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ABSTRACT

Gu, Yiqi Ph.D., Purdue University, August 2019. Spectral Methods For Boundary
Value Problems in Complex Domains. Major Professor: Jie Shen.

Spectral methods for partial differential equations with boundary conditions in

complex domains are developed with the help of a fictitious domain approach. For

rectangular embedding, spectral-Galerkin formulations with special trial and test

functions are presented and discussed, as well as the well-posedness and the error

analysis. For circular and annular embedding, dimension reduction is applied and

a sequence of 1-D problems with artificial boundary values are solved. Applications

of our methods include the fractional Laplace problem and the Helmholtz equations.

In numerical examples, our methods show good performance on the boundary value

problems in both smooth and polygonal complex domains, and the L2 errors decay

exponentially for smooth solutions. For singular problems, high-order convergence

rates can also be obtained.
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1. OVERVIEW OF THESIS

Spectral method is one of the approximation techniques for solving partial differential

equations (PDEs), and has been widely studied and applied in recent decades ( [1–7]).

The critical idea of spectral method is to expand the solution by globally support-

ed smooth functions and to solve for the corresponding coefficients. For Dirichlet,

Neumann and Robin boundary conditions, the basis functions are usually chosen

by orthogonal polynomials, and for periodic boundary conditions, Fourier basis or

spherical harmonic functions are always adopted. The accuracy of spectral method

depends on the number of expansion terms and the regularity of the solutions.

Compared to other techniques for PDEs such as finite difference method and

finite element method, spectral approximation enjoys two advantages. One is the

regularity-dependent convergence rate. Especially for C∞ solutions, the decay of

numerical errors is usually able to attain to the exponential level. The other is the

possibility of employing the fast Fourier or Chebyshev transformation when using

Fourier or Chebyshev basis, which reduces the complexity from O(N2) to O(N lnN)

for 1-D cases and from O(N3) to O(N2 lnN) for 2-D cases.

One of the main restrictions of spectral method is the strict requirement on prob-

lem domains. In multi-dimensional cases, we can find spectral basis functions having

closed forms only for separable domains, where the basis is usually constructed by

tensor-product. In the thesis, some variants of spectral method have been devel-

oped carefully and they are specifically effective for boundary value problems in the

domains of complex geometry.

In Chapter 2, spectral method for elliptic PDEs in complex domains is developed

with the help of a fictitious domain approach. The original 2-D domain is embedded

in a square, in which a new extended problem is solved. Two types of Petrov-Galerkin

formulations with special trial and test functions are presented and discussed, as well
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as the well-posedness and the error analysis. The corresponding linear system is solved

by a fast algorithm. In numerical examples, this method shows good performance

on the boundary value problems in both smooth and polygonal complex domains,

and the L2 errors decay exponentially. For singular problems, high-order convergence

rates are also obtained.

In Chapter 3, we put forward the spectral method with circular embedding for el-

liptic PDEs, which transforms the multi-dimensional extended problem to a sequence

of one-dimensional differential equations. Thanks to the dimension reduction, the

extended problem can be weakly solved through a specific spectral-Galerkin formu-

lation. The error estimate of this method is also studied and displayed. Finally,

numerical examples demonstrate the convergence rate can reach to the exponential

level for smooth solutions. For highly singular problems, the order of convergence is

observed to be no less than that of classic spectral element solvers.

In Chapter 4, we deal with the elliptic PDEs in non-simply connected domains.

The corresponding spectral method with annular embedding is proposed, and it works

as well as the circular embedding scheme. In numerical examples, exponential error

decay is obtained for analytic solutions and algebraic error decay of high orders for

singular problems.

In Chapter 5, one application of the spectral methods with fictitious domain em-

bedding is introduced. We will consider the fractional Laplacian equation, which

can be solved by two approaches, Caffarelli-Silvestre extension or Dunford-Taylor

representation. Both approaches find the solutions by solving a sequence of general

Poisson-type Dirichlet problems. Our method shows special effectiveness for fraction-

al Laplacian problems in complex domains.

In Chapter 6, another application will be presented, that we extend the spectral

method with annular embedding scheme from Poisson-type problem to Helmholtz

problem for acoustic scattering. We put forward an algorithm for the problems with

respect to obstacles of complex geometry, and its complexity is no greater than the

classic spectral method for circular obstacles. Moreover, the numerical examples
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show the behaviors of error decay are consistent with that from the case of circular

obstacles.
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2. SPECTRAL METHOD WITH RECTANGULAR

EMBEDDING

2.1 Introduction

Solving elliptic partial differential equations(PDEs) in multi-dimensional domain-

s of complex geometry is a challenging problem. This is especially complicated by

using spectral methods, since different from the solvers which discretizes differen-

tial operators by local information, such as finite difference method or finite element

method, spectral solver has to read the data globally. The irregularity of the domain

contributes to difficulties of constructing global basis. A popular group of approach-

es are based on the fictitious domain method [8], which embeds the actual domain

into a larger and regular one hence classical spectral solvers can be applied. One

type of these approaches is to eliminate the original boundary condition by modi-

fying the PDE in the extended domain, and to add an artificial condition on the

extended boundary. This type includes the penalty method, where a penalty term

is introduced into the PDE to force the original boundary condition to be satisfied

approximately [9–11], and the diffuse domain method, where a phase-field function

is used to characterize the original irregular domain [12–14]. However, the low or-

der of regularity of the coefficient terms in these methods impedes high convergence

rates of the spectral solvers. Although some techniques have been developed to im-

prove the regularity [15–17], the corresponding computational cost is also increased

significantly. Another type of approaches is to preserve the PDE but manipulate

the original boundary condition, such as Lagrange multiplier approach [8, 18] and

boundary integral method [19–21].

For fictitious domain methods, one has to extend the coefficient and data functions

of the PDEs from the original domain to the enlarged one, and a smoother extension
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usually leads to a higher convergence rate. The extension (or continuation) of a given

function by using truncated Fourier series in 1D is widely studied [22–24], and in

higher dimensional cases, the Fourier extension is usually implemented by performing

1D extension on a fixed direction [25–28]. We assume in the following a continuous

extension can always be done on a given function (see (2.2)).

Spectral-collocation methods are applied to solve elliptic PDEs in complex do-

mains in [29], where the boundary condition are satisfied at finite equispaced nodes

along the boundary. The discrete spectral differential operator and the boundary

constraints are combined to form the linear system. In spite of the ill-conditioning,

it can be solved by Schur complement and truncated singular value decomposition.

In [30], a spectral-Galerkin formulation with Lagrange multipliers is presented, and

the boundary conditions are manipulated by using internal forcing functions com-

pactly supported inside the fictitious domain. This method is improved in [31] by

modifying the Dirac delta function basis for the Lagrange multipliers to be Fouri-

er basis, thus both the PDE solution and the Lagrange multiplier are solved in the

frequency space and the spectral accuracy is recovered.

A spectral-Petrov-Galerkin approach based on fictitious domain methods will be

presented in this work. This approach follows [32] that a specific trial space is devel-

oped by which the original boundary condition is approximated by finite boundary

constraints, and a general test space is chosen to preserve the well-posedness. Two

methods will be discussed for the Possion type problem −∆u+ αu = f (α ≥ 0) with

Dirichlet condition, and a particular algorithm for the (ill-conditioned) linear system

will also be described. Furthermore, both the error analysis and numerical examples

show the exponential convergence rate of this approach.

The organization of this chapter is as follows. In section 2.2 the embedding pro-

cess and weak formulations of the extended problem are illustrated. In section 2.3

the Galerkin formulation, well-posedness analysis and error estimates of one spectral

method are discussed. In section 2.4, another spectral-Galerkin method for more gen-

eral cases is formulated. In section 2.5, the numerical implementation and the fast
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algorithm are presented in detail. Numerical examples are shown in section 2.6 and

the conclusion is drawn in section 2.7.

2.2 Embedding formulation

Given a simply connected domain Ω ∈ Rd, we consider the following PDE with

Dirichlet boundary condition:

Lu = f in Ω,

u = h on ∂Ω,
(2.1)

where L is a linear elliptic operator and f ∈ C(Ω). We consider first the case with ho-

mogeneous boundary condition (h = 0), and the inhomogeneous case will be discussed

in the end of Sec. 2.5.1.

Our strategy for solving (2.1) is to embed Ω into a larger, regular domain. More

precisely, we choose a suitable rectangular domain Ω̃ ∈ Rd s.t. Ω ⊂ Ω̃, and solve the

following extended problem:

Lũ = f̃ in Ω̃,

ũ = 0 on ∂Ω,
(2.2)

where f̃ ∈ L2(Ω̃), with f̃ = f in Ω, is a smooth extension of f onto Ω̃. It is clear

that we have ũ = u in Ω. Note that (2.2) is not a classical boundary value problem

since the PDE solution is governed by prescribing its value on a (d− 1)-dimensional

manifold inside Ω̃. In the following, we will simply denote ũ and f̃ by u and f without

ambiguity.

2.3 The first method

We restrict our attention to the Poisson equation, i.e. L = −∆. Let the trial

space X and test space Y be defined as

X := {u ∈ H2(Ω̃) : u = 0 on ∂Ω}, Y := L2(Ω̃). (2.3)



7

X and Y are both Banach spaces with

∥u∥X :=

(∫
Ω̃

|∆u|2
) 1

2

,∀u ∈ X, (2.4)

∥v∥Y :=

(∫
Ω̃

|v|2
) 1

2

,∀v ∈ Y. (2.5)

It is clear that the norm defined in (2.4) is indeed a norm, since ∥u∥X = 0 implies

u is harmonic, so by the maximum principle, we have u = 0 ∈ Ω, and by unique

continuation of harmonic function, we have u = 0 ∈ Ω̃ .

Our weak formulation is to find u ∈ X s.t.

a1(u, v) := −
∫
Ω̃

∆uv =

∫
Ω̃

fv, ∀v ∈ Y. (2.6)

2.3.1 Well-posedness

First, it is obvious that a1(·, ·) is a continuous bilinear form on X × Y . For the

well-posedness, we need the following lemma.

Lemma 2.3.1 Suppose Ω satisfies an interior cone condition [33, p.27]. Then under

the definition in (2.4),(2.5) and (2.6), we have

inf
u∈X

sup
v∈Y

a1(u, v)

∥u∥X∥v∥Y
≥ 1; (2.7)

and

sup
0̸=u∈X

a1(u, v) > 0, ∀0 ̸= v ∈ Y. (2.8)

Specifically, (2.7) and (2.8) holds if Ω is a C1 domain or a polygon.

Proof Given u ∈ X, we have ∆u ∈ Y , so

sup
v∈Y

a1(u, v)

∥u∥X∥v∥Y
≥ a1(u,∆u)

∥u∥X∥∆u∥Y
= 1. (2.9)

Next, for any 0 ̸= v ∈ Y , the Dirichlet problem

∆u = v in Ω,

u = 0 on ∂Ω,
(2.10)
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admits a solution u ∈ H2(Ω), denoted by u1. On the other hand, since Ω̃\Ω satisfies

an exterior cone condition, the Dirichlet problem

∆u = v in Ω̃\Ω,

u = 0 on ∂Ω ∪ ∂Ω̃,
(2.11)

admits a solution in H2(Ω̃\Ω), denoted by u2 [33, Theorem 2.14]. Let

u =


u1 in Ω

u2 in Ω̃\Ω

0 on ∂Ω ∪ ∂Ω̃

, (2.12)

then u ∈ X, and

a1(u, v) =

∫
Ω̃

(∆u)v =

∫
Ω

(∆u1)v +

∫
Ω̃\Ω

(∆u2)v

=

∫
Ω

v2 +

∫
Ω̃\Ω

v2 = ∥v∥2Y > 0.

(2.13)

We then derive from the Banach-Necǎs-Babuška theorem [34, p.112] that

Theorem 2.3.1 Under the hypothesis of Lemma 2.3.1, the problem (2.6) admits a

unique solution u satisfying

∥u∥X ≤ ∥f∥Y , ∀f ∈ Y. (2.14)

2.3.2 A non-conforming Petrov-Galerkin spectral method

Let N be an odd integer, and PN the polynomial space of degree no greater than

N . Let ξi : C(∂Ω) → R with i = 1, · · · , 2N + 2 represents 2N + 2 independent

constraints placed on u to approximate the original boundary condition u = 0 on ∂Ω

in (2.3). This is similar to the boundary element used in boundary integral method

( [20]). For example, one simple choice for ξi is

ξi(uN) := uN(zi), i = 1, · · · , 2N + 2, (2.15)
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where {zi} are a set of prescribed points on ∂Ω. Another choice is

ξi(uN) :=

∫
∂Ω

uNχids, i = 1, · · · , 2N + 2, (2.16)

where {χi} are a set of linearly independent functions defined on ∂Ω, and they play

a similar role to the Lagrange multipliers (see [30]).

To simplify the presentation, we shall consider only the 2-D case althought exten-

sion to 3D is straightforward. We also assume that the problem domain Ω in (2.6) is

scaled so that it can be enclosed in Ω̃ = (−1, 1)× (−1, 1). We define

XN := {uN ∈ PN × PN , ξi(uN) = 0, i = 1, · · · , 2N + 2}, (2.17)

and

YN := span{∆(xiyj)}Ni,j=0. (2.18)

Note that XN is not a subspace of X. It is clear that

dim(XN) = (N + 1)2 − (2N + 2) = N2 − 1. (2.19)

On the other hand, we have

Lemma 2.3.2 dim(YN) = N2 − 1 if N is odd and dim(YN) = N2 if N is even.

Proof We use the following table T to describe {∆(xiyj)}Ni,j=0:

0 1 2 3 · · · N

0 0 0 1 x · · · xN−2

1 0 0 y xy · · · xN−2y

2 1 x (x2, y2) (x3, xy2) · · · (xN , xN−2y2)

3 y xy (x2y, y3) (x3y, xy3) · · · (xNy, xN−2y3)
...

...
...

...
...

. . .
...

N yN−2 xyN−2 (x2yN−2, yN) (x3yN−2, xyN) · · · (xNyN−2, xN−2yN)
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In the above table, T (j, i) is filled by ∆(xiyj) without its coefficient, and the

parenthesis (·, ·) means the linear combination of two terms with nonzero coefficients.

From the table it is straightforward to see that, if N is odd,

T (0, i) ∈ span{T (2, i− 2), T (4, i− 4), · · · , T (i− 1, 1)} (2.20)

and

T (1, i) ∈ span{T (3, i− 2), T (5, i− 4), · · · , T (i, 1)} (2.21)

for i = 2, · · · , N . Hence by removing the first two rows of T , the reduced table

{T (i, j)}Ni=0,j=2 is still a spanning set of YN . To show {T (i, j)}Ni=0,j=2 is linearly

independent, note for i = −(N − 2),−(N − 1), · · · , 2N − 2, each anti-diagonal

{T (N, i), T (N − 1, i + 1), · · · , T (3, i + N − 3)} consists of all the entries of order

N − 2 + i in the reduced table (ignore the entries with indices which are negative or

greater than N + 1), so distinct anti-diagonals are linearly independent. Also, every

anti-diagonal itself is linearly independent since each entry in it has a special term

that cannot be obtained by linearly combinng other entries. Therefore, dim(YN) is

equal to the number of entries in {T (i, j)}Ni=0,j=2, which is (N + 1)(N − 1) = N2 − 1.

The case of N even is essentially the same as the odd case except for one entry in

(2.21), that is

T (1, N) /∈ span{T (3, N − 2), T (5, N − 4), · · · , T (N − 1, 2)}. (2.22)

Hence T (1, N) ∪ {T (i, j)}Ni=3,j=1 form a basis for YN and dim(YN) = N2.

Note dim(XN) = dim(YN) for odd N . Since XN is not a subspace of X, we define

∥uN∥XN
:=

(∫
Ω̃

|∆uN |2
) 1

2

, (2.23)

which is consistent with (2.4). The norm of XN in (2.23) is indeed a norm, as long as

{ξi}2N+2
i=1 in (2.17) are specifically chosen s.t. ∆ : XN → YN has a trivial nullspace (this

can always be satisfied in numerical implementation, and we assume this hypothesis

holds in the remaining context).
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Let IN : L2(Ω̃) → PN ×PN be the 2D tensorial polynomial interpolation operator

at the Legendre-Gauss-Lobatto points. Our Petrov-Galerkin spectral method for (2.6)

is: find uN ∈ XN s.t.

a1(uN , vN) =

∫
Ω̃

INfvN , ∀vN ∈ YN . (2.24)

To consider the well-posedness of (2.24), we need

Lemma 2.3.3

inf
uN∈XN

sup
vN∈YN

a1(uN , vN)

∥uN∥XN
∥vN∥YN

≥ 1, (2.25)

and

sup
uN∈XN

|a1(uN , vN)| > 0, ∀0 ̸= vN ∈ YN . (2.26)

Proof (2.25) can be proven by the exactly same argument as in the proof of Lemma

2.3.1. And (2.26) follows the fact dim(XN) = dim(YN) and [35, Proposition 2.21].

Finally, by Lemma 2.3.3 we obtain

Theorem 2.3.2 The approximate problem (2.24) admits a unique solution uN , which

satisfies the a priori estimate

∥uN∥XN
≤ ∥INf∥L2(Ω̃). (2.27)

Error estimates for the solution

The first part is about the approximation property of XN to X. We need

Lemma 2.3.4 For any odd integer N ,

PN−3
2

× PN−3
2

⊂ YN . (2.28)

Proof By virtue of the proof of Theorem 3.1, the following reduced table consists

of a basis for YN if N is odd.
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0 1 2 3 · · · N

2 1 x (x2, y2) (x3, xy2) · · · (xN , xN−2y2)

3 y xy (x2y, y3) (x3y, xy3) · · · (xNy, xN−2y3)
...

...
...

...
...

. . .
...

N yN−2 xyN−2 (x2yN−2, yN) (x3yN−2, xyN) · · · (xNyN−2, xN−2yN)

Denote Tk := {T (k+2, 0), T (k+1, 1), T (k, 2), · · · , T (2, k)}, for k = 2, · · · , N − 3,

which consists exactly of k + 1 independent entries of order k. Hence Tk spans the

space of 2D monomial of degree k. Therefore for i ≤ N−3
2
, j ≤ N−3

2
, xiyj ∈ spanTi+j,

which implies PN−3
2

× PN−3
2

⊂ YN .

Next we introduce the error estimate for 2D tensorial polynomial interpolation,

which is given by

Lemma 2.3.5 Suppose the interpolation nodes for IN : L2(Ω̃) → PN × PN are the

roots of the Legendre polynomial of degree N for each variable, and let u ∈ Hr(Ω̃)

with 2 ≤ r ≤ N + 1, then

∥INu− u∥L2(Ω̃) ≤ c

√
(N − r + 1)!

N !
(N + r)−

r+1
2 |u|Hr(Ω̃) (2.29)

with a constant c. If r is fixed, then for large N ,

∥INu− u∥L2(Ω̃) ≤ cN−r|u|Hr(Ω̃). (2.30)

More detail about Lemma 2.3.5 can be found in [1]. Furthermore, we have the

approximation result as follows.

Theorem 2.3.3 Under the hypothesis for IN in Lemma 2.3.5 and the assumption

that u ∈ X ∩Hr(Ω̃) with fixed r ≥ 4, it has

inf
uN∈XN

∥∆(u− uN)∥L2(Ω̃) ≤
(
N − 3

2

)−(r−2)

|u|Hr(Ω̃). (2.31)
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Proof Let q := IN−3
2
(∆u) ∈ PN−3

2
× PN−3

2
⊂ YN by Lemma 2.3.4. Note the linear

problem

find wN ∈ XN s.t. ∆wN = q, (2.32)

admits a unique solution since dim(XN) = dim(YN) and ∆ has a trivial nullspace.

Therefore

inf
uN∈XN

∥∆(u− uN)∥L2(Ω̃) ≤ ∥∆u−∆wN∥L2(Ω̃) = ∥∆u− IN−3
2
(∆u)∥L2(Ω̃)

≤
(
N − 3

2

)−(r−2)

|∆u|H−(r−2)(Ω̃) ≤
(
N − 3

2

)−(r−2)

|u|Hr(Ω̃). (2.33)

Finally, the error estimate for (2.24) is given by

Theorem 2.3.4 Suppose the solution u of problem (2.6) with L = −∆ and f ∈

Hs(Ω̃) for some s ≥ 2 satisfies the regularity hypothesis u ∈ X ∩ Hr(Ω̃) for some

r ≥ 4, then the solution uN of the approximate problem (2.24) satisfies

∥u− uN∥X ≤ c

((
N − 3

2

)−(r−2)

|u|Hr(Ω̃) +N−s|f |Hs(Ω̃)

)
(2.34)

for some constant c > 0.

Proof Due to the discrete inf-sup condition (2.25) and the continuity of a(·, ·) on

(X + XN) × Y , (2.24) satisfies the hypothesis of the Second Strang Lemma ( [36]),

which gives

∥∆(u− uN)∥L2(Ω̃) ≤(1 + ∥a∥) inf
uN∈XN

∥∆u−∆uN∥L2(Ω̃)

+ sup
vN∈YN

|
∫
Ω̃
INfvN − a(u, vN)|

∥vN∥YN

.
(2.35)

Note if f ∈ Hs(Ω̃), then by (2.30)

|
∫
Ω̃

INfvN − a(u, vN)| = |
∫
Ω̃

INfvN −
∫
Ω̃

fvN |

≤ ∥INf − f∥L2(Ω̃)∥vN∥L2(Ω̃) ≤ cN−s|f |Hs(Ω̃)∥vN∥L2(Ω̃)

(2.36)

for some constant c > 0. Hence together with (2.31), the inequality (2.34) follows

from (2.35).
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Error estimates by using H2 norm

We hope to finally obtainH2 norm error for eN := u−uN which is more convincing,

but ∥eN∥H2(Ω̃) is not bounded by ∥∆(eN)∥L2(Ω̃) since no restriction is placed on the

data near the boundary ∂Ω̃. However, note the original PDE is considered only inside

Ω, in which the error estimate is really worth studying. Moreover, the following well-

known inequality holds

∥w∥H2(Ω) ≤ c∥Lw∥L2(Ω), ∀w ∈ H2(Ω) ∩H1
0 (Ω) (2.37)

where Lw := aij(x)Dijw+bi(x)Diw+c(x) is a strictly elliptic operator in Ω with coef-

ficients aij ∈ C(Ω), bi, c ∈ L∞(Ω) and c ≤ 0. Note eN ∈ X̄N := {w ∈ H2(Ω), ξi(w) =

0, i = 1, · · · , 2N + 2}, and X̄N approximates H2(Ω) ∩ H1
0 (Ω) as N → ∞ in some

sense, it should have a similar form to (2.37) such as

∥eN∥H2(Ω) ≤ ϵ(eN) + c∥LeN∥L2(Ω), (2.38)

for all eN ∈ X̄N with some specific requirement on eN , where ϵ(eN) is an infinitesimal

term as N → ∞ which depends on eN . For example, we assume eN has the following

estimate on ∂Ω,

sup
∂Ω

|eN | < δ(N), (2.39)

and also assume Ω is regular enough so that the boundary value problem

∆e = 0 in Ω,

e = eN on ∂Ω,
(2.40)

admits a solution, denoted by ēN . Note then eN − ēN ∈ H2(Ω) ∩ H1
0 (Ω), hence by

(2.37), it has

∥eN − ēN∥H2(Ω) ≤ c∥∆(eN − ēN)∥L2(Ω) = c∥∆eN∥L2(Ω). (2.41)

Now let Ω′ ⊂ Ω be a domain such that d′ := dist(Ω′, ∂Ω) > 0, then by the regularity

estimate for harmonic functions,

sup
Ω′

|Dαu| ≤
(
d|α|
d′

)|α|

sup
Ω
|u|, ∀u harmonic in Ω, (2.42)
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we have

sup
Ω′

|DēN | ≤
2

d′
sup
Ω
|ēN | <

2δ(N)

d′
,

sup
Ω′

|D2ēN | ≤
16

d′2
sup
Ω
|ēN | <

16δ(N)

d′2
.

(2.43)

Hence

∥ēN∥H2(Ω′) =

(∫
Ω′
|ēN |2 + |DēN |2 + |D2ēN |2

) 1
2

< c|Ω′|
1
2

(
1 +

1

d′2
+

1

d′4

) 1
2

δ(N).

(2.44)

Therefore by combining (2.41) and (2.44), we obtain the following H2 estimate for

eN in Ω′,

∥eN∥H2(Ω′) ≤ ∥ēN∥H2(Ω′) + ∥eN − ēN∥H2(Ω′)

≤ ∥ēN∥H2(Ω′) + ∥eN − ēN∥H2(Ω)

≤ c

(
|Ω′|

1
2

(
1 +

1

d′2
+

1

d′4

) 1
2

δ(N) + ∥∆eN∥L2(Ω)

)
.

(2.45)

In (2.45), the bound for the H2 error grows up as Ω′ → Ω, that implies the error

is likely to become significantly as it approaches to the boundary of Ω. If only L2

estimate is required, then by modifying (2.44) for ∥ēN∥L2(Ω), it directly leads to the

L2 estimate for eN in Ω,

∥eN∥L2(Ω) ≤ c
(
|Ω|

1
2 δ(N) + ∥∆eN∥L2(Ω)

)
. (2.46)

2.4 The second method

Although the method presented in the last section can be applied to more general

elliptic equations, it is only mathematically justified for the Poisson equation. If fact,

numerical evidence indicates that the convergence rate deteriorates as α → 0 if the

method is applied to the Poisson problem

(−∆+ αI)u = f, in Ω,

u = 0, on ∂Ω.
(2.47)
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Therefore, we shall present another Petrov-Galerkin method which does not have this

problem.

2.4.1 Weak formulation

We restrict our attention to the special case that L = −∆+ αI (α > 0), and set

the trial and test spaces to be

X := {u ∈ H1(Ω̃), tr(u) = 0 on ∂Ω}, ∥u∥X :=

(∫
Ω̃

u2 + |∇u|2
) 1

2

, (2.48)

Y := H1
0 (Ω̃), ∥v∥Y :=

(∫
Ω̃

v2 + |∇v|2
) 1

2

. (2.49)

Then the weak problem is to find u ∈ X s.t.

a2(u, v) :=

∫
Ω̃

∇u · ∇v + αuv =

∫
Ω̃

fv, ∀v ∈ Y. (2.50)

Here X differs from Y by forcing the functions contained in it vanish on the interior

boundary ∂Ω rather than the outer boundary ∂Ω̃.

2.4.2 Spectral approximation

We set the approximate trial and test spaces as

XN := {uN ∈ PN × PN , ξi(uN) = 0, i = 1, · · · , 4N}, (2.51)

and

YN := P 0
N × P 0

N , (2.52)

where P 0
N := {p ∈ PN , p(±1) = 0}. The sampling points {ξi} are still distributed on

∂Ω as in the last section but the number here is increased to 4N to force dim(XN) =

dim(YN) = (N − 1)2. Our Petrov-Galerkin method is to find uN ∈ XN s.t.

a2(uN , vN) =

∫
Ω̃

INfvN , ∀vN ∈ YN , (2.53)

where a2(·, ·) is defined in (2.50).
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The numerical experiments show the second spectral method (2.53) works better

than the preceding one described in Sec. 2.3 for problem (2.47) with a nonzero α (see

Sec. 2.5).

2.4.3 General elliptic equations with non-constant coefficients

Furthermore, the second method (2.53) can be employed to solve elliptic equations

with non-constant coefficients. Considering the following Dirichlet problem,

−∇ · (β(x, y)∇u) + α(x, y)u = f in Ω,

u = h on ∂Ω,
(2.54)

where α(x, y) ≥ 0 and β(x, y) ≥ β0 > 0, we can write its weak formulation byfind u ∈ X s.t.

a2,g(u, v) :=
∫
Ω̃
β∇u · ∇v + αuv =

∫
Ω̃
fv, ∀v ∈ Y.

(2.55)

Correspondingly, the Galerkin formulation is given byfind uN ∈ XN s.t.

a2,g(uN , vN) =
∫
Ω̃
INfvN , ∀vN ∈ YN .

(2.56)

2.5 Numerical implementation

2.5.1 Derivation of the linear system

We shall use Legendre polynomials to construct basis functions for XN and YN .

Recall the Legendre polynomials {Lk}Nk=0 form an orthogonal basis for PN satisfying∫ 1

−1

Ln(x)Lm(x)dx =
2

2n+ 1
δmn. (2.57)

Hence, we define Ln(x) be the polynomial that has a second derivative equal to

Ln−2(x) for n ≥ 2, namely

L0(x) = 1, L1(x) = x, L2(x) = x2/2, L3(x) = x3/6, (2.58)
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and

Ln(x) :=

∫ x

−1

∫ t

−1

Ln(s)dsdt

=
1

(2n− 3)(2n− 5)
Ln−4(x)−

2

(2n− 1)(2n− 5)
Ln−2(x) +

1

(2n− 1)(2n− 3)
Ln(x),

(2.59)

for n ≥ 4. It can be verified that {Ln(x)}Nn=0 form a basis for PN and

d2

dx2
Ln(x) = Ln−2(x) for n ≥ 2. (2.60)

We start with basis functions for YN . For the first spectral method described in

Sec. 2.3,

YN = span{L̃mn}Nm=0,n=2, with L̃mn = Lm−2(x)Ln(y) + Lm(x)Ln−2(y), (2.61)

where L−2 = L−1 := 0. And for the second method described in Sec. 2.4,

YN = span{L̃mn}N−2
m,n=0, with L̃mn = L̃m(x)L̃n(y), (2.62)

where L̃m(t) := Lm+2(t) − Lm(t) ∈ P 0
N . Generally, we denote YN = span{ψj}M

′
j=1,

where M ′ = N2 − 1 for the first one and M ′ = (N − 1)2 for the second one is the

dimension of YN and XN .

Next we consider how to construct basis functions {ϕi}M
′

i=1 for XN . Due to com-

plexity of domain boundary ∂Ω and the prescribed constraints {ξk(uN) = 0} in the

definition of XN , it is not possible to write these basis functions in a closed form, so

we write

ϕi =
N∑

s,t=0

distLs(x)Lt(y) such that ξk(ϕi) = 0 ∀k = 1, · · · ,M, (2.63)

where M = 2N + 2 for the first one and M = 4N for the second one is the number

of sampling points on the boundary of Ω.

For each ϕi, the M constraints {ξk(ϕi) = 0}Mk=1 defined in (2.17) can be written

in a matrix-vector form:

Bdi = 0, (2.64)
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where B ∈ RM×(M+M ′), independent of i, with the k-th row corresponding to the

k-th constraint {ξk(ϕj) = 0}M ′
j=1, and

di :=
[
di00 d

i
01 · · · diNN

]T
, (2.65)

which is a long vector consisting all the coefficients of ϕi in (2.63) lexicographically.

It is to be observed that B is determined by Ω, Ω̃ and the choice for ξk, and is

independent of the PDE operator L and the data f .

It is now evident that {ϕi}M
′

i=1 can be constructed by finding a basis for null(B),

since the basis contains exactlyM ′ vectors, each of which corresponds to one element

of {ϕi}M
′

i=1. More precisely, let

D := [d1 d2 · · · dM ′
] ∈ R(M+M ′)×M ′

(2.66)

with linearly independent columns such that BD = 0, and denote

L(x, y) := [L0(x)L0(y) L0(x)L1(y) · · · LN(x)LN(y)], (2.67)

then formally we have

[ϕ1 ϕ2 · · · ϕM ′ ] = L(x, y)D. (2.68)

Let uN =
∑M ′

i=1 ũiϕi, then (2.24) (or (2.53)) leads to the following linear system,

M ′∑
i=1

a(ϕi, ψj)ũi =

∫
Ω̃

INfψj := fj, for j = 1, · · · ,M ′. (2.69)

Denoting

A :=
[
a
(
Ls(x)Lt(y), ψj

)]
∈ RM ′×(M+M ′) (2.70)

with row indices j = 1, · · · ,M ′ and column indices s, t = 0, · · · , N , and with the

notation in (2.68), we can rewrite (2.69) as

ADu = f , (2.71)

where

u := [ũ1 ũ2 · · · ũM ′ ]T , f :=
[
f̃1 f̃2 · · · f̃M ′

]T
.
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Note that for any given point (xp, yp) at which the solution is evaluated,

uN(xp, yp) = [ϕ1 ϕ2 · · · ϕM ′ ]|(xp,yp)u = L̃(xp, yp)Du := L̃(xp, yp)y, (2.72)

which means the evaluation of uN only depends on L̃(xp, yp) and y, Hence, instead

of solving (2.71) for u explicitly, we can solve

Ay = f , (2.73)

directly.

Note (2.73) has M ′ equations for M +M ′ unknowns. The rest of equations are

from the boundary constraints

By = 0. (2.74)

Hence, the final linear system to be solved is A

B

y =

 f

0

 . (2.75)

For problems with non-homogeneous boundary condition u|∂Ω = h, it suffices to

let

h =

[∫
∂Ω

hχ1ds

∫
∂Ω

hχ2ds · · ·
∫
∂Ω

hχMds

]T
, (2.76)

and replace the right vector in (2.75) by A

B

y =

 f

h

 . (2.77)

2.5.2 Fast and robust algorithm for the linear system

Unfortunately, it is numerically observed that (2.75) is very ill-conditioned so a

direct solver is not feasible. Note that the upper part Ay = f is the approximation

to the PDE Lu = f , while the lower part By = 0 describes the boundary constraints.

The idea is to solve the upper part accurately and relax the accuracy requirement for

the lower part. More precisely, we aim to reduce the residue of By = h as much as
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Fig. 2.1.: The structure of A for N = 15(around 5× 104 total entries)

possible subject to Ay = f . A straightforward approach is to solve the least square

problem

min
y∈ys+YK

∥h−By∥2, (2.78)

where ys is a particular solution of Ay = f and YK is a K-dimensional subspace of

null(A) with K ≤ M . Note that if K = M , (2.78) is equivalent to (2.75). Hence, to

avoid the ill-conditioning, K should not be too close to M in practical computation.

For a fixed K < M , we first find a particular solution ys of Ay = f by letting ys

being in the row space of A, i.e.

ys = ATx. (2.79)

Hence if follows

(AAT )x = f , (2.80)

where AAT is symmetric positive-definite, so the above can be easily solved.

Thanks to the orthogonality of the Legendre polynomials, A is a sparse block

band matrix with 4 block bands (the structure of A for N = 15 is shown in Fig. 2.1).

So we can find easily an orthonormal set y1,y2, · · · ,yK in null(A). Denote

YK = [y1 y2 · · · yK ] ∈ R(M+M ′)×K , (2.81)

then (2.78) can be rewritten as

min
zK∈RK

∥h−B(YKzK + ys))∥2. (2.82)
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Therefore it suffices to compute the least square solution zK to (2.82) so that the

solution to (2.78) is given by

y = YKzK + ys. (2.83)

The choice ofK is of critical importance, since largeK may cause a large condition

number, and small K may lead to large errors for the boundary constraints By = 0.

Therefore, we employ an adaptive procedure to choose K which better balances the

ill-conditioning and the errors for the boundary constraints By = 0.

We now describe how to solve the problem (2.82). We first rewrite it as the

following over-determined linear system

BYKzK = g := h−Bys. (2.84)

We start by using the QR factorization with Householder transformation to (2.84).

In the (k − 1)-th iteration, we have the following form

Q̃k−1Q̃k−2 · · · Q̃1BYk−1 = Rk−1, (2.85)

where Q̃k−1, Q̃k−2, · · · , Q̃1 ∈ RM×M is an orthogonal matrix and Rk−1 ∈ RM×(k−1) is

upper-triangular. Note in the k-th iteration,

BYk = B [Yk−1 yk] = [BYk−1 Byk] , (2.86)

which is obtained by adding a new column Byk to BYk−1. Hence

Q̃k−1Q̃k−2 · · · Q̃1BYk = [Rk−1 rk] , (2.87)

where rk = Q̃k−1Q̃k−2 · · · Q̃1Byk. Write rk =

 rt
k

rb
k

 with rt
k ∈ Rk−1 and rb

k ∈

RM−k+1, and let Hk be the Householder reflector associated with rb
k, then Q̃k := I

Hk

 will make

Q̃kQ̃k−1 · · · Q̃1BYk = Rk, (2.88)

which is upper-triangular. So far we can estimate the condition number of the k-step

least square system (2.84) by estimating the condition number κ(Rk) (it suffices to
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consider κ(R̃k), where R̃k := Rk(1 : k, :) is the top square part of Rk) and decide

whether to continue the iteration or not. Given a threshold ϵ > 0, the k-th iteration

stops if κ(R̃k) > ϵ−1. Actually, κ(R̃k) can also be computed iteratively, that is, we

can update κ(R̃k) by the information of R̃k−1. For example, one simple approach is

to use 1 or ∞-condition number κ∗(R̃k) for ∗ = 1 or ∞. Suppose we have evaluated

R̃−1
k−1 by the (k − 1)-th iteration, and obtained R̃k in the k-th iteration as following

form

R̃k =

 R̃k−1 rk

0 σk

 , (2.89)

then R̃−1
k can be evaluated by

R̃−1
k =

 R̃−1
k−1 −σ−1

k R̃−1
k−1rk

0 σ−1
k

 , (2.90)

which only costs O(k2) flops. Next κ∗(R̃k) = ∥R̃k∥∗∥R̃−1
k ∥∗ can be updated from the

information of R̃k−1 and R̃−1
k−1 by O(k) flops. Hence the total flops for computing

κ∗(Rk) in all iterations will be no greater than O(K3) flops, where K is the total

number of iterations.

After the QR factorization, (2.84) can be rewritten as

QKRKzK ≈ g, (2.91)

and then the least square solution zK is computed by applying back-substitution to

R̃KzK =
(
QT

Kg
)
(1 : K). (2.92)

All in all, the whole algorithm for (2.75) can be depicted as follows.

1. find a particular solution ys by (2.79) and (2.80), and let g := h−Bys;

2. define R = [ ] which is an empty matrix in the beginning;

3. for k = 1 :M

4. find yk ∈ null(A) which is orthonormal to y1, · · · ,yk−1;
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5. rk = Byk;

6. rk = Q̃k−1 · · · Q̃1rk; (if k = 1, skip this line)

7. define rt
k = rk(1 : k − 1), rb

k = rk(k :M);

8. sk = −sign((rb
k)1)∥rb

k∥e1,

9. vk = (sk − rb
k)/∥sk − rb

k∥;

10. R =

 R

 rt
k

sk

 ;
11. if κ(R(1 : k, :)) > ϵ−1, break;

12. end for

13. g = Q̃k · · · Q̃1g;

14. solve R(1 : k, :)z = g(1 : k) for z by back-substitution;

15. y = [y1 · · · yk] z + ys;

In Line 6, rk = Q̃k−1 · · · Q̃1rk can be computed implicitly by

1. for i = 1 : k − 1

2. rk(i :M) = rk(i :M)− 2vi

(
vT
i rk(i :M)

)
;

3. end for

and in Line 13, g can be computed by the same way.

2.5.3 Fast matrix-vector multiplication

The majority of computation in the algorithm is occupied by Line 5, namely,

computing Byk. Since B is of size O(N) × O(N2), a direct matrix-vector multipli-

cation By costs O(N3) arithmetic operations. Fortunately, the specific data array
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of B allows a fast multiplication. Note the adjacent rows of B are highly linearly

dependent, and each row varies smoothly from previous ones. We first consider the

boundary constraints (2.15), where B has the following form

B =


L0(x1)L0(y1) L0(x1)L1(y1) · · · LN(x1)LN(y1)

L0(x2)L0(y2) L0(x2)L1(y2) · · · LN(x2)LN(y2)

· · · · · · · · · · · ·

L0(xM)L0(yM) L0(xM)L1(yM) · · · LN(xM)LN(yM)

 , (2.93)

where (xi, yi) = zi, i = 1, · · · ,M are the points spaced on ∂Ω. Given

y = [y00 y01 · · · yN+1,N+1]
T ∈ R(N+1)2 , (2.94)

then

B(i, :)y =
∑
j,k

Lj(xi)Lk(yi)yjk (2.95)

evaluates the expansion with base functions LjLk and coefficients yjk at point zi.

Hence, the plot of By shows the profile of
∑
Lj(x)Lk(y)yjk defined on ∂Ω, which is

usually (piecewise) smooth as long as ∂Ω is (piecewise) smooth.

Due to its smoothness, instead of evaluating the whole product By, it suffices to

choose several sampling nodes on ∂Ω (namely, several rows of B) and do multiplica-

tion on them. After that, the value at non-sampling points on ∂Ω can be interpolated

based on the data at sampling nodes. Fortunately, the complexity of evaluation at

a point by usual interpolation techniques is much less than doing a direct vector

multiplication. Therefore, when computing the product By, we can only multiply a

fixed number N0 rows of B by y, and estimate other part of By by interpolation,

for instance, the cubic spline interpolation which costs O(N0) for a solo entry and

O(N0N) for all entries. By this method, the total complexity for computing By is

O(N0N
2). In practical implementation, N0 is determined by the accuracy require-

ment and is independent of N . We demonstrate it by the following example, in which

∂Ω is set by r = 0.65 + 0.25 sin(3θ) and B is multiplied by an all-one vector e. In

Fig. 5.2, the l2 errors of computing Be by our interpolation method versus N are
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Fig. 2.2.: l2 error for computing Be by interpolation method for different N0 and N

102 103
105

106

107

108

109
Number of operations v.s. N

Fig. 2.3.: Number of arithmetic operations for different N

shown, and it is observed the errors only depend on the number of sampling nodes,

rather than the size of B. Furthermore, the numbers of operations for different N

and N0 are estimated and presented in Fig. 5.3, from which we see the complexity

for the matrix-vector multiplication on B is indeed about O(N2).
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For boundary constraints (2.16), we suppose the number of test functions {χi} and

the quadrature nodes are set by O(N), then in this case B is formed as the product of

a O(N)×O(N) matrix related to {χi} and another O(N)×O(N2) matrix of the form

in (2.93). Hence By is computed by first applying the preceding fast multiplication

technique, and then doing a usual O(N) by O(N) matrix-vector multiplication. Thus

the total number of operations is also O(N2).

Now we can determine the complexity of the preceding algorithm. First note

Line 4 can be precomputed since it does not depend on the domain and the data.

Due to the orthogonality, A ∈ RO(N2)×O(N2) is sparsely structured with O(1) nonzero

entries in each row. So sparse solvers can be applied to compute an orthonormal

set of null(A) in advance. Then for other lines relate to computation, note Line 1

costs O(sN2) if an iterative solver is used for (2.80) and executes s times of iteration.

Inside the for-loop, Line 5 costs O(N2) by fast computation and Line 6,8,9,11 and 13

each costs no more than O(N2), hence each loop costs O(N2), and the whole for-loop

costs at most O(N3) due to M = O(N). Finally the cost of Line 14 and 15 is within

O(N3). Therefore, the total process costs O(N3) +O(sN2) operations.

2.6 Numerical examples

The accuracy of the preceding two methods will be demonstrated by five numerical

examples. In the first and second ones, we solve smooth Poisson-type problems in a

smooth domain and a convex polygon. In the third and fourth ones, singular problems

in a square and an L-shaped domain are studied. And in the last example, the elliptic

problem with non-constant α is considered. For all examples, (2.15) is chosen as the

approximate boundary condition.

In the first example, the first method is applied to the following Poisson-type

equation

−∆u+ αu = f in Ω,

u = h on ∂Ω,
(2.96)
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where ∂Ω is characterized by the polar expression

r = r0 + δ sin(nθ). (2.97)

And the exact solution is set by

u = r3(r0 + δ sin(nθ)− r), (2.98)

with homogeneous Dirichlet boundary condition, where r0 = 0.65, δ = 0.25, n = 3.

Recall N is the degree of tensorial polynomial space specified in (2.17)-(2.18), namely,

the degree of freedom. First, we let α = 0, and for N = 51(M = 104) we run

out the whole for-loop in the algorithm presented in Section 2.5 without break and

compute κ1(Rk) in each loop. The growth tendency of κ1(Rk) is shown in Fig. 2.4,

from which we can see κ1(Rk) increases rapidly from the beginning, and reaches an

acceptable level of 106 when k is around 1
3
M , therefore in this example we choose

K = ⌊1
3
M⌋ = ⌊2N+2

3
⌋ as a prescribed number of iterations for the for-loop, that

means the solution to the least square problem (2.84) is searched in a K-dimensional

subspace of null(A). The original domain Ω, extended domain Ω̃ and the sampling

nodes {zi} defined in (2.15) for N = 51 are shown in Fig. 2.5. Moreover, the

numerical solution uN and the error mesh u − uN are presented in Fig. 2.6, from

which we see the error dominates near the boundary. This is consistent with the

error estimate (2.45). Finally, (2.96) is solved for N = 35, 43, · · · , 91, and the decay

of L2 error ∥u − uN∥L2(Ω) is shown in Fig. 2.7, where the exponential convergence

rate is observed.

For testing the robustness of the first method on the cases α ̸= 0, we repeat

computing the same problem with different positive α under the same parameter

setting. The L2 error is shown in Fig. ??. From the result, we can see the error can

only reach the level of 10−1 to 10−2, as long as α ̸= 0.

The second example is to solve the problem (2.96) by the second method, where

Ω is a pentagon with vertices (0, 0.9), (−0.9, 0.2), (−0.7,−0.8), (0.7,−0.8), and

(0.9, 0.2). The exact solution is chosen as

u = exp(−x
2 + y2

2
). (2.99)
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Fig. 2.4.: κ1(Rk) for the first example (N=51)
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Fig. 2.5.: the problem domain, extended domain and the boundary nodes for the first

example (N=51)
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Fig. 2.6.: the numerical solution (left) and the error (right) for the first example

(N=51)
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Fig. 2.7.: ∥u− uN∥L2(Ω) versus N for the first example
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Fig. 2.8.: ∥u− uN∥L2(Ω) versus N for the first example of different α
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Fig. 2.9.: κ1(Rk) for the second example (N=35)
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Fig. 2.10.: the problem domain, extended domain and the boundary nodes for the

second example (N=35)

First we consider α = 10. For N = 35, κ1(Rk) for different k is shown in Fig. 2.9,

together with the original domain Ω, extended domain Ω̃ and the sampling nodes

{zi} shown in Fig. 2.10. In this example, ϵ−1 = 101+N/10 is chosen as the stopping

criterion for Line 11 in the algorithm. The numerical solution and the error mesh

for N = 35 are depicted in Fig. 2.11. Finally the L2 error for N = 15, 25, · · · , 95 is

presented in Fig. 2.12. The exponential error decay is also observed for this method.
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Fig. 2.11.: the numerical solution (left) and the error (right) for the second example

(N=35)
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Fig. 2.12.: ∥u− uN∥L2(Ω) versus N for the second example
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Fig. 2.13.: ∥u− uN∥L2(Ω) versus N for the second example of different α

The effectiveness of the second method on the cases of smaller α is also tested.

We repeat computing the same problem with different nonnegative α under the same

parameter setting. The L2 error is shown in Fig. 2.13, in which the exponential

error decay is observed for all α. Hence the second method indeed works for smooth

Poisson-type problem independent of α.

In the following, the problems with singularities will be tested by our methods.

In the third example, the first method is applied to the Poisson problem

−∆u = 1 in Ω,

u = 0 on ∂Ω,
(2.100)

where Ω is a square with vertices (T, T ), (T,−T ), (−T,−T ), (−T, T ) (here T is chosen

by 0.8). The exact solution is given by

u(x, y) = −64T 2

π4

∞∑
n,m=1
n,m odd

(−1)
n+m

2
cos(nπx

2T
)cos(mπy

2T
)

nm(n2 +m2)
, (2.101)

which has singularities at the four corners. For such problems the exponential er-

ror decay is hardly obtained by usual numerical approaches (see [37, 38]). Now the

problem is solved by the first method. For N = 55, the original domain Ω, extended

domain Ω̃ and the boundary nodes are shown in Fig. 2.14, together with the error
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Fig. 2.14.: the problem domain, extended domain and the boundary nodes for the third

example (N=55)
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Fig. 2.15.: the error for the third example (N=55)

meshed in Fig. 2.15, from which we can see the error is mainly distributed near the

corners. Then for N = 35, 45, · · · , 105, we compute the L2 errors and present them in

Fig. 2.16, in which the convergence rate is observed between 4th order to 5th order.

For the fourth example, we consider (2.100) in an L-shaped domain, namely, Ω

is an L-shaped polygon with vertices (0, 0), (T, 0), (T,−T ), (−T,−T ), (−T, T ) and

(0, T ) (here T is chosen by 0.8). The solution of the PDE has singularity at the

origin. In [39], a finite difference scheme with domain decomposition is proposed, but

the convergent rate is at most 1st order. We apply the second method with stopping
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Fig. 2.16.: ∥u− uN∥L2(Ω) versus N for the third example



37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.17.: the problem domain, extended domain and the boundary nodes for the

fourth example (N=55)
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Fig. 2.18.: the error for the fourth example (N=55)

criteria ϵ−1 = 10N/20 to this problem. The original domain Ω, extended domain Ω̃

and the boundary nodes {zi} for N = 55 is shown in Fig. 2.17. A high-resolution

solution of N = 255 is computed as the exact solution, and the error mesh for N = 55

is shown in Fig. 2.18, from which we see the error accumulates in the vicinity of the

singular corner (0,0). Finally the L2 error for N = 25, 35, · · · , 135 is presented in Fig.

2.19, where the convergence rate is observed to be between 2nd and 3rd order.



38

101 102 103
10-4

10-3

10-2

10-1

Fig. 2.19.: ∥u− uN∥L2(Ω) versus N for the fourth example
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Fig. 2.20.: the problem domain, extended domain and the boundary nodes for the fifth

example (N=35)
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Fig. 2.21.: L2 error ∥u− uN∥L2(Ω) versus N for the fifth example

In the fifth example, we apply the second method on the general elliptic problem

(2.54), where α(x, y) = (sin x+1)(cos x+1) and β(x, y) = exp(x+y) are non-constant

coefficients. The exact solution is also chosen by (2.99), and Ω is set as a triangle

with vertices (0, 0.9), (0.6,−0.9), (−0.6,−0.9). The problem domains for N = 35 is

shown in Fig. 6.9, and the L2 error for N = 15, 25, · · · , 95 can be seen in Fig. 6.10.

Due to the smoothness of the coefficient and solution, the exponential decay of error

is still observed.
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2.7 Conclusion

In this work, we have developed spectral methods for elliptic PDEs defined in com-

plex domains. These methods are performed by embedding the original domain into

a larger and regular one, and continuously extending the original equation. Specific

trial and test functions are chosen to build up weak formulations. The correspond-

ing spectral Petrov-Galerkin formulations are then presented by approximating the

trial and test spaces by finite dimensional tensorial polynomial spaces, in which the

Legendre polynomials are employed to construct the basis functions.

Actually, we put forward two types of Petrov-Galerkin formulations for the ex-

tended problem. One is specifically designed for the Poisson-type equation (2.96) with

α = 0, by choosing H2-type trial space and L2-type test space, which are separately

approximated by PN × PN and ∆(PN × PN). The well-posedness and error estimate

for the first method are discussed completely in Section 2.3. However, the application

of the first method to the cases α ̸= 0 is not as good as the case α = 0, where the

error only decays to the level between 10−1 to 10−2 in the numerical results. The

other one is using H1-type trial space and H1
0 -type test space, which are separately

approximated by PN×PN and P 0
N×P 0

N . We observe that the second method can deal

with the equation (2.96) with all α ≥ 0 elegantly, but the well-posedness is subtle

and depends on the geometry of the original and enclosing domains, as well as the

value of α. And we have no theoretical error estimate for the second method.

Furthermore, we solve the derived ill-conditioned linear system by a particular

algorithm. The process divides the system to two parts (one is from the differen-

tial equation and the other is from the boundary condition) and deals with them

under different mechanisms, instead of solving the linear system directly. The total

complexity for both methods are O(N3).

In numerical examples, our methods work for problems in smooth domains as

well as polygons, and the exponential convergence rate has been obtained for smooth

solutions. Moreover, for the singular Poisson problem in a square domain, the conver-
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gence rate is observed to be between 4th and 5th, and for L-shaped domain problem

with singularity at the concave corner, the error decays within between 2nd and 3rd

order. Finally, an example of elliptic equation with non-constant smooth coefficient

is presented. In Section 2.3.2, we have estimated that the error is mostly distributed

near the boundary, which is also observed in these examples. Some future work may

include applying the method to PDEs of other types, developing trial and test func-

tions of better consistence and approximate property or devising boundary constraints

in trial spaces more carefully to reduce the boundary error.
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3. SPECTRAL METHOD WITH CIRCULAR

EMBEDDING

3.1 Introduction

Numerical methods for solving partial differential equations (PDEs) given in ir-

regular domains have been studied in the past decade. One group of the methods

is based on fictitious domain concept, by which the original problem domain is em-

bedded in a larger and regular one, and the equation is also extended in the new

fictitious domain. Such methods include adding penalty to the extended equation-

s [9–11], introducing Lagrange multipliers on the boundary [8,18,40], diffuse domain

method [12–14], boundary integral method [19–21] etc. Furthermore, some techniques

combine fictitious domain concept and the general finite (or spectral) element meth-

ods, which are referred to as the finite (or spectral) cell method. The main drawbacks

of these methods are the low order of convergence rate for singular solutions and the

high computational cost for highly irregular domains [40–43].

Our preceding work is to apply general spectral solvers after domain embedding

to solving two-dimensional second-order elliptic PDEs. The original complex domain

is enclosed by a larger rectangular domain, and the problem is redefined in the new

domain without removing the original boundary condition. We have built a spe-

cific Petrov-Galerkin formulation for the extended problem, and take advantage of

orthogonal polynomial-type basis functions to approximate the weak solution. The

complexity of the whole process is within O(N3), including solving a O(N2)×O(N2)

sparse linear system, where N is the degree of freedom for each variable.

However, the flexibility of the domain embedding process allows us to insert the

complex domain into a larger and circular one. Afterwards, the extended problem

can be set up in the outer circle. Thanks to the polar transformation in circular
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domains x = r cos(θ), y = r sin(θ), the 2-D problem can be separated into a sequence

of ordinary differential equations (ODEs), which are actually Bessel-type equations.

The boundary values of such ODEs are implicitly determined by the original condition

on the boundary of the 2-D complex domain, that is, one needs to look for appropriate

boundary values for these ODEs such that the 2-D boundary condition is satisfied in

some sense. During this approach, one only needs to solve a sequence of O(N)×O(N)

sparse linear systems and a O(N) × O(N) full one. Compared to the preceding

rectangular embedding, the complexity is not increased and the implementation is

simplified to a great extent.

We study the circular embedding approach in this work. In Section 3.2, we de-

scribe the fictitious domain setting, and then build the extended problem and the

corresponding Galerkin formulation for the 1-D Bessel-type equations. In Section

3.3, we discuss the spectral solver for Bessel ODEs. In Section 3.4, we estimate the

solution error for the whole algorithm for a specific problem domain. In Section 3.5,

we present several numerical examples to show the convergence rate for problems of

different type. The whole work is concluded in Section 3.6.

3.2 Problems in simply connected domains

3.2.1 Dimension reduction

Let us consider the following Poisson-type model problem

αU −∆U = F, in Ω,

U = H, on ∂Ω.
(3.1)

where α ≥ 0 and Ω is a two-dimensional simply connected domain of complex geom-

etry, and F ∈ C(Ω), H ∈ C(∂Ω). Now let Ω̃ be a circular domain which encloses Ω,
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Ω

Ω

~

Fig. 3.1.: The original domain Ω and the enclosing circle Ω̃

namely, Ω ⊂⊂ Ω̃ (see Fig. 3.1). We are then to solve the following extended problem

in Ω̃,

αU −∆U = F, in Ω̃,

U = H, on ∂Ω.
(3.2)

Without loss of generality, in the following text we assume Ω̃ = {(x, y) : x2+ y2 <

1} which is the interior of the unit circle. Let Π := (0, 1) × [0, 2π), by applying the

polar transformation

T : Π → Ω̃, T(r, θ) = (r cos θ, r sin θ), (3.3)

to (3.2) and denoting

u(r, θ) := U(r cos θ, r sin θ), (3.4)

f(r, θ) := F (r cos θ, r sin θ), (3.5)

h(r, θ) := H(r cos θ, r sin θ), (3.6)
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we have

αu− 1

r
(rur)r −

1

r2
uθθ = f, (r, θ) ∈ Π,

uθ(0, θ) = 0,

u = h, on Γ,

u is periodic in θ,

(3.7)

where Γ = T−1(∂Ω) is the preimage of ∂Ω. Now the two-dimensional problem (3.7)

can be reduced to a sequence of one-dimensional problems by Fourier transformation

in θ direction. Actually, by expanding u and f as

u(r, θ) =
∞∑

|m|=0

um(r)eimθ, (3.8)

f(r, θ) =
∞∑

|m|=0

fm(r)eimθ, (3.9)

and substituting (3.8) and (3.9) into (3.7) leads to a sequence of Bessel-type ordinary

differential equations for um(r), namely,

−1

r
∂r(r∂ru

m) + (
m2

r2
+ α)um = fm(r), 0 < r < 1, (3.10)

with one-sided pole conditions

um(0) = 0 if m ̸= 0. (3.11)

Note the system (3.10) and (3.11) are underdetermined, unless we add an artificial

boundary condition for each ODE such as

um(1) = tm. (3.12)

3.2.2 Approximation

The numerical method is performed by prescribing a cut-off number M > 0 and

let the approximate solution to (3.7) be

uM(r, θ) =
M∑

|m|=0

um(r)eimθ. (3.13)
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In order to determine um, we need to determine the boundary values {tm}M|m|=0 that

concerns to the boundary condition u = h on Γ in the original problem (3.7). Specif-

ically, we look for desired values for {tm}M|m|=0 such that uM ≈ h on Γ. For this

purpose, we first explore the relation between um and tm. Note for the general two-

point boundary value problems, the following property holds.

Theorem 3.2.1 Suppose the ordinary differential equation

Lu(x) = f(x), x ∈ (a, b), (3.14)

with boundary condition

u(a) = 0, u(b) = t, (3.15)

is well-defined and admits a unique solution u(x; t). Let ϕ(x) be the solution toLϕ(x) = 0, x ∈ (a, b),

ϕ(a) = 0, ϕ(b) = 1,

(3.16)

and ψ(x) be the solution toLψ(x) = f(x), x ∈ (a, b),

ψ(a) = 0, ψ(b) = 0,

(3.17)

then u(x; t) = tϕ(x) + ψ(x).

Remark 3.2.1 If the two-point boundary condition (3.15) is replaced by one-sided

condition u(b) = t in the hypothesis, the result still holds for the ϕ and ψ satisfying

the corresponding one-sided boundary problems.

Now by virtue of Theorem 3.2.1, let {ϕm} be the solution to

− 1

r
∂r(r∂rϕ

m) + (
m2

r2
+ α)ϕm = 0, 0 < r < 1,

ϕm(0) = 0 if m ̸= 0, ϕm(1) = 1,

(3.18)
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and {ψm} be the solution to

− 1

r
∂r(r∂rψ

m) + (
m2

r2
+ α)ψm = fm, 0 < r < 1,

ψm(0) = 0 if m ̸= 0, ψm(1) = 0,

(3.19)

then we have

um(r; tm) = tmϕm(r) + ψm(r). (3.20)

To determine {tm}M|m|=0, a straightforward idea is to prescribe K equispaced sam-

pling nodes {(r̂k, θ̂k)}Kk=1 on Γ, and minimize the discrete L2 error on these nodes in

terms of variables {tm}M|m|=0, namely, to solve

min
tm

K∑
k=1

|uM(r̂k, θ̂k)− h(r̂k, θ̂k)|2, (3.21)

or

min
tm

K∑
k=1

|
M∑

|m|=0

(tmϕm(r̂k) + ψm(r̂k))e
imθ̂k − h(r̂k, θ̂k)|2, (3.22)

Note (3.22) is a least square problem that can be solved by general linear solver-

s. However, adjacent rows of the coefficient matrix are highly parallel due to the

closeness of the adjacent sampling nodes, which causes the ill-conditioning when K

becomes larger. Another approach is to force uM to be the projector of h onto a finite

subspace of L2(Γ). Specifically, suppose Γ is parametrized by

Γ = {(ρ(θ), θ) : 0 ≤ θ < 2π} , (3.23)

and let {ξk}M|k|=0 be a set of periodic functions defined in [0, 2π), then it requires∫ 2π

0

uM(ρ(θ), θ)ξk(θ)dθ =

∫ 2π

0

h(ρ(θ), θ)ξk(θ)dθ, (3.24)

or
M∑

|m|=0

∫ 2π

0

(tmϕm(ρ(θ)) + ψm(ρ(θ))) eimθξk(θ)dθ =

∫ 2π

0

h(ρ(θ), θ)ξk(θ)dθ, (3.25)

for |k| = 0, · · · ,M . An appropriate choice of {ξk}M|k|=0 can remarkably reduce the

condition number of the derived linear system. For example, a decent choice is the

scaled Fourier basis

ξk(θ) := ρ−|k|
avg e

−ikθ (3.26)
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where ρavg ∈ (0, 1) represents the average radius of the domain boundary. A straight-

forward formula for ρavg is

ρavg =
1

2π

∫ 2π

0

ρ(θ)dθ. (3.27)

The exponentially growing factor ρ
−|k|
avg added here plays the role of a preconditioner,

which will be discussed in more detail in Section 3.3.1. This choice for {ξk} can bring

desirable simpleness both for numerical implementation and error analysis.

3.2.3 Algorithm

To sum up, we can derive the following algorithm from the preceding discussion

Algorithm 3.2.1 Solve the Poisson-type problem (3.1)

1. perform the domain embedding Ω ⊂⊂ Ω̃ and extend f from Ω to Ω̃ smoothly;

2. compute the truncated Fourier expansion of f(r, θ) := F (r cos θ, sin θ) with re-

spect to θ, obtaining (3.9);

3. compute {ϕm} and {ψm} which satisfy the Bessel-type equations (3.18) and

(3.19);

4. solve the optimization (3.22) or the linear system (3.25), to obtain {tm};

5. compute uM by (3.13) and (3.20);

6. the final solution UM(x, y) = uM(T−1(x, y)).

let us estimate the computational cost for this algorithm. Suppose the Bessel-

type problem (3.18) is solved by the representation (3.28), and (3.19) is solved by

the spectral-Galerkin formulation with degree of freedom N (see Section 3.3.1), then

for each m, ϕm and ψm are computed with O(N2) flops. Hence Step 2 costs totally

O(MN2) flops. For Step 1, Fast Fourier Transformation(FFT) is performed on f(r, θ)

at O(N) collocation points in r direction, therefore total O(NM log(M)) flops are

needed. For Step 3, forming the matrix in (3.22) costs O(KMN) flops and solving
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the least square problem costs O(KM2) flops. Similarly, if we suppose the integral

in (3.25) are evaluated by numerical quadrature with O(K) nodes and weights, then

the total flops for dealing with (3.25) is O(KMN +KM2 +M3). All in all, by the

fact K ≥M , the complexity for Algorithm 3.2.1 is O(MN2 +KMN +KM2). If we

set K = O(M) and N = O(M), then the total complexity is O(M3).

Note that the crucial step in Algorithm 3.2.1 is to compute {ϕm} and {ψm}, which

will be discussed in the following section.

3.3 Bessel-type equation solver

In this section, we will present the solver for the 1-D Bessel-type equation (3.18)

and (3.19). Actually, for the homogeneous one (3.18) an explicit representation of

the solution can be provided, while for the inhomogeneous one (3.19), classical ODE

solvers for boundary value problems can be applied. In this work, a spectral-Galerkin

formulation is put forward and implemented on it, and the corresponding error anal-

ysis is also presented.

3.3.1 Homogeneous case

It can be verified the solutions to (3.18) have the following expression,

ϕm(r) =

r
|m|, α = 0,

I|m|(
√
αr)

I|m|(
√
α)
, α > 0

(3.28)

for all m, where I|m|(z) are the modified Bessel functions of the first kind. In practical

computation, {ϕm} can be evaluated by using series representation, or by solving the

Bessel-type equations numerically.
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Now let us consider the linear system (3.25) with test functions defined by (3.26),

which is a finite approximation to the original boundary condition U = H on ∂Ω in

(3.1). Rewriting (3.25) by using (3.20) gives

M∑
|m|=0

(
ρ−|k|
avg

∫ 2π

0

ϕm(ρ(θ))ei(m−k)θdθ

)
tm =

ρ−|k|
avg

∫ 2π

0

h(ρ(θ), θ)e−ikθdθ −
M∑

|m|=0

∫ 2π

0

ψm(ρ(θ))ei(m−k)θdθ

 . (3.29)

For the trivial case α = 0 and ρ(θ) = ρ0 ∈ (0, 1), the coefficient matrix in (3.29)

is exactly the identity thanks to the exponentially growing coefficient ρ
−|k|
avg . For

general domains, our numerical examples show that the condition number of the

linear systems may grow exponentially as M increases however with a base number

very close to 1.

3.3.2 Inhomogeneous case

Notations

Denote I = (−1, 1). Now define the Jacobi weight function ωα,β(x) by

ωα,β(x) = (1− x)α(1 + x)β, (3.30)

and the weighted L2 inner product is given by

(u, v)ωα,β =

∫
I

u(x)v̄(x)ωα,β(x)dx, (3.31)

with which the weighted L2 space is defined by

L2
ωα,β(I) = {u(x) : (u, u)ωα,β <∞}, (3.32)

associated with norm

∥u∥ωα,β ;I = (u, u)
1
2

ωα,β . (3.33)

Furthermore, the weighted H1 space is defined by

H1
ωα,β(I) = {u(x) : u, ∂xu ∈ L2

ωα,β(I)} (3.34)
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equipped with norm

∥u∥1,ωα,β ;I =
(
∥u∥2ωα,β ;I + ∥∂xu∥2ωα,β ;I

) 1
2 , (3.35)

Spectral-Galerkin formulation

Now let us consider the spectral methods for (3.19). Note {ψm} satisfy the model

problems

− 1

r
(rur)r + (

m2

r2
+ α)u = f, 0 < r < 1,

u(0) = 0 if m ̸= 0, u(1) = 0,

(3.36)

By introducing the transformation

r =
1 + t

2
, (3.37)

and denoting

v(t) := u(
1 + t

2
), (3.38)

(3.36) will be changed to

− 1

1 + t
((1 + t)vt)t + (

m2

(1 + t)2
+
α

4
)v =

1

4
f(

1 + t

2
), t ∈ I,

v(−1) = 0 if m ̸= 0, v(1) = 0,

(3.39)

Define the solution space by

Xm =


{
v : v(1) = 0,

∫
I
(1 + t)|v|2 + (1 + t)|vt|2dt <∞

}
, m = 0,{

v : v(±1) = 0,
∫
I

1
1+t

|v|2 + (1 + t)|vt|2dt <∞
}
, m ̸= 0,

(3.40)

equipped with norms

∥v∥Xm =


(∫

I
(1 + t)|v|2 + (1 + t)|vt|2dt

) 1
2 , m = 0,(∫

I
1

1+t
|v|2 + (1 + t)|vt|2dt

) 1
2 , m ̸= 0.

(3.41)

Also, define

am(v, w) = (vt, wt)ω0,1 +m2 (v, w)ω0,−1 +
α

4
(v, w)ω0,1 , (3.42)
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then the weak formulation for (3.39) isTo find v ∈ Xm such that

am(v, w) =
1
4
(f(1+t

2
), w)ω0,1 , ∀w ∈ Xm.

(3.43)

To show the well-posedness of the weak problem (3.43), first note the following con-

tinuity holds

|am(v, w)| ≤

max(1, α/4)∥v∥Xm∥w∥Xm , m = 0,

(m2 + α/2)∥v∥Xm∥w∥Xm , m > 0,

(3.44)

for all v, w ∈ Xm.

Furthermore, we introduce the following Hardy-type inequlity.

Lemma 3.3.1 ∫ 1

−1

(1 + t)|v(t)|2dt ≤
∫ 1

−1

(1 + t)|v′(t)|2dt, (3.45)

for all v ∈ H1
ω0,1(I) with v(1) = 0.

Proof Since v(1) = 0,

v(t) = −
∫ 1

t

v′(s)ds. (3.46)

Hence∫ 1

−1

(1 + t)|v(t)|2dt =
∫ 1

−1

(1 + t)
∣∣∣ ∫ 1

t

v′(s)ds
∣∣∣2dt

=

∫ 1

−1

(1 + t)
∣∣∣ ∫ 1

t

(1 + s)
1
2 (1 + s)−

1
2v′(s)ds

∣∣∣2dt
≤
∫ 1

−1

(1 + t)

(∫ 1

t

(1 + s)−1ds

)(∫ 1

t

(1 + s)|v′(s)|2ds
)
dt

≤
∫ 1

−1

(1 + t)

(∫ 1

t

(1 + s)−1ds

)(∫ 1

−1

(1 + s)|v′(s)|2ds
)
dt

=

∫ 1

−1

(1 + t)|v′(s)|2ds ·
∫ 1

−1

(1 + t)

∫ 1

t

(1 + s)−1dsdt

=

∫ 1

−1

(1 + t)|v′(t)|2dt. (3.47)
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Remark 3.3.1 By using similar argument, we can show (3.45) also holds for all

v ∈ H1
ω0,1(I) with v(−1) = 0.

By Lemma 3.3.1, we directly have

a0(v, v) ≥
∫
I

(1 + t)|vt|2dt ≥
1

2
∥v∥2X0 . (3.48)

Also,

am(v, v) ≥ ∥v∥2Xm , for m > 0, (3.49)

therefore am(·, ·) is a coercive bilinear form. By Lax-Milgram Lemma, (3.43) admits

a unique solution.

For building the Galerkin formulation, we denote all the polynomials with complex

coefficients on [−1, 1] of degree no greater than N by PN , and define the finite-

dimensional subspace as

Xm
N = Xm ∩ PN , (3.50)

then Galerkin formulation isTo find vN ∈ Xm
N such that

am(vN , wN) =
1
4

(
f(1+t

2
), wN

)
ω0,1 , ∀wN ∈ Xm

N ,

(3.51)

Remark 3.3.2 By Céa Lemma, the problem (3.51) admits a unique solution vN ∈

Xm
N such that

∥vN∥Xm ≤ 1

2
∥f(1 + t

2
)∥ω0,1;I . (3.52)

Moreover, if v is the solution to (3.43), then

∥v − vN∥Xm ≤ cα(m) inf
wN∈Xm

N

∥v − wN∥Xm , (3.53)

where

cα(m) =

max(2, α/2), m = 0,

m2 + α/2, m > 0.

(3.54)
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Remark 3.3.3 The basis functions for Xm
N can be chosen by {Lj−Lj+1}N−1

j=0 ∪{(Lj−

Lj+1)i}N−1
j=0 for m = 0, and {Lj − Lj+2}N−2

j=0 ∪ {(Lj − Lj+2)i}N−2
j=0 for |m| ≥ 1. Here

{Lj}Nj=0 is the set of the Legendre polynomials which form an orthogonal basis for

PN with respect to L2 inner product. By this means, the corresponding matrix is

symmetric positive definite and has 7 non-zero diagonals, thus the linear system can

be solved within O(N2) complexity by most solvers.

Remark 3.3.4 In practical computation, the integral
(
f(1+t

2
), wN

)
ω0,1 on the right

hand side is usually computed approximately by numerical quadrature. However, for

simplicity, we assume it can be evaluated accurately in the following error analy-

sis. Actually, most adaptive quadrature schemes evaluate the integral up to the ma-

chine precision, whose error is overwhelmed by that from the Galerkin method, as

long as f is continuous in [0, 1]. Hence we ignore the error coming from evaluat-

ing
(
f(1+t

2
), wN

)
ω0,1 in the error analysis in Section 3.4. On the other hand, Gauss

quadrature with fixed number of nodes can also be applied to computing this term,

and the numerical error depends on the regularity of f (see [1]). Suppose the Legen-

dre polynomial-type basis functions and the Gauss quadrature with O(N) nodes and

weights are used for solving (3.51) numerically, then the total complexity is O(N2).

3.4 Error estimates

3.4.1 Notations

We define the scaled Jacobi weight function ω̂α,β(r) by

ω̂α,β(r) = (1− r)αrβ, (3.55)

and the weighted L2 inner product is given by

(u, v)ω̂α,β =

∫ 1

0

u(r)v̄(r)ω̂α,β(r)dr. (3.56)
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The associated scaled weighted L2 and H1 spaces are defined by

L2
ω̂α,β = {u(r) :

∫ 1

0

|u(r)|2ω̂α,β(r)dr <∞}, (3.57)

H1
ω̂α,β = {u(r) : u, ∂ru ∈ L2

ω̂α,β} (3.58)

equipped with norms

∥u∥ω̂α,β =

(∫ 1

0

|u(r)|2ω̂α,β(r)dr

) 1
2

, (3.59)

∥u∥1,ω̂α,β =
(
∥u∥2ω̂α,β + ∥∂ru∥2ω̂α,β

) 1
2 . (3.60)

Furthermore, we introduce the space H1,s′
p (Π) with s′ ≥ 0, which contains func-

tions defined in Π that are 2π-periodic with respect to θ. We say

u(r, θ) =
∞∑

|m|=0

um(r)eimθ ∈ H1,s′

p (Π) (3.61)

if and only if

um(r) ∈ H1
ω̂0,1 ∩ L2

ω̂0,−1 (3.62)

and
∞∑

|m|=0

m2s′(m2∥um∥2ω̂0,−1 + ∥∂rum∥2ω̂0,1) <∞. (3.63)

And the norm is defined by

∥u∥
H1,s′

p (Π)
=

 ∞∑
|m|=0

m2s′(m2∥um∥2ω̂0,−1 + ∥∂rum∥2ω̂0,1)

 1
2

. (3.64)

Finally, we define the non-uniformly weighted Sobolev space by

B̂s
α,β = {u(r) : ∂kru ∈ L2

ω̂α+k,β+k , 0 ≤ k ≤ s}. (3.65)

3.4.2 The 2-D Petrov-Galerkin formulation

In this section, we have to recover the Petrov-Galerkin formulation corresponding

to the method described in Section 3.2 and 3.3 for the extended 2-D problem (3.7),
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and then apply the inf-sup conditions and space approximation property to obtain

the error estimates. Suppose Γ is parametrized by (3.23). For simplicity, we only

consider α = 0, in which case ϕm = r|m|. For α > 0, taking ϕm = Jm(
√
αir)

Jm(
√
αi)

will leads

to similar results.

First let us define the 1-D function spaces by

Ŵm =


{
u(r) :

∫ 1

0
(|u|2 + |∂ru|2)rdr <∞

}
, m = 0,{

u(r) : u(0) = 0,
∫ 1

0
1
r
|u|2 + r|∂ru|2dr <∞

}
, m ̸= 0,

Ŷ m = {u ∈ Ŵm : u(1) = 0},

(3.66)

and the finite-dimensional subspaces Ŵm
N := Ŵm∩ P̂N , Ŷ

m
N := Ŷ m∩ P̂N , where P̂N is

the set of all the polynomials with complex coefficients on [0, 1] of degree no greater

than N . Ŵm can be equipped with the following norm

∥u∥Ŵm :=
(
m2∥u∥2ω̂0,−1 + ∥∂ru∥2ω̂0,1

) 1
2 . (3.67)

Now define the solution space by

X :=
{
u(r, θ) =

∞∑
|m|=0

um(r)eimθ : um ∈ Ŵm,

∞∑
|m|=0

∥um∥2
Ŵm <∞, u|∂Ω = 0 in the trace sense

}
. (3.68)

with norm

∥u∥X :=

 ∞∑
|m|=0

∥um∥2
Ŵm

 1
2

. (3.69)

And the test space is introduced by

Y :=
{
v(r, θ) =

∞∑
|m|=0

vm(r)eimθ : vm ∈ Ŷ m,
∞∑

|m|=0

∥vm∥2
Ŷ m <∞

}
. (3.70)

with norm

∥v∥Y :=

 ∞∑
|m|=0

∥vm∥2
Ŵm

 1
2

. (3.71)
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For building Galerkin framework, the finite dimensional approximate space to X

is given by

XMN :=
{
uMN(r, θ) =

M∑
|m|=0

umN(r)e
imθ : umN ∈ Ŵm

N ,

(uMN , ξk)∂Ω = 0, for |k| = 0, · · · ,M
}
. (3.72)

with norm

∥uMN∥XMN
:=

 M∑
|m|=0

∥umN∥2Ŵm
N

 1
2

, (3.73)

where (uMN , ξk)∂Ω :=
∫ 2π

0
uMN(ρ(θ), θ)ξk(θ)dθ, and {ξk}|M |

k=0 are defined by (3.26).

Similarly, the finite dimensional subspace of Y is given by

YMN :=
{
vMN(r, θ) =

M∑
|m|=0

vmN (r)e
imθ : vmN ∈ Ŷ m

N ,
}
, (3.74)

with norm

∥vMN∥YMN
:=

 M∑
|m|=0

∥vmN∥2Ŷ m
N

 1
2

. (3.75)

Now let Xs := X +XMN be the sum space, and suppose u =
∞∑

|m|=0

um(r)eimθ ∈ Xs

and v =
∞∑

|m|=0

vm(r)eimθ ∈ Y , define the bilinear form A(·, ·) : Xs × Y → C by

A(u, v) :=
∞∑

|m|=0

m2(u, v)ω̂0,−1 + (∂ru, ∂rv)ω̂0,1 . (3.76)

A(·, ·) is bounded since

|A(u, v)| ≤
∞∑

|m|=0

m2|(u, v)ω̂0,−1 |+ |(∂ru, ∂rv)ω̂0,1 |

≤
∞∑

|m|=0

m2∥u∥ω̂0,−1∥v∥ω̂0,−1 + ∥∂ru∥ω̂0,1∥∂rv∥ω̂0,1 ≤ ∥u∥Xs∥v∥Y , ∀u ∈ Xs, v ∈ Y.

(3.77)
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Under the preceding settings, the weak formulation for the problem (3.7) is given

by To find u ∈ X such that

A(u, v) = ⟨f, v⟩, ∀v ∈ Y,

(3.78)

where

⟨f, v⟩ = ⟨
∞∑

|m|=0

fm(r)eimθ,

∞∑
|m|=0

vm(r)eimθ⟩ :=
∞∑

|m|=0

(fm, vm)ω̂0,1 . (3.79)

And by applying finite-dimensional space approximation, we can derive the fol-

lowing Petrov-Galerkin formulation,To find uMN ∈ XMN such that

A(uMN , vMN) = ⟨f, vMN⟩, ∀vMN ∈ YMN .

(3.80)

It can be verified that applying the method described in Section 3.2 and 3.3 for solving

(3.7) is equivalent to solving (3.80) directly. Therefore it suffices to make analysis on

(3.78) and (3.80) to estimate the solution error obtained by Algorithm 3.2.1 and the

Bessel-type solver in Sec.3.

3.4.3 Error estimate when ρ(θ) = ρ0

We only consider the special case ρ(θ) = ρ0, in which the solution spaces X and

XMN can be characterized more explicitly. First, define the following ρ0-dependent

subspace of Ŵm

X̂m = {u ∈ Ŵm : u(ρ0) = 0}, (3.81)

Denote u =
∑

|m|≥0

um(r)eimθ. In the case ρ(θ) = ρ0, u|∂Ω = 0 is equivalent to

um(ρ0) = 0, thus X can be rewritten as

X :=
{
u =

∑
|m|≥0

um(r)eimθ : um ∈ X̂m,
∑
|m|≥0

∥u∥2
Ŵm <∞

}
. (3.82)

Similarly,

XMN :=
{
uMN =

M∑
|m|=0

umN(r)e
imθ : umN ∈ X̂m

N , , |m| = 0. · · · ,M
}
. (3.83)
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Note in the special case XMN is a subspace of X.

We introduce the 1-D bilinear operator b̂m(·, ·) : X̂m × Ŷ m → C by

b̂m(u, v) = m2(u, v)ω̂0,−1 + (∂ru, ∂rv)ω̂0,1 . (3.84)

b̂m(·, ·) is bounded since

|b̂m(u, v)| ≤ ∥u∥Ŵm∥v∥Ŵm . (3.85)

Now suppose u =
∑

|m|≥0

um(r)eimθ and uMN =
M∑

|m|=0

umN(r)e
imθ are the solutions to

(3.78) and (3.80), thenu
m ∈ X̂m satisfies

b̂m(u
m, vm) = (fm, vm)ω̂0,1 , ∀vm ∈ Ŷ m,

(3.86)

and u
m
N ∈ X̂m

N satisfies

b̂m(u
m
N , v

m
N ) = (fm, vmN )ω̂0,1 , ∀vmN ∈ Ŷ m

N ,

(3.87)

In the following, we deduce the inf-sup condition for b̂m(·, ·), and then estimate ∥um−

umN∥, by accumulating which we obtain the total error ∥u− uMN∥.

Inf-sup condition for b̂m(·, ·)

First, we need the following result which estimates the boundary value for the

functions in X̂m.

Lemma 3.4.1 For |m| ≠ 0, suppose u ∈ X̂m, then u(1) is finite. Specifically, if

∥u∥Ŵm = 1, then

|u(1)| < ĉ(ρ0;m)|m|−
1
2 , (3.88)

where

ĉ(ρ0;m) = (1− ρ
2|m|
0 )

1
2 (1 + ρ

2|m|
0 )−

1
2 < 1. (3.89)

Proof We need to estimate

sup |u(1)|, s.t. ∥u∥Ŵm = 1, (3.90)
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which is clearly equal to

sup |u(1)|, s.t. ∥u∥Ŵm = 1, u ≡ 0 in (0, ρ0), (3.91)

or

sup |u(1)|, s.t.

∫ 1

ρ0

m2

r
|u|2 + r|∂ru|2dr = 1, u(ρ0) = 0. (3.92)

It suffices to consider the following variational problem

inf

∫ 1

ρ0

m2

r
|u|2 + r|∂ru|2dr, s.t. u(ρ0) = 0, u(1) = 1. (3.93)

Note the Euler-Lagrange equation of (3.93) is given by

m2

r
u− ∂r(r∂ru) = 0, u(ρ0) = 0, u(1) = 1, (3.94)

whose solution is

u∗(r) = (1− ρ2m0 )−1rm + (1− ρ−2m
0 )−1r−m. (3.95)

If we define

u∗∗ =

0, in (0, ρ0),

u∗ in (ρ0, 1),

(3.96)

then

inf
u∈X̂m,u(1)=1

∥u∥Ŵm = ∥u∗∗∥Ŵm

=

(∫ 1

ρ0

m2

r
|u∗|2 + r|∂ru∗|2dr

) 1
2

= |m|
1
2

(
(1− ρ

2|m|
0 )−1 − (1− ρ

−2|m|
0 )−1

) 1
2
. (3.97)

Hence

sup
∥u∥Ŵm=1

|u(1)| =
(

inf
u∈X̂m,u(1)=1

∥u∥Ŵm

)−1

= |m|−
1
2 (1− ρ

2|m|
0 )

1
2 (1 + ρ

2|m|
0 )−

1
2 . (3.98)
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Now we have

Theorem 3.4.1 the following inequality holds

inf
um∈X̂m

sup
vm∈Ŷ m

b̂m(u
m, vm)

∥um∥Ŵm∥vm∥Ŵm

>
1

2
ρ
2|m|
0 . (3.99)

Proof Given um ∈ X̂m, and suppose ∥um∥Ŵm = 1 without loss of generality. Let

wm = u(1)r|m| and vm = um − wm ∈ Ŷ m. Then by Lemma 3.4.1 it follows

∥wm∥Ŵm = |u(1)||m|
1
2 < ĉ(ρ0;m), (3.100)

therefore

∥vm∥Ŵm ≤ ∥um∥Ŵm + ∥wm∥Ŵm < 1 + ĉ(ρ0;m). (3.101)

Also, since
m2

r
wm − ∂r(r∂rw

m) = 0, (3.102)

by integrating by parts and (3.100) we have

b̂m(u
m, vm) = m2(um, um − wm)ω0,−1 + (∂ru

m, ∂ru
m − ∂rw

m)ω0,1

= ∥um∥Ŵm −
∫ 1

0

(
m2

r
wm − ∂r(r∂rwm)

)
umdr − um(r∂rwm)

∣∣∣1
0

= 1− |um(1)|2|m| > 1− ĉ2(ρ0;m) >
1

2
ρ
2|m|
0 , (3.103)

Combining (3.103) and (3.101) leads to (3.99).

Approximation property

Now let us consider the degree to which X̂m
N approximates X̂m in the norm sense.

It is necessary to introduce the orthogonal projection π̂m
N : Ŷ m → Ŷ m

N by

⟨π̂m
N v − v, wN⟩Ŷ m = 0, ∀wN ∈ Ŷ m

N , (3.104)

where the inner product ⟨·, ·⟩Ŷ m : Ŷ m × Ŷ m → C is defined by

⟨v, w⟩Ŷ m = m2(v, w)ω0,−1 + (v′, w′)ω0,1 . (3.105)

The approximation property from Ŷ m
N to Ŷ m is discussed in [1], which is
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Theorem 3.4.2 For any v ∈ Ŷ m ∩ B̂s
−1,−1 with 1 ≤ s ≤ N + 1,

m2∥π̂m
N v − v∥2ω̂0,−1 + ∥∂r(π̂m

Nv − v)∥2ω̂0,1

≤ c(1 +m2N−2)
(N − s+ 1)!

N !
(N + s)1−s∥∂srv∥2ω̂s−1,s−1 , (3.106)

where c is a positive constant independent of m, N and v.

Actually, a more general result also exists.

Proposition 3.4.1 Suppose u ∈ Ŵm ∩ B̂s
−1,−1 with 1 ≤ s ≤ N + 1, then there exists

a linear operator π̃m
N : Ŵm → Ŵm

N such that

m2∥π̃m
Nu− u∥2ω̂0,−1 + ∥∂r(π̃m

Nu− u)∥2ω̂0,1

≤ c(1 +m2N−2)
(N − s+ 1)!

N !
(N + s)1−s∥∂sru∥2ω̂s−1,s−1 , (3.107)

where c is a positive constant independent of m, N and u.

Proof Denote u∗ = (1− r)u(0) + ru(1), then u− u∗ ∈ Ŷ m. Define the operator by

π̃m
Nu := π̂m

N (u− u∗) + u∗. (3.108)

Since u(r)− u(1)r ∈ Ŷ m ∩ B̂s
−1,−1, by using Theorem 4.1,

m2∥π̃m
Nu− u∥2ω̂0,−1 + ∥∂r(π̃m

Nu− u)∥2ω̂0,1

= m2∥π̂m
N (u− u∗)− (u− u∗)∥2ω̂0,−1 + ∥∂r (π̂m

N (u− u∗)− (u− u∗)) ∥2ω̂0,1

≤ c(1 +m2N−2)
(N − s+ 1)!

N !
(N + s)1−s∥∂sr(u− u∗)∥2ω̂s−1,s−1 , (3.109)

For s ≥ 2, ∥∂sr(u− u∗)∥ω̂s−1,s−1 = ∥∂sru∥ω̂s−1,s−1 . And for s = 1, note

|∂ru∗| = |u(1)− u(0)| = |
∫ 1

0

∂rudr| ≤ ∥∂ru∥ω̂0,0 , (3.110)

so

∥∂r(u− u∗)∥ω̂0,0 ≤ ∥∂ru∥ω̂0,0 + ∥∂ru∗∥ω̂0,0 ≤ 2∥∂ru∥ω̂0,0 . (3.111)

Therefore (3.107) follows immediately from (3.109).
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Now given um ∈ X̂m, let

ũmN(r) = π̃m
Nu

m(r) + smr, (3.112)

where sm = − 1
ρ0
π̃m
Nu

m(ρ0), Hence by the facts um(1)− π̃m
Nu

m(1) = 0, um(ρ0) = 0 and

Cauchy-Schwarz inequality, we have

|sm| = 1

ρ0
|(um(1)− π̃m

Nu
m(1))− (um(ρ0)− π̃m

Nu
m(ρ0))|

=
1

ρ0

∣∣∣∣∫ 1

ρ0

∂ru
m − ∂rπ̃

m
Nu

mdr

∣∣∣∣
≤ 1

ρ0

(∫ 1

ρ0

|∂rum − ∂rπ̃
m
Nu

m|2rdr
) 1

2
(∫ 1

ρ0

1

r
dr

) 1
2

≤
√
− ln ρ0
ρ0

∥∂rum − ∂rπ̃
m
Nu

m∥ω̂0,1 . (3.113)

Finally by using (3.107) and (3.113) we obtain

∥um − ũmN∥Ŵm

= m2∥um − π̃m
Nu

m − smr∥2ω̂0,−1 + ∥∂r(um − π̃m
Nu

m − smr)∥2ω̂0,1

≤ c
(
m2∥um − π̃m

Nu
m∥2ω̂0,−1 + ∥∂r(um − π̃m

Nu
m)∥2ω̂0,1+

m2∥smr∥2ω̂0,−1 + ∥∂r(smr)∥2ω̂0,1

)
≤ c(1 +m2N−2)

(N − s+ 1)!

N !
(N + s)1−s(1−m2 ln ρ0

ρ0
)∥∂srum∥2ω̂s−1,s−1 , (3.114)

where c is a positive constant independent of m, N , ρ0 and u.

Total error estimation

First let us introduce the ρ0-dependent space B
s,s′
p,ρ0

(Π) with s ≥ 1, s′ ≥ 0, which

contains functions defined in Π that are 2π-periodic with respect to θ. We say

u(r, θ) =
∞∑

|m|=0

um(r)eimθ ∈ Bs,s′

p,ρ0
(Π) (3.115)

if and only if

um ∈ X̂m ∩ B̂s
−1,−1 (3.116)
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and

∥u∥
Bs,s′

p,ρ0
(Π)

:=

 ∞∑
|m|=0

|m|2s′ρ−2|m|
0 ∥∂srum∥2ω̂s−1,s−1

 1
2

<∞. (3.117)

Now suppose um ∈ X̂m ∩ B̂s
−1,−1 is the solution to (3.86) and umN ∈ X̂m

N is the

solution to (3.87). By applying Second Strang Lemma with (3.99) and (3.114), it

immediately follows

∥um − ũmN∥Ŵm ≤ (1 +
2

ρ
2|m|
0

) inf
um
N∈X̂m

N

∥um − umN∥Ŵm

≤ c(1 +m2N−2)
(N − s+ 1)!

N !
(N + s)1−s(1−m2 ln ρ0

ρ0
)ρ

−2|m|
0 ∥∂srum∥2ω̂s−1,s−1 , (3.118)

and if u =
∑

|m|≥0

um(r)eimθ and uMN =
M∑

|m|=0

umN(r)e
imθ, we have

∥u− uMN∥2X =
M∑

|m|=0

∥um − umN∥2Ŵm +
∑

|m|>M

∥um∥2
Ŵm

≤ c(1 +M2N−2)
(N − s+ 1)!

N !
(N + s)1−s

(∑
|m|≥0

ρ
−2|m|
0 ∥∂srum∥2ω̂s−1,s−1−

ln ρ0
ρ0

∑
|m|≥0

|m|2ρ−2|m|
0 ∥∂srum∥2ω̂s−1,s−1

)
+m−2s′

∑
|m|>M

m2s′∥um∥2
Ŵm

≤ c(1 +M2N−2)
(N − s+ 1)!

N !
(N + s)1−s

(
∥u∥2

Bs,0
p,ρ0

(Π)
−

ln ρ0
ρ0

∥u∥2
Bs,1

p,ρ0
(Π)

)
+M−2s′∥u∥

H1,s′
p (Π)2

, (3.119)

which leads to the following error estimate

Theorem 3.4.3 Suppose u ∈ X and uMN ∈ XMN are the solutions to (3.78) and

(3.80). Furthermore, suppose u ∈ Bs,1
p,ρ0

(Π)∩H1,s′
p (Π) with 1 ≤ s ≤ N +1 and s′ ≥ 1.

Then

∥u− uMN∥X ≤ c(1 +MN−1)

√
(N − s+ 1)!

N !
(N + s)

1−s
2

(
∥u∥Bs,0

p,ρ0
(Π)+√

− ln ρ0
ρ0

∥u∥Bs,1
p,ρ0

(Π)

)
+M−s′∥u∥

H1,s′
p (Π)

. (3.120)
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Specifically, if s is fixed, then

∥u− uMN∥X

≤ c(1 +MN−1)N1−s
(
∥u∥Bs,0

p,ρ0
(Π) +

√
− ln ρ0

ρ0
∥u∥Bs,1

p,ρ0
(Π)

)
+M−s′∥u∥

H1,s′
p (Π)

.

(3.121)

From (3.121) we see if ρ0 → 1, the solution error estimate is simplified as

∥u− uMN∥X ≤ c(1 +MN−1)N1−s∥u∥Bs,0
p,1(Π) +M−s′∥u∥

H1,s′
p (Π)

, (3.122)

which is exactly the one from applying standard spectral-Galerkin method to 2D-

Laplace equation in a circular domain [1]. On the other hand, if ρ0 → 0+, the

coefficient term
√

− ln ρ0/ρ0 approaches to +∞, which implies the solution error

may grow rapidly. Indeed, the error of the solution solved by embedding method

will be smaller as the embedding domain becomes closer to the original one in the

common sense.

3.5 Numerical examples

Algorithm 3.2.1 are tested on the model problem (3.1) by four examples. In

the first two ones, analytic solutions are looked for in smooth and polygonal domains.

Theorem 3.4.3 implies the numerical solutions should converge in an exponential rate.

In the last two ones, the solutions are created with singularities, and the convergence

rate by Algorithm 3.2.1 are compared with that by the general spectral element

method (SEM) package.

In the first example, α is set by 10, and an analytic solution

U = exp(y/(x+ 2)) (3.123)

inside a smooth domain

Ω = {(r, θ) : r < 0.7 + 0.2 sin(3θ)}, (3.124)
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Fig. 3.2.: the original domain, enclosing domain(left) and the error profile(right) for

M = 24 in the first example
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Fig. 3.3.: L2 and max error versus M in the first example

is chosen. Here {tm} are computed by (3.25), and we set N = 2M . The problem

domains and error profile when M = 24 are depicted in Fig. 3.2, and the relative L2

and max errors versus M for M = 4, 8, · · · , 24 are plotted in Fig. 3.3. The errors

decaying exponentially to the machine precision are observed.

In the second example, we solve for the same solution (3.123) in a convex polygonal

domain whose vertices are (0, 0.7), (−0.7, 0.2), (−0.5,−0.6), (0.5,−0.6), (0.7, 0.2).

The setting is same as the first one except that {tm} are computed by (3.22) and K

is set by 4M . The numerical results are shown in Fig. 3.4 and Fig. 3.5, in which we

can see the error is mainly accumulated in the center and near the boundary. The

exponential convergence rate is also observed.
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Fig. 3.4.: the original domain, enclosing domain(left) and the error profile(right) for

M = 30 in the second example
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Fig. 3.5.: L2 and max error versus M in the second example
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M = 64 in the third example

Now let us consider the problem (3.1) with F ≡ 1 and Ω being a polygon, in which

case the solution has singularities at the corners of the domain. In the third example,

α = 0 and Ω is set by a square with vertices (T, T ), (T,−T ), (−T,−T ), (−T, T ) and

T is chosen by 0.7. The exact solution in this case is given by

u(x, y) = −64T 2

π4

∞∑
n,m=1
n,m odd

(−1)
n+m

2
cos(nπx

2T
)cos(mπy

2T
)

nm(n2 +m2)
, (3.125)

First we perform Algorithm 3.2.1 on it with {tm} being computed by (3.25). The

domains and error mesh for M = 64 are shown in Fig. 3.6, from which we see the

error is mainly distributed near the four corners. Also, we take advantage of the

general SEM package on it, and the domain decomposition is shown in Fig. 3.7.

The error convergence rate of these two approaches are presented in Fig. 3.8. We

show the relative L2 error by Algorithm 3.2.1 versus M (N = 2M) in the left figure.

For comparison, the same error by SEM package versus the square root of degree of

freedom is plotted in the right figure. It can be observed that both errors converge

in orders between 4th and 5th.

The fourth example takes the same setting as the third one, except that the domain

is a concave L-shaped polygon. A numerical solution solved with high-accuracy is

used as the exact solution for error computation. Algorithm 3.2.1 with {tm} being
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Fig. 3.7.: decomposed domain by SEM package in the third example
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Fig. 3.8.: L2 error versus M by Algorithm 3.2.1 (left) and the square root of degree

of freedom by general SEM package (right) in the third example
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M = 96 in the fourth example

Fig. 3.10.: decomposed domain by SEM package in the fourth example

computed by (3.22) is performed here. To enhance the accuracy near the concave

corner where the singularity most dominates, we put more nodes {r̂k, θ̂k} near the

corner. The domains and error profile for M = 96 is demonstrated in Fig. 3.9, where

the majority of the error is located near concave corner and the upper-right corners.

The relative L2 error versus M (N = 2M) is shown on the left in Fig.5.10, and the

convergence rate is observed to be between 1st and 2nd order. On the other hand,

we apply the SEM package on the same problem. The domain is decomposed by the

means shown in Fig. 3.10, and the decaying error is plotted on the right in Fig. 3.11,

from which we can see its convergence rate is less than 1st order.
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3.6 Conclusion

In this chapter, we develop a domain-embedding approach for solving second-

order elliptic problems with Dirichlet boundary condition in 2-D complex domains.

By inserting the original domain into a circle, we obtain an extend problem and solve

for a weak solution. Thanks to the circular geometry, the polar transformation can be

applied, leading the 2-D problem to a sequence of 1-D Bessel-type equations, which

can be solved by general ODE solvers. Specifically, we put forward a spectral-Galerkin

formulation for such ODEs, and perform error analysis for the whole algorithm.

Although the error estimate is studied and presented by Theorem 3.4.3 only for

the special case where the domain is characterized by ρ(θ) = ρ0, it can be foreseen

that the result also applies to the general cases ρ(θ) = ρ0 + ϵ(θ) where ϵ(θ) is a

small perturbation. Indeed, the first and second numerical examples in Section 3.5

show the convergence rate can reach the exponential level as long as the solution is

smooth enough. For the problems whose solution have singularities, the algorithm

is also able to provide decent numerical results. The third example in Section 3.5 is

working out a slightly singular problem in a square domain, and both our algorithm

and the standard spectral element package obtain the convergence rate of 4th to 5th

order. For the highly singular problem in the L-shaped domain described in the last

example, our algorithm obtain higher order (greater than the 1st) than the standard

package (less than the 1st), and the implementation is also much more straightforward

(without domain decomposition).

Compared to the approach presented in the last Chapter, which encloses the

domain by a rectangle, this circular embedding scheme is less time-consuming and

simpler to implement because it suffices to solve a sequence of ODEs instead of

a multi-dimensional PDE. Furthermore, the circular embedding framework can be

applied to other problems in complex domains, for example, the Helmholtz equation

for acoustic scattering, that will be our future work.
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4. SPECTRAL METHOD WITH ANNULAR

EMBEDDING

4.1 Introduction

In the last two chapters, we discuss the spectral methods and fictitious domain

framework for the problems in 2D simply connected complex domains. However, for

a non-simply connected domain, embedding by a rectangle or a circle is not always

applicable, since smooth extensions of the problem may not be found easily in the

new regular domain. For example, a data function f(x) := 1/(x2 + y2) defined in

Ω := [−1, 1] × [−1, 1]\[−0.5, 0.5] × [−0.5, 0.5] can not be extended analytically to

a circle enclosing Ω because of the singularity at origin. Hence, similarity to the

procedure of the circular embedding discussed in the last chapter, we put forward the

annular embedding scheme for the case of non-simply connected domains.

In Section 4.2, we describe the problem briefly and put forward the corresponding

spectral method. In Section 4.3, the Galerkin method for the Bessel-type equation

derived from dimension reduction is discussed. In Section 4.4 several examples are

presented to show the effectiveness of the algorithm. And we conclude for this chapter

in Section 4.5.

4.2 Problem in non-simply connected domains

4.2.1 Dimension reduction

Let us consider the following Poisson-type model problem

αU −∆U = F, in Ω,

U = H, on ∂Ω.
(4.1)
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where α ≥ 0 and Ω is a two-dimensional complex domain formed by removing a simply

connected interior part from a simply connected domain, and F ∈ C(Ω), H ∈ C(∂Ω).

For convenience, we suppose (0, 0) /∈ Ω. Now let Ω̃ := {(x, y) : a2 < x2 + y2 < b2}

with 0 < a < b be an annular domain which encloses Ω, namely, Ω ⊂⊂ Ω̃ (see Fig. ),

and we solve the following extended problem in Ω̃,

αU −∆U = F, in Ω̃,

U = H, on ∂Ω.
(4.2)

Denote Π := (a, b)× [0, 2π). By applying the following polar transformation

u(r, θ) := U(r cos θ, r sin θ), (4.3)

f(r, θ) := F (r cos θ, r sin θ), (4.4)

h(r, θ) := H(r cos θ, r sin θ), (4.5)

we have the equation for u, i.e.

αu− 1

r
(rur)r −

1

r2
uθθ = f, (r, θ) ∈ Π,

u = h, on Γ,

u is periodic in θ,

(4.6)

where Γ is the polar image of ∂Ω. By expanding u and f as

u(r, θ) =
∞∑

|m|=0

um(r)eimθ, (4.7)

f(r, θ) =
∞∑

|m|=0

fm(r)eimθ, (4.8)

and substituting (4.7) and (4.8) to (4.6), we can obtain a sequence of Bessel-type

ordinary differential equations for um(r), namely,

−1

r
∂r(r∂ru

m) + (
m2

r2
+ α)um = fm(r), a < r < b, (4.9)

Same as the idea of circular embedding, we add artificial boundary conditions for

each ODE, which are

um(a) = tma , um(b) = tmb . (4.10)
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4.2.2 Approximation

Given a cut-off number M > 0 and suppose the approximate solution to (4.6) is

built by

uM(r, θ) =
M∑

|m|=0

um(r)eimθ. (4.11)

For computing um, We employ the following result by virtue of Theorem 3.2.1.

Let {ϕm
a } be the solution to

− 1

r
∂r(r∂rϕ

m
a ) + (

m2

r2
+ α)ϕm

a = 0, a < r < b,

ϕm
a (a) = 1, ϕm

a (b) = 0,

(4.12)

{ϕm
b } be the solution to

− 1

r
∂r(r∂rϕ

m
b ) + (

m2

r2
+ α)ϕm

b = 0, a < r < b,

ϕm
b (a) = 0, ϕm

b (b) = 1,

(4.13)

and {ψm} be the solution to

− 1

r
∂r(r∂rψ

m) + (
m2

r2
+ α)ψm = fm, a < r < b,

ψm(a) = 0, ψm(b) = 0,

(4.14)

then we have

um(r; tma , t
m
b ) = tma ϕ

m
a (r) + tmb ϕ

m
b (r) + ψm(r). (4.15)

In determining {tma , tmb }, the optimization scheme described in the circular embed-

ding can be utilized. That is, we prescribe K equispaced sampling nodes {(r̂k, θ̂k)}Kk=1

on Γ, and minimize the discrete L2 error on these nodes in terms of variables {tma , tmb }M|m|=0,

namely, to solve

min
tma ,tmb

K∑
k=1

∣∣∣uM(r̂k, θ̂k)− h(r̂k, θ̂k)
∣∣∣2 , (4.16)

or

min
tma ,tmb

K∑
k=1

∣∣∣∣∣∣
M∑

|m|=0

(tma ϕ
m
a (r̂k) + tmb ϕ

m
b (r̂k) + ψm(r̂k))e

imθ̂k − h(r̂k, θ̂k)

∣∣∣∣∣∣
2

, (4.17)
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4.2.3 Algorithm

To sum up, the spectral method with annular embedding can be performed by

the following algorithm.

Algorithm 4.2.1 Solve the extended problem (4.2)

1. compute the truncated Fourier expansion of f(r, θ) := F (r cos θ, sin θ) with re-

spect to θ, obtaining (4.8);

2. compute {ϕm
a , ϕ

m
b , ψ

m} which satisfy the Bessel-type equations (4.12), (4.13) and

(4.14);

3. solve the optimization (4.17) to obtain {tma , tmb };

4. compute uM by (3.22) and (4.15);

5. the final solution UM(x, y) = uM(
√
x2 + y2, angle(x, y)).

Same as the case of circular embedding, the whole complexity of the algorithm is

O(N3), which is competitive to the spectral methods for standard separable domains.

4.3 Bessel-type equation solver

In this section, we will present the solver for the 1-D Bessel-type equation (4.12),

(4.13) and (4.14). Same as the circular case discussed in last chapter, the homogeneous

equations (4.12) and (4.13) admit a solution of explicit representation. And for the

inhomogeneous equation (4.14), we will first shift it to the interval (−1, 1) and then

present a spectral-Galerkin formulation for it.
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4.3.1 Homogeneous case

It can be verified the solutions to (4.12) have the following expression,

ϕm
a (r) =




ln a−ln r
ln a−ln b

, m = 0

r|m|b−|m|−b|m|r−|m|

a|m|b−|m|−b|m|a−|m| , m ̸= 0

, α = 0,

K−|m|(
√
αb)I−|m|(

√
αr)−I−|m|(

√
αb)K−|m|(

√
αr)

K−|m|(
√
αb)I−|m|(

√
αa)−I−|m|(

√
αb)K−|m|(

√
αa)
, α > 0

(4.18)

for all m, where I−|m|(z) and K−|m|(z) are the modified Bessel functions of the first

and second kind. In practical computation, {ϕm
a } can be evaluated by using series

representation, or by solving the Bessel-type equations numerically.

4.3.2 Inhomogeneous case

Spectral-Galerkin formulation

Now let us consider the spectral methods for (4.14). Note {ψm} satisfy the model

problems

− 1

r
(rur)r + (

m2

r2
+ α)u = f, a < r < b,

u(a) = 0 u(b) = 0,

(4.19)

Denote p := b− a and q := a+ b. By introducing the transformation

r =
pt+ q

2
, (4.20)

and denoting

v(t) := u(
pt+ q

2
), (4.21)

(4.19) will be changed to

− 1

p2(pt+ q)
[(pt+ q)vt]t +

(
m2

(pt+ q)2
+
α

4

)
v

=
1

4
f(
pt+ q

2
), t ∈ I, v(−1) = 0 v(1) = 0, (4.22)
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Define the solution space by

Xm =


{
v : v(±1) = 0,

∫
I
(pt+ q) (|v|2 + |vt|2) dt <∞

}
, m = 0,{

v : v(±1) = 0,
∫
I

1
pt+q

|v|2 + (pt+ q)|vt|2dt <∞
}
, m ̸= 0,

(4.23)

equipped with norms

∥v∥Xm =


(∫

I
(pt+ q) (|v|2 + |vt|2) dt

) 1
2 , m = 0,

=
(∫

I
1

pt+q
|v|2 + (pt+ q)|vt|2dt

) 1
2
, m ̸= 0.

(4.24)

Also, define

am(v, w) =
1

p2
((pt+ q)vt, wt) +m2

(
1

pt+ q
v, w

)
+
α

4
((pt+ q)v, w) , (4.25)

then the weak formulation for (4.22) isfind v ∈ Xm such that

am(v, w) =
pt+q
4

(
f(pt+q

2
), w
)
, ∀w ∈ Xm.

(4.26)

The well-posedness of (4.26) can be shown by the similar argument in last chapter

for the weak problem (3.43). For building the Galerkin formulation, we define the

finite-dimensional subspace as

Xm
N = Xm ∩ PN , (4.27)

then Galerkin formulation isfind vN ∈ Xm
N such that

am(vN , wN) =
pt+q
4

(
f(1+t

2
), wN

)
, ∀wN ∈ Xm

N ,

(4.28)

Remark 4.3.1 From Céa Lemma, the problem (4.28) admits a unique solution vN ∈

Xm
N such that

∥vN∥Xm ≤ ∥
√
pt+ q

2
f(
pt+ q

2
)∥. (4.29)

Moreover, if v is the solution to (4.26), then

∥v − vN∥Xm ≤ cα(m) inf
wN∈Xm

N

∥v − wN∥Xm , (4.30)

where cα(m) is a constant only depending on m.
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Remark 4.3.2 Similar to the circular embedding case, the basis functions for Xm
N

can be chosen by {Lj − Lj+2}N−2
j=0 ∪ {(Lj − Lj+2)i}N−2

j=0 , and the corresponding matrix

is symmetric positive definite and has 7 non-zero diagonals, thus the linear system

can be solved within O(N2) complexity by most solvers.

4.4 Numerical examples

Three examples are presented to show the annular embedding algorithm, which

are employed to solve (4.1). In all examples, we set the relation N = 2M , and the

number of sampling nodes is chosen by K = 16M .

In the first one, α = 10 and the solution is given by

U = exp(y/(x+ 2)). (4.31)

The problem domain Ω is non-simply connected and bounded by two smooth curves,

ρouter(θ) = 0.9 + 0.1 sin(4θ), ρinner(θ) = 0.3 + 0.1 sin(3θ). (4.32)

We let Ω be embedded into the annulus Ω̃ = {(r, θ), 0.2 < r < 1}, and then apply

Algorithm 4.2.1 to the extended problem. The problem domains and sampling nods

on the boundary for M = 8 are depicted in Fig. 4.1, and the relative L2 versus M

for M = 8, 8, · · · , 32 are plotted in Fig. 3.3. The error decaying exponentially to the

machine precision is observed.

In the second example, we let α = 0, and the same solution in (4.31) is solved for.

Here Ω is bounded by two polygons with the following vertices,

outer: (0, 0.9), (0.8, 0.1), (0.4,−0.8), (−0.5,−0.7), (−0.8, 0.1); (4.33)

inner: (0, 0.4), (0.4, 0), (0,−0.4), (−0.4, 4). (4.34)

The same annulus as the first example is used for embedding. The resulting figures

are shown in Fig. 4.3 and 4.4. It can be seen from the results the error is still decaying

exponentially for polygonal domains.
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Fig. 4.1.: the original domain, enclosing domain and sampling nodes for M = 8 in
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In the third example, we solve the problem with α = 0 and F = 1 in the domain

bounded by the square having vertices

(0.7, 0.7), (0.7,−0.7), (−0.7,−0.7), (−0.7, 0.7), (4.35)

and the curve

ρ(θ) = 0.3 + 0.05 sin(5θ). (4.36)

The solution is expressed by (3.125), which has four singularities at the four outer

corners. We use the same annulus to enclose the domain as the first example. The

resulting figures are shown in Fig. 4.5, 4.6 and 4.7. We can see from the figures the

error is mainly distributed near the singularity for the singular problem. Also, it is

observed the error decays by the order between 4th and 5th.

4.5 Conclusion

In this chapter, we extend the spectral method of circular embedding discussed

in last chapter for the Poisson-type problem in non-simply connected domains. The
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corresponding spectral method with annular embedding works as well as the circular

one. In numerical examples, we obtain exponential error decay for analytic solutions

and algebraic error decay of high orders for singular problems.
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5. APPLICATION I: FRACTIONAL LAPLACIAN

EQUATION

5.1 Introduction

In this chapter, one application of the spectral methods with fictitious domain

embedding will be introduced. We will consider the fractional Laplacian equation,

which can be solved by two approaches, Caffarelli-Silvestre extension or Dunford-

Taylor representation. Both approaches find the solutions by solving a sequence of

general Poisson-type equations −∆u + αu = f with Dirichlet boundary condition-

s. Our method is especially effective for fractional Laplacian problems in complex

domains.

The basic problem will be described in Section 5.2. The approaches by Caffarelli-

Silvestre extension and Dunford-Taylor representation will be presented separately in

Section 5.3 and 5.4, which both include related numerical examples. The conclusion

is given in Section 5.5.

5.2 Fractional Laplacian Problem

In recent decades, topics in non-local partial differential equations have received

a great attention. The fractional Laplacian equation is one of the most basic and

important type of the non-local diffusion and have been widely studied so far [44–46].

Specifically, given a function v : Rd → R, the operator with power 0 < s < 1 can be

defined by using Fourier transform, namely,

F [(−∆)s](ω) = |ω|2sF [v](ω), (5.1)
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and this can be also formulated equivalently by the following integral form

(−∆)sv(x) = cd,s p.v.

∫
Rd

v(x)− v(τ)

|x− τ |d+2s
dτ, (5.2)

where p.v. stands for the Cauchy principal value, and cd,s is a constant defined by

cd,s =
22ssΓ(2s+d

2
)

πd/2(1− s)
. (5.3)

Note in (5.2) the evaluation of (−∆)sv(x) is non-local, that it depends the information

in the whole Rd instead of the neighbourhood of x.

Now let us consider the fractional Laplacian operator with respect to the homo-

geneous Dirichlet condition in a smooth domain Ω ⊂ Rd. First, note the following

Dirichlet problem is well-defined,

−∆v = f, in Ω,

v = 0, on ∂Ω.
(5.4)

Furthermore, the inverse operator −∆ : D(−∆) = H1
0 (Ω)

∩
H2(Ω) ⊂ L2(Ω) →

L2(Ω) is an unbounded, positive and closed operator with compact inverse, it has

countably many eigenpairs {µk, φk}k∈N+ ⊂ R+×H1
0 (Ω) such that {φk}k∈N+ forms an

orthonormal basis for H1
0 (Ω). Under the preceding setting, the normed space Hs(Ω)

is defined by

Hs(Ω) =

{
v =

∞∑
k=1

ckφk : ∥v∥2Hs(Ω) =
∞∑
k=1

λskc
2
k <∞

}
, (5.5)

for −1 ≤ s ≤ 1. Now the Laplacian operator with Dirichlet condition of power s can

be defined by

(−∆)sv :=
∞∑
k=1

µs
kṽkφk, ṽk :=

∫
Ω

vφkdx, (5.6)

for all v ∈ C∞
0 (Ω). The domain D((−∆)s) can be extended to Hs(Ω) by density

theorem.

Based on the definition (5.6), let us consider the following problem

(−∆)su = f, in Ω,

u = 0, on ∂Ω.
(5.7)
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where Ω is a smooth and simply-connected d-dimensional domain. Due to the non-

local property of the fractional Laplacian operator, the classical discretization strategy

can not work efficiently. Hence, it is desirable to transform the original fractional

problems to non-fractional ones by specific manipulations.

5.3 Caffarelli-Silvestre extension

5.3.1 Extended problem

L. Caffarelli and L. Silvestre showed the fractional power of the Laplacian operator

in Rd can be determined as an operator that maps a Dirichlet boundary condition to a

Neumann-type condition via an extension problem on the upper half-space Rd×[0,∞)

(see [44]). For bounded domains, the extension is further adapted in [47–49]. In detail,

let U(x, y) : Rd×R → R be the solution of the following (d+1)-dimensional problem,

∇ · (yα∇U(x, y)) = 0, in D := Ω× (0,∞),

U = 0, on ∂LD := ∂Ω× [0,∞),

lim
y→0

yαUy(x, y) = −dsf(x),

lim
y→∞

U(x, y) = 0,

(5.8)

with α := 1− 2s and ds := 21−2sΓ(1− s)/Γ(s), then the solution to (5.7) is given by

u(x) = U(x, 0). (5.9)

Before deducing the weak formulation for (5.8), we introduce the following space

H1
yα(D) := {∇u ∈ L2

yα(D) : lim
y→∞

yαu(x, y) = 0, u = 0 on ∂LD}, (5.10)

with norm

∥u∥H1
yα (D) = ∥∇u∥L2

yα (D), (5.11)

where L2
yα(D) is the L2 space in D with weight function yα.
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Now the weak formulation of (5.8) is given byfind U ∈ H1
yα(D) such that

(yα∇U,∇V )D = ds(f, V (x, 0))Ω, ∀V ∈ H1
yα(D).

(5.12)

The weak problem (5.12) can be proven to be well-posed with the help of following

result

Lemma 5.3.1 ( [50], Proposition 2.5) Let Ω ⊂ Rd be a bounded Lipschitz do-

main, then {u(x, 0) : u ∈ H1
yα(D)} = Hs(Ω) and

∥u(x, 0)∥Hs(Ω) ≤ c∥u∥H1
yα (D), ∀u ∈ H1

yα(D). (5.13)

The Hilbert space Hs is defined in

5.3.2 Galerkin formulation

Let XM be a finite-dimensional space approximate to H1
0 (Ω), and

XM = span{ϕx
m}Mm=1, (5.14)

where ϕx
m is a set of basis functions. For example, if Ω = (−1, 1)d, then it can be

chosen that

XM = (P 0
M)d, (5.15)

where P 0
M consists of all polynomials in (−1, 1) that vanish at the ending points ±1.

For spectral methods, the basis ϕx
m are often chosen by the variants of orthogonal

polynomials.

Besides, let YN be a finite-dimensional space approximate to H1
yα(0,∞) := {v(y) :

v′ ∈ L2
yα(0,∞), lim

y→∞
yαv = 0}, and {ϕy

n}Nn=1 be a set of basis of YN . Then the

tensor-product space XM × YN is a space approximate to H1
yα(D). Furthermore, we

can employ the generalized Laguerre functions ( [1, 51]) to build the basis for YN .

Specifically, define

L̂ α
n (y) := e−

y
2 L α

n (y), (5.16)
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where L α
n (y) is the generalized Laguerre polynomial. Then {L α

n (y)}Nn=1 forms a basis

for YN . Generally, we denote YN = span{ϕy
n}Nn=1.

Under the preceding settings, the Galerkin formulation is given byfind UMN ∈ XM × YN such that

(yα∇UMN ,∇VMN)D = ds(f, VMN(x, 0))Ω, ∀VMN ∈ XM × YN .

(5.17)

In (5.17), by expanding the solution by

uMN =
M∑

m=1

N∑
n=1

ũmn ϕ
x
m(x)ϕ

y
n(y) (5.18)

and taking VMN = ϕx
i (x)ϕ

y
j (y) for i = 1, · · · ,M and j = 1, · · · , N , we immediately

obtain the following linear system of matrices,

SxŨM y +MxUSy = F , (5.19)

where

Sx = [(∇xϕ
x
i ,∇xϕ

x
m)Ω]M×M , Mx = [(ϕx

i , ϕ
x
m)Ω]M×M ,

Sy =
[
(∇yϕ

y
j ,∇yϕ

y
n)Ω
]
N×N

, M y =
[
(ϕy

j , ϕ
y
n)Ω
]
N×N

,

Ũ = [ũmn]M×N ,F = ds [ϕ
y
n(0)(f, ϕ

x
m)Ω]M×N

(5.20)

Thanks to the orthogonality of the generalized Laguerre functions, the matrices

with respect to y are sparse and symmetric positive definite. In detail, it satisfies

Sy
n,j =

1

4



γ
(α)
n−2, j = n− 1,

γ
(α)
n−2 + γ

(α)
n−1, j = n,

γ
(α)
n−1, j = n+ 1,

0 others,

M y
n,j =

1

4



−γ(α)n−2, j = n− 1,

γ
(α)
n−2 + γ

(α)
n−1, j = n,

−γ(α)n−1, j = n+ 1,

0 others,

(5.21)

where γ
(α)
−1 = 0 and γ

(α)
k = Γ(k + α + 1)/Γ(k + 1).

Note (5.19) can be solve by performing eigen-decomposition on the sparse matrices

M y and Sy. Suppose we have

M yE = SyEΛ, (5.22)
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where E := [e1, · · · , eN ] with Bi being the generalized eigenvector with respect to

M y and Sy, and Λ := diag(λ1, · · · , λN) with λi being a corresponding eigenvalue for

i = 1, · · · , N . Hence, by letting Ũ = Ṽ ET , (5.19) can be rewritten by

SxṼ ΛETSy +MxṼ ETSy = F , (5.23)

or

SxṼ Λ+MxṼ = G := F (Sy)−1E. (5.24)

Denote Ṽ := [ṽ1, · · · , ṽN ] and G := [g1, · · · , gN ], then (5.24) can be separated by a

sequence of linear systems,

(λiS
x +Mx)ṽi = gi (5.25)

for i = 1, · · · , N .

Actually, it is not necessary to solve for ṽi through (5.25). Especially, if Ω is a

domain of complex geometry, then we can hardly find the closed form for ϕx, hence

the direct computation of Sx and Mx is infeasible. Instead, we consider the following

Poisson-type problem

−∆vi +
1

λi
vi =

ds
λi
ϕy(0)T tkf(x), in Ω,

vi = 0, on ∂Ω,

(5.26)

where λi > 0, ϕy(y) := [ϕy
1(y), · · · , ϕ

y
M(y)]T and ti is the i-th column of T :=

(Sy)−1E.

Note the variational form of (5.26) can be described byfind vi ∈ H1
0 (Ω) such that

λi(∇vi,∇w)Ω + (vi, w)Ω = dsϕ
y(0)T tk(f, w)Ω ∀w ∈ H1

0 (Ω).

(5.27)

Also, the Galerkin formulation of (5.27) corresponding to XM is given byfind vi,M ∈ XM = span{ϕx
m}Mm=1 such that

λi(∇vi,M ,∇wM)Ω + (vi,M , wM)Ω = dsϕ
y(0)T tk(f, wM)Ω ∀w ∈ XM(Ω).

(5.28)
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Therefore, by letting vi,M =
M∑

m=1

ṽi,mϕ
x
m and taking wM = ϕx

m in (5.28), as well as

denoting ṽi = [ṽi,1, · · · , ṽi,M ]T , the derived linear system is exactly (5.25).

Furthermore, we should be attentive that our final objective is to evaluate UMN(x, 0)

at any given sampling point {xp}, namely, computing

UMN(xp, 0) = ϕx(xp)
T Ũϕy(0) = ϕx(xp)

T Ṽ ETϕy(0) = vM(xp)
TETϕy(0), (5.29)

where vM(x) := [v1,M(x), · · · , vN,M(x)]T are formed by the solutions of (5.28). Note

vi,M(x) is an approximate solution of the continuous problem (5.26), hence it is im-

plied from (5.29) that the computing UMN(x, 0) approximately at sampling points

only requires us to solve (5.26) (by any feasible finite-dimensional approximations)

rather than employing the Galerkin formulation (5.28) exclusively. For example, the

spectral methods with fictitious domain techniques presented in previous chapters

are especially effective for the Poisson-type problems in complex Ω. Suppose we have

solved (5.26) for an approximate solution v̂i,M for each i, then

UMN(xp, 0) ≈ v̂M(xp)
TETϕy(0), (5.30)

where v̂M(x) := [v̂1,M(x), · · · , v̂N,M(x)]T .

Finally, the whole algorithm can be summarized by

Algorithm 5.3.1 Given a set of sampling points {xp}, compute u(xp) where u is the

solution of the fractional Laplacian problem (5.7),

1. compute the generalized eigenvalue problem (5.22) by referring to the matrix

information given in (5.21), obtaining Λ and E;

2. compute the right hand side of the Poisson-type problem (5.26) for i = 1, · · · , N ;

3. solve (5.26) at {xp} by any effective methods for i = 1, · · · , N ;

4. evaluate u(xp) ≈ UMN(xp, 0) which is approximated by (5.30).
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5.3.3 Numerical examples

One model problem of fractional Laplacian equation (5.7) is solved by the pre-

ceding algorithm to demonstrate the effectiveness, in which we choose Ω to be the

square (−T, T )× (−T, T ) with T = 0.7, and take

f(x, t) = (
2π2

T 2
)s sin(

πx

T
) sin(

πy

T
). (5.31)

The exact solution is given by

u(x, y) = sin(
πx

T
) sin(

πy

T
). (5.32)

For solving the Poisson-type problem (5.26), although the general PDE solvers for

2-D square domains can be directly utilized, we employ the spectral methods with

circular embedding discussed in previous chapters to assess the effects of Algorithm

5.3.1 on the fractional Laplacian problems in complex domains. The unit circle is

introduced to enclose Ω, and we discretize the problem with degree of freedom M on

both r-direction and θ-direction. The number of sampling nodes on ∂Ω for boundary

constraints is chosen byK = 3M . Also, we set N =M be the degree of freedom in the

eigen-decomposition. The numerical example is performed for N = 10, 20, · · · , 100

and for s = 0.3, 0.4, · · · , 0.8. The L2 error versus N for each s are shown in Fig. 5.1.

From the figure, it is observed the convergence rate for s = 0.5 is much higher than

other values of s, which attains a decay of exponential rate. The error decays much

slowly as s goes far away from 0.5. This is because of the singularity in y direction

introduced by Caffarelli-Silvestre extension.
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Fig. 5.1.: ∥u − uMN∥L2(Ω) versus N for the example solved by Caffarelli-Silvestre

extension
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5.4 Dunford-Taylor representation

5.4.1 Representation by integrals

Another way to transform the fractional Laplacian operator with homogeneous

Dirichlet condition to variants of the general Laplacian is by using Dunford-Taylor

integrals [52,53]. For s ∈ (0, 1) and f ∈ H−s we have

(−∆)−sf =
1

2πi

∫
C

z−s(z +∆)−1fdz, (5.33)

where C is a Jordan curve oriented to have the spectrum of −∆ to its right. The for-

mula (5.33) can be simplified to an integral in R+, namely the so-called Balakrishnan

formula,

(−∆)−sf =
sin(sπ)

π

∫ ∞

0

µ−s(µ−∆)−1fdµ. (5.34)

Therefore, if the integral (5.34) is approximated by numerical quadrature, then

the evaluation of u = (−∆)−sf only relies on computing a sequence of Poisson-type

problems. In [54], the sinc quadrature is employed and proven to have exponential er-

ror decay. Specifically, sinc quadrature technique is performed by introducing change

of variable µ = ey in (5.34) so that

(−∆)−sf =
sin(sπ)

π

∫ ∞

−∞
e(1−s)y(ey −∆)−1fdy. (5.35)

Given the step length h > 0, set

N+ := ⌈ π2

4sh2
⌉, N− := ⌈ π2

4(1− s)h2
⌉, (5.36)

and yi := ih. Then the integral is approximated by the sum

(−∆)−sf ≈ sin(sπ)

π
h

N+∑
i=−N−

e(1−s)yi(eyi −∆)−1f. (5.37)

The term (eyi−∆)−1f in (5.37) can be evaluated by solving the Poisson-type problem

−∆vi + eyi = f, in Ω,

vi = 0, on ∂Ω,
(5.38)
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Same as in Sec. 5.3, the spectral methods with fictitious domain techniques can be

directly utilized when Ω is of complex geometry. Denote vi,M by the approximate

solution of (5.38) solved by numerical methods with degree of freedom M , then the

final solution u can be approximated by

u = (−∆)−sf ≈ uMN :=
h sin(sπ)

π

N+∑
i=−N−

e(1−s)yivi,M . (5.39)

5.4.2 Numerical examples

The same model problem as in Sec. 5.3.3 is solved by using the representation

(5.34). First, we employ the sinc quadrature with choosing the step length h such

that the number of quadrature nodes N := N+ + N− = 4M . The L2 error versus

N for different s are shown in Fig. 5.3, from which we can see the errors all decay

exponentially for all s. This implies the robustness of sinc quadrature on Dunford-

Taylor integrals.

On the other hand, we attempt to evaluate the integral (5.34) by global adaptive

quadrature with given tolerance. In this example, the tolerance is set by ε = 10−N/8

for each N . The L2 error decay for different s is shown in Fig. 5.3 and the convergence

rate is also observed to be exponential. Moreover, the error from s = 0.5 decays much

faster than s of other values, which attains to the machine precision by N = 50. By

comparison, it is also noticed that even for the cases of s ̸= 0.5, the error obtained by

global adaptive quadrature reaches to lower levels than that of using sinc quadrature

for same N .

5.5 Conclusion

Totally two approaches to solve the fractional Laplacian problem with homoge-

neous Dirichlet condition in a complex domain have been presented.

The first is to extend the original d-dimensional fractional problem to a (d + 1)-

dimensional non-fractional problem. In practice, we do not have to solve the extended
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Fig. 5.2.: ∥u− uMN∥L2(Ω) versus N for the example solved by Dunford-Taylor repre-

sentation using sinc quadrature
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problem of high dimension since we only need to evaluate the solution at the initial

slice y = 0. Instead, we employ the eigen-decomposition technique and turn to solve

a sequence of Poisson-type problems, which can be simply dealt with by the spectral

methods with fictitious domain embedding. However, the numerical result shows the

exponential convergence rate can only be obtained when s = 0.5, because of the

singularity in y direction.

The second is to rewrite the fractional solution as an one-dimensional integral

of the solution of Poisson-type problems. Hence, by utilizing effective numerical

quadrature, the solution can be computed straightforwardly. We only need to solve

one such problem for each quadrature node. The sinc quadrature and global adaptive

quadrature are both tested in numerical examples, and the convergence rates of both

are observed to be exponential, even the latter appears faster.
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6. APPLICATION II: HELMHOLTZ EQUATION

6.1 Introduction

As we know, time harmonic wave propagations appear in many applications such

as wave scattering and transmission, noise reduction, fluid-solid interaction, etc. In

this chapter, the Helmholtz equation arising from acoustic scattering is introduced

and the specific numerical approach is presented. We start with giving a bounded

obstacle in space that is described by the region Ω1 ⊂ R2. And the problem is

considered in the exterior domain Ωext := R2\Ω1.

However, the unboundedness of Ωext prevents us from using most of discretization

techniques. One classical approach to reduce the problem from a unbounded domain

to a bounded one is to use the Dirichlet-to-Neumann map. We first introduce a large

domain D1 (usually of simple geometry) which encloses Ω1, and reduce the problem

in Ω := D1 ∩ (R2\Ω1). A boundary condition corresponding to the DtN map is

posed on ∂D1. For convenience, D1 is chosen by an open disk with radius b > 0, i.e.

D1 : {(r, ρ) : r ≤ b}. It allows us to apply the spectral method for bounded domains

to the newly reduced problem.

6.2 Dimension reduction

Let us consider the following Helmholtz

−∆u− k2u = f in Ω,

u = g on ∂Ω1,

∂u

∂r
+ T (u) = 0 on ∂D1,

(6.1)

where k is the wave number and T is the DtN map.Note the problem domain Ω is

exactly formed by removing an interior region from a larger disk, hence it is natural
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to employ the spectral method with annular embedding scheme discussed in previous

chapters. Specifically, let D2 := {(r, ρ) : r ≤ a} be a small disk such that D2 ⊂ Ω1.

we extend f smoothly from Ω to Ω̃ := D1 ∩ (R2\D2) (still denoted by f), and then

solve

−∆u− k2u = f in Ω̃,

u = g on ∂Ω1,

∂u

∂r
+ T (u) = 0 on ∂D1.

(6.2)

Similar to the case of Poisson problems, we apply dimension reduction on the

solution by expanding it by Fourier basis, that is, we expand

f =
∞∑

m=−∞

fm(r)eimθ (6.3)

and look for the solution u having the following form

u =
∞∑

m=−∞

um(r)eimθ. (6.4)

By taking (6.3) and (6.4) in (6.2), it can derived the ordinary differential equations

for um, which are

−1

r
∂r(r∂ru

m) +
m2

r2
um − k2um = fm, r ∈ (a, b),

∂ru
m(b)− kDm,ku

m(b) = 0,

(6.5)

for all m. In (6.5), Dm,k := ∂zH
(1)
m (kb)

H
(1)
m (kb)

where H
(1)
m is the Hankel function of the first

kind of order m.

To make the 1-D problems (6.5) to be well-defined, we add an artifical boundary

condition for each m at the left ending point r = a, namely,

um(a) = tm. (6.6)

The values of {tm} are exactly that we need to evaluate subject to the original interior

boundary condition u = g on ∂Ω1.

To figure out the relation between um and {tm}, we need the following result.
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Lemma 6.2.1 Let ϕm be the solution to

− 1

r
∂r(r∂rϕ

m) +
m2

r2
ϕm − k2ϕm = 0, r ∈ (a, b),

ϕm(a) = 1, ∂rϕ
m(b)− kDm,kϕ

m(b) = 0,

(6.7)

and ψm be the solution to

− 1

r
∂r(r∂rψ

m) +
m2

r2
ψm − k2ψm = fm, r ∈ (a, b),

ψm(a) = 0, ∂rψ
m(b)− kDm,kψ

m(b) = 0.

(6.8)

Then the solution to (6.5) satisfies

um = tmϕm + ψm. (6.9)

6.3 Approximation

By virtue of Lemma 6.2.1, we can construct an approximate solution uMN as

follows

uMN(r, θ) =
M∑

m=−M

umN(r)e
imθ, (6.10)

where

umN = tmϕm
N + ψm

N , (6.11)

and ϕm
N and ϕm

N are solved from (6.7) and (6.8) by appropriate ODE schemes with

degree of freedom N . An effective spectral-Galerkin method for (6.7) and (6.8) is put

forward in [1, Chap. 9.1].

We discretize the original interior boundary condition u = g on ∂Ω1 in some

sense to help to determine {tm}Mm=−M . One straightforward way is to prescribe K

collocation nodes {(r̂k, θ̂k)}Kk=1 on ∂Ω1, and enforce

uMN(r̂k, θ̂k) ≈ g(θ̂k), k = 1, · · · , K, (6.12)

or
M∑

m=−M

(tmϕm
N(r̂k) + ψm

N (r̂k)) e
imθ̂k ≈ g(θ̂k), k = 1, · · · , K. (6.13)
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For K > M , (6.13) corresponds to the following least square problem,

min
tm

K∑
k=1

∣∣∣∣∣
M∑

m=−M

(tmϕm
N(r̂k) + ψm

N (r̂k)) e
imθ̂k − g(θ̂k)

∣∣∣∣∣
2

, (6.14)

In practical implementation, we find choosing K between 4M and 8M can keep

the best conditioning-efficiency balance on (6.14). Another discretization is taking

the projection of the residue onto the finite-dimensional Fourier subspace to be zero.

Specifically, suppose Ω1 is characterized by the curve r = ρ(θ), then we enforce

(
uMN(ρ(θ), θ)− g(θ), eilθ

)
[0,2π)

= 0, (6.15)

or (
M∑

m=−M

(tmϕm(ρ(θ)) + ψm(ρ(θ))) eimθ − g(θ), eilθ

)
[0,2π)

= 0, (6.16)

for l = −M, · · · ,M . Usually the linear system (6.16) is better-conditioned if Ω1 is

closer to a circle, namely, if ρ(θ) ≈ ρ0 which is a constant.

To sum up, the following algorithm results from the above discussion.

Algorithm 6.3.1 Solve the Helmholtz problem (6.1)

1. perform the domain embedding Ω ⊂⊂ Ω̃ and extend f from Ω to Ω̃ smoothly;

2. compute the truncated Fourier expansion of f(r, θ) := F (r cos θ, sin θ) with re-

spect to θ, obtaining (6.3);

3. compute approximate solutions {ϕm
N} and {ψm

N} to the 1-D problems (6.7) and

(6.8);

4. solve the optimization (6.14) or the linear system (6.16), to obtain {tm}Mm=−M ;

5. compute uMN by (6.10) and (6.11);

Same as the case of circular embedding, the total complexity of this algorithm is

no greater than O(N3).
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6.4 Numerical examples

We take the numerical example of (6.1) with f set by

f = f̂k
−5(r, θ) + f̂k

4 (r, θ) + f̂k
10(r, θ), (6.17)

where

f̂k
j (r, θ) =

(
−k2H(1)

j (kr) +
2k(j + 1)

r
H

(1)
j+1(kr)− k2H

(1)
j+2(kr)

)
eijθ, (6.18)

and the exact solution

u = ûk−5(r, θ) + ûk4(r, θ) + ûk10(r, θ) (6.19)

where

ûkj (r, θ) = H
(1)
j (kr)eijθ, (6.20)

First, the shape of the obstacle is chosen by a smoothly perturbed curve

Ω = {(r, θ) : r < 1 + 0.2 sin(4θ)}. (6.21)

And the embedding annulus is chosen by

Ω̃ = {(r, θ) : 0.8 < r < 2}. (6.22)

We perform Algorithm 6.3.1 for k = 10, 50, 100 and M = 10, 15, · · · , 120. The

degree of spatial discretization is set by N =M , and the number of collocation nodes

on ∂Ω1 is set by K = 4M . The 1-D spectral Galerkin method described in [1, Chap.

9.1] is utilized to solve (6.7) and (6.8). The problem domains and collocation nodes

for M = 10 are shown in Fig. 6.1. The L2 and L∞ errors versus M for each k are

shown in Fig. 6.2 and Fig. 6.3

It can be observed that for smaller k = 10, the error decays directly to machine

precision in exponential rate. As M becomes greater than 90, the system becomes

ill-conditioned that hence deteriorates the accuracy (leading to a very large error).

On the other hand, for larger k = 50 or 100, the errors decay very slowly in the
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Fig. 6.1.: the original domain, embedding annulus and collocation nodes for M = 15

in the first example
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Fig. 6.2.: L2 errors versus M for k = 10, 50, 100 in the first example



106

0 20 40 60 80 100 120
10-15

10-10

10-5

100

105

k=10
k=50
k=100

Fig. 6.3.: L∞ errors versus M for k = 10, 50, 100 in the first example
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Fig. 6.4.: the original domain, embedding annulus and collocation nodes for M = 15

in the second example

beginning when M is small. They then decay exponentially to machine precision

as M grows to certain levels. All phenomena is consistent with the case of circular

obstacle (see [1, Chap. 9.1]).

Second, we choose the obstacle to be a equilateral pentagon with following vertices(
−r0 sin(

2jπ

5
), r0 cos(

2jπ

5
+
π

2
)

)
, j = 0, · · · , 4 (6.23)

where r0 = 0.7
√
2. And the embedding annulus is chosen by

Ω̃ = {(r, θ) : 0.7 < r < 2}. (6.24)

The results are shown in Fig. ??. The behaviors of L2 and L∞ error decays are

exactly same as the preceding case.

6.5 Conclusion

In this chapter, we extend the spectral method with annular embedding scheme

from Poisson-type problem to Helmholtz problem for acoustic scattering. We put

forward the algorithm for the problems of obstacle of complex geometry, whose com-

plexity is no greater than the classic spectral method for circular obstacles. Moreover,
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Fig. 6.5.: L2 errors versus M for k = 10, 50, 100 in the second example
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Fig. 6.6.: L∞ errors versus M for k = 10, 50, 100 in the second example
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the numerical examples show the behaviors of error decay is consistent with that from

the case of circular obstacles.
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