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ABSTRACT

Choe, Jeehyun Ph.D., Purdue University, August 2019. Video-Based Standoff Health
Measurements. Major Professor: Edward J. Delp.

We addressed two interesting video-based health measurements. First is video-

based Heart Rate (HR) estimation, known as video-based Photoplethysmography

(PPG) or videoplethysmography (VHR). We adapted an existing video-based HR

estimation method to produce more robust and accurate results. Specifically, we re-

moved periodic signals from the recording environment by identifying (and removing)

frequency clusters that are present the face region and background. This adaptive

passband filter generated more accurate HR estimates and allowed other applied filters

to work more effectively. Measuring HR at the presence of motions is one of the most

challenging problems in recent VHR studies. We investigated and described the mo-

tion effects in VHR in terms of the angle change of the subjects skin surface in relation

to the light source. Based on this understanding, we discussed the future work on how

we can compensate for the motion artifacts. Another important health information

addressed in this thesis is Videosomnography (VSG), a range of video-based methods

used to record and assess sleep vs. wake states in humans. Traditional behavioral-

VSG (B-VSG) labeling requires visual inspection of the video by a trained technician

to determine whether a subject is asleep or awake. We proposed an automated VSG

sleep detection system (auto-VSG) which employs motion analysis to determine sleep

vs. wake states in young children. The analyses revealed that estimates generated

from the proposed Long Short-term Memory (LSTM)-based method with long-term

temporal dependency are suitable for automated sleep or awake labeling.
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1. INTRODUCTION

1.1 Video-Based Standoff Health Measurements

There has been growing interests and needs in frequent and continuous health

monitoring. Commonly monitored health information includes Heart Rate (HR),

Blood Pressure (BP), and Respiration Rate (RR). To measure these require dedicated

equipment and special devices. With the need for in-home health monitoring or

telemedicine, using camera sensors for health-monitoring has been in the limelight

in various health measurements. One of the greatest advantages of using videos is

that the measurement is convenient. Nowadays cameras are everywhere, and anyone

can easily record videos. Another advantage of using camera is that unlike most of

the medical sensors, video recording is not intrusive, and requires no contact to the

body. While lots of important health information is contained in human videos, the

information can be difficult to obtain because it is very labor intensive or impossible

to be observed by human eyes. In this thesis, we address two interesting video-

based health measurements and propose methods that use video processing, computer

vision, and machine learning techniques to obtain health information hidden in the

videos.

First is video-based Heart Rate (HR) estimation. One of the most important

health information is monitoring the perfusion of the circulation as cardiopulmonary

parameters such as blood pressure and blood flow [1]. Figure 1.1 illustrates commonly

used HR measurement. Section 1.1.1 introduces the video-based HR estimation.

Another important health information addressed in this thesis is monitoring ac-

tivities during sleep. Pediatric sleep medicine is a field that focuses on typical and

atypical sleep patterns in children. Within this field, physicians, interventionist, and

researchers record and label child sleep with particular attention to sleep onset time,
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HR 86 bpm

(a)

HR 86 bpm

(b)

Fig. 1.1. Examples of Heart Rate (HR) Measurement Settings: (a)
Finger Pulse Oximeter; The sensor is attached to the finger (b) Video-
based method.

total sleep duration, and the presence or absence of night awakenings. One notable

recording method is videosomngraphy (VSG) which includes the labeling of sleep-

/awake from video [2,3]. Traditional behavioral videosomnography (B-VSG) includes

manual labeling of awake and sleep states by a trained technician/researcher [3]. Fig-

ure 1.2 shows a simple description of video-based VSG. Section 1.1.2 introduces the

(a) An example of Traditional in-home

VSG.

(b) An example of auto-VSG.

Fig. 1.2. Examples of VSG Settings: (a) Traditional method; The
sensor is attached to the ankle (b) Video-based method.
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video-based sleep analysis.

1.1.1 Heart Rate (HR) Measurements

Heart Rate (HR) is the number of heart beats or cardiac contractions per minute,

often referred to as beats per minute (bpm). Normal HR varies from person to

person such that children in younger age have faster HR and adults with higher

fitness have slower HR (better cardiovascular fitness). The normal resting HR ranges

for newborns 0 to 1 months of age is 70 to 190 bpm, infants 1 to 11 months is 80

to 160 bpm, children 1 to 9 years is 70 to 130 bpm, children 10 years and older

and adults (including seniors) is 60 to 100 bpm and well-trained athletes is 40 to 60

bpm [4]. HR out of normal HR range can indicate health problems. Fast HR may

signal an infection or dehydration [4]. A raise in your HR can also indicate stressed,

anxious or “extraordinarily happy or sad” emotions. HR is routinely measured in

clinical practice [5]. HR can be measured at areas where an artery passes close to the

skin [4]. Current measurements of HR involve attaching devices/sensors to a patient’s

fingers, arms, or chest. The two most commonly used techniques for measuring HR

in clinical practice are Photoplethysmography (PPG) and electrocardiography (ECG

or EKG).

The first HR measuring technique to introduce is Photoplethysmography (PPG).

PPG is an optical technique that indexes blood volume changes in microvascular tis-

sue to measure the rate of blood flow (or HR) [6]. The blood volume changes are

represented as waveforms in PPG, called PPG waveform or PPG signal, and it is syn-

chronized to each heart beat. The PPG waveform has been used since the 1930s [7,8].

It had been one of many methods for skin capillary blood flow measurement which

include skin thermometry, thermal clearance, laser Doppler plethysmography, ra-

dioactive isotope clearance, electrical impedance methods [9]. In the 1980s, the pulse

oximeter began to be used as routine clinical care and the importance of PPG wave-
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form in clinical medicine greatly increased [7]. Using pulse oximeter is a traditional

way of using PPG to measure HR.

The principle of traditional PPG is that when the light at a suitable part of the

spectrum (near infrared) is directed into the skin, detection of the attenuated light

which passes out of the skin gives a measure of its blood content where more blood

present in the skin leads to greater attenuation of light [10]. The PPG waveform

can be separated into an oscillating (ac) and a steady-state (dc) components and

applications such as pulse counters, using the ac component, and skin color and

hemoglobin saturation meters, using the dc component, are available [8, 9]. The

peak-to-peak intervals obtained from ac component of PPG waveform represent heart

cycles [11].

Elgendi [11] addressed that the quality of the PPG signal depends on the location

and the properties of the subject’s skin at measurement, including the individual

skin structure, the blood oxygen saturation, blood flow rate, skin temperatures and

the measuring environment. Challenges in obtaining PPG signal include poor contact

between the body site and the photo sensor, variations in temperature, irregular heart

beat caused by the premature venticular beats (PVCs), and light interference from

the measuring environment [11,12].

Another technology used for monitoring HR is electrocardiography (ECG or EKG).

ECG is a test that measures the electrical activity of the heart beat (i.e. the expan-

sion and contraction of heart chambers) from an electrical impulse traveling through

the heart [13]. ECG signals are acquired by placing Ag/AgCl electrodes on clearly

defined anatomical positions and one lead (channel) of ECG recording requires three

electrodes to produce the signal thus requiring three wires to be connected to the

subject [14]. Clinical ECG recordings commonly use 3 to 12 leads [15], as opposed to

PPG recording typically use only one probe. [15] suggested that PPG may prove a

practical alternative to ECG for HR Variability (HRV) analysis since PPG provides

accurate interpulse intervals from which HRV measures can be accurately derived in

healthy subjects under ideal conditions.
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Pulse oximeters use PPG to estimate HR [6]. In the early 1990s pulse oxime-

try became a mandated international standard for monitoring during anaesthesia [6].

Pulse oximeters are commonly used in clinical practice because of their low cost,

high-accuracy, and relative ease of use. Pulse oximeters function on the principle

that hemoglobin (Hb) and oxyhemoglobin (HbO2) absorb red and infrared light dif-

ferently [12]. It measures the amount of red and infrared light that passes through the

skin–as skin fills with blood or “blushes,” the ratio of red to infrared light changes.

Commonly used body sites for placement of the pulse oximeter probe are fingers and

earlobes but other sites such as toes, cheeks, nose, and tongue can be used as well [12].

Recently there are many wearable PPG sensors used for daily activities. Wearing

PPG sensors on the fingers during daily activities is not well suited and different mea-

surement sites have been explored extensively, including the ring finger, wrist, brachia,

earlobe, external ear cartilage, the superior auricular region, forehead, and glasses-

type system [1]. The wearable PPG has two different modes–transmission mode and

reflectance mode based on the placement of light-emitting diode (LED) and photode-

tector (PD) [1]. Tamura et al. [1] addressed that while IR or near-IR wavelengths

are better for measurement of deep-tissue blood flow, green LED has much greater

absorptivity for both hemoglobin (Hb) and oxyhemoglobin (HbO2) compared to in-

frared light that green-wavelength PPG devices are becoming increasingly popular.

Poh et al. [16] estimated HR using modified earphones with a regular cell phone.

They obtained PPG signal through specially designed earphone where the earbuds

are embedded with reflective photosensor. Health monitoring based on PPG method

by using smartphone’s videocamera is addressed in several papers [17, 18]. Using a

smartphone requires a finger to be placed on the smartphone’s camera in the way

that it covers both the camera lens and the LED (the flash) [17, 18]. This can not

be used during the activities but provides an easy access to HR measurement since

it does not require any special equipment.

Other HR measurement methods include Ballistocardiography (BCG), a method

for obtaining a representation of the heart beat-induced repetitive movements of the
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human body, occurring due to acceleration of blood as it is ejected and moved in

the large vessels [19]. BCG signal can be obtained by piezoelectric force sensors [19].

Paalasmaa et al. [20] estimated beat-to-beat HR from ballistocardiograms acquired

with force sensors. Hernandez et al. [21] made use of a head-worn camera (Google

Glass) that captures the view of the wearer to monitor subtle periodic BCG motions.

Bioimpedance measurements can be used to detect HR. Gonzalez-Landaeta et al.

[22] obtained heart-related impedance changes when standing, by using four platform-

type aluminum electrodes, and compared the bioimpedance signal to the ECG record-

ings.

All the methods explained above involve attaching devices/sensors to the human

body. This can bring discomfort to many subjects/patients especially when they

need to measure the vital signs frequently. Baby/patients with tactile sensitivities or

patients over long periods of monitoring may not tolerate attaching sensors on their

skin. Researchers have been investigating methods to overcome the drawback of HR

estimation involving contacts with the body.

Millimeter-wave sensors together with color and depth cameras [23] have been

used to estimate HR. They estimated HRs using a 94-GHz sensor to obtain the chest

displacement corresponding to heartbeats and compared the result with ECG based

HRs. Adib et al. [24] described a system called Vital-Radio that monitors HR of

multiple people. They transmit a low-power wireless signal and obtain the time it

takes for the signal to reflect back to the device where the wireless signals operate

through walls. HR is estimated for each 10-second window and it captures the skin

vibrations due to heartbeats which is BCG movements from the head, torso and

buttock [24]. Their system detects periods during which the person is quasi-static

and estimate HR only during such intervals since accurate HR estimation cannot be

provided when the person walks or moves.

The video-based HR estimation, also known as videoplethysmography (VHR),

mostly uses PPG methods and assess facial/skin region “micro-blushing.” Basic as-

sumption in VHR methods is that small color variations, micro-blushing, in the
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face/skin region reflect PPG signals (i.e., heart-beats). Remote, stand-off methods

for assessing HR have emerged in the past years [25–79].

Several video-based approaches have been proposed for HR estimates using PPG.

One of the approaches used from the early VHR is using the mean pixel values of green

channel in the face region to obtain the PPG signal [26, 32, 34–36, 73]. Verkruysse et

al. [26] addressed that while all RGB channel in a simple consumer level digital

camera contained PPG information, the green channel featured the strongest PPG

signal. Kwon et al. [34] experimented with a smartphone camera and reported that

the green channel trace contains a relatively strong PPG signal more than other

channels. Kumar et al. [35] explained that the green channel performs better because

the absorption spectra of hemoglobin (Hb) and oxyhemoglobin (HbO2), two main

constituent chromophores in blood, peaks in the region around 520-580 nm, which is

essentially the passband range of the green filters in color cameras.

The PPG signal contained in the video is relatively small compared to various

environmental factors including illumination change, camera-related signals and sub-

jects’ movements. Blind Source Separation (BSS) is a technique for recovering a

set of signals of which only “blindly” processed linear mixtures are observed [80].

Independent Component Analysis (ICA), one of BSS, is a technique for uncovering

statistically independent source signals based on the assumption that the indepen-

dent component must have nongaussian distributions [81]. ICA has been used in

many video-based HR estimation methods to uncover small PPG signal from the

pixel intensity changes of skin/face in the video [27, 28, 31, 37–42, 44, 62, 72, 82]. Poh

(and Picard) et al. [27, 28] obtained the mean pixel values of each RGB channel (in

the facial region) for each frame and used ICA on each RGB signal to estimate the

underlying HR signal. Tsouri et al. [40] addressed that standard ICA techniques

suffer from the sorting problem and used constrained ICA (cICA) to make use of

prior knowledge about the underlying sources in VHR. Monkaresi et al. [62] extended

the method proposed by Poh et al. [27] by using k-nearest neighbor (kNN) Machine

Learning technique on the ICA outputs. Sahindrakar et al. [37] also used ICA for
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obtaining PPG signal under limited motion of a subject. Sun et al. [38,39] and Zhao

et al. [31] described a similar approach using ICA but only using a single channel. Es-

tepp et al. [41] captured raw format 120 fps videos from nine imagers under controlled

lightings and recovered PPG source component from 9-imager channel space based

on ICA method. Yu et al. [42] used a combination of ICA and mutual information to

compute the dynamic heart rate variation from short video sequence. They defined

the mutual information between two sources such that it is zero if both sources are

totally independent of each other and unity if both sources are totally dependent on

each other. They used this information is used to ensure the reliability of the ICA

sources being found [42].

Other approaches include replacing ICA with other linear dimensionality reduc-

tion methods such as Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA). PCA constructs a linear subspace that best explains the variation of

observed data from their mean [83]. LDA finds the directions in the underlying vector

space that are maximally discriminating between the classes by simultaneously max-

imizing the between-class scatter and minimizing the within-class scatter [84]. PCA

or LDA uncorrelate the source signals without taking care of the non-Gaussianity

between the source signals but some papers suggested that they give similar result

to ICA-based method while requiring less computation. Lewandowska et al. [45] esti-

mated pulse rate from web camera recordings and compared the ICA-based approach

with that of PCA-based approach. They suggested PCA requires less computation

while giving similar accuracy when compared to ICA-based approach in their exper-

imental settings. Yu et al. [46] described that to estimate the instantaneous heart

rate that varies dynamically from short video sequences, PCA is less computation-

ally intensive than ICA. Tran et al. [47] used LDA to obtain HR signals based on

the observation that the fluctuations in RGB traces due to heart pulse have strong

correlation between each channel. Their RGB traces are obtained from the skin pix-

els within the face region. They suggested that LDA can be used for video-based

real-time HR estimation because LDA is computationally light.
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ICA, PCA and LDA are all based on the assumption that the observed signals

are linear mixtures of underlying sources. Wei et al. [48] claim that this assumption

is wrong because according to Beer-Lambert law, reflected light intensity traveled

through facial tissue varies nonlinearly with distance. They present webcam-based

HR measurement using a nonlinearity method, Laplacian Eigenmap (LE), addressing

neither ICA nor PCA could extract the pure BVP from collected data, as both of

them are based on linear hypothesis.

Other approaches have used spatial decomposition and temporal filtering to mag-

nify the video and then find subtle changes in the video [30]. This method can be used

to visualize the blood volume changes from the video. In [49] Eulerian video magni-

fication [30] for HR estimation was further investigated and concluded the method is

highly affected by aggressive compression and motion. Bal [50] used a wavelet trans-

form based on a denoising method to obtain HR from video recorded by the laptop

camera. Xu [64] derived the pulse heart rate signal as a pixel quotient in log space

based on a model of light interaction with human skin.

Face/skin areas are used as region of interests (ROI) in many VHR approaches but

other various regions including the sub-regions within the face have been explored [25,

35,38,44,45,51–54,54,56,59,65–68,74]. In [69], they placed a finger between a camera

of 100 fps and a LED light where the distance between the camera and the LED is

from 20 cm to 1.5 meters. Hand palm area was used to obtain noncontact PPG

signal in [68]. Lewandowska et al. [45] used a rectangular-shaped part of the forehead

area. They assumed the forehead areas are visibly “uniform” and took thermographic

images for all examined participants to support this assumption. Forehead/brow

area was also used in [43, 44, 51, 53, 63, 67, 75]. Several papers used cheek regions [25,

53, 54, 65]. [53] addressed that the “forehead” and “cheeks” are the most desirable

ROI due to their relatively robustness to facial expressions and head movement.

Rodriguez et al. [74] excluded the eye area to eliminate the artifacts produced by

blinking. The area below the eyes and above the upper lip of the mouth was used

in [56]. Tasli et al. [66] used adaptive ROI regions within the face by detecting facial
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landmark locations. Other ROIs include sub-dividing the face region into multiple

sub-regions [35,38,52,55,59,70]. The sub-regions with large intensity variations were

rejected and only the regions with small variations were used for HR estimation in [35].

They assumed that large variations are mostly due to illuination change or motion

artifacts. Qi et al. [70] formed datasets of RGB traces from seven sub-regions around

cheek and nose and obtained latent source component of each dataset using joint

BSS. [55] focused on improving the PPG signal quality in VHR through a dynamic

ROI approach.

Some papers use signals from both the face/skin regions and the background re-

gions [32,36,52] to better estimate HR. Li et al. [32] assumed that the signals observed

from the video were affected by both the PPG signal and environmental illumina-

tion. They used both the face mean green color and the background mean green

color of each frame to reduce the environmental illumination variances. Tarassenko

et al. [52] used a background region of interest to minimize the effects of external

lighting sources such as fluorescent lights using an Auto-Regressive (AR) model and

a pole-cancellation algorithm. Lee et al. [73] assumed that the green channel trace

from the face region of the video contains both a PPG signal and environmental illu-

minance change. In their experimental setting, a subject is watching a video in front

of a 42-inches monitor in a dark room while the camera is recording the their face.

Instead of using the signal from the background region, they estimated the environ-

mental illumination from the face region signal through regression. After estimating

the variation of the environmental illuminance, they subtracted it from the green

channel trace of the face region [73].

Most of the VHRmethods make use of the fact that HR ranges in certain frequency

range and this involves the frequency-domain analysis of the observed signal. The

most common way to do the frequency-domain analysis is using Discrete Fourier

Transform (DFT). Fouladi et al. [82] addressed that DFT is not accurate enough

to use on small number of samples (2-second length signal for 30 fps case). They
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suggested to use the Multiple SIgnal Classification (MUSIC) method in case of small

number of samples.

Instead of using PPG, Balakrishnan et al. [33] estimated HR from subtle motion

changes captured in the standoff video. The motion changes obtained would reflect

BCG signal.

Each of the methods above have challenges. Patients have varying skin tones, a

wide range of resting heart-rates, and are often prone to movement. Similarly, envi-

ronmental lighting, undetermined noise, or camera-based signals can reduce the signal

to noise ratio (SNR). Low frequency rate, low video resolution, low video quality and

short video length can also cause difficulties in VHR. Greater distance between a

subject and the camera can cause lower resolution and quality on the PPG ROI.

Shagholi et al. [72] experimented on two distances of 0.5 and 3 meters and suggested

that increasing the distance to 3 meter led to a decrease in the accuracy of the esti-

mated HR. Small temporal variation corresponding to PPG signal might get corrupted

while compressing the video. Kirenko et al. [85] described a video encoding/decoding

device, wherein during decoding PPG relevant information is preserved. Freitas [77]

used raw format in an AVI container file because a video compression algorithm could

cause damage to the acquired PPG signal while maintaining the perceived quality of

the compressed video. Several other VHR papers also used raw video formats in their

experiments along with turning off the automatic white balance (AWB) control or

automatic gain control (AGC) of the camera settings. In addition to AWB or AGC,

other blocks in camera image signal processing (ISP) pipeline that involves temporal

smoothing can reduce the SNR of PPG signals contained in video recordings.

In this thesis, we improve an existing video-based HR estimation method and

compare it to an FDA-approved medical device (i.e., a finger pulse oximeter). We

modify and extend an ICA-based method and improve its performance by (1) adapting

the passband of the bandpass filter (BPF) or the temporal filter, (2) by removing

background noise from the signal by matching and removing signals that occur in the
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off-target (background) and on-target areas (facial region), (3) face tracking, and (4)

skin detection within the face region. Our system is described in Chapter 2.

One of the biggest challenges in video-based HR estimation is dealing with human

videos where the subject moves. For the same shooting environment where we can

acquire strong HR signals from non-moving subjects, the HR signal gets weaker or

even disappears when subjects start to move.

Even in contact PPG, the motion artifacts (MA) has been one of the most chal-

lenging problems. Not all the reasons for MA in contact PPG would be the same

as VHR case. But there could be a common reason for motion effects in both fields

since both contact PPG and VHR estimate the PPG signal from the skin reflectance

change using photo sensors. Raghu et al. [86] addressed in-band noise results when

the spectra of MA and that of the PPG signal overlap significantly. They described

that adaptive filters can effectively deal with in-band noise but it needs a reference

signal that is strongly correlated with either (1) the artifact but uncorrelated with the

signal or (2) the signal but uncorrelated with the artifact. And the reference signal

representing MA can be obtained by employing additional hardware [86]. Wijshoff et

al. [87] addressed that sensor motion relative to the skin can be used as an artifact ref-

erence in a correlation canceller to reduce motion artifacts. In their experiment, they

obtained sensor motion via self-mixing interferometry. Lee et al. [88] investigated the

use of red, green, and blue light PPG to discover which of these is the most suitable

for measuring HR during normal daily life, where motion is likely to be a significant

issue. Based on their experimental results, they concluded that the green light PPG

might be more suitable for monitoring of HR in the daily life than either red or blue

light PPG. Zhang et al. [89] focused on HR monitoring using wrist-type PPG signals

when wearers do intensive physical activities. They noted that compared to fingertip

and earlobe, wrist can cause much stronger and complicated MA due to large flexibil-

ity of wrist and loose interface between pulse oximeter and skin. Hayes [90] addressed

the motion model and suggested the multiplicative model is more appropriate for the

effect of MA than an additive model based on the experiments.
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While most of the MA reduction approaches in contact PPG make use of the

reference signal that represent the noise, the approaches in VHR have been more

focusing on choosing better ROI in the frame or manipulating RGB traces to enhance

the SNR of PPG signal. Kumar et al. [35] proposed to track different non-rigid regions

of the face independently to compensate for motion-related artifacts. From the fact

that blood volume change underneath the skin causes very small changes in the

intensity of reflected light signal, they identify the regions with large intensity changes

and reject those regions assuming that the large intensity changes have been caused

by motions. Feng et al. [54] proposed an adaptive color difference method between

the green and red channels along with ROI tracking to remove motion artifacts.

Motion models used in above two papers [35, 54] will be described in Section 3.1.

Wang et al. [59] first find temporally corresponding pixels by pixel-based tracking

to obtain pixel-to-pixel RGB signal. Then they remove the motion-induced color

distortions based on the assumption that the transformation between normalized

RGB for consecutive frames should ideally be the translation for the pulse-induced

color change while it is not for the motion-induced color change. Huang et al. [71] used

a similar approach to a MA removal method used in contact PPG. They obtained

(x, y) coordinate of the ROI as the reference signal of the motion and used them as

inputs to adaptive filter to reduce the interference related to motion [71]. While many

papers address the motion artifacts and give different solutions, there are not enough

explanations on how exactly this motion-related signal is generated.

In Chapter 3 we describe the motion-related signal as the change in relative posi-

tions between the subject’s skin surface and the light source. We show how the pixel

intensity changes are related to motions by showing its relation to the angle between

the light ray and the skin surface in case of moving subject. First we use a simple

model to understand the pixel intensity changes for moving objects and we extend

our observation to the human videos. For the experiment on the human videos, we

modeled the pixel intensity in terms of surface normal and the light direction. None

of the VHR papers we have seen so far [25–79] used illumination information that can
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be acquired from facial points. In our experiment, motion-related signal estimated

from the illumination information shows strong relation to the actual intensity varia-

tions caused by motion. We extended the experiment to videos of human and showed

the motion effects on the intensity change in terms of the skin surface normal and

illumination. Our results show how the incident angle change caused by motion is

related to the pixel intensity changes. We showed that the illumination change on

each surface point is one of the major factors causing motion artifacts. Lastly, we

discussed how this understanding on motion effects can be used to reduce the motion

artifacts in VHR.

VHR involves recording videos and health information of the human subjects.

Research involving human subjects requires an approval of Institutional Review Board

(IRB). All the videos that we used in this thesis were collected under the approval

of the IRB of Purdue University. Publicly sharing the VHR data in the research

community is difficult because this might violate the IRB rules in terms of protecting

the privacy of the human research subjects unless the human subject consent on fully

disclosing their information public. Some recent VHR papers [32, 36] used publicly

available dataset which included video recordings of adult subjects and their ECG

signals.

1.1.2 Sleep Analysis

Pediatric sleep medicine is a field that focuses on typical and atypical sleep pat-

terns in children. Within this field, physicians, interventionist, and researchers record

and label child sleep with particular attention to sleep onset time, total sleep dura-

tion, and the presence or absence of night awakenings. One notable recording method

is videosomngraphy (VSG) which includes the labeling of asleep vs. awake from

video [2, 3]. This method is most commonly used for infants/toddlers as their com-

pliance rates with other sleep recording methods can be low. Traditional behavioral

videosomnography (B-VSG) includes manual labeling of awake and sleep states by
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a trained technician/researcher [3]. B-VSG is time consuming and requires exten-

sive training which has limited its widespread use within the pediatric sleep medicine

field. Actigraphy is considered an alternative for estimating sleep vs. awake states

and it is based on child movement as indexed by an accelerometer sensor commonly

attached to a child’s ankle or wrist. Some validity issues with actigraphy compared

to human observations are estimating less time sleep and more time awake [91] or

showing low specificity in detecting wakefulness within sleep periods [92]. Actigraphy

requires a sensor to be constantly attached to the body while VSG and B-VSG do

not involve any contact with the body. Within the present study we develop and test

an automated VSG method (auto-VSG) to replace B-VSG and to provide physicians,

interventionist, and researchers with a sleep recording tool that is more economic and

efficient than B-VSG, while maintaining high levels of labeling precision.

The development of auto-VSG is a growing area with preliminary studies utilizing

signal processing systems that index movement during sleep in small groups of chil-

dren with developmental concerns or adults [2, 93–95]. Across these studies, motion

within the video is estimated by frame differencing [93, 94] or by obtaining motion

vectors [2, 95].

[93] devised a sleep evaluation technique for children by estimating the amount

of motions from the difference in two successive frames. They analyzed the rela-

tion between the amount of movements obtained from video processing and sleep

stage determined by PSG for five children. Their method was later on used in [96]

for characterizing the differences in body movements during sleep for eleven typical

developing children and six children diagnosed with Attention Deficit/Hyperactivity

Disorder (ADHD). [96] suggested that the video-based method may be used as a

marker in the diagnosis of ADHD. [94] used variation of image difference process-

ing in [93, 96] by focusing more on the gross body movements (GMs). They used

their method to compare the movements during sleep of children with and without

ADHD. [2] used home-videosomnography for children with neurodevelopmental con-

ditions where the movement analysis was done using the software called Optical Flow
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Algorithm. [95] proposed sleep video motion estimation based on a spatio-temporal

prediction method. Their proposed method is to estimate not only the amount of

motion but also the direction of movement in order to estimate local motions.

However, each of these studies were completed within a controlled setting and do

not account for the wide range of camera positions and lighting variations that are

common among in-home VSG recordings.

In this thesis, we present two different sleep video analysis approaches where both

uses simple motion information from in-home VSG recordings for children. It is

important to note that our goal is to label each frame of a sleep video with the label

“sleep” or “awake.” In this work we are not interested in labeling sleep stages, such as

REM sleep. We assume that the child is the only source of the movement in the video.

Also, we assume that the camera is static. These were the common cases for in-home

child sleep videos. While there are other complicated methods for detecting motion in

videos, we focus on simple motion information obtained from frame difference method.

There are three reasons for choosing simple motion information. First is to make the

operation efficient and simple. The amount of sleep videos is massive. For example,

one-night video of 8-hour duration recorded at 16 fps includes around 450,000 frames

(16 [fps] × 60 [second/minute] × 60 [minute/hour] × 8 [hours] = 460,800 [frames]).

When it comes to multiple-night recording on many different children, the processing

should be fast and efficient. Second, it is not practical to use complicated methods

on low-quality infrared videos. Sleep videos are recorded in either RGB or infrared

modes depending on whether the room light is on or not. When in infrared mode,

they lack color information. Also, the videos are mostly low-quality where it is good

enough for human to identify the movement of the child in the video. The video

recordings used for VSG in sleep lab were typically 320×240 and 640×480 and the

images are not sharp. Lastly, the simple motion information captures relative amount

of motions within the video very well. While the simple motion information gives

useful information for sleep analysis, there are challenges for using it in practical

auto-VSG applications. It does not account for ‘in the wild’ factors that are common
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in in-home VSG recordings. For example, the wide range of camera positions and

lighting variations across different videos make the scale of the motion information

different across the videos.

In this thesis, we present two auto-VSG that adjust for these ‘in the wild’ factors.

In Chapter 4, we develop and test an auto-VSG method that includes (1) preprocess-

ing the video frames using histogram equalization and resizing, (2) detecting infant

movements using simple motion information, (3) estimating the size of the infant

by detecting their heads based on deep learning methods, and (4) scaling and limit-

ing the degree of motion based on a reference size so the motion can be normalized

to the size of the relative child in the frame. In Chapter 5, we propose automatic

sleep/awake states identification methods on RGB/infrared video recordings. It is

a binary classification problem for actions in sleep videos. The contributions of this

proposed method are: (1) we describe the key factors in sleep video classification (i.e.,

movements over long period of time) that are not addressed in commonly used action

classification problems (Section 5.2) (2) we propose a sleep/awake classification sys-

tem with a recurrent neural network using simple motion information (Section 5.3)

(3) we experimentally show our system successfully learns long-term dependencies

in sleep videos and outperform one of the recent method that has been successful

in public action dataset (Section 5.4). In Appendix A, we describe web application

that deploys our sleep/awake classifications method in Chapter 5 and we call it Sleep

Web App. The design philosophy of Sleep Web App is to provide easy accesses to

sleep researchers for running the sleep video analysis on their videos. Specifically, we

focused on (1) simple user experience, (2) multi-user supporting and (3) providing

results for further analysis.

1.2 Image-Based Geographical Location Estimation Using Web Cameras

Thousands of sensors are connected to the Internet [97, 98]. The “Internet of

Things” will contain many “things” that are image sensors [99–101]. This vast net-
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work of distributed cameras (i.e. web cams) will continue to exponentially grow. We

are interested in how these image sensors can be used to sense their environment.

In our previous work, we investigated simple methods of web cam image classifica-

tion based on the support vector machine (SVM). We focused on classifying an image

as indoor or outdoor and people or no people using a set of simple visual features.

We are also investigating how one would process imagery from thousands of

ip-connected cameras. We have at Purdue University been developing the CAM2

system(Continuous Analysis of Many CAMeras) [102–105]. CAM2 is a cloud-based

general-purpose computing platform for domain experts to extract insightful informa-

tion by analyzing large amounts of visual data from distributed sources. CAM2 uses

cloud computing to manage the large amounts of data for better scalability. CAM2

currently has detected and has access to more than 70,000 cameras deployed world-

wide. These include cameras from departments of transportation, national parks,

research institutions, universities, and individuals.

In particular in this thesis we investigate simple methods for how one can deter-

mine metrics of a location (e.g. sunrise/sunset, length of day) and the location of the

web camera by observing the camera output.

The location of a point on the Earth is described by its latitude and longitude (and

perhaps by its altitude above sea level). Latitude is measured in degrees north or south

of the Equator, 90◦ north latitude is the North Pole and −90◦ south latitude is the

South Pole. Longitude is measured in degrees east and west of Greenwich, England.

180◦ east longitude and −180◦ west longitude meet and form the International Date

Line in the Pacific Ocean [106–108]. The definition of sunrise and sunset is when the

geometric zenith distance of the center of the Sun is 90◦50′ [109]. That is, the center

of the Sun is geometrically 50 arcminutes below a horizontal plane. There are various

definitions for sunrise/set and daylength [110].

Several approaches have been reported with respect to finding a location from

images using large database. Hays et al. [111] described a method to estimate geo-

graphic information from a single image using a purely data-driven scene matching
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approach. They used a dataset of over 6 million GPS-tagged images from the Inter-

net. The features they used for comparing the images are color image itself, color

histogram in CIE L*a*b* color space, texton histogram, line features, Gist descriptor

together with color, and geometric context [111].

Sunkavalli et al. [112] model the temporal color changes in outdoor scenes from

time-lapse video to provide partial information of scene and camera geometry regard-

ing the orientation of scene surfaces relative to the moving sun. With assumptions

that reflectance at scene points is Lambertian, and that the irradiance incident at

any scene point is entirely due to light from the sky and the sun, they came up with

a model for temporal intensity change in terms of the angular velocity of the sun

and the projection of the surface normal at a scene point onto the plane spanned by

the sun directions (the solar plane) along with other factors. They estimated camera

geo-location, latitude and longitude, from the image sequence of one building scene

captured over the course of one day with approximately 250 seconds between frames.

This method requires three scene points lying on three mutually orthogonal planes

(two sides of a building and the ground plane for example) in the image. Lalonde et

al. [113] used high-quality image sequence to estimate camera parameters. In order

to do this, they analyze the sun position and the sky appearance within the visible

portion of the sky region in the image. Then, from an equation expressing the sun

zenith and azimuth angles as a function of time, date, latitude and longitude, they

estimated the latitude and longitude of the camera.

Junejo et al. [114] geo-located the camera from shadow trajectories estimated from

image sequence. Latitude was estimated based on the fact that the path of the sun, as

seen from the earth, is unique for each latitude [114]. They estimated the longitude

from the local time stamp of the image and shadow points. In their experiment,

they selected the shadow points of a lamp post and a traffic light on the images.

Wu et al. [115] also described camera geo-location estimation based on two shadow

trajectories. They empolyed a semi-automatic approach to detect the shadow point

for an input video.
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Sandnes [116] estimated approximate geographical locations of webcams from se-

quence of images taken at regular intervals. First, the sunrise and sunset were es-

timated by classifying images taken from a webcam and the location was then esti-

mated [116]. For determining the sunrise and sunset, the intensity of the entire image

was used to classify day or night and then determine the midday (or local noon) time

to identify the longitude and latitude [116]. In this thesis, we modify and extend

Sandnes’s approach.

We used the the sky regions in the image to better classify the Day/Night images.

Several papers described methods for detecting sky regions [117–119]. In [117] the

sky region is identified by using image data taken under various weather conditions,

predicting the solar exposure using a standard sun path model, and then tracing the

rays from the sun through the images. In [118] vehicle detection and tracking is used

to detect road conditions in both day and night images by using images and sonar

sensors. A method to retrieve the weather information from a database of still images

was presented in [119]. The sky region of image was detected by using the difference

of pixel values from successive image frames, morphological operations were then used

to obtain a sky region mask. The weather condition was recognized by using features

such as color, shape, texture, and dynamics.

In this thesis we describe a method for estimating the location of an IP-connected

camera (a web cam) by analyzing a sequence of images obtained from the camera.

First, we classify each image as Day/Night using the mean luminance of the sky

region. From the Day/Night images, we estimate the sunrise/set, the length of the

day, and local noon. Finally, the geographical location (latitude and longitude) of

the camera is estimated. The system is described in Chapter 6.

1.3 Contributions of This Thesis

The main contributions of this thesis are listed as follows:
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• We improved VHR for assessing resting HR in a controlled setting where the

subject has no motion. We modified and extend an ICA-based method and

improve its performance by (1) adapting the passband of the bandpass filter

(BPF) or the temporal filter, (2) by removing background noise from the signal

by matching and removing signals that occur in the off-target (background) and

on-target areas (facial region), and (3) detect skin pixels within the facial region

to exclude pixels that does not contain HR signal.

• We investigated and described the motion effects in VHR in terms of the angle

change of the subject’s skin surface in relation to the light source. We showed

that the illumination change on each surface point is one of the major factors

causing motion artifacts by estimating the incident angle in each frame. Based

on this understanding, we discussed the future work on how we can compensate

for the motion artifacts.

• We proposed auto-VSG method where we used child head size to normalize the

motion index and to provide an individual motion maximum for each child. We

compared the proposed auto-VSG method to (1) traditional B-VSG sleep-awake

labels and (2) actigraphy sleep vs. wake estimates across four sleep parameters:

sleep onset time, sleep offset time, awake duration, and sleep duration. In sum,

analyses revealed that estimates generated from the proposed auto-VSG method

and B-VSG are comparable.

• In the next proposed auto-VSG method, we described an automated VSG sleep

detection system which uses deep learning approaches to label frames in a sleep

video as “sleep” or “awake” in young children. We examined 3D Convolutional

Networks (C3D) and Long Short-term Memory (LSTM) relative to motion in-

formation from selected Groups of Pictures of a sleep video and tested temporal

window sizes for back propagation. We compared our proposed VSG methods to

traditional B-VSG sleep-awake labels. C3D had an accuracy of approximately

90% and the proposed LSTM method improved the accuracy to more than 95%.
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The analyses revealed that estimates generated from the proposed LSTM-based

method with long-term temporal dependency are suitable for automated sleep

or awake labeling.

• We created web application (Sleep Web App) that makes our sleep analysis

methods accessible to run from web browsers regardless of users’ working envi-

ronments. The design philosophy of Sleep Web App is to serve easy accesses to

sleep researchers for running the sleep video analysis on their videos. Specifi-

cally, we focused on (1) simple user experience, (2) multi-user supporting and

(3) providing results for further analysis. For providing the results, we included

two csv format files for per-minute sleep analysis and sleep summary results.

• We also described a method for estimating the location of an IP-connected

camera (a web cam) by analyzing a sequence of images obtained from the cam-

era. First, we classified each image as Day/Night using the mean luminance of

the sky region. From the Day/Night images, we estimated the sunrise/set, the

length of the day, and local noon. Finally, the geographical location (latitude

and longitude) of the camera is estimated. The experiment results show that

our approach achieves reasonable performance.
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2. PROPOSED APPROACH FOR

RESTING HEART RATE ESTIMATION

2.1 Overview of Proposed System

Figure 2.1 shows our proposed method and is similar to the ICA-based method

described by Picard in [28, 29]. The gray blocks denote modifications/additions to

Picard’s approach [28,29] described below. We will present a brief overview of Picard’s

method, more detail is available in [28, 29]. The ‘Picard’ ICA-based method begins

by detecting the face region. For each face region, the mean RGB pixel value is

obtained across each frame to form three 1D time series signals we call the RGB

traces. Trends in the RGB traces due signal drift and other factors are then removed

by using a high-pass like detrending technique [120]. The cutoff frequency of this filter

is controlled by a parameter we denote as λ, where λ = 300 in our experiments. This

corresponds to a high pass cutoff frequency of 0.011 · fs Hz where fs is the sampling

rate where fs = 30 Hz (the videos are acquired at 30 frames/s). The detrended traces

are normalized with z-score normalization to produce zero-mean and unit variance

signals. Independent Component Analysis (ICA) is used on these three signals to

recover the target source signal [28, 29, 81].

The appropriate source signal is selected from the ICA output by computing

the normalized Power Spectral Density (PSD), P [k] with k the frequency index and

choosing the component that has the highest peak of PSD within the frequency range

fl = 0.7 and fh = 3 Hz. Where fl and fh are the fixed cutoff frequencies for the

range of all possible HR [28,29]. After a five-point moving average filter (M = 5), the

signal is bandpass filtered with a 128-point Hamming window (filter order Nf = 127)

and with cutoff frequency of fl-fh Hz. This is the same frequency range used in the

PSD/Highest Peak block. Next the signal is interpolated to the new sampling rate of
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Fig. 2.1. The block diagram of the proposed system (after [28, 29]).

fsnew
= 256 Hz. To find the HR in units of bpm, first the Inter-Beat Interval (IBI) is

obtained from the interpolated signal. IBI is the time intervals between the peaks in

units of seconds. The peaks are all the values that are the largest inside the sliding

windows [28, 29]. The window size, Tw [sec], is a parameter for the IBI and should

be smaller than the smallest peak interval that Tw ≤ (1/fub) where fub is the upper

bound frequency for IBI. We use fub = fh in our work. From the maximum value of

Tw and the sampling frequency fsnew
, we can obtain the number of points to examine

before and after the current point

p =

⌊

Tw · fsnew

2

⌋

(2.1)

to determine peaks. By using p in Eq.(2.1) we can obtain IBI in units of seconds [28,

29]. The reciprocal of each IBI value is then the HR estimates in unit of Hz. Finally,

the signal is filtered through the noncausal of variable threshold (NT-VC) filter [28,

29, 121] with fixed parameters un = 0.4, and um = 1.0 Hz. Unstable HR estimates

are removed in this final process.

The performance of this method heavily depends on parameter settings and record-

ing environments. Among the parameters, the passband frequency range of the band-

pass filter plays a crucial role in estimating HR. In our proposed method we find the
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passband frequency range and adapt by observing periodic signals that are generated

from the recording environment.

To estimate the HR from video we isolate the subtle changes of blood flow in the

face region. There could be many signal sources that contribute to color intensity

variations. Since what we want to obtain is the “HR signal,” adapting the passband

frequency range is a key factor in HR estimation. The previous work uses a fixed

passband frequency range, fl-fh Hz, for the band pass filter (BPF). In our work we

estimate the HR signal by adapting the passband frequency range for each participant.

We call this the adaptive frequency range (AFR) and denote it as fal-fah . The

basic idea is to select the passband frequency range of the face region by excluding

the background signals. Our model follows several assumptions. The heart rate

of an adult ranges from 42 bpm to 180 bpm (0.7 to 3.0 Hz) and does not change

dramatically over time. We assume that IBI will change no more than 2.5 sec (24

bpm). While there are other periodic signals present due to the scene illumination

or camera vibration, we assume one of the strongest periodic signals that appears on

the face is microblushing (or the HR signal).

Our approach can be used for the BPF in ICA-based HR estimation [28, 29] and

for the temporal filter in video magnification [30, 122]. Our approach begins by de-

tecting both face and background regions. Two sets of RGB traces (6 1D signals)

from both regions go through the Detrending/Normaliztion, and then each set (3 1D

signals per a set) goes through ICA and PSD/Highest Peak process. In theory, ICA

finds the underlying sources that are statistically independent, or as independent as

possible from the observed signals [81]. If the output of ICA components are com-

pletely independent, we can take one of them to be the HR signal. In practice, we

found that several strong periodic signals tend to appear together in the higest peak

component. To find only the periodic signal of our interest, we estimate the AFR

by using a background matching method and filter out the background matching

frequency clusters we describe below.
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2.2 Frequency Clusters

After the PSD/Highest Peak block in Figure 2.1, we have PSDs both from the face

region and the background region. If several periodic signals appear in the face region

PSD, we assume one of the periodic signals reflects blood flow changes or an index

of HR. To separate the HR signal from the other periodic signals we assess clusters

in the frequency domain. A frequency cluster is a continuous range of neighboring

frequencies that are generated by thresholding the PSD P [k] as shown in Figure 2.2.

We denote a cluster ci by the frequency range [fil , fih ] where i is an index of cluster

(Figure 2.2). The following three steps show how the clusters are formed.

Fig. 2.2. An example of frequency clusters. Pmax is the maximum
value of the PSD within [fl, fh]. tr is a parameter used to determine
the weak signals as described in Section 2.2. tn is a parameter used to
determine the neighboring clusters as described in Section 2.2. If two
clusters formed by thresholding P [k] are with tn Hz of one another we
considered them ‘neighbors’ and merge them into one cluster. Cluster
1 and Cluster 2 in this Figure are not ‘neighbors’ because |f2h −f1l | >
tn. N is the number of points in the positive frequency domain, and
k is the index in the frequency domain, fs is the sampling rate.



28

1. Suppress weak signals–weak signals are ignored when forming the clusters. If

P [k] < tr · Pmax then weak signal, tr is used to determine the weak signal

threshold. We empirically choose tr = 0.15 (15%).

2. Form clusters–repeatedly merge the clusters if two clusters are neighbors. tn

[Hz] is used to determine the neighboring clusters where tn = 0.1 Hz (6 bpm)

is emprically chosen (see Figure 2.2).

3. Obtain the energy of each cluster (the sum of P [k] within the cluster).

2.3 AFR Estimation by Background Removal

Background removal was achieved by observing both PSDs from face and back-

ground regions, we can eliminate frequency clusters in the face region that are similar

to the frequency clusters in the background. We measure the shape similarity be-

tween two clusters by computing the Sum of Absolute Differences (SAD) between the

two normalized PSDs.

d =
n−1
∑

k=0

|P1[k]− P2[k]| (2.2)

where P1 is the PSD of cluster 1 where the energy is normalized to 1 and P2 is the PSD

of cluster 2 with the energy normalized to 1. The clusters are normalized; therefore,

0 ≤ Pi[k] ≤ 1 and 0 ≤ d ≤ 2. If the SAD between two normalized clusters is small,

d < tm, for a parameter tm, we deemed that two clusters are similar. The method for

AFR estimation is shown below. The estimated AFR is used for the lower and upper

bound of the BPF.

1. Go through the first 5 blocks shown in Figure 2.1 to get PSDs for a face and a

background region (Section 2.1).

2. Form frequency clusters on each component (Section 2.2).

3. Sort the face frequency clusters based on the energy.
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4. Starting from the highest energy cluster of the face signal, select one cluster ci∗

that does not match with any background cluster: we choose ci∗ only if d > tm

holds between ci∗ and all the background clusters.

5. Obtain AFR from the cluster ci∗ selected in the previous step: fal = max(fi∗
l
, fl)

and fah = min(fi∗
h
, fh).

Fig. 2.3. An example of matching clusters from the face signal (top)
and the background signal (bottom). P [k] is the PSD of the signals
and k is the index in the frequency domain.

There can be a corner case where the only frequency cluster matches to the back-

ground frequency cluster. This happens when the HR signal from the facial region

is not strong enough to form a frequency cluster. In this case, we choose AFR by

excluding the background signal to at least get rid of the noise from the background.

If there are two different frequency ranges outside of the frequency range for the

background signal, we choose the one with the broader range.

2.4 Face Tracking and Skin Detection

For tracking, we derived a reference color model from the initial bounding box

obtained from the face detection [123] in the first frame. For the color model, each

RGB color space is quantized from the original 256 bins to 16 bins and is mapped
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into 1D 163-bin histogram. The sum of this histogram is then normalized to one.

Particle filter tracking is used to find the corresponding face region in each frame [124].

Denoting the hidden state and the data at time t by xt and yt respectively, the

probabilistic model we use for tracking is

p(xt+1|y0:t+1) ∝ p(yt+1|xt+1)

∫

xt

p(xt+1|xt)p(xt|y0:t)dxt (2.3)

where p(yt+1|xt+1) is the likelihood model of data, and p(xt+1|xt) is transition model of

second-order auto-regressive dynamics [124]. We define the state at time t as location

in 2D image represented as pixel coordinates. For obtaining the likelihood p(yt|xt),

we use the distance metric d(y) =
√

1− ρ (y) where ρ (y) is the sample estimate of

the Bhattacharyya coefficient between the reference color model and the candidate

color model of each particle at position y [125].

For each pixel within the tracking region, we use skin detection method to exclude

non-skin pixels that represent hair, eye or part of the background that do not reflect

HR signal. We use the skin classifiers based on Bayes theorem [126] with some varia-

tions. [126] made generic skin color model from skin dataset using simple histogram

learning technique. The particular RGB value is classified as skin if

P (rgb|skin)

P (rgb|nonskin)
≥ Θ, (2.4)

where 0 ≤ Θ ≤ 1 is a threshold and can be written as

Θ = C
P (nonskin)

P (skin)
(2.5)

where C is the application-dependent parameter [126]. The appropriate value for this

parameter differ for various skin tones or lighting conditions. In our system, the user

selects the parameter C from the first frame by moving the track bar and then the

selected value is used for the rest of the frames in the video.

[126] suggested to use the linear quantization on each histogram since too many

color bins lead to over-fitting while too few bins results in poor accuracy. In their

study, they showed that the histogram of size 32 bins/channel gave the best perfor-

mance when compared to the size 256 or 16. This linear quantization on histograms
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for making the skin and non-skin probability models may produce many empty bins in

the output histograms. The skin classifications on empty color bins have meaningless

results that if we can reduce the number of empty color bins in the quantization step

we can obtain better classification performance. In our skin detection method, we

create a color-mapping look-up table by adaptively quantizing the histogram using

histogram equalization. The goal of histogram equalization is to obtain a uniform

histogram [127]. By using the histogram equalization on RGB histograms for skin

pixels of training dataset, we map the original RGB color levels to color levels that

best represents the skin colors in the training dataset.

Figure 2.4 shows the quatization results for color histogram trained on skin pixles

of the publicly available skin dataset [128]. Table 2.1 shows the number of non-empty

(a) Linear quantization to 32 bins on Red

channel.

(b) Histogram equalized quantization to

32 bins on Red channel.

Fig. 2.4. Comparison of two different quantizations on skin pixels.

bins for two different quatizations. The number of empty bin reduced after applying

histogram equalization in the quatization step.

Since pixel-based classifier can introduce some falsely classified pixels, we need

to refine the result by applying Morphological filtering. Figure 2.5 shows the block

diagram of the proposed skin detection system.
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Table 2.1.
Number of non-empty bins for 323 color bins in UCSB dataset.

Skin [bins] Non-skin [bins]

Linear quantization 8638 24484

(26.36%) (74.72%)

Histogram-equalized 19428 30823

quantization (59.29%) (94.06%)

Fig. 2.5. The block diagram of the proposed skin detection system.

2.5 Experimental Results

In our experiments we acquired videos of various participants with spatial res-

olution of 1920 × 1080 and 29.97 fps. There were 22 participants (12 females and

10 males) in Dataset 1 and 18 participants (9 females and 9 males) in Dataset 2

with ages ranging from 20 to 50 years of age. The total number of different people

in the entire Dataset is 26 with 14 overlapping participants between Dataset 1 and

Dataset 2. The participant numbering for Dataset 1 and 2 are not consistent to each



33

other. Within the Dataset 2, the participant numbering is consistent for each dif-

ferent task. The data collection methods were approved by the Institutional Review

Board of Purdue University. The distance between the participant and the camera

was approximately 1.8 m. In Dataset 1, the zoom was manually adjusted to focus on

the upper torso and face and Dataset 2 was more zoomed out to show entire upper

body as shown in Figure 2.7. Dataset 1 only included no-motion videos that the

participants were seated with their arms on the table and were asked to sit still and

look toward the camera. Dataset 2 included both no-motion and non-random mo-

tion videos. For the non-random motion tasks, the participants were asked to move

their head from left to right repeatedly while facing toward the camera. The room

had windows with semi-transparent blinds and lighting on the ceiling as shown in

Figure 2.6. The ground truth HR was measured using a Nonin GO2 Achieve Finger

Pulse Oximeter for Dataset 1 and CE & FDA approved Handheld Pulse Oximeter

(model name CMS60D) for Dataset 2. For both cases, the probe was attached to a

finger tip of the participant. The output of the pulse oximeter was simultaneously

recorded with the face and the two video streams were merged as shown in Figure 2.7.

The pulse oximeter HR estimates were manually recorded from the combined video

once per second. During the data collection, each participant was asked to select one

of the colors in the PANTONE SkinTone Guide [129] that best matches with the skin

tone. The PANTONE SkinTone Guide Lightness Scale ranges from 1 to 15 where the

scale 1 is the brightest. Within this study, participant skin tones ranged from 1 to

10.

The videos were analyzed offline and from the first frame of each video, the facial

region was detected using the OpenCV library [123] with the parameter of minimum

face size set to 120 × 120. With the initial face box in the first frame, tracking

box was obtained for rest of the frames in the video. For the Picard’s method,

we used the center 60% width and full height of the face/tracking box. For our

proposed method, we detected skin pixels within the entire box. The average number

of pixels detected as skin within the face region for each participant ranged from
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Fig. 2.6. Data Collection Environment.

(a) Dataset 1. (b) Dataset 2.

Fig. 2.7. Examples of Video Settings.

29,436 to 87,624 for Dataset 1 and ranged from 5,867 to 21,977 for Dataset 2. Our

background region requirements were as follow: (1) the area did not contain skin or

micro-blushing, (2) the area was not out-of-focus and (3) the size was selected as the

20% width and 50% height of the detected face. We used the video length of 59 seconds

for Dataset 1 and 1 minute for Dataset 2. The Joint approximate diagonalization

of eigenmatrices (JADE) method [130] was used for the ICA implementation. For

the background removal, we used the parameters: tr = 0.15, tn = 0.1 [Hz], tm =

0.4. Selecting appropriate tr and tm values is crucial. We would like to note that



35

we used different tr value for AFR in our previous work [131] where the difference

between our current work were smaller amount of dataset and no skin detection

being used. tm is a threshold for determining the matching between the foreground

and background signals. If the value of tm is too low, the background removal process

will fail. For this study, SAD ranged from 0 to 2, tm = 0.4; therefore, we determine

two frequency clusters were the same if they only differed by 20%. In our recent

work [132], we obtained cutoff frequencies by Color Frequency Search (CFS). The

advantage of using CFS is that there are less parameters compared to that of AFR

and gives tighter cutoff frequencies for the dominant HR value. Disadvantage of CFS

is that it has a possibility to miss some of the HR frequency range if HR variance is

not low enough to form a dominant peak in the frequency domain. Feng et al. [54]

used Adaptive Bandpass Filter (ABF) by always setting the cutoff frequency ranges

of ±0.15 Hz (±9 bpm) around the most dominant peak. Their work only requires

one parameter (±0.15 Hz) in terms of setting the adaptive cutoff frequencies but it

gives fixed frequency range regardless of the variance of the HR and cannot take care

of the background noise.

The initial frequency range to acquire AFR was set to fl = 0.7 and fh = 3.0

[Hz]. Resting HR for 95% of healthy adults falls within 48 to 100 bpm (equivalent

to [0.8, 1.67] Hz) [5]. We did not have health information on our participantsthat we

expanded our initial frequency range to [0.7, 3.0] Hz. Picard’s methods [27, 28] used

[0.75,4.0] Hz or [0.7,4.0] Hz.

Figure 2.8 show the Adaptive Frequency Ranges (AFR) for the 22 test cases in

Dataset 1. From the figure, we can see that for all participants, the obtained AFR

range around their ground truth HR giving much narrower HR range compared to

the Fixed HR range. Only Test 13 shows some deviation from GTHR in AFR.

The results using Picard’s approach and using our method are shown in Table 2.2.

To evaluate the performance, we used the “percentage of acceptance” in NC-VT

filter. This is shown in “AccRate” column in the table. Higher acceptance ratios

were indicative of more reliable estimates for the obtained estimation. Our second



36

Fig. 2.8. AFR obtained by the Proposed method for Dataset 1.

metric for evaluating the performance was average HR error shown in the “Error”

column of the table. HR error is defined as

µE =
1

N ′

∑

n′

|h[n′]− g[n′]| (2.6)

where h[n′] is the estimated HR in units of bpm, g[n′] is manually recorded HR at

every “second” from the pulse oximeter, n′ is the time domain index for accepted

HR estimate and N ′ is the number of accepted HR estimates. The “Average GTHR”

column is the average value of g[n′]. Our approach has an average µE 3.47 bpm wich

is notably lower than the 18.76 bpm of the Picard approach. For datset 1, our HR

estimation tends to give less errors for participants with lighter skin tones. For 8

participants with skin tone level 1, the average of µE is 2.86 bpm and for the rest of

the participants with skin tone level ranging from 3 to 8, the avergae of µE is 3.83

bpm. Figure 2.9 illustrates the advantages of the AFR for test participant 18.

Figure 2.10 shows the AFR for 18 different test cases in Dataset 2, No-motion

videos. The obtained AFR range around their ground truth in most test cases. Test

11 and 13 were the corner cases described in section 2.3 where there is no frequency

cluster formed around the ground truth due to weak HR signals. For Motion videos
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Fig. 2.9. Estimated HRs and Ground Truth HR for Test 18 in Dataset 1.

Fig. 2.10. AFR obtained by the Proposed method for Dataset 2, No-motion videos.

in Dataset 2 in Figure 2.11, only half of the test cases have AFRs around their ground

truth. Table 2.3 and 2.4 show the results for Dataset 2. For No-motion videos shown

in table 2.3, our approach has an average µE 4.87 bpm which is much lower than

the 18.04 bpm of the Picard approach. For test 11 and 13, the AccRate is far below

80% and the µE is high. For these cases, the signal corresponding to the HR was not
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Fig. 2.11. AFR obtained by the Proposed method for Dataset 2, Motion videos.

strong enough compared to other unknown noises. The skin tones did not seem to

have strong relationship with the HR estimation error rates in Dataset 2.

For non-random motion videos shown in table 2.4, neither Picard’s approach nor

our proposed method gave good HR estimations. For the proposed method, only

4 out of 18 tests showed reasonable HR estimates–AccRate higher than 85% and

µE < 5. Lots of strong signals are generated for motion videos that our proposed

method failed to correctly estimate HR for those motion videos.

In sum, we improved video-based methods for assessing resting HR in a controlled

setting where there is no motion in the video. We demonstrated that our method

can estimate HR with 3.55 bpm for Dataset 1 and 4.87 bpm for Dataset 2 (smaller

facial region than Dataset 1) of errors on average across participants with varying

skin tones. We will discuss about these motion-generated signals in Chapter 3.
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Table 2.2.
A Comparison of Two Methods for Dataset 1

Test Skin Picard’s approach [28,29] Proposed Method

Tones AccRate [%] µE [bpm] AccRate [%] µE [bpm]

1 6 30 14.03 97 1.25

2 7 37 6.92 100 2.38

3 1 13 46.97 96 3.28

4 1 52 7.29 98 1.97

5 1 3 7.18 100 1.92

6 5 26 12.81 98 4.11

7 1 8 27.35 100 2.77

8 1 26 9.87 97 2.57

9 3 12 7.13 97 2.23

10 5 48 25.05 98 2.63

11 1 1 0.84 100 1.88

12 3 14 16.73 100 3.93

13 5 16 34.85 85 13.63

14 7 15 23.83 100 3.00

15 4 11 34.42 97 5.19

16 6 20 46.19 94 6.29

17 1 35 10.57 100 2.64

18 3 79 3.56 97 1.51

19 8 32 10.32 98 1.83

20 5 19 10.45 98 2.08

21 1 28 19.88 97 5.83

22 6 6 36.37 100 3.51

Avg. 18.76 3.47
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Table 2.3.
A Comparison of Two Methods for Dataset 2, No-motion videos.

Test Skin Picard’s approach [28,29] Proposed Method

Tones AccRate [%] µE [bpm] AccRate [%] µE [bpm]

1 2 12 12.80 97 5.68

2 8 17 17.26 96 6.90

3 3 24 12.54 100 4.50

4 9 24 27.96 97 3.37

5 6 23 18.37 98 4.13

6 7 23 46.47 97 3.70

7 7 16 20.72 98 2.85

8 8 13 25.69 97 5.62

9 4 34 7.86 100 5.34

10 7 18 13.48 100 3.39

11 10 27 24.19 24 17.74

12 3 20 20.55 100 3.21

13 1 24 22.58 41 11.16

14 3 12 18.35 100 3.83

15 3 38 5.41 100 4.14

16 2 44 7.02 100 3.36

17 1 26 31.66 96 3.21

18 9 17 14.99 97 1.62

Avg. 19.33 5.21
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Table 2.4.
A Comparison of Two Methods for Dataset 2, Non-random motion videos.

Test Skin Picard’s approach [28,29] Proposed Method

Tones AccRate [%] µE [bpm] AccRate [%] µE [bpm]

1 2 7 34.30 95 3.96

2 8 31 18.20 95 10.26

3 3 20 9.07 73 14.95

4 9 16 11.87 96 26.84

5 6 9 20.75 100 25.14

6 7 15 19.85 95 15.96

7 7 20 18.21 85 49.79

8 8 23 14.34 100 8.77

9 4 34 13.70 86 18.70

10 7 20 22.87 100 3.32

11 10 14 19.51 87 39.26

12 3 32 13.47 100 2.44

13 1 31 17.02 97 25.85

14 3 17 11.90 94 7.15

15 3 23 21.67 100 11.44

16 2 37 12.88 100 30.36

17 1 17 13.04 100 3.35

18 9 29 16.50 100 9.62

Avg. 17.17 17.07



42

3. UNDERSTANDING MOTION EFFECTS

IN VIDEOPLETHYSMOGRAPHY (VHR)

3.1 Motion and Illumination in VHR

Our system described in Chapter 2 assumes that the RGB trace, the average inten-

sity of RGB channels over time, composed of linear mixtures of PPG signal and other

unknown noises. This assumption on linearity fails when there is subject motions in

the video. In this Chapter, we investigate the relationship between the motion and

the corresponding traces acquired from the video to understand the motion effects.

One of the major cause of the pixel intensity changes when there is motion is the

change of the illumination I on the skin surface caused by motion. Moco et al. [61]

provided experiments showing that orthogonal illumination minimizes the motion

artifact in video-based PPG. For a single point light source, we can obtain the image

intensity L in terms of the incident angle θ, illumination I, and reflectance R of the

surface where θ is the angle between the incident light and the surface normal [133].

L = IR

I = I0 + Is · cosθ
(3.1)

where I0 is the uniform diffuse illumination, Is is the illumination from a point source.

In case of video pixel intensity L(n) where n is the frame index, Equation 3.1 can be

rewitten as

L(n) = IsR(n)cos[θ(n)] + I0R(n) (3.2)

where θ(n) would be the motion-related term and R(n) is a linear mixture of PPG

signal h(n) and other signals [35, 57]. θ(n) in Equation 3.2 would be constant over

frames when there is no motion. For this no motion case, L(n) is approximately the

linear mixture of h(n) and other signals that we can use ICA and linear filters to
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recover the underlying source signals as in our system in Chapter 2. When there

is motion, L(n) is no longer a linear mixture of h(n) and noises but it includes the

multiplicative motion term R(n)cos[θ(n)].

Several recent VHR papers address the motion effects with multiplicative models.

Feng et al. [54] describes a multiplicative motion model for video intensities L(n) in

terms of PPG signal h(n). They claim that when the subject is moving, the motion

will modulate all three PPG signals in the RGB channels in the same way, as

L(n) = αβ(γS0 · h(n) + S0 +R0)M(n) (3.3)

where M(n) is the motion modulation, α is the power of the light in the normalized

practical illumination spectrum (corresponding to I defined in Equation 3.1), β is the

power of the light in the normalized diffuse reflection spectrum of the skin, γ is the

ac/dc ratio of PPG signal, S0 is the average scattered light intensity from skin and R0

is the diffuse reflection light intensity from the surface of the skin. Kumar et al. [35]

described L(n) as the multiplicative model of the intensity of illumination I and the

reflectance of the skin surface R. Combining this with the camera noise q(n), they

proposed the following model.

L(n) = I(a · h(n) + b) + q(n) (3.4)

where a is the strength of blood perfusion, and b is the surface reflectance from the

skin. They addressed that change in I can corrupt the PPG estimate and small

light direction changes caused by motion can lead to large changes in skin surface

reflactance b. Haan et al. [57] proposed a similar model

L(n) = I(c+ h(n)) (3.5)

where c is the stationary part of the reflection coefficient of the skin. Their recent

work [58–60] specifically address solutions to motion problems.

While Equations 3.3, 3.4 and 3.5 have different approaches and notations in mod-

eling L(n), they all assumes that L(n) includes the multiplication between the il-

lumination and reflection. And in all three models, the terms for reflectance R(n),
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denoted in boldface in each equation, are represented as the linear mixture of h(n)

and other (constant or varying) terms. In this thesis, we take this idea that R(n) is

a linear mixture of h(n) and other signals where the other signals would not change

over time in short video scripts for a specific skin surface point.

3.2 Simple Modeling: Intensity Change of Moving Object

In this section, we analyze how motions affect intensity of a specific object surface

point in moving object video. For a video taken from a camera with a single light

source where the positions of both the camera and the light source are fixed, the

motions inside the video play a significant role in the pixel intensity changes in the

video. This is because each surface point has a corresponding incident angle θ and

motion in the video changes θ throughout frames as described in Equation 3.1.

These intensity changes caused by motion are often times small and barely noti-

cible in human eyes. In VHR, the PPG signal that reflects heart beat is even smaller

and is not even noticible in human eyes. In our no-motion dataset described in Chap-

ter 2, the average intensity variation of green channel within the face skin region for

10-second duration was approximately 2% on average (Lmin/Lmax = 0.98 on average

where Lmin and Lmax are minimum and maximum intensities of green channel respec-

tively). Figure 3.1 shows an example of the average intensity of green channel, we call

green trace, within face skin region for 10-second duration. These small variations in

the average green trace would contain PPG signal together with all the other noises.

The motion-related signals have severe effect on VHR and makes it difficult to obtain

the HR related signal in the video.

In order to see how much intensity change is caused by motions, we assume a

simple motion model in a constrained shooting environment. Let’s assume we are

observing the intensity at a specific point of a sphere in a video. Figure 3.2 shows

the top view of this shooting environment with light rays falling on specific points of

a sphere. The sphere only moves in left and right (LR) directions and there is a one
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Fig. 3.1. Average green trace within face skin region for 10-second
duration for subject 17, Dataset 1. The range of intensity L for all
color channels in Dataset 1 is: L ∈ [0, 255]. The average HR obtained
from pulse oximeter for this 10-second duration is 64 bpm (meaning
about 10.7 beats for 10 second). Lmin = 67.4, Lmax = 68.3 and
Lmin/Lmax = 98.7%.

point light source with a fixed location. The sphere is an approximate modeling of a

human head. Camera viewing the head is not shown in Figure 3.2 and it is assumed

to be somewhere between the head and the light source.

For the center point of the head denoted with blue points in Figure 3.2-(a), the

intensity L of the center point reaches maximum when θ = 0 (d = 0) following from

Equation 3.1. This is when the surface point is right in front of the light source. L

decreases as the head moves away from the center. In this restricted motion scenario,

we can obtain the minimum and maximum intensities of a single surface point based

on Equation 3.1 where I0 = 0 assuming that there is only a point light source.

Equation 3.6 shows Lmax and Lmin for center point (β = 0◦).

Lmax = IsR

Lmin = Lmaxcos[|θ|max]

|θ|max = tan−1 d
D−r

(3.6)
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(a) Center point (β = 0◦) analysis. (b) Side point (β > 0◦) analysis.

Fig. 3.2. Point analysis for a simple motion model. θ is the incident
angle, r is the radius of the head when viewed from the top, d is the
moved distance, D is the distance between the source light and the
line of movement, α is the angle from the head direction to the line
connecting center of head and the light, β is the angle between specific
face point and head direction from the center of the head, and γ is
the angle between specific face point and the center of head from the
light source. α is zero when the head direction is toward the light and
aligned with the line between the source light and the center of the
head. α is positive when in counterclock-wise direction. γ is zero when
the face point is on the line between the light source and the center of
the head. γ is positive when in counterclock-wise direction. In both
figure(a) and (b), the leftmost circle denotes the farmost position to
the left and the rightmost circle denotes the farmost position to the
right.

Equation 3.6 can be extended to a side point case (β = 0◦) by introducing three

additional variables α, β and γ as denoted in Figure 3.2-(b).

θ = β − α + γ (3.7)
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where d and α ∈ [−tan−1(|d|max/D), tan−1(|d|max/D)] is a motion related variable, β

is an angle that denotes the specific point of a face. β is constant for each point on

a face. When β 6= α, the value for γ satisfies the following equation.

√

1

sin2γ
− 1 =

√

(D/r)2 + (d/r)2 − cos(β − α)

|sin(β − α)|
(3.8)

From eq. 3.7 and eq. 3.8, we can obtain the corresponding cosθ for a moved distance

d. This shows the relation between the intensity Lmaxcosθ and a moved distance d.

Fig. 3.3. Relation between moved distance d and cosθ for various β > 0.

If the angle β is small (the point is close to the center of the face), there is not

much intensity change for d within [−0.46, 0.46] [ft] range. For large β, the Lmin/Lmax

ratio increases. As shown in Table 3.1, for a facial point at the side of the face with

β = 80◦, the ratio Lmin/Lmax drops to 0.495.

We made test videos to see if we can observe this relationship between β and

Lmin/Lmax ratio. Figure 3.4 shows the data collection environment. We tried to

mimic the simple modeling in Figure 3.2 but used the flat surface box instead of the

sphere in order to reliably obtain the intensity L(n) of a specific surface plane. We
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Table 3.1.
rL = Lmin/Lmax when |2d| ≤ 11/12, D = 11, and r = 7/12.

β [◦] rL

0 0.999

10 0.984

20 0.967

30 0.949

40 0.926

50 0.896

60 0.850

70 0.762

80 0.495

Fig. 3.4. The data collection environment. The distance D between
the object’s moving plane and the light is 11 ft. The range of moving
distance d along the moving plane is |2d| < 11 inch. The height of the
light hl and height of the object ho are similar (hl = 47 and ho = 43
inches). The object surface facing the camera is a paper in solid color
of light pink.

shoot the videos with Logitech Webcam c920 in lossless format with both the auto

white balance and auto gain control options set to OFF. The videos were 1920×1080

in 30 fps. The room had no windows and all the room lights on the ceilings were off

when the videos were taken. Only one light source shown in Figure 3.4 was turned

on. While keeping all the other conditions the same, we made three different surface
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angles to make incident angles of 0, 30 and 60 degrees. The object moved through

the same moving plane which is perpendicular to the incident light ray. A researcher

manually moved the object and maintained the surface angle of the object by fixing

the object on a paper where the protractor is printed on. Each videos were 50-

second length (25-second length for No-motion and the other 25-second for Motion).

Figure 3.5 shows the video captures for three different test cases.

(a) β = 0◦. The number of ROI pixels was

6077 for all frames.

(b) β = 30◦. The number of ROI pixels was

5525 for all frames.

(c) β = 60◦. The number of ROI pixels was

4053 for all frames.

Fig. 3.5. Camera views of test videos in different angles. The average
L(n) is obtained from the ROI pixels within the green circle–the radius
of the circle is the diagonal distance between two red points divided
by 6.5. Four corner points in red are manaully selected in the first
frame and obtained by feature tracker [134] in the rest of the frames.

Figure 3.6 shows the Average L of ROI in R channel. For all test cases, there is a

notable difference between No-motion and Motion in terms of average L. While the

average L does not change throughout time for No-motion case, the average L varies

in Motion resulting up to rL = Lmin/Lmax = 0.937 for β = 60◦. In this scenario, the

light source is approximately a point source and the R(n) = R is constant over time.

Therefore, Equation 3.2 can be simplified to

L(n) = IsRcos[θ(n)]. (3.9)
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This means that the average L(n) shown in Figure 3.6 is the cos[θ(n)] scaled by IsR.

Table 3.2 shows rL obtained from each RGB channel along with the “Simulated

rL” shown in Table 3.1. The average rL obtained from RGB traces does not exactly

Table 3.2.
rL = Lmin/Lmax [%].

β [◦] Simulated rL rL rL Average Std. of

rL in B ch. in G ch. in R ch. rL rL

0 99.9 97.82 98.18 98.59 98.20 0.4

30 94.9 95.23 93.80 94.94 94.66 0.8

60 85.0 95.20 93.42 92.38 93.66 1.4

match to the simulated rL but the tendency that for higher β, rL gets lower holds

for both simulated rL and RGB trace-based rL. We have not considered the camera

quantization or other camera processes and this could be the reason for the mismatch

between two different rL.

In conclusion, the motion effects vary a lot for different point of the face due

to their surface angle differences. Most of current VHR methods begin with taking

an average L(n) of each RGB channel over the entire face/face skin/sub-region of

face (cheek, forehead) in order to obtain h(n). As observed from our experiment,

motion-generated signal θ(n) for each different point on face could be completely

different signals depending on what kind of motion there is. The trace obtained by

taking the average over multiple surface points with various surface angles will result

in both non-linear and linear mixtures of h(n) and other noises including motion-

related signal.
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3.3 Intensity Model in Human Video with Motion

In section 3.2, we considered a constrained model where only LR movements are

possible and the head of a complete sphere always maintains the same direction. In

real human video, LR movements involve head rotations in up/down or left/right

directions as well. Those variations make changes to the incident angles. In this

section, we obtained an incident angle of a specific facial point throughout frames to

see the motion effects described in section 3.2 in real human videos.

By introducing the surface normal to Equation 3.2, the image intensity in terms

of the surface normal, illumination, and reflectance of the surface can be rewritten as

follows.

Lk(n) = Rk(n)

[

∑

j

Ijk · ~ljk(n) · ~nk(n) + I0

]

(3.10)

k is an index for specific point on facial skin, j is an index denoting each point light

source, Ijk is the amplitude of the light from light source j to the skin surface point

k, ~ljk(n) is the unit vector for the light ray from point k to light source j, ~nk(n) is the

unit vector for the surface normal at skin surface point k, Rk(n) is the reflectance at

skin surface point k, and n is an index for frame number.

For point light sources coming from the same lighting, we can have approximate

light ray on point k.
∑

j

Ijk · ~ljk(n) ≈ Ik · ~lk(n) (3.11)

Lk(n) = Rk(n)Ik(n) (3.12)

Ik(n) = Ik · ~lk(n) · ~nk(n) (3.13)

Lk(n) is what we can observed from video, Rk(n) is the reflectance that contains

HR signal, Ik(n) is the illumination that varies with incident angle.

Lk(n) = Rk(n)
[

Ik~lk(n) · ~nk(n) + I0

]

(3.14)
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Equation 3.14 still involves five different unknown variables or constants. By letting

~nk(n) = ~n(n) + ~dk(n) where ~n(n) is face direction normal to the arbitrary global face

plane and ~dk(n) is a vector denoting the difference between ~nk(n) and ~n(n), we can

have further approximations. For those skin surface points where the surface angle

relative to the face direction is almost fixed–the skin surface where the facial muscle

movements are negligible, ~dk(n) ≈ ~dk and if the distance between the light and the

head is much longer than the head movements, Ik · ~lk(n) ≈ I ·~l.

Lk(n) = Rk(n)
[

~n(n) · I~l + ~dk · I~l + I0

]

(3.15)

In Equation 3.15, the first term is not related to the specific skin surface–it is a

common term related to the head movements. The second and the third term are

constants that does not involve the frame index n and can be replaced with the

constant ck.

Lk(n) = Rk(n)
[

~n(n) · I~l + ck

]

(3.16)

If we let Rk(n) ≈ akh(n) + bk where ak is the strength of blood perfusion, bk is the

surface reflectance from the kth skin point [35] and h(n) is the PPG signal from the

heart beat, we have

Lk(n) = akh(n)~n(n) · I~l + bk~n(n) · I~l + akckh(n) + bkck. (3.17)

Equation 3.17 shows that the intensity change on skin point k observed from the

video is linear mixture of four different terms. What this model means is that if

there is no head motion, Lk(n) would be the linear mixture of h(n) and constants not

depending on n. If there are head motions, it is difficult to directly observe the signal

h(n) through Lk(n). For periodic head motions, mh(n) = ~n(n) · I~l, the first term in

Equation 3.17 is modulation of two periodic signals h(n) and mh(n).

Lk(n) = akh(n)mh(n) + bkmh(n) + akckh(n) + bkck. (3.18)

The modulation effect will cause several peaks in the PSD of Lk(n).
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3.4 Filters

Adaptive filter can be used to remove the motion artifact if we have a reference

signal that has the strong correlation to the motion artifact but uncorrelated to the

PPG signal. Huang et al. [71] described the signal of skin color changes as three com-

ponents of the blood volume variation, human motion and the ambient light change.

Along with RGB traces of skin pixels within the face region, they also obtained the

trace of (x, y) coordinates of the ROI and used them as inputs to cascade adaptive

filter to alleviate the interference related to motion [71]. They experiment with one

long video of only one subject during exercising on treadmill. Their assumption (lin-

ear mixtures) on motion effects is different from ours (multiplicative effect) but the

idea of using the motion information, (x, y) coordinates in their case, as a reference

signal in adaptive filter to reduce the motion effects in the RGB traces is the same

with what we are going to pursue next.

Based on our model in Equation 3.18, homomorphic filter [135,136] might be used

together with other linear filters to reduce the motion artifact. Homomorphic filter is

used for signals combined in a nonlinear way. It first transforms nonlinearly related

signals to additive signals. Then, the signal is processed by linear filters such as

bandpass filter (BPF) and it is transformed backward by the inverse nonlinearity. An

example of transforming and inverse transforming nonlinearly related signals is taking

the logarithm and exponential to the signal. Two multiplied signals become additive

when logarithm is taken. Figure 3.7 shows an example of block diagram for using

homomorphic filter in video-based HR measurement. This method is left for future

work and it require both facial landmark detection and facial direction estimation

accurately done on each frame of the video along with direction of the light source.
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3.5 Region Selection and Face Direction

Given three points in 3D space, a unique plane is determined. The surface normal

at point k, ~nk(n), can be obtained if we know three points on the surface that are

not aligned on one line.

Human head is not a perfect sphere that it is difficult to know the skin surface

normal for each point k. We can get an approximate surface normals through detect-

ing three specific points that form a surface that we want. As what we want to obtain

is the direction of the surface but not the absolute 3D location of the surface, we can

use the relative three points to form the surface. First we set two points as the center

of the left and right eyes. Then, we find the 2D point of the tip of the noise from the

frame. In our experiment, the head movement is restricted to the image plane. And

from our observations, we assume that the subject rotate the head to left direction

when moving to the left side and rotate to right direction when moving to the right

side. If two eye points are on the image plane, the tip of the noise point shown on the

image is what is being projected from the 3D point to the image plane. We assume

that the sign of z coordinate of the tip of the nose does not change throughout the

video since the subject was asked to look toward the camera. The (x, y) coordinates

of the three points can be determined from the tracking points in the image plane and

the z coordinate for the tip of the noise can be determined by the length of the noise

obtained from the image and the length of the noise obtained from the side view.

Let ~nk(n) be [nx(n), ny(n), nz(n)]. Let M = [X,A,B,C] where X is a general

point on a plane and A, B, and C are three selected points of the face. Each X can

be expressed as a linear combination of the other three that det(M) = 0 [137]. By
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using this property, we can attain the plane normal ~nk(n) [84, 137]. Let M̃ denote

the 4× 3 submatrix formed by the known last three column vectors of M .

M̃ =

















A1 B1 C1

A2 B2 C2

A3 B3 C3

1 1 1

















(3.19)

where X1, X2, and X3 denote x, y and z coordinates of point X respectively. Let

Dijk stand for the determinant obtained from the ith, the jth, and the kth rows of M̃ .

Then, we have [84,137]

~nk(n) =











D234

−D134

D124











. (3.20)

With these three estimated points on each frame and the approximate light source

direction, we can estimate the motion-caused variation of L(n). We denote the L(n)

estimated from the tracking points as ˆL(n). ˆL(n) would not involve PPG signal

because it is estimated solely from illumination and motion without using pixel in-

tensities. L(n) was obtained from the pixels within the circle where the center of

the circle is center of the noise point obtained in every frame through feature track-

ing and the radius of the circle is set to 3 pixels (number of pixels inside the cir-

cle: 28). For the unit vector from ceiling light to the point k on the skin, we used

~lk(n) = [−0.2576,−0.8013,−0.5446] obtained from measurements in the shooting en-

vironment. This Ik would slightly vary as the person moves but we used the fixed

values as an approximation. We assigned fixed values for unknown scaling factor

Rk(n) · Ik = C in a way such that the mean of Average L(n) and the mean of ˆL(n)

are equal.

ˆL(n) = C · ~lk(n) · ~nk(n) (3.21)

Figure 3.8 shows an example of facial points and ROIs. Figure 3.9 shows the Average

L(n) and ˆL(n). The ˆL(n) is obtained from ~nk(n) estimated from three points A, B,

C which were obtained from each frame of the video.
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Limitations of our experiment is that we used approximations and assumptions

such as I0 = 0, Ik is constant and ~lk(n) is fixed. And we used very small region

for obtaining the trace which would not contain a reliable PPG signal due to its

small size. Despite the limitations, Figure 3.9 shows that the Average L(n) and ˆL(n)

estimated only from the motion information are similar both in time-domain. The

small variations (fluctuations) are only shown in L(n). In the frequency domain,

motion peaks appeared around 0.17 Hz in the PSD plots for both the Average L(n)

and ˆL(n) in both subjects (not shown in the plot). ˆL(n) contains a periodic signal

with frequency of 0.17 Hz and from Equation 3.21, Ik(n) also contains a periodic signal

with frequency of 0.17 Hz. Lk(n) and ˆL(n) share the same Ik(n). From the fact that

the peak around 0.17 Hz is observed both in Ik(n) and Lk(n), we expect that Rk(n)

would contain the constant term R0 that does not change over time. Equation 3.22

is an updated equation of Equation 3.12 rewritten to include constant term within

Rk(n).

Lk(n) = [Rh(n) +R0]Ik(n) (3.22)

where Rh(n) is a linear mixture of PPG signal h(n) and other reflectance terms.

Rh(n) is modulated by Ik(n) unless Ik(n) is constant over time. As expected, no

strong peak appeared around the GTHR within the frequency range of our interest

(Figure 3.9). Our experiment shows strong relationship between Ik(n) and the cosine

of the incident angle, estimated with ~lk(n) · ~nk(n). Further understanding on Ik(n)

may compensate the modulation effect in Lk(n) for different facial point k.

3.6 Conclusion and Future Work

We showed the relationship between the motion and the intensity change by simple

modeling for moving object with constant reflectance. We extended the experiment

to human video and showed the motion effects on the intensity change in terms of

the skin surface normal and illumination. Our results show how the incident angle

change caused by motion is related to the pixel intensity changes. We showed that the



57

illumination change on each surface point is one of the major factors causing motion

artifacts.

Following are suggested for future work: (1) estimating ˆL(n) could be done more

accurately by improving the tracking performance of three facial points, (2) instead

of using fixed values for all the frames, the light source direction for each frame could

be estimated using the location and shadow information and (3) a method to find

sub-region (surface) that share the same surface normal ( ~nk(n)) could be investigated

so that more surface normal estimation can be done more accurately.

There are several related work to note regarding future work.

Lin et al. [75] addressed that the success of face-based HR estimation strongly

depends on the measurement of facial illumination. They suggested to have various

assumptions and simplifications about illuminance and reflectance because separating

the reflectance and the illuminance fields from real images is, in general, a poorly-

posed problem. Their assumption was not clearly denoted in the paper, but they

used x and y direction edge filters to give different weighting at each pixel. We

also think that there should be different compensations for different regions since the

illumination variations on each pixel differs due to different surface angles.

Kumar et al. [35] divided the facial regions into smaller regions do the tracking sep-

arately from the assumption that different part of the face contain different strength

in of the PPG. The idea of having sub-regions makes sense because the illumination

change on different sub-regions can be different. But the same sized grid of 20 × 20

pixel blocks used in their paper does not necessarily mean the pixels within each block

would share the same intensity change.

In Section 3.5, we manually selected the facial points in the first frame and used

feature tracker [134] in the rest of the frames. This works for short period of time

but the tracking error is accumulated as the duration of the video gets longer. Facial

point detection methods for single image are described in [138,139]. Several work on

finding facial landmarks in video frames both for detection and tracking are described
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in some recent work [140–142]. facial landmark localization techniques should be

further investigated.

In Section 3.5, we only experimented on videos with limited motion patterns. We

were able to estimate the direction of the surface formed from three specific points (the

centers of two eyes and the tip of the nose) just by estimating the distance between

the eyes and the distance of the nose because of many restrictions in the motion

patterns. To extend our approach to random motions, methods for estimating the

face directions in the video [143–147] can be further investigated.
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(a) β = 0◦. Lmax = 214.7, Lmin = 211.7 and rL = 98.6%.

(b) β = 30◦. Lmax = 201.8, Lmin = 191.6 and rL = 94.9%.

(c) β = 60◦. Lmax = 164.1, Lmin = 151.6 and rL = 92.4%.

Fig. 3.6. Average L of ROI in R channel in three different surface an-
gles: No-motion vs. Motion. L is 8bits/pixel/channel and L ∈[0,255].
The PSD of each trace (the average L(n)) within the frequency range
of our interest in VHR, fl = 0.7 and fh = 3.0 Hz, is plotted in blue
below the each trace.
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Fig. 3.7. Block Diagram.

Fig. 3.8. An example captured from Dataset 2. Facial points denoted
in red. ROI regions denoted in green–only the ROI in the middle of
the nose was used.
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(a) Subject 3

(b) Subject 14

Fig. 3.9. Experimental result on Dataset 2 of non-random motion
videos: Average L(n) and ˆL(n). ˆL(n) is denoted as “Estimated L” in
the plot label. The red patches in PSD plots denote the GTHR range
for each subject. The frequency range in PSD plot is fl = 0.7 and
fh = 2.0 Hz. Both subject 3 and 14 showed strong peak around 0.17
Hz corresponding to motion (Not shown on the plot).
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4. SLEEP ANALYSIS USING

MOTION AND HEAD DETECTION

Pediatric sleep medicine is a field that focuses on typical and atypical sleep patterns

in children. Within this field, physicians, interventionist, and researchers record and

label child sleep with particular attention to sleep onset time, total sleep duration,

and the presence or absence of night awakenings. One notable recording method is

videosomngraphy (VSG) which includes the labeling of sleep from video [2, 3]. This

method is most commonly used for infants/toddlers as their compliance rates with

other sleep recording methods can be low. Traditional behavioral videosomnography

(B-VSG) labeling includes manual labeling of awake and sleep states by trained tech-

nicians/researchers. B-VSG is time consuming and requires extensive training which

has limited its widespread use within the pediatric sleep medicine field. Within the

present study we develop and test an automated VSG method (auto-VSG) to re-

place B-VSG and to provide physicians, interventionist, and researchers with a sleep

recording tool that is more economic and efficient than B-VSG, while maintaining

high levels of labeling precision.

The development of auto-VSG is a growing area with preliminary studies utilizing

signal processing systems that index movement during sleep in small groups of chil-

dren with developmental concerns or adults [2, 93–95]. Across these studies, motion

within the video is estimated by frame differencing [93, 94] or by obtaining motion

vectors [2, 95]. However, each of these studies were completed within a controlled

setting and do not account for the wide range of camera positions and lighting vari-

ations that are common among in-home VSG recordings. Within the present study,

the proposed system adjusts for these ‘in the wild’ factors and uses two sleep field

stands as comparison measures of sleep. The first is actigraphy, which estimates sleep
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Fig. 4.1. Proposed Sleep Detection System.

vs. awake states based on child movement as indexed by an ankle worn accelerome-

ter. Second, trained technicians/researchers provided sleep vs. awake estimates using

traditional B-VSG labeling methods.

In this chapter, we develop and test an auto-VSG method that includes (1) pre-

processing the video frames using histogram equalization and resizing, (2) detecting

infant movements using background subtraction, (3) estimating the size of the infant

by detecting their heads based on deep learning methods, and (4) scaling and limiting

the degree of motion based on a reference size so the motion can be normalized to

the size of the relative child in the frame. The generated estimates are then catego-

rized as awake or sleep for each minute of video by applying an established sleep field

algorithm [148]. Finally, all auto-VSG estimates were compared with those provided

by actigraphy and B-VSG.

4.1 Sleep Detection

4.1.1 Motion Detection

We assume that there is less motion during sleep than awake states [149] and

that the child is the only source of motion in the video. Background subtraction is

widely used for detecting moving objects from static cameras [150]. Moving objects

(foreground objects) are detected by taking the difference (subtraction) between the
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background model and the current frame. While some background subtraction meth-

ods aim to detect moving objects as foregrounds, our system aims to detect moving

regions as foreground. As shown in Figure 4.1, the system begins by converting the

RGB video frame to a gray scale frame and resizing it to wp×hp where wp and hp are

width and height of the resized frame. Preprocessing includes histogram equalization

to enhance gray scale contrasts. This helps adjust the overall image intensity range

across various room lighting schemes. Next the background model is obtained from

history of h[i] previous frames as in (4.1)

Bi[x, y] =
1

h[i]

i−1
∑

k=i−h

Ik[x, y] (4.1)

where i is the video frame index, h[i] = τh · fs is the number of previous frames

(history) used for the background model in frame i, τh is the history in seconds, fs is

the frame rate of the video, Ii[x, y] is a pixel in frame i and Bi[x, y] is a pixel in the

background model at frame i. The difference between the background model Bi[x, y]

and Ii[x, y] indicates whether each pixel in the frame is classified as “moved” or “not

moved”. A pixel is classified as “moved” if (5.1) holds.

|Ii[x, y]−Bi[x, y]| > T (4.2)

where T is a threshold for determining movement for one pixel and for our experiments

the value of T is empirically determined. We quantify the amount of movement as

the number of pixels classified as “moved.” Note that if the history h[i] in (4.1) is set

to a small value such as 1, the background model Bi would be almost identical to the

current frame Ii and that the system will not properly detect the motion. We obtain

the average number of moved pixels for time segment j as

mj =
1

K

K−1
∑

k=0

nm[k] (4.3)

where k is frame index within one time segment, nm[k] is number of moved pixels in

frame k, K is number of frames for one time segment, ⌊τs · fs⌋ where τs is duration of

each time segment [seconds]. For our work all videos have an embedded time stamp

in the bottom-right corner of the frame. We excluded the time stamp region to avoid
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misclassifying changes in time as child motion. An example of our motion detection

is shown in Figure 4.2.

Fig. 4.2. Example of motion detection: Preprocessed image (left),
background model (middle), and moved pixels denoted in white
(right).

4.1.2 Reference Size Using Head Detection

The number of moved pixels mj for time segment j is dependent on the distance

between the camera and the child. A camera closer to a child will result in more

moved pixels than a camera farther away because the child is contained in a region

that has more pixels. To address this “scaling” issue, we scaled and limited mj based

on the size of the child. Obtaining the child body size is challenging compared to

detecting the head region. The body pose can produce different shapes compared to

the head and often the body is fully or partially covered with a blanket or other bed

clothing. We detect the head size instead of the entire body size assuming that the

two are roughly proportional. We will do this using deep learning.

Object detection performance has been significantly improved using deep learning

approaches such as the Region-based Convolutional Neural Network (R-CNN) [151],

the Fast R-CNN [152], and the Faster R-CNN [153]. Recent work for detecting hu-

man heads [154] is based on a R-CNN object detector [151] together with contextual

information. We used the Faster R-CNN since it is one of the most effective object

detectors [153]. The network is composed of three main parts: a feature extractor,

a region proposal network (RPN), and a softmax classifier. The feature extractor
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consists of a set of convolutional filters followed by non-linear layers that extract vi-

sual information such as color or edges. The Zeiler and Fergus (ZF) [155] network

is selected as a feature extractor because it has a small number of parameters (5

convolutional layers). The RPN uses the information provided by the feature extrac-

tor to detect regions of interest where a head might be located. Then, the classifier

outputs confidence values for detected regions. The confidence value ranges from 0

to 1 where a confidence of 1 represents that the network is almost certain that the

region contains a head.

We trained the network using the Casablanca dataset [154] This dataset consist

of 1,466 grayscale images with head annotations. Each annotation is a bounding box

capturing the head location. We selected this dataset because it contains multiple

heads in different poses and lighting conditions.

To find a head size for each child, first we detect heads from video frames captured

every minute. Then we refine the detection results by discarding the objects that

are above the upper bound limit ratio (lu) or below the lower bound limit ratio

(ll) relative to the image width and height. To obtain detections when the child is

sleeping, detection results with no motion (nm = 0) are selected. Among the refined

head detections, the one with the highest confidence score is selected. We use the size

of this selected head detection to obtain Nmax per night.

Nmax = c · [whhh/(wihi)] · wphp (4.4)

where c is the scale parameter, (wh, hh) is width and height of the head bounding

box, (wi, hi) is width and height of the image, and (wp, hp) is width and height of the

preprocessed image. Fig. 4.3 shows the example of head detections.

4.1.3 Sleep Scoring

The Sadeh Sleep Scoring method is commonly used for scoring the Actigraphy

motion index [148]. The actigraphy motion index ranges from 0 to 400. In order to
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Fig. 4.3. Examples of head detections of two different infants.

have our video-based motion index m[j] be in the same range, we limit and scale each

mj.

m[j] = 400 · (min (mj, Nmax))/Nmax (4.5)

where m[j] is the motion index for time segment j, and mj and Nmax are described in

Section 4.1.2. The motion index from actigraphy and video are similar measurements

in the sense that more motion produces a higher motion index value. The motion

index obtained from the actigraphy is based on a “zero-crossing method” which counts

the number of times per each time interval that the activity signal level crosses zero

(or very near zero) [149]. This indicates the amount of motion as how frequent the

activity is within each time interval. The video-based motion index is obtained from

the number of moved pixels as in (4.5). Due to this difference, we need to limit

and scale the data to use the Sadeh’s method to the motion index obtained from

auto-VSG .

We then label each time segment as sleep/awake by using the Sadeh Sleep Scoring

method tom[j]. We defined the sleep onset time as the start of sleep duration which is

the first consecutive sleep segments longer or equal to 5 minutes. We defined the sleep

offset time as the end of sleep duration which is the last consecutive sleep segments

longer or equal to 5 minutes. Duration of sleep is the time duration [minutes] between

sleep onset and sleep offset. Duration of awake is the awake time [minutes] within the



68

duration of sleep. Since Sadeh’s method uses 11-minute window for each data point,

we did not use the first and the last 5-minute data of each night for obtaining the

sleep onset/offset.

Table 4.1.
Auto-VSG (c = 5) vs. B-VSG Labeling.

Sleep onset time Sleep offset time Awake duration Sleep duration

Sleep Mean (SD) Mean (SD) Mean (SD) Mean (SD)

estimate [HH:MM] [HH:MM] [minutes] [minutes]

B-VSG Labeling 21:01 (1:16) 7:32 (0:55) 19.07 (24.23) 617.86 (54.07)

Auto-VSG 20:54 (1:11) 7:32 (0:51) 18.14 (16.77) 624.43 (51.02)

Paired t test t(13)=1.01 t(14)=0.01 t(13)=0.14 t(13)=-0.59

↑ TOST(+30) t(13)=-1.92 t(14)=-2.28* t(13)=-6.90** t(13)=-1.72

↓ TOST(-30) t(13)=1.23 t(14)=2.27* t(13)=6.49** t(13)=2.69*

Table 4.2.
Auto-VSG (c = 1) vs. Actigraphy.

Sleep onset time Sleep offset time Awake duration Sleep duration

Sleep Mean (SD) Mean (SD) Mean (SD) Mean (SD)

estimate [HH:MM] [HH:MM] [minutes] [minutes]

Actigraphy 21:03 (1:02) 7:06 (0:54) 128.40 (54.27) 474.13 (47.2)

Auto-VSG 20:57 (1:10) 7:20 (0:46) 140.00 (89.46) 482.27 (101.12)

Paired t test t(14)=1.27 t(14)=-1.58 t(14)=-0.60 t(14)=-0.32

↑ TOST(+30) t(14)=-1.99 t(14)=-1.37 t(14)=-0.80 t(14)=-0.83

↓ TOST(-30) t(14)=1.34 t(14)=3.69** t(14)=1.80 t(14)=1.46
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4.2 Experimental Results

Our sleep dataset consists of 30 different nights from 30 participants. The videos

recordings are for children from 9 to 30 months. The sleep data that we used is

approved by the Purdue University Institutional Review Board. The data includes

RGB / Infrared videos with spatial resolutions of 320×240 pixels at 13-16 fps or

640×480 pixels at 7-10 fps. The entire night is recorded as a sequence of videos with

time stamps embedded in the video and the length of each video is 10 minutes and

14 seconds. The motion index recorded by the ankle actigraphy and B-VSG labels

which includes Sleep Onset/Offset Time are also provided. The recording duration

for three different methods differ–usually the video data was available only during

the bed time and the actigraphy data was available for both day and night. We only

used the recordings with all three methods available.

The parameters of our method (Section 4.1.1) are chosen empirically: wp = 160,

hp = 120 [pixels], τh = 5 [seconds], T = 30 [levels] (11.76 % of the color intensity) and

τs = 60 [seconds]. For head detection (Section 4.1.2), we used ll = 0.1, lu = 0.3 and

c = 5 or c = 1. We did not have head annotations for our test videos so we checked

the head detection result for each night through visual inspections to select the ones

with correct bounding box. Among 30 nights, the head detection and refinement gave

no detection for 5 nights, detected completely wrong object for 6 nights, detected near

the head but with wrong size or slightly off the location for 4 nights, and gave good

detection result for the rest of 15 nights. The main reason for poor head detection

performance is due to the gap between the training videos and the test videos. Among

the publicly available dataset that includes head annotations, we have chosen the one

that is close to ours but still there were big differences–adult videos with day time

scenes versus sleeping kids. For future work, having training dataset that better

match the test set will improve the head detection performance. Since our focus of

study is sleep detection but not the head detection itself, we used result for those

15 nights with correct head detection for our statistical analysis. The average head
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region ratio whhh/(wihi) in (4.4) for 15 heads was 0.03 with standard deviation 0.01.

It ranged from 0.01 to 0.06.

Our “B-VSG labeling” includes sleep onset/offset time and awakenings. To assess

similarities among B-VSG labeling, actigraphy, and auto-VSG methods, we did paired

t tests and the two one-sided t tests (TOST) for four sleep estimates: sleep onset time,

sleep offset time, awake duration, and sleep duration [156]. In Table 5.2 and 5.3, ↑ is

the upper bound, ↓ is the lower bound, * indicates p < 0.05 and ** indicates p < 0.01.

Upper and lower TOST were completed only if the paired-sample t test did not

indicate a significant difference between the measurement methods. When upper- and

lower-bound TOST are significant, it demonstrates that 90% of the difference between

the sleep recording methods are within the specified range of ±30 minutes, thus

implying equivalence [156]. As shown in Table 5.2, auto-VSG and B-VSG Labeling

estimates have comparable agreement for all four estimates. The TOST approach

indicated that the sleep onset and sleep duration estimates were not equivalent. One

large outlier in sleep onset appeared to have atypical sleep architecture–a long delayed

sleep. Another large outlier both in sleep offset and sleep duration was the case the

baby barely moves in awake states with eyes open. Actigraphy data is sensitive to

small motions during the sleep that it tends to detect more awakenings compared to

B-VSG Labeling. By adjusting c to smaller value–making auto-VSG method more

sensitive to motions, auto-VSG and Actigraphy estimates have comparable agreement

for all estimates and is shown in Table 5.3. The TOST approach indicated that none

of the estimates are equivalent in this case.

4.3 Conclusions

Auto-VSG has the potential to serve physicians, interventionist, and researchers

in the sleep field. Auto-VSG is a minimally evasive tool that can provide sleep and

awake estimates comparable to those of B-VSG. Comparisons with actigraphy were

not as promising and head detection only succeeded for 50% of nights; therefore, fur-
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ther auto-VSG system development is recommended before direct clinical application.

However, the present study provides preliminary evidence for the use of auto-VSG in

a home setting.
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5. CLASSIFICATION OF SLEEP VIDEOS

USING DEEP LEARNING

5.1 Introduction

Videosomnography (VSG) is a sleep analysis method which includes the labeling

of sleep vs. awake intervals from video [2, 3, 157, 158]. VSG is commonly used for

infants/toddlers or children with sensory sensitivities because their compliance rates

with other (more invasive) sleep analysis methods can be low [2,157,158]. Traditional

behavioral videosomnography (B-VSG) includes manual labeling of video segments

as “sleep” or “awake” by a trained technician [3]. B-VSG is not used to label sleep

stages (e.g., slow wave or REM sleep), rather it solely labels whether a subject is

asleep or awake during a particular segment. B-VSG labeling is time consuming and

expensive, because of this it has had limited use within the pediatric sleep medicine

field. Polysomnography (PSG), which monitors many body functions including brain

(EEG), eye movements (EOG), and heart rhythm (ECG) is the gold standard for

sleep analysis but it does not capture typical sleep well [157,159]. It is expensive and

pediatric use can have low compliance. For this reason, PSG is not the most common

sleep method used in homes or research.

In this chapter we describe an automated VSG method, also known as auto-VSG,

to replace or assist B-VSG , while maintaining high levels of accuracy. It is important

to note that our goal is to label each frame of a sleep video with the label “sleep” or

“awake.” In this work we are not interested in labeling sleep stages, such as REM

sleep.

Auto-VSG is a growing area in sleep analysis with preliminary studies using

signal/image processing systems that use motion during sleep for sleep/awake la-

beling [2, 93–95, 160]. In these studies, motion is estimated using frame differenc-
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ing [93,94] or motion vectors [2,95,160]. However, each of these studies were conducted

in a controlled setting and do not account for the wide range of camera positions and

lighting variations that are common among in-home VSG recordings. In our work,

we use deep learning approaches to classify in home sleep videos as sleep vs. awake

that adjust for these ‘in the wild’ factors.

In this chapter, we propose a new approach for sleep video analysis. The contri-

butions in this chapter are: (1) we describe the key factors in sleep video classification

(i.e., movements over long period of time) that are not addressed in commonly used

action classification problems (Section 5.2) (2) we propose a sleep/awake classification

system with a recurrent neural network using simple motion features (Section 5.3)

(3) we experimentally show our system successfully learns long-term dependencies in

sleep videos and outperform one of the recent method that has been successful in

public action dataset (Section 5.4).

5.2 Related Work

5.2.1 Motion and Long Term Dependencies in VSG

We assume that there is less motion of the subject during sleep than when

awake [149]. One simple way to classify sleep vs. awake is to set a static thresh-

old based on the assumption that more motion in a frame is awake and less motion

is sleep. However, sleep and awake patterns are not that simple.

Typically in VSG, sleep onset is established based on information from more than

20 minutes of observed video and awakenings must include purposeful movements

and be more than one minute in duration. Similarly, actigraphy methods use both a

motion index (the amount of motion within a time segment [149]) and information

about the duration before and after the target minute [148]. Both movement and

temporal information are needed to accurately capture sleep and awake states.
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5.2.2 Long Short- Term Memory Networks (LSTM)

A Recurrent Neural Network (RNN) is a deep learning network used for processing

sequential data by forming a memory through recurrent connections from the previous

inputs to the current output [161, 162]. Similar to Convolutional Neural Network

(CNN) spatially sharing parameters, a RNN temporally shares parameters assuming

that the same parameter can be used for different time increments (i.e., the conditional

probability distribution over the variables at time t+1 given the variables at time t

is stationary) [163].

For a standard RNN, the range of input sequence that can be accessed is quite lim-

ited in practice because of the “vanishing gradient” effect (VGE) [162, 164]. VGE is

a problem that gradients propagated over many recurrent connections tend to vanish

mainly due to the exponentially smaller weights given to long-term interactions (in-

volving multiplication of many Jacobians) compared to short-term ones [163]. Long

Short-Term Memory Networks (LSTM) [164, 165] is a special type of RNN which

enables long-range learning by reducing VGE. LSTM uses a structure known as gates

that can regulate the removal or addition of information. It is based on the idea of cre-

ating paths through time that have derivatives that neither vanish nor explode [163].

While the repeating module in a standard RNN contains a single layer, the one in

LSTM contains four interacting layers–forget gate layer, input gate layer, update

layer, and output layer. LSTM has been widely used for processing various sequen-

tial data and has been successful in language processing such as speech recognition,

text recognition, and machine translation.

5.2.3 Video Classification Using Deep Learning

Image classification using deep learning began in 2012 with the ImageNet chal-

lenge [166], video classification using deep learning is still in the early stages with

several recent studies focused on specific public datasets [167–170]. These methods

make use of the basic idea in Convolutional Neural Networks (CNN) classification
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approaches in still images to solve video classification problems. Karpathy et al. [167]

presented slow fusion methods for large scale video classification using CNNs. This

was one of the early works on deep learning video classification to extend the connec-

tivity of the CNN in the time dimension to learn spatio-temporal features. Another

approach incorporating temporal information is the Long-term Recurrent Convolu-

tional Networks (LRCN) proposed by Donahue et al. [168, 169]. They first obtained

visual features from each frame using a conventional CNN and then used the fea-

tures as inputs to the recurrent models (see Figure 5.1). As shown in Figure 5.1,

CNN

Sleep / AwakeGoP

CNN

LSTM

LSTM

Avg

Fig. 5.1. LRCN [168,169]. GoP is a Group of Pictures.

LRCN [168, 169] combines visual features (output from each CNN) with sequence

learning (LSTM). The advantage of having this structure is that it can learn unique

appearance in video while also learning temporal patterns of variable lengths. In

LRCN, the spatial and temporal information is processed in two separate steps–first

each frame (spatial information) goes into CNN and outputs feature vectors, then

series of feature vectors (temporal information) go through LSTM. Due to these

separated steps, there is a limit to learning spatial changes over time (i.e. motion).

Another approach for human action recognition is spatio-temporal CNN filters (C3D)

proposed by Tran et al. [170]. C3D extends the conventional CNN with an additional

temporal dimension by using 3-dimensional CNN kernels in all convolutional layers

(see Figure 5.2). C3D [170] in Figure 5.2 uses one network to learn both spatial and

temporal information at the same time by using 3-dimensional convolution kernels

that include the temporal dimension. This network can learn motion changes over

time, but with limited temporal range (e.g. the length is fixed to 16 consecutive
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Sleep / AwakeGoP

C3D 

(CNN with 3-dimensional

convolution kernals)

Fig. 5.2. C3D [170]. The C3D convolution kernel includes temporal
depth in addition to 2-dimensional CNN kernel of width and height.

frames at a time). It was reported in [170] that C3D performed similar or better

compared to other methods including deep networks [167] and LRCN [168] on an

action recognition public dataset UCF101 [171]. While there has been improvements

for specific action recognition datasets, whether these methods can be generalized for

use in other types of video classification problems is an open question. Public ac-

tion recognition datasets used in all of the above mentioned studies were short video

sequences with repetitive and unique action in each class (e.g. the action classes in

UCF101 dataset include apply eye makeup, baby crawling, brushing teeth, horse race,

knitting, etc.). Sleep videos are much longer in length (up to 8-9 hours) and tend to

have relatively few actions. Also, the appearances (e.g. human or objects appearing

in the scene) change only slightly between the sleep/awake states.

5.3 Proposed Method

In this section we describe our proposed method for labeling frames of a sleep

video as “sleep” or “awake” from RGB/infrared videos using motion information.

Figure 5.3 shows our system. First, we define consecutive video frames in small

groups as Group of Pictures (GoP). The proposed system uses frame differencing

within GoP to obtain motion information (described in detail in Section 5.3.1) and

two-layer LSTM architecture to incorporate information from previous video GoPs.
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Fig. 5.3. Proposed Sleep Detection System: Sleep/Awake Using a
Motion Index and LSTM.

5.3.1 Motion Detection/Motion Index

We shall assume that the child is the only source of motion in the sleep video.

Background subtraction is widely used for detecting movements from static cam-

eras [150]. One of the simple background subtraction methods is frame differencing

which detects motion in frame by taking the difference (subtraction) between the cur-

rent frame and the previous frame (the background model). For a sequence of gray

scale images in GoP at constant frame rate and size, we take the frame difference in

each consecutive pair. This difference indicates whether each pixel in the frame is

classified as “moved” or “not moved.” A pixel is classified as “moved” if Equation

(5.1) is true

|Ii−1[x, y]− Ii[x, y]| > T (5.1)

where Ii[x, y] is a pixel in frame i, and T is a threshold for determining movement

for one pixel. For our experiments the value of T is empirically determined and the

value we use is described in Section 5.4.2. We quantify the amount of motion as the

number of pixels classified as “moved.” We define the motion index for a GoP as the

average the amount of motion for each frame pair in the GoP. The red box shown in
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Figure 5.3 is the motion detection block and the output of this block is the motion

index for each GoP.

We minimize the use of the empirically driven parameters (only using one param-

eter T ) by using deep learning methods that learn the sleep vs. awake patterns based

on the motion index.

5.3.2 Loss Function

For an imbalanced dataset where one class has much larger number of samples than

the other class, the trained model can be biased toward the class in the majority. A

typical sleep video dataset is imbalanced where the number of sleep labels dominates

awake labels. To compensate for this data imbalance, class-wise weights can be set

in the loss function. We define the weight wj for the class (sleep or awake) j as

wj = 1−
nj

∑

j nj

(5.2)

where nj is the number of samples in class j. The idea is that when there is more data

for class j, a smaller weight is assigned. Using these weights, the weighted softmax

cross entropy loss function for sequence data (x0, y0), · · · , (xi, yi), · · · , (xn, yn) is

defined as

L =
∑

i

wyi

(

− log
efyi
∑

j e
fj

)

(5.3)

where yi is the actual class index for the sample xi, and fj is the predicted probability

of xi belonging to class j. With uniform weights across classes (w0 = · · · = wj = · · · ),

the loss function L becomes the regular softmax cross entropy.

5.4 Experiments

5.4.1 Dataset

Our sleep dataset consists of in home sleep videos of 30 different nights from 30

children. The sleep videos are for children from 9 to 30 months of age. Each night
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is a different sleep video sequence of a different child. Our total data set consists of

30 children for 30 nights. The camera used for recording is Swann ADW-400 Digital

Guardian Camera & Recorder. It records in color mode during the day and switches

to black and white/infrared mode at night. This project was approved by the Purdue

University Institutional Review Board (IRB). The sleep videos have spatial resolutions

of 320×240 pixels at 13-16 frames/s (fps) or 640×480 pixels at 7-10 fps. The entire

night is recorded as a sequence of videos with time stamps embedded in the video

frame and the length of each video is 10 minutes and 14 seconds. Along with the

sleep videos, B-VSG labels for sleep onset, offset, and awakenings were used in the

analyses. This information was obtained as ground truth from trained observers. We

did not use the audio due to too much noise in the signal.

For preprocessing, videos were sub-sampled at 4 fps. Then, the GoP (16 frames)

were obtained. While the B-VSG labels are in units of minutes, a GoP in our settings

corresponds to a 4-second duration. GoPs that do not fully belong to sleep or awake

(i.e., partly Sleep and partly Awake GoPs), were not used in the experiment. How

we divided the sleep dataset into training and testing sets is shown in Table 5.1. As

Table 5.1.
Training/Test Set Division of Sleep Dataset.

Sleep Dataset # GoPs # GoPs # GoPs

for Sleep for Awake in total

Train (20 children) 179,108 13,691 192,799

Test (10 children) 88,234 7,781 96,015

Total (30 children) 267,342 21,472 288,814

we can see from Table 5.1, there is an imbalance between the two classes of “Sleep”

and “Awake”. For the training set of 20 children, the number of continuous sequences

were 33 and the length ranged from 378 to 11,352 GoPs. In case where a child had
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some “out of bed” time, the corresponding GoPs were excluded from our training/test

sets hence resulting in multiple sequences for one child.

5.4.2 Implementation Details

For the motion index threshold T we used T = 30 (11.7% difference in gray scale

intensity levels) and image size of 320×240 in gray scale for obtaining the motion index

for all the GoPs. The value of parameter T was empirically determined. For training

on very different dataset, such as videos with lower contrast, T can be set to lower

values. Our Long Short-Term Memory Network (LSTM) described in Section 5.2.2

was implemented using Python and TensorFlow. For the LSTM, we used a hidden

unit size of 128 and 2 layers of cells with dropout layers with probability of 0.5. The

softmax cross entropy loss was used as the cost function for training. The Adagrad

(Adaptive Gradient) method [172] was used for gradient descent optimization. To

reduce computational complexity, we organized all the training set as a sequence of

GoPs and put them in mini-batches of size 30. Since the number of training GoPs is

192,799 and is not dividable by our batch size 30, the remaining last 19 GoPs were

discarded hence resulting in a 30×6,426 matrix. The GoPs in the first column (the

first batch) were assumed to be the start of each sequence although it would not

exactly match with the actual start of the sequence for each child. The size of each

mini-batch was 30×(back propagation window size). The network is initialized with

a vector of zeros and gets updated after reading each GoP. The number of epochs we

used for training is 10.

For training and testing the spatio-temporal CNN filters (C3D), we used the

implementation provided in Caffe [170].

5.4.3 Results

To assess the performance , we used five metrics, which are Accuracy, ACC =

TP+TN
TP+TN+FP+FN

, Precision, PRE = TP
TP+FP

, Recall, REC = TP
TP+FN

, Specificity,
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SPEC = TN
TN+FP

and Cohen’s kappa (κ). The test dataset is shown in Table 5.1.

Table 5.2 and Table 5.3 show the results for different classification models of on the

same test set. Table 5.2 is the result using uniform weights for the loss function. In

this table, C3D-f is C3D pre-trained on Sports-1M dataset [167] and finetuned on our

sleep dataset. C3D-t is C3D trained on our sleep dataset from scratch. Our proposed

models are denoted as LSTM-k, where the number k refers to the size of the back

propagation window in the unit of number of GoPs that is used during training the

model. The duration of one GoP in unit of seconds is 16 frames/4 fps = 4 seconds

(i.e., 5 GoPs are 20 seconds, and 30 GoPs are 2 minutes). Table 5.2 shows the result

Table 5.2.
Results [%] for the number of test GoPs n = 96, 015. Models trained
using loss with uniform weights.

Model ACC PRE REC SPEC κ

C3D-f 84.25 93.52 89.03 30.07 0.15

C3D-t 89.54 93.29 95.49 22.05 0.20

LSTM-5 95.60 96.43 98.87 58.55 0.66

LSTM-15 92.89 92.87 99.93 12.98 0.21

LSTM-30 94.31 94.83 99.23 38.62 0.50

LSTM-50 92.77 92.71 99.99 10.90 0.18

LSTM-75 93.51 93.61 99.74 22.85 0.34

LSTM-85 92.53 93.56 98.66 22.95 0.30

for models trained with regular softmax cross entropy loss function. Compared to us-

ing one GoP at a time for classification (i.e., C3D-f and C3D-t), using multiple GoPs

(i.e., LSTM-k) improved accuracy while maintaining high recall. LSTM-5 improved

the performance across all four metrics. However, the specificity is low due to the

data imbalance. Since the model is trained to minimize the overall loss including both

sleep and awake GoPs, the specificity that involves only awake GoPs is not giving
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consistent results. Next, Table 5.3 shows the result for models trained using weighted

loss as described in Section 5.3.2. We can see that the specificities are improved.

Table 5.3.
Results [%] for the number of test GoPs n = 96, 015. Models trained
using weighted loss.

Model ACC PRE REC SPEC κ

LSTM-5 93.33 97.81 94.87 75.88 0.61

LSTM-15 93.46 97.75 95.06 75.22 0.62

LSTM-30 95.47 96.70 98.44 61.88 0.67

LSTM-50 95.58 95.79 99.57 50.31 0.63

LSTM-75 20.48 98.62 13.66 97.83 0.02

LSTM-85 92.69 93.85 98.51 26.74 0.34

There are good agreements between traditional B-VSG and our proposed methods

(LSTM-5 on loss with uniform weights, κ = 0.66; LSTM-5/15/30/50 on weighted

loss, κ > 0.6) and fair to poor agreements (κ < 0.4) on the rest of the methods

including C3D.

Figure 5.4 and 5.5 are the ROCs [173]. Unlike accuracy and precision, ROCs are

insensitive to changes in class distribution since it is based upon True Positive rate

and False Positive rate. Note that in Table 5.2 and Table 5.3 recall and specificity

are obtained based on the discrete outputs generated with a threshold of 0.5–we take

the predicted class as the one with the higher probability. For the ROCs, we used

the monotonicity of thresholded classifications [173]. Figure 5.4 shows that all the

proposed methods (LSTM-k) have higher Area Under the ROC (AUC) than the C3D

models. Except for the AUC drop at k = 85 due to the long back propagation stages

in the training, the rest of all the LSTM-k models have AUC higher than 0.85. C3D-t

and C3D-f have AUC of 0.62 and 0.65 respectively both giving much lower perfor-

mance compared to the proposed methods. LSTM-75 where 75 GoPs corresponds to
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Fig. 5.4. ROCs. Models trained using loss with uniform weights. GoP
is Group of Pictures.

5-minute duration gave the highest performance (AUC=0.95). Figure 5.5 shows the

result for the models trained using the weighted loss described in section 5.3.2. The

classifier fails for k=85 more severely compared to the uniform weight cases of the

same k value. For the models trained using the weighted loss, LSTM-50 (duration of

3 minutes and 20 seconds) gave the highest performance (AUC=0.95). The overall

results show how much the long-term temporal motion information plays a signifi-

cant role in sleep vs. awake classification. This is surprising given the fact that the

proposed method used minimal visual information of only one motion index for each

GoP. The proposed methods outperforms the general video classification method by

modeling the long-term motion patterns in sleep videos.

As described in Section 5.2, C3D is good for classifying unique appearance and

short action in each class by learning spatio-temporal features in videos but due to
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Fig. 5.5. ROC curve. Models trained using weighted loss. GoP is
Group of Pictures.

the limited temporal range it takes, C3D did not work well for classifying sleep videos

that have long temporal dependencies. Also, due to the slight changes in appearance

between the sleep/awake states and few actions in sleep videos, learning appearance

pattern in C3D did not contribute well on improving the overall performance. Our

proposed method enabled capturing the temporal history of motion changes by using

LSTM on sequence of GoPs and simple motion feature for each GoP.

5.5 Conclusions

In this chapter, we described a system for sleep vs. wake classification based

on our observation that long temporal information is important. From the prior

knowledge that motion is the key factor for determining sleep versus awake in B-

VSG, we described a motion index to summarize the motion information for each
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GoP and then combined this with the recurrent model to label each GoP as asleep or

wake. Our experiment demonstrated interesting results that using LSTM with simple

motion feature for GoP outperformed one of the latest general video classification

methods for sleep vs. awake video classification. We also showed how weighting the

loss function can affect various performance metrics for imbalanced sleep dataset (i.e.

the increase in specificity).

The design of our system is based on the prior knowledge in sleep medicine (i.e.

the motion changes over long duration is the key factor in determining sleep vs. wake)

and in signal processing (i.e. methods for simple motion feature in video). For future

work, more general video classification methods that require less prior knowledge

should be further investigated.
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6. IMAGE-BASED GEOGRAPHICAL LOCATION

ESTIMATION USING WEB CAMERAS

6.1 Sunrise/Sunset Estimation

Sunrise and sunset can be obtained by classifying each image from the camera

with the label “Day” or “Night.”

One of the factors that can be used for detecting Day/Night is the brightness of

the image. In [116], the mean of the combined RBG components were used to detect

Day. In our work, we used the luminance to estimate the brightness of the image.

We first convert from the RGB to Y CbCr color space and use the Y component to

obtain the average luminance. We assume that an image with large luminance tends

to be Day. We have ignored camera AGC effects. We recognize that this introduces

error in our estimates for sunrise and sunset due the fact that the images will be

”brighter” than normal. In our operational scenario we have no control of this in

that we cannot turn off the camera AGC.

The color of the sky is mostly sensitive to whether it is Day or Night while other

objects in the scene can have various colors. To make use of this fact in determining

Day/Night, we can define into two spatial regions–the sky region and the non-sky

region. We are assuming that some part of the field of view of the camera “sees” the

sky. The set of pixels in an image belonging to the sky is defined as the sky region,

and the rest of the pixels which do not belong to the sky are defined as the non-sky

region. Day/Night detection based on the luminance of the entire image could be

incorrect due to factors in the non-sky region, e.g. lights from a building at night, the

dark objects or shadows that appears during the day. Therefore, it is more accurate

to focus on the sky region for Day/Night detection. In [116] the entire RBG image
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was used and in [118] the sky regions were detected using a camera with a field of

view from the dash of a vehicle using the road information.

Our method is a variation of the above in that we focus on the sky region and

find the mean of Y in the sky region:

Ysky i =
1

M

M−1
∑

j=0

Ysky i,j (6.1)

where Ysky i is the mean sky luminance of the ith image and Ysky i,j is the luminance

of the jth pixel in the sky region of the ith image. M is the number of pixels in the sky

region. Here we assume that the camera is static and the sky region for the camera

remains the same for all the images. Our approach to sky detection is discussed in

Section 6.2.

We will estimate sunrise and sunset by detecting transitions from Night to Day

and Day to Night. To detect Day/Night transitions from the luminance of the sky

region, a threshold must be determined. If we assume the images are obtained over a

24-hour period, we know that approximately a quarter of the images are either Day

images or Night images if the camera is located in the latitude range between 60 ◦S

and 60 ◦N . Since Ysky i has large value for Day and small value for Night, we can find

a threshold for Ysky i to label the image as Day or Night. Two different thresholds for

classifying Day/Night can be used:

thmean =
1

N

N−1
∑

i=0

Ysky i, (6.2)

thmid =
max {Ysky i}+min {Ysky i}

2
. (6.3)

where N is the number of images. In [116] the thmid was used for the threshold but

when we used it to our experimental work, thmean provided better results. If the mean

luminance of the sky region of an image is larger than the threshold, we classify it as

Day, otherwise we classify it as Night.

From the sequence of images denoted as either Day or Night, we can denote the

times where the transitions between Day and Night labeled images occur. If the
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labels change from Night to Day, we can estimate that the sunrise occurs within

the time interval between those consecutive images, if the labels change from Day to

Night, we can estimate that the sunset occurs within the time interval between those

consecutive images.

We then estimate the sunrise as the time of the start of Day. In this case, the

accuracy of the sunrise estimation depends on the sampling interval of images. If

the images are sampled every s minutes, the error of sunrise would be less than s

minutes. Likewise, we can approximate the sunset as the time of the start of Night.

The error of sunset would also be within s minutes. If the estimated Day/Night labels

are accurate, exactly one start of Day and one start of Night should occur during the

image sequence of 24-hour period. Due to the dynamic weather conditions, some

images can be falsely labeled as Night during the day. One way to eliminate these

outlier images would be taking the earliest start of Day as sunrise and taking the

latest start of Night as sunset.

6.2 Sky Region Detection

There are many methods for detecting the sky region in an image. In [118] sky

detection is only considered for the special case where the images are the front view

from dash cameras in vehicles. In [117] edge detection of sky region is used to predict

the solar exposure. They describe a general approach to separate the sky from the

rest of the image by determining the edge of the sky region. The accumulative frame

difference between an image and the successive image is used to obtain the sky region

in [119]. The sky is assumed to be at the top of image and the clouds are dynamic.

Using this method requires several sample images to detect the sky region. Also, it

is valid only when the sample images are Day images since the method is based on

the fact that the sky is dynamic compared to the foreground objects.
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We propose a different approach to detect the sky region by using one image of a

clear sky. By clear sky we mean no clouds in the sky and in our initial experiments

this image was manually chosen. The sky detection approach we used is then:

1. Obtain an image from the blue channel of the camera.

2. Use the Canny edge operator to find edges. This will create a binary image or

edge mask where edge pixels are set to 1.

3. Use morphological filtering (dilation) to close gaps in the boundaries of the edge

mask.

4. Invert the dilated binary image (edge mask) where the boundary pixels are

inverted from 1 to 0 and the surface pixels are inverted from 0 to 1.

5. Find the largest connected region at the top of the binary image:

(a) Find all the connected components in the binary image.

(b) Sort the connected components with respect to the number of pixels con-

tained in descending order.

(c) For each of the connected components check the location of each connected

component to determine whether it is at the top part of the image. If the

connected component is at the top part of the image, select it as the sky

region and if not, go to the next largest connected component. Repeat

until the sky region is found.

The results of using the the above sky detection technique are shown in Figure 6.1.

6.3 Estimating Location from Sunrise/Sunset

Once the sunrise/sunset is estimated as described above we can use it to determine

the camera location. In [110] they proposed what they called the CBM model to

estimate the length of the day for a flat surface for a given latitude and day of the year.
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Fig. 6.1. A collection of pairs of test images and their skymask.

They also described a daylength model to allow for various conditions of daylength

and twilight for a full range of latitudes. Using the CBM daylength model [110] we

estimate latitude by:

θ = 0.2163108 + 2 tan−1 [0.9671396 tan[0.00860× (J − 186)]] , (6.4)

φ = sin−1 [0.39795 cos θ] , (6.5)

D = 24−
24

π
cos−1

[

sin pπ

180
+ sin Lπ

180
sinφ

cos Lπ
180

cosφ

]

, (6.6)

where θ is the revolution angle, J is the day of the year, φ is the sun’s declination

angle, D is the daylength, and L is the latitude. By numerically solving Eq. 6.6, we

can estimate latitude (L) from daylength (D) and the day of the year (J). In this

paper, the daylength coefficient (p) was set to 6.0 to correspond to the daylength

definition which includes civil twilight. D is the time difference between the sunrise

and sunset.

Longitude can be estimated from local noon [174]. If we know UTC (Coordinated

Universal Time) when the sun is at its highest point in the sky at a location on the

Earth (local noon), then we can determine the time difference between the local noon



91

and the noon in UTC. The time difference can be converted to longitude (l) since we

know that the Earth approximately rotates 15 degrees per hour.

l =







(12− n+ u)× 15 u ≤ 12

(n+ u− 12)× 15 u > 12
(6.7)

where n is the local noon and u is the UTC offset for the local area. All the variables

l, n and u are in unit of hours. The local noon can be approximately estimated from

sunrise and sunset.

n =
tsunset + tsunrise

2
(6.8)

where tsunset and tsunrise are the local time of sunset and sunrise in hours. Since the

earth rotation is nearly constant, we assume that at the middle of the sunrise and

sunset, the sun is at its highest point is the sky.

6.4 Experimental Results

We evaluated our methods using 10 static IP-connected web cameras. For each

camera images were downloaded every 5 minutes and stored with a timestamp based

on UTC-5. The images were obtained during 21-27 December 2013 (UTC-5).

The process begins by detecting the sky region for an image from each camera

as described in the Section 6.2. The output of this process is the sky mask of each

camera. Next all images are converted from the RGB to Y CbCr color space and

the Y component of each image is obtained (see Section 6.1). The sky mask is then

used for determining the mean sky luminance (Ysky i) for each image. Next images

are classified as Day or Night by using the threshold. After the Day or Night images

are obtained, they are used to estimate the sunrise and sunset. Finally, the latitude

and longitude are obtained using the estimated sunrise and sunset (see Section 6.3).

In Figure 6.2, thmean and thmid described in the previous section are denoted.

Figure 6.2 also shows that the luminance of the sky region separates Day/Night

images while the luminance of the entire image poorly separates between Day and

Night images.
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(a) Y for cam05 (b) Ysky for cam05

(c) Y for cam06 (d) Ysky for cam06

Fig. 6.2. The mean luminance of the entire image vs. the sky region.

The mean estimated sunrise/sunset is shown in Table 6.1 for camera01. We know

the exact location of this camera and can find the ground truth sunrise and sunset

from [175] using the latitude and longitude information of this camera (North 40

degree, 26 minutes, West 86 degree, 55 minutes). The “est. rise” and the “est. set”

columns are the estimated sunrise and sunset in hh:mm. The “GT rise” and “GT

set” columns are the ground truth sunrise and sunset in hh:mm rounded to the closest

minute. For the ground truth, the sunrise and sunset civil twilight were used. The

mean error for 7 days was -7.8 [minutes] with standard deviation of 6.7 [minutes] for

the sunrise and 9.9 [minutes] with standard deviation of 5.4 [minutes] for the sunset.

In Tables 6.2 and 6.3, the “mean” and “std” columns refers to the mean and the

standard deviation of latitudes for 7 days. The “GT” column refers to the ground

truth. In general we do not know the exact location of some of the cameras used in
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Table 6.1.
Sunrise/sunset detection for camera01 for using thmean.

Date est. est. GT GT rise set

rise set rise set error error

Dec 21 07:55 17:35 07:37 17:55 -18.4 20.3

Dec 22 07:45 17:45 07:37 17:56 -7.9 10.8

Dec 23 07:50 17:50 07:38 17:56 -12.5 6.4

Dec 24 07:40 17:50 07:38 17:57 -2.0 7.0

Dec 25 07:50 17:45 07:38 17:58 -11.6 12.6

Dec 26 07:40 17:50 07:39 17:58 -1.3 8.2

Dec 27 07:40 17:55 07:39 17:59 -0.9 3.9

Table 6.2.
The result for latitude for using thmean.

Camera mean[◦] std[◦] GT[◦] eL [%]

1 43.6 2.0 40.4 1.8

2 32.7 24.3 41.8 5.0

3 43.7 3.7 41.8 1.1

4 41.3 3.5 40.4 0.5

5 36.3 3.4 38.0 0.9

6 36.2 4.9 38.8 1.4

7 31.5 2.1 36.1 2.6

8 32.0 1.5 36.1 2.3

9 35.1 25.4 42.4 4.1

10 26.7 1.2 34.4 4.3

our study. The “ground truth” locations we used here were obtained from their IP ad-

dresses or using Google maps. This approach is somewhat problematic but it reflects



94

Table 6.3.
The result for longitude for using thmean.

Camera mean[◦] std[◦] GT[◦] el [%]

1 -86.6 0.5 -86.9 0.2

2 -91.9 11.9 -87.6 2.4

3 -88.2 0.8 -87.6 0.3

4 -88.0 1.2 -86.9 0.6

5 -77.6 0.8 -78.5 0.5

6 -76.2 1.4 -76.9 0.4

7 -75.4 1.4 -75.7 0.2

8 -76.8 1.0 -75.7 0.6

9 -73.1 6.8 -72.5 0.3

10 -119.0 0.3 -119.8 0.5

the nature of the problem we are trying to address. To evaluate the performance, we

defined the error metrics for latitude (eL) and longitude (el) as:

eL = |Lest−LGT |
180

· 100 [%]

el =
|lest−lGT |

360
· 100 [%]

(6.9)

where Lest and LGT both in units of degree (◦) are estimated and the ground truth

latitudes and lest and lGT both in units of degree (◦) are estimated and the ground

truth longitudes. In these tables, we see that the amount of error eL in latitude is

larger compared with the error el in longitude. We discovered that for each case

for Cameras 2 and 9, there is erroneous estimation of the sunrise and sunset that

increases the overall error. These incorrect estimations are caused by lights in the

camera field of view during the night that result in a sudden rise of luminance after

the sunset hence leading to the wrong estimation of sunset.

In conclusion, we estimated the approximate location of a web cam by analyzing

its images. We showed that we could effectively estimate locations with less than



95

2.4% error for the longitude and less than 5% error for the latitude. In future work

we will investigate how we can compensate for camera AGC effects and fine grained

temporal measurements.
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7. CONCLUSION

7.1 Summary

In this thesis we addressed two interesting video-based health measurements. First

is video-based Heart Rate (HR) estimation, known as video-based Photoplethysmog-

raphy (PPG) or videoplethysmography (VHR). We adapted an existing video-based

HR estimation method to produce more robust and accurate results. Specifically,

we removed periodic signals from the recording environment by identifying (and re-

moving) frequency clusters that are present the face region and background. We

investigated and described the motion effects in VHR in terms of the angle change of

the subjects skin surface in relation to the light source. Based on this understanding,

we discussed the future work on how we can compensate for the motion artifacts.

Another is Videosomnography (VSG), a range of video-based methods used to record

and assess sleep vs. wake states in humans. We described automated VSG sleep

detection system (auto-VSG) which employs motion analysis to determine sleep vs.

wake states in young children. The analyses revealed that estimates generated from

the proposed Long Short-term Memory (LSTM)-based method with long-term tem-

poral dependency are suitable for automated sleep or awake labeling. We created web

application ( Sleep Web App) that deploys our sleep/awake classifications method to

serve easy accesses to sleep researchers for running the sleep video analysis on their

videos.

We considered the problem of estimating the approximate location of a web cam

by analyzing its images. We showed that we could effectively estimate locations with

less than 2.4% error for the longitude and less than 5% error for the latitude.

The main contributions of this thesis are listed as follows:
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• We improved VHR for assessing resting HR in a controlled setting where the

subject has no motion. We modified and extend an ICA-based method and

improve its performance by (1) adapting the passband of the bandpass filter

(BPF) or the temporal filter, (2) by removing background noise from the signal

by matching and removing signals that occur in the off-target (background) and

on-target areas (facial region), and (3) detect skin pixels within the facial region

to exclude pixels that does not contain HR signal.

• We investigated and described the motion effects in VHR in terms of the angle

change of the subject’s skin surface in relation to the light source. We showed

that the illumination change on each surface point is one of the major factors

causing motion artifacts by estimating the incident angle in each frame. Based

on this understanding, we discussed the future work on how we can compensate

for the motion artifacts.

• We proposed auto-VSG method where we used child head size to normalize the

motion index and to provide an individual motion maximum for each child. We

compared the proposed auto-VSG method to (1) traditional B-VSG sleep-awake

labels and (2) actigraphy sleep vs. wake estimates across four sleep parameters:

sleep onset time, sleep offset time, awake duration, and sleep duration. In sum,

analyses revealed that estimates generated from the proposed auto-VSG method

and B-VSG are comparable.

• In the next proposed auto-VSG method, we described an automated VSG sleep

detection system which uses deep learning approaches to label frames in a sleep

video as “sleep” or “awake” in young children. We examined 3D Convolutional

Networks (C3D) and Long Short-term Memory (LSTM) relative to motion in-

formation from selected Groups of Pictures of a sleep video and tested temporal

window sizes for back propagation. We compared our proposed VSG methods to

traditional B-VSG sleep-awake labels. C3D had an accuracy of approximately

90% and the proposed LSTM method improved the accuracy to more than 95%.
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The analyses revealed that estimates generated from the proposed LSTM-based

method with long-term temporal dependency are suitable for automated sleep

or awake labeling.

• We created web application (Sleep Web App) that makes our sleep analysis

methods accessible to run from web browsers regardless of users’ working envi-

ronments. The design philosophy of Sleep Web App is to serve easy accesses to

sleep researchers for running the sleep video analysis on their videos. Specifi-

cally, we focused on (1) simple user experience, (2) multi-user supporting and

(3) providing results for further analysis. For providing the results, we included

two csv format files for per-minute sleep analysis and sleep summary results.

• We also described a method for estimating the location of an IP-connected

camera (a web cam) by analyzing a sequence of images obtained from the cam-

era. First, we classified each image as Day/Night using the mean luminance of

the sky region. From the Day/Night images, we estimated the sunrise/set, the

length of the day, and local noon. Finally, the geographical location (latitude

and longitude) of the camera is estimated. The experiment results show that

our approach achieves reasonable performance.

7.2 Future Work

To extend our work on video-based HR estimation, known as videoplethysmogra-

phy (VHR), to more general cases that can cover various recording scenarios, there

are some future work to be done. In Chapter 2, we adapted an existing video-based

HR estimation method to produce more robust and accurate results. However, the

method works poor when the subject is moving during the recording. In Chapter 3.1,

we showed that the linearity assumption used in conventional HR estimation methods

no longer hold when there is subject motions in the video. To understand this mo-

tion effects in VHR, we showed the relationship between the motion and the intensity

change by setting up two experiments. Our experiments showed how the incident
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angle change caused by motion is related to the pixel intensity changes. We showed

that the illumination change on each surface point is one of the major factors causing

motion artifacts. In Chapter 3.5, we provided initial work on how motion effects

could be estimated as ˆL(n) using the facial landmark tracking and approximate light-

ing directions on some test videos. To extend this ˆL(n) estimation to more general

scenarios, following are suggested:

1. improving the tracking performance of three facial points,

2. instead of using fixed values for all the frames, the light source direction for

each frame could be estimated using the location and shadow information and

3. a method to find sub-region (surface) that share the same surface normal ( ~nk(n),

described in Chapter 3.5) could be investigated so that more surface normal

estimation can be done more accurately.

Once we have method for ˆL(n) estimation, another future work to be done for

motion-robust VHR is non-linear filtering method. A method to filter out PPG signal

from the actual intensity change L(n), that includes both motion effects and PPG

signal, should be further investigated. Details are described in Chapter 3.4.

Our study includes VHR experiments for specific motion, periodically moving

from side to side. With more work on estimating motion effects from videos and

devising filtering methods, the work can be extended to VHR for various different

motions.

7.3 Publications Resulting From This Thesis

1. J. Choe, A. J. Schwichtenberg, E. J. Delp, “Classification of Sleep Videos Using

Deep Learning,” Proceedings of the IEEE Multimedia Information Processing
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A. SLEEP WEB APPLICATION

A.1 Introduction

The sleep project is collaboration work with Dr. Schwichtenberg’s Sleep and

Development Lab. To share sleep analysis methods described in Chapter 5 with sleep

researchers, we created a web application that makes our sleep analysis methods

accessible to run from web browsers regardless of users’ work environment. We call

this application Sleep Web App.

Sleep Web App lets users classify their videos using the sleep/awake classification

method described in Chapter 5.

The design purpose of Sleep Web App is to provide easy accesses for sleep re-

searchers to apply auto-VSG to existing videos. Specifically, we focused on following

three things.

First is simple user experience. After uploading videos in a zip archive, the server

automatically runs sleep/awake classification. When the processing is done, the result

table is displayed in the web browser. Users do not need to do any installation. Since

the program runs in the server, specifications of the user’s computers do not matter

as long as they can access web browsers. Additionally, users do not need to worry

about the maintenance of the program.

Second is multi-user supporting. Sleep Web App is designed to process multiple

inputs simultaneously so it is available to several users at the same time. Each upload

has unique ID (timestamps in miliseconds) and is processed within its dedicated

directory.

Third is providing results for further analysis. The Sleep Web App provides links

to download the results. Users can do further statistical analysis using the tabular

data stored in comma-separated values (CSV) format.
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This Appendix A is organized as follows. Section A.2 describes how the Sleep Web

App works. Next, the user manual is in Section A.3. The last Section A.4 describes

the server-sidse installation process of the Sleep Web App.

A.2 Sleep/Awake Classification in Sleep Web App

The Sleep Web App uses the sleep/awake classification method described in Chap-

ter 5. It includes three steps. Figure A.1 is the block diagram.

Fig. A.1. Block diagram for Sleep/Awake classification in Sleep Web App.

First, the sleep videos are converted into a sequence of frames at a constant

subsampling rate, and the list of GoPs (Group of Pictures) are created from the

frame sequences. The first step is implemented using Python with OpenCV (Open

Source Computer Vision) Library [176].

Second, motion information is obtained through frame differencing within GoP as

described in detail in Chapter 5. This step is implemented in C++ with OpenCV

library.

Third, each GoP is classified as either sleep or awake by using deep learning model

that was trained to learn sleep vs. awake patterns based on the motion index (de-

scribed in detail in Chapter 5). The model used in Sleep Web App is LSTM-15 trained

with weigthed loss where the number of GoPs=15 had the best performance as shown

in Table 5.3 in Chapter 5. This step is implemented in Python with TensorFlow [177]

library.

Each steps requires specific environments to run. Without the Sleep Web App,

supporting different user environments to run different sets of programming languages

and libraries with specific versions would be extremely tedious work. By using a web
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application, it is possible to provide the users with sleep/awake classification methods

without asking them to install all the compilers and libraries that are used in the

program.

By using a web-based application, it is possible to provide the sleep/awake clas-

sification to more researchers. Since the program deals with large data–sleep videos

recorded all night, it requires lots of compute and processing power. Without web

application, it is difficult to predict how much time it takes to run the program.

A.3 User Manual

The Sleep Web Application provides Sleep/Awake labeling for pediatric sleep

videos. To access the web app, please follow the link

https://buddy-boy3.ecn.purdue.edu/∼sleep/.

This manual provides how to use the Sleep Web Application. The procedures in

this manual are based on following conditions:

• One-night sleep videos recorded by Swann ADW-400 Digital Guardian Camera

& Recorder

• Chrome browser

• Windows 7

A.3.1 File Preparation

This section explains how to prepare the video files to be uploaded to the server.

Naming the Directories and Video Files

The directories and files should be named in specific format. Figure A.2 is an

example.
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Fig. A.2. Sleep Web App Manual: File Compressing.
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The top directory is the SubjectID Age Night (e.g. “23006 24M 1”). The subjec-

tID is the 5-digit number, the Age is two-digit number in months and the Night is a

number (any number of digits) for Night index. For SubjectID 23006, Age 24M, and

the Night index 1, the directory name should be “23006 24M 1”

The second directory is the Date. There should be two Date directories for one-

night sleep videos. The Date is 6-digit number, YYMMDD, where YY is year, MM

is month, and DD is date. For one-night videos that were recorded from night in

November 18, 2013 to the next morning in November 19, 2013, the two directories

should be “131118” and “131119”.

Each Date directory contains sequence of AVI videos named with timestamps.

The video filename is 6-digit timestamp followed by underscore and number 1, “ 1”.

The 6-digit timestamp is HHMMSS, where HH is hour, MM is minute, and SS is

second. A video that was recorded from 23 hrs 50 min 28 sec will have a filename

of “235028 1.AVI”. Videos recorded by Swann ADW-400 Digital Guardian Camera

& Recorder automatically saves the videos with this filename pattern so there is no

need to change the video names.

Here is the summary of how the directories and file names are structured:

/SubjectID Age Night

/Date

HHMMSS 1.AVI

HHMMSS 1.AVI

/Date

HHMMSS 1.AVI

HHMMSS 1.AVI
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Fig. A.3. Sleep Web App Manual: File Compressing.

File Compressing

The Sleep Web Application only accepts zip files. This section describes how to

create zip file in Windows.

From the top directory named “SubjectID Age Night”, right click on the directory,

select “Send to”, and select “Compressed (zipped) folder” as shown in Figure A.3

If it asks for what name to use for the “Compressed (zipped) Folder”, write the

name of the top directory, SubjectID Age Night.

A.3.2 File Uploading

The compressed (zipped) folder, basically the zip file, should be uploaded to the

website, https://buddy-boy3.ecn.purdue.edu/∼sleep/

Figure A.4 is an example of file uploading. First the user click on the “Browse”

button, and then select the compressed (zipped) folder.
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Fig. A.4. Sleep Web App Manual: File Upload.
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Fig. A.5. Sleep Web App Manual: File Upload.

Fig. A.6. Sleep Web App Manual: File Upload.

Once the user click on the “Upload” button, the process begins. As shown in

Figure A.5, the uploading progress is shown in the bottom-left corner of the browser.

Once the uploading is done, the video processing begins in the server and the page

shown in Figure A.6 will show up.

Users can refresh the web browser to see the status of the processing or close the

browser and check the results later on. Once the processing begins, it will run in the

server regardless of whether the user closes the browser or not.

A.3.3 Results

The results are listed on the “Results” menu as in Figure A.7.

The result for each upload can be viewed by clicking on the corresponding upload

time. Figure A.8 is an example of the result.
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Fig. A.7. Sleep Web App Manual: Results.

Fig. A.8. Sleep Web App Manual: Final result page. Download
buttons for per-minute sleep analysis result and sleep summary results
are provided.
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A.4 Environments

The Sleep Web App is implemented in one of the servers in Video and Image

Processing Laboratory. The server uses Apache Web server [178] on Linux (Ubuntu

14.04.5 LTS). The Sleep Web App uses a python-based web development framework,

Flask [179].

A.4.1 Installations (system level)

This section describes how to deploy Anaconda-based web application to Apache

Server.

Install Apache and Anaconda

sudo apt-get install apache2 apache2-bin apache2-dev

wget (url for Anaconda) & check md5sum

sudo bash Anaconda2-5.2.0-Linux-x86_64.sh -bfp /opt/anaconda2

Install conda packages and Web Server Gateway Interface (WSGI). WSGI enables

python modules to be used in Apache server.

sudo su ## Login as superuser

export PATH=/opt/anaconda2/bin:\$PATH ## Add conda to your path

pip install mod_wsgi

mod_wsgi-express install-module ## check the outputs to this commands

(used for Apache configuration in the next step)

conda install -c anaconda flask

sudo apt-get install libapache2-mod-wsgi python-dev

Three files, wsgi.conf, wsgi.load, and 000-default.conf, need to be updated

to update Apache Configurations. After making changes to each file, don’t forget to

restart Apache using the command sudo service apache2 restart to see if it reports

any error.
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First, open the file /etc/apache2/mods-available/wsgi.conf and add the follow-

ing

<IfModule mod_wsgi.c>

WSGIPythonHome /opt/anaconda2

WSGIPythonPath /opt/anaconda2/lib/python2.7/site-packages

</IfModule>

Second, open the file /etc/apache2/mods-available/wsgi.load and add the fol-

lowing

LoadModule wsgi_module /usr/lib/apache2/modules/mod_wsgi-py27.so

Note: This is the output from ‘mod_wsgi-express install-module’ so yours could

be different.

If the LoadModule wsgi_module /usr/lib/apache2/modules/mod_wsgi.so already

exists in the file, comment it out. Otherwise, the apache server will run the default

python instead of the python within Anaconda.

Enable the wsgi mod:

sudo a2enmod wsgi

It will output ‘Module wsgi already enabled’

Third, open the file /etc/apache2/sites-available/000-default.conf and add

the following

WSGIDaemonProcess sleepapp python-home=/opt/anaconda2

python-path=/var/www/flask/sleep

WSGIScriptAlias /~sleep /var/www/flask/sleep/sleepapp.wsgi

<Directory /var/www/flask/sleep>

WSGIProcessGroup sleepapp

WSGIApplicationGroup %{GLOBAL}

WSGIScriptReloading On

Order allow,deny
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Allow from all

Require all granted

</Directory>

With the above configurations, the Apache server will run sleepapp.wsgi in

/var/www/flask/sleep. In order to link this path in the root directory of an apache

server, /var/www, with a directory in another location, project_directory, you can

use symlink named sleep under /var/www/flask/ and create symlink to the other

directory

# ln -s [project_directory=/pub1/jeehyun/LSTM/sleep_website/server]

[symlink_name=sleep]

ln -s /pub1/jeehyun/LSTM/sleep_website /var/www/flask/sleep

To have Apache server run the project, need to set the group ownership of both

the symlink and the linked directory to www-data:

chown -h :www-data /var/www/flask/sleep

chown :www-data /var/www/flask/sleep/*

If the website is not loading, check followings to make sure all the settings are

correct.

• See if Anaconda env is properly loading (e.g. python version, system path)

• the error logs stored in /var/log/apache2/error.log

A.4.2 Installations (for sleep/awake classification)

The sleep/awake classification is implemented in the same server as the Web

server.

The libraries used for this method are TensorFlow [177] and OpenCV [176].

OpenCV is used with both C++ and Python 2.7. The libraries can be installed

either in the server or in Anaconda environment.
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B. SOURCE CODE

The source code used in this thesis can be downloaded from Git repository of Video

and Image Processing Laboratory (VIPER) or Purdue ECN server, stargate.ecn.purdue.edu.

The VHR-related source code is in the Blush project in VIPER Git repository:

https://lorenz.ecn.purdue.edu:3000/Blush

Source code related to Sleep studies are in the Sleep project in VIPER Git repos-

itory:

https://lorenz.ecn.purdue.edu:3000/sleep

Source code used in Chapter 6 can be found in Purdue ECN server, stargate.ecn.purdue.edu,

in following path directory:

/home/stargate/a/sig/choe11/softwares/softwares_SSIAI2014


