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ABSTRACT

Rodriguez, Jose S. Ph.D., Purdue University, August 2019. Solution of Large-scale
Structured Optimization Problems with Schur-complement and Augmented La-
grangian Decomposition Methods. Major Professor: Carl D. Laird.

In this dissertation we develop numerical algorithms and software tools to fa-

cilitate parallel solutions of nonlinear programming (NLP) problems. In particular,

we address large-scale, block-structured problems with an intrinsic decomposable

configuration. These problems arise in a great number of engineering applica-

tions, including parameter estimation, optimal control, network optimization, and

stochastic programming. The structure of these problems can be leveraged by op-

timization solvers to accelerate solutions and overcome memory limitations, and

we propose variants to two classes of optimization algorithms: augmented La-

grangian (AL) schemes and Schur-complement interior-point methods.

The convergence properties of augmented Lagrangian decomposition schemes

like the alternating direction method of multipliers (ADMM) and progressive hedg-

ing (PH) are well established for convex optimization but convergence guarantees

in non-convex settings are still poorly understood. In practice, however, ADMM

and PH often perform satisfactorily in complex non-convex NLPs. In this work,

we study connections between the method of multipliers (MM), ADMM, and PH

to derive benchmarking metrics that explain why PH and ADMM work in prac-

tice. We illustrate the concepts using challenging dynamic optimization problems.

Our exposition seeks to establish more formalism in benchmarking ADMM, PH,

and AL schemes and to motivate algorithmic improvements.

The effectiveness of nonlinear interior-point solvers for solving large-scale prob-

lems relies quite heavily on the solution of the underlying linear algebra systems.
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The schur-complement decomposition is very effective for parallelizing the solu-

tion of linear systems with modest coupling. However, for systems with large

number of coupling variables the schur-complement method does not scale fa-

vorably. We implement an approach that uses a Krylov solver (GMRES) precon-

ditioned with ADMM to solve block-structured linear systems that arise in the

interior-point method. We show that this ADMM-GMRES approach overcomes

the well-known scalability issues of Schur decomposition.

One important drawback of using decomposition approaches like ADMM and

PH is their convergence rate. Unlike Schur-complement interior-point algorithms

that have super-linear convergence, augmented Lagrangian approaches typically

exhibit linear and sublinear rates. We exploit connections between ADMM and the

Schur-complement decomposition to derive an accelerated version of

ADMM. Specifically, we study the effectiveness of performing a Newton-Raphson

algorithm to compute multiplier estimates for augmented Lagrangian methods.

We demonstrate using two-stage stochastic programming problems that our mul-

tiplier update achieves convergence in fewer iterations for MM on general nonlin-

ear problems. In the case of ADMM, the newton update significantly reduces the

number of subproblem solves for convex quadratic programs (QPs). Moreover,

we show that using newton multiplier updates makes the method robust to the

selection of the penalty parameter.

Traditionally, state-of-the-art optimization solvers are implemented in low-level

programming languages. In our experience, the development of decomposition al-

gorithms in these frameworks is challenging. They present a steep learning curve

and can slow the development and testing of new numerical algorithms. To mit-

igate these challenges, we developed PyNumero, a new open source framework

implemented in Python and C++. The package seeks to facilitate development of

optimization algorithms for large-scale optimization within a high-level program-

ming environment while at the same time minimizing the computational burden

of using Python. The efficiency of PyNumero is illustrated by implementing algo-
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rithms for problems arising in stochastic programming and optimal control. Tim-

ing results are presented for both serial and parallel implementations. Our compu-

tational studies demonstrate that with the appropriate balance between compiled

code and Python, efficient implementations of optimization algorithms are achiev-

able in these high-level languages.
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1. INTRODUCTION

1.1 Motivation

Optimization of process systems has proven to be an effective method for im-

proving operation and decision making in many industrial applications. The suc-

cess of numerical optimization along with the rapid evolution of computing tech-

nologies has allowed solution of many previously intractable problems. When

analyzing complex optimization problems, three features are commonly encoun-

tered. The first feature is that these problems are inherently large, often containing

thousands or even millions of variables and constraints. Fortunately, a second

common feature is that these problems are highly structured. Large-scale prob-

lems are often the result of discretization (in time, space, or uncertainty) or the

result of large network structure. A third feature present is that these optimization

problems are often integrated in real-time frameworks where they are expected to

be solved rapidly.

Because of the size and complexity, as well as the need to solve optimization

problems quickly, specialized or tailored approaches are often required. This the-

sis focuses on problem decomposition approaches that exploit the structure of

the problem and allow efficient solution by successively solving smaller, more

tractable subproblems. High-performance parallel computing architectures can

be used for rapid execution of these algorithms, and this work seeks to design de-

composition algorithms together with software tools for efficient parallel solution

of large-scale optimization.

There are two decomposition strategies considered in this work: problem-level

decomposition and internal linear decomposition. Problem-level decomposition

includes approaches like Lagrangian decomposition, Bender’s decomposition and
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progressive hedging. Internal linear decomposition focuses on parallelizing an ex-

isting host algorithm through parallel solution of the linear algebra. Of course,

these two approaches are related, and this work explores this relationship in the

pursuit of efficient algorithms. We pay particular attention to augmented La-

grangian and Schur-complement interior-point methods. We highlight the advan-

tages and disadvantages of these approaches when used separately and propose

algorithms that blend ideas from both methods.

1.2 Large-Scale Nonlinear Optimization

Nonlinear optimization considers the following programming problem:

min f(x)

s.t. c(x) = 0

xL  x  xU ,

(1.1)

where x 2 Rn are the primal variables, f : Rn!R the objective function, and

c : Rn!Rm the constraints. The vectors xL and xU are the lower and upper bounds

on x. We assume both f and c can be non-convex, but twice continuously differen-

tiable. We also assume that at any local minimum x⇤, the linear independence con-

straint qualification (LICQ) and second-order sufficient conditions (SOSC) hold.

We refer to this problem as a general nonlinear programming problem. Problems with

general inequality constraints can be transformed to (1.1) by introducing slack vari-

ables. Details on mathematical transformations to write NLPs in the form of (1.1)

are discussed in Appendix A.

This general problem formulation can be addressed by a great number of nu-

merical algorithms. Among the most successful methods for solving general non-

linear optimization problems we highlight primal-dual interior-point methods. The

packages Ipopt and Knitro are two well-known implementations of interior-

point methods. In our work we have implemented a nonlinear interior-point frame-



3

work for researching and prototyping numerical routines tailored to accelerate so-

lutions of (1.1).

Another category of methods that has recently regained attention for solving

(1.1) are the augmented Lagrangian methods. These methods have been popular for

many years because of their simplicity, but most recently because of their appli-

cability to distributed optimization. Examples of optimization software that run

efficient implementations of augmented Lagrangian methods are ALGENCAN and

LANCELOT. In our work we used ideas from the augmented Lagrangian method

as our work horse to accelerate solution of structured optimization problems of the

form (1.1).

In this dissertation we combine ideas from augmented Lagrangian and interior-

point methods to design decomposition algorithms for problem (1.1), and in the

next two subsections we briefly discuss fundamental concepts of both approaches

to familiarize the reader with notation as well as methodology.

1.2.1 Interior-point Method

The interior-point algorithm considers the barrier subproblem where the vari-

able bounds are removed and replaced with barrier terms in the objective,

min f(x)� µ
nX

i=1

ln(x
(i)
U � x(i)

)� µ
nX

i=1

ln(x(i) � x
(i)
L )

s.t. c(x) = 0.

(1.2)

Here (i) denotes the ith element of the corresponding vector and µ is the barrier

parameter for a single barrier iteration. The Lagrangian of the barrier subproblem

(1.2) can then be written as

L = f(x)� µ
nX

i=1

ln(x
(i)
U � x(i)

)� µ
nX

j=1

ln(x(j) � x
(j)
L ) + �T c(x), (1.3)
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where y is the vector of equality constraint multipliers. The general optimality

conditions are

rxL = rxf(x) + µ(SU)
�1e� µ(SL)

�1e+rxc(x)� = 0

c(x) = 0,
(1.4)

with SU=diag(xU�x) and SL=diag(x�xL). The primal-dual formulation is formed

by introducing new variables, zU=µ[SU ]
�1e and zL=µ[SL]

�1e. Since the algorithm

maintains xU�x � 0 and x�xL � 0, it follows that the new variables zU , zL � 0.

The optimality conditions with these new variables are

rxL = rxf(x) + zU � zL +rxc(x)� = 0

c(x) = 0

SLzL � µe = 0

SUzU � µe = 0.

(1.5)

Newton’s method is used to solve this nonlinear system of equations for a partic-

ular value of the barrier parameter µ. The linear system that must be solved for

each iteration k of Newton’s method is
2

6666664

r2

xxLk
(Jk

)

T �I I

Jk
0 0 0

Zk
L 0 Sk

L 0

�Zk
U 0 0 Sk

U

3

7777775

2

6666664

�xk

��k

�zkL

�zkU

3

7777775
= �

2

6666664

rxf
k
+ zkU � zkL + (Jk

)

T�

ck

Sk
Lz

k
L � µe

Sk
Uz

k
U � µe

3

7777775
, (1.6)

where �xk, �yk, �zkL, and �zkU are the full steps for each of the respective vari-

ables, Zk
L = diag(zkL), Zk

U = diag(zkU), ck = c(xk
), Jk

=rxc(x
k
)

T , rxf
k
=rxf(x

k
), and

r2

xxLk
=r2

xxL(xk
). The solution of (1.6) constitutes the core of the interior-point

algorithm as it determines the step direction to update both primal and dual vari-

ables towards optimality. Several strategies have been proposed in the literature

to solve (1.6) [Benzi et al., 2005, Greif et al., 2014]. Here we choose to reduce the

4 ⇥ 4 block system to a symmetric 2 ⇥ 2 block system often called the augmented
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form. This is achieved by multiplying the third block row by (Sk
L)

�1, the fourth

block row by (�Sk
U)

�1, and adding these rows to the first block row, giving

2

4D
k

(Jk
)

T

Jk
0

3

5

| {z }
K

2

4�xk

��k

3

5

| {z }
��

= �
2

4r̃
k
x

ck

3

5

| {z }
r

,
(1.7)

where,

Dk
= r2

xxLk
+ (Sk

L)
�1Zk

L + (Sk
U)

�1Zk
U (1.8)

r̃kx = rxf
k
+ (Jk

)

T�� (Sk
L)

�1µe+ (Sk
U)

�1µe. (1.9)

To ensure descent [Biegler, 2010], inertia correction algorithms are typically

used to modify (1.7) and satisfy In(K) = (n,m, 0) where n,m are the number of

positive and negative eigenvalues. The inertia correction modifies (1.7) by adding

primal and dual regularization to its block diagonals. The modified system is

2

4D
k
+ �xI (Jk

)

T

Jk ���I

3

5

2

4�xk

��k

3

5
= �

2

4r̃
k
x

ck

3

5 , (1.10)

where, �x and �� are chosen to ensure the inertia condition is satisfied. This system

is solved at each iteration to calculate the full step in x and y. The steps �zU and

�zL can be computed as follows:

�zkL = �(Sk
L)

�1Zk
L�xk � zkL + µ(Sk

L)
�1e (1.11)

�zkU = (Sk
U)

�1Zk
U�xk � zkU + µ(Sk

U)
�1e. (1.12)
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The variable values for the next iteration are determined by,

xk+1

= xk
+ ↵k

�xk (1.13)

�k+1

= �k
+ ↵k

��k, (1.14)

zk+1

L = zkL + ↵k
L�zkL (1.15)

zk+1

U = zkU + ↵k
U�zkU , (1.16)

where ↵k is the step size determined by an appropriate line-search and ↵k
L and

↵k
U are step sizes determined using a fraction to the boundary rule. Once the bar-

rier subproblem has converged, the barrier parameter is updated and the process

is repeated. The complete interior-point algorithm is summarized in Algorithm

1. The algorithm is a primal-dual interior-point method with a filter-based line-

search based on that described in [Wächter and Biegler, 2006].

1.2.2 The Augmented Lagrangian Method

We review now the augmented Lagrangian method (ALM), alternatively re-

ferred to as method of multipliers. This method is a fundamental base for many

different nonlinear programming algorithms. It combines concepts from penalty

functions and duality theory. As opposed to the interior-point that solves for

x⇤ and �⇤ simultaneously, the ALM solves a sequence of optimization problems

where estimates xk and �k are obtained iteratively. The sequence of problems

solved has the following form:

min

x2X
L⇢(x,�

k
) = f⇢(x) + c(x)T�k

= f(x) +
⇢

2

c(x)T c(x) + c(x)T�k (1.17)

where ⇢ 2 R+ is a penalty parameter and X = {x|xL  x  xU}. A typical

ALM implementation starts with an initial estimate �0. Using the initial estimate,
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Algorithm 1: Interior-point Method
1. Initialize the algorithm

Given starting point (x0,�0, z0L, z
0

U) with �0, z0L, z
0

U > 0; an initial barrier
parameter µ

0

> 0; tolerance constants ✏tol,✏ > 0; maximum number of
iterations kmax

Set the iteration index k  0

2. Check convergence of the overall NLP
if max{k r

x

Lkk1, k ck k1, k Sk

L

z

k

L

k1, k Sk

U

z

k

U

k1}  ✏

tol

then exit.
3. Check convergence of barrier subproblem

if max{k r
x

Lkk1, k ck k1, k Sk

L

z

k

L

� µ

k

e k1, k Sk

U

z

k

U

� µ

k

e k1}  

✏

µ

k then
Update µk according to equation (7) in [Wächter and Biegler, 2006]
Return to step 2

4. Calculate functions and gradients
Evaluate f(xk

), c(xk
), rxf(x

k
), rxc(x

k
), and r2

xxL(xk,�k
)

5. Compute the search direction (full-step)
5.1 Solve (1.10) for �xk and ��k, correcting the inertia if necessary

5.2 Compute �zkL and �zkU from (1.11) and (1.12)

5.3 Compute values for ↵k, ↵k
L, and ↵k

U using fraction-to-the-boundary rule
6. Update ↵k using the line-search filter from [Wächter and Biegler, 2006]
7. Update iteration variables and continue to next iteration

Compute (xk+1,�k+1, zk+1

L , zk+1

U ) using (1.13–1.16)
Let µk+1  µk and k  k + 1

if k < k
max

then exit with error.
Return to step 3

xk+1

= x(�k
) is found by solving (1.17). Next, the multiplier estimates are updated

according to

�k+1

= �k
+ ⇢c(xk+1

), (1.18)

and the process is repeated until krxL⇢(x,�
k
)k  ✏ and c(x)  ✏. We highlight that

the method relies in an intrinsic relation between primal and dual variables that

allows the sequence of updates to converge to (x⇤,�⇤
). To establish this relation

we define the dual function �(�) in (1.19) and state three lemmas that explain the

reasoning behind the update formulas.

�(�) = min

x
f⇢(x) + �T c(x). (1.19)
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Lemma 1.2.1 The gradient of the dual function is given by:

r��(�) = c(x) (1.20)

Lemma 1.2.2 The Hessian of the dual function is given by 1:

r2

���(�) = �rxc(x)r2

xxL⇢(x,�)
�1rxc(x)

T (1.21)

Lemma 1.2.3 Let P and Q be two symmetric matrices. Assume that Q is positive semidef-

inite and P is positive definite on the Null space of Q, that is xTPx > 0 8 {x|xTQx =

0}. Then there exits a scalar ⇢⇤ such that

xT
(P + ⇢Q)x > 0 8⇢ � ⇢⇤

The update formula for the multiplier estimates presented in (1.18) follows a

gradient based update. In fact, using Lemma 1.2.1 and comparing with (1.18) it is

clear that ALM updates multiplier estimates by performing a dual-ascent strategy

of the form

yk+1

= yk + ↵r��(�). (1.22)

In view of (1.18) as a dual-ascent update, it is natural to consider a Newton update

instead. Using Lemma 1.2.2 and assuming that (1.19) is twice continuously differ-

entiable, (1.22) can be modified to follow a second-order update of the following

form:

yk+1

= yk + ↵r2

���(�)
�1r��(�), (1.23)

This means that one can carry out first or second-order multiplier updates within

the ALM framework. We will see in Chapter 5 that using (1.23) can actually accel-

erate the convergence rate of ALM. We will also see in Chapter 3 under which con-

ditions the ALM is guaranteed to converge. Here we show using Lemma 1.2.3 that

one condition for convergence of (1.17) is that ⇢ must be sufficiently large. Observe

that for (1.17) to converge to a stationary-point, f⇢(x) must be bounded from be-

low. By applying Lemma 1.2.3 with P = r2

xxL(x⇤,�⇤
) and Q = rxc(x

⇤
)rxc(x

⇤
)

T it
1Proofs for the lemmas can be found in Appendix B.



9

follows that given ⇢ � ⇢⇤ the Hessian of the Augmented Lagrangianr2

xxL⇢(x
⇤,�⇤

)

is positive definite and consequently (1.17) locally convex in the neighborhood of

x⇤. Hence, provided that rxc(x
⇤
) is full row-rank because of our LICQ assump-

tion, the solution of (1.17) exist and is unique if and only if ⇢ � ⇢⇤. An excellent

discussion regarding the properties of the ALM can be found in [Bertsekas, 1999].

We summarize the standard ALM in Algorithm 2.
Algorithm 2: Augmented Lagrangian Method

1. Initialize the algorithm

Given penalty parameter ⇢ > 0; tolerance ✏ > 0; estimates �0; maximum

number of iterations kmax

Set the iteration index k  0

2. Update primal variables

(xk+1

) = argmin

x2X
L⇢(x,�

k
)

2. Update dual variables

�k+1

= �k
+ ⇢r��(�)

3. Check convergence

if kck+1k  ✏ then exit, solution found.

else Return to step 2

1.3 Thesis Outline

Our goal is to develop decomposition algorithms and software tools to facili-

tate parallel solution of nonlinear programming problems with applications that

arise in engineering problems in the form of stochastic and dynamic optimization.

Therefore, this dissertation is organized into two parts.

The first part describes decomposition algorithms for NLP problems. We con-

centrate on Schur-complement and Augmented Lagrangian approaches that have

proven to be very effective for solution of problems with millions of variables and

constraints in a distributed, parallelizable manner. We start the discussion of de-

composition methods in Chapter 2 with an overview of the Schur-complement
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decomposition for solving structured optimization problems, along with the cor-

responding formulations for stochastic and dynamic optimization problems. We

demonstrate the pros and cons of the Schur-complement method solving a case

study of a dynamic parameter estimation problem in water distribution systems.

We will see that while significant speedup is possible using this approach, it typi-

cally involves specialized parallel implementations of the interior-point algorithm

that require considerable coding effort.

Chapter 3 proposes the use of augmented Lagrangian based approaches for

general non-convex nonlinear structured optimization problems. These methods

are attractive due to their flexibility and ease of implementation. Moreover, re-

cent work in [Zhang and Kwok, 2014, Chang et al., 2016] proposes asynchronous

augmented Lagrangian algorithms that can further exploit parallel computing en-

vironments. One drawback of these approaches, however, is that convergence is

not well understood in the non-convex setting. Chapter 3 focuses on two of these

approaches (the alternating direction method of multipliers and progressive hedg-

ing), and studies convergence from the perspective of the method of multipliers

for which theory is well established in convex and non-convex problems. Bench-

mark metrics and chemical engineering applications of standard distillation and

reactive systems are presented in Chapter 3.

In order to solve structured programs with a large number of coupling vari-

ables, Chapter 4 proposes an algorithm for solving structured KKT systems effi-

ciently through iterative linear solvers like GMRES using ADMM as a precondi-

tioner. This approach is unique in that the preconditioning technique is applicable

for structured KKT systems in general. While preconditioners are typically de-

signed for a particular application, the ADMM preconditioner is applicable to a

large class of problems. Furthermore, the ease of implementation of ADMM facil-

itates designing an algorithm that calls ADMM as a functional preconditioner in

every matrix-vector product of the GMRES algorithm. We assess the effectiveness

of this approach using stochastic programming problems with a large number of
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first-stage variables. For these problems the Schur-complement decomposition of

Chapter 2 becomes intractable. The ADMM-GMRES method on the other hand

solves the problem robustly in few iterations almost regardless of the number of

coupling variables.

An important drawback of using augmented Lagrangian decomposition algo-

rithms like ADMM and PH is their linear (or even sublinear) convergence rate. To

accelerate ADMM we propose a second-order update strategy for the multiplier

variables. Chapter 5 presents a derivation of the second-order update and com-

pares the strategy with the Schur-complement decomposition. We perform sev-

eral numerical experiments on stochastic programming problems to evaluate the

effectiveness and robustness of the second-order update. Our results indicate that

the second-order update is particularly beneficial for convex QPs. On one hand

it significantly reduces the number of ADMM iterations. On the other hand it is

remarkably insensitive to the choice of the penalty parameter. Furthermore, un-

like the Schur-complement decomposition it does not require forming the Schur-

complement matrix to update multiplier variables of the linking constraints. All

these together makes the second-order ADMM strategy an excellent candidate for

solving structured KKT systems that arise in the interior-point algorithm.

The second part of this dissertation describes PyNumero, a new open-source

object-oriented programming framework for designing and prototyping general

nonlinear optimization algorithms from Python. Typically, efficient optimization

solvers are complex code bases written in low-level compiled programming lan-

guages. Their high performance computing features makes them very attractive

languages for solving large-scale optimization problems. However, these low-level

programming languages require significant software engineering expertise and a

steep learning curve that slows development. PyNumero seeks to mitigate these

challenges and aims to facilitate research of decomposition algorithms for nonlin-

ear optimization problems. The package gives access to all high-level features of

the Python programming language without making large sacrifices on computa-
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tional performance. A description of the package together with examples of im-

plementations of decomposition algorithms are presented in Chapter 6.
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2. SCHUR-COMPLEMENT DECOMPOSITION

This chapter describes the Schur-complement method used for solving structured

optimization problems with parallel computing machines. We will start with a

general overview of algorithms that accelerate the solution of structured KKT sys-

tems arising in interior-point and sequential quadratic programming (active set)

methods. For continuous nonlinear optimization problems, these two approaches

have proven to be the most successful general purpose algorithms. Several interior-

point implementations exist, including Ipopt [Wächter and Biegler, 2006],

Knitro[Byrd et al., 2006b], and LOQO [Vanderbei, 1999]; SQP implementations

include Filter-SQP [Fletcher et al., 2002], and Snopt [Gill et al., 2002]. Regard-

less of the choice of implementation, both interior-point and SQP methods have as

their most computational expensive step the factorization of the KKT system. For

this reason there has been active research on accelerating the solution of nonlinear

optimization problems by focusing on speeding up the solution of the KKT.

For structured NLP problems, particularly those arising in stochastic program-

ming and dynamic optimization, interior-point methods are preferable over active-

set SQP methods. This is because in the interior-point method the structure of

the KKT matrix remains the same at each iteration, making the development of

tailored linear solvers convenient. Typically, these tailored approaches rely on

the Schur-complement matrix to decompose the solution of the KKT system into

smaller linear systems that can be solved in a distributed-paralellizable fashion.

Examples of parallel interior-point solvers that exploit structure using the Schur-

complement matrix are OOPS [Gondzio and Sarkissian, 2003], Schur-Ipopt [Kang

et al., 2014], and Pips-Nlp [Chiang et al., 2014]. These solvers often exhibit ex-

cellent convergence rates and almost perfect scaling efficiency for problems with
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small number of coupling variables. Unfortunately, one disadvantage of Schur-

complement based approaches is that they require forming and solving the dense

Schur system which makes them intractable for problems with large number of

coupling variables. For this reason, in this chapter we discuss a Schur-complement

decomposition that is appropriate for two-stage stochastic programming and dy-

namic optimization problems with low degree of coupling. Later in Chapter 4 we

present an approach that can overcome the disadvantages of Schur-complement

decomposition.

The remainder of this chapter is organized as follows: Section 2.1 provides an

overview of different algorithms that parallelize the solution of KKT systems that

arise in the interior-point methods. The overview includes algorithms for general

unstructured KKT matrices as well as algorithms for block-structured KKTs. Sec-

tions 2.1.1 and 2.1.2 review specialized structures in stochastic programming and

dynamic optimization that are parallelizable with the schur-complement decom-

position. Section 2.2 concludes the chapter with a case study in water distribu-

tion systems. Numerical results are presented for a parallel implementation of the

interior-point algorithm.

2.1 Overview of Internal Decomposition Algorithms

In order to parallelize interior-point and active-set SQP methods, numerous

algorithms have been proposed. These algorithms are often referred to as inter-

nal decomposition approaches since they make modifications to a host algorithm

(interior-point or SQP) with the aim of parallelizing it. Typically, these modifica-

tions target the solution of the KKT system because it is the dominant computation

of Newton-based approaches. The modifications can be categorized in two classes:

the first class is designed for general unstructured KKT systems and the second

class for specialized structures that can benefit from tailored linear solvers.

Parallel algorithms for general unstructured NLPs focus on solving the KKT

system with direct and iterative parallel linear solvers. Several parallel linear
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solvers exist. Examples of parallel linear solvers used within an optimization con-

text include MUMPS [Amestoy et al., 2001, 2006], PARDISO [Schenk and Gärtner,

2004] and MA86/MA97 [Hogg and Scott, 2010], WSMP [Gupta et al., 1998], and El-

emental [Romero et al., 2012]. Amestoy et al. [2001] implemented a distributed

memory approach that exploits sparsity and solves large systems through LDL or

LU factorization. Schenk and Gärtner [2004] developed a parallel LU factorization

method integrated into the PARDISO solver. Hogg and Scott [2010] developed a

symmetric indefinite sparse direct solver within the HSL library. In addition to par-

allel direct factorization techniques, iterative methods for solving sparse matrices

with parallel computing have also been developed. The PETSc library supports

GPU implementations for Krylov subspace solvers [Balay et al., 1997, Abhyankar

et al., 2018]. Among iterative solvers, the preconditioned conjugate gradient (PCG)

has proven to be very efficient for solving general unstructured KKT systems [Li

and Saad, 2013, Helfenstein and Koko, 2011, Buatois et al., 2009].

Real, large-scale, nonlinear optimization problems have often an inherent block

structure in the KKT system that can be exploited to achieve higher paralleliza-

tion efficiency. The work of Gondzio and Sarkissian [2003], Chiang et al. [2014],

[Castro, 2007], and [Kang et al., 2014], has demonstrated that outstanding com-

putational performances can be obtained when exploiting structure by using the

Schur-complement matrix. We are interested in particular in structured KKT sys-

tems that arise in stochastic programming and dynamic optimization. We review

now the block structures for both type of problems and study them within the

context of Schur-complement decomposition. It is important to note, however,

that despite we are concentration on the structure of these two types of problems,

the decomposition algorithms described along this dissertation are applicable to

structured optimization problems in general.
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2.1.1 Stochastic Optimization and Schur-complement

Consider the two-stage stochastic program of the form

min

q2Rn

q

fq(q) + E[Q(q,)] (2.1.1)

s.t. cq(q) = 0 (2.1.2)

qL  q  qU (2.1.3)

Here, q 2 Rn
q is the vector of first stage variables, and  2 Rn

 the vector of un-

certain parameters. The realization of uncertain parameters reveals in the second

stage problem Q(q,):

min

x


f(q, x) (2.2.1)

s.t. c(q, x) = 0 (2.2.2)

xL


 x  xU


(2.2.3)

Here, x is the vector of second stage variables. The objective function f and

the constraints c depend on the realization of the uncertainty of . This real-

ization is usually modeled with a finite number of scenarios with probabilities

⇠
1

, ..., ⇠P where P is the number of scenarios. We denote the set of scenarios as

P := 1, · · · , P . After discretizing the uncertainty space with a finite number of

scenarios, E[Q(q,)] =
P

i2P ⇠s Q(q,s), and problem (2.1) can be written in the

following form:

min fq(q) +
X

i2P
fi(q, xi) (2.3.1)

s.t. cq(q) = 0 (�q) (2.3.2)

ci(q, xi) = 0 (�i), i 2 P (2.3.3)

qL  q  qU (⌫q) (2.3.4)

xL
i

 xi  xU
i

(⌫i), i 2 P . (2.3.5)
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Here, xi is the vector of second stage variables in scenario i, �q 2 <m
q and ⌫q 2 <n

q

are the vectors of dual variables for the first stage, and �i 2 <m
i and ⌫i 2 <n

i are the

vectors of dual variables in the second stage. We drop ⇠i and redefine the objective

functions fi = ⇠ifi8i 2 P . To take advantage of the structure of the problem we

introduce duplicates of the first stage variables in every scenario and rewrite the

problem as follows:

min fq(A1

x
1

) +

X

i2P
fi(xi) (2.4.1)

s.t. cq(A1

x
1

) = 0 (�q) (2.4.2)

ci(xi) = 0 (�i), i 2 P (2.4.3)

Aixi � q = 0 (yi) i 2 P (2.4.4)

qL  q  qU (⌫q) (2.4.5)

xL
i

 xi  xU
i

(⌫i) i 2 P . (2.4.6)

where xi includes the second stage variables in (2.3) plus the duplicates of q, and Ai

are linking matrices that extract the duplicates of q from each scenario. The equal-

ity and bound constraints previously applied on q only transfer to the first scenario

to prevent redundant constraints. The non-anticipativity is enforced with constraint

(2.4.5). Note that without (2.4.5), (2.4) can be decomposed into P subproblems

min

x1

fq(A1

x
1

) + fi(x1

)

s.t. cq(A1

x
1

) = 0

c
1

(x
1

) = 0 and,

qL  A
1

x
1

 qU

xL1  x
1

 xU1

min

x
i

fi(xi)

s.t. ci(xi) = 0

xL
i

 xi  xU
i

8i 2 {2, · · · , P}
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The decomposable structure of (2.4) is inherited by the KKT system that can be

permuted in an arrowhead form
2

6666666664

K
1

B
1

K
2

B
2

. . . ...

KP BP

BT
1

BT
2

. . . BT
P Kq

3

7777777775

2

6666666664

�w
1

�w
2

...

�wP

�q

3

7777777775

=

2

6666666664

r
1

r
2

...

rP

rq

3

7777777775

, (2.7)

where,

�wT
1

:= [�xT
1

,��T
1

,��T
q ,�yT

1

]

�wT
i := [�xT

i ,��T
i ,�yTi ] 8i 2 {2..P}

rTq :=

X

i2P
yi

rT
1

= �
h�rx1L1

+ ⌫
1

� (SL1)
�1µe+ (SU1)

�1µe
�T

, cT
1

, cTq , (A1

x
1

� q)T
i

rTi = �
h�rx

i

Li + ⌫i � (SL
i

)

�1µe+ (SU
i

)

�1µe
�T

, cTi , (Aixi � q)T
i

8i 2 {2..P}

Kq :=

h
0n

q

i

K
1

:=

2

6666664

D
1

JT
1

JT
q AT

1

J
1

Jq

A
1

3

7777775
(2.8)

K
1

:=

2

6664

Di JT
i AT

i

Ji

Ai

3

7775

B
1

:=

h
0 0 0 �I

i

Bi :=

h
0 0 �I

i
8s 2 {2..S}

Dk
i = r2

x
i

x
i

Lk
i + (Sk

L
i

)

�1Zk
L
i

+ (Sk
U
i

)

�1Zk
U
i

8i 2 {1..P}
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Here ci=ci(xi), cq = cq(Aqx1

), Ji=rx
i

ci(xi)
T , and Jq=rA1x1cq(A1

x
1

)

T . When

all Ki blocks are nonsingular, block-Gaussian elimination brings (2.7) to a block-

upper triangular form allowing for decomposition. The approach solves first for

the first-stage variables using the Schur-complement matrix and then solve for the

second-stage variables as follows:

(K
0

�
X

i2P
BT

i K
�1

i Bi

| {z }
S

)�q = r
0

�
X

i2P
BT

i K
�1

i ri

| {z }
r
s

(2.9.1)

Ks�wi = ri � Bi�q, 8i 2 P . (2.9.2)

If any Ki block is singular, inertia correction routines can be used to ensure

nonsingularity of all blocks including S [Kang et al., 2014]. Furthermore, the in-

ertia correction will no only ensure that the blocks are invertible, but ensures the

requirements of the line-search filter method in Algorithm 1 are satisfied.

2.1.2 Dynamic Optimization and Schur-complement

Dynamic optimization seeks solution of models with time-changing variables

and parameters that describe dynamic systems in the form of ordinary differential

equations (ODEs), differential-algebraic equations (DAEs), or partial differential

equations (PDEs). A dynamic optimization problem is commonly represented on

a continuous time horizon T := [t
0

, tf ] ✓ R

min

Z t
f

t0

�(s(t), u(t), w(t),) dt (2.10)

s.t. F (ṡ(t), s(t), u(t), w(t),) = 0, (2.11)

s(t
0

) = s
0

(2.12)

sL  s(t)  sU (2.13)

uL  u(t)  uU (2.14)

wL  w(t)  wU . (2.15)
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where s 2 Rn
s are known as the state variables, u 2 Rn

u are the control or ma-

nipulated variables, w 2 Rn
w are the algebraic variables,  2 Rn

 the parameters,

and x(t) = (s(t), u(t), w(t),) is a composition vector containing all variables. The

idea is to optimize some performance criterion � subject to a set of physical con-

straints F . In some situations, instead of optimizing performance of the system,

one is interested in estimating the system parameters from observations made at

time tk 2 T 8 k 2 {1, ...,M} discrete points in time. These are called dynamic es-

timation problems. In Sections 2.2 we describe the particular problem of demand

estimation in water distribution networks.

Direct methods have proven to be very effective for solving (2.10) [Biegler, 2010,

Zavala, 2008]. Direct approaches transcribe the dynamic optimization problem

(DOP) into a large-scale NLP. They convert the original infinite-dimensional prob-

lem into a discrete problem by fully or partially discretizing the dynamic equa-

tions. Depending on the sort of discretization, these methods are classified as se-

quential or simultaneous. When only the control signals are discretized, the meth-

ods are said to be sequential methods. The main advantage of using sequential

methods lies in the fact that they generate smaller optimization problems than si-

multaneous methods. However, sequential methods have the disadvantage that

the DAE must be integrated multiple times [Biegler, 2017]. Simultaneous meth-

ods, on the other hand, discretize both state and control variables and include the

set of discretized equations as constraints in the optimization problem. While the

simultaneous approach may result in optimization problems significantly larger

than the ones obtained from the sequential approach, the DAE system is converged

only once, simultaneously with the optimization problem, and this is potential for

improved performance since it results in sparse and structured problems suitable

for parallel computing.

In this dissertation we follow a simultaneous method and discretize all vari-

ables with an orthogonal collocation on finite elements scheme. The discretized

optimization problem can now be written in the form
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min
X

i2P
fi(xi,) (2.16.1)

s.t. A
1

x
1

� s
0

= 0 (�q0) (2.16.2)

ci(xi,) = 0 (�i), i 2 P (2.16.3)

Aixi � Ai+1

xi+1

= 0 (y
i
) i 2 {1, · · · , P � 1} (2.16.4)

Ai�1

xi�1

� Aixi = 0 (yi) i 2 {2, · · · , P} (2.16.5)

xL
i

 xi  xU
i

(⌫i) i 2 P . (2.16.6)

where zi =

h
ṡi,1, si,1, ui,1, wi,1, · · · , ṡi,n

c

, si,n
c

, ui,n
c

, wi,n
c

i
8 i = 1, ..., ne is the

vector of variables within finite element i; these are the discretized variables at

collocation points 1, · · · , nc. Ai and Ai are matrices that extract the state variables

at the beginning and at the end of each finite element. For simplicity of the dis-

cussion we assume here each finite element is a partition block. However, we

highlight that multiple finite elements can belong to one partition. It is important

to note that only the state variables are temporally coupled between partitions, not

the algebraic or control variables. As with the stochastic program, we introduce

decoupling variables and the problem is rewritten as follows:

min
X

i2P
fi(xi,) (2.17.1)

s.t. A
1

x
1

� s
0

= 0 (�q0) (2.17.2)

ci(xi,) = 0 (�i), i 2 P (2.17.3)

Aixi � qi = 0 (y
i
) i 2 {1, · · · , P � 1} (2.17.4)

Aixi � qi�1

= 0 (yi) i 2 {2, · · · , P} (2.17.5)

xL
i

 xi  xU
i

(⌫i) i 2 P . (2.17.6)
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The KKT system for (2.17) can be written in an arrowhead form similar to that

in (2.7). Like with (2.4), using the Schur-complement decomposition can lever-

age the structure in (2.17) facilitating the implementation of parallel linear solvers.

However, unlike in (2.3), the number of coupling variables in (2.17) increases as

the number of block-partitions grows making the approach more restrictive for

dynamic problems. The relation for the number of coupling variables and parti-

tions is given by nq = ns ⇤ (P � 1). Differently than (2.4), the linking between

partitions do not involve all coupling variables. This is because decomposing the

temporal domain only requires linking neighboring partitions which is evidenced

in the linking constraints (2.17.5) and (2.17.6). The block matrices to write the KKT

system of (2.17) in the block-arrowhead form (2.7) are:

�wT
1

:= [�xT
1

,��T
1

,��T
q0
,�yT

1

]

�wT
i := [�xT

i ,��T
i ,�yTi ,�yT

i
] 8i 2 {2..P � 1}

�wT
P := [�xT

P ,��T
P ,�yTP ]

rTq :=

P�1X

i=1

y
i
+

PX

i=2

yi
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1

= �
h�rx1L1
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1
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�1µe
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x
1
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1
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1
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1

)
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Li + ⌫i � (SL
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)

�1µe+ (SU
i

)

�1µe
�T
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�
Aixi � qi�1

�T
, (Aixi � qi)
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i
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Ki :=

2
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Di JT
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i

Ji
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Ai
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8i 2 {2..P � 1}
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KP :=

2

6664

DP JT
P AT

P

JP

AP

3

7775

B
1

:=

2

6666664

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

�I 0 · · · 0

3

7777775

Bi :=

2

6666664

0 · · · 0 · · · 0

0 · · · 0 · · · 0

0 · · · �I · · · 0

0 · · · · · · �I 0

3
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8i 2 {2..P � 1}

BP :=

2
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0 0 · · · 0
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0 0 · · · 0

0 0 · · · �I
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i = r2
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i
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i

Lk
i + (Sk

L
i

)

�1Zk
L
i

+ (Sk
U
i

)

�1Zk
U
i

8i 2 {1..P}

The Schur-complement decomposition provides then a methodology to lever-

age block-structure in the KKT system of dynamic and stochastic optimization

problems, making it possible to solve the linear system in a distributed-paralellizable

manner. In fact, the decomposition approach is applicable to general structures.

Note that for both types of problems here the structure of the optimization ap-

plication is embedded within the A and B matrices, and the steps for the schur-

complement decomposition remain the same. The KKT system can be solved with

3 steps. The first step is to form S and rs by adding the contribution from each

block. This step requires the factorizations of each individual Ki. The second step

is to solve the Equation (2.9.1) to get �q. This step requires one factorization and
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one backsolve of S. With �q, the third step is to compute �wi from Equation

(2.9.2). The approach is summarized in Algorithm 3.

Algorithm 3: Schur-complement decomposition for Structured KKTs

1 foreach i in 1, · · · , N do
2 factor Ki (Using MA27 subroutines)

3 Initialize S by letting S = 0

4 Let rsc = rs

5 foreach i in 1, · · · , N do
6 foreach nonzero column j in A

T
i do

7 solve the system Kis
<j>
i = [B

T
i ]

<j> for s<j>
i

8 let S<j>
= S

<j> �Bis
<j>
i

9 solve the system Kipi = ri for pi
10 let rsc = rsc �Bipi

11 solve S��s = rsc for ��s

12 foreach i in 1, · · · , N do
13 solve Ki��i = ri �B

T
i ��s for ��i

In addition to parallel linear solvers, scalable parallel interior-point algorithms

require the parallelization of all NLP functions and gradient evaluations. Further-

more, all linear algebra operations must be parallelized. These include vector-

vector, matrix-vector and matrix-matrix products. To the best of our knowledge,

there is currently no modeling framework that facilitates all these features in an

intuitive manner. For structured optimization problems, like those presented in

Sections 2.1.1 and 2.1.2, Chiang et al. [2014], Kang et al. [2014], and Word [2014]

implemented C++ parallel interior-point solvers that determine the structure us-

ing AMPL suffixes. In Chapter 6 we discuss a python initiative that seeks to facili-

tate the implementation of parallel interior-point algorithms. Here, we follow the

approach of Word [2014] and solve a case study from water distribution systems

with a parallel interior-point solver based on suffixes.
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2.2 Case Study: Demand Estimation in Water Distribution Systems

Reliable modeling of dynamic systems frequently requires accurate knowledge

of inputs and parameters to be computed from system measurements. In this

section, we study a parallel interior-point approach for dynamic optimization ap-

plied to inverse problems in water distribution systems. We make use of a Schur-

complement decomposition in the linear solution of the KKT system to solve dy-

namic optimization problems in parallel. This approach is known to be partic-

ularly advantageous for problems with few states but many algebraic variables.

Water distribution networks typically include thousands of junctions and pipes,

but relatively few storage tanks, resulting in dynamic systems with precisely these

properties. We explore the convenience of the parallel algorithm for solving a real-

time water demand estimation problem. We formulate an optimization model for

the estimation of water demand values from flow and pressure data. The formu-

lation considers different robust estimators to mitigate the effect of gross measure-

ment errors, and a regularization term to deal with insufficient data. We tested the

formulation and the parallel algorithm on a midsize network with 3358 nodes and

3892 links. To resemble a real water network, which has hundreds of thousands

of pipes and nodes, we increased the dimension of the problem by considering a 5

day horizon with 5, 10, and 20 minutes hydraulic time steps, resulting in problems

with approximately 12, 6 and 3 million variables. The problem was solved with

our parallel interior-point solver on a shared memory-machine with up to 16 cores

and the solution time was reduced by a factor of 10.

2.2.1 Optimization Formulation

The problem of demand estimation in water distribution systems can be for-

mulated as a dynamic optimization problem. The transcribed NLP obtained after

discretization of the dynamics is presented in (2.18).
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min
Q,H,D

X

t2T
m

0

@
X

n2N
m

fm(Hn,t �H⌥
n,t) +

X

l2L
m

fm(Ql,t �Q

⌥
l,t)

1

A
+

X

t2T

X

n2N
fr(Dn,t �D⇤

n,t)

s.t.
Hn,t �Hn,t�1

�t

=

4

⇡d

2

n

X

l2L
n

Ql,t 8n 2 T, t 2 T
X

l2L
n

Ql,t = Dn,t 8n 2 N \ T, t 2 T

Hn1,t �Hn2,t = rlQ
⌫
l,t +mlQ

2

l,t 8l 2 L, t 2 T
Dn,t,Hn,t � 0 8n 2 N, t 2 T
Ql,t � 0 8p 2 P, t 2 T

(2.18)

Here Ql,t represents the volumetric flow rate at link l and time t, Dn,t is the

water demand out of node n at time t, Hn is the pressure head at node n (or water

level in the case of tanks), N is the set of all nodes in the network, T the set of all

tanks, L is the set of all links, Ln ✓ L is the set of all links connected to node n,

P ⇢ L is the set of all pumps, T is the set of times and Tm is the set of measure

times, Nm is the set of measured nodes, and Lm the set of measured links. The

parameters rl and ml are the respective resistant and minor loss coefficients, and

⌫ is the flow exponent. fm and fr are estimator functions that will be described

later. The demand estimation is constrained with material and momentum balance

equations. The first and second constraints ensure mass conservation at each of the

nodes n 2 N, while the third constraint enforces momentum conservation at each

link l 2 L. Note that the water level in the tanks Hn 8 n 2 T are the state variables.

The volumetric flows in the links Ql 8 l 2 L \ P and the pressure heads at each

node Hn 8 n 2 N \ T are the algebraic variables.

The proposed formulation minimizes the error between flow and pressure mea-

surements Q⌥
n,t, H⌥

n,t (taken at discrete times t 2 Tm) and the values predicted with

the model Qn,t,Hn,t. The measurements provide information to determine the de-

mand values at each node of the system. However, because of the size of water
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distribution networks, the number of measurements is likely to be sparse, making

the problem ill posed. Therefore, an additional term can be included in the objec-

tive function to deal with the ill conditioning of the problem. In our formulation

(2.18), we included a simple regularization term in the objective function to take

into account the shortage of measurements.

In water distribution networks, gross error can arise from pipe breaks, pump

outages, improper use of measuring devices, and random sources introduced by

operators of the network. To automatically handle outliers and potential gross

errors in the data, we consider different estimators fm : R ! R in the objective

function of our formulation. When data is likely to be accurate, we propose using

a standard weighted least-squares estimator (WLS). However, in cases where there

are possible gross errors in the available data, we propose using robust estimators.

Robust estimators make it easy to identify outliers without having to perform any

analysis of the data beforehand, but may significantly reduce the effect of outliers

and yield less biased estimates [Arora and Biegler, 2001, Llanos et al., 2015]. In our

implementation we considered the 4 different estimators presented Table 2.1.

To solve the nonlinear problem (2.18) in serial, we used the NLP solver Ipopt

[Waechter and Biegler, 2006] and our own implementation of an interior-point al-

gorithm described in Section 1.2.1. In order to solve the problem in multiple pro-

cessors and exploit the block-structure inherited from the discretization step, we

use a Schur-complement decomposition that not only allows us to parallelize the

solution of the KKT system, but also compute derivative information and residuals

of individual blocks in parallel.

2.2.2 Results and Discussion

The demand estimation formulation was implemented in Pyomo [Hart et al.,

2012b, 2011a]. Pyomo is a Python-based algebraic modeling language that sup-

ports the definition and solution of optimization problems using the interpreter

language Python. The flexibility provided by Python and Pyomo lets us imple-
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Table 2.1.: Estimator functions fr(✏) and fm(✏). Four estimators are consider in
the formulation (2.18). Weighted least squares (WLS), Weighted absolute values
(WAV), the fair estimator (FAIR) with c = 1.389, and German McClure (GMC). The
residual in the estimate is ✏ = (p� p⌥).

Estimator Function fm(✏) Estimator Shape

WLS ✏2

WAV |✏|

FAIR c2( |✏|
c
+ ln(1 +

|✏|
c
))

GMC 1

2

⇣
✏2

1+✏2

⌘

ment a framework that can take different water network models. In this study,

we present the demand estimation results for a midsize network with 3358 nodes,

3892 links, 61 pumps, 3 valves, and 34 tanks. To investigate the behavior of robust

estimators for water demand estimation, we first solved the estimation problem

for a set of scenarios with randomly selected outliers in the set of measurements.

The error of the estimation is quantified as the sum of squared relative errors:

SSRE =

X

t2T

X

n2N\T

(Dn,t �Dtrue
n,t )

2

(Dtrue
n,t )

2

Figure 2.1 shows the results as the number of outliers increases. As expected,

both FAIR and GMC obtained less biased estimates in comparison to WLS and

WAV. Note that among the four estimators, GMC always gave the estimation with

smaller SSRE. However, while the number of interior-point iterations remained al-

most constant for the other 3 estimators, when solving the problem with GMC, an

increase in the number of outliers resulted in an increase in the number of itera-
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tions. The estimation problem with WLS and FAIR converged in 15 iterations no

matter the number of outliers. WAV took about 62 iterations to converge. Because

the derivative of WAV is not a continuous function, WAV was implemented as

two linear underestimators or inequality constraints. Hence, for each estimate in

the objective function, two inequality constraints had to be added to the problem.

This caused the interior-point solver to take longer to converge when solving the

problem with WAV. GMC, on the other hand, converged in 18 iterations for a small

number of outliers. However, as the number of outliers increased, the computa-

tion of the search direction in the interior-point iterations became more expensive,

as inertia correction of the KKT system was required to ensure a descent direc-

tion. Since continuous inertia correction in the interior-point iterations degrades

the parallel performance of the Schur-complement parallel algorithm, we decided

to work only with the WLS and FAIR estimators.

Figure 2.1.: Impact of the number of outliers for different estimators.

For this case study, we mimic the behavior of real measurements by adding

normally distributed random noise to simulated data. Flow measurements were

taken at 195 randomly selected links and 10% noise was added. Tank levels were

also measured but only 0.1% noise was added since tank level measurements are
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expected to be highly accurate. Noise was added following a normal distribution

with mean value equal to zero and standard deviation equal to some percentage of

the average value of the variable over all times. Results for the demand estimation

in serial with the WLS and FAIR estimators are presented in Figure 2.2. Figures

2.2(a) and 2.2(b) show the estimated demand values at every node and time against

the respective true values (simulated). The color gradient shows the regions of 1%,

5% and 10% error. Notice that most of the values are within a 5% error margin

when using the FAIR estimator, while, in the case of the WLS, the range of error is

larger because it does not detect outliers.

(a) WLS estimation of demands against true
demands

(b) FAIR estimation of demands against true
demands

Figure 2.2.: Correspondence between the modeled (predicted) and true (measured)
demands

With confidence in the estimation formulation and the results obtained for the

serial solution, we now want to test the performance of the parallel algorithm. All

benchmark tests of the parallel algorithm were performed on a Linux OS server

with 24 cores, 264 GB of DDR3 RAM and a clock speed of 2.6 GHz. We tested

the performance of the parallel algorithm on 3 different sizes of problems. To

resemble a real water network, which has hundreds of thousands of pipes and

nodes, we increased the dimension of the problem by considering a 5 day horizon
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with 5, 10, and 20 minutes hydraulic time steps. Figure 2.3 shows the speedup of

the parallel implementation when compared with the serial implementation of the

Schur-complement decomposition algorithm. Since both FAIR and WLS produced

similar timing results, we show here only the results for WLS. While the parallel

implementation shows significant speedup factors, as expected, the performance

of the parallel implementation seems to deteriorate as the number of blocks in-

creases. Ideally, as we double the number of blocks we should reduce the compu-

tation time by half since we provide twice the number of processors. However, in

Figure 2.3 we see that this only happens when we have two blocks. To investigate

further, we separately timed the relevant steps of the Schur-complement decom-

position algorithm. Table 2.2 details the average time per iteration required in the

computational steps described in the algorithm presented in Section 2.2.1.

Figure 2.3.: Speedups comparing the parallel Schur-complement linear solver with
the serial Schur-complement linear solver for problems of three different sizes.
Problem sizes correspond to a time horizon of 5 days with hydraulic time step
20,10 and 5 minutes. The problem with 3 million variables was not solved with
16 cores because the time horizon could not be divided in 16 blocks with integer
number of time steps.

The first two steps of the parallel algorithm are the most computationally ex-

pensive. Determining the step in the coupling variables and performing back-

solves to obtain the step in uncoupled variables takes less time in comparison with
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Table 2.2.: Average time per iteration required in the steps of the Schur-
complement algorithm. The four steps of the algorithm are summarized as
Block factorization (lines 1-2), form Schur-complement (lines 5-10), solve Schur-
complement(line 12-13) and solveDelx (lines 15-17). Three different size of prob-
lems were considered.

factoring the blocks and constructing the Schur-complement. This is consistent

for all problem sizes and different numbers of blocks. Note that as the number

of blocks increases, the blocks become smaller, and consequently the factorization

step becomes faster even in the serial case. However, as the number of blocks in-

creases, more computations are required to form the Schur-complement and thus

the serial implementation takes longer. On the other hand, the parallel construc-

tion of the Schur-complement is distributed on separate processors, so the time de-

creases if there is no inter-processor communication overhead, which is required

when forming the Schur-complement and factoring the blocks. To improve per-

formance of these two steps the communication operations must be minimized.

Figures 2.4(a) and 2.4(b) show the parallel efficiency of the first two steps of the

algorithm.

In both of the Figures, we observe higher parallel efficiency for fewer number

of blocks. However, as the number of blocks goes from 2 to 16, the efficiency of the

block factorization decreases from 90% to 65%. This may be due to two reasons.

The inertia of each block Ki is computed in the factorization step. If the inertia

of any block is not satisfied, then the entire system needs to be corrected. This
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(a) Parallel efficiency of block factorization
step

(b) Parallel efficiency of Schur- complement
construction

Figure 2.4.: Parallel efficiency of dominant steps in the Schur-complement based
parallel algorithm.

requires inter-processor communication and may cause the decrease in parallel ef-

ficiency shown in Figure 2.4(a). The second reason can be related to differences in

the Ki blocks. When blocks are very different, it may take longer to factorize some

blocks than for others. This may result in load imbalance which degrades the par-

allel speedup. Observe that in general an increase in problem size leads to lower

parallel efficiency. This may be related to race-conditions (two processors try to

access data at the same time) since the tests were performed in a shared memory

machine. Note that in the construction of the Schur-complement this phenomena

does not happen, since the sparse vector multiplications performed for construct-

ing the Schur-complement required less memory. However, lower efficiency is also

seen as the number of blocks increases. It is worth mentioning that the scalability

issues seem to be implementation related. If there are no race-conditions or load

imbalances forming the Schur-complement complement in parallel should scale

linearly if the ratio between coupled and uncoupled variables is small. In order to

improve the scalability of the parallel implementation further optimizations need

to be done in the code.
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2.3 Summary

In this chapter we have presented an overview of the Schur-complement de-

composition. We introduced formulations for stochastic and dynamic optimiza-

tion and presented a general algorithm that allows for parallelization of the interior-

point algorithm presented in Chapter 1. The implementation of the decomposition

strategy was illustrated throughout a benchmark problem in water distribution

systems. A demand estimation problem was formulated and solved following the

parallel algorithm. We proposed a robust optimization formulation that reduces

the effect of potential gross errors in measurement values [Llanos et al., 2015, Arora

and Biegler, 2001]. To test our formulation, the demand consumption values of a

midsize water network with 3358 nodes, 3892 links were estimated. We solved

the problem using both serial and parallel implementations of the interior-point

algorithm. Significant speedup was obtained. For a problem with over 6 million

variables and 5 million constraints, the solution time was reduced by a factor of 10.

Exploitation of structure of optimization problems at the KKT level using the

Schur-complement matrix benefits from the convergence properties of the interior-

point algorithm. However, implementations of this approach are intrusive and

require significant changes to the host algorithm in order to achieve favorable scal-

ability results. These include modifications to the linear solver, function evalua-

tions, derivative computations and all matrix operations. In the next chapter we

discuss a different decomposition paradigm that partitions the structure of the op-

timization problem at the formulation level. We refer to this paradigm as external

decomposition. The external approach is less intrusive and easier to implement,

but it’s convergence rate and robustness are typically less favorable. However, we

will see in Chapters 4 and 5 that combining ideas from both approaches overcomes

limitations of each separate approach.
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3. CONVERGENCE OF AUGMENTED LAGRANGIAN DECOMPOSITION

METHODS 1

This chapter studies convergence properties of external decomposition algorithms.

In particular we focus on augmented Lagrangian based approaches. We study

connections between the alternating direction method of multipliers, the classical

method of multipliers (MM), and progressive hedging schemes. The connections

are used to derive benchmarking metrics and strategies to monitor and accelerate

convergence and to help explain why ADMM and PH are capable of solving com-

plex (but structured) nonconvex NLPs. Specifically, we observe that ADMM is an

inexact version of MM that approaches its performance when multiple coordina-

tion steps are performed (thus inheriting its convergence properties). In addition,

we note that PH is a specialization of ADMM and use Lyapunov function and

primal-dual feasibility metrics used in ADMM to explain why PH is capable of

solving nonconvex NLPs and to highlight that PH can be used to tackle a wider

range of stochastic programming problems and even other problem classes that

arise in machine learning, estimation, and dynamic optimization. We illustrate the

concepts using challenging dynamic optimization problems. Our exposition is tu-

torial in nature and seeks to establish more formalism in benchmarking ADMM,

PH, and AL schemes and to motivate algorithmic improvements.
1Part of this section is reprinted with permission from
“Benchmarking ADMM in nonconvex NLPs” by Rodriguez, Jose S. and Nicholson, Bethany and
Laird, Carl and Zavala, Victor M., 2018. Computers and Chemical Engineering, Copyright 2018 by
Elsevier.



36

3.1 Preliminaries

Since the introduction of the method of multipliers by Hestenes and Powell,

extensive research has been done in the field of augmented Lagrangian (AL) meth-

ods [Bertsekas, 1976, Mangasarian, 1975, Miele, 1971b,a, O’Doherty and Pierson,

1974, Rockafellar, 1973]. Betsekas and Rockafellar have analyzed AL methods us-

ing dual theory to show that the minimization of the AL eliminates the duality

gap [Bertsekas, 1999, Rockafellar, 1974]. Extensions by Fletcher, Byrd, Tapia and

others have been aimed at accelerating local and global convergence by identi-

fying and updating penalty parameters and performing second order multiplier

updates [Betts, 1977, Byrd, 1978, Fletcher, 1975, Glad, 1979, Rupp, 1975, Tapia,

1977]. All these developments have lead to powerful AL optimization codes such

as LANCELOT and ALGENCAN [Birgin and Martinez, 2014, Conn et al., 2013] and ex-

tended AL formulations [Di Pillo and Grippo, 1989, Hager, 1987, Huang and Yang,

2003, Li, 1995, 1997, Zavala and Anitescu, 2014].

The convergence properties of AL methods in convex and nonconvex nonlinear

programs (NLPs) are well understood. Local convergence of the AL method was

analyzed in [Mangasarian, 1975, Rockafellar, 1973]. In [Huang and Yang, 2005] it

is shown that first and second-order optimality conditions of the AL converge to

those of the original NLP. Global convergence for convex problems is discussed in

[Bertsekas, 1982, Polyak, 2004, Rockafellar, 1976] and for nonconvex problems in

[Luo et al., 2008, Wang and Li, 2009]. Convergence properties of AL schemes in

semidefinite programs was studied in [Sun et al., 2006, 2008].

The AL function and associated duality theory has also motivated the devel-

opment of specialized decomposition schemes. Specifically, in the context of two-

stage stochastic programming, Rockafellar and Wets introduced a powerful and

practical decomposition method known as progressive hedging (PH) that uses

proximal minimization of the AL function [Rockafellar and Wets, 1991]. Bertsekas

and Eckstein combined Douglas-Rachford splitting, AL, and proximal point meth-
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ods to derive what is now known as the alternating direction method of multipliers

(ADMM) [Eckstein and Bertsekas, 1992b]. ADMM is a highly flexible distributed

optimization scheme that targets block-structured problems. In addition to poten-

tial improvements in computational time over centralized MM schemes, ADMM

decomposition facilitates distribution of memory requirements, enables data pri-

vacy, and facilitates the use of a wide range of computing architectures that might

exhibit memory and computing speed constraints. This flexibility is beneficial in

many applications such as stochastic programming, decentralized control and es-

timation, embedded and network optimization, and machine learning [Boyd et al.,

2011].

The convergence properties of ADMM and PH in convex NLPs is well estab-

lished but convergence guarantees in nonconvex settings are still poorly under-

stood. In practice, however, ADMM and PH often perform satisfactorily in com-

plex nonconvex NLPs. In this work, we study connections between MM, ADMM,

and PH to derive benchmarking metrics that explain why PH and ADMM work in

practice. For instance, structural analysis reveals that ADMM is an inexact version

of MM and that PH is an specialization of ADMM to stochastic programs. These

connections are, surprisingly, not commonly known. Our exposition is tutorial in

nature and seeks to motivate the development of algorithmic improvements and

to widen the scope of applications for ADMM and PH.

The chapter is structured as follows: Section 3.2 introduces notation and states

the problem definition. In Section 3.3.1 we present an overview of the method of

multipliers as a basis for understanding ADMM and PH strategies. Sections 3.3.2

and 3.3.3 review ADMM and draws connections between MM, ADMM, and PH.

Section 3.4 describes metrics to asses the performance of the different schemes. In

Section 3.5 we present case studies to illustrate our developments. Both case stud-

ies considered nonconvex dynamic optimization problems that result from typical

chemical engineering applications. Section 3.6 closes the chapter with concluding

remarks and directions for future work.
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3.2 Problem Definition and Setting

This work focuses on structured NLPs of the form:

min
x
i

,q

X

i2P
fi(xi) (3.1.1)

s.t. ci(xi) � 0, i 2 P (3.1.2)

Aixi +Biq = 0, (yi) i 2 P . (3.1.3)

where the vector xi 2 Rn
x

i contains all the variables corresponding to a block

partition i 2 P := {1, ..., N}. We define the entire set of partition variables as x =

(x
1

, ..., x|P|). The vector q 2 Rn
q contains the complicating (coupling) variables. The

linking constraints (3.1.3) are defined using the mapping matrices Ai and Bi. The

Lagrange multipliers of the coupling constraints are denoted as yi 2 Rm
i , i 2 P

and we define the entire set of multipliers as y = (y
1

, ..., y|P|). We denote the i-th

entry of a given vector v as v(i).

For convenience, we write the above NLP in the following compact form:

min
x2X ,q

f(x) (3.2.1)

s.t. Ax+Bq = 0 (y) (3.2.2)

where X = {x | c(x) � 0} and c(x) = (c
1

(x), ..., c|P|(x)). We define the sets

Xi = {x | ci(xi) � 0} and note that \i2PXi = X . Matrices A and B can be easily

constructed using the partition matrices Ai and Bi.

The structured problem (3.1) arises in different application domains such as

stochastic programming, learning and estimation problems, multi-stage optimal

control, and network problems [Biegler, 2017, Kang et al., 2014, Zavala et al., 2008,

Word, 2014, Gondzio and Grothey, 2009]. This structure also arises in dynamic

optimization problems where the coupling variables correspond to state variables

of neighboring partitions.
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Two different decomposition paradigms have been proposed in the literature

to exploit the structure of (3.1) [Mung Chiang et al., 2007, Kang et al., 2015]. The

first paradigm, used in ADMM and PH, decomposes the problem at a formulation

level. Here, the overall problem is decomposed into partition subproblems whose

solutions are coordinated by a master problem to find the solution of the over-

all problem. This approach is frequently referred to as external-decomposition.

The second paradigm targets a host algorithm and decomposes the problem at

the linear algebra level. This paradigm is also known as internal-decomposition.

The Schur-complement decomposition described in Chapter 2 is an example of an

internal-decomposition scheme. External-decomposition approaches are less in-

trusive, more flexible, require less communication, and are easier to implement but

exhibit slow convergence. Internal-decomposition approaches are more intrusive,

require more communication, and are more difficult to implement but have faster

convergence. In this chapter we focus on external decomposition algorithms and

study in particular the convergence properties of augmented Lagrangian based

approaches on general nonconvex structured NLPs.

3.3 Numerical Methods

3.3.1 Method of Multipliers

The method of multipliers (MM), commonly known as the AL method, seeks

to solve the NLP (3.1) by finding a minimizer of the AL function:

min

x2X ,q,y
L⇢(x, q, y) = f(x) + yT (Ax+Bq) +

⇢

2

kAx+Bqk2. (3.3)

MM is based on the fundamental result that there exists a sufficiently large penalty

parameter ⇢ such that a minimizer of the AL function is a minimizer of the NLP

(3.2). The MM scheme performs a minimization of the AL function on the primal

variables (x, q) and updates the Lagrange multipliers by using a steepest descent
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step in the space of y (where the gradient is given by the primal residual r(x, q) :=

Ax+Bq at the current iterate). The standard MM scheme is given in Algorithm 4.

Algorithm 4: Method of Multipliers

1 Given penalty parameter ⇢ > 0, tolerance ✏ > 0, and estimates y0

2 for k = 0, 1, 2, . . . do

3 update primal variables:

4 (x

k+1

, q

k+1

) = argmin

x2X ,q
L⇢(x, q, y

k
)

5 compute primal residual:

6 r

k+1

= Ax

k+1

+Bq

k+1

7 update dual variables:

8 y

k+1

= y

k
+ ⇢ · rk+1

9 if krk+1k  ✏ then

10 stop

The MM scheme of Algorithm 4 does not require an initial guess for x and q

(because these are obtained from the solution of the subproblem in the first iter-

ation k = 0). However, an initial guess for x and q can be used to accelerate the

solution of the subproblems (which are solved using an NLP solver). The solu-

tion of the subproblems at iteration k can then be used to initialize (warm-start)

the NLP solver at iteration k + 1. We denote a solution of the primal subprob-

lem minx2X ,q L⇢(x, q, y
k
) as x(yk, ⇢), q(yk, ⇢) and we thus have that (xk+1, qk+1

) =

(x(yk, ⇢), q(yk, ⇢)).

Convergence theory of MM is well established for both convex and noncon-

vex problems. Here, we provide a summary of basic local convergence properties

based on the work of Bertsekas [Bertsekas, 1976].

Assumption 1 There exists a local minimizer (x⇤, q⇤) of problem (3.2) which satisfies the

second-order sufficiency conditions for an isolated local minimum [Nocedal and Wright,

2006] (i.e., the Hessian of the Lagrangian function is positive definite in the null space of
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the constraint Jacobian). Moreover, the Hessian is Lipschitz continuous in a neighborhood

of x⇤.

Proposition 3.3.1 Let Assumption 1 hold. For any given bounded set Y ✓ IR

m there ex-

ists a scalar ⇢ � 0 such that for every ⇢ > ⇢⇤ and every point y 2Y the function L⇢(x, q, y)

has a unique minimizer (x(y), q(y)) within an open ball centered at x⇤. Furthermore, for

some scalar M > 0 we have

kx(y, ⇢)� x⇤k  Mky � y⇤k
⇢

, 8⇢ > ⇢⇤, y 2Y

kq(y, ⇢)� q⇤k  Mky � y⇤k
⇢

, 8⇢ > ⇢⇤, y 2Y

key(y, ⇢)� y⇤k  Mky � y⇤k
⇢

, 8⇢ > ⇢⇤, y 2Y

where the vector ey(y, ⇢) has coordinates given by

ey(y, ⇢) = y + ⇢ (Ax(y, ⇢) + Bq(y, ⇢))

The above result is one of the strongest convergence results available for non-

convex NLPs. It shows that if y⇤ is contained in Y , the generated sequence yk+1

=

yk + ⇢(Axk
+ Bqk) remains in Y . It also states that, if the penalty parameter is

sufficiently large and the minimization of L⇢(x, q, y
k
) yields the local minimum

(x(yk, ⇢), q(yk, ⇢)) which is closest to y⇤, (x(yk, ⇢), q(yk, ⇢), y⇤) converges to (x⇤, q⇤, y⇤).

The following result establishes convergence rates for the MM scheme.

Proposition 3.3.2 Let Assumption 1 hold and let Y be an arbitrary sphere centered at y⇤

and the penalty parameter ⇢ � max{M, ⇢⇤}, then the sequence yk+1

= yk+⇢(Axk
+Bqk)

converges to (x⇤, q⇤, y⇤). Furthermore, if ⇢ < 1 and yk 6= y⇤ for all k we have linear

convergence
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lim

k!1
sup

kyk+1 � y⇤k
kyk � y⇤k 

M

⇢
.

Moreover, if ⇢!1, we have superlinear convergence

lim

k!1
kyk+1 � y⇤k
kyk � y⇤k = 0.

The results from Proposition 3.3.2 have been extended further to consider par-

tial elimination of constraints [Bertsekas, 1977], and to establish quadratic conver-

gence by using a second order update of yk [Fletcher, 1975, Glad, 1979, Byrd, 1978,

Betts, 1977, Rupp, 1975, Tapia, 1977]. In practice, however, MM uses a first-order

multiplier update (because second order updates can only be computed in prob-

lems with no inequality constraints). Global convergence results for MM are based

on the fundamental local convergence results discussed and seek to progressively

drive the penalty parameter ⇢ to infinity [Conn et al., 1991]. We also note that the

AL function serves a natural merit function in the MM method because x and q

minimize it at every iteration and because the update in y achieves a contraction

in the distance to the optimal dual variables.

3.3.2 Alternating Direction Method of Multipliers

ADMM is a variant of MM that enables decomposition of structured problems

[Mishra, 2011]. This is based on the key observation that minimizing over the

primal variables x and q separately (as opposed to jointly) enables the solution

of subproblems over each partition i 2 P independently [Boyd et al., 2011]. A

standard ADMM scheme is summarized in Algorithm 5.
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Algorithm 5: Alternating Direction Method of Multipliers

1 Given penalty parameter ⇢ > 0, tolerances ✏r > 0, ✏s > 0, and estimates y0, q0

2 for k = 0, 1, 2, . . . do

3 update partition variables:

4 x

k+1

= argmin

x2X
L⇢(x, q

k
, y

k
)

5 update coupling variables:

6 q

k+1

= argmin

q
L⇢(x

k+1

, q, y

k
)

7 compute primal residual:

8 r

k+1

= Ax

k+1

+Bq

k+1

9 compute dual residual:

10 s

k+1

= ⇢A

T
B · (qk+1 � q

k
)

11 update dual variables:

12 y

k+1

= y

k
+ ⇢ · rk+1

13 if krk+1k  ✏r and ksk+1k  ✏s then

14 stop

To gain additional insights into the ADMM scheme, we know that the primal

variables x are updated by solving the problem:

min
x

f(x) +
�
Ax+Bqk

�T
yk +

⇢

2

kAx+Bqkk2 (3.4.1)

s.t. c (x) � 0. (3.4.2)

In the context of the structured NLP (3.1), one can solve for x by solving the parti-

tion subproblems:

min
x
i

fi(xi) +
�
Aixi +Biq

k
�T

yki +
⇢

2

kAixi +Biq
kk2 (3.5.1)

s.t. ci(xi) � 0. (3.5.2)
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To update q one needs to solve the subproblem argmin

q
L⇢(x

k+1, q, yk) . This prob-

lem can be solved in closed-form from the first-order optimality conditions of the

subproblem, to give:

qk+1

= (BTB)

�1BTAxk+1 (3.6)

The sturcture of this update reveals that, in order for the update of the coupling

variables q to be well-defined, we require matrix B to have full column rank. In

the context of the structured NLP (3.1), one can show that (3.6) is an averaging

(consensus) operator of the form:

qk+1

(j) =
1

|Pj|
X

i2P
j

xk+1

i (j) (3.7)

Here Pj ✓ P is the set of partitions connected to complicating variable q(j).

In the context of the structured NLP (3.1), the dual variables are updated as:

yk+1

i = yki + ⇢ · (Aix
k+1

i +Biq
k+1

). (3.8)

We note that, if the primal variables (x, q) are updated jointly, ADMM reduces

to MM (for which convergence properties are well understood). While both meth-

ods have a common algorithmic structure, which is reflected in the updating for-

mulas, ADMM blends ideas from MM and Gauss-Seidel coordination schemes to

enable decomposition (3.1). For this reason, the convergence properties of ADMM

are of great interest in the literature. For convex problems, ADMM has been

proven to be globally convergent with a sublinear rate for general problems and

with a linear rate in restricted problem classes [Goldfarb and Ma, 2012, He and

Yuan, 2012] . Additional analysis is provided in [Boyd et al., 2011, Eckstein and

Bertsekas, 1992a]. The convergence of ADMM on nonconvex problems remains

largely open. Recent work by Hong et. al. [Hong et al., 2014] established con-

vergence of ADMM for NLPs with nonconvex objectives but linear constraints.

Specifically, they prove that the sequence generated by ADMM converges (glob-
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ally) to the set of stationary solutions, provided that the penalty parameter in the

AL function is chosen to be sufficiently large. Their analysis is based on using the

augmented Lagrangian as a merit function to guide the iterate convergence.

A key observation is that the standard ADMM method uses a single coordinate

minimization step to update x and q at every iteration. Recent work on paralleliz-

able augmented Lagrangian approaches [Boland et al., 2018] proposes performing

multiple coordinate minimization steps (which we refer to as coordination steps).

This is based on the expectation that, by performing multiple steps, ADMM will

approach the solution of the primal AL subproblem minx2X ,q L⇢(x, q, y
k
) (given by

x(yk), q(yk)) and thus the ADMM scheme will achieve the same performance of

the MM scheme. This observation also reveals that ADMM can be interpreted as

an inexact version of MM (in which the subproblems are minimized inexactly).

Consequently, MM provides the limiting (ideal) performance of ADMM. We also

observe that performing multiple coordinating steps is equivalent to applying a

block coordinate minimization scheme to the function L⇢(x, q, y
k
). Consequently,

it is possible to borrow convergence theory results for block coordinate descent

methods to identify conditions under which the coordination steps will converge

to x(yk), q(yk) and thus ADMM behaves like MM [Tseng, 2001].

We summarize an ADMM scheme with multiple coordination steps in Algo-

rithm 6. Here, the standard ADMM scheme is obtained when ncs = 1 and we

expect that the performance of MM is obtained when ncs =1 (or a large number)

is used, provided that the block coordinate descent scheme converges. We also

consider a variant of the ADMM method (that we call iADMM) that is initialized

using the values of the primal and dual variables obtained in the first iteration of

MM. This allows us to evaluate the impact of initialization on ADMM.
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Algorithm 6: Alternating Direction Method of Multipliers for Structured NLP

1 Given penalty parameter ⇢ > 0, tolerances ✏r > 0, ✏s > 0, the coupling partition sets

Pj , the number of coordination steps ncs and the starting estimates y0, q0

2 for k = 0, 1, 2, . . . do

3 Perform coordination steps:

4 for s 2 {0, 1, ..., ncs � 1}, . . . do

5 update partition variables :

6 foreach i 2 P do

7 x

k+1,s+1

i = argmin

x
i

2X
i

fi(xi) +
�
Aixi +Biq

k,s
�T

y

k
i +

⇢
2

kAixi +Biq
k,sk2

8 update coupling variables:

9 for j = 0, 1, 2, . . . , nq do

10 q

k+1,s+1

(j) =

1

|P
j

|
P
i2P

j

x

k+1,s+1

i (j)

11 compute primal residual:

12 foreach i 2 P do

13 r

k+1

i = Aix
k+1,n

cs

i +Biq
k+1,n

cs

14 compute dual residual:

15 for j = 0, 1, 2, . . . , nq do

16 s

k+1

(j) = ⇢

�
q

k+1,n
cs

(j)� q

k,n
cs

(j)

�

17 update dual variables:

18 foreach i 2 P do

19 y

k+1

i = y

k
i + ⇢ · rk+1

i

20 if krk+1k  ✏r and ksk+1k  ✏s then

21 stop

3.3.3 Progressive Hedging

The PH method is commonly used as a decomposition-based solver for stochas-

tic programming problems [Rockafellar and Wets, 1991]. Here, we note that PH is
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equivalent to applying ADMM (Algorithm 6) to two-stage stochastic programs

[Boyd et al., 2011]. Correspondingly, the multi-stage stochastic PH is equivalent

to a multi-block ADMM scheme. In paticular, two-stage stochastic programs have

the structure (3.1) where the first-stage variables correspond to the coupling vari-

ables q in NLP (3.1) while the second-stage variables correspond to the partition

variable vectors xi, i 2 P . Provided that the first-stage variables couple all scenar-

ios (block partitions), the partition matrices are given by Bi = �I, i 2 P where I is

the identity matrix.

The PH method follows the same primal and dual variable updates of the stan-

dard ADMM scheme. Of particular relevance is the observation that the solution

of the subproblem argmin

q
L⇢(x

k+1, q, yk) defines an averaging operator over all sce-

narios (partitions P). For problems with scenarios with equal probabilities, the

averaging operator is:

qk+1

(j) =
1

|P|
X

i2P
xk+1

i (j) (3.9)

This averaging update of q is equivalent to the one obtained in Equation 3.7. For

details on the derivation of this update from ADMM see Appendix C. Given that

PH is a special case of ADMM, we observe that ADMM is in general a more flexible

approach to decompose problems. Moreover, one can directly borrow convergence

results from ADMM to determine the conditions under which PH is expected to

converge. For instance, convergence guarantees for PH in convex stochastic pro-

grams with risk constraints has not been established. This is mostly due to the fact

that the structure of these problems deviates from the standard two-stage stochas-

tic structure assumed in existing convergence analysis. ADMM convergence re-

sults for convex problems indicate that convergence of PH is expected risk con-

straints as well.
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3.4 Benchmarking Metrics

In a convex optimization setting, it has been shown that the Lyapunov function

V⇢(y, q) =
1

⇢
ky � y⇤k2 + ⇢kq � q⇤k2 (3.10)

is monotonically decreased by the ADMM scheme [Boyd et al., 2011]. Since the

Lyapunov function depends on the actual primal-dual solution q⇤, y⇤, which is un-

known in general, this metric is not a practical merit function to monitor progress

of the algorithm. However, we use this metric to gain insights on the effect of

nonconvexity on the performance of the ADMM algorithm. In particular, lack of a

monotonic decrease of the Lyapunov function provides an indication that noncon-

vexity is hindering convergence of ADMM.

The AL function provides a natural merit function to monitor progress of the

ADMM in nonconvex problems:

L⇢(x
k, qk, yk) =

X

i2P
fi
�
xk
i

�
+

�
Aix

k
i +Biq

k
�T

yk +
⇢

2

kAixik +Biq
kk2. (3.11)

Specifically, compared to the Lyapunov function, the AL function does not re-

quire prior knowledge of the solution. Moreover, the MM method decreases the

AL function at every iteration. Consequently, if the performance of ADMM ap-

proaches that of MM (e.g., by performing multiple coordination steps), we can

expect that the AL function will decrease as well. In other words, reduction of

the AL function provides an indication if enough coordination steps have been

performed.

Other important metrics include the primal and dual errors (derived from the

optimality conditions of (3.1)). These are given by:

rxL⇢(x
k, qk, yk) = sk (3.12.1)

rqL⇢(x
k, qk, yk) = 0 (3.12.2)

Axk
+Bqk = rk (3.12.3)
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Here, one can show that sk+1

= ⇢ATB(qk+1 � qk). The stationarity condition with

respect to q is satisfied at each iteration k because the consensus step enforces it

explicitly. A stationary point for the NLP is thus attained when krkk ! 0 and

kskk ! 0. We also note that the AL function converges f(xk
) when krkk ! 0.

3.5 Numerical Experiments

We study the performance of MM and ADMM on nonconvex optimal control

problems of the form:

min
Z

T
J(w(t), u(t), v(t))dt (3.13.1)

s.t. F (ẇ(t), w(t), u(t), v(t)) = 0, t 2 T (3.13.2)

w(t
0

) = w
0

(3.13.3)

w
¯
 w(t)  w̄, t 2 T (3.13.4)

u
¯
 u(t)  ū, t 2 T (3.13.5)

v
¯
 v(t)  v̄, t 2 T . (3.13.6)

where T = [t
0

, tf ] is the time domain, w 2 Rn
w are state variables, u 2 Rn

u are

control variables, and v 2 Rn
v are algebraic states.

The differential algebraic system is discretized by applying a collocation on fi-

nite elements scheme as described by Biegler [2010]. In the scheme considered, the

time dependent variables are approximated using Lagrange polynomials defined

at a set of collocation points tj, j 2 Nc := {0, ..., nc � 1} on the domain ⌧ = (0, 1).

Applying an affine transformation, the time domain is expressed as t = hi⌧ with hi

defined as the length of finite element i 2 Ne := {0, ..., ne � 1}. Then, in each finite

element the state variables are approximated by

w(⌧) =
X

j2N
c

wi,j`j (⌧) , i 2 Ne (3.14)
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where `(⌧) are the Lagrange polynomials. A similar approximation is applied to

the algebraic and control variables. The expressions for the derivative variables at

the ith finite element and jth collocation point ẇi,j are given by

ẇi,j =
1

hi

X

j2N
c

wi,j
˙`j (⌧) , i 2 Ne, j 2 Nc (3.15)

With this the discretized DAE system can be expressed over the entire domain as

F (ẇi,j, wi,j, ui,j, vi,j) = 0, i 2 Ne, j 2 Nc (3.16)

To enforce continuity of the state variables at the finite element boundaries we

impose the constraints:

wi+1,0 = wi,n
c

, i = 0, ..., ne � 1 (3.17)

The objective function is discretized using a quadrature formula:

n
e

�1X

i=0

n
c

�1X

j=0

pjJ(wi,j, ui,j, vi,j), (3.18)

where pj are Radau quadrature weights. The discretized problem is an NLP of the

form:

min
X

i2N
e

X

j2N
c

pjJ(wi,j, ui,j, vi,j) (3.19.1)

s.t. F (ẇi,j, wi,j, ui,j, vi,j) = 0 (3.19.2)

w
0,0 = w

0

(3.19.3)

wi+1,0 = wi,n
c

, i 2 Ne (3.19.4)

w
¯ i,j  wi,j  w̄i,j, i 2 Ne, j 2 Nc (3.19.5)

u
¯ i,j
 ui,j  ūi,j, i 2 Ne, j 2 Nc (3.19.6)

v
¯ i,j
 vi,j  v̄i,j, i 2 Ne, j 2 Nc. (3.19.7)

The NLP can be written as the structured problem (3.1) by defining every ele-

ment as a partition (i.e., P = Ne) xi = {ẇi,j, wi,j, ui,j, vi,j}, i 2 P . The coupling

variable vector contains the state variables at the boundary of the finite elements
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(with the exception of the first and last partition that are only coupled on one end)

q = {w
0,n

d

, wi,0, wi,n
d

, wP,0}. Here, we describe the coupling variable vector q as a

composition of the state variables between each finite element. This gives a sys-

tem where each finite element represents one partition. However, partitions may

include multiple finite elements. For example, a problem with 64 finite elements

can be separated into two partitions of 32 finite elements each, 4 partitions of 16

finite elements each, and so forth. We highlight that ADMM decomposition can

be applied to more general dynamic optimization problems that include path con-

straints and end-point constraints (because such features do not alter the block

structure of the problem).

The optimization problems Pyomo Hart et al. [2017, 2011a]. Pyomo facilitated

the automatic discretization of the differential equations using the Pyomo.DAE

package [Nicholson et al., 2017], and provided flexibility for the decomposition

of the structured NLPs that resulted from discretization. For validation and com-

parison purposes, the solution of the nonconvex NLPs was obtained by means

of three different approaches. In the first approach the original full problem (3.1)

was solved with the off-the-shelf interior point solver Ipopt Wächter and Biegler

[2006]. The results from this approach provided validation for the other approaches.

The second approach is the method of multipliers described in Algorithm 4. In the

third approach the problem was decomposed and solved using the ADMM scheme

described in Algorithm 6. In all three approaches Ipopt was used for solving the

corresponding subproblems. We thus highlight that all solutions were local mini-

mizers.

We use the following tolerances for the residuals computed in ADMM Boyd

et al. [2011]:

✏r =
p
nx✏

abs
+ ✏relmax{kAxkk, kBqkk}

✏s =
p
ny✏

abs
+ ✏relkATykk

2

where ✏abs
= ✏rel

= 10

�4. For MM we use a tolerance ✏ = 10

�8.
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The state variables were scaled so that their values lie between zero and one.

Besides improving the conditioning of the optimization problems, the scaling fa-

cilitated the selection of the AL penalty parameter ⇢. This parameter needs to be

large enough for the subproblems to converge. However, excessively large values

of ⇢ can result in numerical instabilities. Hence, by scaling the state variables the

penalization term kAx � Bqk is expected to be close to one. The penalty param-

eter can then be selected to balance the objective of the overall problem and the

penalization term.

3.5.1 Separation System

We consider an optimal control problem of a distillation column with 30 trays

Benallou et al. [1986]. The complete model contains 32 differential equations, one

control, and 35 algebraic states. The reflux ratio is the control variable while the

purity of the distillate (denoted as ȳ) provides a measure of product quality. The

relative volatility ↵A,B is assumed constant given a value of 1.6. The mixture is fed

to the column in tray 17 and has a composition of xA= 0.5.

min
Z t

f

t0

(yA,1 � ȳ)2 + (u� ū)2dt

s.t.
dxA,0

dt
=

1

Ac

V (yA,1 � xA,0)

dxA,i

dt
=

1

At

(L
1

(yA,i�1

� xA,i)� V (yA,i � yA,i+1

)) i 2 {1, ..., FT � 1}
dxA,FT

dt
=

1

At

(FxA,f + L
1

xA,FT�1

� L
2

xA,FT � V (yA,FT � yA,FT+1

))

dxA,i

dt
=

1

At

(L
2

(yA,i�1

� xA,i)� V (yA,i � yA,i+1

)) i 2 {FT + 1, ..., NT}
dxA,NT+1

dt
=

1

Ar

(L
2

xA,NT � (F �D)xA,NT+1

� V yA,NT+1

)

xA,i = x
0

A,i

i 2 {0, ..., NT + 1}

V = L
1

+D, L
2

= L
1

+ F, u =

L
1

D
, ↵A,B =

yA(1� xA)

xA(1� yA)
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where xA,i and yA,i are the liquid and vapor mole fractions of component A at the

i-th tray. F is the feed flowrate, D is the distillate flowrate, L
1

is the flow rate of

the liquid in the rectification section, L
2

is flowrate of the liquid in the stripping

section, NT is the number of trays in the column, and FT is the feed tray. The

parameter values used in the model are given in Table 3.1. For more details on the

model see [Benallou et al., 1986, Kang et al., 2014, Hahn and Edgar, 2002].

Table 3.1.: Parameter values for distillation column example system

Parameter Value

Ac 0.5 Kmol
At 0.25 Kmol
Ar 1.0 kmol
D 0.2 kmol/min
F 0.4 kmol/min
ȳ 0.8958
ū 2.0

Figure 3.1.: Trajectories of distillate molar fraction (right) and reflux ratio (left) with
setpoint ( )

The differential equations in the dynamic optimization problem (3.21.1) were

discretized via an orthogonal collocation method on 64 finite elements with 2 Radau

collocation points per finite element. The discretization resulted in a structured
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NLP with 12,997 variables and 12,868 constraints. The optimal vapor concentra-

tion of the distillate trajectory is presented in Figure 3.1.

The dynamic optimization problem problem was also solved with MM, ADMM,

and iADMM schemes described in the previous section. The problem was decom-

posed into four partitions and solved following Algorithms 4 and 6. In both cases

the results were validated against the full problem solutions obtained with Ipopt.

Figure 3.2 summarizes the performance of the algorithms based on the metrics

described in Section 3.4. MM (green) shows the results for the method of multi-

pliers with initial estimates for the dual variables y0 equal to zero. ADMM (grey)

presents the results of Algorithm 6 with dual estimates y0 initialized at zero and

coupling variable estimates q0 initialized with the initial condition x
0

A

of the cor-

responding state variable. For this first set of results, we use a single coordination

step to update the primal variables in ADMM (ncs = 1). iADMM (red) shows the

results of Algorithm 6 initialized using the primal and dual values from the first

iteration of MM. From Figure 3.2 it is clear that, despite the strong nonconvexity of

the problem, both MM and ADMM converge to the solution. MM requires signif-

icantly fewer iterations to converge than ADMM but both methods exhibit linear

convergence. The superior performance of MM is due to the simultaneous update

of the primal variables (x, q). In contrast, the standard ADMM algorithm uses a

sequential update by using a single coordination step. With the ADMM method

we observe oscillations in the dual infeasibility metric and in the Lyapunov func-

tion. The oscillations indicate that the Lyapunov function is not monotonically

decreasing highlighting the effect of the nonconvexity. We also see that initializing

ADMM (iADMM) significantly improves performance and achieves a smoother

decay in the Lyapunov function. However, we see that the oscillations persist.

Figure 3.3 shows the effect of using multiple coordination steps at each iteration of

ADMM. We can see that this mimics the joint minimization of x and q used in MM.

It is remarkable that just an additional coordination step achieves significant im-

provements and ameliorates the oscillations of the standard ADMM scheme. We
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Figure 3.2.: Convergence of MM, iADMM, and ADMM in separation system.

also see that, for this problem, approximately 4 coordination steps are sufficient

to approach the performance of MM. This behavior is also observed in the timing

results. The solution time for MM was 8.5 seconds while ADMM found solutions

in 15.15, 10.93, 13.52, 21.032 y 40.86 seconds with 1, 2, 4, 8, and 16 coordination

steps, respectively. Interestingly, the computational times of ADMM reveal that an

optimal number of coordination steps exist and that this tends to be small (in this

case two). We can see, however, that MM is indeed faster than ADMM because of

two reasons. This is because the problem targeted is not large enough to see the

benefit of decomposition. Moreover, the results presented do not perform paral-

lelization of the subproblem solutions. If we assume perfect parallelization of the
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Figure 3.3.: Convergence of iADMM (top row) and ADMM (bottom row) in sepa-
ration system with multiple coordinate minimization steps.

subproblem solutions, the timing results of ADMM can be reduced by a factor of

four (because the problem was decomposed in four partitions).

We highlight that the ADMM scheme provides a flexible approach to decom-

pose dynamic optimization problems in time. This approach share some similari-

ties with other decomposition approaches such as multiple shooting (MS). In MS,

the horizon is decomposed into stages and state continuity is enforced progres-

sively by an optimization solver. A key difference between ADMM and MS is that

the state continuity constraints in ADMM are enforced implicitly by minimizing

the augmented Lagrangian (while in MS these are enforced explicitly by the op-

timization solver). In principle, however, one can envision implementing using

MS by enforcing continuity using an ADMM scheme. Here, the ADMM subprob-
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lems would be dynamic optimization problems over a short time horizon and state

continuity is enforced by updating the Lagrange multipliers.

3.5.2 Semibatch Reactor

The second study involves the optimal control of a semibatch reactor Abel and

Marquardt [2000]. The model considers consecutive highly exothermic reactions

A �! B �! C. This model considers a reactor vessel equipped with two heat

exchanger systems, a reactor jacket and an internal coil. The control inputs for this

model are the cooling medium temperatures in the jacket and in the coil, Tw,j and

Tw,c respectively. The optimization problem seeks to maximize the production of

the desired component B and has the form:

maximize
Z t

f

t0

Cb dt (3.21.1)

subject to ˙Ca =
Fa

Vr

� k
1

exp

✓
� E

1

RTr

◆
Ca (3.21.2)

˙Cb = k
1

exp

✓
� E

1

RTr

◆
Ca � k

2

exp

✓
� E

2

RTr

◆
Cb (3.21.3)

˙Cc = k
2

exp

✓
� E

2

RTr

◆
Cb (3.21.4)

˙Vr =
FaMW

a

⇢r
(3.21.5)

(⇢rcp
r

)

˙Tr =
FaMW

a

cp
r

Vr

(Tf � Tr)� k
1

exp

✓
� E

1

RTr

◆
Ca�H

1

� k
2

exp

✓
� E

2

RTr

◆
Cb�H

2

+ ↵w,j
Aj

Vr,0

(Tw,j � Tr) (3.21.6)

+ ↵w,c
Ac

Vr,0

(Tw,c � Tr) (3.21.7)

Vr(t0) = Vr0 , Tr(t0) = Tr0 , Ci(t0) = Ci0 i 2 S (3.21.8)

Here the molar composition of the i-th component Ci , the temperature of the mix-

ture in the reactor Tr, and the volume Vr are the state variables. Values for the

model parameters and initial conditions for the differential equations are given in

Table 3.2.
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Table 3.2.: Parameter values optimal control semibatch reactor

Parameter Value Parameter Value

k
1

15.01 1/s Aj 5.0 m2

k
2

85.01 1/s Ac 3.0 m2

E
1

30,000.0 kJ/kmol Vj 0.9 m3

E
2

40,000.0 kJ/kmol Vc 0.07 m3

R 8.314 kJ/kmol/K ⇢w 700.0 kg/m3

MW
a

50.0 kg/kmol cp
w

3.1 kJ/kg/K
⇢r 1,000.0 kg/m3 Ca(t0) 0.0 kmol/m3

cp
r

3.9 kJ/kg/K Cb(t0) 0.0 kmol/m3

Tf 300.0 K Cc(t0) 0.0 kmol/m3

�H
1

-40,000.0 kJ/kmol Tr(t0) 300.0 K
�H

2

-50,000.0 kJ/kmol Vr(t0) = Vr,0 1.0 m3

↵w,j 0.8 kJ/s/m2/K ↵w,c 0.7 kJ/s/m2/K

The differential equations in (3.21.6) were discretized with 256 finite elements

and 2 Radau collocation points per finite element. The discretization resulted in a

structured NLP with 5,637 variables and 5,381 constraints. We use 4 partitions in

the problem. The optimal trajectories of the state variables are presented in Figure

3.4

Figure 3.4.: Optimal concentration profiles (left) and optimal temperature profile
(right)
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The performance of the algorithms in presented in Figure 3.5. We observe sim-

ilar trends to those seen in the previous case study. In particular, the Lyapunov

and the AL functions do not decrease monotonically for the ADMM scheme, high-

lighting the strong effect of nonconvexity. Notably, MM converges in less than 10

iterations while ADMM and iADMM require over 200 iterations. In this problem

we observe stronger oscillations in the dual infeasibility.

Figure 3.5.: Convergence metrics semibatch reactor problem. From top to bottom
and left to right: objective value, augmented Lagrangian value, Lyapunov value,
primal infeasibility, dual infeasibility

Motivated by the results obtained in the separation system, we also experi-

mented with the number of coordination steps used in ADMM. As seen in Figure

3.6, performing just a handful of coordination steps is sufficient to eliminate the

oscillations in the dual infeasibility. Moreover, we observe that the coordination
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steps converge to the performance of MM. We can thus see that, in general, per-

forming multiple coordination schemes drastically improves performance. This

observation is relevant because it indicates that performance similar to that of MM

can be achieved by solving smaller subproblems in parallel.

Figure 3.6.: Convergence analysis semibatch reactor problem. From top to bottom:
iADMM ADMM. From left to right: Lyapunov value, primal infeasibility, dual
infeasibility

From Figure 3.6 we see that MM achieves convergence in a couple of iterations.

The timing results for this problem show that MM converges to an optimal so-

lution in 0.36 seconds. ADMM, on the other hand, requires 9.21, 5.61, 5.81, 7.97,

19.52 seconds with 1, 4, 16, 64, and 256 coordination steps, respectively. These re-

sults again highlight that the problem is not large enough to see a clear benefit of

decomposition. Compared to the first case, parallelization will not help ADMM
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overcome the fast convergence of MM. As in the first study, we again see that a

small number of coordination steps achieves acceleration of ADMM (in this case

four). These results reveal that there is a need to develop schemes that identify

a suitable number of coordination steps to be performed at each iterate. For in-

stance, performing more coordination steps will tend to be more helpful in early

(rather than in later) iterations. This behavior is typical of inexact optimization

schemes. We highlight that the problems studied in this work are used to monitor

convergence properties (and not time). Timing analysis would require of more ef-

ficient implementations and larger benchmarking instances. We also highlight that

ADMM decomposition offers benefits that go beyond computing time. In partic-

ular, they enable distribution of memory and they do not require centralization

of information (as in MM). This is beneficial in applications that involve low-cost

computing devices with limited processing speeds and memory.

3.6 Summary

Application of the simultaneous discretization approach to difficult dynamic

optimization problems leads to large-scale nonlinear programming problems that

can be challenging for off the shelf solvers. However, these problems can be solved

in the context of an ADMM or PH approach that supports structural decomposi-

tion of the problem along selected finite element boundaries. ADMM (and PH

as a specialization) provides a powerful decomposition mechanism that has been

shown to be effective on convex problems in dynamic optimization, machine learn-

ing, and stochastic programming. However, while the convergence properties of

these methods is well established for convex problems, little is known about con-

vergence on nonconvex problems. In contrast, AL methods have well-established

convergence theory for both convex and nonconvex problems, but can become

computationally prohibitive on large problems.

In this paper, we show the convergence properties of the AL method, the gen-

eral ADMM method, and a modified ADMM method on two nonconvex dynamic
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optimization problems. As metrics for benchmarking performance, we proposed

the use of the AL function, along with the Lyapunov function. While it has been

shown that ADMM methods provide monotonic decrease in the Lyapunov func-

tion on convex problems, for these nonconvex problems, we observe oscillation

in both the dual feasibility and the Lyapunov function. Furthermore, the per-

formance of the general ADMM approach is significantly worse than the AL ap-

proach.

To overcome poor convergence performance, we proposed a modified ADMM

approach with multiple coordination minimization steps at each ADMM iteration.

With this modification, we observe that the oscillations in the dual infeasibility and

the Lyapunov function are significantly reduced. Furthermore, the results on both

case studies showed that even with only a few additional coordination steps, con-

vergence rates significantly improved, and this modified algorithm approached

the performance of the AL method.

Given these observations, we provide connections between the AL and ADMM

methods, and show that ADMM can be viewed as an inexact AL method. This link

provides an approach to monitor and ensure progress of the ADMM scheme on

nonconvex problems. Furthermore, this provides a future context for convergence

analysis on nonconvex problems.
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4. ADMM PRECONDITIONING FOR BLOCK-STRUCTURED KKT SYSTEMS

In this Chapter we study the solution of block-structured linear algebra systems

arising in optimization using iterative solution techniques. These systems are

the core computational bottleneck of many problems of interest such as param-

eter estimation, optimal control, networks, and stochastic programming. Our ap-

proach uses a Krylov solver (GMRES) that is preconditioned with an alternating

method of multipliers. We show that this ADMM-GMRES approach overcomes

well-known scalability issues of Schur complement decomposition in problems

that exhibit high degree of coupling. The effectiveness of the approach is demon-

strated using linear systems that arise in stochastic optimal power flow problems

and that contain up to 2 million variables and 4,000 coupling variables. We find

that ADMM-GMRES is nearly an order of magnitude faster than Schur decompo-

sition in problems with high degree of coupling. Moreover, we demonstrate that

the approach is robust to the selection of the ADMM penalty parameter.

4.1 Preliminaries

The scalability of optimization solvers relies quite heavily on the solution of the

underlying linear algebra systems. Advances in direct sparse linear algebra solvers

have been instrumental in the widespread use of quadratic programming and non-

linear programming solvers such as Ipopt, OOQP, and Knitro [HSL, Amestoy

et al., 2001, 2006]. Specialized direct solution techniques have also been developed

to tackle large-scale and block-structured systems (using variants of Schur comple-

ment decomposition techniques) [Zavala et al., 2008, Word, 2014, Chiang et al.,

2014, Gondzio and Grothey, 2009, Gondzio and Sarkissian, 2003]. Block structures

appear in many important applications such as parameter estimation, stochastic
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programming, network optimization, and optimal control. Schur decomposition

techniques can also leverage parallel computing architectures and have enabled the

solution of problems with millions to billions of variables and constraints. Unfor-

tunately, many applications of interest still remain inaccessible due to fundamental

scalability limitations of Schur complement techniques. Specifically, Schur decom-

position does not scale well in problems that exhibit high degrees of block coupling.

Specifically, assembling and factorizing the Schur complement matrix (which is

often highly dense) is a key computational bottleneck in such problems.

Iterative solution techniques [Quarteroni, 2007, Ma and Zheng, 2015, Forsgren

et al., 2007, Elman and Golub, 1994, Benzi and Simoncini, 2006, Benzi et al., 2005]

and associated preconditioning strategies [Cao et al., 2016, Morales and Nocedal,

2000, Golub and Greif, 2003, Rusten and Winther, 1992, Gill et al., 1992, Zulehner,

2002] have been proposed to address fundamental scalability issues of direct lin-

ear algebra strategies. In the context of block-structured problems, attempts have

been made to solve the Schur complement system using iterative solution tech-

niques (to avoid assembling and factorizing the Schur complement). Precondi-

tioners for Schur complements arising in special problem classes such as networks

and stochastic programs have been developed [Cao et al., 2016]. Unfortunately,

preconditioning strategies for general problem classes are still lacking. Another

important issue that arises in this context is that the implementation of advanced

linear algebra strategies is non-trivial (e.g., it requires intrusive modifications of

optimization solvers).

Along a separate line of research, significant advances have been made in the

development of problem-level decomposition techniques such as the alternating

direction method of multipliers (ADMM) and Lagrangian dual decomposition [Han

and Yuan, 2013, Guo et al., 2017, Hong and Luo, 2017, Han and Yuan, 2013, Gold-

farb and Ma, 2012, He and Yuan, 2012, Rodriguez et al., 2018]. Such approaches

are flexible and rather easy to implement but suffer of slow convergence. Recently,

it has been proposed to use ADMM as a preconditioner of Krylov-based iterative
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solvers such as GMRES [Zhang and White, 2016, 2018]. In this work, we provide

a detailed derivation and test the performance of a ADMM-GMRES method in

the context of block-structured linear algebra systems. We demonstrate that this

approach overcomes scalability issues of Schur complement decomposition (for

problems with high degrees of coupling). We also demonstrate that this approach

is significantly more effective than ADMM. Our numerical tests are facilitated by

the use of PyNumero, a recently-developed Python framework that enables the im-

plementation and benchmarking of optimization algorithms. We use the proposed

framework to tackle problems with hundreds of thousands to millions of variables

and that arise from standard benchmark sets and power grid applications.

This chapter is structured as follows. In Section 4.2 we define the problem

of interest and provide preliminary information on the use of Schur complement

decomposition and ADMM approaches. In Section 4.2.3 we provide a detailed

derivation of the ADMM-GMRES approach and in Section 4.3.1 we provide bench-

mark results.

4.2 Problem Definition

We study the solution of block-structured quadratic programs (QP) of the form:

min
x
i

,z

X

i2P

1

2

xT
i Dixi + cTi xi (4.1.1)

s.t. Jixi = bi, (�i) i 2 P (4.1.2)

Aixi +Biq = 0, (yi) i 2 P . (4.1.3)

Here, P := {1, . . . , P} is a set of block variable partitions. Each partition contains

a vector of primal variables xi 2 Rn
x

i and the vector q 2 Rn
q contains the pri-

mal variables that the couple partitions. The total number of primal variables is

n := nq +
P

i2P nx
i

. Equation (4.1.2) are the partition constraints with their respec-

tive dual variables �i 2 Rm
i . Equation (4.1.3) are the constraints that link partitions
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across set P and have associated dual variables yi 2 Rl
i . We assume that the par-

tition matrices Ji 2 Rm
i

⇥n
i have full rank and that the right-hand-side coefficients

bi 2 Rm
i are in the column space of Ji. The total number of partition constraints

is m :=

P
i2P mi. We refer to Ai 2 Rn

q

⇥n
i and Bi 2 Rn

q

⇥n
q as linking matrices

and we assume them to have full rank. The total number of linking constraints is

l :=
P

i2P li. The QP under study is the main computational kernel behind nonlin-

ear programming strategies since it is used for computing primal-dual steps.

We make the blanket assumption that the block-structured QP is strongly con-

vex and that the combined Jacobian matrix (obtained by assembling partition and

coupling constraints) has full rank. Strong convexity can be obtained by ensuring

that all block Hessian matrices Di are positive definite (and thus the entire Hes-

sian is positive definite). Strong convexity and full-rank conditions guarantee that

the primal-dual solution of the QP exists and is unique. Moreover, these assump-

tions guarantee that the QP solution is a unique minimizer and that this can be

found by solving the first-order stationarity conditions. Additional assumptions

will also be needed on the nature of the building blocks of the QP (associated with

each partition). Such assumptions are needed to ensure that proposed decomposi-

tion schemes are well-defined. Such assumptions will be stated as we proceed (in

order to maintain clarity in the presentation).

The Lagrange function of (4.1) can be expressed as:

L(x, q,�, y) =
X

i2P

1

2

xT
i Dixi + cTi xi + yTi (Aixi +Biq) + �T

i (Jixi � bi), (4.2)

where x := (x
1

, · · · , xP ), � := (�
1

, · · · ,�P ) and y := (y
1

, · · · , yP ). The first-order

optimality conditions of (4.1) are given by:

rx
i

L = 0 = Dixi + ci + JT
i �i + AT

i yi, i 2 P
r�

i

L = 0 = Jixi � bi, i 2 P
ry

i

L = 0 = Aixi � Biq, i 2 P
rqL = 0 =

X

i2P
BT

i yi. (4.3)
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These conditions form a block-structured linear system of the form shown in (4.4).

For the sake of compactness and ease of notation, we rewrite (4.4) as:
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(4.4)

For the sake of compactness and ease of notation, we rewrite (4.4) as:
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where � = (�
1

, · · · , �P ), �i = (xi,�i), � = (�
1

, · · · , �P ), �i = (�ci, bi), u = (v, q, y),

r = (�, 0, 0), K = blkdiag{K
1

, · · · , KP}. We also have A = blkdiag{ ˜A
1

, · · · , ˜AP},

B = rowstack{B
1

· · · , BP} with:

Ki =

2

4Di JT
i

Ji

3

5 ˜Ai =

h
Ai 0

i
, i 2 P (4.6)

4.2.1 Solution using Schur Decomposition

One can solve large instances of the block-structured QP by using a Schur-

complement decomposition method (we refer to this as Schur decomposition) Zhang
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[2005]. This approach decomposes (4.1) by using block Gaussian elimination on a

permuted version of the linear system (4.4). The permuted system has the struc-

ture:
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This system can be expressed in compact form as:

2

4Ks Bs

BT
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4�s
q

3

5
=

2
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where �s = (�s1 , · · · , �s
P

), �s
i

= (xi,�i, yi), �s = (�s1 , · · · , �s
P

), and �i = (�ci, bi, 0).
We also have Ks = blkdiag{Ks1 , · · · , Ks

P

} and Bs = rowstack{Bs1 , · · · , Bs
P

} with:

Ks
i

=

2

6664

Di JT
i AT

Ji
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3

7775
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i

=

h
0 0 BT

i

iT
, i 2 P (4.9)

Since we have assumed that Di is positive definite and the combined constraint

Jacobian (Ji, A) is full rank, we have that Ks
i

is nonsingular. Since Ks is block-

diagonal this implies this is non-singular as well. As a result, we can form the

Schur complement system:

(BT
s K

�1

s Bs)q = BT
s K

�1

s �s (4.10)
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We refer to system (4.10) as the Schur complement system and to its coefficient ma-

trix as the Schur complement. Since Ks is block-diagonal, one can form the Schur

complement by factorizing the blocks Ks
i

independently. Using the assembled

Schur complement, one factories the Schur complement matrix and solves system

(4.10) to find a solution for q. Having q, one then proceeds to find solutions for the

partition variables �s by solving the following system:

Ks�s = �s � Bsq (4.11)

Here, again, one can solve for each element �s
i

independently because Ks is block-

diagonal. The Schur decomposition method is summarized in Algorithm 7. We

refer the reader to [Kang et al., 2014] for details on the implementation of Schur

decomposition approaches.

Algorithm 7: Schur Decomposition for Block-Structured QP

1 Let S = 0 and rsc = 0

2 Factorize Ks matrix :

3 foreach i 2 P do

4 Factorize Ks
i

5 Form Schur complement system:

6 foreach i 2 P do

7 S = S +B

T
i K

�1

s
i

Bi

8 rsc = rsc +B

T
i K

�1

s
i

�s
i

9 Factorize S and compute coupling variables by solving:

10 Sq = rsc

11 Compute partition variables:

12 foreach i 2 P do

13 Ks
i

�s
i

= �s
i

�Biq

Schur decomposition is a flexible approach that enables the solution of prob-

lems with many block partitions. A fundamental limitation of this approach, how-
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ever, is that one needs to form and factorize the Schur complement matrix S (which

can be highly dense). As a result, Schur decomposition does not scale well with

the number of coupling variables. Iterative approaches can in principle be used

to solve the Schur system but general preconditioning strategies do not exist for

general block-structured systems.

4.2.2 Solution using ADMM

The block-structured QP can also be decomposed and solved using ADMM.

This approach seeks to minimize the augmented Lagrangian function:

L⇢(x, z,�, y) =
X

i2P
xT
i Dixi + cTi xi + (Aixi +Biz)

T yi +
⇢

2

kAixi +Bizk2 (4.12)

by alternating minimization with respect to the block variables (xi, yi) and the cou-

pling variables q.

Algorithm 8: ADMM for Block-Structured QP

Input: Starting point u0 = (�

0

, y

0, q0), maximum number of iterations NADMM,

penalty parameter ⇢ > 0, and convergence tolerance ✏ > 0

1 for k = 0, 1, 2, . . . , N do

2 Update partition variables:

3 foreach i 2 P do

4 x

k+1

i = argmin

x
i

2X
i

x

T
i Dixi + c

T
i xi +

�
Aixi +Biq

k
�T

y

k
i +

⇢
2

kAixi +Biq
kk2

5 Update coupling variables:

6 q

k+1

= argmin

z

⇣
Aix

k+1

i +Biq

⌘T
y

k
i +

⇢
2

kAix
k+1

i +Biqk2

7 Update dual variables:

8 foreach i 2 P do

9 y

k+1

i = y

k
i + ⇢

⇣
Aix

k+1

i +Biq
k+1

⌘

10 if kyk+1 � y

kk  ✏ and k⇢AT
B · (qk+1 � q

k
)k  ✏ then

11 stop
Output: u
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In Algorithm 8, Xi = {x | Jix� bi = 0} is used to denote the feasible set of each

partition (the inner block constraints are satisfied exactly). The ADMM algorithm

can be implemented by solving the first-order conditions of each subproblem di-

rectly. This is because each block subproblem is strongly convex and the block

Jacobian has full rank. This approach is sketched in Algorithm 9.

Algorithm 9: ADMM(u0, N , ⇢)

Input: starting point u0 = (�

0

, y

0, q0), maximum number of iterations NADMM,

penalty parameter ⇢ > 0, and convergence tolerance ✏ > 0

1 Factorize K⇢ and B

T
B matrix:

2 foreach i 2 P do

3 Factorize partition matrices K⇢
i

and B

T
i Bi

4 for k = 0, 1, 2, . . . , N do

5 Update partition variables :

6 foreach i 2 P do

7 K⇢
i

�

k+1

= �
0

@
�i +

2

4⇢A
T
i Biq

k

0

3

5
+

2

4A
T
i y

k
i

0

3

5

1

A

8 Update coupling variables:

9 z

k+1

= �[BT
B]

�1

⇣
B

T
A�

k+1

+

1

⇢B
T
y

k
⌘

10 Update dual variables:

11 foreach i 2 P do

12 y

k+1

i = y

k
i + ⇢

⇣
˜

Ai�
k+1

i +Biq
k+1

⌘

13 if kyk+1 � y

kk  ✏ and k⇢AT
B · (qk+1 � q

k
)k  ✏ then

14 stop
Output: u

In the above algorithm we have that K⇢ = blkdiag{K⇢1 , · · · , K⇢
P

} with

K⇢
i

=

2

4Di + ⇢AT
i Ai JT

i

Ji 0

3

5 . (4.13)
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We note that the update of the coupling variables still requires forming and

factorizing the matrix BTB but this can be done in blocks by forming and factoriz-

ing BT
i Bi individually. Moreover, this operation only needs to be performed once.

Note also that BTB is invertible since B has full rank. As a result, the update step

for the coupling variables in ADMM is cheaper than that of Schur decomposition

and can thus overcome the main computational bottleneck of the later. Unfortu-

nately, it is well-known that ADMM exhibits slow convergence and thus the ability

to perform fast operations might be shadowed by the need to perform many itera-

tions.

4.2.3 Solution using ADMM-GMRES

The key observation that motivates our work is that ADMM can be used as a

preconditioner for iterative linear algebra techniques such as GMRES. To derive the

ADMM preconditioning strategy, we consider the regularized QP (4.1):

min
x
i

,z

X

i2P

1

2

xT
i Dixi + cTi xi +

⇢

2

kAxi +Biqk2 (4.14.1)

s.t. Jixi = bi, (�i) i 2 P (4.14.2)

Aixi +Biq = 0, (yi) i 2 P . (4.14.3)

The solution of this problem is also a solution of (4.1) (since the penalization term

vanishes at the solution). The optimality conditions of the regularized QP are given

by:

2

6664

K⇢ ⇢ATB AT

⇢BTA ⇢BTB BT

A B

3

7775

| {z }
H

⇢

2

6664

�

q

y

3

7775

|{z}
u

=

2

6664

�

0

0

3

7775

|{z}
r

. (4.15)
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We refer to (4.15) as the KKT system and to H⇢ as the KKT matrix. ADMM can

be interpreted as a Gauss-Seidel minimization of the block and coupling variables

and the dual variables [Boyd et al., 2011, Eckstein and Bertsekas, 1992b, Rodriguez

et al., 2018]. This induces a splitting operator H⇢ = M⇢ �N⇢ satisfying:

2

6664

K⇢ ⇢ATB AT

⇢BTA ⇢BTB BT

A B

3

7775

| {z }
H

⇢

=

2

6664

K⇢

⇢BTA ⇢BTB

A B �1

⇢
I

3

7775

| {z }
M

⇢

�

2

6664

�⇢ATB �AT

�BT

�1

⇢
I

3

7775

| {z }
N

⇢

(4.16)

Applying splitting (4.16) to (4.15) gives the operator:

T⇢(u) := G⇢u+ f⇢ (4.17)

where G⇢ = M�1

⇢ N⇢ and f⇢ = M�1

⇢ r. Note that any u satisfiying the fixed-point

T⇢(u) = u satisfies (I � G⇢)u = f⇢ and is a solution of the preconditioned KKT

system:

M�1

⇢ H⇢u = M�1

⇢ r. (4.18)

This follows from M�1

⇢ H⇢ = M�1

⇢ (M⇢ �N⇢) = I �G⇢. This motivates the develop-

ment of a Richardson recursion of the form uk+1

= G⇢u
k
+ f⇢, which converges to

a u satisfying (I �G⇢)u = f⇢ and M�1

⇢ H⇢u = M�1

⇢ r (provided that the eigenvalues

of G⇢ are inside the unit circle). In Appendix D we show that the operator T⇢(u)

can be computed by performing one ADMM iteration (using u as stating point). In

other words, we have that T⇢(u) =ADMM(u, NADMM = 1, ⇢). This also implies that

the Richardson recursion can be written as uk+1

=ADMM(uk, NADMM = 1, ⇢). We

thus have that the Richardson recursion (and thus ADMM) are consistent precon-

ditioner choices.

The key idea behind ADMM-GMRES is to solve the system M�1

⇢ H⇢u = M�1

⇢ r by

using the Krylov solver GMRES. This is equivalent to solving (I �G⇢)u = f⇢. The
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right-hand side of this system can be computed as f⇢ = T⇢(0). GMRES requires the

computation of matrix-vector products with the preconditioned coefficient matrix

of the form M�1

⇢ H⇢h = (I �G⇢)h. This can be done by using the operator (4.17) as:

M�1

⇢ H⇢h = h� [T⇢(h)� T⇢(0)] , (4.19)

This follows from the observation that:

M�1

⇢ H⇢h = h� [T⇢(h)� T⇢(0)]

= h� [G⇢h+ f⇢ � f⇢]

= h�G⇢h

= (I �G⇢)h. (4.20)

From (4.20) we note that asking the ADMM oracle to iterate until reaching conver-

gence will deliver T⇢(h) = h satisfying M�1

⇢ H⇢h = f⇢. In such a case, the ADMM

preconditioner is perfect (since it solves the actual preconditioned KKT system).

Consequently, the quality of the ADMM preconditioner will improve as one in-

creases NADMM. For details on the properties of the preconditioner we refer the

reader to [Zhang and White, 2018, 2016]. The ADMM-GMRES strategy is summa-

rized in Algorithm 10.

Algorithm 10: ADMM GMRES(NGMRES, NADMM, ⇢)
Input: maximum number of GMRES iterations NGMRES, maximum number of

ADMM iterations NADMM, penalty parameter ⇢ > 0, and tolerance ✏ > 0

1 Compute right-hand-side vector:

2 f⇢ = ADMM(0, NADMM, ⇢)

3 Call GMRES solvera:

4 u = GMRES(I �G⇢, f⇢, NGMRES, ✏)

Output: u

aMatrix-vector products are computed as (I � G

⇢

)h = h � (T

⇢

(h) � f

⇢

), where T

⇢

(h) =ADMM(h,
NADMM = 1, ⇢).
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4.3 Numerical Results

In this section we discuss the implementation of the ADMM-GMRES algo-

rithm and present results for different benchmark problems. All numerical ex-

periments were run using PyNumero, which is an open-source framework written

in Python and C++ that combines modeling capabilities of the algebraic model-

ing language Pyomo [Hart et al., 2017] with efficient libraries like the AMPL solver

library [Fourer et al., 1993], the Harwell Subroutine Library (HSL), and NumPy/S-

ciPy [Jones et al., 2001–]. It uses object-oriented principles that facilitate the imple-

mentation of algorithms and problem formulations that exploit block-structures

via polymorphism and inheritance. All these features facilitate the implementation

of ADMM, Schur decomposition, and ADMM-GMRES. The optimization models

were implemented in Pyomo/PyNumero and all linear algebra operations were

performed in compiled-code. Within PyNumero, we used an MA27 interface to

perform all direct linear algebra operations. We use the GMRES implementation

within Scipy to perform all iterative linear algebra operations. Iterative linear

algebra routines available in KRYPY [Gaul and Schlmer, 2015] were also used to

validate results. To implement the power grid models we used EGRET, a Pyomo-

based package that facilitates the formulation if optimization problems that arise

in power systems. The stopping criterion for GMRES and ADMM is that the norm

of the KKT system residual is smaller than 1 ⇥ 10

�8. If the residual convergence

criterion was not satisfied after 2,000 iterations, the algorithm was aborted and we

report the norm of the residual achieved. All matrix factorizations were obtained

using MA27 with a pivoting tolerance of 1⇥ 10

�8
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4.3.1 Standard Benchmark Problems

We first conducted tests with randomly generated instances to study qualita-

tively the performance of ADMM-GMRES on block-structured optimization prob-

lems. This section focuses on two-stage stochastic programs of the form:

min
x
i

,z

X

i2P

1

2

xT
i Dxi + cTxi (4.21.1)

s.t. Jxi = bi, (�i) i 2 P (4.21.2)

Aixi � q = 0, (yi) i 2 P (4.21.3)

where P is the scenario set, xi are the second-stage (recourse) variables, and z are

first-stage (coupling) variables. We defined a nominal vector b and create scenar-

ios with right-hand-side vector bi using the nominal vector b as mean and using a

standard deviation � = 0.5b. We first demonstrate the scalability of Algorithm 10

when solving instances of problem (4.21) with high dimensionality in the coupling

variables z. The stochastic problem was constructed in the following manner: D

was set to a 4, 800 ⇥ 4, 800 block diagonal matrix with 16 dense symmetric blocks.

Each block was generated following Algorithm 14 from [Zhang and White, 2018]

with log-standard-deviation s = 0.5 (see [Zhang and White, 2018] for details). The

random matrix J is of size 100 ⇥ 4, 800. The number of scenarios was set to 50

giving an initial problem with 240, 000 variables and 5, 000 constraints. To inves-

tigate the scalability of Algorithm 10 to solve (4.21), the number of complicating

variables was varied from 100 to 4, 000. Note that, as nq increases, the number of

constraints of (4.21) increases by 50nq, while the number of variables by nq. The

largest problem solved contained 244, 000 variables and 205, 000 constraints.

We solved (4.21) using four different strategies. Figure 4.1 depicts the results

obtained with Schur decomposition, GMRES (without preconditioner), ADMM,

and ADMM-GMRES. These results confirm the observations of Section 4.2. Specif-

ically, Schur decomposition does not scale well as nq increases. The main reason
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Figure 4.1.: Scalability analysis of Schur decomposition, GMRES (without precon-
ditioner), ADMM, and ADMM-GMRES.

for this behavior is that, as nq increases, the number of operations required to

form the Schur-complement increases significantly. In addition, because the Schur-

complement matrix is a dense nq ⇥ nq matrix, the factorization time increases cu-

bically as nq increases. We observe that GMRES takes the longest time to solve the

problem. For ADMM and ADMM-GMRES we see more favorable scalability as nq

increases. Specifically, we see that ADMM-GMRES always converges faster than

the rest of the methods and the savings increase as the number of coupling vari-

ables increases. We also note that ADMM-GMRES mimic the trend in performance

of ADMM but is significantly faster.

Figure 4.2 shows the residuals for the iterative approaches for a problem with

1, 000 complicating variables. We can see that all methods exhibit linear conver-

gence but that ADMM-GMRES outperforms the other two methods. Notably,

ADMM-GMRES converges in just 35 iterations while ADMM and GMRES require

over 300 iterations and 1, 000 iterations, respectively.
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Figure 4.2.: Evolution of residuals for GMRES (without preconditioner), ADMM,
and ADMM-GMRES.

An important drawback of ADMM is the need to tune the penalty parameter ⇢.

The work in [Ghadimi et al., 2015] shows that an optimal value for ⇢ can be chosen

based on the smallest and largest eigenvalues of the matrix ATD�1A. In principle,

this selection of ⇢ is optimal for ADMM-GMRES as well. However, for large-scale

structured problems such as the ones considered here, computing the eigenval-

ues of ATD�1A is expensive. Heuristic approaches have also been proposed to

select ⇢ at every ADMM iteration with the objective of accelerating convergence

[Wohlberg, 2017]. Unfortunately these heuristics do not provide guarantees and

might incur additional overhead. In particular, for the QP problems considered

here, varying ⇢ at every ADMM iteration will require forming and factorizing the

K⇢
i

repetitively. We now demonstrate that, interestingly, ADMM-GMRES is fairly

insensitive to the choice of ⇢.

Figure 4.3 compares the performance of ADMM against that of ADMM-GMRES

for a stochastic program with nq = 1, 000 and different values of ⇢ ranging from

10

�3 to 10

3. Here we measure performance in terms of the number of iterations.
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(a) Number of iterations to satisfy convergence criteria

(b) Error with respect to exact solution

Figure 4.3.: Sensitivity of ADMM and ADMM-GMRES to penalty parameter ⇢.

Our results on the block-structured problem are in agreement with those in [Zhang

and White, 2016] for the single block problem. We see that ADMM-GMRES is

remarkably robust at solving (4.21) regardless of the choice of ⇢ (the number of
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iterations always stays below 30). ADMM, on the other hand, fails to converge

within 2,000 iterations for small and large values of ⇢. The superior performance

of ADMM-GMRES is attributed to the fact that the selection of ⇢ only has an effect

on the preconditioner and not the convergence of GMRES itself. Nevertheless, we

observe that an optimal selection of ⇢ improves performance of both ADMM and

ADMM-GMRES. The robustness of ADMM-GMRES is a desirable feature when

using the solver within more advanced SQP-based solvers. In particular, recent

developments of augmented lagrangian interior-point approaches [Chiang et al.,

2017, Kuhlmann and Bskens, 2018] provide promising frameworks for ADMM-

GMRES since the selection of ⇢ is made based on information from the outer-

iteration of the interior-point [Armand et al., 2014, Armand and Omheni, 2017].

Finally, recent developments of inertia-free methods for nonconvex nonlinear op-

timization enable the use of iterative linear solvers for the Newton subproblem.

4.3.2 Optimal Power Flow Problems

We demonstrate the computational benefits of using ADMM-GMRES by solv-

ing stochastic optimal power flow problems. The optimal power flow problem is

frequently used in power networks to determine an efficient dispatch of power

generators that satisfy demand and maintains feasible operation conditions. This

approach assumes that demand forecasts are accurate and determines a nominal

operation point for power generation, power flow in transmission lines and volt-

age angle at each bus in the power grid. We solve the DC-power flow problem

for 35 benchmarks available in the PGLIB OPF library [Zimmerman et al., 2011]

and determine nominal operation points for each of them. The solution of each

benchmark was obtained using Ipopt.

To asses the computational performance of ADMM-GMRES, we formulated a set-

point problem that uses the nominal solution of the DC-power flow problem but
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seeks to minimize the effect of potential uncertainty in electricity demand values.

The optimization solved is the quadratic problem:

min
x
i

,z

X

s2P

X

j2⌦
G

wj(PG
j,s

� P †
G

j

)

2

+

X

i,j2⌦
L

wi,j(PF
i,j,s

� P †
F
i,j

)

2

+

X

j2⌦B

wj(✓j,s � ✓†j)
2

(4.22.1)

s.t.
X

j2⌦
G

i

PG
j,s

� PL
i,s

=

X

j2⌦
i

PF
i,j,s

, i 2 ⌦B, s 2 P (4.22.2)

PF
i,j,s

=

✓i,s � ✓j,s
Xi,j

, i, j 2 ⌦L, s 2 P (4.22.3)

PG
j,s

� zj = 0, j 2 ⌦G, s 2 P (4.22.4)

✓
0,s = 0, s 2 P . (4.22.5)

Here, ⌦B and ⌦L denote the set of buses and transmission lines in the network,

⌦G the set of generators, ⌦G
i

the set of generators at bus i, and ⌦i the set of buses

connected to bus i. The variables in the model are the generator outputs PG , the

flow in the transmission lines PF , and the voltage angles ✓j . As parameters we

have the reactance of the lines Xi,j , the loads PL, and the set-point values P †
G, P †

F ,

and ✓† obtained from the DC-power flow solution. We denote the reference bus as

✓
0

and define objective weight values w. The goal of formulation (4.22) is to find the

closest feasible operation to the optimal DC-power flow solution while accounting

for potential uncertainty in the demands. In this problem the first-stage variables

are the output of the generators for which we use Equation (4.22.4) to enforce the

same power generation across the set of scenarios. The dimensionality of the first-

stage of this problem is given by the number of generators in the power network.

Hence, this number varies from 3 to 4, 092 in the 35 different benchmark problems

considered in our study. For each benchmark we generated 50 random scenarios

with normal random distributed noise on the load PL
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Tables 4.1 and 4.2 summarize the results for the 35 benchmarks. The problems

were sorted according to their number of coupling variables. Table 4.1 presents

the results for benchmarks with a first-stage dimension greater than 100. Results

for the smaller benchmarks are shown in Table 4.2. We see that, for the smaller

problems, Schur decomposition is the best alternative as it can give exact solu-

tions in about the same time as ADMM. However, for all benchmarks shown in

Table 4.1, ADMM-GMRES finds an ✏-accurate solution in less time than ADMM

and Schur decomposition. In particular, for case13659 pegase (with 4,091 first-

stage variables), ADMM-GMRES solved the problem almost an order of magni-

tude faster than Schur decomposition. By looking at the trend for the rest of the

problems, these scalability results can be expected to hold as the number of cou-

pling variables increases. We highlight that, for many of the problems shown in Ta-

ble 4.1, ADMM does not convergence after 2000 iterations; ADMM-GMRES, on the

other hand, consistently achieves ✏-accurate solutions in few iterations and regard-

less of the choice of ⇢. In summary, our results demonstrate that ADMM-GMRES

provides a plausible approach to overcome the limitations of Schur complement

decomposition.

4.4 Summary

We have demonstrated that ADMM provides an effective mechanism to pre-

condition iterative linear solvers and can overcome scalability limitations of Schur

complement decomposition. Our results also demonstrate that the approach is

robust to the choice of the penalty parameter. As part of future work, we will

investigate the performance of ADMM-GMRES within a nonlinear interior-point

framework. Here, it will be necessary to relax our assumptions on strong con-

vexity and on the full rank of the Jacobian. Preliminary results reported in the

literature indicate that different types of primal-dual regularized KKT systems can

be used to compute search steps within interior-point methods under such relaxed
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Figure 4.4.: Computational times for Schur decomposition, ADMM, and ADMM-
GMRES for problems with nq � 100.

Figure 4.5.: Computational times for Schur decomposition, ADMM, and ADMM-
GMRES for problems with nq < 100.

conditions [Chiang et al., 2017]. For instance, the primal-dual regularized system

correspond to the optimality conditions of the QP problem:
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Figure 4.6.: Residuals for Schur decomposition, ADMM, and ADMM-GMRES for
problems with nq � 100.

Figure 4.7.: Residuals for Schur decomposition, ADMM, and ADMM-GMRES for
problems with nq < 100.

min

x,q,r

1

2

xT
(D + �I)x+ cTx+

1

2⇢
krk2 + ⇢

2

kAx+Bq � 1

⇢
rk2

s.t. Ax+Bq � 1

⇢
r = 0, (y)

(4.23)



87

We will investigate ADMM variants to precondition such systems. The effec-

tiveness of using ADMM as a preconditioner makes us wonder whether other

approaches can be used for preconditioning as well. For instance, inexact dual

Newton strategies can potentially be used to precondition structured KKT sys-

tems. This is an interesting direction of future work. We will also investigate ad-

vanced ADMM strategies that use second-order multiplier updates to accelerate

the preconditioner.
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5. ACCELERATING ADMM WITH SECOND-ORDER UPDATES 1

Many problem classes, including design under uncertainty are inherently struc-

tured and can be accelerated with decomposition approaches. This chapter de-

scribes a second-order multiplier update for the alternating direction method of

multipliers to solve nonlinear stochastic programming problems. We exploit con-

nections between ADMM and the Schur-complement decomposition to derive an

accelerated version of ADMM. Specifically, we study the effectiveness of perform-

ing a Newton-Raphson algorithm to compute multiplier estimates for the method

of multipliers and augmented Lagrangian methods in general. We interpret ADMM

as a decomposable version of MM and propose modifications to the multiplier up-

date of the standard ADMM scheme based on improvements observed in MM.

The modifications to the ADMM algorithm seek to accelerate solutions of op-

timization problems for design under uncertainty and the numerical effective-

ness of the approaches is demonstrated on a set of ten stochastic programming

problems from literature. Practical strategies for improving computational per-

formance are discussed along with comparisons between the algorithms. We ob-

serve that the second-order update achieves convergence in fewer unconstrained

minimizations for MM on general nonlinear problems. In the case of ADMM, the

second-order update reduces significantly the number of subproblem solves for

convex quadratic programs.
1Part of this chapter is reprinted from
“Second-order Multiplier Updates to Accelerate ADMM Methods in Optimization Under Uncer-
tainty” by Jose S. Rodriguez, Gabriel Hackebeil, John Siirola, Victor M. Zavala, Carl D. Laird, to ap-
pear in FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-
Aided Process Design, 2019.
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5.1 Preliminaries

Large-scale optimization models are used in many fields of science and en-

gineering to provide solutions to problems. In particular, as uncertainty analysis

becomes increasingly important in the areas of optimal design and manufacturing,

there is a need for reliable and efficient methods to solve large-scale optimization

under uncertainty problems. This has motivated extensive research in the field of

decomposition algorithms since they allow considerable computational speedup

in parallel computing environments while addressing memory requirements. The

alternating direction method of multipliers [Boyd et al., 2011] has received partic-

ular attention due to its flexibility and ease of implementation for solving large-

scale problems in a distributed matter. Being a first-order method, one drawback

of ADMM is that it has a slow rate of convergence compared to advanced second-

order methods. The Schur-complement decomposition has also received special

attention for solving stochastic programming problems that arise in design under

uncertainty [Biegler, 2017]. Schur-complement schemes have proven to be very ef-

fective for parallelizing the interior-point algorithm by taking advantage of block-

structures in the KKT system of structured optimization problems [Gondzio and

Grothey, 2009, Word, 2014, Kang et al., 2014]. Although ADMM has a slower con-

vergence rate, it also has reduced communication requirements in parallel com-

puting environments. In this work we derive a second-order multiplier update

for ADMM that resembles the Schur-complement algorithm to accelerate its rate

of convergence while keeping its ease of implementation and parallel computing

benefits. This modification to the ADMM algorithm seeks to make the method

more efficient for nonlinear optimization under uncertainty problems.
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In this chapter we consider a problem of the form,

min
x
i

,q

X

i2P
fi(xi) (5.1.1)

s.t. ci(xi) � 0, i 2 P (5.1.2)

Aixi +Biq = 0, (yi) i 2 P . (5.1.3)

where the vector xi 2 Rn
x

i contains all the variables corresponding to a block

partition i 2 P := {1, ..., N}. We define the entire set of partition variables as x =

(x
1

, ..., x|P|). The vector q 2 Rn
q contains the complicating (coupling) variables. The

linking constraints (5.1.3) are defined using the mapping matrices Ai and Bi. The

Lagrange multipliers of the coupling constraints are denoted as yi 2 Rm
i , i 2 P .

We also define the entire set of multipliers as y = (y
1

, ..., y|P|).

This structure arises from design problems under uncertainty as multi-stage

stochastic programming problems. For the particular case of two-stage stochastic

problems, like those presented in Chapter 2, the coupling variables correspond to

first-stage variables of the stochastic problem resulting in mapping matrices Bi be-

ing the identity matrix. The separable structure of problem (5.1) enables the imple-

mentation of decomposition techniques that can be used for distributed and par-

allel computing to avoid memory limitations and/or accelerate the solution of the

optimization problem. These decomposition techniques rely on partitioning the

problem to exploit the inherent separable structure. Such partitioning can be done

externally at the problem level formulation (Chapter 3) or internally at the linear

algebra level of a host algorithm (Chapter 2). Partitioning the problem externally

is in general less intrusive, but typically exhibits linear or sublinear convergence

rates. Partitioning the problem internally can provide improved convergence rates

since the properties of the host algorithm are usually retained, however, these ap-

proaches are more intrusive and often require significantly more communication

in parallel implementation. In this work we combine ideas from both approaches

to overcome their individual limitations.



91

In Section 5.2 we derive a second-order update formula for the multiplier es-

timates in MM and ADMM. Connections between the second-order update and

the Schur-complement decomposition are highlighted. Section 5.3 reviews the set

benchmark stochastic programming problems used in this study. In section 5.4,

numerical results for the case studies are provided. Section 5.5 closes the chapter

with concluding remarks and directions for future work.

5.2 Second-Order update formula

The original method of multipliers from Hestenes [1969] follows a first-order

formula to update multiplier estimates in every iteration of the algorithm. In view

of the interpretation of the multiplier update as a dual ascent method, it is natural

to consider a Newton approach for MM and it’s derivative algorithms like ADMM.

The update formula using a Newton-based approach is the following

yk+1

= yk + ↵[r2�(xk+1, qk+1yk)]�1r�(xk+1, qk+1, yk) (5.2)

where �(x, q, y) = inf

x
L⇢(x, q, y) is the dual function, r�(x, q, y) = c(x, q) its gradi-

ent, and r2�(x, q, y) it’s Hessian. Miele [1971b], Bertsekas [1976], Fletcher [1975],

and others [Betts, 1977, Rupp, 1975, Glad, 1979] studied the local and global con-

vergence properties of applying (5.2) to the standard MM. Miele [1971a] was the

first to carry numerical experiments using both dual ascent and Newton update

formulas for the multipliers on MM. Fletcher [1975] provided numerical evidence

for the acceleration obtained with Newton updates together with a comparison

with different penalty functions. Rupp [1975] and Bertsekas [1976] prove local

convergence for the Newton step using second-order sufficient conditions. Buys

[1972] and Tapia [1977] later proposed Quasi-Newton update formulas to carry

out the multiplier update and overcome the difficulty of obtaining second-order

derivative information.

Provided that the subproblems in ADMM are solved with modern nonlinear

solvers (e.g. Ipopt, Knitro, Snopt) second-order derivative information is read-
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ily available. Therefore, in this chapter, we explore the application of second-order

updates within the ADMM framework.

To derive the second-order update formula consider using Newton method to

solve the subproblem

min
x
i

fi(xi) + ⇢kAixi +Biq
kk2 (5.3.1)

s.t. ci(xi) = 0, (�i) (5.3.2)

Aixi +Biq
k
= 0, (yi). (5.3.3)

The system of first-order optimality conditions for subproblem (5.3) are as follows:

rx
i

f(xi) + AT
i (y + ⇢(Aixi � qk)) +rx

i

c(xi)
T�i = 0 (5.4)

ci(xi) = 0

Aixi +Biq
k
= 0

The application of Newton’s method linearizes the nonlinear system and solves

the problem:
2

6664

r2

x
i

Lk
i + ⇢AT

i Ai (Jk
i )

T AT
i

Jk
i

Ai

3

7775

2

6664

�qki

��k
i

�yki

3

7775
= �

2

6664

rx
i

Lk
⇢
i

ci(x
k
i )

Aix
k
i +Biq

k

3

7775
(5.5)

Then, with Newton’s method given a current iterate (xk
i ,�

k
i , y

k
i ), one obtains the

next iterate (xk+1

i ,�k+1

i , yk+1

i ) with the solution of the linear system of equations:
2

4K⇢
i

ET
i

ET
i

3

5

2

4�wk
i

�yki

3

5
= �

2

4 rki

Aix
k
i +Biq

k

3

5 (5.6)

where wi =

h
xk
i �k

i

iT
is the vector of the subproblem variables,

K⇢
i

=

2

4r
2

x
i

Lk
+ ⇢AT

i Ai rx
i

c(xk
i )

T

rx
i

c(xk
i )

3

5
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is the KKT system of the subproblem, rki =

h
rx

i

Lk
⇢ ci(x

k
i )

iT
is the right-hand side

for the KKT system, of the subproblem, and Ei =

h
Ai 0

iT
is a compression matrix

that extracts the primal coupling variables from the vector of subproblem variables

wk
i . If K⇢

i

is invertible one can then solve system (5.6) explicitly. We first write (5.6)

as

K⇢
i

�wk
i + ET

i �yki = �rki (5.7.1)

Ei�wk
i = �(Aix

k
i +Biq

k
) (5.7.2)

Solving for �wk
i in (5.7.1) and substituting in (5.7.2) gives the second-order step

formula:

�yki = [ET
i K

�1

⇢
i

Ei]
�1

[Aix
k
i +Biq

k � ET
i K

�1

⇢
i

rki ] (5.8)

Equation (5.8) provides then a second-order step for updating the multiplier

estimates in ADMM.

yk+1

= yk + ↵�yk (5.9)

Note from (5.8) that at a stationary point, ri = 0 andry
i

�(xk, qk) = Aix
k
i +Biq

k
= 0.

Consequently at stationary points (5.8) converges to zero. Note also that (5.8) is in

the form of (5.2) and that r2�(xk+1, qk+1yk) = ET
i K

�1

⇢
i

Ei which implies that the

Schur-complement of the subproblem is the Hessian of the dual function.

It can be shown that (5.8) is equivalent to the Schur-complement update of the

linking constraint multipliers of a parallel SQP algorithm. The Schur-complement

decomposition in Chapter 2 achieves superlinear convergence by applying second-

order updates on the y and q variables at a QP level. The second-order update on q

is known to add overhead and increase communication in the decomposition algo-

rithm. We explore using only second-order updates on y externally at a problem

level with MM and ADMM. We note that Equation (5.8) is equivalent as well to

the Newton update proposed by Bertsekas [1982]. Differently than Bertsekas for-

mula, (5.8) considers a partial elimination of constraints and eliminates only the
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linear constraints corresponding to the linking across blocks. In his work, Bert-

sekas [1982] demonstrated three properties of his second-order update formula:

1) the threshold level ⇢ � ⇢⇤ for the second-order update is lower than that for

the first- order update; 2) The second-order update has a faster rate of conver-

gence than the first order update; and 3) convergence of the second-order update

is guaranteed only for a limited region of initial multipliers. These three proper-

ties hold for (5.8), and hence it can be expected to be less sensitive to the value of

⇢, faster to converge, and more dependent on y0. Section 6 describes how to ex-

ploit these properties within an ADMM scheme and demonstrate with numerical

experiments the their algorithmic benefits.

5.3 Benchmark Problems

We study the performance of the second-order update on MM and ADMM on

a set of ten stochastic programming problems. The first six problems are convex

QPs of the form:

min
x
i

,q

X

i2P
pi(x

T
i Dixi + gTi xi + di) (5.10.1)

s.t. Jixi = bi, (�i) i 2 P (5.10.2)

Aixi � q = 0, (yi) i 2 P . (5.10.3)

Here the data defining the problem is given by the coefficients Di, gi, di, Ji ; the

right-hand side coefficient bi ; and the probabilities pi . We consider stochastic

variants of problems obtained from [Biegler, 2010] and [Kang et al., 2014], and

the CUTEr and QPLIB libraries [Gould et al., 2015, Maros and Mszros, 1999a]2.

We generate a stochastic defining Qi and bi as a random vector. The normally

distributed random Qi and bi were generated using the deterministic Q and b as

mean. For all problems the scenario probability pi was set to 1/|P |. All problems

considered a set of 20 scenarios (|P | = 20). Statistics for the set of QPs are summa-
2The QPs from QPLIB were convexified as D + �I
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Table 5.1.: Quadratic benchmark problems for numerical experiments with MM
and ADMM second-order multiplier updates

Name Source n nq m
SimpleQP Biegler [2010] 61 1 6
KangQP Kang et al. [2014] 21050 50 21000
CVXQP3 Gould et al. [2015] 20006 6 15120
AUGD2 Gould et al. [2015] 4254 14 2200
QPLIB3775 Maros and Mszros [1999a] 3600 8 1360
QPLIB0018 Maros and Mszros [1999a] 1005 5 120

rized in Table 5.1. These QPs provide benchmark problems to compare against the

Schur-complement decomposition.

The remaining set of four problems consisted of stochastic non-convex nonlin-

ear DAE constrained optimization problems of the form:

min
x
i

,q

X

i2P
pi

Z

T

Ji(si(t), �i(t), ui(t),i) (5.11.1)

s.t. Fi(ṡi(t), si(t), �i(t), ui(t),i), (�i) i 2 P , t 2 T (5.11.2)

Aiui(t)� q(t) = 0, (yi) i 2 P , t 2 T . (5.11.3)

where T = [t
0

, tf ] is the time domain, si(t), �i(t), and ui(t) the state, algebraic and

control variables of the i-th scenario; i the a vector of time invariant parameters;

and Fi the differential algebraic system of equations (DAE).

The differential algebraic system is discretized by applying a collocation on fi-

nite element scheme as described by Nicholson et al. [2017]. In the scheme consid-

ered the time dependent variables are approximated using Lagrange polynomials

defined at a set of collocation points tj, j 2 Nc := {0, ..., nc � 1} on finite elements
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Ne := {0, ..., ne � 1} resulting on a discretized problem with the following NLP

form:

min
x
i

,q

X

i2P
pi
X

j2N
e

X

k2N
c

Ji(si,j,k, �i,j,k, ui,j,k,i) (5.12.1)

s.t. Fi(ṡi,j,k, si,j,k, �i,j,k, ui,j,k,i), (�i) i 2 P , t 2 T (5.12.2)

Aixi � q = 0, (yi) i 2 P , t 2 T . (5.12.3)

where qk are the Radau quadrature weights and xi = (si,j,k, �i,j,k, ui,j,k) is the com-

position vector containing the subproblem variables. The Ai matrix is constructed

to map the control variables ui,j,k in each subproblem to the complicating variables

q. For this second set of problems we considered variants of DAE problems avail-

able as examples in the Pyomo.dae package. The problems are labeled according

with the name given to the pyomo.dae example. As with the set of QPs, we gener-

ate the stochastic version of the problems with random vectors i). For additional

description of the optimization models see [Rodriguez et al., 2018, Nicholson et al.,

2017]

Table 5.2.: Stochastic optimal control benchmark problems for numerical experi-
ments with MM and ADMM second-order multiplier updates

Name Source n nq m
OptimalControl Pyomo 6493 32 6460
RxnKinetics Pyomo 16161 1 16160
Distillation Pyomo 62011 30 61980
Semibatch Pyomo 56524 40 56520

5.4 Results and Discussion

The optimization problems of Section 5.3 were implemented using the open-

source modeling framework Pyomo. Pyomo facilitated the discretization of the

DAE problems as well as the derivative information necessary for the second-

order update. For the discretization of DAE problems we used Pyomo.dae and
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for first and second- order derivatives we used the newly introduced package

pyomo.contrib.pynumero. The solution of the optimization problems was ob-

tained using the state-of the art solver Ipopt. For comparison and validation pur-

poses the stochastic NLPs were solved following three different approaches. In

the first approach, the original extensive- form was solved directly with Ipopt.

The results from this approach provided validation for the other approaches. The

second approach solved the problems with the method of multipliers. Both, first-

order and second-order update formulas were used. In the third approach the

problems were decomposed and solved with ADMM. Again, both the first-order

and second-order update formulas were used and compared. In all three ap-

proaches Ipopt was used for solving the corresponding subproblems. We thus

highlight that all solutions obtained were local minimizers.

To study the performance of the first and second-order updates the optimiza-

tion problems were solved with MM and ADMM. The convergence criteria to stop

the MM and ADMM iterations are given by

⇢kAxk
+Bqkk  ✏

1

(5.13)

⇢ATB(qk+1 � qk)  ✏
2

(5.14)

as described in Boyd et al. [2011] and Rodriguez et al. [2018]. We used ✏
1

, ✏
2

=

1.0 ⇥ 10

�6 for all problem instances. In Table 5.3 we compare the performance

of the method of multipliers with first and second-order updates. To this end,

we compare the number of iterations needed to satisfy the convergence criteria in

(5.13) and (5.14). To overcome the sensitivity of the second-order update on y0 we

perform first-order updates initially if necessary. The switching criteria from first

to second-order updates was based on (5.14). If ⇢ATB(qk+1 � qk)  1.0⇥ 10

�4 then

the second-order was used. As we can see for all problem instances MM with a

second-order update required significantly fewer iterations. Moreover, for all QPs

the second-order update converged in 2-3 iterations resembling the performance

of full-space second-order methods on convex quadratic problems.
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Table 5.3.: Number of iterations MM with first and second-order multiplier up-
dates

Name Penalty Parameter ⇢ First-Order Second-Order
SimpleQP 1⇥ 10

1 32 2
KangQP 1⇥ 10

2 318 2
CVXQP3 1⇥ 10

5 531 2
AUGD2 1⇥ 10

1 49 3
QPLIB3775 1⇥ 10

3 62 3
QPLIB0018 1⇥ 10

3 126 2
OptimalControl 1⇥ 10

2 84 6
RxnKinetics 1⇥ 10

0 8 3
Distillation 1⇥ 10

1 36 5
Semibatch 1⇥ 10

1 18 4

Table 5.4 summarizes the results for the two multiplier updates on ADMM.

For all problems the complicating variables estimates q0 were initialized follow-

ing the aggregation initialization strategy of the Progressive Hedging algorithm

[Rockafellar and Wets, 1991]. As we can see, the second-order update again re-

duces significantly the number of iterations for the QPs. However, for the general

nonlinear DAE problems the second-order update seems to have little to no effect.

The benefits seen in the quadratic problems are attributed to fast convergence of

qk. When ADMM approaches the solution variables q⇤, the second- order update

accelerates the convergence of the multiplier estimates yk and the primal infeasi-

bility kyk+1 � ykk goes quickly to zero. Differently than MM, ADMM uses a first-

order update for the q variables resulting in the better performance observed in

Table 5.3. This suggests potential benefits of modifying the q-update on ADMM to

also follow a second-order approach. This also indicates that the formation of the

Schur-complement within an SQP framework may be avoided by solving the KKT

system with ADMM and the Newton update proposed here.

An important drawback of ADMM of using within an SQP framework is the

need to tune properly the value of ⇢. Figure (5.1) shows the sensitivity of ADMM

with respect to ⇢ when solving a randomly generated convex QP with the first



99

Table 5.4.: Number of ADMM iterations with first and second-order multipliers
updates

Name Penalty Parameter ⇢ First-Order Second-Order
SimpleQP 1⇥ 10

1 32 2
KangQP 1⇥ 10

2 318 2
CVXQP3 1⇥ 10

5 531 2
AUGD2 1⇥ 10

1 49 32
QPLIB3775 1⇥ 10

3 62 28
QPLIB0018 1⇥ 10

3 126 24
OptimalControl 1⇥ 10

2 86 86
RxnKinetics 1⇥ 10

0 66 63
Distillation 1⇥ 10

1 49 48
Semibatch 1⇥ 10

1 15 13

Figure 5.1.: Sensitivity of ADMM to ⇢ with first and second-order multiplier up-
dates.

and second-order multiplier updates. The stochastic QP was constructed follow-

ing Algorithm 14 from [Zhang and White, 2018] with nx=4080, n�=3800, nq=80. To

investigate the effect of the penalty parameter we varied ⇢ from 10

�3 to 10

5. The

problem was initialized following the aggregation initialization strategy of PH and

solved with the first and second-order update strategies. We see that differently to
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the regular ADMM, our modified ADMM with second-order updates is remark-

ably robust to solve the stochastic convex QP. While regular ADMM with first-

order updates fails to converge after 1000 iterations for small values of ⇢, ADMM

with the second-order update always converges. This superior behavior of the

second-order update is attributed to the fast consensus of q across scenarios of the

quadratic problem. For all our numerical experiments we observed that convex

stochastic QPs find consensus of the coupling variables in few iterations if a PH

initialization strategy is followed. This is important because the second-order up-

date becomes effective once kqk � q⇤k  ✏ and is for this reason that we see that

almost regarless of the choice of ⇢ ADMM with second-order updates converges

in 2 to 3 iterations.

5.5 Summary

In this chapter we have presented a second-order multiplier update for ADMM.

This update strategy follows a Newton extrapolation to accelerate convergence

of multiplier estimates. We have demonstrated that the Newton update dramat-

ically reduces the number of subproblem solves for convex QPs. These results

are evidence that the Newton update of multipliers resembles that of the Schur-

complement decomposition. One interesting characteristic of the second-order up-

date is that makes ADMM more robust to the selection of the penalty parameter.

While regular ADMM fails to converge for small values of ⇢ on convex QPs, the

modified ADMM with second-order multiplier updates consistently converged in

few iterations.

This chapter concludes the first part of the thesis. In the next chapter we dis-

cuss software tools for developing decomposition algorithms. We concentrate in

particular on the description of a Python framework that we develop to facilitate

research on decomposition algorithms.



Software Tools for Structured

Optimization

101
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6. PYTHON NUMERICAL OPTIMIZATION

In this chapter we describe PyNumero, an open-source, object-oriented program-

ming framework in Python for prototyping nonlinear optimization algorithms.

When combined with Pyomo, a Python-based package for optimization model-

ing, PyNumero allows optimization models and solution algorithms to be im-

plemented in the same software platform enabling more rapid development of

novel solution algorithms; especially those tailored for specific model structures.

PyNumero is built on NumPy and Scipy, well-established Python packages for

scientific computing. These packages provide a Python-based API to users while

keeping expensive numerical calculations in more efficient, compiled languages

like C and Fortran. PyNumero also provides Python interfaces to efficient numer-

ical libraries for automatic differentiation and linear algebra including the AMPL

Solver Library (ASL), the Harwell Subroutine Library (HSL), and the Parallel Sparse

Direct Solver (MUMPS). Finally, PyNumero provides infrastructure for parallel

computing using the Message Passing Interface (MPI). Solution algorithms pro-

totyped using PyNumero can be used to solve optimization models formulated

in either Pyomo or AMPL. PyNumero is designed to avoid marshalling data be-

tween the C and Python environments enabling complex algorithm development

using high-level Python syntax without a significant sacrifice in performance. This

manuscript presents the novel aspects of the implementation and discusses exam-

ples of nonlinear optimization algorithms implemented in PyNumero. Of special

interest are decomposition-based numerical algorithms for large-scale, structured

optimization problems. The efficiency of PyNumero is illustrated on problems

arising in stochastic programming and optimal control, and timing results are pre-

sented for both serial and parallel algorithm implementations. Our computational
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studies demonstrate that PyNumero strikes a balance between the computational

efficiency of compiled code and the rapid scripting syntax of Python and enables

intuitive yet efficient implementations of optimization algorithms.

6.1 Preliminaries

Software for numerical optimization has historically been broken into two dis-

tinct pieces, a platform for modeling optimization problems using high-level syn-

tax, often called an algebraic modeling language (AML), and a platform for solving

optimization problems with certain features (linear, nonlinear, mixed-integer, etc.)

usually implemented in low-level, compiled programming languages for compu-

tational efficiency. This paradigm of separating the modeling language from the

solver made sense when the research focus was on creating general-purpose opti-

mization algorithms capable of solving a large variety of problems in some stan-

dard form. However, with the increased focus on solving larger and larger prob-

lems, there is growing interest in developing more tailored solution algorithms

that exploit known model structures often obscured by the current model-solver

separation paradigm. While there have been efforts to extend existing tools to

address this use-case and pass information on the model structure from the mod-

eling layer to the solver [Chiang et al., 2014, Zavala et al., 2008], these extensions

usually rely on infrastructure that was designed for passing simple solver options

(e.g. AMPL suffixes) and do not support more complex data structures. Further-

more, general-purpose optimization solvers are typically implemented using low-

level programming languages like C++ or Fortran and can be difficult to modify

or extend. Significant software engineering expertise is required to prototype even

minor modifications to existing solvers. This makes it difficult for optimization

practitioners to prototype new solution algorithms and explore new ideas.

To address and mitigate these challenges, we present PyNumero, a Python

package for numerical optimization that provides a high-level programming frame-

work for rapidly developing nonlinear optimization algorithms. PyNumero can be
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used alongside Pyomo to provide a unified Python platform for both modeling and

solving optimization problems. In addition, PyNumero has been designed with

computational performance in mind and utilizes Python-C interfaces internally

to ensure that expensive numeric calculations are all performed using compiled

code. PyNumero is not intended to replace existing state-of-the-art nonlinear op-

timization solvers such as Knitro, Ipopt, or Worhp [Byrd et al., 2006a, Wächter

and Biegler, 2006, Bskens and Wassel, 2013]. Instead, it supports a variety of tools

that allow researchers to explore new optimization methods, try different algorith-

mic heuristics, and evaluate different linear algebra routines and data structures

without requiring substantial rewriting of code. The intent is to enable more prac-

titioners and researchers in nonlinear optimization to write numerical algorithms

and rapidly implement new ideas.

Real-world, large-scale optimization problems typically require specialized so-

lution approaches that exploit prior knowledge of the application [Biegler, 2017,

Zavala et al., 2008, Gondzio and Grothey, 2009, Nocedal and Wright, 2006].

Decomposition-based algorithms are one such approach for solving these large-

scale problems. These algorithms exploit structure in optimization problems and

can often be parallelized [Benzi et al., 2005]. Examples of optimization problems

with decomposable structures are ubiquitous in stochastic programming, network

optimization and dynamic systems [Kang et al., 2014, Word et al., 2014]. By com-

bining PyNumerowith Pyomowe seek to facilitate the implementation of structure-

exploiting optimization algorithms. This unified modeling and solution platform

allows PyNumero to directly interrogate Pyomo model structure and makes it eas-

ier to implement parallelizable decomposition algorithms.

The remainder of this chapter is organized as follows. In Section 6.2 we dis-

cuss a number of projects related to PyNumero and highlight the main contribu-

tions of our work. Then, in Section 6.3 we present an overview of the modeling

components in PyNumero for developing nonlinear optimization algorithms from

Python. In Section 6.4 we present the design features of PyNumero and present ap-
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plication examples in Section 6.5. Timing results together with code examples are

presented in Section 6.5 to demonstrate the effectiveness of PyNumero for imple-

menting and solving nonlinear optimization problems. We conclude the chapter

in Section 6.7 and describe future directions of the project.

6.2 Related Work

Many software packages have been released to address different aspects of non-

linear optimization. As PyNumero includes and expands upon features available

in a broad spectrum of existing software tools, in this section we discuss some of

these existing tools and how PyNumero compares to them. We have categorized

these existing software tools into three broad categories: solvers and solution al-

gorithms, modeling tools, and application-specific frameworks.

Nonlinear optimization solvers are often implemented in low-level program-

ming languages like C, C++, and Fortran. These software packages typically im-

plement one core optimization algorithm and then devote subsequent develop-

ment efforts to fine-tuning the performance of that algorithm through additional

options, algorithm improvements, heuristics, and code refactoring.

LANCELOT [Conn et al., 2013] is a solver for large-scale nonlinear optimization

problems and uses an Augmented Lagrangian algorithm implemented in standard

Fortran77. MINOS [Murtagh and Saunders, 1987] uses a projected augmented La-

grangian method for solving general nonlinear problems and is also implemented

in Fortran. IPOPT [Wächter and Biegler, 2006] is a line-search filter interior-point

(IP) method implemented in C/C++. KNITRO [Byrd et al., 2006a] implements a

trust-region interior-point penalty-barrier method in C++. Examples of sequential

quadratic programming (SQP) codes are CONOPT [Drud, 1985] (written in Fortran),

LINDO [Lin and Schrage, 2009] (written in C/C++), and SNOPT [Gill et al., 2005]

(written in Fortran). WORHP [Bskens and Wassel, 2013, Kuhlmann and Bskens,

2017] is a mixed SQP and IP method for solving large-scale nonlinear optimiza-

tion problems and implemented in Fortran. GALAHAD [Gould et al., 2003], a pack-
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age written in fortran95, contains a collection of solution algorithms for large-scale

nonlinear optimization.

Most of the optimization solvers described above have excellent computational

performance but the implementations can be difficult to navigate, use, or extend.

To explore new algorithms or extensions that may improve properties like con-

vergence rate, solve time, or edge-case handling there is a need for easy-to-use

and easy-to-extend packages to facilitate research on nonlinear optimization algo-

rithms.

Formulating optimization problems and supplying derivative information used

to be done in the same low-level language of the solver but was made more ac-

cessible to optimization practitioners with the introduction of AMLs. By taking

advantage of and mimicking some of the high-level modeling interfaces offered

by several AMLs, PyNumero is meant to bring the same ease-of-use to algorithm

developers. Some examples of AMLs in Python include PuLP [Mitchell et al.,

2011] and Pyomo [Hart et al., 2011b, 2012a]. PuLP focuses on linear optimiza-

tion while Pyomo provides functionality to model linear, nonlinear, mixed-integer

linear and mixed-integer nonlinear problems among many other classes of opti-

mization. Pyomo also includes functionality to formulate and model large-scale

optimization problems that arise in stochastic programming and dynamic opti-

mization [Watson et al., 2012, Nicholson et al., 2017]. Like a standard AML, Pyomo

constructs an algebraic representation of an optimization problem and hands it to

a solver to run a numerical algorithm to find a solution. Hence, construction of

the optimization formulation is done in Python while the solution is in a low-level

language.

CasADi [Andersson et al., 2018, Andersson, 2013] is an open-source software

for numerical optimization that also offers functionality for modeling and solving

optimization problems. CasADi is written in C++ and interfaces with a variety

of high-level languages like Python and Matlab. It offers efficient automatic dif-

ferentiation subroutines and is interfaced with Python via SWIG [Beazley, 1996].
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CasADi is an alternative to conventional AMLs. It focuses on optimal control prob-

lems and thus offers support for simulation and optimization of dynamic systems.

It is self-contained as it creates its own data structures for graph representations.

OSQP [Stellato et al., 2017] is a C++ solver interfaced with Python, Matlab and

Julia. OSQP focuses on solving quadratic programs with an algorithm based on

the alternating direction method of multipliers. Because it is concerned on solving

QPs it does not require specialized algebraic modeling features like those available

in Pyomo, PuLP or CasADi. The Python interface of OSQP is similar to PyNumero

in that it stores data in sparse matrices from SciPy and vectors in NumPy arrays,

making it compatible with features within the NumPy ecosystem.

CVXOPT [Dahl and Vandenberghe, 2007] and NLPy [Arreckx et al., 2016] are

complete environments for modeling and solving optimization problems. CVXOPT

focuses on solving convex optimization problems while NLPy is for general nonlin-

ear optimization. The goals of NLPy are similar to those of PyNumero in that both

packages seek to facilitate research of nonlinear optimization algorithms. How-

ever, PyNumero focuses on extending the modeling capabilities in Pyomo to de-

velop structure-exploiting algorithms for stochastic programming and dynamic

optimization problems providing tools for both general nonlinear algorithms and

decomposition strategies that exploit block-structures in problems. NLPy uses

its own interfaces for matrix operations and has its own linear algebra classes.

PyNumero is highly integrated with Numpy and Scipy providing broader access

to other Python packages (e.g. Petsc4py, PyTrillinos, MPI4py [Dalcin et al.,

2011b, Sala et al., 2008, Dalcin et al., 2011a])

Outside of Python there are also software packages that share the same de-

sign goals of PyNumero. Recent developments in Julia with the JuMP package

[Lubin and Dunning, 2015] aim to provide easy-to-use tools for writing nonlinear

optimization algorithms. These tools are available in the Julia Smooth Optimiz-

ers package https://juliasmoothoptimizers.github.io/. PyNumero’s

goal is somewhat different from Julia Smooth Optimizers as it not only offers

https://juliasmoothoptimizers.github.io/
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tools for general nonlinear optimization, but it provides an object-oriented frame-

work for developing decomposition algorithms for structured optimization. Un-

like Julia, Python offers complete support for object-oriented software. PyNumero

uses object-oriented principles comprehensively, applying them to algorithms and

problem formulations that exploit block-structures via polymorphism and inher-

itance mechanisms. Similar principles have been used in stand-alone, low-level

compiled optimization solvers like PIPS-NLP and OOPS [Chiang et al., 2014]. Our

initiative is to extend some of those ideas to Python with PyNumero, Pyomo, NumPy,

and SciPy.

6.3 Modeling General Nonlinear Programming Problems in PyNumero

This section describes the building blocks in PyNumero for modeling optimiza-

tion problems and writing nonlinear optimization algorithms.

Solver Interfaces

GLPK

BARON
CBC

CPLEX

Gurobi
NEOS

Ipopt
KNITRO
Bonmin

Core Modeling 
Objects

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization 
Objects

Model 
Transformations DAKOTA

DICOPT
ANTIGONE

⋅⋅⋅

⋅⋅⋅

AMPL Solver Library

GAMS Solver Library

PyNumero Solver Writer

Figure 6.1.: Summary of Pyomo features. Modified from [John Siirola, 2017]

PyNumero extends the modeling capabilities of the Python package Pyomo

[Hart et al., 2011b, 2012a]. An overview of the main features of Pyomo is shown in
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Figure 6.1. This figure also shows how PyNumero fits into the Pyomo eco-system

as a new solver interface. Pyomo interfaces to nonlinear solvers using the AMPL

Solver Library (ASL). This is a file-based interface that automatically calculates ex-

act first and second derivatives. The optimization model is passed from Pyomo to

the ASL using the ’.nl’ file format. PyNumero also relies on the ASL for calculating

derivatives.

Optimization models in Pyomo are represented using Python objects which can

be easily analyzed and manipulated. Pyomo also includes a number of modeling

extensions for representing high-level model structure. As part of the Pyomo eco-

system, PyNumero is fully aware of the structure of Pyomo optimization models.

This allows users to write algorithms tailored to a specific problem structure or

application.

6.3.1 NLP Interface

PyNumero considers general nonlinear programming problems of the form:

min f(x)

gL  g(x)  gU (6.1)

xL  x  xU

where x 2 <n are the primal variables with lower and upper bounds xL 2 <n,

xU 2 <n.The inequality constraints g : <n ! <m are bounded by gL 2 <m and

gU 2 <m. PyNumero also provides explicit distinction between the equality (de-

fined with gL=gU ) and inequality constraints (defined with gL 6=gU ) to facilitate the

implementation of algorithms that require such distinction,
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min f(x)

s.t. c(x) = 0 (6.2)

dL  d(x)  dU

xL  x  xU

The equality constraints are represented by c:<n ! <m
c and d:<n ! <m

d denotes

the inequality constraints with bounds dL 2 <m
d and dU 2 <m

d and m = mc +md.

The PyomoNLP class takes a Pyomomodel and maps it to the general forms defined

in (6.1) and (6.2). The listing below shows a small example of how a PyomoNLP

instance can be used to access different parts of the model. Vectors and matrices

are stored in Numpy arrays and Scipy sparse matrices.

1 from pyomo . c o n t r i b . pynumero . i n t e r f a c e s import PyomoNLP

2 from pyomo . c o n t r i b . pynumero . sparse import BlockMatrix

3 import pyomo . environ as aml

4

5 # def ine opt imizat ion model

6 model = aml . ConcreteModel ( )

7 model . x = aml . Var ( [ 1 , 2 , 3 ] , bounds = ( 0 . 0 , None ) , i n i t i a l i z e = 4 . 0 )

8 model . c = aml . Constra int ( expr=model . x [ 3 ] ⇤⇤ 2 + model . x [ 1 ] == 25)

9 model . d = aml . Constra int ( expr=model . x [ 2 ] ⇤⇤ 2 + model . x [ 1 ] <= 1 8 . 0 )

10 model . o = aml . Ob jec t ive ( expr=model . x [ 1 ] ⇤⇤ 4 � \
11 3 ⇤ model . x [ 1 ]⇤model . x [ 2 ] ⇤⇤ 3 + \
12 model . x [ 3 ] ⇤⇤ 2 � 8 . 0 )

13

14 # c r e a t e NLP

15 nlp = PyomoNLP( model )

16 # i n i t i a l guesses f o r primal and dual v a r i a b l e s

17 x = nlp . x i n i t ( ) # array ( [ 4 . , 4 . , 4 . ] )

18 y = nlp . y i n i t ( ) # array ( [ 0 . , 0 . ] )

19 # v a r i a b l e bounds

20 x l = nlp . x l ( )
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21 xu = nlp . xu ( )

22 # NLP funct ion eva luat ions

23 f = nlp . o b j e c t i v e ( x )

24 p r i n t ( ” Ob jec t ive Function\n” , f ) # �504.0

25 g = nlp . eva luate g ( x )

26 p r i n t ( ” Cons t ra in t s \n” , g ) # array ( [ �5 . , 2 0 . ] )

27 c = nlp . e v a l u a t e c ( x )

28 p r i n t ( ” Equal i ty Cons t ra in t s \n” , c ) # array ( [ �5 . ] )

29 d = nlp . evaluate d ( x )

30 p r i n t ( ” I n e q u a l i t y Cons t ra in t s \n” , d ) # array ( [ 2 0 . ] )

6.3.2 Evaluation of First and Second-Order Derivatives

Gradient-based optimization algorithms have been proven to be among the

most efficient algorithms for solving nonlinear optimization problems. The recent

development of fast automatic differentiation tools [Andersson, 2013, Griewank

et al., 1996, Fourer et al., 1993] makes it easy to compute derivative information

efficiently. State-of-the-art optimization algorithms typically use first and second-

order derivatives along with numerical linear algebra subroutines to find descent

directions that lead towards an optimal solution. PyNumero uses the Ampl Solver

Library (ASL) to compute derivative information for problems (6.1) and (6.2). The

ASL is a collection of C subroutines that compute exact derivatives efficiently.

The Ctypes Python package is used to call the ASL subroutines from Python.

PyNumero stores derivative values from the ASL in Numpy arrays and Scipy

sparse matrices. This leverages the capabilities within the Numpy ecosystem to

avoid marshalling of data between the C and Python environments and enables

performant Python implementations of gradient-based nonlinear optimization al-

gorithms. It should be noted that even though the current version of PyNumero

only supports calculation of derivatives from the ASL, interfacing function eval-

uations of Pyomo models with Numpy arrays opens a number of possibilities for
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interfacing with other AD tools (e.g. PyAdolC). The following listing shows how

first and second derivatives can be obtained from a PyomoNLP instance.

1 # NLP f i r s t and second�order d e r i v a t i v e s

2 df = nlp . g r a d o b j e c t i v e ( x )

3 p r i n t ( ” Gradient of Ob jec t ive Function : \n” , df ) # array ( [ �576 . , 8 . , 6 4 . ] )

4 j a c g = nlp . j a c o b i a n g ( x )

5 p r i n t ( ” Jacobian of Cons t ra in t s : \n” , \
6 j a c g . toarray ( ) ) # array ( [ [ 0 . , 8 . , 1 . ] ,

7 # [ 8 . , 0 . , 1 . ] ] )

8 j a c c = nlp . j a c o b i a n c ( x )

9 p r i n t ( ” Jacobian of Equal i ty Cons t ra in t s : \n” , \
10 j a c c . toarray ( ) ) # array ( [ [ 0 . , 8 . , 1 . ] ] )

11 j a c d = nlp . j aco b ia n d ( x )

12 p r i n t ( ” Jacobian of I n e q u a l i t y Cons t ra in t s : \n” , \
13 j a c d . toarray ( ) ) # array ( [ [ 8 . , 0 . , 1 . ] ] )

14 h e s s l a g = nlp . h e s s i a n l a g ( x , y )

15 p r i n t ( ” Hessian of Lagrangian\n” , \
16 h e s s l a g . toarray ( ) ) # array [ [ �288 . , 0 . , �144. ] ,

17 # [ 0 . , 2 . , 0 . ] ,

18 # [�144. , 0 . , 1 9 2 . ] ] ) )

6.3.3 Sparse Linear algebra and Matrix-Vector Storage

Matrix vector operations are fundamental for the development of any numer-

ical algorithm. Numpy is a popular Python package that provides functionality to

store and manipulate n-dimensional arrays of data, with most of the operations

being performed in compiled code. Over the years, the efficiency and flexibility of

Numpy has made the package an essential library for most of today’s scientific/-

mathematical Python-based software. Scipy is another popular Python package

for scientific computing which builds on Numpy to provide a collection of common

numerical routines (also pre-compiled) and sparse matrix storage schemes. To ex-

ploit the capabilities of the Numpy/Scipy ecosystem, PyNumero stores vectors
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and matrices from the NLP interface in Numpy arrays and Scipy sparse matrices.

By doing so, PyNumero benefits from the fast pre-compiled operations of Numpy

(e.g. vectorization and broadcasting), makes all subroutines in Numpy/Scipy

available for implementing optimization algorithms, and minimizes the burden

on users to learn additional syntax besides what is offered in Numpy/Scipy.

6.3.4 Block Linear Algebra

General nonlinear optimization algorithms often deal with block algebra oper-

ations. In constrained optimization, for instance, the KKT system, also known as

a saddle point matrix, consists of a 2 ⇥ 2 block. Certain classes of problems such

as stochastic programming and dynamic optimization impose certain structures

on the KKT system. An example of the KKT system of an stochastic optimization

problem is presented in Figure 6.2 where the plotted points represent non-zero en-

tries in the matrix. One of the main goals of PyNumero is to promote research

in decomposition algorithms. To this end, PyNumero subclasses the ndarray

object in Numpy and sparse matrix objects from Scipy to facilitate block-matrix-

vector operations. Being able to represent and manipulate the KKT system using

its block submatrices greatly simplifies the implementation of both general opti-

mization algorithms and tailored decomposition algorithms. The following listing

shows how a KKT matrix can be constructed using block matrices extracted from

the PyomoNLP instance.

1 # Block matr ices

2 kkt = BlockMatrix ( 2 , 2 )

3 kkt [ 0 , 0 ] = h e s s l a g

4 kkt [ 0 , 1 ] = j a c g . t ranspose ( )

5 kkt [ 1 , 0 ] = j a c g

6 p r i n t ( ”KKT system\n” , \
7 kkt . toarray ( ) ) # array ( [ [ �2 8 8 . , 0 . , �144. , 0 . , 8 . ] ,

8 # [ 0 . , 2 . , 0 . , 8 . , 0 . ] ,

9 # [�144. , 0 . , 1 9 2 . , 1 . , 1 . ] ,
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10 # [ 0 . , 8 . , 1 . , 0 . , 0 . ] ,

11 # [ 8 . , 0 . , 1 . , 0 . , 0 . ] ] ) )

Figure 6.2.: KKT system of an stochastic optimization problem

6.3.5 Numerical Linear Solvers

Efficient implementations of nonlinear optimization algorithms require fast and

reliable linear solvers. PyNumero provides access to several libraries for the solu-

tion of the sparse linear systems that arise in nonlinear programming. Because

PyNumero stores matrices in Numpy/Scipy objects, all subroutines available in

the Numpy ecosystem can be used when writing algorithms in PyNumero. This

includes the Scipy direct and iterative solvers as well as any other Python pack-

age based on Numpy such as PyTrillinos [Sala et al., 2008], Petsc4py [Dalcin

et al., 2011b], Cysparse, and Krypy. PyNumero also supports symmetric indefi-
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nite linear solvers that provide inertia information. Interfaces to PyMumps and the

HSL linear solvers MA27 and MA57 are available within PyNumero to solve sparse

linear systems. These latter solvers are particularly important in constrained op-

timization as they provide critical information like the number of negative eigen-

values.

6.4 Package Implementation and Extensibility

One of the main implementation goals of PyNumero is to make it easy for users

to write and experiment with nonlinear optimization algorithms. The software de-

sign of the package has then focused on interfacing well established scientific com-

puting python subroutines with optimization packages that facilitate modeling of

optimization problems. As part of our implementation we have developed a gen-

eral framework for writing nonlinear optimization algorithms based on the main

components presented in Figure 6.3

NLP
Interfaces

Abstract
Model

Concrete
Model

Pyomo%Model

Optimization
Algorithm

Linear
Solver

Numpy.ndarray

Scipy.sparse

Numpy%Ecosystem

Figure 6.3.: Software design in PyNumero

If users would like to create a custom optimization algorithm they will rely

on two main components. PyNumero defines an abstract class for modeling the

general nonlinear programming problem described in Section 6.3.1. This NLP ob-

ject provides the necessary functionality to query NLP information like bounds on
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variables and constraints, or function evaluations and derivatives. The PyomoNLP

interface described in Section 6.3.1 subclasses from this abstract NLP class and

links functionality in Numpy and Scipy with functionality in ASL allowing users

to query NLP information from Pyomo models. As well, to write an optimization

algorithms users will need a linear solver. Examples of linear solvers in PyNumero

are interfaces to MUMPS and MA27 and any other linear solver available in the

Numpy ecosystem. Since both the NLP interfaces and the linear solvers take and

return objects from the Numpy ecosystem users familiar with Numpy/Scipy func-

tionality may easily write their nonlinear optimization algorithms.

Composite)
NLP

Interfaces

Model

Pyomo%Models
Optimization
Algorithm

Structured
Linear)Solvers

Pynumero.sparse.BlockVector

Pynumero.sparse.BlockMatrix

ModelModelModelModel

NLP
Block

K1

K2

K3

K4

B1

B2

B3

B4

S

NLP
Block

NLP
Block

NLP
Block

Numpy%Ecosystem

Figure 6.4.: Block structures in PyNumero

One other main goal of PyNumero is to facilitate research on decomposition

algorithms for nonlinear optimization. Block operations are natural candidates

for decomposition. We have therefore implemented BlockMatrices and BlockVec-

tors to extend the NLP interfaces in order to exploit decomposable structures at

the NLP level and at the linear algebra level. These block algebra classes inherit

from Numpy/Scipy objects to make them compatible with the design described
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in Figure 6.3. However, as we will see in some of the applications presented in

the following section, specialized NLP interfaces and linear solvers can exploit

the structure and allow for parallel implementations. Figure 6.4 illustrates this

idea of interfaces that exploit the structure in optimization problems. The cur-

rent implementation of PyNumero includes interfaces to composite NLP objects for

two-stage stochastic NLPs and dynamic optimization NLPs together with Schur-

complement-based linear solvers.

6.5 Illustrative Applications

This section provides application examples that illustrate the flexibility and ef-

fectiveness of PyNumero for writing nonlinear optimization algorithms. We begin

with a presentation of a basic implementation of Newton’s method. While New-

ton’s method is not necessarily an optimization algorithm, it is certainly the basis

for many large-scale optimization algorithms. The example demonstrates the com-

pactness of PyNumeros syntax and examines computational performance for solv-

ing a sequence of nonlinear system of equations within a Monte-Carlo study. We

then discuss the implementation of the interior-point method. The example exam-

ines the computational performance of the interior-point implementation on an op-

timal control problem with thousands of variables and constraints. In the follow-

ing example we discuss the implementation of the Schur-complement decomposi-

tion for solving a quadratic program in parallel. We conclude with a more complex

example involving stochastic optimal control of natural gas networks, which is

solved with a parallel implementation of the alternating direction method of mul-

tipliers. Reported results use Pyomo version 5.6.1, Python version 3.6, Ipopt ver-

sion 3.12.3 on a desktop computer running MacOs with processor core i5 and clock

speed 2.7GHz. Results for parallel implementations were obtained on a shared-

memory machine running Linux OS server with 24 cores, 264 GB of DDR3 RAM

and a clock speed of 2.6 GHz. We note that the syntax used in these examples is

compatible with more recent Pyomo releases including Pyomo 5.6.1. Code for these
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examples can be accessed at https://github.com/Pyomo/pyomo/contrib/

pynumero/examples. Further examples are also found in there.

6.5.1 Newton Solver

Our first example illustrates the compactness and simplicity of PyNumero’s

syntax for implementing optimization algorithms. Being part of Python and com-

plementing the algebraic modeling features of Pyomo for writing numerical al-

gorithms, PyNumero’s design has focused on maximizing code readability while

minimizing the performance bottlenecks of using Python. In this section we demon-

strate these features by presenting the implementation of one of the most popular

algorithms in optimization.

Algorithm 11 presents the pseudo-code of Newton’s method. Beside the al-

gorithm we present the actual implementation in PyNumero. Because PyNumero

provides fast automatic differentiation capabilities to Pyomo models, and since all

data is stored in Numpy arrays, users can write simple algorithms like Newton’s

in very few lines of code with standard tools within the Numpy ecosystem. With

this example we highlight that only a basic understanding of Pyomo and Numpy is

needed to translate pseudo-code into actual implementation.

To evaluate the performance of our Newton’s algorithm implementation we

solve a sequence of models within a Monte-Carlo study in order to determine the

probability design space of a pharmaceutical processes. For the study we consid-

ered the kinetic model of the semibatch reactor described in [Laky et al., 2019]. The

model was implemented in Pyomo and discretized with tools available in the au-

tomatic discretization module Pyomo.DAE. After discretization, the resulting non-

linear systems with 3609 equations were solved with two approaches. The first

approach handed the Pyomo model to the state-of-the-art solver Ipopt in every

Monte-Carlo iteration. The second approach solved the models directly in Python

with our implementation of Newton’s solver avoiding any interfacing step to an

external solver.

https://github.com/Pyomo/pyomo/contrib/pynumero/examples
https://github.com/Pyomo/pyomo/contrib/pynumero/examples
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In their study, Laky et. al [Laky et al., 2019] concluded that in order for the

Monte-Carlo approach to accurately determine the probabilistic design space of

pharmaceutical processes a significant number of Monte-Carlo simulations must

be run. Figure 6.5 shows the timing results obtained for the Monte-Carlo study. We

observe that despite our Newton solver is implemented in Python it can simulate

many more Monte-carlo runs than when we utilize the standard Pyomo interface.

In fact, the Newton implementation with PyNumero can achieve a speedup fac-

tor of 7 compared to the pyomo-ipopt solver. The PyNumero implementation

executes the numerical algorithm in compiled code and is able to avoid repeated

writing of intermediate files every solve like is done with the pyomo-ipopt inter-

face.
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Figure 6.5.: Comparison of computational performance of Monte-Carlo runs.

6.5.2 Interior-point Solver

This section studies the computational performance of a basic implementation

of the filter line-search interior-point algorithm. The interior-point method sum-

marized in Algorithm1 was coded in PyNumero in approximately two weeks. This

time only considers actual implementation time since the authors were familiar

with the algorithm. In addition, the authors have extensive expertise in Python

programming. The goal of the exercise was to evaluate the flexibility of PyNumero

for writing an efficient nonlinear optimization solver. The implementation con-

sisted on 1395 lines of Python code, it did not include any clever initialization for

multiplier variables, scaling subroutines for primal and dual variables or any fea-

sibility restoration subroutines. Notwithstanding, when tested, the interior-point

implementation solved over 250 test problems from the CuterTest suite [Gould

et al., 2015]. The subset of problems is available in https://github.com/Pyomo/

pyomo-model-libraries/tree/master/cute. In addition, instances of the

https://github.com/Pyomo/pyomo-model-libraries/tree/master/cute
https://github.com/Pyomo/pyomo-model-libraries/tree/master/cute
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recently added quadratic problems from [Maros and Mszros, 1999b] available in

[Stellato et al., 2017] were also tested.

Table 6.1 presents statistics on some of the problems solved. Statistics on the

complete set of problems tested are presented in the supplemental material. We

highlight that the timing results are achievable because of the design of PyNumero

where all expensive operations are executed in compiled code. In the interior-point

iteration the most expensive operations are the solution of the augmented system

and the calculation of derivatives. Our implementation executes these two steps

in compiled code and uses Ctypes to interface to efficient linear solvers and AD

packages.

To further evaluate the computational performance of our interior-point imple-

mentation, we solved a complex nonlinear optimization problem arising from dy-

namic optimization of a distillation column under uncertainty [Kang et al., 2014].

The problem consists of 32 differential equations, 1 control, 35 algebraic variables,

and a set of scenarios that account for uncertainty in the composition of the feed

stream. The differential equations were discretized with the orthogonal colloca-

tion method [Biegler, 2010] and the optimization formulation is summarized in

problem (6.3)
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xn,i,j,k � xn,i�1,n
c

,k � hi,k

n
cX

m=1

⌦m,jzn,i,m,k = 0,

n = 1, ..., NT

xn,1,j,k � x

0

n � hi,k

n
cX

m=1

⌦m,jzn,1,m,k = 0,

n = 1, ..., NT

PkXk � uc = 0

xn,i,j,k, yn,i,j,k, Vi,j,k, L2i,j,k, L1i,j,k, Dl,k � 0

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

i = 1, ..., nf

j = 1, ..., nc

k = 1, ..., N
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Here, N is the number of scenarios, nf is the number of finite elements, and

nc is the number of collocation points in each finite element. Xk is the vector of

all the variables in each scenario, the matrices Pk are extraction matrices and uc is

the vector of coupling variables across all the scenarios. For further details on the

model see [Benallou et al., 1986, Kang et al., 2014, Hahn and Edgar, 2002].

Pyomo facilitated the implementation of the optimization problem as well as

the discretization of the differential equations. For the discretization we used

the orthogonal collocation scheme in Pyomo.DAE. To study the computational

overhead of running the interior-point method from Python with PyNumero, the

stochastic problem was solved following three different approaches. In the first

approach the problem was solved with Ipopt. The timing results of this ap-

proach provided a lower bound on the solution time. This is because Ipopt’s im-

plementation is 100% in compiled code. The second approach solved the problem

with CyIpopt. CyIpopt [cyipopt Developers, 2017] is a Cython wrapper around

Ipopt that runs it’s interior-point method with Python callbacks for the NLP func-

tion evaluations. For this purpose, an interface to CyIpopt was implemented in

PyNumero. Function evaluations and derivative calculations were then directly

computed in the NLP interface described in Section 6.3.1. We refer to this second

approach as PyNumero-CyIpopt as it relies on features from both PyNumero and

CyIpopt. Finally, the third approach solved the optimization problem with the

interior-point implementation in PyNumero. All three approaches used the linear

solver MA27 with a pivot tolerance of 10�8 and ASL for computing derivatives.

Figure 6.6 summarizes the timing results obtained. To investigate potential per-

formance overheads caused by the size of the optimization problem the number of

scenarios was increased from 1 to 90. The problem size ranged from 2 ⇥ 10

3 to

188⇥ 10

3 variables. Figure 6.6(a) shows the average time per iteration for the three

approaches. We observe that for all problem sizes Ipopt solved the problem the

fastest. This is expected because both PyNumero and PyNumero-CyIpopt in-

curred in an additional overhead for calling C-functions from Python. We also ob-
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(a) Average iteration time. Ipopt 2x is the time of Ipopt multiplied by a
factor of two.

(b) Overhead factors with respect to Ipopt

Figure 6.6.: Timing results for the interior-point implementation.

serve that PyNumero-CyIpopt was faster than PyNumero’s interior-point imple-
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mentation. The reason for this is that PyNumero-CyIpopt only has an additional

overhead for the NLP function evaluation callbacks. In contrast, PyNumero’s

interior-point implementation presents additional overhead because it drives the

entire algorithm from Python. This includes the outer and inner iteration loops,

the line search, and the function evaluations from the ASL interface and the MA27

interface. We highlight that for large problem sizes, PyNumero’s iteration was al-

ways less than twice that of Ipopt (red line). This is more clearly presented in

Figure 6.6(b). Figure 6.6(b) shows the iteration time for PyNumero and Cyipopt

divided by the time of Ipopt. Note that for the smaller problems with only one

and two scenarios the overhead of the Python implementation is greater than a fac-

tor of two. The main reason for this behavior is that as the problem size increases

more work is performed at compiled code, the solution of the KKT system and the

evaluation of derivatives become more relevant while the overhead of the Python

callback becomes less significant.

We highlight that the timing results presented in Figure 6.6 were obtained with-

out using any of the just-in-time compilation packages available in CPython. Cur-

rently PyNumero is only based on CPython, Ctypes and Numpy. In the future we

plan to study potential further performance enhancements by using Numba [Lam

et al., 2015] and PyPy. Note that because PyNumero is part of the Numpy ecosys-

tem it can use just-in-time compilation features from both Numba and PyPy. These

just-in-time compiling tools may improve computational performance of python

code. For example, the line search subroutines in our basic interior-point imple-

mentation were written in python. To improve performance of those subroutines

without necessarily using Cython or Ctypes, Numba and Pypy may accelerate the

python code significantly.

6.5.3 Schur-complement solver

This example studies the parallel implementation of Algorithm 3 to solve the

following minimum least-squares parameter estimation problem,
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min

y,q,d

X

i2P

1

2

kyi � y?i k22

s.t. yi � Jqi = 0 8 i 2 P

Ai

2

4yi
qi

3

5� d = 0 8 i 2 P

(6.4)

where yi and qi are vectors of variables local to each block i. The vector d 2 Rn
d

is the set of coupling variables that must be the same across all blocks. The vectors

y?i correspond to the known measurements for yi in each block i. J is a randomly

generated sparse matrix, and Ai are the linking matrices that map the vector of

block variables to the common variables d. For our benchmark problem we used

16 blocks, in each i block the dimension of yi is 100, 000, the dimension of qi is

1, 000 and the dimension of d was 100. The random matrix J was generated with

scipy.sparse with 1% density. Measurement data, y?l , was obtained following

the procedure proposed in [Kang et al., 2014]. This gives an optimization problem

with approximately 1.6 million variables and constraints.

The problem was implemented in PyNumero and solved with a parallel im-

plementation of Algorithm 3 that uses MPI4py. We used the MA27 interface in

PyNumero to factorize each block and Numpy’s linear solver for dense matrices to

factorize the schur-complement. Timing results are summarized in Figure 6.7. We

highlight that our python implementation reduces the solution time by one order

of magnitude.

Figure 6.8 shows the time required for forming and solving the schur comple-

ment matrix as a function of the number of coupling variables. It is clear that for

problems with large number of coupling variables it becomes prohibited to form

the Schur complement. For this reason researchers have looked for alternatives

to step 2 of Algorithm 3 [Kang et al., 2014, Word et al., 2014]. Our intent with

PyNumero is to facilitate research on Schur-complement-based algorithms. The
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(a) Solution times

(b) Speed-up factors

Figure 6.7.: Timing results for parallel Schur-complement Implementation.

next section presents an Augmented Lagrangian solver that combines features of

the Schur-complement decomposition and ALM to accelerate it’s convergence rate.
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Figure 6.8.: Time required to form and factor the Schur-complement as a function
of the number of coupling variables

6.5.4 Stochastic Optimal Control of Natural Gas Networks

In our last application example, we discuss the parallel implementation of the

alternating direction method of multipliers for solving a PDE constrained opti-

mization problem under uncertainty. The problem consists on optimizing a nat-

ural gas network inventory while accounting for uncertainties in the system de-

mands. Specifically, the objective is to satisfy uncertain gas demands in the net-

work by building up inventory in the pipelines in a way that minimizes the re-
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quired compression power. An stochastic formulation for this problem was pro-

posed in [Zavala, 2014], which is as follows:

min

X

t2T

X

i2S
n

cssi,t�⌧ +

X

t2T

X

`2L
ceP`,t�⌧ +

X

t2T

X

j2D
cd(dj,t � ¯dj,t)

2 (6.5.1)

+

X

k2X

X

`2L
cT (p`,T,k � p`,0,k)

2

+

X

k2X

X

`2L
cT (f`,T,k � f`,0,k)

2 (6.5.2)

s.t.
@p`(x, ⌧)

@⌧
= �c

1,`
@f`(x, ⌧)

@x
, ` 2 L, x 2 [0, L`], ⌧ 2 [0, T ] (6.5.3)

@f`(x, ⌧)
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@p`(x, ⌧)
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3,`
f`(x, ⌧)|f`(x, ⌧)|

p`(x, ⌧)
, ` 2 L, x 2 [0, L`], ⌧ 2 [0, T ]

(6.5.4)

p`(L`, ⌧) = ✓rec(`)(⌧), ` 2 L, ⌧ 2 [0, T ] (6.5.5)

p`(0, ⌧) = ✓snd(`)(⌧), ` 2 Lp, ⌧ 2 [0, T ] (6.5.6)

p`(0, ⌧) = ✓snd(`)(⌧) +�✓`(⌧), ` 2 La, ⌧ 2 [0, T ] (6.5.7)
X
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X
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P`(⌧) = cp · T · f`(0, ⌧)
 ✓

✓snd(`)(⌧) +�✓`(⌧)

✓snd(`)(⌧)

◆ ��1
�

� 1

!
, ` 2 L, ⌧ 2 [0, T ]

(6.5.9)

✓sup(i),⌧ =

¯✓supi , i 2 S, ⌧ 2 [0, T ] (6.5.10)

0 = �c
1,`
@f`(x, 0)

@x
, ` 2 L, x 2 [0, L`] (6.5.11)

0 = �c
2,`
@p`(x, 0)

@x
� c

3,`
f`(x, 0)|f`(x, 0)|

p`(x, 0)
, ` 2 L, x 2 [0, L`] (6.5.12)

PL
`  P`(⌧)  PU

` , ` 2 La, ⌧ 2 [0, T ] (6.5.13)

✓suc,L`  ✓snd(`)(⌧)  ✓suc,U` , ` 2 La, ⌧ 2 [0, T ] (6.5.14)

✓dis,L`  ✓snd(`)(⌧) +�✓`(⌧)  ✓dis,U` , ` 2 La, ⌧ 2 [0, T ] (6.5.15)

This model includes detailed network dynamics captured by the PDEs (6.5.3)

and (6.5.4). Uncertainty is captured by considering multiple scenarios for natural
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gas demand, and the resulting formulation is a two-stage stochastic optimization

problem. Because they describe scenario-specific dynamics, model PDEs are repli-

cated for each scenario. The resulting optimization model is very large, scaling

as a function of the number of network links, scenarios, and discretization points.

All features considered make this problem an excellent example to demonstrate

the flexibility of PyNumero as an extension of Pyomo. A set of sixteen scenarios

was considered to account for uncertainty in demand. Each scenario was imple-

mented as a ConcreteModel in Pyomo and the discretization of the spatial and

temporal domain was performed with Pyomo.DAE (details available in [Nichol-

son et al., 2017]). The overall two-stage stochastic program was then constructed

using the NLP interfaces available in PyNumero. The following listing presents

the implementation of the two-stage stochastic program

1 from pyomo . c o n t r i b . pynumero . i n t e r f a c e s import (PyomoNLP,

2 TwoStageStochasticNLP )

3 from pyomo . c o n t r i b . pynumero . algori thms . s o l v e r s .admm import AdmmSolver

4 from pde model import create model

5

6 n s c e n a r i o s = 16

7 demand factors = np . random . uniform ( 0 . 7 , 3 . 0 , n s c e n a r i o s )

8 s c e n a r i o s = d i c t ( )

9 coupl ing vars = d i c t ( )

10 f o r i in range ( n s c e n a r i o s ) :

11

12 # c r e a t e s c e n a r i o

13 i n s t a n c e = create model ( demand factor=demand factors [ i ] )

14 nlp = PyomoNLP( i n s t a n c e )

15

16 # def ine s c e n a r i o s and f i r s t �s tage v a r i a b l e s

17 scenario name = ” s {}” . format ( i )

18 s c e n a r i o s [ scenario name ] = nlp

19 coupl ing vars [ scenario name ] = [ ]

20

21 # l i s t f i r s t �s tage v a r i a b l e s
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22 f o r k in i n s t a n c e . dp . keys ( ) :

23 coupl ing vars [ scenario name ] . append (\
24 nlp . v a r i a b l e i d x ( i n s t a n c e . dp [ k ] ) )

25 f o r k in i n s t a n c e . dem . keys ( ) :

26 coupl ing vars [ scenario name ] . append (\
27 nlp . v a r i a b l e i d x ( i n s t a n c e . dem[ k ] ) )

28

29 # c r e a t e two�s tage s t o c h a s t i c NLP

30 nlp = TwoStageStochasticNLP ( scenar ios , coupl ing vars )

The resulting two-stage stochastic program consisted of an optimization prob-

lem with approximately 300,000 variables and constraints. Because of the size and

block structure of the problem we solve the two-stage stochastic program with the

alternating direction method of multipliers. ADMM was implemented in 160 lines

of Python code and the package MPI4Py was used for parallelization. The ADMM

solver called the NLP interface together with the PyNumero-CyIpopt interface to

solve the corresponding subproblems. Timing results are presented in Figure 6.9.

6.6 Software Distribution

The PyNumero package can be obtained with Pyomo. All Python files are dis-

tributed under the Pyomo umbrella available at https://github.com/Pyomo.

To avoid compilation of the C interfaces the corresponding shared libraries are dis-

tributed via conda. Installation of both the Python code and the shared libraries

can be done as follows:

- conda install -c conda-forge pyomo

- conda install -c conda-forge pynumero libraries

To be able to use the PyNumero-CyIpopt interface

- conda install -c conda-forge cyipopt

https://github.com/Pyomo
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(a) Solution times

(b) Speed-up factors

Figure 6.9.: Timing results for parallel ADMM implementation.

The Interface to MA27 solver is not distributed but is to be made available soon.

The project works currently with pyMumps as default linear solver for the Interior-
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point code. Currently we offer support for MacOS and Linux operating systems.

Windows is not supported yet.

6.7 Summary

We discussed the design and implementation of a Python package called

PyNumero. The package extends the modeling capabilities of Pyomo providing

building blocks for writing numerical algorithms for nonlinear optimization from

Python. PyNumero combines the modeling features of Pyomo with efficient li-

braries like ASL and Numpy/Scipy. With this combination, PyNumero performs

all linear algebra operations in compiled code, and is designed to avoid mar-

shalling of data between the C and Python environments, allowing for high-level

development of algorithms without a significant sacrifice in performance. These

features are demonstrated with a variety of applications presented in the paper.

Timing results together with code code snippets are also included. Among these

applications we have shown that an implementation of the interior-point algo-

rithm in PyNumero has comparable solution times with the state of the art solver

Ipopt when solving a dynamic optimization problem with 200K variables and

constraints. The overhead from the Python interface to ASL and HSL only in-

creases the solution time by 60% for large-scale instances.

PyNumero uses object-oriented principles comprehensively, applying them to

algorithms and problem formulations that exploit block-structures via polymor-

fism and inheritance mechanisms. Since block-structured problems result from

real-life optimization problems, we expect the design to promote research of de-

composition algorithms. Of special interest are stochastic programming problems

and dynamic optimization problems. Current developments in Pyomo to model

dynamics and uncertainty in optimization problems [Watson et al., 2012, Nichol-

son et al., 2017] can be combined with features offered in PyNumero to prototype

and explore new decomposition approaches. Two examples of decomposition al-
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gorithms for solving two-stage stochastic programs are presented in the paper and

timing results are shown for serial and parallel implementations.

As part of future work we plan to include interfaces to different automatic

differentiation packages. Currently, PyNumero relies on ASL to compute first

and second derivatives. Efficient packages available in Python like CasADi and

PyAdolC seem like excellent extensions to PyNumero. Another useful extension

of PyNumero will involve implementing all block-algebra operations with par-

allelization capabilities. The current design uses inheritance and polymorfism to

represent block vector and block matrices as Numpy and Scipy objects. We plan to

extend these classes to use MPI4Py to perform block algebraic operations with par-

allel computing. Finally, to improve the computational performance of PyNumero

even further we plan to use just-in-time compiling features from Numba.
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7. SUMMARY

Large-scale nonlinear optimization problems can arise from a variety of applica-

tions and have become remarkably important for design, operation, and planning

of engineering systems. We consider particular cases of these optimization prob-

lems. The objective of our work is to develop numerical algorithms to solve non-

linear optimization problems that have an inherent decentralized structure. For

this reason, in this dissertation we address distributed solution of block-structured

NLP problems that arise in stochastic and dynamic optimization. We based our so-

lution strategies on nonlinear interior-point methods and augmented Lagrangian

schemes. This chapter first summarizes our contributions and then makes sugges-

tions for directions of future work.

7.1 Thesis Summary and Contributions

Chapter 2 introduces the Schur-complement decomposition for solving struc-

tured optimization problems within an interior-point framework. It presents first

a description of the optimization problems considered in the dissertation. Exam-

ples of general formulations for stochastic programming and dynamic optimiza-

tion are presented there. Derivation of the Schur-complement matrix for both type

of problems are also summarized in Chapter 2. To demonstrate the effectiveness

of the Schur decomposition approach a case study in water distribution systems is

solved. The problem consisted in a demand estimation with up to 12 million vari-

ables and constraints. Speedup factors of up to 10 on a shared memory computer

with 16 cores were obtained.

Chapter 3, focuses on augmented Lagrangian based algorithms for decompos-

ing non-convex nonlinear optimization optimization problems. We pay attention
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especially to two very popular algorithms; the alternating direction method of

multipliers and progressive hedging. Unlike the Schur-complement interior-point

algorithm studied in Chapter 2, these approaches are not guaranteed to converge

in a non-convex setting. In practice, however, ADMM and PH often perform satis-

factorily in complex non-convex NLPs. Moreover, PH has been actively used in the

power systems community as a heuristic to solve MILPs and MINLPs. To explain

why ADMM and PH are capable of solving such large-scale non-convex NLPs we

exploited connections between ADMM and PH with their common ancestor MM

and derived a common set of benchmarking metrics to monitor convergence. With

these benchmarking metrics we showed in particular that ADMM and PH are inex-

act versions of MM that approximate its performance when multiple coordination

steps are performed. We demonstrated the concepts using challenging non-convex

problems arising in dynamic optimization.

We highlighted that the ADMM scheme provides a flexible approach to decom-

pose dynamic optimization problems in time. To the best of our knowledge, this

is the first time ADMM has been implemented for decomposing the time domain

in optimal control problems. These problems are often decomposed following the

multiple shooting method. We discussed similarities between shooting methods

and ADMM, and showed the convergence properties of MM and ADMM on two

non-convex dynamic optimization problems and proposed modifications to the

regular ADMM scheme to accelerate its convergence.

To overcome poor convergence performance, we proposed a modified ADMM

approach with multiple coordination minimization steps at each ADMM iteration.

With this modification, we observed that the oscillations in the dual infeasibility

and the Lyapunov function were significantly reduced. Furthermore, our results

showed that even with only a few additional coordination steps, convergence rates

significantly improved, approaching the performance of MM.

Chapter 4 describes a decomposition approach that combines features from al-

gorithms presented in Chapters 2 and 3. As discussed in Chapter 2, the Schur-
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complement decomposition is very efficient for solving problems with few cou-

pling variables. However, the performance of this approach quickly deteriorates

as the number of coupling variable grows. For problems with a significant num-

ber of coupling variables it is often convenient to use the augmented Lagrangian

algorithms introduced in Chapter 3. However, these approaches are character-

ized for having linear and sub-linear rates which can take considerable amount

of time to converge. Chapter 4 proposes the use of the ADMM-GMRES algo-

rithm to overcome limitations of Schur-complement and augmented Lagrangian

approaches when solving large-scale NLPs with high degree of coupling.

We demonstrated that ADMM provides an effective mechanism to precondi-

tion iterative linear solvers and can overcome scalability limitations of Schur com-

plement decomposition. The effectiveness of ADMM-GMRES was demonstrated

using linear systems that arise in stochastic optimal power flow problems. Our

results indicate that ADMM-GMRES is an order of magnitude faster for a problem

that contains up to 2 million variables and 4,000 coupling variables. We solved 35

stochastic quadratic problems and the solution times indicate that the computa-

tional benefits of using ADMM-GMRES over Schur decomposition are expected to

increase as the number of coupling variables grows.

The approach presented in Chapter 4 provides a general framework for struc-

tured KKT systems. Unlike traditional preconditioners, the ADMM preconditioner

leverages structure of a great variety of KKT systems, and allows for solving a great

number of optimization problems. These include examples in dynamic optimiza-

tion, stochastic programming, networks, and PDE optimization among many oth-

ers. Our approach provides then a preconditioning strategy for general problem

classes which are lacking in the optimization literature.

Given the scale of optimization problems today, an algorithm with similar prop-

erties as ADMM but with faster convergence can make a big difference. In the pur-

suit of accelerating ADMM for solving structured optimization problems, Chap-

ter 5 proposes modifying the first-order multiplier update of the regular ADMM
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scheme with a Newton strategy. Unlike related existing literature on trying to ac-

celerate ADMM, our approach is not based on heuristics but combines ideas from

Schur-complement decomposition with the aim of retaining its super-linear con-

vergence properties.

The Newton multiplier update formula derived in Chapter 5 significantly re-

duced the number of MM and ADMM iterations in our numerical experiments

with stochastic QPs and DAE constrained problems. In particular, we observed

that for convex QPs consensus of the coupling variables is achieved very quickly.

ADMM with the Newton update formula takes advantage of this and converges

in 2 or 3 iterations resembling the behavior of Schur-complement decomposition.

Moreover, our results indicate that using a Newton update formula makes ADMM

remarkably robust almost regardless of the selection of the penalty parameter. This

is advantageous since proper tuning of the penalty parameter is challenging and

is often problem dependent. Our approach however, is almost insensitive to the

value of the penalty parameter.

All these improvements indicate that ADMM with second order updates can

be an excellent replacement to Schur-complement decomposition for solving KKT

systems that arise in the interior-point method. Given that ADMM follows a

first-order update of the coupling variables, our ADMM Newton approach does

not form the Schur-complement of the coupling variables reducing computational

time. The key idea is to remove one of the steps of the Schur-complement decom-

position, and exploit the fact that QPs achieve consensus quickly. Moreover, in the

interior-point method as the algorithm progresses the step of the primal variables

tends to zero and this can be exploited by our proposed ADMM scheme. Further

discussion of these advantages are presented in future work.

Our experience with decomposition approaches highlighted the need for flex-

ible coding frameworks to experiment with new ideas and algorithms. Optimiza-

tion solvers, however, are often complex code bases that few can extend and mod-

ify. Currently, optimization practitioners not only need to master the mathematical
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concepts, but also familiarize themselves with low-level programming languages

like C++ and Fortran before they can try to implement their decomposition algo-

rithms. For this reason we have developed PyNumero which is a Python based

package that performs computationally expensive operations in C++ but drives

algorithms from Python. The goal of PyNumero then is to promote development

of numerical algorithms for numerical optimization. In particular, we focus on de-

composition algorithms and thus PyNumero follows an object-oriented design that

facilitates the implementation of block-structured algorithms like those described

through Chapter 1 to 5.

Chapter 6 discusses the design and implementation of PyNumero. The fea-

tures and capabilities of the package are demonstrated with a variety of applica-

tions. These include implementations of an interior-point solver, the alternating

direction of multipliers, progressive hedging, and the Schur-complement decom-

position for solving engineering problems. We highlight that the interior-point

algorithm in PyNumero has comparable solution times with the state of the art

solver Ipopt when solving a dynamic optimization problem with 200K variables

and constraints. The implementation required few lines highlighting the flexibility

and ease of use of the tool. This was also evidenced in our codes for ADMM, PH

and the Schur-complement decomposition. The package has been made available

to the optimization community and resides within Pyomo https://github.

com/Pyomo/pyomo/tree/master/pyomo/contrib/pynumero. Distribution

is done through standard software package management systems, including pip

and conda. The package is freely available and we hope researchers in decompo-

sition algorithms for nonlinear optimization find it very useful.

7.2 Future Work

The following are some recommendations for future work:

The Schur-complement decomposition described in Chapter 2 solves subprob-

lems by factoring the full-KKT system of each block. Alternatively one can solve

https://github.com/Pyomo/pyomo/tree/master/pyomo/contrib/pynumero
https://github.com/Pyomo/pyomo/tree/master/pyomo/contrib/pynumero
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the subproblems using the null-space method. The null-space method is known

be very effective when the number of degrees of freedom is small. However, for

general problems with large number of variables and few constraints it is not as ef-

fective. Its main limitation comes from the need of forming the null-space matrix of

the Jacobian of the constraints. As discussed in Chapter 3 for the case of stochastic

programming problems the linking matrices Bi are the identity. Consequently the

coupling matrix B is a block-stack matrix composed by identity matrices. Comput-

ing the null-space of B is actually inexpensive and applying the null-space in this

context seems promising. While most approaches presented in literature focus on

exploiting the structure of stochastic problems, little is discussed on exploiting the

fact that regardless of the application the matrix B is always block-stack identity.

This is an interesting direction of future work.

For the modified ADMM approach presented in Chapter 3 we found that an op-

timal number of coordination steps can accelerate the convergence of augmented

Lagrangian decomposition approaches. Future work can consider the derivation

of metrics to determine the optimal number of coordination steps. In the partic-

ular case of dynamic optimization problems, comparisons with multiple shooting

approaches may help determine optimal number of coordination steps for ADMM.

As part of future work for the ADMM-GMRES preconditioning approach of

Chapter 4, one may investigate its performance within a nonlinear interior-point

framework. Here, it will be necessary to relax our assumptions on strong convexity

and on the full rank of the Jacobian. Preliminary results reported in the literature

indicate that different types of primal-dual regularized KKT systems can be used to

compute search steps within interior-point methods under such relaxed conditions

[Chiang et al., 2017]. For instance, the primal-dual regularized system correspond

to the optimality conditions of the QP problem:

min

x,q,r

1

2

xT
(D + �I)x+ cTx+

1

2⇢
krk2 + ⇢

2

kAx+Bq � 1

⇢
rk2

s.t. Ax+Bq � 1

⇢
r = 0, (y)

(7.1)
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As future work one may investigate ADMM variants to precondition such sys-

tems. The effectiveness of using ADMM as a preconditioner makes us wonder

whether other approaches can be used for preconditioning as well. For instance,

inexact dual Newton strategies can potentially be used to precondition structured

KKT systems. This is an interesting direction of future work which complements

the developments of ADMM strategies of Chapter 5 that use second-order multi-

plier updates to accelerate convergence.

Another direction for future work considers extending the second-order update

ADMM framework presented in Chapter 5. This includes testing the approach

within the interior-point algorithm and solve the KKT system in each interior-

point iteration using our second-order update version of ADMM. The goal would

be to compare with the Schur-complement decomposition to proof that ADMM

with second-order updates can be faster since it removes communication. In ad-

dition, to avoid factorizing the Schur-complement of each subproblem within the

second-order update, future research should consider using the preconditioning

conjugate gradient. Unlike solving the overall schur-complement with PCG this

approach would update the multipliers of linking constraints for each subproblem

with PCG.

For algorithm development and application, future work includes further de-

velopments in PyNumero. The package must provide more flexibility to adjust

easily according to various needs of users. For instance PyNumero could include

interfaces to different automatic differentiation packages. Currently, PyNumero

relies on ASL to compute first and second derivatives. Efficient packages available

in Python like CasADi and PyAdolC seem like excellent extensions to PyNumero.

Another useful extension of PyNumero involves implementing all block-algebra

operations with parallelization capabilities. The current design uses inheritance

and polymorfism to represent block vector and block matrices as Numpy and Scipy

objects. An interesting direction for future work should extend these classes to use

MPI4py to perform block algebraic operations with parallel computing. Finally, to
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improve the computational performance of PyNumero even further just-in-time

compiling features from Numba should be included.
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A. NEWTON STEP FOR GENERAL NLPS

Consider the nonlinear programming problem of the form,

min f(x)

gL  g(x)  gU (A.1)

xL  x  xU

where x 2 <n are the primal variables with lower and upper bounds xL 2 <n,

xU 2 <n. The inequality constraints g : <n ! <m are bounded by gL 2 <m and

gU 2 <m. This problem can be written with an explicit distinction between the

equality (defined with gL = gU ) and inequality constraints to give,

min f(x)

s.t. c(x) = 0

dL  d(x)  dU (A.2)

xL  x  xU

The equality constraints are represented by c : <n ! <m
c and d : <n ! <m

d

denotes the inequality constraints with bounds dL 2 <m
d and dU 2 <m

d and

m = mc + md. Introduction of slack variables reformulates the general inequal-

ity constraints to

min f(x)

s.t. c(x) = 0

d(x)� s = 0

x� xL � 0, xU � x � 0

s� dL � 0, dU � s � 0 (A.3)
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with s 2 <n
d . If a variable bound does not exist (xL, dL = �1 or xU , dU = 1) the

problem can be reformulated with compression matrices as follows,

min f(x)

s.t. c(x) = 0

d(x)� s = 0

(PL
x )

Tx� xL � 0, xU � (PU
x )

Tx � 0

(PL
d )

Td(x)� dL � 0, dU � (PU
d )

Td(x) � 0 (A.4)

where PL
x 2 <n⇥n

xL , PU
x 2 <n⇥n

xU , PL
d 2 <m

d

⇥n
dL and PU

d 2 <m
d

⇥n
dU are projection

or permutation matrices between variables x and the inequalities d(x) and their

corresponding bounds. Symbols nxL, nxU , ndL and ndU represent the number of

valid bounds.

In order to derive the primal-dual system, we define the Lagrange function of

the reformulated NLP (A.4) as,

L = f(x) + �T
c c(x) + �T

d (d(x)� s)� zTL
�
(PL

x )
Tx� xL

�� zTU
�
xU � (PU

x )

Tx
�

�⌫T
L

�
(PL

d )
T s� dL

�� ⌫T
U

�
dU � (PU

d )

T s
�

(A.5)

where �c 2 <m
c and �d 2 <m

d are the Lagrange multipliers for the equality and

inequality constraints, respectively; zL 2 <n
xL and zU 2 <n

xU are multipliers for the

lower and upper bounds of the x variables; and ⌫L 2 <n
dL and ⌫U 2 <n

dU are the

bound multipliers corresponding to the slack variables (multipliers of inequality

constraints).
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After eliminating the bounds by adding a logarithmic barrier term to the ob-

jective function, the primal-dual optimality conditions of problem (A.4) are given

by:

rxL = rxf(x) + Jc(x)
T�c + Jd(x)

T�d � PL
x zL + PU

x zU = 0

rsL = ��d � PL
d ⌫L + PU

d ⌫U = 0

SlLxZLe� µe = 0

SlUxZUe� µe = 0

SlLdVLe� µe = 0

SlUd VUe� µe = 0

c(x) = 0

d(x)� s = 0 (A.6)

where JT
c 2 <n⇥m

c and JT
d 2 <n⇥m

d are the Jacobian matrices of the equality and

inequality constraints and the diagonal matrices,

ZL = diag(zL)

SlLx = diag
�
(PL

x )
Tx� xL

�

ZU = diag(zU)

SlUx = diag
�
xU � (PU

x )

Tx
�

VL = diag(⌫L)

SlLd = diag
�
(PL

d )
T s� dL

�

VU = diag(⌫U)

SlUd = diag
�
dU � (PU

d )

T s
�

(A.7)

have appropriate dimensions.

The optimality conditions (A.6) can be viewed as a set of nonlinear equations

parameterized in the scalar parameter µ. For the solution of this system, we can
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derive a sequence of Newton steps obtained from the linearization of the above

expressions,

D�x+ JT
c ��c + JT

d ��d � PL
x �zL + PU

x �zU = �rxL
���d � PL

d �⌫L + PU
d �⌫U = �rsL

ZL(P
L
x )

T
�x+ SlLx�zL = �(SlLxZLe� µe)

�ZU(P
U
x )

T
�x+ SlUx�zU = �(SlUxZUe� µe)

VL(P
L
d )

T
�s+ SlLd�⌫L = �(SlLdVLe� µe)

�VU(P
U
d )

T
�s+ SlUd �⌫U = �(SlUd VUe� µe)

Jc�x = �c(x)
Jd�x��s = �(d(x)� s) (A.8)

where D 2 <n⇥n is the Hessian matrix. The system of linear equations (A.8) has

the following structure,
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(A.9)

we refer to this set of linear equations as the primal-dual system. The solution of

this system is usually the most expensive step in the algorithm. In the current im-



162

plementation of PyNumero, the primal-dual system is decomposed by eliminating

the bound multipliers leading to the augmented linear system,

2

6666664

D +Dx 0 J

T
c J

T
d

0 Ds 0 �I
Jc 0 0 0

Jd �I 0 0
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7777775
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(A.10)

where,

rx
¯L = rxf(x) + JT

c �c + JT
d �d + PU

x (SlUx )
�1µe� PL

x (Sl
L
x )

�1µe

rs
¯L = ��d + PU

d (SlUd )
�1µe� PL

d (Sl
L
d )

�1µe

Dx = PL
x (Sl

L
x )

�1ZL(P
L
x )

T
+ PU

x (SlUx )
�1ZU(P

U
x )

T

Ds = PL
d (Sl

L
d )

�1VL(P
L
d )

T
+ PU

d (SlUd )
�1VU(P

U
d )

T .

Once the augmented linear system is solved, we can obtain step directions for the

bound multipliers from,

�zL = �zL + (SlLx )
�1

�
µe� ZL(P

L
x )

T
�x
�

�zU = �zU + (SlUx )
�1

�
µe+ ZU(P

U
x )

T
�x
�

�⌫L = �⌫L + (SlLd )
�1

�
µe� VL(P

L
d )

T
�s
�

�⌫U = �⌫U + (SlUd )
�1

�
µe+ VU(P

U
d )

T
�s
�

(A.11)
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B. LOCAL CONVEXITY

We present some basic concepts of local duality theory with the spirit of elucidate

some of the more complex concepts necessary to understand the method of mul-

tipliers from a dual viewpoint. Consider nonlinear programming problems of the

form

min

x
f(x)

s.t. h(x) = 0

(B.1)

Where x 2 IR

n, f(x) : IRn ! IR and h(x) : IRn ! IR

m Assuming that x⇤ is a local

solution of (B.1) the first order conditions

rxf(x
⇤
) +rxh(x

⇤
)

T�⇤
= 0 (B.2)

h(x⇤
) = 0 (B.3)

and the second order conditions

zTr2

xxL(x
⇤,�⇤

)z � 0 8z 2 {z : rxh(x
⇤
)z = 0} (B.4)

hold. Here r2

xxL(x
⇤
) is the Hessian of the Lagrangian:

r2

xxL(x
⇤
) = r2

xxf(x
⇤
) + (�⇤

)

Tr2

xxh(x
⇤
)

For local convexity let us assume that r2

xxL(x
⇤
) is positive definite (in IR

n and not

only in the null space of the gradient of the constraints) which guarantees that the



164

Lagrangian function L(x,�⇤
) is locally convex at x⇤. This implies that x⇤ is a local

solution of the unconstrained problem

min

x
f(x) + (�⇤

)

Th(x).

Furthermore, for any � sufficiently close to �⇤ the function f(x) + �Th(x) will have

a local minimum point at a point x near x⇤. Thus locally there is a unique corre-

spondence between � and x through solution of the unconstrained problem

min

x
f(x) + �Th(x). (B.5)

To establish the relation between x and � let us define the dual function �(�) as

�(�) = min

x
f(x) + �Th(x). (B.6)

with first and second derivatives presented in Lemmas B.0.1 and B.0.2

Lemma B.0.1 The gradient of the dual function is given by:

r��(�) = h(x) (B.7)

Proof: Let x(�) be the minimum of (B.5) in the neighborhood of x⇤. We have ex-

plicitly from (B.6)

�(�) = f(x(�)) + �Th(x(�)).

thus
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r��(�) = r�f(x(�)) +r�

⇥
�Th(x(�))

⇤

= rxf(x(�))r�x(�) +
⇥
h(x(�)) + �Trxh(x(�))r�x(�)

⇤

=

⇥rxf(x(�)) + �Trxh(x(�))
⇤r�x(�) + h(x(�))

= h(x(�))

Lemma B.0.2 The Hessian of the dual function is given by1:

r2

���(�) = �rxh(x)r2

xxL(x,�)
�1rxh(x)

T (B.8)

Proof: Starting from the previous lemma

r2

���(�) = r� [r��(�)]

= r� [h(x(�))]

= rxh(x(�))r�x(�)

From the first order conditions we have

rxf(x(�)) + �Trxh(x(�)) = 0

r�

⇥rxf(x(�)) + �Trxh(x(�))
⇤
= 0

r2

xxfr�x(�) +rxh(x(�)) + �Tr2

xxh(x(�))r�x(�) = 0

r2

xxL(x(�),�)r�x(�) +rxh(x(�))
T
= 0

r�x(�) = �r2

xxL(x(�),�)
�1rxh(x(�))

T

1Note the similarity of this functional form with the Schur-complement S =

P
i

B

i

K

�1
i

B

T

i

formula.
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Substituting back in the previous expression the lemma is proved. Note that from

the local convexity assumptionr2

xxL(x
⇤
) is positive definite and since x is a regular

point near x⇤, the Hessian of the dual is negative definite.

Theorem B.0.3 Suppose that the problem (B.1) has a local solution at x⇤ with correspond-

ing value p⇤ and Lagrange multiplier �⇤. Suppose also that x⇤ is a regular point and that

the corresponding Hessian of the Lagrangian L(x,�) is positive definite. Then the dual

problem

max�(�) (B.9)

has a local solution at �⇤ with corresponding value p⇤and x⇤as the point corresponding to

�⇤ in the definition of �(�⇤
).

Proof: By Lemma B.0.1 we know that �⇤ satisfies the first order conditions

r�(�⇤
) = h(x⇤

) = 0

and by Lemma 2 the Hessian of the dual is negative definite. Thus �⇤ satisfies

the first-order and second-order sufficiency conditions for an unconstrained max-

imum point of �(�⇤
). The corresponding value �(�⇤

) is found from the definition

of �(�) to be p⇤

Constrained problems satisfying the local convexity assumption can then be solved

by solving the associated unconstrained dual problem.
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C. DERIVATION OF PH FROM ADMM

Consider the general structured optimization problem

min
x
i

2X ,z

X

i2P
fi(xi)

Aixi +Biz = 0, (yi) i 2 P .

For the particular case of a two-stage stochastic program, because the z variables

create coupling across all scenarios, Bi=I where I is the identity matrix. Applying

the standard ADMM update to this problem

xk+1

i = argmin

x
i

2X
i

fi(xi) +
�
Aixi � zk

�T
yki +

⇢

2

kAixi � zkk2

zk+1

= argmin

z

X

i2P

�
Aix

k+1

i � z
�T

yki +
⇢

2

kAix
k+1

i � zk2

yk+1

i = yki + ⇢
�
Aix

k+1

i � zk+1

�

Note how to update z one needs to solve the subproblemrzL⇢(x
k+1, z⇤, yk) = 0

rzL⇢(x
k+1, z, yk) = |P|z �

X

i2P

yki
⇢

+ Aix
k+1

i

and thus,

zk+1

= z⇤ =
1

|P|
X

i2P

yki
⇢

+ Aix
k+1

i
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Consider now the update of y. Summing over all scenarios (partitions)

X

i2P
yk+1

i =

X

i2P
yki +

X

i2P
⇢
�
Aix

k+1

i � zk+1

�

=

X

i2P
yki + ⇢Aix

k+1

i � |P|⇢zk+1

= ⇢|P|
 

1

|P|
X

i2P

yki
⇢

+ Aix
k+1

i � zk+1

!

= ⇢|P| �zk+1 � zk+1

�

and thus the dual estimates aggregate to zero after the first iteration of ADMM.

X

i2P
yk+1

i = 0

This feature is observed in the PH algorithm in a slightly different notation
P
i2P

piwi =

0 where pi is the probability of the ith scenario and wi =
y
i

p
i

. Given that the aggre-

gation of the multipliers is zero, the update of z can be written as follows:

zk+1

=

1

|P|
X

i2P
Aix

k+1

i
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D. COMPUTING OPERATOR T⇢(U) USING ADMM

Here we prove that the operator T⇢(u) can be computed by applying one ADMM

iteration. Consider, without loss of generality and in order to simplify the presen-

tation, the case for ⇢ = 1 and a single block problem of the form:

min
x,z

1

2

xTDx+ cTx+

1

2

kAx+Bzk2 (D.1.1)

s.t. Ax+Bz = 0, (y). (D.1.2)

The results that we derive next can be extended to multiple blocks using induction.

The KKT system for problem (D.1) is:

2

6664

K ATB AT

BTA BTB BT

A B

3

7775

2

6664

x

z

y

3

7775
=

2

6664

�c
0

0

3

7775
(D.2)

where K = D + ATA. Applying a Gauss-Seidel splitting to this system at a point

u = (x, z, y) leads to the update u+

= T (u) = Gu + f , where G = M�1N and

f = M�1r. The explicit form of M�1 is given by:

M�1

=

2

6664

K�1

0 0

�⌃�1BTAK�1

⌃

�1

0

(I � B⌃

�1BT
)AK�1 B⌃

�1 �I

3

7775
(D.3)

where ⌃ := BTB. Having M�1 we construct:
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G = M
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and the right-hand-side-vector

f = M�1r =

2

6664
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By defining Q := AK�1AT we can write the explicit form of the update u+ as:
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Upon expansion we obtain:

x+

= �K�1ATBz �K�1ATy �K�1c (D.7.1)

z+ = ⌃

�1BTQBz + ⌃

�1BT
(Q� I)y + ⌃

�1BTAK�1c (D.7.2)

y+ = (B⌃

�1BT � I)QBz +
⇥
(B⌃

�1BT � I)Q� B⌃

�1BT
+ I
⇤
y

+ (B⌃

�1BT � I)AK�1c (D.7.3)

We now show that ADMM delivers the same updates after one iteration. We use

the augmented Lagrange function:

L(x, z, y) = xTDx+ cTx+ (Ax+Bz)T y +
1

2

kAx+Bzk2. (D.8)

Initializing at u = (x, z, y), the update x+ is given by:

x+

= argmin

x
L(x, z, y) (D.9)

For which the optimality conditions are

rxL(x, z, y) = (D + ATA)x+ ATBz + ATy + c = 0 (D.10)

and thus,

x+

= �(D + ATA)�1

⇥
ATBz + ATy + c

⇤

= �K�1

⇥
ATBz + ATy + c

⇤

= �K�1ATBz �K�1ATy �K�1c (D.11)

We note that (D.11) and (D.7.1) are equivalent. The update for the coupling vari-

ables z+ is given by:

z+ = argmin

z
L(x+, z, y) (D.12)
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The optimality conditions are given by:

rzL(x+, z, y) = BTy +BTAx+

+BTBz = 0 (D.13)

and thus,

z+ = � �BTB
��1

⇥
BTy +BTAx+

⇤

= �⌃�1

⇥
BTy +BTAx+

⇤

= �⌃�1

⇥
BTy � BTA�1ATBz � BTA�1ATy � BTA�1c

⇤

= �⌃�1

⇥
BTy � BTQBz � BTQy � BTA�1c)

⇤

= �⌃�1

⇥
BT

(I �Q)y � BTQBz � BTA�1c
⇤

= ⌃

�1BTQBz + ⌃

�1BT
(Q� I)y + ⌃

�1BTA�1c (D.14)

We thus have that (D.14) and (D.7.2) are equivalent. Finally, the dual variables are

updated as y+ = y+(Ax+

+Bz+). Substituting (D.11) and (D.14) in this expression

leads to (D.7.3) .
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E. EXPLOITING STRUCTURE VIA REFORMULATION

We present here an example of the reformulation approach for solving a large-scale

optimization problem in water distribution systems. The application of interest

consist on the optimal sampling of a municipal water network.

Drinking water utilities rely on samples collected from the distribution system

to provide assurance of water quality. If a water contamination incident is sus-

pected, samples can be used to determine the source and extent of contamination.

By determining the extent of contamination, the percentage of the population ex-

posed to contamination, or areas of the system unaffected can be identified. Using

water distribution system models for this purpose poses a challenge because sig-

nificant uncertainty exists in the contamination scenarios (e.g., injection location,

amount, duration, customer demands, contaminant characteristics). This article

outlines an optimization framework to identify strategic sampling locations in wa-

ter distribution systems. The framework seeks to identify the best sampling lo-

cations to quickly determine the extent of the contamination while considering

uncertainty with respect to the contamination scenarios. The optimization formu-

lations presented here solve for multiple optimal sampling locations simultane-

ously and efficiently, even for large systems with a large uncertainty space. These

features are demonstrated in two case studies.

Drinking water distribution systems can be vulnerable to intentional or acci-

dental chemical and biological contamination. Extensive research has focused on

the optimal design of online water quality monitoring systems and sensor tech-

nology [Berry et al., 2006, Krause et al., 2008, Hart and McKenna, 2012, Ostfeld

and Salomons, 2004, Murray et al., 2010, Hart and Murray, 2010, Propato, 2006,

Isovitsch and VanBriesen, 2008, Grayman et al., 2006]. To minimize risk after de-
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tection, utilities need to make efficient response decisions in order to minimize the

impact of a contamination incident. Drinking water utilities have emergency re-

sponse plans which outline procedures that should be initiated if contamination

is suspected. The emergency response procedures could include steps to isolate

the contaminated area of the system, disinfect the system, and issue public health

advisories [Baranowski and LeBoeuf, 2008]. For these steps to be effective, it is im-

portant to identify the source of the contamination as well as the extent of contam-

ination. This work focuses on a robust implementation of optimization formula-

tions to identify sampling locations that provide this information if contamination

is suspected.

In general, drinking water utilities rely on grab samples collected from the dis-

tribution system to provide assurance of water quality and meet regulatory re-

quirements. If contamination is suspected, additional grab samples can be col-

lected to identify the extent of contamination and the source of the incident [Eli-

ades and Polycarpou, 2012]. Accurate determination of the source and extent of

contamination is challenging because of limited available measurements and sig-

nificant uncertainty in system hydraulics, contaminant reaction dynamics, and in-

cident details.

Wang and Harrison [2013] placed the problem of uncertainty reduction based

on cyclic sampling within a stronger statistical framework. Given a set of potential

contamination scenarios, they performed Bayesian updates of the scenario proba-

bilities based on sampled measurement information. To identify a preferred candi-

date node, they chose to select those locations that maximized entropy. However,

their approach was based on enumeration, and they limited themselves to a sin-

gle sampling location per cycle. This approach, while effective for a single location,

was computationally intensive and not tractable for optimal identification of many

sampling locations within a single cycle. Rana and Boccelli [2016] used a similar

Bayesian approach to that proposed in Wang and Harrison [2013]. However, they

introduced a demand forecasting component that significantly reduces the uncer-
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tainty in system hydraulics and the number of contamination scenarios that need

to be considered in the procedure. This approach was also shown to be effective,

but remained computationally intensive.

The work of Wang and Harrison [2013] provided an appropriate statistical

framework for uncertainty reduction, however, successful application of the ap-

proach depends highly on the effectiveness of measurements taken within each

cycle. In previous work, Wong et al. [2010] focused on the optimal determination

of sampling locations, and proposed a mixed-integer linear programming (MILP)

formulation to determine sampling locations. In contrast with stochastic search al-

gorithms or greedy optimization heuristics, solutions obtained with this approach

are guaranteed to be globally optimal. In addition, state-of-the-art MILP solvers

like CPLEX [IBM ILOG, 2018] or GUROBI [Gurobi Optimization, Inc, 2016] are

able to provide information about the quality of the solution. While Wong et al.

[2010] showed that this approach provided good sampling locations for source

identification, it lacked a strong statistical basis for updating the probability of in-

dividual contamination scenarios. Furthermore, the formulation from Wong et al.

[2010] becomes intractable for systems with a large uncertainty space since it grows

quadratically with the number of contamination scenarios under consideration.

This article presents two MILP formulations for determining optimal sampling

locations within the Bayesian updating framework from Wang and Harrison [2013].

The formulations presented here are exact linear transformations that allow effi-

cient solution with off-the-shelf MILP solvers and seek to reduce uncertainty in

the source and extent of contamination during a contamination incident. The con-

tributions of this research effort focus on:

• The use of available binary measurement information (i.e., yes/no) from wa-

ter quality sensors, customer complaints, or public health surveillance sys-

tems to update not only contamination scenario probabilities but to also de-

termine the likely extent of contamination.
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• The development of a computational-efficient approach to identify optimal

grab sample locations. An optimization-based strategy is proposed to pro-

vide recommendations on the most effective locations for additional sampling

with the goal of further reducing the uncertainty in the source and extent of

contamination.

Uncertainty Reduction Framework

During an incident response, knowing the source of the contamination is im-

portant in order to stop more contamination from entering the system. Knowl-

edge of the source would also help define the extent of contamination. Water

utilities typically rely on water quality samples to get information regarding the

contamination incident. However, if an approach to identify sampling locations

requires multiple rounds of samples to provide useful information, then the re-

sponse actions such as disinfection [Ostfeld and Salomons, 2006, Parks and Van-

Briesen, 2009] or flushing could be delayed. The method proposed here focuses on

reducing the uncertainty about the contamination incident as quickly as possible

by selecting optimal locations to sample.

A framework for reducing this uncertainty is presented in Figure E.1. The

framework is based upon the Bayesian approach from Wang and Harrison [2013],

and it shows the general steps that could be taken following a suspected contam-

ination alarm or alert. The main objective is to maximize the knowledge about

the state of the system by taking samples, or as shown in Figure E.1 to mini-

mize the uncertainty about the contamination source and extent. Step 1 of Figure

E.1 builds a database of simulation results from potential contamination scenarios

with different characteristics (e.g., injection location, amount, duration, customer

demands, reaction coefficients). Precomputed simulation results from a set of con-

tamination scenarios need to be available for the proposed method to efficiently

and effectively identify optimal sampling locations. In this work, the factorial de-

sign of experiments proposed in Hart et al. [2018] was used to quantify uncertainty
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4. Determine uncertainty

in plume extent

5. Small
uncertainty?

6. Determine sampling

locations

7. Take sample measurements

Alarm
triggerd

Yes
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Figure E.1.: Framework used to reduce uncertainty in determining the source and
extent of contamination.
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and build the list of potential contamination scenarios. If a suspected contamina-

tion alarm is triggered, the process to determine sampling locations to help iden-

tify the contamination source and extent begins in Step 2. In this step, a Bayesian

approach is used to update the probability of the contamination scenarios based

on available measurements. Bayesian updates as the ones proposed in the liter-

ature[Seth et al., 2016, Wang and Harrison, 2013, Yang and Boccelli, 2014] can be

followed in this step. In Step 3, these contamination scenario probabilities and the

precomputed simulation results are used to compute, for each node, the probabil-

ity that the node is contaminated. As measurements are obtained, the probabilities

are adjusted and the uncertainty in the contamination source and extent is reduced.

Given a particular confidence level (e.g., 95%), nodes can be categorized according

to their probability of contamination within Step 4. Any node with a probabil-

ity higher than a selected threshold are deemed ‘likely contaminated’ (abbreviated

LY for likely yes), any node with a probability less than 1 minus the threshold

are deemed ‘likely not contaminated’ (abbreviated LN for likely no), and the re-

maining nodes are deemed ‘uncertain’ (UN). If the number of nodes that remain

uncertain is close to zero, then the process is terminated (Step 5), otherwise an

optimization-based approach is used to determine the best locations to take ad-

ditional samples (Step 6). In Step 7, new measurements are taken, and then the

approach returns to Step 2.

Optimal sampling (Step 6) must satisfy two primary goals. First, the optimiza-

tion should identify sampling locations that strengthen the probability update in

Step 2. Second, the optimization should be computationally efficient for large wa-

ter distribution system models and many contamination scenarios. Focusing on

the first goal, the ideal measurement locations would maximize the probability

of the true contamination scenario. However, two problems with this approach

are that: (1) the true scenario is not known a priori, and (2) the Bayesian update

would need to be included explicitly within the optimization problem in order to

optimize over the probabilities directly. This approach leads to a nonlinear opti-
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mization problem with both continuous and discrete variables, which can be very

difficult to quickly solve to global optimality. Instead, this work seeks a formula-

tion that remains linear and can be solved with off-the-shelf MILP solvers.

The MILP formulations presented here focus on making significant reductions

in the probabilities of unlikely contamination scenarios. To make this point more

clear, Figure E.2 shows an example progression of contamination scenario proba-

bilities over several sampling cycles. Initially, in the first sampling cycle no mea-

surements are available, and all contamination scenarios have an equal probability

of occurrence. After a round of sampling, the contamination scenario probabilities

are updated, with the probabilities increasing for those scenarios that could have

led to the measurement result and decreasing for the others. Subsequent sampling

rounds further reduce the number of possible likely contamination scenarios. Note

that: (1) the best measurement locations are those that rapidly progress from a

probability distribution like that in the first sampling cycle to one like that in the

final sampling cycle; and (2) out of the initial set of potential contamination scenar-

Figure E.2.: Probability of contamination scenarios over multiple sampling rounds.
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ios, only a few will agree with all of the measurements, while most will disagree.

Because of the second point above, the focus of the optimization formulations is to

select locations that maximize the number of disagreements between contamina-

tion scenarios and measurements.

Optimal Sampling Formulations

This section presents the derivation of the MILP problem formulations that can

be used in Step 6 of Figure E.1 to identify optimal sampling locations. The proba-

bility of a location, n, being contaminated is given by Equation (E.1).

�n =

X

s2S
�s,n�s (E.1)

Here, �s is the current estimate of the probability of contamination scenario s,

and �s,n is a binary parameter that is 1 if contamination scenario s contaminates

node n, and 0 otherwise. The values of �s,n are determined from the simulations

precomputed over the full potential contamination scenario set.

Given �n (the probability that node n is contaminated), the probability that con-

tamination scenario s is consistent with a perfect measurement (i.e., no false posi-

tive or false negative) taken at node n is shown in Equation (E.2).

↵s,n =

8
<

:
�n if �s,n = 1

1� �n otherwise
(E.2)

The probability that contamination scenario s is consistent with the measure-

ments from all selected sampling locations (Pmatch
s ) is given by the product of the

probabilities ↵s,n over all selected sampling locations (Equation (E.3)).

Pmatch
s =

Y

n2M
↵s,n (E.3)
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Here M is the set of locations (as yet undetermined) selected for sampling in

this cycle. The product in Equation (E.3) is over all the selected locations, which

is determined by the optimization. To reformulate this equation, xn is a binary

variable that will be 1 if location n is selected for sampling, and 0 otherwise. The

set M can now be removed, and the product can be written over all candidate

sampling locations in N , as in Equation (E.4).

Pmatch
s =

Y

n2N
↵x

n

s,n (E.4)

To handle the nonlinearity in Equation (E.4), a set of log transformations (Equa-

tions (E.5) and (E.6)) are used to develop two new optimization formulations.

Pmatch
s = exp(

˜Ps) (E.5)

˜Ps =

X

n2N
xn ln(↵s,n) (E.6)

The first optimization formulation seeks to maximize the expected number of

contamination scenarios that disagree with the expected outcome of the measure-

ments as shown in Equation (E.7).

max

X

s2S
Pmiss
s (E.7.1)

s.t. Pmiss
s = 1� Pmatch

s 8 s 2 S (E.7.2)

Pmatch
s = exp(

˜Ps) 8 s 2 S (E.7.3)

˜Ps =

X

n2N
xn ln(↵s,n) 8 s 2 S (E.7.4)

X

n2N
xn  Smax (E.7.5)

xn 2 {0, 1} 8 n 2 N (E.7.6)
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Here, the parameter Smax is the maximum number of samples that can be taken

in a sampling cycle. The formulation as written is a mixed-integer nonlinear pro-

gram (MINLP) because of Equation (E.7.3). However, it can be made linear, since

the equality can be replaced with a lower bounding inequality. Since the objective

function is maximizing Pmiss
s (and pushing down on Pmatch

s ), this inequality will al-

ways be satisfied with equality at the solution. This new inequality is convex and

can be replaced with a set of linear under-estimators as graphically presented in

the Appendix.

This new MILP formulation, referred to as P1, is shown in Equation (E.8), where

vi are tangent points selected for the linear under-estimators of the exponential

term.

max

X

s2S
Pmiss
s (E.8.1)

s.t. Pmiss
s = 1� Pmatch

s 8 s 2 S (E.8.2)

Pmatch
s � exp(vi) + exp(vi)

⇣
˜Ps � vi

⌘
8 i 2 L, s 2 S (E.8.3)

˜Ps =

X

n2N
xn ln(↵s,n) 8 s 2 S (E.8.4)

X

n2N
xn  Smax (E.8.5)

xn 2 {0, 1} 8 n 2 N (E.8.6)

The P1 formulation grows linearly with the number of contamination scenar-

ios, while the distinguishability (D) formulation from Wong et al. (2010) grows

quadratically. This is critical for the work presented here, since the uncertainty

space considers the source location, system hydraulics, and reaction dynamics

which requires large number of scenarios to be characterized.

The second optimization formulation maximizes the worst case number of mis-

matches (instead of the expected value). This produces the max-min formulation

shown in Equation (E.9).
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max

x
n

min
s

Pmiss
s (E.9.1)

s.t. Pmiss
s = 1� Pmatch

s 8 s 2 S (E.9.2)

Pmatch
s = exp(

˜Ps) 8 s 2 S (E.9.3)

˜Ps =

X

n2N
xn ln(↵s,n) 8 s 2 S (E.9.4)

X

n2N
xn  Smax (E.9.5)

xn 2 {0, 1} 8 n 2 N (E.9.6)

Recognizing that argmin

s
Pmiss
s = argmin

s
�Pmatch

s and that argmin

x
�x =

argmin

x
� exp(x), the entire formulation can be rewritten as Equation (E.10).

max

x
n

min
s

� ˜Ps (E.10.1)

s.t. ˜Ps =

X

n2N
xn ln(↵s,n) 8 s 2 S (E.10.2)

X

n2N
xn  Smax (E.10.3)

xn 2 {0, 1} 8 n 2 N (E.10.4)

The formulation in Equation (E.10) does not contain the exponential term and

is already an MILP without the need for any linear under-estimators, which avoids

numerical issues [Bertsimas and Tsitsiklis, 1997] that can occur when too many nu-

merically similar under-estimators are added. Using a standard transformation,

this bilevel optimization problem is easily reformulated to a single level optimiza-

tion problem. The new formulation, referred to as P2, is shown in Equation (E.11),

where q is an auxiliary variable that supports the max-min reformulation to a sin-

gle level optimization problem.
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max q (E.11.1)

s.t. q  � ˜Ps (E.11.2)

˜Ps =

X

n2N
xn ln(↵s,n) 8 s 2 S (E.11.3)

X

n2N
xn  Smax (E.11.4)

xn 2 {0, 1} 8 n 2 N, (E.11.5)

Two metrics were used to assess the performance of the P1, P2, and D opti-

mization formulations. The first metric is the number of candidate contamination

scenarios within a ⌘% confidence interval (i.e., the n most likely contamination

scenarios with a cumulative probability ⌘%). The second metric is the fraction

of nodes correctly identified. For this calculation, nodes are first labeled in three

states. The nodes whose contamination probabilities are above a threshold are

labeled as LY for “likely yes,” LN for“likely no,” and UN for “unknown.” The

contamination states for each node are identified using Equation (E.12) and used

in Step 4 of Figure E.1.

8
>>>>><

>>>>>:

LY if �n � 0.975

UN if 0.025  �n  0.975

LN if �n  0.025

(E.12)

To compute the fraction of nodes correctly identified, the total number of nodes

labeled LY that were also contaminated in the true contamination scenario were

added together with the total number of nodes labeled LN that were not contam-

inated in the true contamination scenario, and then this summation is divided by

the total number of nodes in the system. An illustrative example to demonstrate

the computations is provided in the following Section.
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Illustrative Example

In this section, an example is presented to illustrate the computations described

from the optimal sampling formulations Section. The example water distribution

system, shown in Figure E.3, has only four nodes and potential injection locations.

This example was time-invariant with fixed flow directions as indicated in Figure

E.3.

Figure E.3.: Schematic of the simple example four-node water distribution system.

This simple example assumes that the only uncertainty was in the injection

location of the contamination scenario, and the set of all candidate contamina-

tion scenarios were identified by the location of the contamination scenario (S =

{1, 2, 3, 4}). Additionally, the set of all potential sampling locations includes all

nodes, given by N = {1, 2, 3, 4}. The contamination scenario information can be

summarized by the impact parameter �s,n, in which the rows represented different

contamination scenarios and columns represented different sampling locations.

An entry �s,n in the impact matrix is equal to 1 if location n would be contami-

nated by scenario s. Initially, when no measurement information was available,

the probability distribution of the contamination scenarios � was assumed to be
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uniform. The values for � and � for this simple example are shown in Equation

(E.13).

� =

0

BBBBBBBB@

1 0 0 0

1 1 1 0

0 0 1 0

0 0 1 1

1

CCCCCCCCA

� =

0

BBBBBBBB@

1

4

1

4

1

4

1

4

1

CCCCCCCCA

(E.13)

From the impact matrix (�) and the contamination scenario probabilities (�),

the probability that a particular node n is contaminated can be computed using

Equation (E.1). For this example, the probabilities of contamination (�) for each of

the four locations are shown in Equation (E.14).

� =

✓
1

2

,
1

4

,
3

4

,
1

4

◆T

(E.14)

Since ↵s,n represents the probability that contamination scenario s will be con-

sistent with a measurement taken at node n, the matrix of ↵s,n values for this ex-

ample is shown in Equation (E.15).

↵ =

0

BBBBBBBB@

1

2

3

4

1

4

3

4

1

2

1

4

3

4

3

4

1

2

3

4

3

4

3

4

1

2

3

4

3

4

1

4

1

CCCCCCCCA

(E.15)

The P1 and P2 formulations identify locations to take samples that will disagree

with many contamination scenarios, or equivalently, to take samples at locations

that will agree with only a few contamination scenarios. The expected number of

scenarios that will disagree with a measurement taken at location m is given by

E(S) =

P
s2S(1 � ↵s,m). Assuming only a single sampling location is identified

per cycle for the simple example system, the expected number of contamination

scenarios that disagree with a measurement taken at each of the four locations
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would be 2, 1.5, 1.5, and 1.5, respectively. Location 1 would be selected as the

optimal sampling location using the P1 formulation. The D formulation would

have selected the same location in this case. However, the D formulation does not

utilize contamination scenario probabilities within the optimization.

In the previous example, the initial contamination scenario probabilities were

assumed to be equal. However, as the uncertainty reduction process continued,

the contamination scenario probabilities were updated and the solution with the

P1 formulation began to deviate from the D formulation. If the non-uniform prob-

abilities for the contamination scenarios were � =

�
1

9

, 6
9

, 1
9

, 1
9

�T , then the new prob-

abilities of the nodes being contaminated (�) and the probabilities of agreement (↵)

would be as shown in Equation (E.16).

� =

0

BBBBBBBB@

7

9

6

9

8

9

1

9

1

CCCCCCCCA

↵ =

0

BBBBBBBB@

7

9

3

9

1

9

8

9

7

9

6

9

8

9

8

9

2

9

3

9

8

9

8

9

2

9

3

9

8

9

1

9

1

CCCCCCCCA

(E.16)

The D formulation relies on �s,n only, so it would have again selected location

1 for sampling, whereas the P1 formulation would have now selected location 2.

Given a measurement at location 2, three contamination scenarios were expected

to disagree with the measurement. Therefore, only one contamination scenario’s

probability increases, while the other three scenarios’ probabilities decrease. This

sampling location resulted in a larger overall reduction in the uncertainty when

compared with the location chosen by the D formulation. This simple example

highlights that incorporating probability into the selection of the sample location

can reduce uncertainty more effectively.
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Results and Discussion

The effectiveness of the overall approach and the different formulations for

identifying optimal sampling locations were assessed on two different water dis-

tribution system models. The first case study used the KL system with 936 nodes

from the University of Kentucky’s Water Distribution System Research Database

(http://www.uky.edu/WDST/database.html) [Hernadez et al., 2016]. The system

has a daily production of 11,800 m3/day (3.12 MGD), with an average residence

time of 16 hours. This smaller case study facilitated a comparison between the

new formulations (P1 and P2) and the D formulation. Since the D formulation is

intractable for large case studies, the comparison with the D formulation is only

provided for the smaller test case. The second case study used Network2 from

Watson et al. [2009], which has approximately 3,000 nodes, and an initial set of

contamination scenarios slightly larger than a million. The system has a daily pro-

duction of 115,000 m3/day (30.4 MGD), and an average residence time of 62 hours.

For both case studies, the uncertainty reduction approach was demonstrated with

a randomly selected “true scenario.” The effectiveness of the different formula-

tions was shown in terms of 1) the number of likely contamination scenarios and

2) the fraction of nodes correctly identified.

All of the steps in the uncertainty reduction process were implemented within

the Water Security Toolkit (WST) [U. S. EPA, 2015] to simulate the contamination

scenarios and identify the optimal sampling locations. The simulations were run

in parallel using EPANET and Merlion [Rossman, 2000, Mann et al., 2014] on a

Linux server with 24 cores, 264 GB of DDR3 RAM and a clock speed of 2.6 GHz.

For all simulated scenarios, nodes with concentration values greater than 0.001

were marked as contaminated nodes. Additionally, in both case studies, 0.05 is

used for the probability of measurement error for the Bayesian update of scenario

probabilities [Seth et al., 2016]. The optimization formulations were implemented
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using Pyomo [Hart et al., 2012b, 2011a] and solved with the state-of-the-art MIP

solver ILOGs CPLEX 12.7.0.0 [IBM ILOG, 2018] to an optimality gap of 0.01%.

Case Study 1

Figure E.4 shows the schematic of the system for the first case study. All con-

tamination scenarios considered had a simulation horizon of 96 hours and an injec-

tion duration of 90 hours. The parameters used to generate the pool of contamina-

tion scenarios are presented in Table E.1. Three different reaction coefficients were

considered with a single injection at all 936 nodes starting at hour 6 and finishing

at hour 96 in the simulation. This gave a total set of 2,808 contamination scenarios.

Figure E.4.: Schematic of the first case study system with the the true contami-
nation scenario injection location (red circle) and warning location (green circle)
identified.
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Table E.1.: Parameters used to create the set of potential contamination scenarios
for the first case study system.

Parameter Values Units Values
Reaction coefficient 3 day�1 0,-1,-5
Injection start 1 h 06:00
Injection duration 1 h 90:00
Injection location 936 - 1-936
Injection strength 1 mg/min 1000
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For the initial analysis, the ‘true scenario’ was a contaminant injection at node

344 (marked with a red circle in Figure E.4) with a bulk reaction coefficient of 0.0

day�1. The initial warning was raised at hour 12 from node 258 (shown with a

green circle in Figure E.4). Using information from this warning location, the initial

set of 2,808 contamination scenarios was reduced to a set of 302 scenarios, which

corresponded to the subset of scenarios that could have triggered an alarm at node

258 at hour 12.

Figure E.5 shows the results from the three optimization formulations (P1, P2,

and D) in terms of the two metrics described in the formulations Section. On the

left axis, the number of candidate contamination scenarios are shown as the dashed

lines on a logarithmic scale, and, on the right axis, the fraction of nodes correctly

identified is shown as the solid lines. The abscissa includes both the sampling cycle

and the progression of time. For this study, four new samples were taken each cy-

Figure E.5.: The number of candidate contamination scenarios (dashed lines) and
the fraction of nodes correctly identified (solid lines) per sampling cycle using the
P1, P2, and D formulations.
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cle, and the elapsed time between two cycles was 60 minutes. As time progressed,

the number of candidate contamination scenarios decreased for all formulations,

while the fraction of nodes correctly identified approached 1.0 (Figure E.5). The

sampling locations identified with all three formulations quickly reduced the num-

ber of candidate contamination scenarios. However, the P1 and P2 formulations

both required fewer sampling cycles to determine the true scenario as compared

to the D formulation.

Figure E.6 shows the results for all three formulations in terms of the number

of nodes labeled as LY (red), LN (blue), and UN (yellow) for each sampling cycle

presented in Figure E.5. The solid red line shows the number of nodes that are con-

taminated by the true contamination scenario at each sampling cycle. The number

of uncertain nodes was reduced quickly in the first few sampling cycles. As seen

Figure E.6.: Uncertainty reduction comparison showing LY, LN, and UN by sam-
pling at locations identified by the P1, P2, and D formulations. The solid red line
is the number of contaminated nodes in the true contamination scenario.
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in Figure E.6, when the number of uncertain nodes approached zero, the overall

extent of contamination increased, since time was still progressing with each sam-

pling cycle. In these results, the P1 and P2 formulations reduced UN more quickly

than the D formulation.

These results only considered a single ‘true injection’ contamination scenario.

To obtain performance statistics, this analysis was repeated for 50 different ‘true

scenario’ cases. In all cases, the start time of the contaminant injection was hour

6, and the initial warning was raised at hour 12. The initial number of candidate

contamination scenarios, after the warning was raised, for each case was within

the range of 300 to 400.

Figure E.7 shows the number of uncertain nodes per sampling cycle averaged

over all 50 true contamination scenarios when four, six, and eight samples were

Figure E.7.: Average number of uncertain nodes using four, six, and eight samples
per cycle identified by the P1, P2, and D formulations. The elapsed time between
sampling cycles was 60 minutes. Each data point is the average for the set of 50
different true contamination scenarios. The shaded area represents the standard
deviation.
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taken per sampling cycle. The elapsed time between sampling cycles was 60 min-

utes. The shaded region shows the standard deviation of the number of uncertain

nodes for each of the formulations. In almost all instances, the mean and standard

deviation were lower for P1 and P2 when compared with the D formulation. How-

ever, as the number of measurements per cycle increased the three formulations

tended to behave similarly. In addition, as the number of measurements per cycle

increased, the standard deviation for all three sampling strategies gets reduced, in-

dicating that taking more measurements reduces uncertainty more quickly over all

50 true scenarios. To investigate the effect of longer durations between sampling

cycles, this study was extended for the case of two, four, and eight hours between

sampling cycles. The results are presented in the Appendix. In general, the opti-

mization formulations achieved significant reduction in the number of uncertain

nodes. However, longer durations between sampling cycles resulted in more un-

certainty.

Another reason these new optimization formulations were developed was to

improve computational performance. The D formulation scales unfavorably with

the number of contamination scenarios, while the size of the new formulations

scales linearly. To demonstrate this benefit, the computational times required to

solve each of the three formulations is shown in Table E.2. These results were from

the first sampling cycle. All timing results represented wall clock time obtained

with CPLEX 12.7.0.0. While the P1 formulation took twice as long to solve as the

P2 formulation, both were significantly faster than the D formulation and well

Table E.2.: The computional times for the P1, P2, and D formulations for the first
case study.

Optimization Formulation Time to Solution (s)
D 505.42
P1 1.48
P2 0.75
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within the required window for use in a real-time context. Note that while these

timing results were obtained with a relatively small case study (for comparison

purposes), they demonstrate the computational speedup of the P1 and P2 formu-

lations over the D formulation. This is particularly relevant for larger models since

the D formulation grows quadratically with the number of scenarios.

The overall results of the first case study indicated that the new optimization

formulations (P1 and P2) were more or as effective as the D formulation when

used in the proposed uncertainty reduction framework. They generally behaved

better in the average case and also produced smaller variation. Also, the P1 and

P2 formulations were significantly faster than the D formulation.

Case Study 2

The P1 and P2 formulations were also tested on a larger system model with a

larger set of contamination scenarios. Figure E.8 displays a schematic of the system

with the true contamination scenario’s injection location (red circle) and warning

location (green circle) identified.

Table E.3 summarizes the parameters used in this case study. Hydraulic un-

certainty was modeled following the procedure described by Hart et al. [2018].

Contaminant injection uncertainty was modeled with 700 different injection loca-

tions, each with three different start times (24, 32, and 40 hours in the simulation)

and three different durations (1, 12, and 24 hours). In total a set of 1,134,000 con-

tamination scenarios were considered. The simulation duration for all scenarios

was 96 hours.

As with the first case study, the analysis was first performed with a single ‘true

contamination scenario’, consisting of a contaminant injection at JUNCTION-108

(marked in red in Figure E.8). The contamination scenario was assumed to begin

at hour 24 of the simulation and the bulk reaction coefficient was 0.0 day�1. The

initial warning was assumed to be at hour 33 at JUNCTION-247 (shown with green

in Figure E.8). Based on information from this warning location, the initial set
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Figure E.8.: A morphed schematic of the second case study system with the con-
taminant injection (red circle) and the warning (green circle) locations highlighted
for the true contamination scenario.

Table E.3.: Parameters used to create the set of potential contamination scenarios
for the second case study system (subset of scenarios from [Hart et al., 2018]).

Parameter Values Units Values
Stochastic demand deviation 3 - 0, 0.2, 0.4
Stochastic isolation valve closure 2 - 0, 0.0025
Reaction coefficient 3 day�1 0, -0.1, -5.0
Injection start 3 h 24:00, 32:00, 40:00
Injection duration 3 h 1, 12 , 24
Injection location 700 - 1-700
Injection strength 1 mg/min 1000
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of 1,134,000 contamination scenarios was reduced to a set of 16,347 scenarios (by

selecting only those scenarios that affected JUNCTION-247 at hour 33).

Figure E.9 summarizes the uncertainty reduction results over several sampling

cycles for either four, six, or eight samples per cycle using the P1 and P2 formula-

tions. The left axis shows the number of candidate contamination scenarios (sce-

narios within a 99.9% confidence interval) on a logarithmic scale and the right axis

shows the fraction of nodes correctly identified. The x-axis shows the hourly sam-

pling cycles that began at hour 33. Each of the optimizations with P2 solved in

less than 20 minutes. As the contamination scenario probabilities were refined, the

optimization problem required less time to solve. For the initial sampling cycle,

the solution time was around 17 minutes, but from cycle 4 onward, the time was

approximately 5 minutes to reach optimality. The optimizations with P1 achieved

similar uncertainty reduction results. However, the solution times for all optimiza-

tions with P1 were considerably longer. This is because of the higher dimension-

ality of P1 and the degeneracy introduced by the linear under-estimators which

causes ill-conditioning. These degeneracy problems can be avoided with appro-

priate tuning of the number of under-estimators. However, in this work, no spe-

cial tuning was done and a fixed number of 20 under-estimators was used for each

scenario in all optimizations.

Figure E.10 shows probability maps for the classification of nodes after each

sampling cycle for the case of four samples per cycle selected with the P2 for-

mulation. LY nodes are colored in red, UN nodes are colored in yellow, and LN

nodes are colored in blue circles. When the initial alarm was triggered (Figure

E.10(a)), approximately 30% of the nodes were highly unlikely to be contaminated,

while the remaining 70% remained uncertain as to whether they were contami-

nated. This was a high level of uncertainty in the possible extent of contamination,

which would make it difficult for decision makers to identify an effective response

action. By cycle 3, the level of uncertainty in the extent of contamination had been



198

Figure E.9.: The number of candidate contamination scenarios (dashed lines) and
the fraction of nodes correctly identified (solid lines) using four, six, and eight
samples per cycle for the second case study system.
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(a) Alarm is triggered – cycle 0. (b) After four measurements – cycle 1.

(c) After eight measurements – cycle 2. (d) After twelve measurements – cycle 3.

(e) After sixteen measure-
ments – cycle 4.

(f) After twenty measure-
ments – cycle 5.

(g) After twenty-four mea-
surements – cycle 6.

Figure E.10.: Nodal probability maps between sampling cycles.
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greatly reduced, and, by cycle 6, the extent of contamination was almost com-

pletely characterized.

The uncertainty reduction procedure was repeated for 50 different ‘true con-

tamination scenarios’, and the mean and standard deviation statistics were cal-

culated for the metrics. For the 50 true scenarios, different contamination source

locations were randomly selected from the 700 locations considered in the pool of

scenarios. In all 50 cases, the initial warning was raised at hour 33 and the contam-

ination scenario started at hour 24. The initial number of candidate contamination

scenarios, after the warning was raised, for each true scenario was within a range

of 10,000 to 20,000.

Figure E.11 shows the average fraction of nodes correctly identified for the 50

different contamination scenarios when selecting either four, six, or eight sampling

Figure E.11.: Average fraction of nodes correctly identified for the second case
study system when selecting either four, six, or eight sampling locations per cy-
cle. Each data point is the average fraction of nodes correctly identified, while the
error bars represent one standard deviation above and below per cycle for the 50

different true contamination scenarios.
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locations per cycle with formulation P2 (the P1 formulation was not utilized in this

study because of the degeneracy problems described previously). The P2 formula-

tion only required a few sampling cycles to significantly reduce the uncertainty in

the extent of contamination (a high fraction of the nodes were correctly identified).

The second case study results demonstrated the effectiveness of the P2 formu-

lation to reduce uncertainty in the source and extent of contamination in larger

system with an extensive set of potential contamination scenarios.

Summary

Water distribution systems are vulnerable to accidental or intentional contam-

ination incidents, and it is important to develop techniques that can characterize

an incident quickly in order to mitigate the effects. This article described an opti-

mization framework to identify sampling locations in a water distribution system

in order to efficiently reduce uncertainty in determining the source and extent of

contamination. The optimization framework was implemented and made avail-

able in the open source software package WST. This work proposed two new opti-

mization formulations to reduce the uncertainty in the contamination source and

extent by selecting sampling locations that maximized the expected number of

contamination scenarios that disagreed with the measurements. Results for two

water distribution system models demonstrated that these formulations efficiently

and accurately characterized the source and extent of contamination using the

uncertainty reduction framework proposed by Wang and Harrison [2013] . For

these formulations to quickly and optimally identify sampling locations, precom-

puted simulation results from a set of contamination scenarios need to be available.

This set of contamination scenarios should be as broad as possible to include es-

timates of the hydraulic patterns that might be experienced during an incident,

such as significant overall demand reduction due to public health notices (e.g.,

do not drink, do not use). However, the approach does allow the introduction of

new contamination scenarios during the sampling process to account for scenar-
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ios generated based on real-time data or other system knowledge during an actual

incident. While every possible contamination scenario was not included in this

study, future work could investigate additional scenarios with varying amounts of

contaminant and injection durations, adjustments to the method parameters (e.g.,

contamination threshold), and applications to larger, realistic water distribution

system models. Future work could also develop approaches to reduce the sam-

pling and analysis time to more efficiently identify a contamination incident.
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