in section 3.2, the functional form of the second order

perturbation energy norm E(2) (Eq (3.10)) is exclusively dictated by such terms, and

hence is also independent from the thermal equation of state. The results shown in

this work focus on ideal-gas simulations merely for the sake of simplicity, with no loss

of generality pertaining to inviscid nonlinear (up to second order) spectral energy

transfer dynamics.
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B. DERIVATION OF SPECTRAL ENERGY TRANSFER

Equation (3.24) can be obtained from the conservation of perturbation energy upon

considering the second order governing relations (Eqs. (2.16) and (2.17)) and substi-

tuting the Fourier expansions of p′ and u′,

p′ =
∞∑

k=−∞

p̂ke
ikx, u′ =

∞∑
k=−∞

ûke
ikx, (B.1)

yielding,

dp̂k
dt

+ a0ikûk+ia0γ
∞∑

k′=−∞

k′p̂k−k′ûk′ + ia0

∞∑
k′=−∞

k′p̂k′ûk−k′ = −ν0

(
γ − 1

Pr

)
k2p̂k,

(B.2)

dûk
dt

+ a0ikp̂k + a0i
∞∑

k′=−∞

k′ûk−k′ûk′ − a0i
∞∑

k′=−∞

k′p̂k−k′ p̂k′ = −2ν0k
2ûk. (B.3)

Multiplying eqs. (B.2) and (B.3) by p̂−k and û−k and adding the complex conjugate,

we obtain,

d

dt

( |p̂k|2
2

+
|ûk|2

2

)
+ a0γ<

(
p̂−k

∞∑
k′=−∞

ik′ûk′ p̂k−k′

)

+ a0<
(
p̂−k

(̂
u
∂p

∂x

)
k

+
û−k
2

(
∂
∂x

(u2 − p2)
)∧
k

)
= −ν0

γ − 1

Pr
k2|p̂k|2 − 2ν0k

2|ûk|2. (B.4)
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The second term in the above equation can be evaluated recursively utilizing the

Eq. (2.16) yielding,

a0γ<
(
p̂−k

∞∑
k′=−∞

ik′ûk′ p̂k−k′

)
= <

(
p̂−k

dĝk
dt

)
+

a0<
(
p̂−k

(̂
∂ug

∂x

)
k

)
− ν0

(
γ − 1

Pr

)
<
(
p̂−k

̂(∂g
∂p

∂2p

∂x2

)
k

)
, (B.5)

which, upon substitution in Eq. (B.4) yields,

dÊk
dt

+ T̂k = D̂k, (B.6)

where, the spectral energy transfer function Tk is given by,

T̂k = a0<
(
p̂−k

(̂
∂ug

∂x

)
k

+ p̂−k

(̂
u
∂p

∂x

)
k

+
û−k
2

(
∂
∂x

(u2 − p2)
)
k

)∧
, (B.7)

and the spectral dissipation term Dk is given by,

Dk = −ν0

(
γ − 1

Pr

)(
k2|p̂k|2 −<

(
p−k

(
∂g
∂p

∂2p
∂x2

)
k

∧))
− 2ν0k

2|ûk|2. (B.8)

Summation of Eq. (B.4) for k′ < k yields Eq. (3.24) and the expressions thereafter.
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C. EXPERIMENTAL VALIDATION OF LINEAR MODEL

Figure C.1a shows the comparison between the neutral stability curve evaluated from

the linear eigenvalue analysis discussed in � 4.4, experimental data obtained by [24]

(setup referenced as Y-1998), and the numerical predictions obtained by [123]. The

lengths of smaller cross-section ducts (`a and `c in �gure 4.1) have been estimated

from the laser Doppler velocimetry (LDV) data reported by [24] (`a = 0.153 m and

`c = 0.5 m). The rest of the missing geometrical details have been taken from [123].

The looped geometry of [122] (setup referenced as B-2011), is shown to be thermoa-

coustically unstable at the reported critical TH value, (Tcr/TC = 1.52) only if a mean

negative temperature gradient from `b < x < `buffer +`b, is assumed in the linear anal-

ysis. Moreover, the unstable mode is a quasi-travelling wave (−90◦ < ψUp < 90◦).

However, by considering an abrupt temperature change from TH to ambient temper-

(a) (b)

Figure C.1. : Neutral stability curves obtained from linear analysis (� 4.4), [24]'s data
(a), and [122]'s reported instability limit (b). r is the hydraulic radius of regenerator
pore (square cross-section). (a): (�), Y-1998 in 3D ; (- -), 3D minimal unit corre-
sponding to Y-1998; (· · ·), [123]'s results; (◦), [24]'s reported data. (b): (�), B-2011
in 3D (with `buffer = 0.4 m); (- -), 3D minimal unit corresponding to B-2011 without
bu�er length ; (◦), reported instability limit.
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ature TC , the ratio Tcr/TC is very large (∼2.3) and the unstable mode is a standing

wave (ψUp ' ±90◦). Since the nonlinear cascade leading to shock formation is inhib-

ited by the standing wave phasing compared to the quasi-travelling wave phasing [28],

a geometry similar to Y-1998 has been chosen in the current study which exhibits

quasi-travelling wave unstable mode due to a wider duct section.
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D. SCALING OF GOVERNING EQUATIONS

The governing equations for compressible �ows in two dimensions read:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (D.1a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂

∂x

[
µ

(
ξB +

4

3

)
∂u

∂x

]
+

∂

∂y

(
µ
∂u

∂y

)
, (D.1b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

∂

∂y

[
µ

(
ξB +

4

3

)
∂v

∂y

]
+

∂

∂x

(
µ
∂v

∂x

)
, (D.1c)

ρT

(
∂s

∂t
+ u

∂s

∂x
+ v

∂s

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
+

∂

∂x

(
k
∂T

∂x

)
+ Φ, (D.1d)

where Φ accounts for entropy generation due to viscous gradients. These equations

are written in terms of perturbations, denoted by primed symbols, in the relevant

variables u, v, ρ, p, T , and s. It shall be noted that, for a nonlinear acoustic �eld

of velocity amplitude scale U , the acoustic Mach numberM = U/a0 is O(10−1) and

the aspect ratio of the regenerator hb/lb is O(10−2). As a result, the perturbations in

the y component of velocity (namely, v′/u′ ∼ hb/lb) from the momentum and entropy

equations can be neglected and the following equations, including second order terms

inM, are obtained:

∂ρ′

∂t
+ ρ0

∂u′

∂x
+ u′

dρ0

dx
+ ρ0

∂v′

∂y
=

[
−ρ′∂u

′

∂x
− u′∂ρ

′

∂x

]
, (D.2a)

∂u′

∂t
+

1

ρ0

∂p′

∂x
− 1

ρ0

∂

∂y

(
µ
∂u′

∂y

)
− 1

ρ0

∂

∂x

[
µ

(
ξB +

4

3

)
∂u′

∂x

]
=

[
− ρ

′

ρ0

∂u′

∂t
− 1

2

∂u′2

∂x

]
,

(D.2b)

∂s′

∂t
+ u′

ds0

dx
− R

p0

∂

∂y

(
k
∂T ′

∂y

)
− R

p0

∂

∂x

(
k
∂T ′

∂x

)
=

[
− p

′

p0

(
∂s′

∂t
+ u′

ds0

dx

)
− u′∂s

′

∂x
+ Φ

]
.

(D.2c)
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In the above equations, the subscript 0 denotes the base state. Also, the terms on

the left-hand side of the equations are linear in the perturbation variables, whereas

the terms on the right-hand side are non-linear. Assuming ω−1 as the characteristic

time scale of the acoustic �eld, the viscous dissipation terms on the left-hand side

of (D.2b) and (D.2c), and the entropy generation due to viscous gradients Φ scale

relatively, as

∣∣∣ 1
ρ0

∂
∂y

(
µ∂u

′

∂y

)∣∣∣∣∣∂u′
∂t

∣∣ ∼
(
δν
hb

)2

(1 +M) ,

∣∣∣∣µ(∂u′∂y )2
∣∣∣∣

ρT ∂s
∂t

∼
(
δν
hb

)2

M, (D.3)∣∣∣ 1
ρ0

∂
∂x

[
µ
(
ξB + 4

3

)
∂u′

∂x

]∣∣∣∣∣∂u′
∂t

∣∣ ∼
(
δν
hb

)2(
hbω

a0

)2

(1 +M) , (D.4)

where the following scaling relations have been used:

µ ∼ µ0(1 +M), δν ∼
√
ν0

ω
. (D.5)

Due to the nonlinear energy cascade, higher harmonics are generated, as a result of

which, the characteristic time scale of the acoustic �eld ω−1 decreases. Consequently,

the characteristic Stokes layer thickness, δν , decreases and the ratio hbω/a0 increases.

Accordingly, the terms which scale as O((δν/hb)
2M) can be dropped and terms cor-

responding to the local perturbations in viscosity and thermal conductivity, as well

as the entropy generation term due to viscous gradients, are neglected. Finally, the

equations governing the spatio-temporal evolution of the acoustic �eld, correct up to

the second order, are given as

∂ρ′

∂t
+ ρ0

∂u′

∂x
+ u′

dρ0

dx
+ ρ0

∂v′

∂y
=

[
−ρ′∂u

′

∂x
− u′∂ρ

′

∂x

]
, (D.6a)

∂u′

∂t
+

1

ρ0

∂p′

∂x
− ν0

∂2u′

∂y2
− 1

ρ0

∂

∂x

[
µ0

(
ξB +

4

3

)
∂u′

∂x

]
=

[
− ρ

′

ρ0

∂u′

∂t
− 1

2

∂u′2

∂x

]
, (D.6b)

∂s′

∂t
+ u′

ds0

dx
− Rk0

p0

∂2T ′

∂y2
− R

p0

∂

∂x

(
k0
∂T ′

∂x

)
=

[
− p

′

p0

(
∂s′

∂t
+ u′

ds0

dx

)
− u′∂s

′

∂x

]
,

(D.6c)
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E. TIME DOMAIN MODEL AND CONVERGENCE

Integrating (D.6a) and (D.6c) in y, the following equations are obtained:

∂ρ̃(2)

∂t
+ ρ0

∂U ′(1)

∂x
+ U ′(1)dρ0

dx
=

∫ hb/2

−hb/2

[
−ρ′(1)∂u

′(1)

∂x
− u′(1)∂ρ

′(1)

∂x

]
dy, (E.1)

∂S ′(2)

∂t
+ U ′(1)ds0

dx
=

[
1− p′(1)

p0

]
q′(1)

ρ0T0

+ q2 +
R

p0

∂

∂x

[
k0T0

Cp

∂S ′(1)

∂x

]
−
∫ hb/2

−hb/2
u′(1)∂s

′(1)

∂x
dy,

(E.2)

where,

ρ̃(2) =

∫ hb/2

−hb/2
ρ(2)dy, S ′(2) =

∫ hb/2

−hb/2
s′(2)dy, (E.3)

q′(1) =
2ν0ρ0T0

Pr

∂s′(1)

∂y

∣∣∣∣
y=hb/2

. (E.4)

Also, the density constitutive equation, up to second order, is given by

ρ′(2) = αsp
′(2) + αps

′(2) +
1

2

(
βsp
′(1)2 + βps

′(1)2 + 2βsps
′(1)p′(1)

)
, (E.5)

and the entropy perturbations s′(1), up to �rst order, are

s′(1) = −R
p0

p′(1) +
∞∑
j=0

šj(x, t) cos (ζjy) . (E.6)

Notice that the superscripts (1) and (2) are dropped hereafter for convenience of

notation. Integrating equation (E.5) along y, di�erentiating in time, and combining

with (E.1) and (E.2) to eliminate ρ̃, the following equation is obtained:

∂p′

∂t
+
ρ0a

2
0

hb

∂U ′

∂x
=
ρ0a

2
0

hb

(
q′

Cpρ0T0

+ q2 + T−Q + Ds

)
− C, (E.7)
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where

q′ =
2ν0ρ0T0

Pr

∞∑
j=0

(−1)j+1šj(x, t)ζj, Q =
γp′q′

Cpp0ρ0T0

, (E.8)

and,

q2 =
hbν0

CpPr

∞∑
j=0

(ζj šj)
2 , (E.9a)

T =
(γ − 1)

p0

p′
∂U ′

∂x
+

1

Cpa2
0

∂

∂t

[
p′

p0

∞∑
j=0

(−1)j+1 2šj
ζj

]
− hb

4C2
pa

2
0

∂

∂t

∞∑
j=0

s2
j , (E.9b)

C = −γ − 1

a2
0

U ′
∂p′

∂x
− γ ∂

∂x

(
p′U ′

a2
0

)
− ρ0hb

2Cp

∞∑
j=0

ǔj
∂šj
∂x

+
hb
2

∂

∂x

(
ρ0

Cp

∞∑
j=0

ǔj šj

)
, (E.9c)

Ds =
1

Pr

∂

∂x

[
ν0

(
∞∑
j=0

(−1)j
2

ζj

∂šj
∂x

+
hbR

p0

∂p′

∂x

)]
. (E.9d)

The above equations account for thermodynamic, as well as, convective nonlinearities,

with Ds denoting the axial conduction term. The treatment of quadratic nonlinearities

gets signi�cantly simpli�ed due to the Fourier expansions of the viscous and entropic

modes. For simplicity, only the nonlinear macrosonic thermoacoustic interaction Q is

retained in the present one-dimensional computations. However, the complete model

equations (E.7)�(E.9) should be considered in the case of relatively large regenerators.

In order to show the convergence of the viscous and entropic modes, ǔj and šj,

respectively, (4.40) and (4.41) are pre-multiplied by (−1)j+1ζj and summed over j to

obtain:

∂τ ′w
∂t

+ 2ν2
0

N∑
j=0

(−1)j+1ǔjζ
3
j = N

4ν0

hρ0

∂p′

∂x
, (E.10)

1

ρ0T0

∂q′

∂t
+
τ ′w
Pr

ds0

dx
+ 2

( ν0

Pr

)2
N∑
j=0

(−1)j+1šjζ
3
j = −N 4ν0

hbPrρ0T0

(
∂p′

∂t

)
. (E.11)



141

For the wall-shear τ ′w and the wall-heat �ux q′ to converge, (E.10) and (E.11) must

yield the same values of q′ and τ ′w for N and N + 1 in the limit of N → ∞. Hence,

the following conditions are obtained:

lim
N→∞

|uN | =
2

ζ3
N

1

hbρ0ν0

∂p′

∂x
, lim

N→∞
|sN | =

2

ζ3
N

Pr

hbρ0ν0T0

∂p′

∂t
. (E.12)

The above relations show that, in order for convergence to be ensured, the magnitudes

of the viscous modes ǔj and šj must decay as ζ
−3
j for large values of the index j. The

relaxation functional used in (4.48) and (4.49) for very large j yields:

∫ t

−∞
e
− t−η

τj φ(x, η)dη ≈ τjφ(x, t), (E.13)

for some function φ(x, t). After substituting the above approximation in (4.48)

and (4.49), it is shown that the magnitudes of the viscous modes ǔj and šj decay

as ζ−3
j in the limit of j such that the approximation in (E.13) holds valid, which, in

turn, guarantees the convergence of the in�nite series approximation for the viscous

and entropic modes.
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F. WINDOWED SHOCK CAPTURING

At the limit cycle, the perturbation �elds exhibit shock wave propagation causing the

formation of large gradients at the limit of grid resolution. Spatially windowed Leg-

endre polynomial expansions are therefore used in order to add an arti�cial viscosity

term to ensure a proper resolution of longitudinal gradients in the model equations.

The implemented strategy, which is brie�y summarized below, is similar to the one

proposed by Persson and Peraire [75] for discontinuous Galerkin methods. For a

spatial window of size Np, the local pressure �eld is reconstructed using Legendre

polynomial basis expansions up to orders Np and Np − 1, such that

p′ =

Np∑
n=0

pnψn, p̃′ =

Np−1∑
n=0

pnψn, (F.1)

where ψn denotes the Legendre polynomial of order n and pn is the relevant nth

mode. A modal smoothness indicator Se is hence constructed from the ratio of the

inner products of p′ − p̃′ and p′, such as to detect the onset of excessively high high-

frequency modes, which is typical of insu�ciently unresolved signals:

Se =
〈p′ − p̃′, p′ − p̃′〉
〈p′, p′〉 . (F.2)

The sensor is then used to trigger the shock capturing arti�cial di�usivity εe, which

is evaluated as

εe =


0 if se < s0,

ε0 sin
(
π(se−s0)

2κ

)
if s0 < se < s0 + κ,

ε0 if se > s0.
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where se = logSe and the corresponding parameters are s0 = 3.2, κ = 0.9(max(se)−
s0), and ε0 = 100∆x/Np, ∆x being the grid spacing of the discretized one-dimensional

domain.

Finally, the arti�cial viscosity augmented equations to capture the nonlinear

acoustic �elds become:

∂p′

∂t
= −γp0

h

(
1 +

1 + γ

γ

p′

p0

)
∂U ′

∂x
+

[
εe +

k

ρ0

(
1

Cv
− 1

Cp

)]
∂2p′

∂x2
, (F.3)

∂U ′

∂t
= − h

ρ0

∂p′

∂x
+

[
εePr + ν0

(
ξB +

4

3

)]
∂2U ′

∂x2
. (F.4)
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