
LEARNING AND DESIGN METHODOLOGIES

FOR EFFICIENT, ROBUST NEURAL NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Priyadarshini Panda

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Prof. Kaushik Roy, Chair

School of Electrical and Computer Engineering

Prof. Anand Raghunathan

School of Electrical and Computer Engineering

Prof. Byunghoo Jung

School of Electrical and Computer Engineering

Prof. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dimitrios Peroulis

Head of the School Graduate Program

iii

Dedicated to the two guiding forces in my life

for Papa, even though you passed away like a glittering star falling from the sky, you

never let the sky go dark in my life

for Yeshi, you brought me the happiness of an eternity in this lifetime

iv

ACKNOWLEDGMENTS

It is a bitter-sweet feeling writing this last piece of the thesis. As I look back,

I see so many euphoric moments intermixed with countless struggles and incredible

kindness from so many people who pushed me, made me grow into the person I am

today. I know I cannot do full justice to all the goodwill and warmth from all those

who have touched my life all these years. Nevertheless, I am going to give it my best

shot.

First and foremost, I would like to thank the supreme almighty Lord Jagannath

for embracing me at my loneliest times and allowing me to view this day. This odia

girl would not have made it this far had it not been for his blessings.

In Hindu philosophy, a guru or teacher is held equivalent to god. Thus, it is only

befitting that the next person I would like to thank is my advisor, Prof. Kaushik Roy.

From a confused Ph.D. student to an individual who is going to become a faculty,

Prof. Roy has been instrumental in this transformation. His research vision, inspiring

academic insights and unfailing guidance has resulted in this dissertation. While I am

grateful for his invaluable advice, I am indebted to the fact that he let me decide the

fate of my Ph.D. He gave me complete freedom to explore diverse ideas and concepts.

While he steered me towards many successes during this exploration, he also let me

have my share of failures and taught me to own them and learn from them. This gave

me the resilience and the confidence to face the turbulence of academic life and allowed

me to discover my strengths. His enthusiasm to try something cool and exciting has

constantly motivated me to set the bar high for my research goals. I believe his

enthusiasm will be my greatest inheritance. I also thank him for his countless pieces

of wisdom and a guidance checklist (if i may say) on ‘how to lead a better & peaceful

life’ that he gave me during our lunch and coffee discussions. He has been a true

v

friend, philosopher and guide, and I feel honored and privileged to have worked with

him.

Next, I would like to express my sincerest regards for Prof. Anand Raghunathan

for infusing new enthusiasm and vigor into my research by giving me an opportunity

to work with him in the very beginning of my Ph.D. career. I consider myself really

fortunate to have interacted with him. His passion for teaching and mentorship is

absolutely amazing and inspiring. I am also very thankful to Prof. Vijay Raghunathan

for his positive feedback and mentoring during my Ph.D. His irreplaceable advice to

be bold and ambitious in research and lead a healthy work-life balance will continue

to guide me throughout my life. I also would like to thank Prof. Byunghoo Jung

for his expert advice and encouragement over these years. I feel extremely blessed to

have been surrounded by such great mentors and I thank everyone for kindly serving

on my doctoral committee.

I would like to express my deepest gratitude to Prof. Sumeet Gupta who con-

tributed significantly towards my career in the last few months. I feel fortunate to

have worked with him and have gained so much technical and non-technical advice

on academia from him. I am also thankful to Prof. Shriram Ramanathan, a great

mentor, who helped me understand a completely new topic on quantum devices. It

provided me with new insights and possibilities to explore in my research and con-

tributed significantly to the shaping of this dissertation. I also thank Prof. Shreyas

Sen for his help and guidance during these years. I would like to express my deepest

regards for all my seniors: Dr. Swagath Venkataramani, Dr. Kon-Woo Kwon, Dr.

Woo-Suhl Cho and Prof. Deliang Fan who helped me get started as a Ph.D. student

and gave me directions that shaped my fundamentals.

I also thank all current members and alumni from Nanoelectronics Research Lab

for being there for me, be it for hot research discussions or sharing lighter moments.

I especially thank, Dr. Akhilesh Jaiswal, Dr. Parami Wijesinghe, Gopalakrishnan

Srinivasan, Chamika Liyanagedara, Aayush Ankit, Indranil Chakraborthy, Deboleena

Roy, and others who provided a synergistic and fun lab environment to work in.

vi

I would also like to convey my sincerest gratitude to Neuromorphic Computing

Lab (Intel) and Dr. Narayan Srinivasa for offering me an internship opportunity

during my Ph.D. Narayan was a great mentor from whom I learnt several concepts

and insights on designing neuromorphic algorithms. I also thank my undergraduate

advisors: Prof. V. K. Chaubey, Prof. R. R. Mishra and late Prof. Champak Baran

Das for inspiring and assisting me during my undergraduate research.

On a personal front, I am extremely fortunate to have made great friends with

whom I shared most of my joys, happiness, sorrows and disappointments of my life

in United States. I am greatly indebted to my dearest friends, Satyabrata Parida,

Siddharth Gupta, Shruthi Suresh, Kavya Cherukuri, Ayush Parolia, Shanmugam

Palaniappan, Soubhagya Sutar, Devyn Maugel and Adam Dachowicz who became

a family to me here at Purdue. I would like to especially acknowledge Murtuza

Shergadwala in whom I found my best friend, brother, and my life-guide. Their care

and undiminishing support grounded me and provided me perpetual encouragement.

I also thank my friends: Ruchir Jain, Sonal Nayak, Vineet Mohapatra, Abinash

Mallick and Malavika Pradhan back home for the fondest of memories.

My parents and family. I am forever indebted to them for their love, support

and guidance. I thank my late grandmother Sunamani, my late father Jayadev, my

mother Babita, my brother Debabrata, my sister-in-law Annie and my niece Niyara

for their limitless love. I would also like to thank all my well-wishers who nurtured

me into the person I am today.

Finally, I would like to take this moment to thank all my predecessors, each

and every woman whose sacrifices and determination broke the glass ceiling. I owe

everything to those unnamed heroes who enabled me to dream. This thesis is a token

of my gratitude and appreciation to all of them.

Funding acknowledgements: I would like to acknowedge the funding supprt

from Center for Spintronic Materials, Interfaces, and Novel Architectures (C-SPIN),

a MARCO and DARPA sponsored StarNet center, the Semiconductor Research Cor-

poration, the National Science Foundation, Intel Corporation, the US DoD Vannevar

vii

Bush Faculty Fellowship, US-UK Distributed Analytics and Information Science In-

ternational Technology Alliance (DAIS-ITA) and the Center for Brain-inspired Com-

puting Enabling Autonomous Intelligence (C-BRIC) - a Joint University Microelec-

tronics Program (JUMP) center.

viii

TABLE OF CONTENTS

Page

LIST OF TABLES . xiii

LIST OF FIGURES . xv

ABSTRACT . xxiv

1 INTRODUCTION . 1

1.1 Contributions . 3

1.2 Thesis Outline . 4

2 CONDITIONAL DEEP LEARNING FOR ENERGY-EFFICIENT AND
IMPROVED IMAGE RECOGNITION . 9

2.1 Introduction . 9

2.2 Conditional Deep Learning Classification 13

2.2.1 Efficiency and Accuracy Optimization 16

2.3 Design Methodology . 19

2.3.1 Training CDLN . 19

2.3.2 Testing CDLN . 20

2.4 Experimental Methodology . 21

2.5 Benefits with CDL . 23

2.5.1 Energy Improvement . 24

2.5.2 Improvement in Accuracy . 26

2.5.3 Optimizing the Number of Stages in the CDLN 28

2.5.4 Efficiency-Accuracy Tradeoff using Confidence Level δ 29

2.6 Integrated CDL Training of DLN . 31

2.7 Benefits of Integrated CDL Training 34

2.7.1 Cost and Accuracy Analysis . 35

2.7.2 Improved Gradient Convergence with ICDL 36

ix

Page

2.8 Conclusion . 38

3 ENERGY-EFFICIENT OBJECT DETECTION USING SEMANTIC DE-
COMPOSITION . 40

3.1 Introduction . 40

3.2 Semantically Decomposed Object Detection 42

3.2.1 Semantic Decomposition of Input Data 42

3.2.2 Semantic based Elimination: Concept 43

3.3 Design Methodology . 47

3.3.1 Constructing the 2-stage Hierarchical Framework 47

3.3.2 Testing the 2-stage Hierarchical Framework 49

3.4 Experimental Methodology . 49

3.5 Results . 50

3.5.1 Energy Improvement . 50

3.5.2 Combining Color and Texture in the Initial Stage 52

3.5.3 Optimizing the complexity of the first stage 53

3.5.4 Efficiency-Accuracy Tradeoff using Confidence level (δ) 54

3.5.5 Impact of addition of first stage to the overall training time . . 55

3.6 Conclusion . 56

4 UNSUPERVISED REGENERATIVE LEARNING OF HIERARCHICAL
FEATURES IN SPIKING DEEP NETWORKS FOR OBJECT RECOG-
NITION . 58

4.1 Introduction . 58

4.2 Preliminaries . 60

4.2.1 Convolutional Neural Networks 60

4.2.2 Unsupervised learning with Auto-Encoders 60

4.3 Deep Spiking Convolutional Network: Learning and Implementation . . 62

4.3.1 Spiking neuron model . 62

4.3.2 Error Backpropagation in SNNs 63

4.4 Experimental Results . 71

x

Page

4.4.1 Network Architecture and Parameters 71

4.4.2 Reconstruction error across network layers 74

4.4.3 Classification Accuracy . 75

4.4.4 Sparsity with Regenerative Learning 76

4.5 Conclusion . 77

5 ASP: LEARNING TO FORGET WITH ADAPTIVE SYNAPTIC PLASTICITY
IN SPIKING NEURAL NETWORKS . 79

5.1 Introduction . 79

5.2 Spiking Neural Network: Fundamentals 82

5.2.1 Spiking neuron and synapse model 82

5.2.2 SNN topology for Pattern Recognition 84

5.3 Existing Learning Model for SNN . 86

5.3.1 Spike Timing dependent Plasticity (STDP) and its limitations . 86

5.3.2 Mitigating Catastrophic forgetting in STDP learnt models with
data reinforcement . 87

5.4 Adaptive Synaptic Plasticity for Learning to Forget 90

5.4.1 Adaptivity with Weight Decay in SNNs 90

5.4.2 Adaptive Synaptic Plasticity: Combining STDP with Weight
Decay . 92

5.4.3 ASP: Learning Rules . 95

5.5 Experiments . 101

5.5.1 Simulation Methodology . 101

5.5.2 Learning to forget with ASP in a dynamic digit recognition
environment . 102

5.5.3 Accuracy improvement with ASP over standard STDP 107

5.5.4 Denoising with ASP . 110

5.6 Conclusion . 112

6 LEARNING TO GENERATE SEQUENCES WITH COMBINATION OF
HEBBIAN AND NON-HEBBIAN PLASTICITY IN RECURRENT SPIK-
ING NEURAL NETWORKS . 114

xi

Page

6.1 Introduction . 114

6.2 Materials and Methods . 116

6.2.1 Reservoir Model: Framework and Implementation 116

6.2.2 Sequence Learning with the Proposed Reservoir Model 119

6.3 Results . 124

6.4 Discussion . 133

6.5 Appendix . 134

6.5.1 Neuron and Synapse Model 134

6.5.2 Input Encoding . 136

6.5.3 Training, Assignment and Inference 137

7 DISCRETIZATION BASED SOLUTIONS FOR SECURE MACHINE LEARN-
ING AGAINST ADVERSARIAL ATTACKS 138

7.1 Introduction . 138

7.2 Related Work . 142

7.3 Background on Adversarial Attacks 144

7.4 Experiments . 146

7.4.1 Discretization of Input Space 148

7.4.2 Discretization of Parameter Space 152

7.4.3 Discretization of Input and Parameter Space 156

7.4.4 Analysis on CIFAR100 and Imagenet 158

7.4.5 Other Attack Scenarios . 161

7.4.6 Comparison with Prior Works 163

7.5 Discussion . 166

8 IMPLICIT GENERATIVE MODELING OF RANDOM NOISE DURING
TRAINING FOR ADVERSARIAL ROBUSTNESS 168

8.1 Introduction . 168

8.2 Noise-based Prior Learning . 170

8.2.1 Approach . 170

8.2.2 Adversarial Robustness from Likelihood Perspective 173

xii

Page

8.2.3 PC Subspace Analysis for Variance & Visualization 176

8.3 Results . 179

8.3.1 Attack Methods . 179

8.3.2 Experiments . 180

8.4 Discussion . 189

8.5 Appendix . 191

8.5.1 Justification of X +N vs X ×N and use of ∇LN ≤ 0 for noise
modeling . 191

8.5.2 PC variance for SGD and NoL scenarios in response to adver-
sarial and clean inputs across different layers of ResNet18 . . . 193

8.5.3 Experimental Details and Model Description 195

9 SUMMARY & FUTURE WORK . 201

REFERENCES . 205

xiii

LIST OF TABLES

Table Page

2.1 Performance results for different CDLN structures 26

2.2 Accuracy of CDLN compared to baseline 27

2.3 Classification Error (%) for MNIST and CIFAR10 37

3.1 First Stage Configuration of Nhier for CALTECH101 49

3.2 First Stage Configuration of Nhier for CIFAR10 51

3.3 First Stage Configuration . 53

5.1 Parameter Table 101

7.1 CIFAR10 Accuracy 150

7.2 Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy. 152

7.3 Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy. 155

7.4 Adversarial accuracy with CIFAR10 for varying ε with different combina-
tions of input and parameter discretization. 157

7.5 Adversarial accuracy with MNIST for varying ε with different combina-
tions of input and parameter discretization. 157

7.6 Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy. 159

7.7 Gray-Box Adversarial accuracy with CIFAR100 for varying ε with different
combinations of input and parameter discretization. 162

7.8 Black-Box Adversarial accuracy with CIFAR10 for varying ε with different
combinations of input and parameter discretization. 163

7.9 WB adversarial accuracy subject to Carlini-Wagner L2 attacks of increas-
ing strength on MNIST dataset with different combinations of input and
parameter discretization. The adversarial accuracy shown is for different
iterations of CWL2 attacks: 10, 40, 100. 164

xiv

Table Page

7.10 WB adversarial accuracy subject to PGD attacks of ε = 0.3 over 100 steps
on MNIST dataset with different combinations of input and parameter
discretization. 164

7.11 WB adversarial accuracy subject to PGD attacks of ε = 8/255 over 40
steps on CIFAR10 dataset with different combinations of input and pa-
rameter discretization. 165

7.12 WB adversarial accuracy subject to PGD attacks of ε = 4/255 over 40
steps on Imagenet dataset with different combinations of input and pa-
rameter discretization. 165

8.1 MNIST Accuracy (in %) of ConvNet1 target model for different
scenarios. ε = 0.1/0.2/0.3 for SGD,NoL, SGDens, NoLens; ε = 0.3/0.4
for SGDPGD, NoLPGD. For PGD attack, we report accuracy for 40-/100-
step attacks. Accuracy < 5%, in most places, have been omitted and
marked as ‘-’. 183

8.2 CIFAR10/ CIFAR100 Accuracy (in %) of ResNet18/ ResNext-
29 target model for different scenarios. ε = 8

255
/ 16
255
/ 32
255

forNoL, SGD,
NoLens, SGDens, NoLPGD, SGDPGD. For PGD attack, we report accu-
racy for 7-/20-step attacks. Accuracy < 5%, in most places, have been
omitted and marked as ‘-’. 185

8.3 Hyperparameter Table for training ResNet18 models on CIFAR10 data . 196

8.4 Hyperparameter Table for training ResNext29 models on CIFAR100 data 197

8.5 Hyperparameter Table for training ConvNet1/ConvNet2 models on MNIST
data . 198

8.6 Hyperparameter Table for training ResNet18 models on CIFAR10 data for
different types of noise modeling (X +N,X ×N) with all/ only negative
gradient ∇LN . 199

xv

LIST OF FIGURES

Figure Page

1.1 Thesis Contributions addressing the three design challenges for neural net-
works: higher energy-efficiency, improved robustness and high accuracy for
a given task. Our proposals span across both SNNs and conventional DLNs
for various design aspects across different recognition or classification tasks. 5

2.1 (a) Traditional approach where both layers are activated and all inputs are
classified with a non-linear boundary (b) Proposed approach where easy
instances are classified at hidden layer 1 with linear boundary and hard
instances at 2nd layer with non-linear boundary [35]. 11

2.2 A standard architecture of a Deep Learning Convolutional Network. 13

2.3 (a) Baseline deep learning network (b) CDLN with linear classifiers added
at the convolutional layers whose output is monitored to decide if classifi-
cation can be terminated at current stage or not. 14

2.4 (a) Activation value set to 0.8 terminates the classification for easy in-
stances at stage 1 and enables stage 2 for hard instances (b) Activation
set to 0.3 terminates the classification for easy and hard instances at stage 1.18

2.5 Baseline and CDLN architecture of the networks for MNIST 22

2.6 (a) Normalized OPS for the CDLN (LeNet CDL) (b) Normalized OPS of
AlexNet CDL(CIFAR) (c) Normalized OPS of AlexNet CDL(Tiny Ima-
geNet) for top-20 easy classes with respect to baseline 23

2.7 Normalised energy benefits of CDLN with respect to baseline 25

2.8 Accuracy improvement in CDLN with the increase in no. of output layers . 27

2.9 Normalized #OPS as the no. of stages are increased in CDLN 29

2.10 Efficiency vs. accuracy tradeoff using confidence value δ 30

2.11 Error propagation with Integrated CDL training where the gradient of
cost/error function from each output layer is propagated back to calculate
the weigt! update. The learning rate denoted as α varies across layers
such that the gradient does not vanish as it is propagated deeper towards
the initial input layer. The notations here are similar to that of Fig. 8.7.
The weigt! update for a given layer is calculated by summing the gradients
calculated from all the outputs that follow that layer. 31

xvi

Figure Page

2.12 (a) Normalised #OPS and % error for a DLN trained with ICDL on
MNIST (b) CDL architecture for baseline DLN corresponding to [56] for
MNIST. The notations here are similar to Fig. 8.7. H1 and H2 denote the
additional fully-connected hidden layers prior to the final output layer in
the baseline DLN. 34

2.13 Comparison of % of inputs misclassified at each output layer for ICDL and
standard CDL training . 36

2.14 (a) Testing error of DLN vs. Integrated CDL with increasing epochs of
training (b) Averaged absolute value of gradient of weigt!s of the entire
CDL (Table) for MNIST learnt with integrated training and DLN with
standard training with respect to the number of training epochs 38

3.1 (a) Traditional approach: learn one complex classifier and apply to all
instances (b) Proposed approach: learn multiple simple classifiers on se-
mantically decomposed features and activate complex model conditionally
for instances that have common features with the object of interest. The
simple classifiers in the first stage perform semantic based elimination. . . 41

3.2 (a) Proposed hierarchical structure with semantic decomposition where
multiple classifiers in the first stage detect the appropriate semantic fol-
lowed by single complex classifier in the second stage enabled by the ac-
tivation threshold (b) 2-level OR-AND first stage configuration with 3
optimal semantic features . 44

3.3 (a) Two different semantic features not shared among all objects of Class 1
leading to OR operation for maximum accuracy (b) Two different semantic
features common across all objects of Class 1 leading to AND operation
for maximum accuracy as well as optimum efficiency 45

3.4 Normalized OPS for images with (a) color as semantic (shaded portion
shows the contribution of first stage to the total # OPS) (b) texture as
semantic . 51

3.5 (a) Average hardware energy for different fraction of clutter in the dataset
(b) Average normalized energy for both configurations: color only and
combined color/texture . 52

3.6 (a) Normalized reduction in energy by varying complexity of 1st stage in
Nhier for detecting lotus from Caltech101 dataset (b) Normalized energy
vs. accuracy tradeoff by modulating confidence level (δ) 55

3.7 Normalized training time for images with (a) color as semantic (b) texture
as semantic . 56

4.1 Auto-Encoder network with input and reconstructed pattern 61

xvii

Figure Page

4.2 The learning problem identifies the optimal weight vector so as to achieve
the desired spike train from the given input spike pattern [85] 63

4.3 Layer-wise training of a convolutional layer using Regenerative Learning.
If a neuron X in the input layer spikes at a given time instant, the regen-
erative learning model updates the weights in such a way that the neuron
X in the pseudo-visible layer also spikes. This is achieved by propagating
the error calculated at the pseudo-visible layer using gradient descent . . . 65

4.4 Reconstructed patterns observed after training the first convolutional layer
of MNIST 2C with regenerative learning for different vth and Irate values
Original pixel image (Column 1), Spike input image (Column 2), Recon-
structed image (Column 3) (a) MNIST 2C initialized with vth= 1.0, Irate
=100 Hz (b) MNIST 2C with parameters (P2) vth= 1.2, Irate =100 Hz (c)
MNIST 2C with parameters (P1) vth= 0.8, Irate =75 Hz 70

4.5 Reconstructed pattern observed after training the first layer of CIFAR 3C
initialized with P2. CIFAR 3C has 3 maps at the input layer correspond-
ing to the 3 color channels (Red, Green, Blue). The figures show the
reconstruction of the input pattern at the pseudo-visible layer correspond-
ing to the 3 separate channels. 72

4.6 Reconstruction errors at different layers of the SpikeCNN architecture . . . 74

4.7 Classification error as the size of the labelled dataset for the supervised
training of output layer is varied . 76

4.8 (a) MNIST training input to MNIST 2C initialized with P2: Original pixel
image (left), Spike input image (right) (b) The weight kernels learnt at the
input layer (c) 12 feature maps showing the sparse representations of max-
imally active spiking neurons in the first convolutional layer of MNIST 2C
(d) 20 of 64 feature maps in the second convolutional layer of MNIST 2C
with sparsely active neurons . 77

xviii

Figure Page

5.1 (a) A typical SNN architecture consisting of pre-neurons and post-neurons
interconnected by synapses. The pre-synaptic voltage spike Vpre is modu-
lated by the synaptic weight, w, to get the resultant post-synaptic current,
Ipost. The post-neuron integrates the current from each interconnected pre-
neuron that causes its membrane potential, Vmem, to increase and spikes
when the potential crosses a certain threshold, Vthresh. (b) The Leaky-
Integrate-and-Fire dynamics of the membrane potential of a post-neuron
that increases upon the arrival of pre-synaptic spike and decays subse-
quently. The post-neuron fires when the potential exceeds the threshold
Vthresh. the potential is then reset to Vrst and a refractory period ensues
during which the neuron is prohibited from firing. The relative timing of
the post-neuron and pre-neuron spikes (tpost−tpre) determines the synaptic
potentiation. 83

5.2 SNN topology for pattern recognition consisting of input , excitatory and
inhibitory layers arranged in a hierarchical fashion. The input layer is
fully connected to the excitatory neurons, that are connected to the cor-
responding inhibitory neurons in a one-to-one manner. Each of these neu-
rons inhibits the excitatory layer neurons except the one from which it
receives the one-to-one connection. 84

5.3 Spike timing dependent plasticity curve showing the original measurement
from biology in rat’s hippocampus [106] and the traditional model. The
relative change in synaptic weight is exponentially related to the difference
in spike times of a post-neuron (tpost) and pre-neuron (tpre). 86

5.4 Digit representations learnt with STDP in an SNN with 100 excitatory
neurons connected to input layer (28x28 pixels) when (a) the digits ’0’
through ’9’ are presented in an intermixed manner (i.e. data reinforce-
ment) (b) the digits ’0’ through ’9’ are presented sequentially without
re-presenting any previous category inputs (i.e. no data reinforcement
in dynamic environment). Catastrophic forgetting is observed in SNNs
learnt with STDP in a dynamic environment (b) due to significant overlap
of representations. 88

5.5 Digit representations learnt with isolated weight decay learning in an SNN
with 9 excitatory neurons connected to input layer (28x28 pixels). The
input digits are presented sequentially (i.e. dynamic environment with no
data-reinforcement). The network is overly plastic and adaptive to the
continually changing inputs. 91

xix

Figure Page

5.6 ASP model for weight modulation. During the recovery phase, i.e. when
a spiking event occurs at the post/pre-neuron, the weights are potentiated
(or depressed) based on the tpre and tpost realtive timing difference following
the STDP dynamics (Eqn. 5.7). The weights leak towards baseline value
(=0) during the decay phase and the leak time constant is varied based
on the post-synaptic neuron’s spiking activity (Eqn. 5.8). Two different
ASP models with exponential (black curve) and linear (dotted red curve)
decay are shown. 93

5.7 Weight response behavior of a particular synapse during intermediate re-
covery (potentiation or depression) and decay phases. 95

5.8 Significance driven weight update observed with ASP. More frequent input
spikes corresponding to the common features across old and new input
patterns will have a greater weight update than the less frequent ones
that correspond to specific features for a given input. 99

5.9 Digit representations learnt in a dynamic environment with digits ’2’
through ’0’ shown sequentially to an SNN (with 9 excitatory neurons)
(a) learnt with STDP (b) learnt with ASP with exponential decay (c)
learnt with ASP with linear decay. Prominent weights corresponding to
common features across different categories that are accentuated during
the learning process with ASP have been selectively marked. 103

5.10 (a) Digit representations (shown for a sample of 196 neurons) learnt in
a dynamic environment with digits ’0’ through ’9’ shown sequentially to
an SNN (with 6400 excitatory neurons) with ASP and traditional STDP
learning. (b) Classification accuracy obtained from the networks trained
on the different learning models in dynamic environment as the number
of test instances shown to the network are varied. 105

5.11 (a) Digit representations (shown for a sample of 196 neurons) learnt in
a data reinforced environment with digits ’0’ through ’9’ presented in an
intermixed manner to an SNN (with 6400 excitatory neurons) with ASP
and traditional STDP learning (b) Classification accuracy obtained from
the networks as the number of test instances are varied in data reinforced
environment. 106

5.12 (a) SNN after learning digits 0 through 8 with data reinforcement (b)
The same SNN from (a) after being presented with digit 9 learnt with
traditional STDP(c) The same SNN from (a) after being presented with
digit 9 learnt with ASP. 107

5.13 Noisy-MNIST images with (a) Additive White Gaussian Noise (AWGN)
(b) Reduced Contrast with AWGN. 109

xx

Figure Page

5.14 Digit representations learnt with digits ’0’ through ’2’ presented in an
intermixed manner to an SNN (with 49 excitatory neurons) with STDP
and ASP for Noisy-MNIST images with AWGN as Fig. 5.13 (a). 109

5.15 Digit representations learnt with digits ‘0’ through ‘2’ presented in an
intermixed manner to an SNN (with 49 excitatory neurons) with STDP
and ASP for Noisy-MNIST images with AWGN and reduced contrast as
Fig. 5.13 (b). 110

6.1 (a) General topology of Recurrent SNN used for sequence learning and
prediction (b) Sample image of dictionary of visual words (c) STDP Po-
tentiation window for Hebbian Phase learning of In→Exc & E→E reser-
voir connections over diverse time scales (d) Synaptic changes with the
combined Hebbian/non-Hebbian Plasticity as a function of rate of post-
synaptic neuron that prevents strong attractor dynamics by regulating the
over-potentiation of synapses. Note, (c) & (d) are cartoons (that do not
depict empirical data) to show the behavior of STDP based weight change
for slow/steep learning in (c) and effect of inclusion of non-hebbian decay
on the hyperactive neuronal weights in (d). 120

6.2 (a) Response pattern of reservoir neurons for Gaussian Input profile (av-
erage: 5 Hz) before and after learning (b) Visualization of the weight
matrices between Input→Exc and E→E reservoir connections learnt with
and without non-Hebbian decay . 124

6.3 (a) Sample training and testing images of visual words (b) Representa-
tions encoded by In→Exc connections of 100 excitatory neurons in a 200-
neuron reservoir. The color intensity of the patterns are representative of
the value of synaptic weights (after training) with lowest intensity (white)
corresponding to a weight value of ‘0’ and highest intensity (black) cor-
responding to ‘1’. (c) Percentage of correct predictions made by the 400-
neuron reservoir for different sequences during testing. The prediction
accuracy is averaged across 100 trials of different presentations of the test
input characters: ‘C’, ‘D’, ‘P’, ‘M’, ‘B’, ‘T’. 126

6.4 (a) Normalized average value of trained weights of E→E reservoir connec-
tions corresponding to different correct/incorrect sequences predicted by
the 400-neuron reservoir model. All weight values are normalized with re-
spect to the highest average value (0.42) recorded for the sequence ‘BIRD’
in this case. (b) Firing rates/Trajectories of 5 excitatory neurons in the
400-neuron reservoir encoding different characters. Different color coding
of trajectories specify different trials. 128

xxi

Figure Page

6.5 Robustness of the reservoir spiking model learnt with combined Hebbian/non-
Hebbian plasticity against noise. Trajectories shown for 5 different exci-
tatory neuron of the 400-neuron reservoir model for varying noise activity
across 10 different test trials. 130

6.6 (a) Variation of Prediction accuracy with noise amplitude (b) Evolution
of spectrum of eigen values of the reservoir synaptic connections (includes
E → E,E → I, I → E, I → I) in the complex plane before and after
learning . 131

6.7 A typical SNN architecture consisting of pre-neurons and post-neurons
interconnected by synapses. The pre-synaptic voltage spike Vpre is modu-
lated by the synaptic weight, w, to get the resultant post-synaptic current,
Ipost. The post-neuron integrates the current from each interconnected pre-
neuron that causes its membrane potential, Vmem, to increase and spikes
when the potential crosses a certain threshold, Vthresh. 135

6.8 The Leaky-Integrate-and-Fire dynamics of the membrane potential of a
post-neuron that increases upon the arrival of pre-synaptic spike and de-
cays subsequently. The post-neuron fires when the potential exceeds the
threshold Vthresh. The potential is then reset to Vrst and a refractory pe-
riod ensues during which the neuron is prohibited from firing. The relative
timing of the post-neuron and pre-neuron spikes (tpost − tpre) determines
the synaptic potentiation. 136

7.1 An image of a ship perturbed with adversarial noise yields an adversarial
image that fools the classifier. The classifier predicts the original image
correctly with a confidence of 92%, while gets fooled by the adversarial
image mispredicting it as plane with a high confidence of 91%. 139

xxii

Figure Page

7.2 Cartoon of the intuition behind adversary creation and discretization. (a)
The data points (shown as ’dots’) encompass the data manifold in the
high-dimensional subspace. The classifier is trained to separate the data
into different categories or hyper-volumes based on which the decision
boundary is formed. Note, the decision boundary is a characteristic of the
trained parameters (weights) of the model. The decision boundary is, how-
ever, extrapolated to vast regions of the high-dimensional subspace that
are unpopulated and untrained because of linear model behavior. Adver-
saries are created by perturbing the data points into these empty regions or
hyper-volumes and are thus misclassified (orange mispredicted as green
in this case). (b) Discretization quantizes the data manifold thereby intro-
ducing a minimum perturbation required to shift a data point. As quan-
tization will increase, so will the minimum allowed distortion. Further,
discretization constrains the creation of adversaries since not all transi-
tions can cause a data point to shift between hyper-volumes. 141

7.3 Sample images from CIFAR10 dataset for varying levels of input pixel
discretization: 2− bit, 3− bit, 4− bit, 8− bit 148

7.4 Adversarial accuracy on test data for varying perturbation values on (a)
CIFAR10 (b) MNIST for different input discretization 149

7.5 Adversarial accuracy on test data for varying perturbation values on (a)
CIFAR10 (b) MNIST for binarized and full-precision (32b weights) models 153

7.6 Normalized L1 norm of first hidden layer activations in response to clean
(ε = 0) and adversarial inputs (ε = 0.1, 0.3) for binarized and full-precision
MNIST model of different architecture: FCN1, FCN2 155

7.7 Adversarial accuracy on test data for increasing ε values on binarized and
full-precision (32b weights) models trained on CIFAR100 with different
input discretization:8b, 4b, 2b . 159

7.8 Top-5 Adversarial accuracy on test data for increasing ε values on binarized
and full-precision (32b weights) models trained on Imagenet with different
input discretization:8b, 2b . 161

8.1 (a) Noise learnt with NoL on MNIST data- (b) Noise learnt with NoL on
CIFAR10 data- with mini-batch size =64.The template shown is the mean
across all 64 noise templates. 169

xxiii

Figure Page

8.2 For multiplicative and additive noise training scenarios- (a) -accuracy com-
parison of NoL with SGD (b) -RGB noise template learnt with NoL on
CIFAR10 data. In (b), a sample training image of a ‘car’ before and after
training with noise is shown. Note, we used the same hyperparameters
(batch-size =64, η, ηnoise etc.) and same inital noise template across all
scenarios during training. Noise shown is the mean across 64 templates.2 174

8.3 Relationship between the model’s understanding of adversarial and clean
inputs in PC subspace when trained with (a) NoL (b) SGD. 178

8.4 (a) Cosine Distance between the model’s response to clean and adversarial
inputs in the PC subspace. (b) Variance of the Conv1 layer of ResNet18
model. (a), (b) compare the SGD/ NoL training scenarios. 179

8.5 [Left] Variance (in response to clean inputs) across different scenarios for
the first 700 PC dimensions. [Middle, Right] Cosine distance across 700
PCs between clean and adversarial representations for varying ε. SGDens, SGDPGD

exhibit improved variance (and lower distance) than SGD, sug-
gesting PC variance/ distance as a good indicator of adversarial
robustness. PCA was conducted with sample of 700 test images. 186

8.6 Adversarial subspace dimensionality for varying ε for- (a) -BB adversaries
crafted from a model trained with natural examples (b) -WB adversaries
crafted for models trained with PGDAdv training. 186

8.7 Loss surface of models corresponding to MNIST (Table8.1). 188

8.8 Noise learnt for multiplicative vs. additive noise inclusion during NoL
training with MNIST data . 191

8.9 Noise learnt for different training conditions with NoL on CIFAR10 dataset192

8.10 Variance captured in PC dimensions of intermediate layers’ activations (in
response to clean data) of a ResNet18 model trained with NoL and SGD
on CIFAR10 data . 193

8.11 Variance captured in the leading Principal Component (PC) dimensions
for the Conv1 and Block1 learnt activations in response to both clean and
adversarial inputs for ResNet-18 models corresponding to the scenarios
discussed in Fig. 8.10 . 194

8.12 Noise templates shown for different training scenarios with noise-enabled
prior learning . 195

xxiv

ABSTRACT

Panda, Priyadarshini Ph.D., Purdue University, August 2019. Learning and Design
Methodologies for Efficient, Robust Neural Networks. Major Professor: Kaushik
Roy.

“Can machines think?”, the question brought up by Alan Turing, has led to the

development of the field of brain-inspired computing, wherein researchers have put

substantial effort in building smarter devices and technology that have the potential

of human-like understanding. However, there still remains a large (several orders-

of-magnitude) power efficiency gap between the human brain and computers that

attempt to emulate some facets of its functionality. In this thesis, we present design

techniques that exploit the inherent variability in the difficulty of input data and

the correlation of characteristic semantic information among inputs to scale down the

computational requirements of a neural network with minimal impact on output qual-

ity. While large-scale artificial neural networks have achieved considerable success in

a range of applications, there is growing interest in more biologically realistic models,

such as, Spiking Neural Networks (SNNs), due to their energy-efficient spike based

processing capability. We investigate neuroscientific principles to develop novel learn-

ing algorithms that can enable SNNs to conduct on-line learning. We developed an

auto-encoder based unsupervised learning rule for training deep spiking convolutional

networks that yields state-of-the-art results with computationally efficient learning.

Further, we propose a novel “learning to forget” rule that addresses the catastrophic

forgetting issue predominant with traditional neural computing paradigm and offers

a promising solution for real-time lifelong learning without the expensive re-training

procedure. Finally, while artificial intelligence grows in this digital age bringing large-

scale social disruption, there is a growing security concern in the research community

xxv

about the vulnerabilities of neural networks towards adversarial attacks. To that end,

we describe discretization-based solutions, that are traditionally used for reducing the

resource utilization of deep neural networks, for adversarial robustness. We also pro-

pose a novel noise-learning training strategy as an adversarial defense method. We

show that implicit generative modeling of random noise with the same loss function

used during posterior maximization, improves a model’s understanding of the data

manifold, furthering adversarial robustness. We evaluated and analyzed the behav-

ior of the noise modeling technique using principal component analysis that yields

metrics which can be generalized to all adversarial defenses.

1

1. INTRODUCTION

The desire to build more intelligent computers is an enduring vision that has inspired

advances in the fields of neuroscience, artificial intelligence (AI) and nano-electronics,

and increasingly, drives their convergence. With the proliferation of intelligent de-

vices and the Internet of Things, and the resultant explosion of digital data that they

generate, computing platforms across the spectrum will increasingly need to extract

structure, patterns, and meaning from raw and unstructured datasets in real-time,

and in unsupervised environments. Advances in AI, notably deep learning networks

(DLNs), have led to computers matching or surpassing human performance in several

sensory tasks including vision, speech and natural language processing. However,

there still remains a large (several orders-of-magnitude) power efficiency gap between

the human brain and computers that attempt to emulate some facets of its func-

tionality. For instance, AlphaGo (a DLN-based system) defeated Go-Champion Lee

Sedol in 2016 in the complex game Go that requires intuitive and strategic think-

ing [1]. While this is a truly impressive feat on the part of AI, the computational

cost (energy or power) expended by the DLN to that of a human performing the

same task gives a conflicting viewpoint. Human brain operates on a power budget of

only ∼20Watts, whereas DLNs running on powerful servers can expend ∼KWatts of

power [2].

This massive power-gap has initiated research efforts to explore more biologically

realistic information-processing systems that are both competent as well as efficient

like the brain. Spiking neural networks (SNNs), a widely used model for compu-

tational neuroscience and neuromorphic computing, holds potential of bridging this

gap. Similar to biological neurons, neurons in SNN use discrete spikes to compute

and transmit information in a sparse event-driven manner. The binary all-or-nothing

spike-based communication combined with sparse temporal processing precisely make

2

SNNs a low-power alternative to conventional DLNs. In SNNs, information process-

ing occurs in the temporal domain. This is a significant variation from the real-valued

computations used in DLNs. From a signal theory perspective, this means that the

analog amplitude or voltage value of the signal carries information in DLNs. In

contrast, SNNs use timing of signals (or spikes) to encode information. The pres-

ence of the additional temporal dimension enables information to be encoded in a

sparse manner yielding efficient computations. In fact, SNNs gain efficiency when

integrated with event-based vision and audio sensors [3], which reduce redundant

information in real-time data processing. This further makes spiking systems an at-

tractive alternative for efficient hardware implementation of real-world applications

such as, IoT, intelligent robotics, autonomous driving among others. With all its

appeal for efficiency, training SNNs still remains a challenge. Practically, SNNs still

lag behind DLNs, in terms of performance, in traditional learning tasks. While DLNs

have found applicability across different domains from language processing to video

analysis, SNNs still struggle to achieve competitive accuracy on standard image classi-

fication tasks. Note, SNNs can also be implemented as a deep convolutional hierarchy

similar to that of DLNs. For notational convenience, we refer to spike-based tempo-

ral computing paradigm as SNNs and the real-valued analog computing paradigm as

DLNs.

While SNNs can potentially resolve the huge energy consumption expended by

DLNs, both DLNs and SNNs suffer from training or learning inefficiency. So far,

supervised learning mechanisms in both SNNs and DLNs have proven to be very

effective in providing competetive accuracy in several image classification tasks [4].

However, supervised learning is inherently static. That is, the learning methods use

data points from past or old experience to build a predictor (classifier, regression

model, recurrent time series models) for processing future behavior. Static learning

mechanisms suffer from catastrophic forgetting wherein the knowledge of previously

learnt tasks is abruptly lost as information relevant to a current task is incorporated.

Thus, continual learning requires retraining of the predictor with both previous and

3

current information, leading to large training overhead, that becomes a bottleneck

for efficiency.

So far, efficiency and accuracy remains a key focus for researchers in the hard-

ware/software community to deploy lower complexity, yet, accurate AI, either through

DLNs or SNNs. The innovations and proposals in this direction has been traditionally

developed with an assumption that the environment is benign during both training

and evaluation of the AI model. However, a crucial aspect that has been implicitly

ruled out is the robustness of such systems. Specifically, an attacker can alter the

statistical properties of the input data that can adversely affect the operation of the

AI model. DLNs have been shown to be vulnerable to adversarial examples : slightly

perturbed inputs that are specifically designed to fool a model during test time [5–8].

Recent works have demonstrated the security danger that adversarial attacks pose

across several platforms with DLN backend such as computer vision [6,7,9–11], mal-

ware detectors [12–15] and gaming environments [16, 17]. Our preliminary analy-

ses [18] have also shown SNN’s vulnerability to adversarial attacks. Thus, there is a

need to understand the vulnerabilities inherent in AI systems and explore techniques

to defend against them.

1.1 Contributions

In this thesis, we target three specific challenges: energy-efficiency, accuracy and

robustness of neural networks, and propose principled techniques to overcome the

challenges in spiking and deep learning domain. Our contributions are:

• Energy-efficient implementation of conventional deep learning frameworks (or

DLNs) that reduce the computational requirements for a given network without

compromising its accuracy : Our proposals are based on the observation that

current training processes often result in networks that are more complex than

necessary (e.g., they spend the same computational effort on each input regard-

4

less of the fact that in practice the inherent difficulty of classification varies

greatly across inputs).

• Learning algorithms for SNNs that enables deeper convolutional implementa-

tions with competitive accuracy and strategies that enable continual learning

without catastrophic forgetting : We explore both supervised and unsupervised

spike-based training to develop the SNN frameworks for image classification

tasks. Further, we design learning algorithms for a novel SNN computing model,

Liquid State Machines (LSMs), that offer an efficient, low complexity architec-

ture for sequential spatio-temporal data recognition.

• Adversarial robustness of DLNs based on discretization themes and prior learn-

ing : We explore the efficacy of discretization techniques like, input and weight

quantization (or binarization) that are primarily used to deploy energy-efficient

DLNs, for defending against adversarial attacks. We also introduce a novel

noise-based prior learning technique for training neural networks that are in-

trinsically robust to adversarial attacks.

1.2 Thesis Outline

Fig. 8.1 illustrates the overall outline of this thesis. Chapter 2, 3 deal with the

energy-efficiency aspect of DLNs, Chapter 4, 5, 6 investigate the new spike-based

learning rules for SNNs and Chapter 7, 8 investigate adversarial robustness of DLNs.

Chapter 2 discusses conditional deep learning [19, 20]. Although tradition-

ally the entire network is utilized for the recognition of all inputs, we observe that

the classification difficulty varies widely across inputs in real-world datasets; only a

small fraction of inputs require the full computational effort of a network, while a

large majority can be classified correctly with very low effort. In this chapter, we

describe Conditional Deep Learning (CDL) where the convolutional layer features

are used to identify the variability in the difficulty of input instances and condition-

ally activate the deeper layers of the network. We achieve this by cascading a linear

5

Energy-Efficiency (E)

Robustness
(R)

Accuracy
(A)

Chapter 2, 3

Conditional Deep
Learning

Semantic
Decomposition

Chapter 4, 5, 6
Regenerative

Learning Adaptive
Synaptic Plasticity

Chapter 7, 8

Discretization Noise-based prior
learning

DLN

SNN Chapter 2, 3

Chapter 4, 5, 6

Higher E, A

Higher E, A

Training
LSMs

Chapter 7
Higher E, A, R

Chapter 8
Higher A, R

Fig. 1.1. Thesis Contributions addressing the three design challenges for
neural networks: higher energy-efficiency, improved robustness and high
accuracy for a given task. Our proposals span across both SNNs and
conventional DLNs for various design aspects across different recognition
or classification tasks.

network of output neurons for each convolutional layer and monitoring the output of

the linear network to decide whether classification can be terminated at the current

stage or not. The proposed methodology thus enables the network to dynamically

adjust the computational effort depending upon the difficulty of the input data while

maintaining competitive classification accuracy. We further employ the conditional

approach to train deep learning networks from scratch with integrated supervision

from the additional output neurons appended at the intermediate convolutional lay-

ers. Our proposed integrated CDL training leads to an improvement in the gradient

convergence behavior giving substantial error rate reduction.

Chapter 3 discusses semantic decomposition for efficient classification [21].

In this chapter, we present a new approach to optimize energy efficiency of object

detection tasks using semantic decomposition to build a hierarchical classification

framework. We observe that certain semantic information like color/texture are com-

mon across various images in real-world datasets for object detection applications. We

6

exploit these common semantic features to distinguish the objects of interest from the

remaining inputs (non-objects of interest) in a dataset at a lower computational effort.

We propose a 2-stage hierarchical classification framework, with increasing levels of

complexity, wherein the first stage is trained to recognize the broad representative

semantic features relevant to the object of interest. The first stage rejects the input

instances that do not have the representative features and passes only the relevant

instances to the second stage. Our methodology thus allows us to reject certain in-

formation at lower complexity and utilize the full computational effort of a network

only on a smaller fraction of inputs resulting in energy-efficient detection.

Chapter 4 describes a spike-based unsupervised regenerative learning [22]

scheme to train Spiking Deep Networks for object recognition problems using biolog-

ically realistic leaky integrate-and-fire neurons. The training methodology is based

on the Auto-Encoder learning model wherein the hierarchical network is trained layer

wise using the encoder-decoder principle. Regenerative learning uses spike-timing in-

formation and inherent latency to update the weights and learn representative levels

for each convolutional layer in an unsupervised manner. The features learned from

the final layer in the hierarchy are then fed to an output layer. The output layer

is trained with supervision by showing a fraction of the labeled training dataset and

performs the overall classification of the input. The proposed methodology also intro-

duces sparsity in the hierarchical feature representations on account of event-based

coding resulting in computationally efficient learning.

Chapter 5 presents Adaptive Synaptic Plasticity (ASP) [23, 24] that en-

ables us to build a stable-plastic adaptive SNN with limited memory. A fundamental

feature of learning in animals is the “ability to forget” that allows an organism to

perceive, model and make decisions from disparate streams of information and adapt

to changing environments. Against this backdrop, we present a novel unsupervised

learning mechanism for improved recognition with SNNs for real time on-line learn-

ing in a dynamic environment. We incorporate an adaptive weight decay mechanism

with the traditional STDP learning to model adaptivity in SNNs. The leak rate of the

7

synaptic weights is modulated based on the temporal correlation between the spiking

patterns of the pre- and post-synaptic neurons. This mechanism helps in gradual

forgetting of insignificant data while retaining significant, yet old, information. ASP,

thus, maintains a balance between forgetting and immediate learning to construct a

stable-plastic self-adaptive SNN for continuously changing inputs. We demonstrate

that the proposed learning methodology addresses catastrophic forgetting while yield-

ing significantly improved accuracy over the conventional STDP learning method for

digit recognition applications. Additionally, we observe that the proposed learning

model automatically encodes selective attention towards relevant features in the in-

put data while eliminating the influence of background noise (or denoising) further

improving the robustness of the ASP learning.

Chapter 6 describes a combined Hebbian and non-Hebbian plasticity rule for

training LSMs or recurrent SNNs [25]. Synaptic Plasticity, the foundation for

learning and memory formation in the human brain, manifests in various forms. We

combine the standard spike timing correlation based Hebbian plasticity with a non-

Hebbian synaptic decay mechanism for training a recurrent spiking neural model to

generate sequences. We show that inclusion of the adaptive decay of synaptic weights

with standard STDP helps learn stable contextual dependencies between temporal

sequences, while reducing the strong attractor states that emerge in recurrent models

due to feedback loops. Furthermore, we show that the combined learning scheme

suppresses the chaotic activity in the recurrent model substantially, thereby enhancing

its ability to generate sequences consistently even in the presence of perturbations.

Chapter 7 investigates the effect of discretization techniques on adversarial

robustness of DLNs [26]. Adversarial examples are perturbed inputs that are de-

signed (from a DLN’s parameter gradients) to mislead the DLN during test time.

Intuitively, constraining the dimensionality of inputs or parameters of a network re-

duces the ‘space’ in which adversarial examples exist. Guided by this intuition, we

demonstrate that discretization greatly improves the robustness of DLNs against ad-

versarial attacks. Specifically, discretizing the input space (or allowed pixel levels

8

from 256 values or 8bit to 4 values or 2bit) extensively improves the adversarial ro-

bustness of DLNs for a substantial range of perturbations for minimal loss in test

accuracy. Furthermore, we find that Binary Neural Networks (BNNs) and related

variants are intrinsically more robust than their full precision counterparts in adver-

sarial scenarios. Combining input discretization with BNNs furthers the robustness,

even waiving the need for adversarial training for certain magnitude of perturbation

values. We also show standalone discretization remains vulnerable to stronger multi-

step attack scenarios necessitating the use of adversarial training with discretization

as an improved defense strategy.

Chapter 8 describes Noise-based prior Learning (NoL) [27]. We find that the

implicit generative modeling of random noise with the same loss function used dur-

ing posterior maximization, improves a model’s understanding of the data manifold

furthering adversarial robustness. We evaluate our approach’s efficacy and provide a

simplistic visualization tool for understanding adversarial data, using Principal Com-

ponent Analysis. Our analysis reveals that adversarial robustness, in general, man-

ifests in models with higher variance along the high-ranked principal components.

We show that models learnt with our approach perform remarkably well against a

wide-range of attacks. Furthermore, combining NoL with state-of-the-art adversar-

ial training extends the robustness of a model, even beyond what it is adversarially

trained for, in both white-box and black-box attack scenarios.

Finally, Chapter 9 summarizes the thesis and discusses future work.

9

2. CONDITIONAL DEEP LEARNING FOR

ENERGY-EFFICIENT AND IMPROVED IMAGE

RECOGNITION

2.1 Introduction

Deep Learning Networks (DLNs) have emerged as one of the most prominent

classification tools across the computing spectrum for search, recognition and other

cognitive applications [28, 29]. They have been successfully deployed in several real-

world products such as Google Image search [30], Google Now speech recognition

[31,32] among others. However, being large scale and densely connected makes them

highly computationally intensive. For instance, SuperVision [33], a DLN that won

the ImageNet visual recognition challenge, demands compute performance in the

order of 2-4 Giga-OPS (OPS: total number of Multiply and Accumulate or MAC

operations) per classification [34]. With compute efficiency becoming critical across

modern computing platforms, energy-efficient realization of DLNs is of great interest.

Conventional deep learning algorithms require an input instance to be processed

through every layer of the DLN to obtain the final classification result or output label.

However, we observe that real-world datasets exhibit an inherent variability in the

difficulty of inputs; consider the simple example of recognizing a person from two

images: one where the person is standing against a plain blue backdrop and other

where he is in the midst of a crowd. Clearly, the latter one takes more time and effort.

Ideally, to obtain both speed and energy efficiency, computational time and energy

used by algorithms should be proportionate to the difficulty of the input instances [35].

In this chapter,we propose Conditional Deep Learning (CDL) to construct a cascaded

architecture for conditional activation of the latter layers in a DLN depending upon

the difficulty of the input data, for faster and more energy-efficient implementations.

10

Interestingly, we note that the convolutional layers (CNN layers) of a DLN, in-

terpreted as visual layers, learn a hierarchy of features which transition from general

(similar to Gabor filters and color blobs [36]) to specific as we go deeper into the

network [37]. In fact, DLN models that are trained for classification have been used

as feature extractors by removal of the final output layer [38–40]. In particular, fea-

tures extracted from a pre-trained DLN, OverFeat [41], have been successfully used in

computer vision tasks such as scene recognition or object detection. Here, we utilize

the generic-to-specific transition in the learnt features of the CNN layers to identify

the inherent variability in the difficulty of the inputs in a dataset. The outputs of

the first layers of a DLN are used to classify the easy instances of a given dataset

without activating the latter layers of the network. Only for the hard instances that

in general, constitute a small fraction of the dataset, the deeper layers are enabled to

make more accurate classifications.

DLNs alike other supervised learning approaches have two modes of operation:

training and testing. In the training phase, decision boundaries are constructed with

training labels provided with the dataset. In the testing phase, the trained model is

used to classify new instances. The basic methodology of Conditional Deep Learning

(CDL) is as follows: During training, we construct a series of decision models (i.e.

cascade of linear networks at every convolutional layer). This is completely different

from the traditional approach where a single complex model (i.e. baseline DLN)

is only used. In the test phase, the difficulty of the input instance determines the

number of models or linear networks to be applied for accurate classification. Fig. 8.1

illustrates our methodology with a 2-hidden layer artificial neural network classifier.

Fig. 8.1(a) shows the traditional approach where input training instances are classified

into two categories by the complex model X. It is evident that non-linear boundaries

would require more number of hidden layers and would thus be more computationally

intensive than the linear boundary models. In the example of Fig. 8.1(a), the model

X requires activation of both the hidden layers to classify the instances with high

accuracy. However, this causes redundant activation of the second hidden layer for

11

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer 1

Output
Layer 2

Activate
Hidden

Layer 1&2

Model X

Model Y

Model X

Inputs

Activate
Hidden
Layer 1

Model Y

Inputs

Activate
Hidden
Layer 2

Model X

Class Label

Class Label
from Output
Layer 2

Class Label from
Output Layer 1

x +
+

+

+

+

+

+

++
++

+
x

x
x

x

x x
+

+

+
+

++

+
x

x

+
+

++ +

+

x
x

x

Easy inputs classified with
linear boundary

Hard inputs classified with
non-linear boundary

All inputs classified with
non-linear boundary

(a) Traditional approach (b) Proposed approach

Conditional
Activation

Fig. 2.1. (a) Traditional approach where both layers are activated and all
inputs are classified with a non-linear boundary (b) Proposed approach
where easy instances are classified at hidden layer 1 with linear boundary
and hard instances at 2nd layer with non-linear boundary [35].

the easy instances of the dataset which increases the computational effort. We address

this inadequacy with our proposed approach shown in Fig. 8.1(b). It consists of two

decision models (Y and X) created by adding an output layer 2 after the 1st hidden

layer. The simpler model Y (only 1st layer activated) selectively classifies only the

easy training inputs that lie further from the original non-linear boundary by creating

a hyperplane or region around it. If the confidence level of the output layer 2 for a

given instance is below a certain threshold δ, the complex model X is employed by

activating the 2nd hidden layer. Thus, the 2nd layer is only activated for the hard

instances in the dataset. This approach thus leads to substantial energy savings,

12

since the complex decision boundary (non-linear model X) need not process all data

instances. In addition to energy-efficiency, our experiments demonstrate that the

CDL methodology shows substantial accuracy improvements over the baseline DLN.

Please note that in CDL, we take a trained baseline model and append output layers

on top of the trained model in order to lower the compute effort while testing.

Inspired from the accuracy enhancement results, we explored a completely new

direction; Integrated training with CDL, where we investigated the use of the addi-

tional output layers to train a DLN from scratch. DLN’s have been known to face

training difficulty because of ‘vanishing’ gradients [42]. CDL exploits the usefulness

of the CNN features and the additional output layers to reduce the testing complexity

of a DLN. In contrast, in Integrated CDL (ICDL) training, we use the supervision

provided by the additional output layers to train DLN to get improved accuracy and

reduce the training difficulty. Recent works have proposed various training techniques

like data augmentation [43], dropout [44], maxout [45] and layer-wise pre-training [46]

to bring enhanced performance with DLNs on challenging problems. In [39], the au-

thors have used two additional output layers in a 22-layer DLN (GoogleLeNet) to

provide additional regularization and increase the gradient signal that gets propa-

gated back. We build upon this observation and introduce Integrated CDL training

to further optimize the learning of a DLN. Our experiments demonstrate that Inte-

grated CDL gives us substantial improvement in the gradient convergence behaviour

further minimizing the error. Please note that though our training method draws

inspiration from [39], the two methods have different focus, design and evaluation

strategies.

We studied the CDL architecture using well-known networks (LeNet, AlexNet,

ResNet) and datasets (MNIST, CIFAR10, Tiny ImageNet) on the widely-used Torch

platform [47]. We show that even for larger DLN models, our proposed scheme can

both improve accuracy and significantly reduce the runtime performance and com-

putational cost during testing. Also, we propose an improved training scheme based

on the accuracy improvements observed with CDL. The training scheme, Integrated

13

Convolution Pooling Convolution PoolingInput Output

Filter Fully
Connected

C1 P1 C2 P2

Fig. 2.2. A standard architecture of a Deep Learning Convolutional Net-
work.

CDL training, further improves the accuracy of a DLN using additional supervision

from intermediate output layers during training. We achieve this by backpropagating

the error gradients during training from the intermediate output layers in addition

to the final output layer of the DLN. This results in improved gradient convergence

behaviour.

2.2 Conditional Deep Learning Classification

In this section, we present our structured approach to design the proposed Condi-

tional Deep Learning Network (CDLN). As introduced earlier, CNNs form the basis

of a deep learning network. DLN consists of one or more pairs of convolution and

max pooling layers [48]. Fig. 8.2 shows a basic DLN structure with convolutional

layers (C1, C2) followed by pooling layers (P1, P2). A convolution layer convolves

a set of weigt! kernels with the previous layer to obtain an array of output maps.

These kernels are repeated across the entire input space. A max-pooling layer lowers

the dimensionality of the activations in the convolution layer by taking the maximum

activation in a portion of the previous layer map. This incorporates translational

invariance in the DLN to small variations in pixel positions of input images. Deeper

layers require larger number of kernels that work on lower dimensional inputs to

process complex components of the image. The final fully connected layers com-

14

Input
Layer

CNN
Layer

1
C1

CNN
Layer

2
C2

CNN
Layer

3
C3Test Instance Class

label

Input
Layer

CNN
Layer

1
C1

CNN
Layer

2
C2

CNN
Layer

3
C3Test Instance

Linear
Classifier

Activation

Linear
Classifier

Output
Layer

Output
Layer

Class
label

Input
(CNN

feature
vector)

Output
Layer

Linear Classifier

Stage 1 Stage 2

Easy Inputs classified
in early stages

.Hard Inputs classified
in later stages

(a) Baseline DLNN

(b) Conditional Deep Learning Network (CDLN)

Fig. 2.3. (a) Baseline deep learning network (b) CDLN with linear classi-
fiers added at the convolutional layers whose output is monitored to decide
if classification can be terminated at current stage or not.

bine inputs from all maps in the preceding layer and perform overall classification of

the input data. This hierarchical structure gives good results for image recognition

tasks [49]. As mentioned earlier, CNN layers of DLN models that are trained for

classification, have been used as feature extractors by removal of the output layer.

We exploit the efficacy of the convolutional layer features to develop an architecture

in which easy instances can be classified earlier without activating the latter layers of

the DLN network.

Fig. 6.2 shows the conceptual view of CDLN. Fig. 6.2(a) consists of the baseline

deep learning network with 3 convolutional layers (CNN layers: C1, C2, C3) which

are learnt using the standard backpropagation algorithm. We have not shown the

15

pooling layers or the filters for the sake of convenience in representation. Fig. 6.2(b)

illustrates our cascaded approach wherein the output features from each convolutional

layer are fed to a linear classifier. The linear classifiers consist of same number of

output neurons as that of the output layer of the baseline DLN (Fig. 6.2(a)). Thus,

our proposed methodology consists of several stages, equivalent to the number of CNN

layers, connected in a sequence. Each stage contains a linear classifier trained on the

convolutional layer features corresponding to that stage. Depending upon the output

of the linear classifiers in a given stage, the following stage of the CDLN is enabled.

As mentioned earlier, as we go deeper into the network, the decision boundary model

for each stage in the CDLN becomes progressively non-linear. Thus, class labels are

produced at stage 1 for easy inputs and latter stages for hard ones.

Besides the linear classifiers, the stage consists of an activation module (triangles

in Fig. 6.2(b)). During test time, input instance is passed through each stage to

produce a class label. The stage also generates a confidence value (probability value

at the output neuron) along with the class label. The activation module utilizes this

confidence to decide if the input instance should get classified in the current stage or

passed to the next stage. This decision is based on the following two criteria:

• If the linear classifiers do not produce sufficient confidence associated with any

of the class labels or produce a sufficient confidence for more than one label,

the input is deemed to be difficult to classify by the current stage and is passed

along to the next stage.

• If the linear classifiers produce sufficient confidence associated with only one

label, then the classification process is terminated at that stage and the corre-

sponding label is produced as output of the framework.

In addition to energy-efficiency, we also observe that the performance of the CDL

network is better than the baseline DLN in terms of classification accuracy. This can

be attributed to the fact that the linear networks being small scale with few neurons

and synapses can be trained rapidly and easily. Also, the linear networks are added

16

on top of a trained baseline DLN to construct the CDL. The linear networks are

trained on learnt features from the convolutional layers of the trained baseline DLN.

So, these additional networks achieve better least mean square error as compared to

the baseline DLN. Hence, a DLN, which is less than optimal, i.e. not fully trained

or over-fitting, can also extract features for the linear networks. The CDL with the

linear networks thus yields competitive classification accuracy.

2.2.1 Efficiency and Accuracy Optimization

As the CDLN is composed of many individual stages, comprising of a series of

linear classifiers, the following two factors determine their overall efficiency and ac-

curacy: (a) the number of linear classifiers added and (b) the fraction of inputs

processed at each stage. These factors present a fundamental tradeoff in the CDLN

design methodology. The tradeoffs are discussed in the following subsections.

Adding linear classifiers at the convolutional layers

First, we examine whether it is desirable to add a linear classifier for every convo-

lutional layer of the DLN. Please note that we need to take into account the additional

cost of adding an output layer of neurons for each convolutional layer while calculat-

ing energy costs [35]. Let the computational cost of the CDLN at a particular stage

(including the additional cost of linear network at that stage) i be γi per instance.

Let the fraction of instances that reach stage i be Ii. Similarly, the fraction of in-

stances that reach stage i+1 is Ii+1. Thus, the stage i classifies only a smaller subset

(Ii − Ii+1) of the inputs. Stage i should satisfy Eq.(2.1) shown below in order to

improve the overall efficiency of the framework.

(γi+1 − γi).(Ii − Ii+1) > γi.Ii+1 (2.1)

The left hand side of Eq.(2.1) signifies the efficiency improvement due to the

addition of the linear classifier at the convolutional layer i, which is the product

17

of the fraction of inputs classified at the stage(Ii − Ii+1) and the reduction in cost

compared with the activation of the convolutional layer in the next stage. The left

side product should be larger than the rigt! side of Eq.(2.1), which represents the

penalty that addition of the linear classifier inflicts on instances that are misclassified

i.e. if the linear classifier was not present then the instances (Ii+1) can be classified

directly by the linear classifier corresponding to the convolutional layer in the next

stage, i+1.

Modulating activation of layers using confidence value

The activation module described earlier uses the confidence value of the output

at each stage to selectively classify the input or pass it to the next stage. To better

understand how the confidence influences the CDLN, consider the example shown

in Fig. 6.3. Each stage in the Fig. 6.3 is defined as shown in Fig. 6.2(b) i.e. it

consists of a convolutional layer (from the baseline DLN) which is fed as input to a

linear classifier. The CDLN classifies a given input instance into one of the four class

labels. During test time, data is processed through each stage of the CDL network

to produce a class label. The linear classifiers in the CDLN, in addition to the class

label, provide a measure of confidence (e.g. class probabilities or distance from the

decision boundary).

Referring to Fig. 8.1 (b), the confidence value, thus, defines a region around

the initial or original non-linear decision boundary that separates the easy and hard

instances. Hence, a low confidence value output at any stage implies that the given

test instance is a hard input and needs to be processed by the latter layers of the

network for accurate classification. Fig. 6.3(a) shows that stage 1 gives a confidence

level of 0.9 and 0.8 associated with a fraction of easy instances while 0.3 and 0.4

for the hard instances. Choosing the activation value of 0.8 would terminate the

classification process at stage 1 for the easy instances and activate the latter stage

only for the hard inputs. If the value is chosen to be 0.9, then the second stage will be

18

Easy
Hard

0.
90.

8

0.3
0.4

Hard0.
3

Easy 0.9

0.8 0.
4

Easy
Hard

Stage 1 Stage 2

Easy
Hard

0.9

0.8
0.3

0.4

0.8

Class
Labels

Input

Easy
Hard

Stage 1 Stage 2

Easy
Hard0.9

0.3
0.4

0.3

Class
Labels

Misclassification errors on hard inputs
Easy

Hard0.9

0.8
0.3

0.4

No errors
(a) Activation value set to 0.8

(b) Activation value set to 0.3

Activated for
hard instances

Not Activated for
any instance

Input

0.8

Fig. 2.4. (a) Activation value set to 0.8 terminates the classification for
easy instances at stage 1 and enables stage 2 for hard instances (b) Acti-
vation set to 0.3 terminates the classification for easy and hard instances
at stage 1.

redundantly activated for a fraction of easy instances (those with confidence value of

0.8) resulting in a decline in efficiency. On the other hand, if the activation value is set

to 0.3 as in Fig 4(b), then, the second stage is not enabled at all. However, due to the

low confidence value, majority of the hard instances will be misclassified. This would

result in a significant decline in accuracy. Thus, modulating the activation value

allows us to control the efficiency and accuracy of the framework. For computational

efficiency, we choose higher confidence values (around 0.5 -0.7) during training to

avoid misclassification errors.

19

Algorithm 1 Methodology to train the CDLN
Input: Original DLN Norig, training dataset Dtr with the target labels

Output: CDLN Ncdl including the optimum number of stages

1: Train Norig using Dtr and obtain the classifier cost γorig

2: initialize count= # of Convolutional layers in Norig, Gi= +∞

3: while (Gi > ε)

4: for i=1:count do

5: Obtain the CNN features for the given Dtr corresponding to all maps for each convolutional

layer of the DLN.

6: Concatenate the CNN features into a 1-D vector and feed it as input to a linear classifier (LCi)

with the same number of output neurons as Norig.

7: Train LCi with the target labels from Dtr using the least mean square rule.

//decide if a linear classifier needs to be added from second CNN layer or stage onwards

8: initialize Ii= # of input instances that reach stage i, CLi= # of instances classified at stage

i, CDLN cost till stage i = γi

9: Gi=(γorig- γi). CLi- γi.(Ii − CLi)

10: if Gi > ε then admit LCi into Ncdl

11: end for

12: end while

2.3 Design Methodology

In this section, we describe the procedure for training and testing the CDLN.

2.3.1 Training CDLN

Algorithm 3.5.5 shows the pseudo code for training the CDLN. The process takes

the original DLN Norig, training data Dtr with the corresponding labels as input

and produces a conditional deep learning network Ncdl with the optimized number of

stages.

The baseline DLN (Norig) is first learnt for a given training set (step 1). The

learnt CNN features corresponding to the training data are concatenated into a 1-D

vector and given as input to the linear classifier at every stage. The linear classifiers

20

(LCi) are then trained on the same training data using the least mean square rule

(steps 4-7). For each layer/stage from the second layer onwards, we compute the gain

Gi which is the difference between the increase in computational efficiency for the

instances classified at stage i and the additional cost it inflicts on instances that are

passed to the next stage (step 9). We add the linear classifier LCi to the CDLN Ncdl

if Gi exceeds a certain user-defined threshold ε (step 10). The algorithm terminates

if addition of an output layer at a particular CNN layer (i.e. a linear classifier)

does not improve the overall gain Gi beyond ε (step 3). Please note that the linear

classifiers being small scale and also being trained on learnt convolutional features

from the trained DLN converge to the global minima (least error attainable by the

linear classifier) in short time as compared to the baseline DLN. Also, the linear

classifier at every stage is trained only on those instances passed from the previous

stage. Since the fraction of input instances passed to the next stage decreases as we

go deeper into the network, the training time for the linear classifiers progressively

decreases.

2.3.2 Testing CDLN

Algorithm 5 describes the overall testing methodology for the CDLN. Given a test

instance Itest, the methodology produces the class label Ltest for it using Ncdl. The

output from the linear classifier at every stage is monitored to decide if the input can

be classified at the current stage or not. For the worst case (very hard instance), all

the CNN layers and the corresponding linear classifiers at every stage will be activated

and Ltest will be the class label produced by the final output layer.

In summary, the design methodology implicitly modulates the number of stages

or layers used for classification based on the input and produces an optimal CDLN.

The user defined threshold, δ, for the confidence level can be adjusted during runtime

to achieve the best tradeoff between accuracy and efficiency improvements of the

21

Algorithm 2 Methodology to test the CDLN
Input: Test instance Itest, CDLN Ncdl with the no. of linear classifiers or stages in Ncdl

Output: Class label Ltest

1: Obtain the CNN layer feature vectors for Itest (CNNi) corresponding to a stage/layer i.

2: If a linear classifier (LCi) is present at stage i, obtain the output of LCi corresponding to CNNi.

3: If the confidence value of the output is beyond a certain threshold δ (user defined), then TER-

MINATE testing at stage i and Output Ltest = Class label given by LCi. The layers or stages

of Ncdl from i+ 1 onwards are not activated if testing is terminated at stage i

4: If the confidence value of the output is below the threshold δ or output has high confidence value

for more than one class label, activate the next stage i+ 1.

5: Goto step 1 and repeat this until you reach the final layer of the CDLN.

CDLN. Thus, the proposed approach is systematic and hence can be applied to all

image recognition applications.

2.4 Experimental Methodology

In this section, we describe the experimental setup used to evaluate the perfor-

mance of the Conditional Deep Learning Network against well-known benchmark

datasets: MNIST [48], CIFAR10 [50] and Tiny Imagenet [51]. The Tiny ImageNet

is derived from the standard ImageNet dataset with 200 categories (instead of 1000).

Each of the 200 categories consists of 500 training, 50 validation and 50 test images

down sampled to a resolution of 64x64 pixels.

We adapted three different widely-studied DLNs to our proposed CDL architec-

ture: LeNet-5 [48] for MNIST, AlexNet-8 [33] for both CIFAR10 and Tiny ImageNet

and ResNet-50 [52] for Tiny ImageNet. The baseline DLNs were trained using the

standard convolutional back-propagation algorithm [53]. We employed the training

methodology discussed in Section 3.3 to construct the CDLN with optimum number

of stages. For LeNet-5 that consists of 3 convolutional layers and 2 fully connected

layers, we observe that the CDL methodology, in addition to the final output layer

(FC), adds a linear layer of output neurons (O1, O2) after the first and second convo-

22

Fig. 2.5. Baseline and CDLN architecture of the networks for MNIST

lutional (or pooling) layers of the network as shown in Fig. 8.7 (LeNet CDL). Please

note that the learnt feature vectors from the pooling layers are used as training inputs

to the linear classifiers. Addition of linear classifiers enables conditional activation of

the layers: (C2, P2, C3, H1, FC) in LeNet CDL depending upon the difficulty of the

input instance. For AlexNet-8 that consists of 5 convolutional and 3 fully connected

layers, the CDLN has four/two additional output layers (or linear classifiers) added

after each pooling layer of the baseline AlexNet-8 DLN for Tiny ImageNet/CIFAR-10

respectively. With ResNet-50 that has 49 convolutional layers and 1 fully connected

layer, the CDLN constructed for the Tiny ImageNet dataset has 8 additional output

layers (in addition to the final output layer of the baseline ResNet-50 DLN) that

implement conditional activation. Please note that the CDLNs constructed in each

case uses a pre-trained baseline DLN model to append additional linear classifiers to

the learnt intermediate convolutional layers.

Here, we used software simulations to obtain classification accuracy and hardware

simulations to obtain energy values. We implemented each of the CDLNs for various

datasets in the widely used Torch platform [47]. For CIFAR-10 and Tiny ImageNet,

we use the standard AlexNet-8, ResNet-50 architectures available in Torch and cus-

tomize the input layer size of the network to fit the requirements of our downsampled

images. For hardware execution, we specified each classifier as an accelerator at the

23

Fig. 2.6. (a) Normalized OPS for the CDLN (LeNet CDL) (b) Normalized
OPS of AlexNet CDL(CIFAR) (c) Normalized OPS of AlexNet CDL(Tiny
ImageNet) for top-20 easy classes with respect to baseline

register transfer logic (RTL) level. Synopsys design compiler was used to synthesize

the integrated design to a 45nm SOI process from IBM. Finally, Synopsys Power

compiler was used to estimate energy consumption of the synthesized netlists.

2.5 Benefits with CDL

In this section, we present the experimental results that establish the potential of

CDL. We use MNIST (with LeNet as baseline DLN) as our primary benchmark to

evaluate the benefits with CDL with respect to energy and accuracy.

24

2.5.1 Energy Improvement

Fig. 6.5 shows the normalized improvement in efficiency with respect to the stan-

dard DLN models (which forms the baseline) for CDLN across all classes of different

datasets. In case of Tiny ImageNet implemented with AlexNet-8 (Fig. 6.5 (c)),

we only show the efficiency for 20 classes (out of the total 200) for convenience in

representation. We quantify efficiency as the average number of operations (or com-

putations) per input (OPS). From Fig. 6.5(a), we observe that LeNet CDL gives

1.50x-2.32x (average: 1.91x) improvement. Note that the benefits observed vary for

different digits. Fig. 6.5(a) clearly illustrates that maximum benefit in both the

frameworks is observed for digit 1 and minimum for digit 5. We can thus infer that

digit 5 has more hard instances in the testing set that are closer to the non-linear de-

cision boundary and hence need activation of deeper layers for accurate classification.

Digit 1, on the other hand, has easier instances away from the non-linear boundary

and thus can be classified by the early layers with an approximate linear boundary

decision model. Fig. 6.5(b) shows the normalized OPS for AlexNet CDL(CIFAR)

which provides an average of 2.85x improvement with respect to the corresponding

baseline (AlexNet-8). Similar to MNIST, we can infer that dog/truck are the most

difficult/easy inputs in the CIFAR10 dataset. Fig. 6.5(c) shows the OPS for Tiny

ImageNet CDL implementation (AlexNet-8) that yields an average of 4.4x improve-

ment with respect to the corresponding baseline. Of the 20 categories in the Tiny

ImageNet shown in Fig. 6.5(c), bird/flower pot are the most easy/difficult input in-

stances. The average OPS improvement (6̃.8x) in the ResNet-50 CDL implementation

is significantly higher than the AlexNet-8 CDL. The higher benefits observed can be

attributed to the fact that the DLN structure for ResNet-50 is more complex (higher

number of neurons and synapses) than AlexNet-8. Additionally, the former DLN has

more linear classifiers that gives the advantage of turning off more layers for a given

input instance.

25

0 0.25 0.5 0.75 1

LeNet_CDL

AlexNet_CDL
(CIFAR)

AlexNet_CDL
(Tiny ImageNet)

ResNet_CDL

Normalized Energy Baseline

1.84x reduction in
energy

2.83x reduction in
energy

4.02x reduction in
energy

4.96x reduction in
energy

Fig. 2.7. Normalised energy benefits of CDLN with respect to baseline

In case of hardware implementation, the reduction in OPS translates on an aver-

age to 1.84x/2.83x/4.02x/4.96x reduction in energy for LeNet CDL/ AlexNet CDL

(CIFAR)/ AlexNet CDL (Tiny ImageNet)/ ResNet CDL, respectively as shown in

Fig. 6.6. For runtime performance, we report the overall inference time averaged

across all test samples for each CDL implementation as shown in Table 3.4. It is

clearly seen that CDL outperforms the original baseline network for all datasets in

terms of runtime. LeNet CDL has the largest performance gain as the baseline. A

noteworthy observation here is that the fraction of instances classified at the ap-

pended output layers (4th column in Table 3.4) vary across datasets. For MNIST

(LeNet-5), we observe that the 9̃0% instances are classified at the early layers passing

only 4.8% of the entire testing dataset to the final output layer (FC from Fig. 8.7(a)).

Since CIFAR/Tiny ImageNet are more challenging datasets than MNIST, we observe

that the fraction of instances passed to the latter layers increases implying that the

images in such datasets are more difficult. However, even in both the challenging

cases, we observe that less than 20% of the entire testing set requires the full compu-

tational effort of the DLN. As majority of instances (8̃0%) are inferred at the early

output layers (or linear classifiers), we observe that conditional activation continues

26

Table 2.1.
Performance results for different CDLN structures

Network Time (ms) Gain

Fraction (%) of instances classified

at the additional layers (O1, O2 ...)

and final output layer (FC)

LeNet-5 (MNIST) 3.31 - -

LeNet CDL 0.78 4.24x 82%, 9.2%, 4.8%

AlexNet-8(CIFAR10) 9.42 - -

AlexNet CDL(CIFAR) 5.13 1.83x 69.6%, 18.8%, 11.6%

AlexNet-8(Tiny ImageNet) 23.87 - -

AlexNet CDL(Tiny ImageNet) 17.31 1.37x 48.4%, 14.4%, 8.3%, 6.1%, 12.8%

ResNet-50 (Tiny ImageNet) 285.20 - -

ResNet CDL 166.8 1.71x
31.4%, 10.1%, 9.2%, 7.1%, 6.5%,

5.9%, 5.2%, 6.3%, 18.3%

to yield performance benefits (in terms of runtime/energy/OPS) even with increasing

complexity of the original DLN (LeNet-5 →AlexNet-8→ResNet-50).

2.5.2 Improvement in Accuracy

Table 3.5.1 shows the overall accuracy for the baseline DLN architectures shown in

Fig. 8.7 and the corresponding CDLNs LeNet CDL, AlexNet CDL(CIFAR), AlexNet CDL

(Tiny ImageNet), ResNet CDL over the testing set. We observe that there is a consis-

tent enhancement in accuracy for all CDL structures compared to the baseline. The

accuracy shown for Tiny ImageNet is the top-1 accuracy. The difference in accuracy

improvement in the networks is due to the fact that the baseline DLN in each case

has a different training and test accuracy. In the beginning of the experiment, our

motivation behind adding linear classifiers was to get an improvement in efficiency.

However, the accuracy enhancement with the CDL methodology implies that the

linear classifiers trained by the convolutional layer features perform better than the

27

0

0.5

1

1.5

2

2.5

90

92

94

96

98

100

%
 I/

Ps
 m

is
cl

as
si

fie
d

at

fin
al

 la
ye

r (
FC

)

Ac
cu

ra
cy

Accuracy of CDL
Baseline accuracy
% I/Ps misclassified at FC

O1-FC O1-O2- O1-O2-
FC O3-FC

Fig. 2.8. Accuracy improvement in CDLN with the increase in no. of
output layers

Table 2.2.
Accuracy of CDLN compared to baseline

Network Baseline CDLN

LeNet (MNIST) 97.55% 98.92%

AlexNet-8 (CIFAR) 78.38% 79.19%

AlexNet-8 (Tiny ImageNet) 65.24% 66.14%

ResNet-50 (Tiny ImageNet) 55.4% 56.52%

baseline DLN. We note that the main difference between the baseline DLN and the

CDLN is that the baseline DLN uses the last convolutional or pooling layer features

as inputs to the fully connected output layer of neurons to predict the classifica-

tion result. As opposed to using the final fully connected layer for prediction, CDL

methodology uses the trained linear classifiers added at every stage or layer which

perform their own learning on the input CNN features.

As mentioned earlier, the linear classifiers being small can be trained to converge

to the global minima (least error attainable by the linear classifier) in a short time

28

as compared to the baseline DLN. It is known that CNN learnt features become

more specific and the feature vector also becomes smaller as we go deeper into the

network. Thus, it is intuitive that the linear classifiers trained on the latter layers will

reach smaller error minima in lesser time than the former ones. Adding more linear

classifiers at every layer of the network would progressively minimize the overall error

thereby improving the accuracy.

To quantify our theory, we designed an experiment where we added the linear

classifiers one at a time with the baseline DLN (LeNet-5 for MNIST) in Fig. 8.7(a).

During test time, we monitor the prediction results from the each of the added output

layers (O1, O2, O3) in addition to the final output layer (FC) to measure the overall

accuracy. Fig. 5.8 shows the normalized accuracy of the CDLN as we add the output

layers one by one at every convolutional layer. We can observe an improvement in

accuracy for each of the cases as compared to the baseline (97.55 %). While addition

of just one linear classifier (O1-FC) enhances the accuracy by 0.1% (97.65 %), the

benefits observed are higher up to 1.4% (98.92 %) with three linear classifiers for every

CNN layer of the network. We also observe that the fraction of inputs misclassified

by the final layer progressively decreases further corroborating our theory.

2.5.3 Optimizing the Number of Stages in the CDLN

Choosing the right number of stages or linear classifiers added at the CNN layers

is critical to the efficiency of the CDL methodology. In order to pass fewer instances

to FC, addition of linear classifiers at every CNN layer of the DLN is desirable. Fig.

5.10 shows the normalized OPS of the CDLN as the output layers are added one at

a time for every CNN layer of the DLN architecture from Fig. 8.7 (a). It is clearly

seen that fraction of inputs passed to FC decreases with the increasing number of

output stages. We observe a significant drop in the fraction from 42% to 5% with the

addition of two output stages (O1-O2-FC). Thus, initially we observe a decrease in

#OPS. However, increasing the number of output stages adds an additional overhead

29

0
10
20
30
40
50

0
0.2
0.4
0.6
0.8

1
1.2

%
 o

f i
np

ut
s

pa
ss

ed
 to

 F
C

N
or

m
al

is
ed

 #
O

PS

Normalised #OPS of CDL
Baseline OPS
%tage of i/ps passed to FC

O1-FC O1-O2- O1-O2-
FC O3-FC

Break-even
Point

Fig. 2.9. Normalized #OPS as the no. of stages are increased in CDLN

to the cost of computation. Note, addition of a third stage (O1-O2-O3-FC) results in a

marginal drop in the fraction of inputs passed from 5% to 3%, which is not significant

enough to overcome the cost penalty that the addition of the stage imposes. So,

we see an increase in #OPS from this point onwards. This break-even point (0.45

#OPS) corresponds to the maximum benefits or lowest #OPS that we can achieve

using the CDL methodology for a given baseline DLN. This behavior is taken into

account in our design methodology described in Section 3.3.

2.5.4 Efficiency-Accuracy Tradeoff using Confidence Level δ

The linear classifiers in the CDLN, in addition to the class label, provide a class

probability. The activation module discussed in Section 3.2 compares this probability

to the confidence level δ set by the user to selectively classify the input or pass

it to the next stage. Thus, we can regulate δ to modulate the number of inputs

being passed to the latter layers. Fig. 5.10 shows the variation in the normalized

OPS (with respect to baseline DLN which quantifies efficiency) and accuracy for the

CDLN (LeNet CDL) with different δ. Setting δ to a low value implies more input

30

93
94
95
96
97
98
99
100

0
0.2
0.4
0.6
0.8

1
1.2

0.3 0.4 0.5 0.6 0.7

Ac
cu

ra
cy

N
or

m
al

is
ed

 #
 O

PS

Confidence value δ
Normalized OPS of CDL
Baseline #OPS
Accuracy

Fig. 2.10. Efficiency vs. accuracy tradeoff using confidence value δ

instances will be qualified as hard inputs and passed to the final output layer (FC)

for classification. Then, FC will be redundantly activated for the easy inputs as well.

As explained earlier, the accuracy of the CDLN improves as we increase the number

of stages. In other words, more inputs should be classified by the linear classifiers at

the CNN layers, instead of being passed to FC, for an improvement in accuracy. So,

increasing δ would qualify more inputs as easy instances and result in more inputs

being classified at the linear classifiers leading to lesser activation of latter layers.

Thus, we see a decrease in #OPS and an increase in accuracy initially. However,

beyond a particular δ, a fraction of hard inputs that should be ideally passed to the

final layer for classification will now be misclassified at the early stages. This value of

δ (0.5 in Fig. 5.10) corresponds to the maximum overall accuracy that can be achieved

for the given CDLN. Beyond this point, the accuracy would decrease. The # OPS

would still continue to decrease with increasing δ. In Fig. 5.10, we observe that

the accuracy increases from 96.12% (δ=0.4) to 99.02% (δ=0.5) while the normalized

#OPS reduce from 1.1 to 0.51. Further increase in δ degrades the accuracy and does

not produce a significant reduction in #OPS. Thus, δ serves as a powerful knob to

31

Fig. 2.11. Error propagation with Integrated CDL training where the
gradient of cost/error function from each output layer is propagated back
to calculate the weigt! update. The learning rate denoted as α varies
across layers such that the gradient does not vanish as it is propagated
deeper towards the initial input layer. The notations here are similar to
that of Fig. 8.7. The weigt! update for a given layer is calculated by
summing the gradients calculated from all the outputs that follow that
layer.

trade accuracy for efficiency that can be easily adjusted during runtime to get the

most optimum results.

We conducted a similar tradeoff analysis for each of our experiments to attain

the most optimum δ that yields the highest accuracy. For our OPS evaluations

in Fig. 6.5, we use δ = 0.5, 0.45, 0.5, 0.6 for LeNet CDL, AlexNet CDL(CIFAR),

AlexNet CDL(Tiny ImageNet), ResNet CDL resepectively as obtained from the trade-

off analysis.

2.6 Integrated CDL Training of DLN

In the training methodology described in Section 3.3, a trained baseline DLN is

employed to construct a CDLN to get energy improvements. In addition to efficiency,

we observe significant performance (or accuracy) gains for the different experiments

conducted in Section 3.5. This indicates that the additional supervised learning for

32

each convolutional layer that the conditional approach imposes with the addition of

an output layer enables further network optimization. Inspired by this observation,

we utilize the conditional approach to train deep learning neural networks to get

enhanced performance or better classification accuracy. Integrated CDL training

enables the earlier layers to be learnt with additional direct supervised training with

the error propagated from output layers appended at each convolutional layer.

Integrated CDL backpropagates the error not only from the final fully connected

output layer but also from the intermediate linear classifiers. We build the DLN

from scratch in this case. We would like to note that the CDLN that emerges from

integrated training would not result in minimum #OPS. For instance, referring to Fig.

5.9, integrated CDL adds an output layer for every convolutional layer of the network.

Thus, the CDLN from integrated training comprises of four output stages (O1-O2-O3-

FC), which does not correspond to the break-even point that yields maximum energy

benefits. However, the accuracy with the given configuration considerably increases.

Our experiments on the MNIST and CIFAR10 dataset in the next section show

consistent improvement in classification accuracy with integrated CDL training with

respect to baseline DLN. We believe the performance boost associated with integrated

CDL training can be attributed to the following reasons: a) the linear classifiers

trained on the CNN features optimize the learning process preventing overfitting

[54], b) the addition of the linear networks results in improved convergence behavior

diminishing/reducing the vanishing gradient issue [42,55].

Integrated CDL training is straigt!forward and follows the standard convolutional

backpropagation algorithm discussed in [53] using stochastic gradient descent. How-

ever, we add the gradients from the linear classifiers associated with every convo-

lutional layer to the gradient of the error function from the final fully connected

layer (FC) to calculate the weigt! update across the entire CDLN for every epoch as

shown in Fig. 5.11. The weigt! update for each layer has additional gradient terms

depending upon the number of linear classifiers present in the subsequent layers.

33

Algorithm 3 Integrated CDL training (ICDL)
Input: Training dataset Dtr with the target labels

Output: Trained CDLN Ncdl

Require: L= # of layers of the DLN, K= # of linear classifiers or output layers added to the

DLN, DLN with parameters W and the additional weigt!s, w, of linear classifiers, Input data x and

corresponding label y, learning rates αk

1: procedure ICDL(DLN, x, y, αk)

Forward Propagation:

2: for i=1:L do

3: Compute activation ai according to previous layer output ai−1, Wi−1.

4: for j=1:K do

5: Compute activation of linear classifiers li as per the activation of corresponding convolutional

layer aj and wj .

6: end for

7: end for

Backward Propagation:

8: Calculate final fully connected output layers error signal ψ = ∂C
∂aL

9: for i=L:1 do //Error propagation from final output layer

10: Compute weigt! update ∆W i
1 = −αk.

∂C
∂ai

.ai−1

//C is the error/cost function

11: for j=K:1 do//Error propagation from additional linear classifiers

12: Compute weigt! update ∆W j
2 = −αk.

∂C
∂aj

.aj−1

13: W = W −∆W1 −∆W2 (in accordance with Fig. 5.11)

14: Continue to Step 1 with next input.

15: end for

16: end for

Algorithm 3 shows the pseudo-code for training the DLN with integrated CDL.

The methodology appends output layers for each convolutional layer in the DLN

without accouting for any optimization criteria for the number of stages (Eq.(??)).

It requires training data Dtr with the corresponding labels as input and produces a

trained conditional deep learning network, Ncdl.

34

Fig. 2.12. (a) Normalised #OPS and % error for a DLN trained with
ICDL on MNIST (b) CDL architecture for baseline DLN corresponding
to [56] for MNIST. The notations here are similar to Fig. 8.7. H1 and
H2 denote the additional fully-connected hidden layers prior to the final
output layer in the baseline DLN.

2.7 Benefits of Integrated CDL Training

We assess our training method with MNIST and CIFAR10 datasets. Algorithm

3 is used to train a deep model with Integrated CDL (ICDL). For fair comparison

of performance and to show the benefits with integrated training, the CDL network

for MNIST and CIFAR10 has the same complexity as that of the DLN in [45, 56].

Also, in this case we append softmax classifiers instead of linear classifiers at the

convolutional layers. For testing, the methodology described in Section 3.3 (Algorithm

5) is employed. Thus, the outputs from each additional output layer is monitored

to decide if the classification can be terminated at an earlier stage. Hence, easy vs.

hard input discrimination can be observed in this case as well. We set the confidence

value δ = 0.5 for all analysis in the following subsections.

35

2.7.1 Cost and Accuracy Analysis

Fig. 5.13 (a) shows the normalised #OPS and test classification error for a DLN

trained with ICDL for MNIST. The CDL architecture with extra output layers is

shown in Fig. 5.13 (b). During testing, each output layer is added one at a time for

every CNN/hidden layer of the baseline DLN architecture in [56]. The #OPS in Fig.

5.13(a) follow a similar trend as that of Fig. 5.9 with increasing number of stages.

Here, the break-even point corresponds to the stage with two additional output layers

(O1-O2-FC) that results in 3.14x reduction in #OPS. We observe that the #OPS

increases beyond the break-even point while the error decreases with the addition of

output stages that is coherent with our previous analysis in Section 3.5. A noteworthy

observation here is that when the output is monitored from O1-FC (adding a single

output stage while testing) the error observed is 0.49% implying a 7.5% reduction

in error rate with respect to baseline. There is a 2.57x reduction in resultant #OPS

with O1-FC. Since the additional output layers are now trained with backpropagated

gradients from latter layers, the features learnt at O1 are more discriminative. In

other words, the fraction of inputs misclassified at O1 decreases considerably with

ICDL improving the overall performance. The fact that we observe energy benefits

with substantial accuracy improvement from ICDL training followed by conditional

testing shows the efficacy of our proposed training methodology.

To quantify the improvement in the learnt features with our proposed training,

we compare the performance of the network in Fig. 5.13 (b) constructed from scratch

with ICDL training against a standard CDL constructed from a trained baseline DLN

(Algorithm 3.5.5). Fig. 5.14 illustrates the % of inputs misclassifed at each output

layer for the instances that are deemed to be suitable for classfication at that stage

as per Algorithm 5. It is clearly evident ICDL gives lower error than the standard

CDL at each output stage. Previously, in standard CDL, the hard instances for

which classification was terminated at earlier stages were misclassified resulting in

overall decline in accuracy. However, owing to the improved feature learning with

36

0

5

10

15

20

O1 O2 O3 O4

%
 o

f i
np

ut
s

m
is

cl
as

si
fie

d
at

 e
ac

h
ou

tp
ut

 s
ta

ge

ICDL
Standard CDL

Fig. 2.13. Comparison of % of inputs misclassified at each output layer
for ICDL and standard CDL training

ICDL, those hard inputs are now correctly classified by earlier layers. Thus, we infer

that ICDL further improves the hierarchical feature learning of a DLN making the

intermediate layers more robust and discriminative.

2.7.2 Improved Gradient Convergence with ICDL

The main motivation of the integrated training is improvement in classification

accuracy. So, in order to observe lowest error rate, we have to append output stages at

every layer of the DLN while testing. Thus, we use the configuration O1-O2-O3-O4-

FC (from Fig. 5.13 (b)) to measure the overall test classification error and evaluate

the performance of ICDL training. The results in Table are corresponding to the

configuration with output layers at all stages. From Fig. 5.13 (a), it is clearly seen

that this configuration lies beyond the break-even point where the overall gain fails

to compensate for the penalty of the additional output layer. Hence, we observe more

#OPS for CDL (with output stages at every convolutional layer) than the baseline

DLN. However, it is important to note that for all other configurations we obtain

computational savings as well as an improved error rate with respect to the baseline.

37

Table 2.3.
Classification Error (%) for MNIST and CIFAR10

Dataset DLN Integrated CDL (ICDL)

MNIST 0.53% [56] 0.44%

CIFAR10 11.68% [45] 10.76%

In order to find the maximum testing accuracy attainable with ICDL training

and to compare our results with other state-of-the art DLN methods, we evaluate the

configuration with output stages at every convolutional layer. Table compares the

overall classification test performance of the DLNs in [45,56] against the corresponding

models trained with integrated CDL for MNIST and CIFAR10. It is clearly seen that

the error rate decreases with our proposed training by 16.98% for MNIST and 7.87%

for CIFAR10 with respect to the standard DLN architectures.

With the training methodology in Section 3.3, we observed that the enhancement

in accuracy was 1.4-1.5% for both the datasets. The integrated training improves the

gradient convergence behavior of the DLN considerably in contrast to the approach

where a CDL is built on a trained DLN (Algorithm 3.5.5). Thus, we observe signifi-

cantly larger improvement with integrated CDL than that of the previous approach.

Please note that our goal here is not to get the best results in terms of classification

accuracy but rather show the benefits that our proposed training would provide over

standard convolutional training. Fig. 5.15 (a) shows a comparison of testing error

between integrated CDL and the standard DLN in [38] with increasing epochs of

training. We can clearly observe that integrated training gives better results over

standard DLN even at lower epochs. This establishes the usefulness of our training

methodology.

To observe the convergence behaviour with integrated training, we plotted the av-

erage gradient of the absolute value of all weigt!s (ψ in Algorithm 3) at every training

epoch for both the the MNIST architecture (DLN, ICDL) in Table 3.5.1 as shown in

38

Fig. 2.14. (a) Testing error of DLN vs. Integrated CDL with increasing
epochs of training (b) Averaged absolute value of gradient of weigt!s of the
entire CDL (Table) for MNIST learnt with integrated training and DLN
with standard training with respect to the number of training epochs

Fig. 5.15 (b). We observe that the gradient that is to be backpropagated converges to

a miniscule value of 5.2e-5 at 100 epochs for the DLN. In contrast, the gradient with

our proposed training is an order of magnitude greater (1.6e-4) at the same epoch.

This shows that integrated CDL results in better convergence reducing the vanishing

gradient issue. Finally, we note that this approach does not incorporate optimiza-

tion techniques like dropout [57] or averaging [43]. We believe that combining our

approach with these techniques would result in further enhancement in classification

accuracy.

2.8 Conclusion

Deep learning convolutional networks are vital for many computer vision applica-

tions and demand significant computational effort in modern computing platforms.

Here, we explore a novel approach to optimize conventional deep learning networks

by employing the convolutional layer features to discriminate between easy and hard

input data. We propose the concept of Conditional Deep Learning in which easy in-

stances can be classified earlier without activating the latter layers of the network. We

achieve this by cascading a linear network of output neurons for each convolutional

39

layer and monitoring the output of the linear network to decide if the classification

can be terminated at a current layer or not. The design methodology implicitly

varies the number of stages or layers used for classification based on the difficulty

of the input and produces a CDL with optimal efficiency. To quantify the potential

of CDL, we designed the CDLN with state-of-the-art deep learning architectures for

the MNIST/CIFAR10/Tiny ImageNet dataset. Our experiments show considerable

improvements in energy-efficiency. In addition to energy benefits, our results show

that the CDLN yields better classification accuracy as compared to the correspond-

ing baseline DLN. Inspired by this observation, we used the main idea of CDL (i.e.

to append output layers for each convolutional layer) to introduce Integrated CDL

training wherein the errors at the additional linear classifiers are used in the training

process to construct a CDLN from scratch. The classification performance results

on MNIST and CIFAR10 datasets with integrated training show significant accuracy

improvements.

40

3. ENERGY-EFFICIENT OBJECT DETECTION USING

SEMANTIC DECOMPOSITION

3.1 Introduction

Object detection is one of the core areas of research in computer vision [58]. A

detection task is basically a classification problem of distinguishing an object of inter-

est from a host of input data. Traditionally, a single complex classifier model (shown

in Fig. 8.1 (a)) is used to perform detection. Here, all the inputs are processed

through the single model to detect the object of interest. However, in order to scale

to more challenging object detection problems, the classifier models must become

larger, which implies an increase in computational resources. With computational ef-

ficiency becoming a primary concern across the computing spectrum, energy-efficient

object detection is of great importance.Interestingly, we note that in a real world

dataset, a major portion of input images have some characteristic broad semantic

features like color, texture etc. that are common to the object of interest. Consider

the simple example of detecting a red Ferrari from a sample set of vehicle images

consisting of motorbikes and cars. The first intuitive step is to recognize all red ve-

hicles in the sample and then look for a Ferrari-shaped object from the sub-sample

of red vehicles.Thus, we can reduce and simplify the original sample set by utilizing

the semantic information as we progress towards the primary object detection task.

Based on this idea, we introduce semantic decomposition of inputs into characteristic

broad features, like color (red) or shape (car) in the above example, and using the rep-

resentative semantics to build a hierarchical classification framework, with increasing

levels of complexity, for faster and more energy-efficient object detection.

Fig. 8.1 illustrates our methodology. In the traditional approach shown in Fig.

8.1(a), a single classifier (Classifier X) clearly needs to be highly complex (more hidden

41

Classifier X
(Complex)

Test
Instance

Class
Label

Classifier Y
(Simple)

Test
Instance

Common semantic
between class 1 & 2

(a) Traditional Approach

(b) Proposed Approach with Semantically Decomposed Framework

Apply classifier X on all instances

2 1

Class 2

Class 1

2 1 Conditional
Activation

Classifier X
(Complex)

Class
Label

Model Y identifies all
instances that have common
semantic information

Classifier Y performs
semantic based elimination

Activate X for fraction of input
instances passed from Y

Fig. 3.1. (a) Traditional approach: learn one complex classifier and apply
to all instances (b) Proposed approach: learn multiple simple classifiers on
semantically decomposed features and activate complex model condition-
ally for instances that have common features with the object of interest.
The simple classifiers in the first stage perform semantic based elimina-
tion.

neurons and hence, more synapses) in order to separate the classes with high accuracy.

However, this leads to high computational effort for not only the test instances that

have common semantic between the two classes but also the ones that do not share

common features across the class labels. In contrast, Fig. 8.1(b) shows our approach

where we create a semantically decomposed framework with multiple classifiers (Y

and X) with varying levels of complexity.

Classifier Y is trained to identify all those instances that share the particular

semantic with our object of interest (Class 2). It receives important yet simple se-

mantically decomposed characteristics like color, edges, etc. from the input sensor

data. The decomposed input features are simpler and easy to process than the origi-

nal input image. Thus, the classifier in the first stage (Y) of the proposed framework

is less complex with few neurons and synapses. The classifier X is then conditionally

activated only for those instances that have the semantic information that model Y

is trained to detect. Hence, a significant portion of clutter (Class 1) are filtered out

42

or eliminated at the first stage leading to energy savings. Please note that since the

proposed methodology adds an extra classifier (first stage) into the overall classifica-

tion framework, the additional cost overhead for the instances that are processed by

both stages has to be taken into account in the computational cost.

In order to observe maximum benefits and overcome the cost penalty (that the

addition of first stage imposes), it is evident that the input dataset should have sig-

nificantly larger clutter fraction than the objects of interest. Fortunately, in many

useful detection applications, only a small fraction of the input dataset has relevant

objects of interest. In [59], the authors have quantitatively established that in a wide

range of video-based object detection datasets, only 5% of the input data contains

the relevant objects of interest. Our approach exploits this disproportionate distri-

bution of input data to obtain compute-efficiency. It is worth mentioning that our

hierarchical classification methodology is complementary to the concept of cascad-

ing classifiers proposed in [35, 60]. However, the novelty of our work arises from the

fact that we leverage the semantic information to develop a systematic algorithm

that automatically detects the characteristic features underlying the input data to

perform semantic-based elimination in a multi-stage framework. On the algorithmic

front, using multiple classifiers has been an active area of research [61, 62], however,

with the primary aim of improvement in accuracy. The use of multiple classifiers in

our methodology is entirely driven by energy-efficiency and reduced computational

complexity.

3.2 Semantically Decomposed Object Detection

3.2.1 Semantic Decomposition of Input Data

Here, we use color and texture information individually in a set of experiments

described in Section 3.4 as the first step of eliminating objects that do not share

common semantic information. We use Hue-Saturation-Value (HSV) transformation

[63] and Gabor filtering [64] to extract color and texture components, respectively.

43

Note that, after applying an HSV/Gabor transformation, an image in the HSV/Gabor

space is much smaller as compared to the RGB space. The extracted feature vectors

are then used as training instances to train the simpler (or less complex) classifiers

in the first stage. It is worth mentioning that the additional cost of HSV or Gabor

processing also has to be taken into account for energy computations. While we use

color and texture as characteristic semantics, please note that other semantics like

edges (with cany or sobel detectors), corners and blobs (with Laplacian of Gaussian)

can also be used with the proposed methodology.

3.2.2 Semantic based Elimination: Concept

Fig. 8.2 (a) shows the conceptual view of the framework. In the 2-stage framework,

each of the ANNs in the first stage are computationally efficient as they are trained on

the optimal simple semantic feature vectors extracted from the original RGB image.

The ANN in the second stage has a higher complexity on account of being fed the

original RGB image for classification. Depending upon the output of the ANNs in

the first stage, the second stage is enabled. The final classifier, same as the NN in the

traditional structure, makes sure that any clutter that are passed onto the stage by the

former ANNs due to misclassification are properly discarded or, classified as clutter

in this stage, thereby maintaining the same classification accuracy as the traditional

single classifier.

Besides the ANNs in the hierarchy, the setup also contains an activation threshold

module (Fig. 8.2(a)). This module decides if the second stage should get enabled

or not to determine the final output of the hierarchy for a given input image. Note

that if the input is the desired object we are trying to detect, it will always be passed

to the second stage. Then, the output of the hierarchy is based on the classification

result of the second stage. Only when any clutter image is presented, the module

then decides based on the confidence level of the output produced in the first stage

whether to activate the second stage.

44

ANN 1
Semantic 1

ANN 2
Semantic 2

O
R ANN to

detect
object of
interest

Conditional
Activation

ANN 3
Semantic 3

AN
D

First Stage

Input
Image

Semantic
Decompo

sition

Semantic
Feature

Semantic
Feature

ANN to
detect 1st

Semantic

ANN to
detect 2nd

Semantic
Activation
Threshold

ANN to
detect

object of
interest

Conditional
Activation

First stage performing semantic based elimination

First Stage

(a)

(b)

Second Stage

Fig. 3.2. (a) Proposed hierarchical structure with semantic decomposition
where multiple classifiers in the first stage detect the appropriate semantic
followed by single complex classifier in the second stage enabled by the
activation threshold (b) 2-level OR-AND first stage configuration with 3
optimal semantic features

To make our proposed approach more systematic, we devise an algorithm that

recognizes the most optimum features and constructs a 2-level OR-AND configuration

of the first stage for the most favorable classification results. Fig. 8.2(b) shows an

example of the 2-level OR-AND first stage configuration for a given input dataset

with 3 optimal semantic features. The given configuration implies that the second

stage is only enabled when the first stage detects either Semantic 1 or 2 (OR) in

combination with Semantic 3 (AND). In other words, the final ANN is enabled if

ANN 3 and either of ANN 1 or 2 produce sufficient confidence level for a given input.

To better understand the need for 2-level OR-AND configuration, consider the

example shown in Fig. 6.2. Fig. 6.2(a) shows that certain instances in the objects of

interest have one semantic in common while the rest have the second semantic. So,

we can choose the OR operation where the second stage is enabled when we get a

45

Fig. 3.3. (a) Two different semantic features not shared among all objects
of Class 1 leading to OR operation for maximum accuracy (b) Two dif-
ferent semantic features common across all objects of Class 1 leading to
AND operation for maximum accuracy as well as optimum efficiency

desired output from any one of the NNs in the first stage. If the operation is set to

be AND here, certain objects of interest will be rejected or misclassified in the first

stage that will result in a significant decline in accuracy. On the other hand in Fig.

6.2(b), both semantics are present in all the instances of objects of interest. While

an OR would give a good result i.e. all objects of interest will be classified by the

first stage and passed to the final classifier, however, the first stage would also pass

a lot of unnecessary clutter resulting in a decline in efficiency. Thus, we need to set

the activation as an AND operation where the final NN is enabled for inputs having

both semantics i.e. we get a good confidence level for both the NNs in the initial

stage. Thus, it is evident that while AND improves the efficiency, OR increases the

accuracy of the semantically decomposed framework.

46

Algorithm 4 Pseudo code for 2-level OR-AND construction of first stage
Input: Baseline classifier Norig with accuracy Q, training dataset Dtr, # features in the search

space N

Output: First stage NN configuration: Ninitial

Gain calculation: G = Norig − [Ninitial + (1 − f).Norig], where f is the fraction of instances

correctly filtered in the first stage

1: initialize Ninitial = NULL, pairwise = FALSE, G0= ε1

2: for i = 1 : N // for each feature vector in the search space

3: Train a NN (Ni) on the feature vector i using Dtr and obtain accuracy, Q′ for the hierarchical

framework with Ni as first stage and Norig as second stage.

4: if (Q−Q′ < ε // if quality constraint is met

5: N ′initial = Ni AND Ninitial, Calculate gain Gi with N ′initial in the first stage and Norig as second

stage.

6: if Gi > Gi−1 then Ninitial = N ′initial // if gain improves then admit the new semantic Ni ANDed

with the existing first stage

7: elseif (Gi < Gi−1 && pairwise= TRUE) TERMINATE algorithm and return the existing

first stage configuration Ninitial as output. //

8: end if end if end for

9: remove the semantic vectors already admitted into first stage Ninitial from the search space.

features in the remaining search space= N ′ , pairwise = TRUE, Select the top k(k < N ′)

features quality-wise from the N ′ search space.

10: for i = 1 :
(
k
2

)
11: N ′initial = N1 OR N2 //where N1 and N2 are the two NNs corresponding to the semantic pair

for the ith combination

12: N temp
initial = Ninitial AND N ′initial

13: Obtain accuracy Q′ for the hierarchical framework

14: Repeat Steps 5-10 with Ni ≡ N temp
initial

if quality constraint is met and gain improves, then, Ninitial = N temp
initial

15: if Ninitial (current iteration) == Ninitial (previous iteration) then continue

16: else GOTO Step 12 and Repeat Steps 12-20

17: end for

47

3.3 Design Methodology

3.3.1 Constructing the 2-stage Hierarchical Framework

Algorithm 3.5.5 shows the pseudo code for selecting the optimal semantics and

constructing the 2-level OR-AND configuration for the first stage of the semantically

decomposed framework. The process takes the baseline/traditional single ANN Norig,

training dataset Dtr and the semantic feature search space as input and produces the

optimal first stage Ninitial with appropriate OR-AND configuration. First, we train

Norig on Dtr and obtain the accuracy Q. Next, we iteratively traverse through the

semantic feature space selecting the feature (or combination of features) that improves

the gain G while maintaining the quality constraint (lines 2-17). The procedure

terminates if adding a particular feature to the first stage doesn’t improve the gain

of the existing first stage configutation (line 7).

Algorithm 5 Methodology to test the hierarchical framework
Input: Test instance Itest, hierarchical framework Nhier with appropriate OR-AND configuration

for first stage

Output: Itest classified as clutter or object of interest

1: Obtain semantic feature vectors of Itest that are inputs to the NN(s) comprising the initial stage

in Nhier

2: If output of the NN(s) in the initial stage of Nhier is such that second stage is not enabled, then

TERMINATE testing and Output =Itest classified as clutter.

3: If the initial stage NN(s) produce a sufficient confidence level on the output meeting the OR-

AND conditions, then, second stage is activated and Output = Output of final classifier. Please

note that the input to the final classifier is the original test instance, Itest and not the semantic

feature vector.

Initially, we search through the vector space and check the quality and gain con-

straints for each semantic vector (lines 3-8). The semantics that improve the overall

gain are ANDed together and set as the initial stage (Ninitial) (line 6). Next, we elim-

inate the semantic vectors already admitted into the initial stage and search through

the remaining search space for pairwise ORed combinations of semantics from the

48

top k features that would improve the accuracy and the overall gain (lines 9-11). For

datasets where inputs can be characterized by two different semantic features not

shared among all the objects of interest (Fig. 6.2 (a)), OR combination is essential

for improving the accuracy of the hierarchical framework. It ensures that all objects

of interest are passed to the second stage without being eliminated by the first stage.

The pairwise OR combination of NNs are then ANDed with the existing first stage

(lines 12-14). If accuracy loss of the hierarchical framework with new first stage con-

figuration with respect to the baseline is lesser than certain threshold ε (line 4), we

check for the gain constraint. If the gain of the new configuration improves over the

previous one, we select the corresponding semantic vectors and set the new OR-AND

configuration as the first stage of the hierarchical framework (line 14). After updating

the first stage, Ninitial, with a pairwise combination (line 14-15), the search space is

pruned. We explore through the remaining space for the top k features and continue

looking for other combinations that will improve the overall gain of the framework

(line 16).

In the HSV space, we have 8 ranges of H that correspond to the 8 major colors [63].

So, we set N=8 and execute Algorithm to select the most optimal individual colors

as well as pairwise combinations (
(
k
2

)
) for the first stage. For texture, we use the

filter-bank approach as discussed in [65, 66]. The initial Gabor space consists of 20

filters [64, 67] corresponding to 5 scales/frequencies and 4 orientations. So, in case

of texture selection, we set N=20 and execute Algorithm exploring the individual as

well as pairwise combinations of textures to construct the first stage. We set k = 4 in

Algorithm during color selection from HSV space and k = 5 during texture selection

from Gabor space.

After obtaining the first stage of the framework, Ninitial, using Algorithm , the

baseline classifier Norig is appended to obtain the overall 2-stage hierarchical frame-

work Nhier.

49

Table 3.1.
First Stage Configuration of Nhier for CALTECH101

Image Configuration of Representations

first stage

Soccer Ball W.B R:Red;W:White

Bonsai (Y+R).G B:Black;Y:Yellow

Lotus R+Y G:Green

Sunflower Y

Stop sign R COLOR

Brain (G1+G2).G3 G1: (32
√

2),0◦); G2: (64
√

2,0◦)

Menorah G4+G5 G3: (32
√

2,90◦); G4: (32
√

2,90◦)

Revolver G6.G7 G5: (64
√

2,45◦); G6: (32
√

2,0◦)

Guitar G8+G9 G7: (64
√

2,45◦); G8: (16
√

2,0◦)

Starfish G10+G11 G9: (64
√

2,90◦); G10: (16
√

2,0◦)

G11:(64
√

2,90◦) TEXTURE

3.3.2 Testing the 2-stage Hierarchical Framework

Algorithm 5 describes the overall testing methodology for the hierarchical frame-

work. Given a test instance, Itest, the process classifies it as clutter or the object of

interest.

3.4 Experimental Methodology

We have implemented an ANN based image recognition platform for the Cal-

tech101 dataset [56] which is a large colored image dataset containing over 30,000

labeled examples of 101 different natural images. Each classifier used is a feedforward

ANN with 3 layers (Input, Hidden and Output). Each of the ANNs are trained using

the standard backpropagation algorithm. For up to 50 different images of the dataset,

we implemented the hierarchical framework (Nhier) trained to recognize the particu-

lar object of interest from a host of other images (clutter) exploiting both color and

texture based semantic information.

50

Of the 50 images, the initial stage configurations for 10 different images are shown

in Table 3.4. We can see that the first stage is set to different configurations of OR-

AND (OR denoted as +, AND denoted as .) by the training methodology described in

the previous section for both color and texture. Each of the Gabor filters selected are

represented in the table by their corresponding (scale, orientation). The methodology

for constructing the hierarchical framework confirms accuracy or quality check with

that of the traditional classifier using OR operation and then it optimizes the efficiency

using AND. The Gabor filters/colors selected in the process are also the most optimum

semantics for the given set of images. In addition to Caltech101, we evaluated our

approach on another dataset CIFAR10 [68] which consists of 60,000 colored images

belonging to 10 classes. The initial stage configuration for 4 images are shown in

Table 3.4.

Here, we used software simulations to obtain classification accuracy and hardware

simulations to obtain energy values. For energy evaluation, we specified each classifier

on a standard Neuromorphic Engine that serves as an optimised hardware framework

for ANNs [69]. The hardware framework was implemented at the register-transfer

logic (RTL) level and mapped to 45 nm technology using Synopsys Design compiler.

Finally, we used Synopsys Power compiler to estimate energy consumption of the

synthesized netlists. For software simulations, we implemented the 2-stage seman-

tically decomposed classification framework for each object detection application in

Matlab. We measured runtime for the applications using performance counters on

Intel Core i7 3.60 GHz processor with 16 GB RAM. Please note that the software

baseline classifier was aggressively optimized for performance.

3.5 Results

3.5.1 Energy Improvement

Fig. 6.3 (a, b) shows the normalized improvement in efficiency with respect to the

traditional single ANN classifier (which forms the baseline) for the images of Table

51

Fig. 3.4. Normalized OPS for images with (a) color as semantic (shaded
portion shows the contribution of first stage to the total # OPS) (b)
texture as semantic

Table 3.2.
First Stage Configuration of Nhier for CIFAR10

Image Configuration of Representations

first stage

Ship W+B R:Red;W:White

Truck (W+R).B B:Black COLOR

Airplane (G12+G13) G12: (42
√

2,22.5◦); G13: (36
√

2,67.5◦)

Toad G14.G15 G14: (10
√

2,90◦); G15: (28
√

2,45◦)

TEXTURE

3.4 and 3.5.1. We quantify efficiency as the average number of operations (or total

number of MAC/ Multiply and Accumulate computations) per input (OPS). As men-

tioned earlier, there is a significant disproportion in the distribution of input data [9].

Thus, in our experiments we evaluated our approach by varying the fraction of clutter

(60%, 75% and 90% non-objects of interest) in the input data for an object detection

task. We observe that the hierarchical framework provides between 1.97x-2.64x (av-

erage: 2.31x) improvement in average OPS/input compared to baseline across the 10

different images for Caltech. For CIFAR, the average reduction in OPS corresponds

to 1.88x across the 4 different images. Note that the benefits vary depending on the

fraction of clutter in the dataset.

52

Fig. 3.5. (a) Average hardware energy for different fraction of clutter in
the dataset (b) Average normalized energy for both configurations: color
only and combined color/texture

Fig. 6.3 clearly illustrates that maximum benefit for each image is observed when

the fraction of clutter is 90%. This can be corroborated to the fact that the initial

stage filters out a lot of the object of interest. In case of hardware implementation,

the reduction in OPS for Caltech translates on an average to 1.64x-2.05x (average:

1.93x) improvement in energy with variation of clutter as illustrated in Fig. 8.7 (a).

For CIFAR10, the average improvement in energy with variation of clutter is 1.46x.

For software implementation, we observed that the reduction in OPS converts to an

average of 2.23x/1.95x improvement in runtime for Caltech/CIFAR10 respectively.

Note, the hierarchical framework across all experiments for both datasets maintains

an iso-accuracy with that of the baseline classifier (i.e. 97.8% for Caltech101, 78.2%

for CIFAR10).

3.5.2 Combining Color and Texture in the Initial Stage

For a given dataset, Algorithm first constructs the individual color/texture config-

urations. Then, the individual color/texture stages are ANDed together. In case, the

overall gain of the hierarchical framework improves with the ANDed configuration,

the color(AND)texture combination is selected as the first stage of the hierarchy. For

53

Table 3.3.
First Stage Configuration

Image Configuration with Configuration with

color & texture color only

Motor bike (G1+G2).B B

Buddha (G3+G4).Y Y

Flamingo (G5+G6).R R

certain images in the Caltech101 dataset shown in Table 3.5.2, such configuration was

chosen.

In order to observe the additional benefits with the color/texture ANDed config-

uration and for comparison purpose, we implemented a separate semantically decom-

posed framework using only color configuration obtained from Algorithm . Fig. 8.7

(b) shows the average energy in both cases (color, color AND texture) as the clutter

fraction is varied. It is clearly seen that color AND texture configuration gives more

savings than the latter. This is due to the fact that the benefits of reduced final stage

activation in the combined case overcomes the penalty due to the addition of tex-

ture configuration in the first stage. Thus, our proposed design methodology ensures

maximum cost savings by selecting the most optimum semantic configuration.

3.5.3 Optimizing the complexity of the first stage

The hierarchical design methodology first meets the output quality or accuracy

constraint and then optimizes the framework to get maximum efficiency. In order to

get the most benefits, we need to filter out more clutter in the initial stage. We can

achieve this by increasing the complexity of the first stage by adding more neurons to

the hidden layer. Fig. 6.5 (a) shows the normalized energy of the entire hierarchical

framework as the complexity of the first stage (R+Y configuration from Table 3.4)

is varied for detecting lotus from the Caltech101 dataset. It can be clearly seen that

the amount of clutter filtered increases with the increasing complexity of the first

54

stage. So, as the initial stage becomes more complex, the final stage is enabled for

fewer clutter data from the total fraction of clutter. Thus, in the beginning, we

observe a decreasing trend in energy. However, the increasing complexity of the first

stage would also add an additional overhead to the cost computation that would at

some point overcome the total cost savings. This break-even point corresponds to

the maximum benefits or the lowest energy that we can achieve using the hierarchical

framework for this particular example. Beyond this point, the cost increases. In Fig.

6.5 (a), we see that the break-even point corresponds to 0.508 (Normalized energy)

which translates to 1.97x improvement in computational cost. This behavior is taken

into account in our design methodology described in the previous section.

3.5.4 Efficiency-Accuracy Tradeoff using Confidence level (δ)

In Section 3.2, we discussed that the confidence level or activation threshold (δ)

can be regulated to modulate the amount of clutter being passed to the final classifier

and further optimize the efficiency while maintaining comparable accuracy with that

of the baseline. Fig. 6.5 (b) shows the normalized energy of the hierarchical framework

as the accuracy of the first stage is varied by changing the δ value for the Caltech 101

dataset. The tradeoff analysis helps us attain the most optimum δ of a semantically

decomposed framework for an object detection task. Setting δ to a low value implies

that more clutter will now be misclassified by the first stage, and forwarded to the

final classifier. Increasing δ would result in lesser clutter being misclassified thus

improving the overall accuracy of the first stage as can be seen from Fig. 6.5 (b).

Beyond a particular δ, the objects of interest will be misclassified and filtered out.

This δ value corresponds to the maximum overall accuracy of the first stage in the

hierarchy. In Fig. 6.5 (b), we observe that as the normalized accuracy value increases

from 0.86 (δ=0.1) to 0.95 (δ=0.4), there is a 2.25x improvement in energy-efficiency.

In this case, beyond δ=0.4 the accuracy declines and hence those δ values are not

considered. Please note that, the energy benefits will continue to increase beyond δ =

55

Fig. 3.6. (a) Normalized reduction in energy by varying complexity of 1st
stage in Nhier for detecting lotus from Caltech101 dataset (b) Normalized
energy vs. accuracy tradeoff by modulating confidence level (δ)

0.4 as the second stage of the hierarchy is enabled for less instances with increasing δ.

Thus, for applications that permit tolerable accuracy loss, we can use higher values

of δ to get higher energy benefits. Please note that the accuracies shown in Fig. 6.5

(b) are normalized with respect to the baseline accuracy (∼97.8% in this case). For

our OPS evaluations with Caltech 101 and CIFAR10 (Fig. 4), we use δ =0.4 and

0.55 respectively as obtained from the tradeoff analysis. Thus, the δ value serves

as a powerful knob to modulate the efficiency-accuracy tradeoff which can be easily

adjusted during runtime to get the most optimum results.

3.5.5 Impact of addition of first stage to the overall training time

Until now, the energy benefits observed correspond to the reduction in testing

complexity for a given task using our proposed hierarchical framework. However, the

first stage also adds an additional overhead on the total training time to construct

the 2-stage framework. Fig. 6.6 shows the overall normalized training time of the hi-

erarchical framework for detecting the 10 images of Table 3.4 (Caltech 101). The first

stage training time shown includes the additional time expended during the iterative

optimal semantic selection process (Algorithm in Section 3.3). It is clearly seen that

56

Fig. 3.7. Normalized training time for images with (a) color as semantic
(b) texture as semantic

the overall training time of the hierarchical framework is greater than the baseline

single stage classifier for each image. We also observe that the first stage construction

with color features (Fig. 6.6 (a)) takes lesser time than that of texture (Fig. 6.6 (b)).

This can be attributed to two factors: a) Gabor filtering is computationally more ex-

pensive involving complex operations than HSV. b) In Algorithm , for color features,

we only explore the 8 feature search space to select the optimal color in comparison

to 20 features for texture. The increased search space further adds to the training

time. On an average, we observe that the training time increases by 18.4% in Fig. 6.6

(a) and 31.4% in Fig. 6.6 (b) compared to the baseline traditional classifier. While

there is a training overhead with our proposed framework, in typical object detection

applications, training is performed only once or very infrequently. Testing, on the

other hand, is done more frequently over longer periods of time. Since our proposed

framework yields significant reduction in testing energy, a small increase in training

cost is a favorable tradeoff.

3.6 Conclusion

In this chapter, we presented a systematic approach to optimize energy-efficiency

of machine learning classifiers in object detection applications.We use the common

semantic features observed across images in real-world datasets to distinguish the ob-

jects of interest from the remaining inputs at lower complexity with 2-stage classifica-

57

tion. Based on the above insight, we proposed the concept of hiererchical classification

based on semantic decomposition. We developed a systematic methodology to imple-

ment a 2-stage semantically decomposed classification framework using color/texture

as semantic information. We achieve this by arranging the classifiers (ANNs) in

increasing order of complexity as per the characteristic semantic features they are

trained to recognise. The design methodology is equipped to implicitly gather the

most appropriate semantic information for optimum efficiency. To quantify the poten-

tial of semantic decomposition, we used color and texture as a basis for segmentation

and designed the hierarchical framework for object detection for various images of the

Caltech101/CIFAR10 dataset. Our experiments demonstrate significant improvement

in energy over hardware implementation with respect to traditional approach. We

use color and texture as distinctive traits to carry out several experiments for object

detection. Our experiments on the Caltech101/CIFAR10 dataset show that the pro-

posed method yields 1.93x/1.46x improvement in average energy over the traditional

single classifier model for a minimal increase in training time. Finally, we would like

to note that while our 2-stage framework is composed of simple ANNs, the method-

ology and the underlying feature-based elimination strategy can be extended to deep

learning models for more complex recognition/detection tasks.

58

4. UNSUPERVISED REGENERATIVE LEARNING OF

HIERARCHICAL FEATURES IN SPIKING DEEP

NETWORKS FOR OBJECT RECOGNITION

4.1 Introduction

Deep Learning Networks, inspired by the cortical visual processing systems, have

seen increasing success in recent years due to the availability of more powerful com-

puting hardware (GPU accelerators) and massive datasets for training. Regardless of

their success, the substantial computational cost of training and testing such large-

scale networks has limited their implementation to clouds and servers. In order to

build devices with cognitive abilities, there is a need for specialized hardware with

new computational theories. Spiking Neural Networks (SNNs) are a prime candidate

for enabling such on-chip intelligence.

Driven by brain-like asynchronous event based computations, SNNs focus their

computational effort on currently active parts of the network, effectively saving power

on the remaining part, thereby achieving orders of magnitude lesser power consump-

tion in comparison to their Artificial Neural Network (ANN) counterparts [70, 71].

In 2014, IBM research demonstrated a large-scale (>1Million neurons & 256 Million

synapses) digital CMOS neurosynaptic chip, TrueNorth [72], which implements a net-

work of integrate-and-fire spiking neurons. However, TrueNorth does not incorporate

any information pertaining to the learning mechanisms, which is at present a ma-

jor constraint for realizing SNNs for real-world practical applications like visual and

speech recognition among others. Thus, there is a need to develop efficient learning

algorithms that might take the advantage of the specific features of SNNs (event-

driven, low power, on-chip learning) while keeping the properties (general-purpose,

scalable to larger problems with higher accuracy) of conventional ANN models.

59

Recent efforts on training of deep spiking networks do not use spike-based learning

rules, but instead start from a conventional ANN fully trained using labeled train-

ing data, followed by a conversion of the same into a model consisting of simple

spiking neurons [73–75]. However, in order to extend the applicability of learning

methods, the use of unlabeled data for machine learning is imperative. In the non-

spiking domain, unsupervised learning of hierarchical regenerative models such as

Auto-Encoders [76] have been successfully used to learn high-level features. The

learnt features are then used as inputs to a supervised classification task [77] or to

initialize a CNN [78] to avoid local minima. We develop upon Auto-Encoders where

we build a spiking deep CNN by training each layer in the hierarchy in a purely un-

supervised manner using the regenerative model and the temporal spike information

to update the weights.

SNNs are equipped with unsupervised weight-modification rules like Spike Timing

Dependent Plasticity (STDP) that learn the structure of input examples without us-

ing labels [79]. However, the network structure that has been successful in achieving

competitive classification accuracy for pattern recognition problems is a single-layer

SNN, which does not scale well to realistic sized high dimensional images in terms of

computational complexity [80]. Moreover, STDP does not support learning hierarchi-

cal models that simultaneously represent multiple levels like edges or object parts in a

visual context that is fundamental to a deep learning model. We propose regenerative

learning using spike-timing information to implement layer-wise weight modification

that learn representative levels for each convolutional layer. The features from the

final layer of the deep convolutional spiking network (SpikeCNN) are then used for

classification tasks.

60

4.2 Preliminaries

4.2.1 Convolutional Neural Networks

CNNs have proven to be very successful frameworks for image classification tasks

[29, 40, 41]. Fig. 8.1 shows the basic CNN structure. They are mainly composed

of three main blocks: convolutional layer, spatial sampling/pooling layer and a fully

connected layer. The weights of a CNN are convolution kernels. A convolution layer

convolves a portion of the previous layer with a set of weight kernels to obtain an

array of output maps. The output maps are given by

xk = f(ΣlW
k ∗ xl) (4.1)

where f is the neurons activation function, xk denotes the activation value of the

neurons in the output maps k(k = 1, 2n), xl denotes the activation of the neurons in

a previous layers map l, W k are the set of weight kernels and * denotes a 2D-valid

convolution operation. The weight kernels are replicated and moved portion-wise

over the whole input map. This sharing of weights significantly reduces the number

of parameters to be learnt during the training process and thus enables the CNN

to be scalable to high-dimensional images. The CNNs are trained in a supervised

fashion (showing the training labels) by using standard backpropagation to train

the convolutional weight kernels along with the fully connected weights for the final

output layer as described in [48].

4.2.2 Unsupervised learning with Auto-Encoders

Unsupervised learning methods are generally used to extract useful features from

unlabeled data, to detect oversimplified input representations and remove input re-

dundancies and finally to obtain only robust and discriminative representations of the

data. In fact, deep neural network architectures have been built by stacking layers

61

trained in an unsupervised way. This is done to avoid local minima and to increase

the network performance [28,81,82].

Auto-Encoder (AE) methods are one of the most widely used unsupervised feature

extractor models for ANNs (non-spiking). AE models are based on the encoder-

decoder principle [78]. The input is first transformed into a lower dimensional space

(encoder), and then expanded to reproduce the original input (decoder) as shown in

Fig. 8.2. This captures the non-linear dependencies in the input. Each layer is trained

on the above principle by feeding the activation from one layer to the next. The basic

mathematical formalisms for an AE based training of an ANN are as follows [83]:

h = fθ = σ(Wx) (4.2)

h = f ′θ = σ(W ′x) (4.3)

W ′ = W T (4.4)

W WT

Encoder-Decoder network

Input Reconstruction

x

h

y

Fig. 4.1. Auto-Encoder network with input and reconstructed pattern

For a given input x, the AE first obtains the hidden representation, h using the

neuron activation function denoted as σ. This activation value, h, is then reverse

mapped to reconstruct the input. The weights used in the reverse mapping is generally

the transposed form of the weights connecting the input and the hidden layer. Thus,

the method uses the same weights for encoding the input and decoding the hidden

values, thereby reducing the number of parameters to be learned in the training

process. The parameters are then optimized to minimize the error for each training

62

pattern xi and its reconstruction yi. Note, the training labels are nowhere used in the

weight update process. Hence, the method is completely unsupervised. Inspired by

the reconstructive model of training, we use the auto-encoder model to update the

weights for each convolutional layer by tracking the spike information at the input

and modifying the weights such that the original input spike pattern is reproduced.

This enables the network to learn hierarchical representative features of the input

data.

4.3 Deep Spiking Convolutional Network: Learning and Implementation

4.3.1 Spiking neuron model

Unlike conventional ANNs where a vector is given at the input layer once and

the corresponding output is produced after processing through several layers of the

network, SNNs require the input to be encoded as a stream of events. At a particular

instant, each event is propagated through the layers of the network while the neurons

accumulate the events over time causing the output neuron to fire or spike. Thus,

the spike information is used to communicate between the layers of the network.

The spiking neuron model used in this work is the Leaky Integrate-and-Fire (LIF)

model [84]. The membrane potential vmem(t) of a post synaptic neuron is given by

τRC
dvmem(t)

dt
= −vmem(t) + J(t) (4.5)

where J(t) is the input current and τRC is the membrane time constant. The neuron

fires when the membrane potential vmem crosses a certain user-defined threshold vth.

Once a spike is generated, the membrane potential of the neuron is set to the reset

potential, vres, for a refractory period of τref . Once the refractory period is complete,

the neuron follows the response shown in equation (5.5). In our simulations, we

discretize the above continuous time equation into 1 ms time steps.

The total synaptic input current received by a neuron is

J(t) = Σi(Σs∈Siwiδ(t− s)) (4.6)

63

.

.

.

.

I1(t)

I2(t)

I3(t)

w1

w2

wn

.

.

.

.

.

.

.

.

Neuron

Sobs(t)

Sdes(t)

Observed Spikes

Desired Spikes
Input Spike trains

Fig. 4.2. The learning problem identifies the optimal weight vector so as
to achieve the desired spike train from the given input spike pattern [85]

where wi is the synaptic efficacy of the ith synapse, δ is the delta function that contains

the time of arrival of spikes at the ith synapse denoted by Si = {t0i , t1i ...}.

4.3.2 Error Backpropagation in SNNs

Weight update in Convolutional Deep Learning Networks follow the convolutional

backpropagation algorithm which is an extension of the standard stochastic gradient

descent rule for feedforward ANNs in the convolutional context [53]. As discussed

earlier, in this work, we use the regenerative learning method inspired from AEs to

train the hierarchical convolutional layer features of a deep spiking convolutional net-

work (SpikeCNN). Similar to ANNs, in the regenerative learning for deep SNNs, the

backpropagation algorithm with gradient descent is employed to update the weights

to enable unsupervised layer wise training.

Learning theory

The learning problem for spiking neurons is illustrated in Fig. 8.2. There is a

spiking neuron that receives input spike trains through n synaptic connections. The

objective is to evaluate the n-dimensional weight vector w = [w1w2...wn]T for the

64

neuron to produce the desired spike train Sdes(t). Let the desired spike train be given

by

Sdes(t) = Σiδ(t− tides) (4.7)

where δ is the Dirac delta function and t1des, t
2
des...t

k
des are the desired spike arrival

times. We now require a learning rule to identify the changes in synaptic weights of

the neuron to achieve the desired output spike pattern using the spike information

for weight updates.

Cost Function

The weight update in ANNs follows the backpropagation algorithm aimed at min-

imizing a cost function. Similarly, in SNNs we need to define a cost function that

would drive the learning process. Assume V (t) is the membrane potential of the

neuron, with synaptic weight vector w, when input spike trains are fed to it. Cor-

respondingly, let the neuron issue spikes at time instants t1obs, t
2
obs...t

k′

obs. Hence, in

accordance with (5.7) the observed spike train can be denoted as

Sobs(t) = Σiδ(t− tiobs) (4.8)

Now the error function can be defined as

e(t) = Sdes(t)− Sobs(t) (4.9)

However, the desired spike train is not known in an unsupervised learning process.

In non-spiking AE models, encoder-decoder method [78] is used to calculate the er-

ror that is back propagated through the layers without showing any training labels.

Hence, the AE based training is completely unsupervised. Similarly, in the regenera-

tive layer-wise training of SpikeCNN, we add another output layer in addition to the

input and the convolutional layer which will be interpreted as a pseudo-visible layer

that should ideally imitate the input layer patterns as shown in Fig. 6.2. This will

enable us to update weights for the intermediate layers without showing any training

65

Error

Input Layer Convolutional Layer Pseudo-Visible
layer

Error= Vth –Vmem(t)

X X

Input X spikes

Fig. 4.3. Layer-wise training of a convolutional layer using Regenerative
Learning. If a neuron X in the input layer spikes at a given time instant,
the regenerative learning model updates the weights in such a way that
the neuron X in the pseudo-visible layer also spikes. This is achieved by
propagating the error calculated at the pseudo-visible layer using gradient
descent

labels. In a non-spiking model, the weight update rule is driven by the activation val-

ues of the output neurons. In the spiking context, the activation values of an output

neuron can be interpreted as its membrane potential. If an input neuron spikes at a

given time instant, the corresponding neuron in the output layer should also spike as

per the regenerative approach. This can only be achieved if the membrane potential

of the output neuron crosses the threshold.

Depending upon the input spike pattern, the error is defined as follows:

• If an input neuron spikes at a given time instant, the error is calculated as the

difference in the threshold value (vth) and the membrane potential (vmem) of

the corresponding output neuron in the pseudo-visible layer.

• If the input neuron does not spike, the error is evaluated as the difference in

the reset value (vres) and the membrane potential (vmem) of the corresponding

output neuron in the pseudo-visible layer.

Thus, the error function can now be indicated as

e(t) = Vdes(t)− Vobs(t) (4.10)

66

where Vdes is vth or vres depending upon the spike event at the input neuron. The

cost function corresponding to the synaptic weight vector w can now be defined as

C(w) =
1

2

∫ T

0

(Vdes(t)− Vobs(t))2dt (4.11)

where T denotes the duration of the training epoch. The desired weight vector wdes

is

wdes = argminwC(w) (4.12)

The learning process thus takes into account the spike information and the inherent

latencies. The learning rule follows the gradient descent optimization where the

weights are adjusted depending upon the gradient of cost w.r.t the weights. Note

that the sign of the corresponding synaptic weight as determined by the algorithm

can be either positive (excitatory) or negative (inhibitory) leading to a corresponding

increase or decrease in membrane potential of the neuron.

Approximate gradient descent

The cost function C(w) as given in (4.11) depends on V (t) which has several

discontinuities in the weight space. Hence, for simplification as proposed in [85], we

minimize the contribution to the cost function at each time instant independently

rather than minimizing the total cost over an entire epoch.

The cost-function at time t is obtained by restricting the limits of integral in (4.11)

to an infinitesimally small interval about time t. Thus,

C(w, t) =
1

2
(Vdes(t)− Vobs(t))2 (4.13)

Hence, its gradient with respect to w is

∇wC(w, t) = −(Vdes(t)− V (t))∇wV (t) (4.14)

Now, the synaptic weight update corresponding to the activity observed at time t is

given as

∆w(t) = −η∇wC(w, t) = −η(Vdes(t)− V (t))∇wV (t) (4.15)

67

where η is the user-defined learning rate. Now, the discontinuities in V (t) due to

the LIF neuron model will render ∇wV (t) undefined for some particular values of w.

In [85], the authors have implemented a weight update rule and have used certain

approximations to overcome these non-linear dependencies. In this work, we invoke

similar approximations that would allow us to replace ∇wV (t) with appropriate quan-

tities.

In non-spiking context, the weight update for a synapse connecting neuron i and

j [86] (with exponential activation function) is computed as

∆wij = −η ∂E
∂wij

;where
∂E

∂wij
= δjoi (4.16)

δj = Eoj if j is an output neuron

= (Σlδlwjl)oj if j is a hidden neuron
(4.17)

Here, o denotes the activation value of neuron. Comparing (4.15) and (4.16), ∇wC(t)

is equivalent to ∂E
∂wij

. Interpreting the activation value of the neuron as the membrane

potential in the spiking context, we can now replace oj in the above equations with

the membrane potential of a neuron (V (t)) at a given time instant. Thus, the weight

update equations for SNN with approximate gradient descent can be written as

∆wij = −ηδj(t)Vi(t) (4.18)

δj(t) = (Vdesj(t) − Vj(t))Vj(t) if j is an output neuron

= (Σlδlwjl)Vj(t) if j is a hidden neuron
(4.19)

In summary, the approximate gradient descent assumes the LIF neuron model to

be an equivalent standard activation model in non-spiking context. The gradient

calculation is then carried out by using the membrane potential of a neuron at a

given time instant as the activation value. The inherent error-resiliency of these

neural networks allows us to use such approximate models.

68

Regenerative Learning for Spike-based Convolutional Auto-Encoder

Convolutional Auto-Encoders (CAEs) differ from conventional AEs as their weights

are shared among all locations in the input preserving spatial locality. The CAE ar-

chitecture with weight sharing is shown in Fig. 6.2. The reconstruction represented

by the pseudo-visible layer is due to a linear combination of basic image patches based

on the activations in the convolutional layer.

For a mono-channel input x, the convolutional layer representation of the kth

feature map is given by

hk = σ(x ∗ wk) (4.20)

Here, hk denotes the membrane potential of the neuron (vmem(t))in the convolutional

layer, σ denotes LIF model discussed earlier to calculate vmem(t) at a given time

instant t, x contains the spike information from the input layer neurons and * denotes

the convolution operation. When hk crosses vth, the spikes generated at the neurons of

the convolutional layers serve as input for the pseudo-visible layer. The reconstruction

is obtained using

y = σ(Σkε(h
k) ∗ w̃k) (4.21)

where w̃k denotes the transpose (or flip in both dimensions) operation, ε(hk) denotes

the spike information corresponding to the convolutional layer and y gives vmem(t)

of the neurons in the pseudo-visible layer. The convolution of a mxm matrix with

a nxn matrix may result in an (m − n + 1)x(m − n + 1) matrix (valid convolution)

or (m + n − 1)x(m + n − 1) (full convolution). In our simulations, we perform a

valid convolution from input to the convolutional layer and a full convolution from

convolutional to pseudo-visible layer in order to get a map of the same size as the

input layer. All spike-based models and calculations for implementing convolutional

network remain the same as described earlier. In (5.6), the input synaptic current

was given by the weighed summation of spike inputs. In this case, the only difference

is that the synaptic current is obtained by convolving the spike information of an

image patch with the weight kernel.

69

Please note that the hk and y are calculated at every time instant of a given

epoch and the error is calculated from the difference in the vmem(t) of the neurons

in the input and pseudo-visible layer. It is clear that the regenerative learning would

activate the neurons in the pseudo-visible layer such that they imitate the input layer

spike pattern. Thus, the cost function to minimize is the mean squared error (MSE)

given by

C(w) =
1

2n
Σn
i=1(vdes(t)− vmem(t))2 (4.22)

where n is the total number of neurons in the input /pseudo-visible layer. As men-

tioned earlier, we minimize the error at each time instant rather than over the entire

epoch duration.

Now the approximate gradient descent model discussed previously is used to cal-

culate the weight updates. The gradient of the cost function now involves convolution

operations and is given by

∂C(w)

∂W
= x ∗ δhk + ˜ε(hk) ∗ δy (4.23)

δhk and δy are the gradients for the convolutional and pseudo-visible layer neurons

which are evaluated using the approximate model. δhk is calculated using (4.19) for

hidden neuron and δy using (4.19) for output neuron. Several such convolutional AEs

can be assembled together to construct a deep CNN hierarchy. Each convolutional

layer in the hierarchy is trained separately with the regenerative method described

above.

Average Pooling

For CNNs, a pooling layer [44,87] is often introduced after the convolutional layers

to obtain translational invariance. The average pooling or subsampling layers com-

bine the responses from multiple neurons in the convolutional layer into one. The

representation of the averaging layer is identical to (8.1), except that the kernels

consist of uniform weights fixed to 1/size(wk), where size(wk) is the size of the sam-

pling window. After training the convolutional layer with the regenerative method,

70

(a) (b) (c)

Fig. 4.4. Reconstructed patterns observed after training the first convolu-
tional layer of MNIST 2C with regenerative learning for different vth and
Irate values Original pixel image (Column 1), Spike input image (Column
2), Reconstructed image (Column 3) (a) MNIST 2C initialized with vth=
1.0, Irate =100 Hz (b) MNIST 2C with parameters (P2) vth= 1.2, Irate
=100 Hz (c) MNIST 2C with parameters (P1) vth= 0.8, Irate =75 Hz

the membrane potentials (hk) of the neurons across all feature maps are obtained

corresponding to a training input for a given instant of an epoch. The membrane

potentials (hk) within the sampling window are averaged to obtain the output mem-

brane potential of the neuron (pk) in the pooling layer for the given time instant.

When pk crosses vth, the spikes generated at the neurons of the pooling layer serve as

input for training the next convolutional layer. It is clear that the averaging opera-

tion down-samples the convolutional layer representation while conserving the spike

information and inherent latencies from the previous layer.

The regenerative auto-encoder based learning, thus, trains several convolutional

layers in layer-wise fashion which can be assembled together to form a deep hierarchy

[88]. Each layer receives its input from the previous layer as described above. The

assembled convolutional layers can be used to initialize a CNN with the same topology

prior to a fully connected stage.

Supervised training with labels for classification

The Fully Connected layer (FC) at the end of the CNN combines the inputs from

the feature maps in the previous layer to perform classification of the overall inputs at

71

the output layer. The training of the fully connected layer cannot follow the encoder-

decoder principle (regenerative learning) as the aim here is to classify rather than

to obtain abstract representations of the input. At this stage, the spike information

from all end layer maps are concatenated into a vector which serves as input from

the FC layer to the output layer.

The training labels are used to fix the spike pattern of the output layer neurons

that will drive the error backpropagation to calculate the weight updates. The weight

update rules follow the same equations as described in the approximate gradient de-

scent method. For a given label, a Poisson spike pattern of a particular frequency is

generated that serves as the desired spike train for the corresponding output neuron

for all training inputs with that label. The remaining output neurons have no spike

events. The errors are calculated as per the spike events at the output layer neu-

rons. This method ensures that the weights connected to the desired output neuron

are potentiated while inhibiting the activity of the remaining connections. In our

simulations, we fix the frequency of the desired spike train for a training label at 30

Hz. After training is done, an input is presented as a stream of events at the input

layer of the SpikeCNN. At the end of the time duration, the spike responses from the

output layer neurons are monitored. The output neuron with the highest response is

the class predicted by the network for the given input.

4.4 Experimental Results

4.4.1 Network Architecture and Parameters

We evaluate our proposed learning on two datasets: MNIST [48] and CIFAR10

[50]. MNIST is a standard dataset of handwritten digits that contains 60,000 training

and 10,000 test patterns of 28 x 28 pixel sized greyscale images of the digits 0-

9. CIFAR10 is a more challenging dataset that consists of 60,000 colored images

belonging to 10 classes. Each image has 32x32 pixels. We used the first 50,000 images

for training and last 10,000 images for testing. Regenerative learning is used to train

72

Reconstruction for
Red channel

Reconstruction for
Green channel

Reconstruction for
Blue channel

Column1 of each figure is the original pixel image, Column 2 is corresponding
spike input image, Column 3 is the reconstructed spike pattern

1 2 3 1 2 3 1 2 3

Fig. 4.5. Reconstructed pattern observed after training the first layer of
CIFAR 3C initialized with P2. CIFAR 3C has 3 maps at the input layer
corresponding to the 3 color channels (Red, Green, Blue). The figures
show the reconstruction of the input pattern at the pseudo-visible layer
corresponding to the 3 separate channels.

spike-based convolutional AEs which are then used to initialize a SpikeCNN with the

same topology. The final fully connected layer of the SpikeCNN is then trained with a

fraction of training labels from the entire dataset to perform classification. The input

is presented as Poisson distributed spike train with firing rates proportional to the

intensity of pixels [73]. In the experiments, the epoch duration or the time for which

an input image is shown to the network is 250ms. During layer-wise training, each

input is presented multiple times (depending upon the depth of SpikeCNN) and the

weights are updated each time to minimize the reconstruction error. Since each layer

receives its input from the previous trained layer, this process helps in maintaining

an adequate firing rate for each layer. This ensures spike propagation as we go deeper

into the network. The membrane potentials of all neurons in the convolutional and

pseudo-visible layers are all set to vres before presenting a new training pattern.

We implemented a SpikeCNN for MNIST (MNIST 2C) with 2 convolutional lay-

ers: 28x28-12c5-2a-64c5-2a-10o. The input layer is 28x28. Both convolutional layers

use 5x5 kernel size with 12 and 64 maps, respectively. A 2x2 average pooling window

is used after each convolutional layer. The final features from the second averaging

73

layer are then fully connected to a 10-neuron output layer. SpikeCNN for CIFAR10

(CIFAR 3C) consists of 3 convolutional layers: 32x32x3-32c5-2a-32c5-2a-64c4-10o.

In this case, the input layer has 3 maps corresponding to the 3 color channels RGB.

The first and second convolutional layer have 5x5 sized kernels with 32 maps while

the third layer has 4x4 kernel with 64 maps. The features from the third layer are

directly fed to the output layer without any average pooling. Please note that we do

not use any data augmentation or normalization techniques like dropout [89] in the

SpikeCNN implementation.

The network parameters like input rates (Irate) and threshold values (vth) for the

networks were set by trial and error by cross-validating a few times to get the lowest

reconstruction error from the input image layer. Fig. 6.3 shows the reconstructed

image patterns formed at the pseudo-visible layer after training the first convolution

layer of MNIST 2C with regenerative learning for different values of vth and Irate. Vi-

sually, we can inspect that Fig. 6.3(b) with parameters vth= 1.2, Irate =100 Hz (P2)

and Fig. 6.3(c) with vth= 0.8, Irate =75 Hz (P1) give more convincing reconstruction

than Fig. 6.3 (a) vth= 1.0, Irate =100 Hz. We use the parameters P2, P1 correspond-

ing to Fig. 6.3 (b), (c) to initialize MNIST 2C and evaluate the classification accuracy

in both cases. Similarly, Fig. 6.5 shows the reconstructed image patterns from the

first convolutional layer of CIFAR 3C for the three color channels separately. The

parameters used are vth= 1.2, Irate =100Hz to initialize CIFAR 3C and obtain the

classification accuracy. The figures show the accumulated spike count over 250ms of

simulated time. Please note that though the deeper layers in MNIST 2C/CIFAR 3C

have significantly larger number of maps than that of initial layers in both the con-

figurations, the training time still remains same due to the down-sampling of input

size with average pooling.

74

0
0.2
0.4
0.6
0.8

C1 C2 C3N
or

m
al

iz
ed

re

co
ns

tr
uc

tio
n

er
ro

r

Convolutional layer

CIFAR_3C with P2 MNIST_2C with P1
MNIST_2C with P2

Fig. 4.6. Reconstruction errors at different layers of the SpikeCNN archi-
tecture

4.4.2 Reconstruction error across network layers

For quantitative evaluation, we plot the reconstruction errors obtained at each

layer of the network (MNIST 2C, CIFAR 3C) as shown in Fig. 6.5 for the network

parameters discussed above. In order to ensure propagation of spike information

across layers, we present the input data 3/5 times while training every convolutional

layer of MNIST 2C/CIFAR 3C respectively. The reconstruction error plotted in Fig.

6.5 is the aggregate loss over the multiple presentation of the training data. We use

the squared Euclidean distance of the difference in the spike events as a measure

of loss. It is clearly seen that error observed for MNIST 2C with parameters P1 is

higher than that of P2 which supports the visual reconstruction patterns shown in

Fig 6.3(b), (c). A noteworthy observation here is that the reconstruction error in both

networks decreases as we move towards deeper layers. In [90], the authors have shown

that in the context of deep ANNs, blurring an image enables better reconstruction

as the network then learns more general representations. Learning the finer details

may lead to overfitting increasing the reconstruction error. As we apply convolution

and average pooling in the initial stage, certain information from the original image

is lost in this process. Thus, we can interpret that the deeper layers work on slightly

blurred details of the original image causing lower reconstruction error.

75

4.4.3 Classification Accuracy

After training the convolutional layers by optimizing the reconstruction error for

the entire training dataset, the features from the final layer are then fed to the output

layer. The weights at the output are trained in a supervised manner by showing

training labels. However, in the supervised case, we use only a subset of the training

data to train the final layer. During testing, an input test pattern is presented two

times to the trained SpikeCNN. The spikes at the output neurons are aggregated

over two simulations and the neuron with the highest response is the predicted class

for the given test input. Since the pixel intensity values are converted to Poisson

spike trains, the accuracy can differ for different spike timings. Thus, the accuracies

are averaged over five iterations of presentation of the entire testing dataset. Fig.

6.6 shows the classification error for MNIST 2C initialized with parameters P1, P2

and CIFAR 3C with P2 as the size of the labelled training subset is varied. The

results for CIFAR 3C initialized with P2 have only been shown as it yields a lower

reconstruction and classification error in comparison to P1. For MNIST 2C with

P2, the lowest error achieved by showing all the 60000 training labels at the final

layer is 0.92% (99.08% classification accuracy). It is clearly seen from Fig. 6.6 (a)

that the error decreases significantly as the size of the training set is increased from

500 to 20000. However, for subsets ≥ 20000, the error almost remains the same.

Similarly in Fig. 6.6 (b), for CIFAR, the error doesn’t change significantly for subsets

≥ 30000. For MNIST 2C/ CIFAR 3C with P2, the minimum error obtained showing

20000/30000 labels at the final layer is 0.95%/24.58%. In [91]/ [92], the authors have

implemented a spiking deep network by converting a deep static CNN to SNN and

have achieved 22.57%/0.86% error on CIFAR-10/MNIST dataset. The fact that our

network performs favorably incorporating the inherent latencies of a spiking neuron

model in the learning process suggests that the regenerative learning scheme can be

used to train deep spiking networks to obtain state-of-the-art results.

76

0

5

10

15

20

%
 C

la
ss

ifi
ca

tio
n

Er
ro

r
Size of the labelled training dataset

MNIST_2C with P1
MNIST_2C with P2

(a)

0

15

30

45

60

%
 C

la
ss

ifi
ca

tio
n

Er
ro

r

Size of the labelled training dataset
CIFAR_3C with P2

(b)

Fig. 4.7. Classification error as the size of the labelled dataset for the
supervised training of output layer is varied

4.4.4 Sparsity with Regenerative Learning

The spike-based regenerative learning scheme, on account of event-based coding,

introduces sparsity over the convolutional layer feature representations. Since the

learning is based on spiking activity of the neurons, the output at the pseudo-visible

layer is reconstructed using only the maximally active neurons in the feature maps

of the convolutional layers. As a result, the reconstruction error at each time instant

of the training epoch is back-propagated through these active neurons. Basically,

the sparse event based computation acts as a regularizer that prevents learning of

over-complete representations of the input. In other words, the sparsity in features

decreases the number of filters or weight kernels required to reconstruct the input

thereby forcing the filters to be more general. Fig. 5.8 shows the feature maps learnt

for MNIST 2C (with P2) with accumulated spike counts over 250 ms for a particular

input pattern. It is evident that the feature maps in both convolutional layers have

sparse active units. Only a smaller section of the SpikeCNN is active in a training

epoch. Thus, we can effectively save power on the remaining idle or inactive portions

of the network. Sparsity in learning has a key role in reducing the overall power

consumption by decreasing the spike rate in SNN architectures which is one of the

main reasons to use SNN over ANN. Fig. 5.8 also shows the weight kernels learnt at

77

Fig. 4.8. (a) MNIST training input to MNIST 2C initialized with P2:
Original pixel image (left), Spike input image (right) (b) The weight ker-
nels learnt at the input layer (c) 12 feature maps showing the sparse rep-
resentations of maximally active spiking neurons in the first convolutional
layer of MNIST 2C (d) 20 of 64 feature maps in the second convolutional
layer of MNIST 2C with sparsely active neurons

the first layer from the input. Visually, we can interpret that the weights are more

diverse and global.

4.5 Conclusion

We introduced a spike-based learning scheme to train Spiking Deep Networks

(SpikeCNN) for object recognition problems using leaky integrate-and-fire (LIF) neu-

rons. The regenerative model learns the hierarchical feature maps layer-by-layer in

a deep convolutional network in an unsupervised manner. Once the convolutional

layers are learnt, the features are then fed to an output layer trained in a supervised

manner by showing a fraction of the labeled training dataset. The output layer per-

forms the overall classification of the input. While previous work on deep spiking

networks have examined the conversion of ANNs to SNNs, we build a spiking deep

CNN from scratch with the proposed learning using spike-timing information and

inherent latencies to implement layer-wise weight modification. Also, the sparsity in

representations introduced with regenerative learning suggests overall power savings

in the learning process which generally takes up a significant part of the time the

78

network is used. Finally, the SpikeCNN system developed with our proposed learning

with the current initialized parameters is in its first generation, and we expect its

accuracy on CIFAR-10 to improve as we gain experience with the method and tune

the network for better parameters.

79

5. ASP: LEARNING TO FORGET WITH ADAPTIVE

SYNAPTIC PLASTICITY IN SPIKING NEURAL

NETWORKS

5.1 Introduction

With the proliferation of intelligent devices, including smartphones and the Inter-

net of Things, and the resultant explosion of digital data that they generate, com-

puting platforms across the spectrum will increasingly need to acquire, process and

analyze new data. This requires such resource-constrained devices to continually

extract structures, patterns, and meaning from raw and unstructured datasets in

real-time, unsupervised dynamically changing environments.

While advances in deep learning and other machine learning techniques have led to

computers matching or surpassing human performance in several tasks (recognition,

analytics, inference) [1, 4, 40], the inherent learning mechanisms for such tasks are

static. That is, the learning methods use data points from past or old experience

to build a predictor (classifier, regression model, recurrent time series model) for

processing future behavior. The predictor does not adjust itself (self-correct or adapt)

as new events happen. However, accurate prediction based on the new incoming data

characteristics with limited memory bandwidth and computational resources needs to

be ensured to enable on-chip intelligence. This requires continuous learning over a long

period of time with the ability to evolve structural components on demand and forget

data becoming obsolete. Based on this, we introduce a novel adaptive self-learning

scheme: ASP (Adaptive Synaptic Plasticity) that forgets (or weakens) already learnt

connections to make room for new information to adapt to the continuously changing

inputs.

80

Forgetting is essential for learning new things. Recent work in [93] suggests that

the brain is actively erasing memories while learning to continuously process the new

input stimuli. At a preliminary level, learning in the brain involves making synaptic

connections and re-enforcing them with repeated exposure to a given input stimuli.

However, due to limited space available, the brain forgets already learnt connections,

gradually, to associate them with new data. In contrast, all computing systems learnt

using static mechanisms suffer from “catastrophic forgetting” where the exposure of

an already trained system to new information results in severe loss of previously

learned information. It has been shown that this extreme loss of information is not

due to the constrained memory capacity (amount of resources available for learning)

of the learning system, but is caused by the overlap of representations of information

within the system [94–96]. To address this, our learning scheme maintains a balance

between continuous learning and forgetting that is necessary to deal with dynamic

environments.

For many years, Artificial Neural Networks (ANNs, including deep learning net-

works) have dominated across all machine learning models due to their unprecedented

performance (in terms of classification/recognition accuracy) in a wide range of com-

puter vision and related applications. However, for applications that require real-time

interaction with the environment, the repeated and redundant update of large num-

ber of units (neural and weight connections) becomes a bottleneck for efficiency. An

alternative has been proposed in the form of Spiking Neural Networks (SNNs), an

emergent class of computing paradigm in theoretical neuroscience and neuromorphic

engineering [72, 97]. Driven by brain-like asynchronous event based computations,

SNNs focus their computational effort on currently active parts of the network, effec-

tively saving power on remaining idle parts, thereby achieving orders of magnitude

lesser power consumption in comparison to their ANN counterparts [70,71]. In addi-

tion, SNNs are equipped with self-learning capabilities like Spike Timing Dependent

Plasticity (STDP) [79] that further make them desirable for adaptive on-chip imple-

mentations.

81

STDP is an associative form of synaptic plasticity that modulates the synaptic

strength of a connection based on the temporal correlation between the spiking pat-

terns of pre and post neuron pairs. Several neuroscience theories have demonstrated

the role of STDP for Long Term Potentiation (LTP) of synapses that underlie long-

lasting memory formation and learning in the brain [98]. However, an SNN learnt

with STDP alone does experience catastrophic forgetting while trying to learn quickly

in response to a changing environment. Memory persistence is a particularly promi-

nent problem with STDP, as in its naive form STDP implies that any pre/post spike

pair can modify the synapse, potentially erasing past memories abruptly. Grossberg

et. al [99, 100] have called the problem where the brain learns quickly and stably

without catastrophic forgetting its past knowledge while gradually adapting to the

flood of new data, the stability-plasticity dilemma.

The ASP learning discussed here addresses the catastrophic forgetting and stability-

plasticity dilemma by incorporating a gradual “decay mechanism” with the temporal

STDP based weight update procedure. In fact, several works on hippocampal learn-

ing have demonstrated memory trace decaying over a period of time [93, 101–103].

Specifically, LTP that is involved in maintaining memory has been shown to be

not permanent and such potentiated responses eventually decay to certain base-

line levels [102, 103]. While the underlying mechanisms for the LTP decay are not

known, certain neuroscientists hypothesize that the decay is correlated with “forget-

ting” [101–103]. Inspired from this biological evidence, we integrate a weight leaking

mechanism with the standard STDP learning rule to model adaptivity in SNNs for

pattern recognition applications. ASP facilitates the gradual degradation or forget-

ting of already learnt weights to realize new and recent information while preserving

some memory or knowledge about the old data that are significant. To the best of our

knowledge, ASP is the first of its kind biologically plausible learning paradigm that ef-

fectively combines “forgetting with learning” and tremendously boosts the capability

of traditional SNNs to deal with dynamic environments.

82

Essentially, in an SNN that is learnt using STDP for pattern recognition, the

weight states are static or are not altered until a post/pre neuron spike is observed.

This static learning of weights results in overlap of representations leading to catas-

trophic forgetting when presented with frequently changing inputs. The key idea of

ASP is to leak the weights at every time instant (towards a baseline value) irrespec-

tive of post/pre-neuron spikes. The leak rate for each synaptic connection (or leak

time constant) is modulated based on the degree of potentiation or depression of a

synapse obtained from STDP. While STDP helps in learning the input patterns, the

retention of old data/gradual forgetting is attained with the weight decay. Thus,

ASP maintains a balance between forgetting and immediate learning to construct a

stable-plastic self-adaptive SNN for dynamic environments.

In addition to dynamic learning, the “learning to forget” mechanism achieved

with ASP further enables an SNN to perform unsupervised selective attention and

denoising by focusing on the task relevant information in the data. In fact, our results

(in section 5.4) for handwritten digit recognition from noisy inputs show that the ASP

trained SNNs extract distinct digit representations while filtering out the irrelevant

background noise. As we will see later, the adaptive weight decay mechanism helps

in eliminating the noisy elements in an image as the weights corresponding to those

pixels are gradually forgotten. This result emphasizes the significance of the adaptive

weight decay for an improved and robust unsupervised learning procedure.

5.2 Spiking Neural Network: Fundamentals

5.2.1 Spiking neuron and synapse model

The SNN topology used for pattern recognition consists of a couple of layers of

spiking neurons interconnected by synapses as standard fully connected ANNs shown

in Fig. 8.1 (a). However, unlike conventional ANNs where a vector is given at the

input layer once and the corresponding output is produced after processing through

several layers of the network, SNNs require the input to be encoded as a stream of

83

Vmem

Vthresh

Vmem

Pr
e-

N
eu

ro
ns

Po
st

-N
eu

ro
ns

j

i
Vpre

Vthresh

(a)

vrst

vthresh

Refractory Period

Post neuron spikes (tpost)

(tpost- tpre)

Pre-synaptic spike
train

Post-neuron’s
Membrane Potential

time

time

(b)

Fig. 5.1. (a) A typical SNN architecture consisting of pre-neurons and
post-neurons interconnected by synapses. The pre-synaptic voltage spike
Vpre is modulated by the synaptic weight, w, to get the resultant post-
synaptic current, Ipost. The post-neuron integrates the current from each
interconnected pre-neuron that causes its membrane potential, Vmem, to
increase and spikes when the potential crosses a certain threshold, Vthresh.
(b) The Leaky-Integrate-and-Fire dynamics of the membrane potential
of a post-neuron that increases upon the arrival of pre-synaptic spike and
decays subsequently. The post-neuron fires when the potential exceeds the
threshold Vthresh. the potential is then reset to Vrst and a refractory period
ensues during which the neuron is prohibited from firing. The relative
timing of the post-neuron and pre-neuron spikes (tpost − tpre) determines
the synaptic potentiation.

spike events. The neurons transmitting the spikes are referred to as pre-neurons. Each

pre-neuronal spike is modulated by the synaptic conductance to produce a resultant

post-synaptic current that is received by the post-neurons.

τpost
dIpostj,i
dt

= −Ipostj,i + wj,iEprei (5.1)

where Ipostj,i is the current received by the jth post-neuron due to a spike event

Eprei at the ith pre-neuron, that are interconnected by a synapse of strength wj,i. The

post-synaptic current increases by the synaptic weight wj,i instantaneously when a

pre-neuronal spike occurs at tpre, and subsequently decays with time constant τpost.

The spiking neuron model used is the Leaky-Integrate-and-Fire (LIF) model as illus-

trated in Fig. 8.1 (b). A simplistic LIF model can be described as follows:

84

Excitatory
Layer

Inhibitory
Layer

Input Image
(MNIST dataset)

Lateral Inhibitory
Connections

Excitatory
Connections

Fig. 5.2. SNN topology for pattern recognition consisting of input , exci-
tatory and inhibitory layers arranged in a hierarchical fashion. The input
layer is fully connected to the excitatory neurons, that are connected to
the corresponding inhibitory neurons in a one-to-one manner. Each of
these neurons inhibits the excitatory layer neurons except the one from
which it receives the one-to-one connection.

τmem
dVmemj
dt

= −Vmemj +
∑
i

Ipostj,i (5.2)

where Vmemj is the membrane potential of the jth post-neuron. The post-neuron

sums the total post-synaptic current leading to an increase in its membrane potential

that eventually leaks exponentially with time constant τmem. It fires or emits a

spike when its membrane potential reaches a specific threshold, similar to biological

neurons, thus adding an asynchronous component of computation to SNNs. The time

instant of occurrence of post-neuron spike is denoted by tpost. After each post firing

event, the neuron’s membrane potential is reset and a refractory period ensues during

which the neuron is incapable of firing even if additional input spikes are received.

5.2.2 SNN topology for Pattern Recognition

The experimental tests are digit recognition tasks conducted with the MNIST

dataset [48]. A hierarchical SNN structure as shown in Fig. 8.2 is used. The ar-

chitecture consists of an input layer followed by excitatory and inhibitory layers.

85

The input layer (28x28 dimension) constitutes the pixel image data for the various

patterns in the dataset. Each pixel value is converted to Poisson-distributed spike

trains with rates proportional to corresponding pixel intensities. The input layer is

fully connected to the neurons in the excitatory layer. Thus, each excitatory neuron

has 784 weighted synaptic connections from the input, that are trained (or learnt)

to classify a specific input pattern or digit. The excitatory layer is connected in a

one-to-one fashion to the inhibitory layer neurons i.e. a spike event in an excitatory

neuron would cause the corresponding inhibitory neuron to fire. Every inhibitory

neuron is connected back to all excitatory neurons, except the one from which it

receives a forward connection. This connectivity structure provides lateral inhibition

that limits the simultaneous firing of various excitatory neurons in an unsupervised

learning environment and promotes competitive learning.

Besides lateral inhibition, we employ an adaptive membrane threshold mechanism

called homeostasis [104] that regulates the firing threshold to prevent a neuron from

being hyperactive. Specifically, each excitatory neurons membrane threshold is not

only determined by vthresh but by vthresh+θ, where θ is increased each time the neuron

fires and then decays exponentially [105]. If the neuron is too active in a short time

window, the threshold grows gradually and in turn, the neuron requires more input

to spike in the near future. Homeostasis, thus, equalizes the firing rate of all neurons

preventing single neurons from dominating the response. Note, the SNN topology

shown in Fig. 8.2 is used to conduct all recognition experiments detailed in the later

sections of the chapter.

Next, we discuss the standard STDP model for unsupervised on-line learning in

SNNs and then, describe our decay based Adaptive Synaptic Plasticity learning.

86

Spike Timing Difference tpost - tpre
(ms)

Ch
an

ge
 in

 S
yn

ap
se

 W
ei

gh
t

(%
)

Potentiation

Depression

Fig. 5.3. Spike timing dependent plasticity curve showing the original
measurement from biology in rat’s hippocampus [106] and the traditional
model. The relative change in synaptic weight is exponentially related to
the difference in spike times of a post-neuron (tpost) and pre-neuron (tpre).

5.3 Existing Learning Model for SNN

5.3.1 Spike Timing dependent Plasticity (STDP) and its limitations

In the SNN topology described above, the synapses connecting the input pre-

neurons to the post neurons in the excitatory layer need to be trained to learn a

generic representation of a class of input patterns. STDP is a set of Hebbian learning

rules with mathematical formulation based on the biological evidence observed in the

rat hippocampus [106] as follows:

∆w ∝ exp(∆t/τ−) if∆t < 0

∝ exp(−∆t/τ+) if∆t ≥ 0
(5.3)

where ∆t = (tpost− tpre) is the time delay between the post and presynaptic spike,

τ+/− is the time constant for potentiation/depression. There are several variations

of STDP learning that have been demonstrated to be suitable for learning spatio-

temporal patterns. Fig. 6.2 shows the traditional exponential STDP model with the

potentiation and depression window for weight learning [79,107,108] and the original

measurement from biology [106]. Synaptic plasticity (or weight change) depends on

the interval of time elapsed between pre- and post-synaptic spikes as indicated in

87

Fig. 8.1(b). The weight is increased/potentiated if a post-neuron fires subsequently

after a pre-neuron, with shorter time intervals resulting in an exponentially larger

change. On the other hand, it is decreased/depressed if a post-neuron fires before a

pre-neuron indicating the absence of a causal relationship.

When multiple neurons are organized in a simple competitive SNN topology, the

STDP learning will enable the network to learn multiple distinct patterns. However,

in case of on-line learning in a non-stationary environment, a fixed-size network (fixed

in terms of number of neurons in excitatory layer and corresponding synaptic con-

nections) must continually alter its response to process new data. Here, competition

would not preclude already learnt neurons from responding to a new pattern and

adjusting synaptic weights accordingly. This will often result in overlap of represen-

tations unless the network size is increased. But circuit/hardware and power limita-

tions pose resource limitations on network sizes where storage cannot be increased.

So, constant exposure to new information would result in cumulative synaptic changes

leading to a dramatic loss of stored information (or Catastrophic Forgetting) as the

previous changes in synaptic weight will be effectively lost. This effect does not occur

in the brain since the information loss is gradual. To retain previously learnt infor-

mation and avoid overlap or overwriting, a common solution proposed is to provide

data reinforcement both during initial training and any subsequent training [109] as

discussed next.

5.3.2 Mitigating Catastrophic forgetting in STDP learnt models with

data reinforcement

Data reinforcement is presenting old information to the network along with the

new or current information to ensure that previously learnt representation is stably re-

tained while new information is learnt. This helps in resolving the stability-plasticity

dilemma of SNNs in a dynamic input environment. Let us discuss two scenarios for

digit recognition: a) In Scenario ‘A’, the digits ‘0’ through ‘9’ are presented one by

88

(a) SNN learnt with STDP with
data reinforcement (intermixed)

(b) SNN learnt with STDP
without data reinforcement
(sequential)

0.5

0.3

0.1

-0.1

-0.3

-0.5

Fig. 5.4. Digit representations learnt with STDP in an SNN with 100
excitatory neurons connected to input layer (28x28 pixels) when (a) the
digits ’0’ through ’9’ are presented in an intermixed manner (i.e. data
reinforcement) (b) the digits ’0’ through ’9’ are presented sequentially
without re-presenting any previous category inputs (i.e. no data rein-
forcement in dynamic environment). Catastrophic forgetting is observed
in SNNs learnt with STDP in a dynamic environment (b) due to significant
overlap of representations.

one sequentially i.e. first all the images for digit ‘0’ followed by all images for digit

‘1’, and so on till digit ‘9’ and thus can be treated as a dynamic learning environ-

ment. Here, periodically after a given number of iterations, the SNN is presented

with a new class or digit. b) In Scenario ‘B’, the digits are all presented randomly in

an intermixed fashion and the intermixed selection of classes (or digits) are repeated

iteratively. Presenting all the digits in an intermixed manner iteratively is basically

performing data reinforcement wherein old information is re-presented with new data

so that later or new input data do not replace previous patterns. Effectively, from a

traditional neural network perspective, in Scenario ‘B’, we are retraining the network

with both the new and the old information when the network has to learn a new class.

In contrast, Scenario ‘A’ is an example of learning without data reinforcement as all

classes are presented disjointedly without any relevance to other classes.

Fig. 6.3 compares an SNN learnt with traditional exponential STDP in the above

two scenarios with/without data reinforcement. The SNN topology consists of 100

neurons in the excitatory layer with fully connected synaptic weights from the input

89

(28x28 pixels for MNIST). During learning, the excitatory synaptic weights from

the input layer to each excitatory neuron are modulated to learn a particular input

digit using the learning rule. Towards the end of the training phase, the weights

(or excitatory connections) that are randomly initialized eventually learn to encode

a generic representation of the digit patterns. Specifically, the excitatory connection

weights (refer to Fig. 8.2) fanning out of the higher-intesity (or white) pixel regions

will get potentiated while the weights from the low-intensity regions on the input

image will be depressed during the learning phase. Correspondingly, the color-map

figures shown in Fig. 6.3 represent the weight values learnt corresponding to each

excitatory neuron when learning stops.

Fig. 6.3 (a) clearly shows how the SNN presented with a random mixture of input

classes is able to learn a balanced representation of all input patterns due to data

reinforcement. Fig. 6.3 (b) shows the SNN learnt in Scenario A where old information

or data categories were not re-presented to the network, causing an overlap of input

representations. The SNN always tried to learn the new digit representation while

trying to retain a portion of the old data. However, fixed network size and absence of

data reinforcement resulted in accumulation causing new weight updates to coalesce

with already learnt patterns. Hence, an SNN will be rendered useless for categorizing

the digits in a dynamic environment without data reinforcement. However, in on-

line real time learning, it is often impractical and even expensive to store all old

data samples for retraining or data reinforced learning each time a new input pattern

or class is encountered. ASP, wherein we perform STDP updates augmented with

dynamic weight leaking, would enable an SNN (with fixed resources) to gracefully

forget already learnt information while retaining the significant patterns and gradually

adapt to new data in an online learning environment.

Next, we discuss the principles of weight decay based learning and how it can be

applied for pattern recognition with SNNs.

90

5.4 Adaptive Synaptic Plasticity for Learning to Forget

5.4.1 Adaptivity with Weight Decay in SNNs

Before we discuss the ASP learning rule, let’s see how the weight decay alone helps

in adapting a network to continuously changing inputs. Here, we do not incorporate

any timing-based associative rules such as STDP with the weight decay process. We

only perform an exponential decay and recovery of synaptic weights based on the

incoming spikes from the pre-neurons as

τleak
dw

dt
= −αw + P (t) (5.4)

where τleak (200 ms) is the time constant for the exponential decay of weights, α

(0.01) determines the overall learning rate. Here, P (t) denotes the presynaptic trace

that models the recent presynaptic history. To improve simulation speed, the weight

dynamics are computed using synaptic traces [80,110]. This means that, besides the

synaptic weight, each synapse keeps track of the presynaptic trace as well. Each

time a pre-neuron fires, the presynaptic trace is increased by 1, otherwise P (t) decays

exponentially as

P (t) = exp(−t/τtrace) + tpre (5.5)

where τtrace (20 ms) is the time constant for the decay of pre-synaptic trace and

tpre indicates the presence/absence of pre-neuronal spike. The tpre value is 0 if pre-

neuronal spike is absent, while 1 when pre-neuronal spike occurs at any time instant

t. As per Eqn. 5.4, during a given epoch or time period when an input pattern is

presented, the synaptic weights are potentiated proportional to the presynaptic trace

value calculated at the particular time instant when a tpre occurs (or pre-neuron

fires). At all other time instants, the weights are leaking or decaying. Please note

that the above learning is unaccompanied by any sort of correlation between post and

pre-neuron spike timings. It is solely driven by pre-neuronal spikes.

Fig. 8.7 shows the digit representations learnt in an SNN’s excitatory layer using

the isolated decay based weight modulation (Eqn. 5.4) when different digits (Digit: 5,

91

Fig. 5.5. Digit representations learnt with isolated weight decay learning in
an SNN with 9 excitatory neurons connected to input layer (28x28 pixels).
The input digits are presented sequentially (i.e. dynamic environment
with no data-reinforcement). The network is overly plastic and adaptive
to the continually changing inputs.

0, 4, 1; order chosen randomly) are presented to the network sequentially. The SNN

comprises of 9 neurons in the excitatory layer. The color intensity of the patterns are

representative of the value of synaptic weights. As different digits are presented, the

weights adapt to the new input pattern while forgetting the old information. Thus,

we see that the current input representation is learnt on top of the older and most

recent pattern. While the weights are highly potentiated for the current input pattern

(almost black-to-red intensity), we can observe from the color intensity (orange-to-

yellow) that the old information is being forgotten (or corresponding synaptic con-

nections leak due to absence of spike inputs from the pre-neurons in that region as

per Eqn. 5.4).

A key observation here is that while learning a new pattern, the overlap occurs with

the most recent input. For instance, while learning a digit ‘4’, the SNN still retains

some information about the previous input digit ‘0’. However, it has completely

forgotten all information regarding the older digit ‘5’. Thus, weight decay enables

the SNN to gracefully forget old information while adapting the network to learn new

data. This is what helps the SNN to avoid catastrophic forgetting that was observed

with standard STDP learning without data reinforcement (Fig. 6.3 (b)), wherein the

weight updates got accumulated resulting in significant overlap of representations.

Thus, it can be inferred that forgetting or weight decay is integral to self-learning and

adapting in a dynamic environment. However, in the above learning rule, relative

92

timing of pre- and post-synaptic spikes has not been considered for modifying the

weights. The weight updates occur based only on pre-neuronal spike that is in contrast

to the commandments of Hebbian learning [111]. Hence, there is no possibility of

initiating a competition between neurons to learn different patterns. As a result of

this, all the excitatory neurons in Fig. 8.7 learn uniformly and pick up the same

pattern. The SNN in this case is excessively plastic and inadequately stable as it

immediately adapts to the new information. Thus, it is essential to incorporate spike

timing based correlation with the weight decay to learn in an unsupervised dynamic

environment in a stable-plastic way.

Another way of invoking competition is by forcing certain neurons selectively to

learn different patterns. However, in that case, we move into the supervised learning

domain that is generally undesirable for on-chip implementations as motivated earlier.

5.4.2 Adaptive Synaptic Plasticity: Combining STDP with Weight Decay

In the weight decay learning discussed above, the role of post synaptic neuron’s

spiking activity was not accounted for modulating the weights. Adaptive Synaptic

Plasticity (ASP) blends in associative learning with the adaptation behavior that

helps in retention and gradual adaptation to new inputs as well as evokes competi-

tion across neurons to learn distinct patterns. Essentially, we modulate the leak time

constant (or forgetting behavior) and the exponential recovery of synaptic weights,

observed earlier with isolated decay-based learning, using the temporal dynamics

of pre- and post-synaptic neurons. In STDP (refer to Fig. 6.2), the spike timing

correlation (or difference of the spike events) between the post/pre neurons deter-

mines the window (positive/negative) across which the synaptic modification (poten-

tiation/depression) takes place. Likewise, ASP also incorporates different windows

for potentiation and depression based on the firing events of the post/pre neurons as

shown in Fig. 6.5.

93

STDP

Δ
w

Δt
(tpost-tpre)

Recovery Phase when tpost-tpre >0
Recovery Phase when tpost-tpre <0

Decay phase

ASP Model
Potentiation Window

Baseline Weight value =0

Depression Window

Input Stimulus

W
ei

gh
t R

es
po

ns
e

(w
)

ASP w/ linear decay

ASP w/ exponential
decay

Fig. 5.6. ASP model for weight modulation. During the recovery phase,
i.e. when a spiking event occurs at the post/pre-neuron, the weights
are potentiated (or depressed) based on the tpre and tpost realtive timing
difference following the STDP dynamics (Eqn. 5.7). The weights leak
towards baseline value (=0) during the decay phase and the leak time
constant is varied based on the post-synaptic neuron’s spiking activity
(Eqn. 5.8). Two different ASP models with exponential (black curve)
and linear (dotted red curve) decay are shown.

ASP interprets any spiking activity at the post or pre-neuron as the presence of

input stimulus to initiate, what we term as, recovery phase for the synaptic weight

interconnecting them. The recovery can be an exponential increase (potentiation) or

decrease (depression) based on the temporal difference between the spiking activities

of the neurons. The potentiation or depression of the weights in the recovery phase

is obtained from the exponential STDP formulation (Refer to Eqn. 5.3) as shown in

Fig. 6.5. Thus, if a pre-neuronal spike forces a post-neuron to fire (i.e. tpre < tpost),

the corresponding synapse should potentiate based on Eqn. 5.3 since its positively

correlated with the input pattern. On the contrary, if a pre-neuron fires after a

post-neuronal spike (i.e. tpre > tpost), the specific synapse ought to depress.

Following the recovery (STDP based weight modulation), the decay or forgetting

phase in a synaptic weight ensues, as illustrated in Fig. 6. During the decay phase, the

weights leak in both potentiation/depression window towards a baseline value with

varying leak time constants. Please note that in ASP, the decay phase (or weight

94

leaking) continues even when there is no spiking activity (or input stimulus) observed

at both post/pre neuron. For instance, during the refractory period, when a post

neuron does not spike, then in the absence of a pre-neuronal spike the weights will

continue to leak. This is in stark contrast to the traditional STDP learning wherein

the weight states are only altered in the presence of a pre- or post-neuronal spiking

activity. Thus, it can be inferred that the fundamental weight response in ASP is to

conduct STDP based weight modifications with intermediary weight decay (or leak)

at all time instants during the training period.

To emphasize the efficacy of ASP for adaptive learning, we validate our experi-

ments with two different kinds of decay: exponential and linear as illustrated by the

black and dotted red model, respectively, in Fig. 6.5. The formulations for each of

these decay are explained later. In Fig. 6.5, the baseline value of weights toward

which the weights decay is 0. This implies that the weights are dynamic or continu-

ously changing at every time instant during the training phase when input patterns

are presented. Please note, for the sake of convenience in representation and for clar-

ity, the characteristics of ASP with linear decay has not been shown for the depression

window in Fig. 6.5. However, it will follow similar behavior as the other ASP model

with weights decaying linearly toward the baseline value.

Fig. 6.6 shows the synaptic weight modulation using ASP for a given synaptic

weight based on the spiking patterns of the interconnecting neurons. As in Fig. 6.5,

the baseline value toward which the synapses leak is assumed to be 0 here. Please

note that while depression of weights in recovery phase is a result of negative corre-

lation between post and pre-neuron, the leak dynamics in decay phase (only shown

for exponential leak) encode the adaptive behavior of the network. The leak dynam-

ics determine which synaptic weights connected to a post neuron (that has learnt

old or insignificant data) should be forgotten to learn the new data. On the other

hand, the synaptic weight updates performed during the recovery phase potentia-

tion/depression enable an SNN to learn a generic representation of a class of input

patterns competetively. For instance, the weights of an excitatory layer post-neuron

95

W
ei

gh
t v

al
ue

 o
f

a
sy

na
ps

e

Input stimulus

Baseline weight value = 0

Recovery Potentiation tpost-tpre >0

Recovery Depression tpost-tpre <0

Decay phase (even in
absence of tpost/tpre)

Fig. 5.7. Weight response behavior of a particular synapse during inter-
mediate recovery (potentiation or depression) and decay phases.

learning a digit ‘2’ should spike for different instances of ‘2’ so that it learns a more

generic representation rather than just mimicking a specific instance. Thus, synaptic

depression (based on STDP) and leak (based on weight decay) have different roles in

ASP learning.

Note, Fig. 6.5, 6.6 are animations that show the weight modification with ASP

based on presence/absence of spiking activity. For the sake of clarity, we demarcated

the ASP rule into two phases since the weight update rule in the presence of a pre/post

spike is different than when spikes are absent. Input stimulus on the X-axis basically

indicates the presence (or absence) of pre/post synaptic spike that initiates a recovery

(or decay) phase. It quantifies the timing correlation (tpost − tpre) in a post/pre

neuronal pair.

5.4.3 ASP: Learning Rules

Now, we will discuss the mathematical formulations for ASP and understand

the temporal dynamics related insights that eventually enables the SNN to learn to

forget irrelevant old information while retaining significant data and adapting to new

patterns.

96

Recovery Phase

As described earlier, the weight dynamics are calculated using synaptic traces. In

ASP learning, we maintain three different kinds of traces, for each synaptic weight,

to track the spiking activities of the corresponding pre- and post-synaptic neurons:

• Recent presynaptic trace (Prerec) that does not accumulate over time (only

accounts for the most recent spike)

• Accumulative presynaptic (Preacc) trace that adds over time (accounts for the

entire spike history of the presynaptic neuron for a given time period or epoch

during which a particular pattern is presented to the SNN)

• Postsynaptic trace (Post) that accumulates over time based on the postsynaptic

neurons spiking activity.

The above trace values are computed as shown in Eqn. 5.6. When any spiking activity

is observed the trace value is increased, otherwise it decays exponentially.

Prerec(t) = exp(
−Prerec
τrec

); Prerec = 1 at tpre

Preacc(t) = exp(
−Preacc
τacc

); Preacc+ = 1 at tpre

Post(t) = exp(
−Post
τpost

); Post+ = 1 at tpost

(5.6)

Now, it is evident that in order to account for appropriate accumulative spike

history, the time constant for decay of the accumulative pre-trace (Preacc) has to be

larger than that of the recent pre-trace (Prerec). In our simulations, τacc = 10τrec,

τpost = 2τacc. Now, the weight update during the recovery phase follows the exponen-

tial STDP behavior discussed earlier. We use a modified version of the STDP model

used in [80] to obtain the weight changes in presence of input stimulus in ASP. When

a post-synaptic neuron fires a spike, the weight change ∆w is calculated based on the

presynaptic traces (Prerec, P reacc)

97

∆w = η(t)[(Prerec − offset)−
kconst
2Preacc

]

η(t) =
k1,const

(Post(t) + 1)

(5.7)

where η(t) is a time dependent learning rate inversely proportional to the post-

synaptic trace value (Post(t) from Eqn. 5.6) at a given time instant. The learning

rate decreases as the spiking activity of the post-synaptic neuron increases for a

given input. This ensures stable and retentive learning of an input pattern by a

particular neuron. It also prevents the neuron from quickly adapting to a new pattern

(or catastrophic forgetting). The offset ensures that the weights interconnecting

those pre-synaptic neurons that rarely lead to firing of a post-synaptic neuron will

depress. For instance, in case of digit inputs, the lower intensity pixel regions for

a particular digit will become more and more disconnected resulting in lowering of

synaptic weight values corresponding to those pre-neurons. In Eqn. 5.7, the first

part represents the potentiation or depression of weights based on the most recent

pre-synaptic spike (as the simple STDP model in [80]). However, as seen earlier, such

simplistic weight modification leads to erasure of memory traces. Besides precise

spike timings that identify the temporal correlation between input patterns, learning

rule should incorporate the significance of the inputs to modulate the weights. Input

based significance driven learning would enable the SNN to learn in a stable-plastic

manner in a dynamic environment.

The second part of Eqn. 5.7 (kconst/2
Preacc) quantifies the dependence of the weight

change on input significance. We define input significance as directly proportional to

the number of training patterns (of a particular input class) shown at the input layer

of an SNN. Consequently, for larger number of similar patterns, the corresponding

input neurons will have more frequent spikes. In that case, Preacc value will be high

that would eventually make the second term in Eqn. 5.7 less dominant for determining

the final weight update. Thus, for more frequent input spikes at the pre-neuron, the

98

weight update will be more prominent. Hence, the learning rule in the recovery phase

encompasses significance of the inputs with synaptic plasticity.

Besides significance driven learning, the second part of Eqn. 5.7 also enables an

SNN to learn more generalized input representations. Fig. 5.8 shows two scenarios

wherein the weight updates vary based on the frequency of input spikes. It is seen

that the final weight value towards the end of the recovery phase is greater for the

frequent input (I1). The prominent weights will essentially encode the features that

are common across different classes of old and new inputs as the pre-neurons across

those common feature regions in the input image will have frequent firing activity.

This eventually helps the SNN to learn more common features with generic represen-

tations across different input patterns. We can visualize this as sort of regularization

wherein the network tries to generalize over the input rather than overfitting such

that the overall accuracy of the network improves.

Note that during the recovery phase in ASP, the weight updates are triggered only

when a spike is fired by a postsynaptic excitatory neuron. Since the firing rate of the

post-synaptic neurons is generally low, the weight update does not require many

computational resources. Using a learning rule that updates the weights even at pre-

synaptic spikes will initiate a weight change for every post neuron in the excitatory

layer fully-connected to the pre-neuron. This will be computationally more expensive

to simulate in software simulations.

Decay Phase

The decay phase in ASP learning involves weight leak to emulate forgetting of

insignificant information to adapt to new data without catastrophic overlap of repre-

99

I1

I2

O1

W1 W2

W1 W3

W1

W2

W3
RECOVERY DECAY

I1

I2

tpre

tpre

tpost

tpost

O1

O1

More frequent input More significant
(corresponding to common features)

Less frequent input  Less significant
(corresponding to specific features)

Fig. 5.8. Significance driven weight update observed with ASP. More
frequent input spikes corresponding to the common features across old
and new input patterns will have a greater weight update than the less
frequent ones that correspond to specific features for a given input.

sentations. As discussed earlier, the weights can undergo an exponential/linear decay

(refer to Fig. 6.5) towards a baseline value as

τleak
dw

dt
= −αw Exponential decay

τleak
dw

dt
= −αlin Linear decay

τleak = k2,const[(Post(t) + 1) ∗ 2(vthresh+θ)]

(5.8)

where α, αlin are constant decay rates and τleak is the time constant of decay. τleak

is a time dependent quantity that is proportional to the post-synaptic trace value

(Post(t) from Eqn. 5.6), the homeostatic membrane threshold value (vthresh + θ) at

a given time instant and the current value of the synaptic weight w.

Earlier, in isolated weight decay learning, we observed that the network was overly

plastic modifying its weights for any new pattern. However, in order to retain the

learnt information, it is desirable that the corresponding weights should leak less. It is

evident that a neuron that has learnt a particular pattern will have a higher synaptic

weight. Also, the neuron will exhibit more spiking activity reckoned by the higher

post trace value Post(t) that will, subsequently, increase the time constant of decay,

τleak. Higher τleak causes the weight to forget less. The overall leak rate(α/τleak)

decreases with increasing τleak. Here, the value of Post(t) is indicative of how recent

100

and latest the input pattern is (i.e. higher Post(t) observed for most recent input). It

does not account for the significance of the input pattern defined in terms of number

of times a particular pattern has been presented to an SNN.

The homeostatic membrane threshold of a post-neuron is representative of the

significance of the input pattern. A neuron’s membrane threshold (vthresh + θ) will

be high only when it is firing more. A neuron spikes more learning a given pattern

well, when that pattern is presented several times to the network. Higher membrane

threshold qualifies that the post-neuron (in excitatory layer) has learnt a significant

input and its corresponponding synaptic connections should leak less. Whilst, the

connections to an excitatory neuron that has learnt a pattern that the network has

seen fewer number of times are forgotten. The weights corresponding to those neu-

rons should eventually be modified to learn more recent patterns. Hence, the SNN

learns to forget insignificant information while trying to learn more recent and retain

significant, yet old, data using ASP.

A key observation here is that the weight leak in the decay phase (irrespective

of linear or exponential decay) is dominated by the post-neuron’s spiking activity

(and membrane threshold). All weights connected to a post-neuron in the excitatory

layer will have similar (not exactly same due to dependence on current weight value)

decay time constant and hence show uniform leak dynamics during the decay phase.

On the contrary, during recovery phase, the weight dynamics of each synapse will be

different as it is determined by both the post and pre-neuronal spiking activity. In

Fig. 5.8, we see that both the weights connected to the post-neuron O1 exhibit almost

same leak. As the weight update in recovery phase was more prominent for I1 − O1

(2nd term in Eqn. 5.7), it finally settles at a higher value than that of I2 − O1.

Thus, the combined recovery/decay phase weight modulation in ASP ensures that

more prominent weights (corresponding to common features across different input

patterns) are forgotten less. This in turn helps to retain the common features (or

weight connections) from old data (forgetting connections that are specific to the old

101

data) while learning a new input pattern making ASP learning more generic. Note,

the values for all the hyperparameters used in Eqn. 5.6- 5.8 are shown in Table 5.1.

Table 5.1.
Parameter Table

Hyperparameters Value

τrec 4 ms

τacc 40 ms

τpost 80 ms

offset 0.2

kconst/k1,const 0.01

k2,const 1e2

α, αlin 0.01

5.5 Experiments

5.5.1 Simulation Methodology

The ASP learning algorithm was implemented in BRIAN [112] that is an open

source large-scale SNN simulator with parameterized functional models (LIF) for spik-

ing neurons. We used the hierarchical SNN framework to perform digit recognition

with the MNIST dataset [48]. The network topology and the associated synaptic

connectivity configuration were programmed in the simulator. The spiking activity

(or time instants of spikes) of pre- and post-neurons were monitored to track the cor-

responding pre/post synaptic traces that were used to estimate the weight updates

in the recovery/decay learning phase of ASP. As mentioned earlier (in Section 4.3.1),

we use the post-synaptic spike triggered weight update to speed up the simulation.

The effectiveness of the ASP algorithm was found to be dependent on the following

system parameters that had to be tuned in a holistic manner for stable-plastic learning.

102

• ASP recovery phase parameters, namely, the decay time constants of the accu-

mulative/recent presynaptic trace and postsynaptic trace.

• ASP decay phase parameters, namely, the decay rate of the weights (α, αlin).

The decay rate cannot be too high as it would result in faster weight leaking

prohibiting the neurons from learning any representation. Very low decay rate

will cause the connections to forget slowly that would result in subsequent

overlapping of representations while learning new patterns. We used a nominal

α value = 0.0001 for exponential decay and αlin value = 0.01 in our simulations.

Please note, we use identical parameters for neuron and synapse models, home-

ostasis, input encoding and input image presentation time as Diehl & Cook [80] for fair

comparison of our ASP learning with standard STDP learning. The standard STDP

learning model is implemented using the power law weight dependent rule [80, 105].

Furthermore, across all comparative experiments between standard STDP and ASP

described below, the SNNs in both cases were trained using the same number of

training images with equivalent dynamic environment setup. After the training is

complete, each excitatory neuron of the SNN encodes generalized representation of

the individual patterns as shown in Fig. 6.3 (a). During testing, the neurons that

have learnt a particular digit fire steadily for a corresponding test input based on

which the predicted class is inferred. This inference approach is similar to that of

Diehl & Cook.

5.5.2 Learning to forget with ASP in a dynamic digit recognition envi-

ronment

The main motivation for ASP is to come up with a biologically inspired learning

paradigm that will facilitate on-line and adaptive learning in non-stationary environ-

ments. In order to create a dynamic environment with digit recognition framework,

we presented the training instances of digits ‘0’ through ‘9’ sequentially with no rein-

forcement i.e. no training image is re-shown to the network. The digit categories are

103

SNN learnt with STDP

Network weights
after learning
digit ‘2’

Network weights
after subsequently
learning digit ‘1’

Network weights
after subsequently
learning digit ‘0’

(a)

SNN learnt with ASP w/ exponential decay

Network weights
after learning
digit ‘2’

Network weights
after subsequently
learning digit ‘1’

Network weights
after subsequently
learning digit ‘0’

(b)

SNN learnt with ASP w/ linear decay

Network weights
after learning
digit ‘2’

Network weights
after subsequently
learning digit ‘1’

Network weights
after subsequently
learning digit ‘0’

Prominent weights corresponding to common features
between new and old pattern

(c)

Fig. 5.9. Digit representations learnt in a dynamic environment with digits
’2’ through ’0’ shown sequentially to an SNN (with 9 excitatory neurons)
(a) learnt with STDP (b) learnt with ASP with exponential decay (c)
learnt with ASP with linear decay. Prominent weights corresponding to
common features across different categories that are accentuated during
the learning process with ASP have been selectively marked.

104

shown one-by-one with no intermixing of categories at any time during the training

phase. Thus, the network must learn to forget old digit categories and retain the

more recent ones while trying to learn a new category.

Fig. 5.9 shows the representations learnt in a fixed-size SNN (with 9 excitatory

neurons) with traditional STDP learning against our ASP learning (both exponential

and linear decay) in a dynamic environment (wherein digits ‘2’ through ‘0’ are pre-

sented sequentially in the order as ‘2→1→0’). We see that as the network is shown

digit ‘1’, ASP learnt SNN (Fig. 5.9 (b), (c)) forgets the already learnt connections

for ‘2’ and learns the new input. Also, ASP enables the SNN to learn more stably

as some neurons corresponding to the older pattern ‘2’ are retained while learning

‘1’. When the last digit ‘0’ is presented to the ASP learnt SNN, the connections to

the excitatory neurons that have learnt digit ‘2’ are forgotten to learn 0 while the

connections (or neurons) corresponding to recently learnt digit ‘1’ remain intact. This

is in coherence with our significance and latest data driven forgetting mechanism (in-

corporated in the decay phase in ASP) wherein older digits are forgotten to learn new

digits. However, with STDP learnt SNN, the representations overlap thereby render-

ing the network useless towards the end of training. It is worth mentioning that the

network representation after learning digit ‘1’ in Fig. 5.9 (a) is not very different from

the prior representation after learning digit ‘2’. This indistinguishability arises as the

network weights corresponding to ‘1’ overlap with the previously learnt weights of ‘2’.

Specifically, the overlap occurs in the inclined region of ‘2’ thereby making both the

SNN configurations visibly similar.

A notable observation in Fig. 5.9 (b), (c) (ASP learnt SNN) is that a new digit

(‘1’/ ‘0’) is learnt by forgetting specific features that have no similarity with the

new pattern and retaining (and accentuating) common features from the old pattern

‘2’). As discussed earlier, the common features are encoded in the prominent weights

(learnt during recovery phase of ASP). In Fig. 5.9, we can see from the color coding

that the prominent weights (or common features between digit ‘2’ and ‘1’; digit ‘2’ and

‘0’) have a higher intensity (almost black). This shows that ASP learns more generic

105

STDP ASP w/ exponential decay

0.5

0.3

0.1

-0.1

-0.3

-0.5
ASP w/ linear decay

(a) Dynamic environment (no data reinforcement)

20	

80	

90	

100	

0	
0																		2000																4000														6000																8000													10000	

Ac
cu
ra
cy
	(i
n	
%
)	

Number	of	tes<ng	examples	

(b)

Fig. 5.10. (a) Digit representations (shown for a sample of 196 neurons)
learnt in a dynamic environment with digits ’0’ through ’9’ shown sequen-
tially to an SNN (with 6400 excitatory neurons) with ASP and traditional
STDP learning. (b) Classification accuracy obtained from the networks
trained on the different learning models in dynamic environment as the
number of test instances shown to the network are varied.

representations associating relevant information (or connections in this context) from

already learnt data to new data. Please note that similar behavior is observed in both

exponential and linear decay based ASP.

Fig. 5.10 (a) shows SNNs (with 6400 excitatory neurons) learnt with ASP (both

exponential and linear decay) and standard STDP in a dynamic environment when

all digits ‘0’ through ‘9’ are presented sequentially. To ensure that the earlier digits

are not completely forgotten, the number of training instances of each digit category

were arranged in a decreasing order i.e. digit ‘0’ had more training instances than

digit ‘1’ and so on. It has been stated earlier that the number of times a particular

106

STDP ASP w/ exponential decay

0.5

0.3

0.1

-0.1

-0.3

-0.5
ASP w/ linear decay

(a) Data reinforcement

92	

94	

96	

98	

90	
1000																	3000																		5000																	7000																		9000								10000	

Ac
cu
ra
cy
	(i
n	
%
)	

Number	of	tes?ng	examples	

(b)

Fig. 5.11. (a) Digit representations (shown for a sample of 196 neurons)
learnt in a data reinforced environment with digits ’0’ through ’9’ pre-
sented in an intermixed manner to an SNN (with 6400 excitatory neurons)
with ASP and traditional STDP learning (b) Classification accuracy ob-
tained from the networks as the number of test instances are varied in
data reinforced environment.

category is shown to the SNN also quantifies the significance of that digit. So, the

network will try to retain more significant data while learning recent patterns. It is

clearly seen that the SNN learnt with our ASP encodes a better representation of the

input patterns in comparison to the standard STDP trained network. In fact, the

network is able to represent all digits suitably. In the latter case, we observe that most

of the representations are illegible due to substantial overlap. Fig. 5.10 (b) shows

the accuracy of the networks on the testing data from MNIST. While STDP yields a

very low average accuracy of 23.30%, ASP with exponential (or linear) decay has an

accuracy of 94.85% (or 94.2%). This reckons the effectiveness of ASP (predominantly

107

Fig. 5.12. (a) SNN after learning digits 0 through 8 with data reinforce-
ment (b) The same SNN from (a) after being presented with digit 9 learnt
with traditional STDP(c) The same SNN from (a) after being presented
with digit 9 learnt with ASP.

forgetting mechanism) for a dynamic on-line learning scenario. Furthermore, the

comparable accuracy with exponential and linear decay ASP indicates that both types

of decay can be effectively used to emulate the forgetting behavior and implement

significance driven learning.

5.5.3 Accuracy improvement with ASP over standard STDP

Till now, we have discussed how ASP enables an SNN to learn in a dynamic en-

vironment when the input digits are presented sequentially. As we saw earlier, SNN

trained with standard STDP has significant overlap of representation when the in-

puts are presented without data reinforcement. For fair comparison for classification

performance, we compare the accuracy for the two training methods when digits are

presented to the SNN in an intermixed manner (i.e. with data reinforcement wherein

108

the different digit categories are iteratively repeated over the training process). Fig.

5.11 (a) shows the network weights at the end of training for a SNN with 6400 exci-

tatory neurons learnt using ASP (both exponential and linear decay) and standard

STDP. Fig. 5.11 (b) illustrates the accuracy of the SNNs on the MNIST testing data.

ASP learning yields an average test accuracy of 96.8%/95.6% for exponential/linear

decay, respectively, that is ∼2.5% higher than that of 94.3% obtained with STDP

learning. This proves that the forgetting behavior realized with ASP does not dom-

inate the overall plasticity of synapses making the overall learning balanced. The

improvement in accuracy is also indicative of ASPs ability to generalize the network

that causes it to learn more generic representations of the training data thereby avoid-

ing overfitting. The slight difference in accuracy observed in the ASP case for linear

and exponential decay can be attributed to the randomness in the Poisson based

encoding of the input images.

To further elucidate the problem of sequential learning with STDP against ASP,

lets discuss two scenarios: In Fig. 5.12, an SNN (with 100 excitatory neurons) is

initially trained using STDP with data reinforcement (i.e. all image categories were

intermixed) for the digits 0 through 8. In Scenario 1 continuing the STDP training,

after this initial presentation of digits ‘0’ to ‘8’ (i.e. Environment 1), we subse-

quently presented the input image examples for the digit ‘9’ without reinforcing or

re-presenting any of the previous digits that resulted in data being overwritten. Fig.

5.12 (b) illustrates how weights associated with each neuron were affected in Envi-

ronment 2 (i.e. only digit ‘9’) with STDP learning, with many learned digits slowly

transforming into the digit ‘9’. In Scenario 2, we learnt the same SNN from Fig.

5.12 (a) using ASP (instead of STDP) while showing only digit ‘9’. It is evident

that changing the presentation of digits from Environment 1 to 2 is a dynamic or

sequential learning scenario. Fig. 5.12 (c) shows the weights learnt in the SNN with

ASP in Scenario 2. It is clearly seen that the network learns the digits ‘9’ without

any overlap while forgetting some old instances that are eventually transformed into

digit 9. Evidently, the SNN learnt with STDP (62.8%) yields lower accuracy than

109

(a) AWGN (b) AWGN and re-

duced contrast

Fig. 5.13. Noisy-MNIST images with (a) Additive White Gaussian Noise
(AWGN) (b) Reduced Contrast with AWGN.

ASP trained SNN
Data reinforcement: Digits ‘0’ through ‘2’ are presented in
an intermixed manner for n_MNIST with Gaussian noise

STDP trained SNN

0.5

0.3

0.1

-0.1

-0.3

-0.5

Fig. 5.14. Digit representations learnt with digits ’0’ through ’2’ presented
in an intermixed manner to an SNN (with 49 excitatory neurons) with
STDP and ASP for Noisy-MNIST images with AWGN as Fig. 5.13 (a).

that of ASP (73.4%). The lower accuracy with ASP in this case as compared to Fig.

5.11/5.10 is due to the lesser number of excitatory neurons used in the SNN. Thus,

in the absence of data reinforcement or retraining, training with STDP alone does

result in catastrophic forgetting of old data in a sequential learning environment.

110

ASP trained SNN
Data reinforcement: Digits ‘0’ through ‘2’ are presented in
an intermixed manner for n_MNIST with reduced contrast
and Gaussian noise

STDP trained SNN

0.5

0.3

0.1

-0.1

-0.3

-0.5

Fig. 5.15. Digit representations learnt with digits ‘0’ through ‘2’ pre-
sented in an intermixed manner to an SNN (with 49 excitatory neurons)
with STDP and ASP for Noisy-MNIST images with AWGN and reduced
contrast as Fig. 5.13 (b).

5.5.4 Denoising with ASP

The decay incorporated in ASP besides rendering an SNN to self-adapt in a dy-

namic environment also offers a key advantage of denoising by extracting relevant

features from noisy input images. To demonstrate this, we trained an SNN with

Noisy-MNIST (n-MNIST) [113] images as shown in Fig. 5.13. Fig. 5.13 illustrates

the sample images from the n-MNIST dataset with (a) Additive White Gaussian

Noise (AWGN) (b) a combination of AWGN and reduced contrast. Fig. 5.14 shows

SNNs (with 49 excitatory neurons) learnt with ASP and standard STDP when digits

‘0’ through ‘2’ are presented in an intermixed manner (with data reinforcement) for

the n-MNIST images from Fig. 5.13 (a). It is clearly seen that both STDP and ASP

are able to encode the corresponding digit representations. However, ASP owing to

the dynamic decay mechanism is able to complete eliminate the background noise

while selectively attending (or learning) the task relevant information in the data. It

is worth mentioning that, in the denoising experiments below, we compare the STDP

trained SNN against ASP with exponential decay and show the results for the same.

However, similar results can also be obtained for ASP with linear decay.

111

To further establish the adeptness of our ASP rule in reducing the influence of

noisy inputs, we train an SNN on the n-MNIST images from Fig. 5.13 (b) that have

AWGN with reduced contrast. The intensity of the digit pixels are now equalized

with that of the background noise pixels on account of the reduced contrast (as seen

in Fig. 5.13 (b)). Fig. 5.15 shows the representations learnt with ASP and standard

STDP for the same data-reinforced recognition scenario as that of Fig. 5.14. Now,

we can clearly see that that, in spite of the reduced contrast, the ASP learning is able

to distinguish the relevant information (or digit patterns) from the noisy background

and learn robust representations. The weight decay phenomenon with varying leak

rate in ASP (refer to Section 4.3.2) retains significant information while forgetting

(or leaking) the weights corresponding to irrelevant information thereby enabling the

selective exclusion of the background noise. In contrast, standard STDP owing to the

absence of dynamic weight decay is unable to filter out the relevant digit information

from the background noise of similar intensity. Thus, the representation learnt in the

latter case are mostly cluttered and obscure. We would like to note that, in both

cases of standard STDP and ASP, the SNNs were trained using the same number of

training images.

To quantify the classification performance on the n-MNIST images, we trained

a larger SNN (with 6400 excitatory neurons) with standard STDP and ASP in a

data-reinforced environment for digits ‘0’ through ‘9’. STDP in both cases yields a

lower accuracy (on the testing data from n-MNIST) than ASP. While the average

accuracy with STDP is 87.4% on just AWGN based noisy images (Fig. 5.13 (a)),

the accuracy degrades to 52.1% for the AWGN with reduced contrast images (Fig.

5.13 (b)). ASP, on the other hand, consistently performs better with 93.8% (85.6%)

classification accuracy for AWGN (reduced contrast with AWGN) n-MNIST images.

This illustrates how the adaptive decay process incorporated in ASP automatically

encodes selective filtering and attention towards task relevant features in the input

data further improving the robustness of the unsupervised learning paradigm.

112

5.6 Conclusion

In this chapter, we discussed a novel bio-inspired unsupervised learning rule Adap-

tive Synaptic Plasticity (ASP) for real time on-line learning with Spiking Neural

Networks (SNNs). We integrate weight decay with traditional STDP to devise our

dynamic weight update ASP mechanism that addresses “catastrophic forgetting”, a

key issue across conventional learning models. The weight decay employed in ASP

emulates the “forgetting” behavior of the mammalian brain. While STDP helps in

learning new input patterns, the retention of significant, yet old, data or gradual for-

getting of insignificant information is attained with weight decay. In ASP, we modu-

late the leak rate of the synaptic weight decay process using the temporal dynamics of

pre- and post-synaptic neurons that maintains a balance between continuous learning

and forgetting to construct a stable-plastic self-adaptive SNN for evolving environ-

ments. ASP owing to its significance driven “forgetting while learning” formulation,

enables an SNN to generalize over the training data with more generic learning of

representations (thus avoiding overfitting) yielding significantly improved accuracy

over traditional STDP methods.

Further, we would like to point out that in order to prevent “catastrophic forget-

ting” in STDP-learnt SNNs, the network is generally re-trained with both the new

and the old information (already learnt) when the network has to learn a new class.

However, in on-line real time learning, it is often impractical and even expensive to

store all old data samples for retraining. ASP offers a promising solution for real

time dynamic learning without the expensive re-training procedure. In addition to

the dynamic learning, the adaptive weight decay mechanism in ASP also enables un-

supervised denoising or selective attention towards relevant features in the input data

further improving the robustness of ASP learning.

Finally, the recent resurgence of neural networks after the artificial intelligence

winter era can be attributed to the learning of good, flexible representations from the

visual world. In the current digital era, incorporating active sensing and diverse task

113

modelling (classification, decision making, analytics) within the same learning model

will no doubt shape the nature of learning representations in future cognitive systems.

To that effect, the “learning to forget” behavior realized with ASP (inspired deeply

from biological principles) provides a potentially exciting and promising direction

towards improved representation learning with the emerging computing paradigm of

SNNs.

114

6. LEARNING TO GENERATE SEQUENCES WITH

COMBINATION OF HEBBIAN AND NON-HEBBIAN

PLASTICITY IN RECURRENT SPIKING NEURAL

NETWORKS

6.1 Introduction

Learning to recognize, predict and generate spatio-temporal sequence of spikes is

a hallmark of the nervous system. It is critical to the brains ability for anticipating

the next ring of a telephone or next action/movement of an athlete. Several neuro-

science works have shown that such abilities can emerge from dynamically evolving

patterns of neural activity generated in a recurrently connected neocortex [114–116].

Implementing a ‘stable and plastic recurrent spiking neural network for learning and

generating sequences with long-range structure or context in practical applications

(such as text prediction, video description etc.), however, remains an open problem.

Here, we develop a reservoir spiking neural model with a biologically relevant

architecture and unsupervised plasticity mechanisms that learns to generate sequences

with complex spatio-temporal relations. Generally, reservoir networks, owing to their

high level of recurrence, operate in a dynamic regime wherein stable input driven

periodic activity and chaotic activity tend to coincide [117, 118]. We show that the

chaotic activity can be reduced by effective tuning of connections within a reservoir

with a multi-time scale learning rule and diverse plasticity mechanisms. This helps in

the robust learning of stable correlated activity that is even resistant to noise. This

further enables the reliable generation of learnt sequences over multiple trials lending

our reservoir model a key feature characteristic of biological systems: the ability to

remember the previous state and return to the sequence being generated in presence

of perturbations.

115

Recent efforts in building functional spiking neural systems with Spike Timing

Dependent Plasticity (STDP) for self-learning on practical recognition tasks have

been mostly focused on feed-forward and hierarchical deep/shallow architectures

[22,80,119–121] with minimal recurrent connections (for instance, recurrent inhibitory

connections incorporated with such architectures for inducing competition and sta-

bilizing neural activity in an unsupervised learning environment). Another body of

work in the spiking domain encompasses ‘Reservoir or Liquid Computing frameworks

that attempt to capture the anatomy of the neocortex with substantial recurrent con-

nectivity between groups of excitatory and inhibitory spiking neurons [122–124]. [125]

proposed a similar randomly connected recurrent model, termed as echo state net-

work, that uses analog sigmoidal neurons (instead of spiking) as fundamental com-

putational units. In both liquid or echo state frameworks, the burden of training the

recurrent connections is relaxed by fixing the connectivity within the reservoir and

that from input to reservoir. Instead, an output layer of readout neurons is trained

(generally in a supervised manner i.e. with class labels) to extract the information

from the reservoir [126,127]. However, the fixed connectivity severely limits the abil-

ity of such frameworks to do general learning over varied applications. Such networks

perform poorly as the number of possible patterns (or classes) as well as the temporal

correlations (or context) between patterns increases.

It was shown recently that incorporation of synaptic plasticity within the reservoir

can result in the emergence of long-term memory [116] that can help in learning and

inferring relationships between inputs [128]. However, the main aim of those works

were to build neural computing models that suitably elucidate the activity of the

neocortex to better understand the mammalian brain. On the other hand, in this

work, we take a more practical approach to engineer a recurrent spiking model capable

of character-level recognition and word prediction. Essentially, given a dictionary of

visual words, our spiking reservoir model learns to recognize each visual character (or

alphabet) as well as the context/relation between subsequent characters of different

words such that it can consistently generate the entire word. Note, in this work, we

116

use the term ‘reservoir’ in the context of a recurrent spiking neural network similar to

that of a Liquid State Machine (LSM) [122] with spike-driven dynamics compatible

with STDP.

Similar to [116,128], we modify the synaptic weights of the connections from input

to reservoir as well as the recurrent connections within the reservoir to develop the

character-level language model. The learning is performed over different time scales.

While the fast input to reservoir learning, operating in millisecond range, facilitates in

recognition of individual characters, the slower learning of the recurrent connections,

operating in the range of 100 milliseconds, within the reservoir enables the network

to learn the context between the characters such that the learnt model can generate

words by predicting one character at a time.

In addition, to reduce the attractor states that emerge from the feedback loops

in the reservoir, we introduce a non-Hebbian adaptive weight decay mechanism in

the learning rule. The decay in addition to STDP enables synaptic depression for

hyperactive neurons in the reservoir that result from strong feedback dynamics. We

show that the combined effects of Hebbian and non-Hebbian plasticity mechanisms

results in a stable-plastic recurrent SNN capable of generating sequences reliably. We

also justify the effectiveness of the combined plasticity scheme by analyzing the eigen

value spectra of the synaptic connections of the reservoir before and after learning.

As shown in later sections, this theoretical analysis provides a key insight about the

inclusion of non-Hebbian decay to reduce chaotic dynamics within a reservoir.

6.2 Materials and Methods

6.2.1 Reservoir Model: Framework and Implementation

Network Architecture

The general architecture we consider is a 2-layered network as shown in Fig.8.1(a).

The topology consists of an input layer connected to a reservoir of N Leaky-Integrate-

117

and-Fire (LIF) neurons [80], with a connection probability PIN of 30%. The input

layer contains the pixel image data (with one neuron per pixel), corresponding to the

visual words or characters in the dictionary. Of the total N neurons in the reservoir,

80% are excitatory and 20% are inhibitory, in accordance with the ratio observed in

the mammalian cortex [129]. The reservoir is composed of all possible combinations

of recurrent connections, depending upon the pre- and post-neuron type at each

synapse: E→E, E→I, I→E, I→I, where E (I) denote excitatory (inhibitory) neurons.

These recurrent connections are set randomly with a relatively sparse connection

probability of PEE,EI,IE,II . Here, all connections going to excitatory neurons (i.e.

input to reservoir excitatory neurons and E→E connections within the reservoir) are

plastic, while all other connections maintain their initial random values.

Note that the synaptic weight modification of the plastic connections shown in

Fig. 8.1(a) helps in learning the rich temporal information present in the input

data and also enables the understanding of contextual dependencies (for learning

a word from individual characters) that span over multiple time steps. Another

interesting property of our model is that it does not contain a readout layer that is

generally present across all conventional reservoir spiking models [122, 123, 130] for

sequence recognition. The synaptic plasticity from input to reservoir, specifically,

helps in learning the generalized representations of the input patterns (i.e. images of

characters in this case). This in turn enables us to perform unsupervised inference

without a readout layer of output neurons.

In Fig. 8.1 (a), the connection probabilities and the Excitatory(E)/Inhibitory(I)

neuron ratio in the reservoir are chosen such that we have a balanced contribution

of E/I synaptic currents that contribute to the spontaneous activity of the reser-

voir [129]. Generally, the number of E/I neurons in the reservoir maintain a 4:1 ratio

as observed in the neocortex. Since E>I, inhibitory connections must be larger than

excitatory connections (i.e. PEE < PEI ×PIE). The connection probabilities are usu-

ally set randomly while ensuring that E/I balance is maintained. However, a simple

excitation of the reservoir with noisy Poisson inputs and observing the trajectory (or

118

neuronal firing activity from the reservoir) generally helps to choose a probability

range. For such random noisy inputs, the reservoir will be chaotic and should ideally

show irregular trajectory with varying firing activity for every stimulation. However,

if excitation dominates (PEE > PEI × PIE), then, there will be a mean positive drift

of the neuronal membrane potential towards the threshold, resulting in a fixed tra-

jectory (or regular firing activity). In contrast, if excitation and inhibition balance

each other, the membrane potential will follow a random trajectory resulting in a

trajectory with Poisson statistics as expected. This happens when PEE < PEI ×PIE.

While it might seem that a lot of synaptic fine-tuning is required, on the network

level, such an E/I balance can arise dynamically if two conditions are met. First,

connections must be sparse and random as shown in [131]. Second, connections for

inhibitory must be greater than excitatory. We follow both these rules in addition to

observing the reservoir trajectory for random noise triggering while initializing our

model. PIN (30%) is set such that a minimal firing rate of 15-20 Hz is observed from

the reservoir for a ∼45 Hz input that will allow significant synaptic learning within

the STDP timing window of simulation.

Synaptic Plasticity & Homeostasis

The synapses connecting the input to excitatory reservoir neurons (In→Exc) and

the E→E connections within the reservoir are trained using a combination of Heb-

bian STDP and non-Hebbian Heterosynaptic plasticity that prevents strong feedback

loops in the recurrent connections. STDP is a widely used weight update rule to

accomplish unsupervised learning in SNNs. The weights of the synaptic connections

are strengthened or weakened based on the time interval elapsed between pre- and

post-synaptic spikes. We adopt different forms of weight dependent STDP rule to

compute the weight updates. To implement the non-Hebbian plasticity, we intro-

duce an adaptive decay mechanism [23, 132] (that only depends on the state of the

post-synaptic neuron) in the weight update rule.

119

In addition to synaptic plasticity, we employ a homeostatic membrane threshold

mechanism [104], for the excitatory neurons in the reservoir that regulates the firing

threshold to prevent a neuron from being hyperactive and dominating the overall

response. Specifically, each excitatory neurons membrane threshold is not only deter-

mined by vthresh but by vthresh+θ, where θ is increased each time the neuron fires and

then decays exponentially [105]. It is worth mentioning here that the interplay be-

tween homeostatic threshold and combined Hebbian/non-Hebbian plasticity results

in a stable and plastic network with a balance between excitatory and inhibitory

currents at each neuron in the reservoir.

In [116, 123, 128], the authors have used inhibitory STDP to induce homeostasis

or balance the activity of the excitatory neurons by modifying the synaptic weights

of I→E recurrent connections. This is in stark contrast to our model where only the

E→E connections within the reservoir are plastic. We note that among all the re-

current connections, E→E help learn the context between subsequent patterns while

reinforcing patterns with similar statistics. The remaining connections mainly con-

tribute to fostering competition (E→I) among different excitatory neurons to learn

different patterns while maintaining a balanced and asynchronous firing activity (I→I,

I→E) in the reservoir. Since the main aim of our model is to learn the underlying

representations of visual inputs and understand the correlation between subsequent

patterns, we can achieve this simply with E→E plasticity, while maintaining an op-

timum fixed and sparse connectivity across remaining connections as specified in

Fig.8.1(a) .

6.2.2 Sequence Learning with the Proposed Reservoir Model

Given a visual word CAT composed of individual characters as shown in Fig.8.1

(b), our model processes each character individually to learn the representations of

each character with Input to Excitatory reservoir (In→Exc) plasticity. Simultane-

ously, the plasticity among the E→E connections within the reservoir should be such

120

(a) (b) (c) (d)

Fig. 6.1. (a) General topology of Recurrent SNN used for sequence learn-
ing and prediction (b) Sample image of dictionary of visual words (c)
STDP Potentiation window for Hebbian Phase learning of In→Exc &
E→E reservoir connections over diverse time scales (d) Synaptic changes
with the combined Hebbian/non-Hebbian Plasticity as a function of rate
of post-synaptic neuron that prevents strong attractor dynamics by reg-
ulating the over-potentiation of synapses. Note, (c) & (d) are cartoons
(that do not depict empirical data) to show the behavior of STDP based
weight change for slow/steep learning in (c) and effect of inclusion of non-
hebbian decay on the hyperactive neuronal weights in (d).

that the network learns that CAT is one entity with a sequential correlation (i.e. C

is followed by A followed by T). During testing, when the model is presented with a

test image C, the network should recognize the character and output the next most

probable character from the entity it has learnt previously. In order to perform such

sequence generation, we conduct the learning in two phases as described below.

Hebbian Phase

In this phase, we modify the synaptic weights of both In→Exc and E→E con-

nections with different forms of STDP. For In→Exc plasticity that helps in learning

the underlying representations of the individual images/characters, we perform the

weight updates using the power law weight dependent STDP rule [80,105], illustrated

in Fig.8.1 (c). To improve simulation speed, the weight dynamics are computed using

synaptic traces as proposed in [110]. When a post-synaptic neuron fires a spike, the

weight change ∆w is calculated as

∆wIn→Exc = η[(xpre − offset)(wmax − w)µ)];xpre+ = 1 (6.1)

121

where η (0.05) is the learning rate, wmax (1.0) is the maximum constraint imposed

on the synaptic weight, xpre is the pre-synaptic trace value that exponentially decays

with τpre = 30ms and w is the current weight value. The synaptic strength is increased

by w = w+∆wIn→Exc if a pre-neuron subsequently causes the connected post-neuron

to fire which signifies a strong causal relationship. On the other hand, the synaptic

strength is decreased for larger spike time differences as determined by the offset.

This training enables the excitatory neurons in the reservoir (connected to the input)

to encode a generic representation of an image pattern in their corresponding In→Exc

weights.

Concurrent to the above training, we simultaneously modify the E→E connections

within the reservoir with steeper STDP learning as shown in Fig. 8.1 (c). For the

E→E weight updates, we use a modified version of the exponential weight-dependent

STDP rule [80,133]. The synaptic weight updates based upon the arrival of pre- and

post-synaptic spikes are again calculated using synaptic traces as follows:

w = w − η1[xpostwµ](when pre-neuron fires);xpre′ = 1

w = w + η2[xpostxpre(wmax − w)µ)]; (when post-neuron fires);xpost = 1
(6.2)

where η1,2 is the learning rate (0.002, 0.01) and wmax value is 0.5. Similar to above

learning, the weights are potentiated or depressed based on the spike timing correla-

tion. However, with slower learning rate and smaller time constants of decay for the

traces (τpre′,post = 10, 20ms), significant synaptic weight updates are carried out for

really small spiking differences between pre- and post- neurons in this case. This slow

learning is desirable as the E→E connections must encode the correlation between the

individual images. Hence, the E→E connections should get updated only when both

the pre and post excitatory neuron in the reservoir have spiked very closely and over

longer periods of time. The synaptic traces will increase more and cause meaningful

weight updates for such stronger causal relationship. Please note that all the pre- and

post-synaptic traces in the above learning rules are disjoint and calculated separately.

Furthermore, the weight dependence terms in the above equations prevents abrupt

or fast change in weight values.

122

Non-Hebbian Phase

In addition to the exponential STDP learning, the E→E connections further un-

dergo a decay towards a baseline value (w0 = 0.2) to prevent the reservoir plasticity to

cause strong feedback loops in the network thereby curtailing the emergence of strong

attractor dynamics. Such attractor states cause the network dynamics to converge to

the same state for different input sequences, strongly degrading the inference capabil-

ity of the network. For instance, if the network learns the words CAT, COT wherein

the recurrent connections are strongly correlated for excitatory neurons representing

C, O, T, then, the network will only output O when presented with C during testing.

Ideally, we would like our Reservoir Model to give all possible sequences or words for

a given input.

The decay of E→E synaptic weights is performed at every simulation time step

as
dw

dt
= −γ(t)(w − w0) (6.3)

where γ(t) is the decay rate that is a time dependent quantity proportional to the

squared post-synaptic trace value ((xpost)
2 from Eqn. 2) and the homeostatic mem-

brane threshold value (vthresh + θ) at a given time instant. The direction of change

depends on the present value w of the synaptic weight in relation to the baseline value

w0. If the post-synaptic neuron fires more due to the strong feedback loops, the decay

rate proportionately increases weakening the E→E connections thereby reducing the

influence of the attractor state on the network dynamics.

In some situations, the attractor states may also arise due to disproportionate in-

put sequences. For instance, if the network learns the words CAT/CRAFT, CRAFT

on account of being a longer sequence will induce stronger correlation between the

neurons representing the underlying characters thereby creating an imbalanced re-

current model. The homeostatic membrane threshold of an excitatory neuron is

representative of the length of the input pattern. For a longer sequence, E→E con-

nections are reinforced more with the exponential rule (Eqn. 2) such that the neuron

123

learns the correlation well. The reinforcement in turns causes the neurons to spike

more thereby increasing their membrane threshold. Higher membrane threshold cor-

respondingly increases the decay rate, thus, preventing the length of input sequences

from causing strong attractor states. Please note that this decay mechanism is non-

Hebbian (does not involve pre, post spike timing correlation) and bears resemblance

with the heterosynaptic plasticity observed in the mammalian brain that prevents

runaway synaptic dynamics and stabilizes the distribution of synaptic weights [132].

The rate of change of weight with our combined plasticity scheme is illustrated

in Fig.8.1 (d). The adaptive decay mechanism helps in un-learning the weights of

neurons that become hyperactive due to strong feedback loops. For synaptic weights

that are larger than the baseline value w0, it allows synaptic depression of E→E

connections even for high post-neuronal firing activity that is not possible with lone

exponential STDP learning. In addition to reducing the attractor states, the synaptic

decay acts a memory consolidation mechanism wherein certain connections that are

relevant for the reliable generation of the sequence are selectively potentiated while

depressing recurrent connections that lead to undesirable correlation. As mentioned

earlier, both In→Exc and E→E connections are updated simultaneously with the

above mentioned rules (Eqn. 1-3). The In→Exc learning is done at each time step

based upon pre/post firing (order of ms). In contrast, the Exc→Exc weight updates

occur slowly over multiple time steps due to the slower STDP learning. This concerted

interplay of the multiple plasticity mechanisms (both Hebbian and non-Hebbian) leads

to a stable reservoir that avoids attractor states and reliably generates all possible

answers for different sequence of words learnt.

In our simulations, each individual character of the word sequence (that is a 28x28

pixel image of A to Z) is presented to the reservoir as Poisson spike trains (with firing

rates proportional to the intensity of the pixels) for 350 ms with a simulation time

step of 0.5 ms. For instance, while learning CAT, each individual character (C, A,

T) is shown individually and sequentially for 350 ms each. Then, before presenting

the next sequence/word (for instance, COT or a different representation of CAT),

124

there is a 300 ms phase without any inputs to allow all variables of all neurons

to decay to their resting values (except the adaptive membrane threshold). This

sequential presentation of the characters (without resetting the membrane potential

of the neurons until the entire sequence or word is shown) helps the E→E connections

to learn the correlation between them.

Note, the appendix (Section 6.5 at the end of the chapter) contains additional

details regarding the neuron/synapse model, input encoding method and the train-

ing/assignment/inference methodology. Please refer it to get further insights about

the intrinsic parameter values.

6.3 Results

The proposed reservoir model and learning was implemented in BRIAN [112].

We created a dictionary of visual words (samples shown in Fig.6.3 (a)) from the

handwritten characters in Char74K dataset [134] that were used to train and test our

reservoir model for sequence learning.

Fig. 6.2. (a) Response pattern of reservoir neurons for Gaussian Input
profile (average: 5 Hz) before and after learning (b) Visualization of
the weight matrices between Input→Exc and E→E reservoir connections
learnt with and without non-Hebbian decay

We first show the effectiveness of the combined plasticity mechanism in reducing

the strong attractor dynamics that emerge in a recurrent spiking neural network. We

simulated a reservoir model of 400 excitatory, 100 inhibitory LIF neurons with an in-

125

put layer composed of 400 Poisson Spike Generators that gives the input a Gaussian

shaped firing rate profile. In this case, learning the In→Exc and E→E connections

as described earlier (along with non-Hebbian decay) causes the reservoir neurons

spiking response (that fired randomly before training) to match the firing rate pro-

file of the input as shown in Fig.6.2 (a). Correspondingly, the weight matrices for

the In→Exc connections and E→E connections within the reservoir form a diagonal

structure representative of the bell-shaped Gaussian distribution of the input pat-

terns over the reservoir neurons, as illustrated in Fig.6.2 (b). In contrast, the weight

values accumulate in certain regions causing attractor dynamics in the reservoir be-

cause of the strong feedback loops when the non-Hebbian decay based plasticity is

not incorporated in the E→E synaptic learning as shown in Fig.6.2 (b). Such weight

crowding is caused by the Hebbian nature of lone STDP learning. Since STDP causes

reinforcement of correlated activity, the feedback loops between sub-groups of neu-

rons that are strongly interconnected due to the recurrent dynamics of the reservoir

will over-potentiate the E→E connections, further causing them to be overly active.

As a result, the weights get crowded instead of having a homogeneous distribution.

Inclusion of non-Hebbian decay in the learning mechanism helps in decreasing the

activity of such sub-groups of neurons by enabling synaptic depression even at high

post-synaptic firing rates as seen earlier (refer to Fig.8.1 (d)).

Now, we discuss the recognition and generation of words from visual characters.

We simulated a reservoir model of 200 neurons (160 excitatory, 40 inhibitory) to

recognize a dictionary of words: CAT, CRAFT, COT. Please note, the words selected

are such that some sequences have more common underlying characters (such as CAT,

COT) than others. To validate that our model is effective and can generate all possible

learnt sequences consistently without any bias towards a particular sequence, we use

the above selection. For training, we use 200 different representations for each word

composed of dissimilar characters (i.e. total 600 words for training). For testing, we

used 100 distinct representations of each character. Fig. 6.3 (a) shows the sample

training and testing images used. After training, the In→Exc connections that are

126

essentially responsible for recognizing the individual characters of the word encode

the generalized representations of the individual characters as shown in Fig.6.3 (b).

Individual characters get associated with different excitatory neurons in the reservoir

that fire steadily when presented with an input similar to the pattern it has learnt.

Sequence % Correct
Prediction

CAT 30
COT 26

CRAFT 32
DOG 93

C

Training Testing

(a) (b) (c) Sequence % Correct
Prediction

PEN 92
MAN 90
BIRD 95
TOW 83

88 %

Fig. 6.3. (a) Sample training and testing images of visual words (b) Rep-
resentations encoded by In→Exc connections of 100 excitatory neurons in
a 200-neuron reservoir. The color intensity of the patterns are representa-
tive of the value of synaptic weights (after training) with lowest intensity
(white) corresponding to a weight value of ‘0’ and highest intensity (black)
corresponding to ‘1’. (c) Percentage of correct predictions made by the
400-neuron reservoir for different sequences during testing. The prediction
accuracy is averaged across 100 trials of different presentations of the test
input characters: ‘C’, ‘D’, ‘P’, ‘M’, ‘B’, ‘T’.

During testing, when an input pattern is shown, several excitatory neurons as-

signed to different characters may potentially fire. For example, for a test image of

C, a group of neurons associated to D may also fire. The spiking/firing rates for

different groups will however differ (say spiking rate of C > D). However, since we

learn the E→E connections in the reservoir while presenting the individual characters

sequentially (without resetting the membrane potentials) during training, the average

firing rates of the neurons in the reservoir interestingly follow a particular sequence.

For a test image of C, the top-2 average spiking activity are observed for neurons

associated with C, A. Further, the difference between the top-2 spiking activities is

quite low (an average of ∼ 3-4). Similarly, based on the second highest spiking ac-

tivity, we input the next character (i.e. A in this case) to which the top-2 spiking

activity recorded are for neurons associated with A, T. Next, when we input T, while

127

the highest spiking activity is observed for T, the second highest activity is quite

random (associated with different neurons for varying test presentations) with an av-

erage spiking difference that is greater than 10. The large spiking difference in the

top-2 activity indicates that the last character of the sequence has been recognized

by the reservoir for a given test trial and no further inputs are then provided to the

reservoir. Please note, similar to training, the membrane potentials of the neurons in

the reservoir are not reset in a test trial until the entire sequence/word is generated

or a large spiking difference in top-2 activity is observed. We observe such consistent

sequential generation of top-2 spiking activity across all test trials. As the dictionary

contains 3 words starting with C, the second highest spiking activity alters between R,

A, O for different trials. This difference arises due to the randomness in the Poisson

distribution of inputs. In fact, for 100 trials, when the reservoir model was presented

with test input C, the network yielded a correct word from the dictionary 85 times

with CRAFT, CAT, COT generated 34, 23, 28 times respectively. In the remaining

15 trials, some garbage words such as CAFT, CRT etc. were generated.

Next, we simulated a reservoir model of 400 neurons (320 excitatory, 80 inhibitory)

to learn a larger dictionary with: CAT, COT, CRAFT, DOG, PET, MAN, BIRD,

TOW. Fig.6.3 (c) shows the number of times a correct sequence is generated by the

reservoir across 100 different presentations of the first character of every word: C,

D, M, B, T. The average accuracy of the reservoir is 91.2% wherein the sequence

generation was more accurate for PET, DOG, BIRD that share less characters with

the remaining words of the dictionary. Minimum accuracy is observed for TOW since

presentation of T in most cases yielded a large difference in the top-2 spiking activity

of the neurons. This can be attributed to the fact that T being the last character for

most words limits the neuron learning a T to develop contextual dependencies towards

other neurons. Few garbage words generated by the reservoir include COW, CRAT,

DOT, BRD, PT, MAT, BRAT among others. Of the garbage words, it is quite

remarkable to see that some are actual English words that the reservoir generates

not having seen them earlier. Another noteworthy observation is that most garbage

128

words end with W, T, D, that are essentially the last characters of the words in the

dictionary. Please note that in the words present in the dictionary, repetition among

characters is not present (for instance, SEEN or RALLY). In such cases, our reservoir

model generates SEN, RALY instead of the correct words. Since the generation

of sequences in our reservoir model is based on top-2 spiking activity, when E is

presented to the reservoir, the top-2 highest spiking activity with minor difference is

observed for neurons associated with E, N. We cannot identify such repetition among

characters with this scheme.

0
0.2
0.4
0.6
0.8

1

Man Dog Pet Bird Craft Cot Cat TowN
or

m
al

ize
d

W
ei

gh
ts

E-->E weights of correct sequences
E-->E weights of incorrect random sequences

(a) (b)

Fig. 6.4. (a) Normalized average value of trained weights of E→E reser-
voir connections corresponding to different correct/incorrect sequences
predicted by the 400-neuron reservoir model. All weight values are nor-
malized with respect to the highest average value (0.42) recorded for the
sequence ‘BIRD’ in this case. (b) Firing rates/Trajectories of 5 excita-
tory neurons in the 400-neuron reservoir encoding different characters.
Different color coding of trajectories specify different trials.

In order to demonstrate the effectiveness of our combined learning scheme for

generating sequences, we recorded the average synaptic weights of the E→E connec-

tions (that encode the correlation) learnt among the excitatory neurons associated

with different characters. Fig.8.7 (a) shows that the average value of the recurrent

connections learnt by the 400-neuron reservoir model described above, differs across

different words with minimal variation. In fact, for words with similarities (such

as CAT, COT, CRAFT) the weights have almost similar values. The slight varia-

tion across the weight values is indicative of the fact that the reservoir model (after

129

learning) has reduced chaotic activity. Generally, all recurrent networks exhibit some

chaotic activity owing to the feedback connections that, if not controlled, can cause

abrupt changes in neuronal activity leading to a severe degradation in their infer-

ence ability. The reduction in chaotic states enables our model to produce stable

recurrent activity while generating a particular sequence. This further establishes the

suitability of our combined learning scheme for reservoir plasticity. Additionally, the

strength of the connections between neurons associated with random sequences (that

are not present in the dictionary) such as DR, POM, TMO, CG etc. are very low

(2.46x lesser than the mean of all connections generating relevant sequences). This

result illustrates that the proposed reservoir model learns stably to form and retrieve

relevant sequences.

To supplement the above result of reduction in chaotic states, we plot the tra-

jectories (i.e. firing rates of neurons as time evolves) of 5 excitatory neurons in the

400-neuron reservoir that encode the characters (C, B, P, T) across 5 test trails as

shown in Fig.8.7 (b). It is clearly seen that the activity of each neuron prediciting a

particular word follows a stable trajectory with slight variation across different tri-

als for different sequences. When the network is presented with any input (say P

corresponding to Unit 5), initially, the trajectories vary across different trials until

they converge around time t= 0 ms, where the highest spiking activity is observed

for the given character in that particular neuron. Based on the second highest ac-

tivity, when the next character is presented to the network, the neuronal activity of

the neuron across different trials varies as expected (due to the randomness in the

input distribution as well as the chaotic activity). However, the trajectories tend to

converge toward one another with time implying more correlated activity. In fact,

sequences that have less commonality with other words (‘PET’, ‘BIRD’) have more

synchronized trajectories. Thus, we can infer that the contextual dependencies devel-

oped with the modification of E→E connections has a stabilizing effect on the chaotic

states of the reservoir. While the existence of chaotic states help a neuron differenti-

ate between sequences that have more similarities (such as CAT, COT), it does not

130

have an overwhelming effect disrupting its inference capability thereby enabling our

model to operate at the edge of chaos.

Noise amplitude =0 Noise amplitude =0.05

Noise amplitude =0.5 Noise amplitude =0.7

Fig. 6.5. Robustness of the reservoir spiking model learnt with combined
Hebbian/non-Hebbian plasticity against noise. Trajectories shown for 5
different excitatory neuron of the 400-neuron reservoir model for varying
noise activity across 10 different test trials.

Suitably learnt reservoir models generally operate with co-existing chaotic states

and stable trajectories as shown above. However, external noise can induce more chaos

in the reservoir that will overwhelm the stable patterns of activity due to the inevitable

feedback loops among recurrent connections. Here, we discuss the susceptibility of

our reservoir model (and hence our learning scheme) to external noise. To conduct the

noise analysis, we introduced random Gaussian noise along with the standard Poisson

inputs to the 400-neuron reservoir model during testing. The injection of noise alters

the net post-synaptic current received by the reservoir neurons (Ipost = Σi[WiInputi+

N0randn(i)], where N0 is defined as the noise amplitude) thereby affecting the overall

firing rate (or trajectory). In order to prevent the variation in trajectory caused

due to the randomness in the Poisson inputs, we fixed the distribution for a given

input/chararcter across different trials. Fig.6.5 shows the trajectories of 5 different

131

recurrent units for varying levels of noise (with different N0) for 10 different test

trials. Since the input distribution is constant, the neuronal trajectory during the

presentation of the first character in each trial (from t= 0 to t=350 ms) remains almost

equivalent in all cases. As time evolves, we input the next character predicted by the

reservoir based on the top-2 spiking activity that leads to a different trajectory for

each neuron, representative of the chaotic states. As N0 increases, we observe a steady

increase in the variation of the trajectories which in turn degrades the capability of

each neuron to predict correctly. However, only for noise levels with N0 ≥ 0.7, the

reservoir yields diverse trajectories. For moderate noise (with N0 ≤ 0.5), our model

exhibits high robustness with negligible degradation in prediction capability.

Fig. 6.6. (a) Variation of Prediction accuracy with noise amplitude (b)
Evolution of spectrum of eigen values of the reservoir synaptic connections
(includes E → E,E → I, I → E, I → I) in the complex plane before and
after learning

Fig. 6.6(a) also shows the prediction accuracy of the 400-neuron reservoir model

for varying noise levels. For noise amplitude of 0.5, the accuracy observed is 90.8%

(0.4% lower than the model without noise). Our models insensitivity to adequate

levels of noise further validates the efficacy of the combined Hebbian/non-Hebbian

plasticity learning in reducing the chaotic states within the reservoir model. The

reduction in chaotic dynamics during the training phase allows the network to look

132

back in history to formulate the predictions correctly even in presence of external

noise. The accuracy levels, however, degrade steeply with increasing levels of noise

(N0 beyond 0.5) as the chaotic activity (due to the recurrent feedback loops) starts

overwhelming the locally stable reservoir activity. For a noise amplitude of 1.0, the

accuracy observed is 78.2%.

To further elucidate the effectiveness of Hebbian/non-Hebbian plasticity in reduc-

ing chaos, we probed into random matrix theory that gives a powerful understanding

of the complex emergent behavior of large networks of neurons, such as the reservoir,

with random recurrent connections. Diagonalization of the synaptic weight matrix of

the reservoir connections yields equal number of modes as the number of neurons in

the reservoir [135]. Each mode is a complex numbered eigenvalue, whose real part cor-

responds to the decay rate of an associated mode and imaginary part is proportional to

the frequency of the pattern. Activation of any one of these complex modes results in

a network that exhibits spontaneous oscillations at the corresponding frequency [117].

The activation of multiple such modes results in complex dynamics due to a super-

position of individual frequencies in a highly nonlinear manner resulting in chaotic

dynamics/persistent reservoir activity as observed earlier in Fig. 8.7(b), 6.5. We ana-

lyzed the EigenValue (EV) spectra of the synaptic weights of the reservoir before and

after learning. The EV of all the connections (includes E → E,E → I, I → E, I → I)

in the reservoir initially (drawn from a random distribution) are distributed uniformly

in a circle in the complex plane in accordance with Girko’s circle law [136]. If the

real part of a complex eigenvalue exceeds 1, the activated mode leads to oscillatory

behavior contributing to the overall chaotic dynamics of the reservoir. From Fig. 6.6

(b), we observe that before learning, the eigenvalues of the 400-neuron reservoir have

a larger radius with more values > RealPart1 implying more activated modes charac-

teristic of chaos [135]. However, as learning progresses, the EV spectral circle shrinks

to a non-uniform distribution with a high density of values towards the center and

few modes > RealPart1. The dense center EVs are fixed points that are non-chaotic

and persistent. In fact, the changing shape of EV spectrum with training of E → E,

133

computationally corresponds to learning. The gradual movement of EV spectra from

chaotic to fixed points establishes the stabilizing effect of learning the E→E reservoir

connections with our combined plasticity scheme.

6.4 Discussion

We presented an unsupervised recurrent spiking neural model learnt with different

forms of plasticity for reliable generation of sequences even in presence of perturba-

tions. We incorporated a non-Hebbian decay mechanism, inspired from the Heterosy-

naptic plasticity observed in mammalian brain, with standard STDP learning while

evolving the recurrent connections within the reservoir to suppress the chaotic activity

emerging from the attractor states. Our results indicate that the mutual action of the

Hebbian/non-Hebbian plasticity enables the formation of locally stable trajectories

in the reservoir that works in symphony with the reduced chaotic states to produce

different sequences. While we demonstrate the efficacy of our model for fairly simple

character-level prediction of visual words, we believe that the general functional prop-

erties of our combined plasticity learning can be extended to larger recurrent models

for more complex spatio-temporal pattern recognition (such as action recognition,

video analysis etc.). Investigation of the learning rule on other recurrent architec-

tures is a promising direction of future research. However, large-scale networks, with

larger number of recurrent connections, are more vulnerable to chaotic dynamics,

that would require more number of training examples for convergence. This will af-

fect the training complexity of the reservoir. In such cases, the decay rate as well as

the learning rate (in Hebbian phase learning) has to be varied suitably to avoid the

formation of strong feedback dynamics while maintaining reasonable training time.

Also, the inference ability of the reservoir is a strong function of the synaptic con-

necticity (or size of the reservoir). To avoid escalating the reservoir size for more

complex problems, the learning rules can further be optimized. For instance, varying

the learning rate as training progresses or a mechanism that adapts the decay rate

134

(in the non-Hebbian phase) depending upon the extent of attractor states formed,

might further enhance the inference ability of a reservoir.

It is worth mentioning that there has been previous effort on combining differ-

ent plasticity schemes with reservoir models. In [137], the authors combine STDP,

synaptic scaling of E → E connections and homeostasis to engineer a plastic reser-

voir model that performs better than static networks on simple tasks. While our

work complements [137], the inclusion of non-Hebbian decay gives an entirely new

perspective toward learning in recurrent networks with reduced chaos and regular

trajectories even in presence of noise. Furthermore, this work deals with more diffi-

cult visual character prediction while entailing a detailed analysis of the contribution

of the Hebbian/non-Hebbian Plasticity scheme for stable memory states. Finally,

we would like to mention the recent work [138] that deals with reducing the attrac-

tor states developed in a recurrent SNN (different from our model) by un-learning

the strong feedback connections after training. In contrast, the combined plasticity

scheme proposed in this chapter can serve as a general learning methodology that

cohesively reduces the synaptic weights of strong correlations during training for more

robust and noise-resilient recurrent SNN implementations.

6.5 Appendix

6.5.1 Neuron and Synapse Model

We use the standard Spiking Neural Network (SNN) dynamics to model the neu-

ronal and synaptic changes in our reservoir spiking model. As shown in Fig. 6.7,

a post-neuron receives the pre-synaptic spikes modulated by the synaptic strengths

that results in a change in its membrane potential. Synapses are modeled by exponen-

tially decaying conductance changes wherein the conductance increases by a synaptic

weight, w, on arrival of a pre-synaptic spike. Otherwise, the conductance continues

135

Vmem

Vthresh

Vmem

Pr
e-

N
eu

ro
ns

Po
st

-N
eu

ro
ns

j

i
Vpre

Vthresh

Fig. 6.7. A typical SNN architecture consisting of pre-neurons and post-
neurons interconnected by synapses. The pre-synaptic voltage spike Vpre
is modulated by the synaptic weight, w, to get the resultant post-synaptic
current, Ipost. The post-neuron integrates the current from each intercon-
nected pre-neuron that causes its membrane potential, Vmem, to increase
and spikes when the potential crosses a certain threshold, Vthresh.

to decay. The dynamics of both Inhibitory (Inh) and Excitatory (Exc) conductance

for corresponding pre-synaptic neurons are

τe
dge
dt

= −ge τi
dgi
dt

= −gi (6.4)

where τe(2ms), τi(4ms) are the time constants for Excitatory and Inhibitory post-

synaptic potentials.

We use the Leaky-Integrate-and-Fire (LIF) model illustrated in Fig. 6.8 to simu-

late the membrane potential Vmem of a neuron as

τmem
dVmem
dt

= (Vrest − Vmem) + ge(Vexc − V) + gi(Vinh − V) (6.5)

where Vrest is the resting membrane potential (-65 mV/-60 mV for Exc/Inh neu-

rons, respectively), Vexc (0 mV) and Vinh (-100 mV) the equilibrium potentials of Exc

and Inh synapses, τ is the leak time constant (60 ms/ 10 ms for Exc/Inh neurons).

The LIF model causes Vmem to increase or decrease when pre-synaptic spikes are re-

ceived and to otherwise decay exponentially. The post-neuron fires when Vmem crosses

136

vrst

vthresh

Refractory Period

Post neuron spikes (tpost)

(tpost- tpre)

Pre-synaptic spike
train

Post-neuron’s
Membrane Potential

time

time

Fig. 6.8. The Leaky-Integrate-and-Fire dynamics of the membrane po-
tential of a post-neuron that increases upon the arrival of pre-synaptic
spike and decays subsequently. The post-neuron fires when the potential
exceeds the threshold Vthresh. The potential is then reset to Vrst and a re-
fractory period ensues during which the neuron is prohibited from firing.
The relative timing of the post-neuron and pre-neuron spikes (tpost− tpre)
determines the synaptic potentiation.

the membrane threshold vthresh (-52 mV/ -40 mV for Exc/Inh neurons, respectively)

and then its membrane potential is reset to vrst (-65 mV/ -45 mV for Exc/Inh neu-

rons). After each firing event, a refractory period (5 ms/ 2 ms for Exc/Inh neurons)

ensues during which the post-neuron is inhibited from firing even if additional input

spikes arrive. Please note that both inhibitory and excitatory neurons in our proposed

reservoir architecture follow the above LIF dynamics with different parameters.

6.5.2 Input Encoding

The input images of characters from the Char74K dataset (that comprise the

visual words of the dictionary) are presented to the reservoir model as Poisson based

spike trains, with firing rates proportional to the pixel intensity value. Specifically,

each pixel intensity is divided by 6 resulting in firing rates between 0 and 42.5 Hz

for standard grayscale valued pixels in the 0-255 range. As mentioned in the main

manuscript, each input is presented to the reservoir for 350 ms. If the excitatory

neurons in the reservoir, for a given input image, fire less than 5 spikes within the

137

350ms presentation time, the input firing rate is then increased by 20 Hz and the

image is presented to the network again for 350 ms. This procedure is repeated until

the reservoir outputs at least 5 spikes for the given input.

6.5.3 Training, Assignment and Inference

The plastic synapses connecting the input to the reservoir excitatory (In→Exc)

neurons and the E→E connections within the reservoir are trained using the combined

Hebbian/non-Hebbian Plasticity mechanism as mentioned in the manuscript. By the

end of the training phase, the In→Exc connections learn to encode the generalized

representations of each of the characters in the visual word/sequence while the E→E

connections learn the correlation between each character. After the training, we set

the learning rate for all plastic connections to zero and fix the adaptive membrane

threshold of each excitatory neuron in the reservoir (as obtained from homeostasis).

Then, the training set is presented once again to the reservoir model. Now, each

excitatory neuron is assigned a particular class (or character) for which it spiked

the most during this presentation. The assignment phase is the only time when

training labels are used. Otherwise, the training of synaptic connections is completely

unsupervised (i.e. no use of class labels).

During testing, when the reservoir is presented with a test image of an individual

character from the visual word sequence, the test input is predicted to belong to the

class represented by the group of assigned neurons with the highest average spiking

rate. In addition, as described in the manuscript, we also monitor the second highest

spiking activity among the reservoir neurons to obtain the next character of the

sequence. The next character predicted is then presented to the reservoir and this

process is repeated until the entire sequence has been generated. We use the value

of the difference between the top-2 spiking activity to gauge whether or not sequence

generation is done, as described in Section 6.3 above.

138

7. DISCRETIZATION BASED SOLUTIONS FOR SECURE

MACHINE LEARNING AGAINST ADVERSARIAL

ATTACKS

7.1 Introduction

Deep Learning Networks (DLNs) have exhibited better than human performance

in several vision-related tasks [4]. However, they have been recently shown to be

vulnerable toward adversarial attacks [10,27,139]: slight changes of input pixel inten-

sities can fool a DLN to misclassify an input with high confidence (Fig. 7.1). What

is more worrying is that such small changes (that craft adversaries) are visually im-

perceptible to humans, yet, mislead a DLN. This vulnerability severely limits the

potential safe-use and deployment of DLNs in real-world scenarios. For instance, an

attacker may fool a DLN deployed on a self-driving car to mispredict a STOP sign

as a GO signal, and cause fatal accidents.

Subsequently, there have been several theories pertaining to the adversarial suscep-

tibility of DLNs [139]. The most common one suggests that the presence of adversary

is an outcome of the excessive linearity of a DLN (a property of high-dimensional dot-

products). While one can argue that rectified linear unit (ReLU) activation imposes

non-linearity in a model, the linear operations such as Convolution, Pooling exceed

the number of non-linear ReLU operations. Further, ReLU is typically a linear func-

tionality in the > 0 regime, and hence, plagues a DLN to be sufficiently linear. Now,

this linearity causes a model to extrapolate its behavior for points in the hyper-space

(of data and model parameters) that lie outside the training/test data manifold. Ad-

versarial inputs, essentially, are images that are synthesized such that they lie far

from the typical data manifold and hence get misclassified.

139

Fig. 7.1. An image of a ship perturbed with adversarial noise yields
an adversarial image that fools the classifier. The classifier predicts the
original image correctly with a confidence of 92%, while gets fooled by
the adversarial image mispredicting it as plane with a high confidence of
91%.

Fig. 7.2 (a) demonstrates this data manifold intuition and adversarial input cre-

ation with a cartoon. Since DLNs are discriminative models, they partition a very

high-dimensional input space into different classes by learning appropriate decision

boundaries. The class-specific decision boundaries simply divide the space into hyper-

volumes. Interestingly, these hyper-volumes encompass the training data examples

as well as large areas of unpopulated space that is arbitrary and untrained. This

extrapolation of decision boundary beyond the training data space is a result of lin-

earity, that in turn, gives rise to generalization ability. The fact that a model trained

only on training data is able to predict well on unseen test data (termed as, gener-

alization) is a favorable outcome of this extrapolation. Unfortunately, generalization

also exposes a model to adversarial attacks. Adversarial data are created by simply

adding small perturbations to an input data point, that shifts it from its manifold

(or hyper-volume) to a different hyper-volume (that the model has not been trained

upon and shows extrapolated behavior), causing misclassification.

From the above intuition, one can deduce that adding regularization features to

a DLNs training will improve adversarial robustness. In fact, the most effective form

of adversarial defense so far is training a model with adversarial data augmentation

(called adversarial training) [6]. It is evident that explicit training on adversarial data

will increase the models capability to generalize and hence, predict correctly on unseen

140

adversarial data. However, the above discussion on excessive linearity and hyper-space

dimensionality points to an alternate and unexplored regularization possibility, that

is discretizing or constraining the data manifold for achieving adversarial robustness.

For instance, discretizing the input data (say from 256-pixel value levels (or 8-bit) to 4

levels (or 2-bit)) reduces the regions into which data can be perturbed. In other words,

the minimum perturbation required to shift a particular data point from one hyper-

volume to another will increase in a discretized space (Fig. 7.2 (b)). This in turn will

intrinsically improve the resistance of a DLN. Similarly, discretizing the parameter

space (as in binarized neural networks (BNNs) [140]) will introduce discontinuities

and quantization in the manifold (that is non-linear by nature). This will further

decrease the extent of hyper-volume space that is arbitrary/untrained and thus reduce

adversarial susceptibility (Fig. 7.2(b)). It is evident that such discretization methods

have an added advantage of computational efficiency. In fact, low-precision neural

networks (BNNs and related XNOR-Nets [141]) were introduced with a key motif

of obtaining reduced memory and power-consumption for hardware deployment of

DLNs.

We demonstrate that discretization, besides offering obvious efficiency improve-

ments, has far-reaching implication on a models adversarial resistance. We particu-

larly emphasize on three different discretization themes and illustrate their suitability

toward improving a DLNs adversarial robustness, as follows:

• Discretization of input space: We reduce the input dimensionality by quantiz-

ing the RGB pixel intensities into a variable range: 28 = 256 to 22 = 4. We

show that for minimal loss in accuracy, the adversarial robustness of a model

substantially improves (< 1% accuracy difference between clean test and ad-

versarial test data), even, without any adversarial training. Furthermore, we

show that combining adversarial training with 2-bit input discretization makes a

model substantially more robust (than adversarial training with full 8-bit input

precision) for large perturbation ranges.

141

Fig. 7.2. Cartoon of the intuition behind adversary creation and dis-
cretization. (a) The data points (shown as ’dots’) encompass the data
manifold in the high-dimensional subspace. The classifier is trained to sep-
arate the data into different categories or hyper-volumes based on which
the decision boundary is formed. Note, the decision boundary is a char-
acteristic of the trained parameters (weights) of the model. The decision
boundary is, however, extrapolated to vast regions of the high-dimensional
subspace that are unpopulated and untrained because of linear model be-
havior. Adversaries are created by perturbing the data points into these
empty regions or hyper-volumes and are thus misclassified (orange mis-
predicted as green in this case). (b) Discretization quantizes the data
manifold thereby introducing a minimum perturbation required to shift a
data point. As quantization will increase, so will the minimum allowed
distortion. Further, discretization constrains the creation of adversaries
since not all transitions can cause a data point to shift between hyper-
volumes.

• Discretization of parameter space: We show that models trained with low-

precision weights and activations, such as BNNs, are intrinsically more robust

to adversarial perturbations than full precision networks. Furthermore, we find

that training BNNs with adversarial data augmentation is difficult. However,

increasing the capacity of the BNN (with more neurons and weights) minimizes

the adversarial training difficulty. For sufficient model capacity, adversarially

trained BNNs yield higher adversarial robustness than their full-precision coun-

terpart.

• Discretization of both input & parameter space: We demonstrate that combining

input discretization with binarized weight /activation training greatly improves

142

a model’s robustness. In fact, training a BNN with input discretization (say, 2-

bit input) yields similar or better adversarial accuracy as that of an adversarially

trained full-precision model. Thus, the combined discretization scheme can be

seen as an efficient alternative to achieving adversarial robustness without the

expensive data augmentation procedure (note, only for single-step attacks).

7.2 Related Work

Based on the intuition demonstrated in Fig. 7.2, robustness of DLNs can be at-

tributed to two factors: property of the input and model property. Consequently,

there have been many recent proposals [142–146] that exploit the input-dependent

factor and try to remove adversarial perturbations by applying input preprocessing or

transformations. Due to the simplicity of this approach, these methods are attractive

for practical implementations as they do not incur large computational overhead (as

with adversarial training) and do not interfere with the learning process. Our work

complements the results of the prior works while presenting a novel result on the ef-

fectiveness of combined parameter and input discretization for adversarial robustness.

One of the first works on input discretization by Xu et al. [145] proposes a depth-

color-squeezing technique wherein they reduce the degrees of freedom available to

an adversary by ‘removing’ unnecessary features. Our pixel discretization scheme is

based on their color depth reduction technique. However, the key idea in [145] is

to compare the model’s prediction on the original input with its prediction on the

squeezed input during testing. Xu et al. train the model with regular inputs and

during inference use pixel discretization to detect adversarial inputs. That is, if the

original and squeezed inputs produce predictions with large difference (greater than

an user-defined threshold), the model deems the input to be adversarial and rejects

it. Ultimately, the model outputs prediction for only legitimate or non-adversarial in-

puts. In contrast, the key novel aspect of our work is to train a model with discretized

pixel data such that the model looks at a limited range of input values during training

143

that decreases or constrains its’ ability to overly generalize in the high-dimensional

subspace. Similarly, the thermometer encoding technique and input transformation

technique proposed in [143], [142] are guided by the same intuition of limiting the

range of adversarial perturbations by constraining the input. Guo et al. [142] trained

the network with images transformed in various ways and observed improved adver-

sarial resistance. However, they measured robustness for controlled gray-box attack

settings (where, the model parameters are known to the attacker but the input trans-

formations are unknown). Our results on white-box attack is a stronger notion of

robustness as we assume all parameters as well as input discretization known to the

attacker. Thus, our results while supporting the claims of [142] are more substan-

tial and generalizable. In Buckman et al. [143], the authors propose a thermometer

encoding technique to map input pixels to a binary vector in order to make more

meaningful change during pixel discretization without losing any information from

the original image. While, the authors show good adversarial robustness results on

small tasks, such as, MNIST [147], they are shown to achieve poor performance on

more complex datasets (like, CIFAR10 [148]) [144].

In order to address the limitation of the prior works solely based on input trans-

formation, we investigate the effect of combining model discretization with input

discretization thereby leveraging both criteria that contribute to adversarial dimen-

sions. A recent work [149] demonstrated the effectiveness of BNNs against adversarial

attacks and observed a similar difficulty in adversarial training with BNNs. However,

they did not consider input space discretization and its impact on robustness. While

complementing their results, we show that quantizing the input pixels of a BNN dur-

ing training greatly improves its robustness, even waiving the need for the expensive

and time-consuming adversarial training, for certain perturbation ranges. To summa-

rize, the key contributions and novelty that discerns this work from above mentioned

works are:

• In contrast to previous works that use input transformation during test phase

only, our analysis shows that DLN models can resist single-step attacks across

144

different black-box, white-box and gray-box scenarios if the quantization mea-

sure is introduced during training.

• We show that combined input and parameter discretization during training is

a major enabler towards imparting adversarial robustness. To the best of our

knowledge, this work is the first to formally evaluate and analyze the impact of

input and parameter space discretization for DLNs (across simple and complex

datasets including CIFAR10, CIFAR100, ImageNet2012 dataset) on robustness.

• We provide an extensive comparison of our approach (combining input and pa-

rameter discretization) against prior works using only input discretization [145]

or only parameter discretization [149] for multi-step iterative attack scenarios.

The results (discussed in Section IV.F) establish combined scheme as a stronger

defense in imparting intrinsic robustness to DLNs. However, such combined

schemes while doing better than prior works [145,149] still remain vulnerable in

iterative attack scenarios. This is a significant aspect of our work as it exposes

the vulnerability/limitation of discretization techniques.

7.3 Background on Adversarial Attacks

Generating Adversaries : Adversarial examples are created using a trained DLNs

parameters and gradients. As shown in Fig. 7.1, the adversarial perturbation, ∆, is

not just some random noise, but carefully designed to bias the networks prediction

on a given input towards a wrong class. Goodfellow et. al [139] proposed a simple

method called Fast Gradient Sign Method (FGSM) to craft adversarial examples by

linearizing a trained models loss function (L, say cross-entropy) with respect to the

input (X):

Xadv = X + ε× sign(∇XL(θ,X, ytrue)) (7.1)

Here, ytrue is the true class label for the input X, θ denotes the model parameters

(weights, biases etc.) and ε quantifies the magnitude of distortion. The net pertur-

145

bation added to the input (∆ = ε× sign(∇XL(θ,X, ytrue))) is, thus, regulated by ε.

Distorting the input image in the direction of steepest gradient has the maximal effect

on the loss function during prediction. Intuitively, referring to Fig. 7.2, this distortion

shifts the data point from the trained region or hyper-volume to an arbitrary region

thereby fooling the model.

Types of Attacks : There are two kinds of attacks: Black-Box (BB), White-Box

(WB) that are used to study adversarial robustness [150]. WB adversaries are created

using the target models parameters, that is, the attacker has full knowledge of a

target models training information. BB attacks refer to the case when the attacker

has no knowledge about the target models parameters. In this case, adversaries are

created using a different source models parameters trained on the same classification

task as the target model. Since BB attacks are transferred onto the target model,

they are weaker than WB attacks. Security against WB attacks is a stronger notion

and robustness against WB attacks guarantees robustness against BB for similar

perturbation (ε) range.

Adversarial Training : Adversarial training simply injects adversarial examples

into the training dataset of a model [6]. For each training sample in the dataset,

an adversary is created using FGSM [139]. There are several forms of adversarial

training. For instance, instead of using the same ε for all training examples, [151]

and [150] propose to sample a unique ε (from a random normal distribution) for each

training example. This increases the variation in the adversaries created, thereby,

increasing the robustness of a network to larger range of ε values. The authors

in [152] use WB adversaries created, using a multi-step variant of FGSM to guarantee

a strong defense against both BB and WB attacks. Note, the common theme across

all adversarial training methods is data augmentation.

In this work, in most experiments (Section IV.A - IV.D), we focus on adversarial

attacks created using FGSM and evaluate the robustness of models against WB ad-

versaries. We evaluate a model’s robustness and report adversarial accuracy on the

adversarial dataset created using the test data for a given task. We show additional

146

attack results considering BB/gray-box attack with adversaries created using FGSM

(in Section IV.E). We also compare our analysis on input and parameter discretized

network’s robustness with prior works [144,145,149] utilizing either input or param-

eter discretization on multi-step projected gradient descent [152] based iterative WB

attack scenarios in Section IV.F.

7.4 Experiments

We conduct a series of experiments for each discretization theme, primarily, using

MNIST [147] (Fully Connected Network, FCN) and CIFAR10 [148] (AlexNet [153]

architecture), detailing the advantages and limitation of each approach. We com-

pare the adversarial robustness of each discretization approach with its full-precision

counterpart (with and without adversarial training), using ε values reported in re-

cent works [150, 152]. For adversarial training, we employ Random-step FGSM (R-

FGSM) proposed in [150] to create a variety of training set adversaries. R-FGSM

perturbs the input X with a small random step (sampled from a normal distri-

bution N) before adding the loss gradient to the input: Xadv = X + ∆, where

X = X + αsign(N (0, I), α = ε/2. We use WB adversarial training to confer strong

robustness toward all forms of attacks. Note, for MNIST (CIFAR), we use ε = 0.3

(8/255) during adversarial training. For evaluating the robustness of parameter space

discretization, we use BNNs [140, 153] to evaluate CIFAR10 and MNIST datasets.

We also evaluate the robustness of discretization methods on large-scale datasets,

CIFAR100 (ResNet20 architecture [154]) and Imagenet [155] (AlexNet architecture)

using XNOR networks [141, 156]. Please note, for MNIST we use two different FCN

architectures: FCN1-4 hidden layer network with 6144 neurons each (784-6144(×4)-

10), FCN2-4 hidden layer network with 600 neurons each (784-600(×4)-10). We im-

ported github models [153,156] for implementing our experiments. We used the same

hyperparameters (such as weight decay value, learning rate etc.) as used in [153,156]

to train our models.

147

In all experiments, we impose the discretization constraints (input discretization

or parameter discretization or both) during training as well as testing. To elucidate

this, we describe the training and test methodology for each of the discretization

themes below:

• Input Discretization Training/Testing Method : Here, we quantize the input

both during training and testing. Say, for 2-bit input discretization (pixel in-

tensities vary in [0, 4] range), we train a model with 2-bit discretized inputs.

During testing, both adversarial and clean test inputs are quantized into 2-bit

discretized forms and fed into the model to monitor the prediction accuracy.

Note, for input discretization experiments in Section III.A, we use full-precision

models (that is, parameters and activations of the DLN model have 32-bit float-

ing point precision).

• Parameter Discretization Training/Testing Method : Here, we quantize the pa-

rameter/activation values of a DLN both during training and testing. Say, for

BNN, we train a model with extremely low precision weights and activation

values clamped to {+1, -1}. During testing, both adversarial and clean test in-

puts are fed into the binarized model to monitor the prediction accuracy. Note,

for parameter discretization experiments in Section III.B, we use full-precision

8-bit inputs (that is, input pixel intensities range from [0, 255]).

• Input and Parameter Discretization Training/Testing Method : Here, we quan-

tize the input as well as parameter/activation values of a DLN both during

training and testing. Say, for 2-bit input discretization BNN, we train a model

with {+1, -1} weight/activation values while showing 2-bit quantized inputs.

During testing, both adversarial and clean test inputs are again quantized to

2-bit range and fed into the BNN to monitor the prediction accuracy. Note, for

input and parameter discretization experiments in Section IV.C, we use BNN

or XNOR models with 2-bit/4-bit/8-bit input precision.

148

It is worth mentioning that this is the only other work besides [149] demonstrating the

effectiveness of discretized/binarized parameter space on adversarial attacks. While

[149] conducted experiments with various forms of attacks (primarily, on MNIST), we

restrict ourselves to the WB attack scenario and extrapolate our analysis on larger

datasets (CIFAR10, CIFAR100, Imagenet).

7.4.1 Discretization of Input Space

Fig. 7.3. Sample images from CIFAR10 dataset for varying levels of input
pixel discretization: 2− bit, 3− bit, 4− bit, 8− bit

With input space discretization, we convert raw integer pixel intensities (0 ≤

I ≤ 255) that are typically 8-bit (or 8b) values to a low precision range of δ bits

(0 ≤ Iδ ≤ 2δ) as:

Iδ =

⌊
I

(256/2δ)

⌋
(
256

2δ
) +

1

2
(
256

2δ
) (7.2)

where bc denotes integer division. Such quantization reduces the number of data

points (given a grayscale input image of size N × N) in the manifold from 28N
2

to 2δ
N2

. This can be broadly interpreted as constraining the data space (that can

also be viewed as limiting the range of values across different input dimensions). In

accordance with our intuition in Fig. 7.2, constrained data space can possibly limit the

creation of adversaries as well. Fig. 7.3 illustrates sample CIFAR10 images discretized

to varying δ values. The corresponding accuracy (trained on AlexNet for 20 epochs)

is shown in Table 7.1. There is a natural tradeoff between input discretization and

overall accuracy of a network. Yet, the test accuracy loss from the full precision 8b

149

to 3b is ∼ 2.2%. This verifies the presence of unnecessary input features that do not

substantially contribute to the classification task or accuracy. This result has also

been noted by Xu et al. in [145]. 2b discretization decreases the accuracy by a larger

margin (∼ 6%). Note, this accuracy loss can be minimized by training the 2b inputs

for more epochs. However, for iso-comparison, we fix the number of epochs across all

experiments for a given dataset.

Fig. 7.4. Adversarial accuracy on test data for varying perturbation values
on (a) CIFAR10 (b) MNIST for different input discretization

A remarkable outcome of this discretization method is the substantial improve-

ment in a models adversarial accuracy. Fig. 7.4 illustrates the evolution of adversarial

accuracy of the CIFAR10 models (from Table 7.1) with increasing level of perturba-

150

Table 7.1.
CIFAR10 Accuracy

Input-bit Accuracy

2b 82

3b 86.64

4b 87.1

8b 88.9

tion, ε. Here, the discretized adversarial inputs are created using FGSM on discretized

clean inputs as follows:

Xadv = Xδ + ε× sign(∇XδL(θ,Xδ, ytrue)) (7.3)

Xadv → Xadvδ (7.4)

For a given discretization constraint δ (say, 2b), 2b input (Xδ) is passed to a model.

Then, the corresponding loss L is linearized and multiplied with perturbation value ε

which is then added to the 2b input to create the adversary Xadv. We quantize Xadv to

create the 2b discretized adversary Xadvδ . It is evident that quantization after creation

of Xadv reduces the effect of perturbation ε. Note, however, the same approach is also

used in prior works [142,145] to create adversaries with quantized inputs. The claim

is that quantization can be perceived as an input preprocessing step which, serves

as a deterrent to the attacker by reducing the intensity of perturbation and, hence,

improve adversarial robustness.

In Fig. 7.4, ε = 0 corresponds to clean test accuracy. It is clear that clamping

the input precision to lower values increases the resistance of the model to larger

magnitude of distortion. We speculate that constraining the input precision or allowed

range of input values reduces the overall hyper-volume space thereby leaving less

space for shifting or adversarially perturbing a data point (referring to Fig. 7.2 (b)

intuition). 8b input model shows a decline in accuracy even for a small value of

ε = 1/255. Thus, we can deduce that higher input precision (which implies larger

range of input values for a data point) allows even small perturbations to shift the data

151

point (as seen earlier in Fig. 7.2 (a)). In contrast, increasing discretization increases

the minimum ε that affects a model’s accuracy catastrophically. What is surprising is

that for 2b input, a models adversarial accuracy (∼ 79%) for large ε = (8, 16)/255 is

almost similar to that of clean accuracy (∼ 82%). For larger ε = 32/255, the accuracy

of all models declines to < 10%, except 2b. This is a very interesting result since we

have not employed any adversarial training, and still achieve substantial adversarial

resistance for a large ε range.

Fig. 7.4 (b) shows the adversarial accuracy results for MNIST (trained on FCN2

for 10 epochs). We observe a similar trend of increasing adversarial resistance with

increasing discretization for larger ε. Since MNIST is a simple dataset with predom-

inantly black-background, input discretization (8b, 4b, 3b) does not contribute much

to adversarial resistance until we go to extremely low 2b precision. In fact, 2b dis-

cretization yields adversarial accuracy similar to the clean test accuracy (for ε = 0.1)

exhibiting the effectiveness of this technique even for simple datasets. Note, in all

experiments, we imposed input discretization constraints both during training and

testing as mentioned earlier.

Next, we trained the 2b input discretized CIFAR10 and MNIST models with ad-

versarial training to observe the improvement in adversarial accuracy compared to

8b input adversarial training (Table 7.2). Note, the adversaries were discretized to

2b precision (using Eqn. 3, 4) to adversarially train the 2b-input CIFAR10, MNIST

models. Compared to the results in Fig. 7.4 (a, b), adversarial training substantially

improves the robustness of a model with full 8b input for larger ε values. Input dis-

cretization greatly furthers this robustness with > 10% accuracy gain across different

perturbation ranges in both MNIST and CIFAR10. It is worth mentioning that the

CIFAR10 accuracy (79%) without adversarial training for ε = (8, 16)/255 for 2b input

is as good as the accuracy (83%) with adversarial training. This shows that input

discretization is a good regularization scheme that improves the generalization capa-

bility of a network on adversarial data. Note, for ε = 32/255 in case of CIFAR10,

the accuracy is similar for 8b, 2b since the adversarial training was conducted with

152

adversaries created using ε = 8/255. Including larger perturbation adversaries during

adversarial training will yield improved accuracy gain.

Table 7.2.
Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy.

Data Model Clean
ε:8/255

0.1

ε:16/255

0.2

ε:32/255

0.3

CIFAR10
2b 83.1 82.7 82.7 43.9

8b 84.3 62.2 53.6 45.5

MNIST
2b 98.5 98.5 84.7 85.4

8b 98 84.8 74.5 65.9

7.4.2 Discretization of Parameter Space

Since input discretization gave us such promising results, we were naturally in-

clined toward analyzing a binarized neural networks (BNN) behavior against adver-

sarial attacks. Here, the weights and activations (or parameters) are discretized to

extremely low precision values {+1,−1} [140]. The discretization constraints are im-

posed on a BNN during training, wherein, the parameters are clamped to {+1,−1}

after every backpropagation step. One can view this discretization as an implicit

form of regularization. In fact, it is this extreme form of regularization that makes

a BNN difficult to train (clean test accuracy observed with BNNs is, typically, lower

than full-precision networks). As suggested in [149], the difficulty in training a BNN

translates to difficulty in attacking the BNN as well. Referring to the data manifold

intuition (Fig. 7.2), we can deduce that constraining the parameter space during

a models training will introduce discontinuities and non-smoothness in its decision

boundary. Since adversaries are created using gradients of a model (that is a property

153

of the models decision boundary), generating gradients (and hence adversaries) for

non-smooth functions will be difficult. This in turn will make a BNN less susceptible

to adversaries. Note, the input image to a BNN is full 8b precision.

Fig. 7.5. Adversarial accuracy on test data for varying perturbation values
on (a) CIFAR10 (b) MNIST for binarized and full-precision (32b weights)
models

Fig. 7.5 (a) compares the adversarial accuracy obtained for varying ε values for

CIFAR10 BNN (AlexNet architecture) against a similar architecture full-precision

network (with 32b precision for weights and activations). We trained the networks for

40 epochs since BNNs require more training iterations to attain comparable accuracy

as that of a full-precision network. Here, we do not incorporate input discretization

in our analyses. All networks are fed full-precision 8b inputs (both during training

and testing). In Fig. 7.5(a), for ε ≤ 2/255, BNN shows better adversarial resistance

(i.e. adversarial accuracy is closer to clean accuracy). However, the BNNs accuracy

154

declines steeply as we move toward larger perturbation ranges. We note a similar

trend for MNIST (trained for 10 epochs on FCN2 architecture), wherein the full-

precision network yields improved robustness than the BNN for ε ≥ 0.2. These

results contradict our intuition that increased discretization of BNNs should result in

lesser adversarial susceptibility.

To understand this, we calculated the L1 norm of the first hidden layer activation

of the FCN2 network in response to clean input images. We found that BNNs gener-

ally have a larger variance and range of values than full-precision network. Since BNN

uses weight values (+/-1) which are typically of greater magnitude than the small

weight values of a full precision network, we observe a larger range in the former

case. Interestingly, we find that the L1 norm of the BNN activations (in response to

adversarial images perturbed with lower ε values) approximately lie within the same

range as that of the clean input case. In contrast, L1 norm for higher ε adversaries

have a much higher range. For a full-precision network, the L1 norm range of the

different ε adversaries and clean data typically intersect with each other owing to the

lower weight values (Fig. 7.6). We believe that the extreme quantization of weight

values in BNNs to higher magnitudes causes adversarial susceptibility for larger range

perturbations. While the L1 norm analysis is not very substantial from a mathemat-

ical standpoint, it hinted us to increase the capacity (more neurons and weights)

of the network. The motif here is that increasing the capacity would increase the

overall range of activation values that might incorporate larger range perturbations.

Exploding the network capacity for MNIST (FCN1 architecture) yielded a sizable

improvement in adversarial resistance with BNN as compared to its corresponding

full-precision counterpart (Fig. 7.5(b)). This is a crucial detail of our analysis that:

while BNNs are intrinsically robust to adversaries (for small ε), only models with

sufficient capacity can withstand against large ε values.

Even with adversarial training, we observed the same trend that binarized net-

works of insufficient capacity do not yield as good adversarial robustness as that of

a full-precision network (Table 7.3). For CIFAR10, full-precision network is the clear

155

Fig. 7.6. Normalized L1 norm of first hidden layer activations in response
to clean (ε = 0) and adversarial inputs (ε = 0.1, 0.3) for binarized and
full-precision MNIST model of different architecture: FCN1, FCN2

Table 7.3.
Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy.

Data Model Clean
ε:8/255

0.1

ε:16/255

0.2

ε:32/255

0.3

CIFAR10
BNN 79.7 53.1 43.6 35.3

Full 82.7 72.2 63.6 55.5

MNIST

(FCN1)

BNN 96.9 89.1 74.5 65.8

Full 98 84.8 71 61.7

winner. While for MNIST (with excessive capacity FCN1 architecture), BNN yields

improved robustness. A noteworthy observation here is that adversarial training sub-

stantially improves the robustness of a full-precision network (see CIFAR10 results in

Fig. 7.5(a) , Table 7.3), while BNNs do not benefit much from them. In fact, we find

that BNNs are difficult to train with adversarial training. The learning rate/other

hyperparameters need to be tuned carefully to ensure that the BNN model converges

to lower error values during adversarial training. [149] also observed a similar trend

and explained that binarized weights are not as malleable as full-precision weights and

hence cannot easily adjust to all possible variations of adversarial data augmented to

156

the training dataset. We think that increasing the capacity of the network compen-

sates for the ‘non-malleability’ of the constrained parameters to certain extent. As a

result, we see improved accuracy for MNIST in Table 7.3 with FCN1 architecture.

7.4.3 Discretization of Input and Parameter Space

Next, we combined both discretization strategies and analyzed the adversarial

robustness of BNNs with varying image-level discretization. We compare the adver-

sarial accuracy of BNNs to that of a full-precision network for iso-input discretization

scenarios, as shown in Table 7.4 for CIFAR10 (AlexNet architecture trained for 40

epochs). In Table 7.4, BNN-2b (Full-2b) refers to a binarized (full-precision) model

with 2b input precision. Note, we use Eqn. 3, 4 to create discretized adversarial

inputs for a given input precision correspnding to each experiments. That is, the ad-

versarial accuracy for BNN−2b or Full−2b in Table 7.4 corresponds to testing with

2b discretized adversarial data. Full precision models have 32b precision weights and

activations. While input discretization for a full-precision network suffers a sizeable

accuracy loss, BNNs accuracy fluctuation is marginal with a maximum of 1% change.

This is expected since BNNs (owing to +/-1 binarized parameters) do not have as

many dimensions (as a full-precision network with 32b weights and activations) to

fit the extra information in the 8b input data. Thus, BNNs fit 2b, 8b data likewise

yielding similar generalization error. As opposed to the results seen earlier with 8b

inputs, BNNs with lower input precision (2b, 4b) have significantly higher adversarial

resistance than their full-precision counterparts even for large ε values. Model capac-

ity does not restrict the adversarial resistance in this case. This is an artefact of the

two-step quantization that increases the minimum allowable perturbation to shift a

data point. We can also draw an alternate insight from this result: The constrained

parameter space of BNNs restricts their overall exploration of the data manifold dur-

ing training. Referring to Fig. 7.2 (b), this increases the probability of untrained

or arbitrary hyper-volumes (for BNNs) thereby increasing their adversarial suscepti-

157

bility. Increasing the capacity enables a BNN to explore the manifold better during

training. By discretizing the input, we are restricting the overall data manifold space.

This allows a model, even, with lower capacity to explore the manifold well thereby

decreasing the extent of arbitrary hyper-volumes. Table 7.5 illustrates the accuracy

results for MNIST (FCN1 architecture trained for 20 epochs).

Table 7.4.
Adversarial accuracy with CIFAR10 for varying ε with different combina-
tions of input and parameter discretization.

Model Clean ε:8/255 ε:16/255 ε:32/255

BNN-2b 81 80 80 36.7

Full-2b 82 79.1 79.3 39.6

BNN-4b 81.9 58.3 52.3 36.8

Full-4b 81.1 53.8 45.1 37.3

BNN-8b 81.5 55.1 45.9 38.6

Full-8b 86.5 61.1 55.2 47.1

Table 7.5.
Adversarial accuracy with MNIST for varying ε with different combina-
tions of input and parameter discretization.

Model Clean ε:0.1 ε:0.2 ε:0.3

BNN-2b 96.4 96.4 60.7 62.3

Full-2b 97.8 97.4 35.4 35.3

BNN-4b 96.4 88.9 76.7 58.7

Full-4b 98.1 71.1 50.9 33.7

BNN-8b 97.1 89.4 56.1 33.6

Full-8b 98.2 75.9 38.5 26.4

158

We conducted adversarial training with 2b input discretized BNNs to find out if it

helps build adversarial robustness. Note, adversarial training was performed with 2b

precision adversaries (created using Eqn. 3, 4). The results are shown in Table 7.6.

Comparing to the 8b input BNN adversarial training results in Table 7.3, we observe

a substantial gain in adversarial accuracy. However, contrasting the BNN results

against Table 7.2 (2b input full-precision networks), we observe similar performance

gains. In fact, the accuracy gains for 2b input CIFAR10 BNN with and without

adversarial training (Table7.4/Table 7.6) are nearly the same. Earlier, we saw that

the accuracy (for low ε values) of a full-precision network working on 2b input data

without adversarial training is similar to that of an adversarially trained network

on 8b inputs (Table 7.2, Fig. 7.4). Combining the adversarial training results till

now, we can deduce the following: 1) For low input-precision (2b) regime, adversarial

training does not compound the adversarial resistance of a network (irrespective of

binarized or full-precision parameters), for lower ε values. Adversarial training helps

when the input has higher (8b) precision. 2) Input discretization, in general, offers

very strong adversarial defense for lower ε values. Discretizing the input as well

as the parameter space furthers adversarial robustness. Adversarial training in a

discretized input and parameter space does not benefit much and hence can be waived

only for single-step FGSM attacks. However, in case of stronger multi-step attack

scenarios and to gain robustness against larger perturbations (such as ε = 32/255, 0.3

in CIFAR10, MNIST), the network needs to be adversarial trained with corresponding

large ε values.

7.4.4 Analysis on CIFAR100 and Imagenet

Scaling up the discretization analysis to larger datasets yielded similar results as

observed with CIFAR10, MNIST. Fig. 7.7 demonstrates the adversarial accuracy

evolution for CIFAR100 (trained on ResNet20 architecture for 164 epochs) for bina-

rized XNOR (1b weights and activations) networks and corresponding full-precision

159

Table 7.6.
Accuracy with adversarial training for varying ε. Text in red are the ε
values for MNIST and corresponding accuracy.

Data Model Clean
ε:8/255

0.1

ε:16/255

0.2

ε:32/255

0.3

CIFAR10 BNN-2b 78.4 78.1 78.1 30.5

MNIST

(FCN1)
BNN-2b 95.7 95.7 89.3 88.6

Fig. 7.7. Adversarial accuracy on test data for increasing ε values on
binarized and full-precision (32b weights) models trained on CIFAR100
with different input discretization:8b, 4b, 2b

(32b weights and activations) models. Note, XNOR networks are similar to BNNs

(1-bit weights/activations) with additional scaling factors to achieve higher accuracy

160

on complex datasets. It is evident that input discretization is the most beneficial to

obtain adversarial robustness. 2b input discretized models in both cases yield adver-

sarial accuracy close to the clean accuracy (ε = 0) for a large range of perturbations.

The accuracy loss between clean and ε = 16/255 adversary for 2b-input XNOR (1.6%)

is slightly better than the 2b-input full-precision model (2.4%). This can be attributed

to the intrinsic robustness offered by discretizing the parameter space of XNOR net-

works. Furthermore, the fact that 8b-input XNOR yields higher adversarial accuracy

for iso-perturbation values than 8b-input full-precision model further demonstrates

the ability of binarized networks to counter adversarial attacks. A noteworthy ob-

servation here is that the loss in clean accuracy between 2b and 8b input discretized

full-precision network is small (∼ 2%) as compared to the large 6% loss observed

earlier with CIFAR10 (Table 7.1). As we scale up the complexity of the dataset (and

the complexity of the DLN architecture), the features in the input/parameter space

increase (that can be viewed as increase in the range of input/parameter values). Dis-

cretizing the input/parameters for a complex dataset on a larger DLN architecture

(such as ResNet20) possibly eliminates certain range of input/parameter values that

do not necessarily contribute to the accuracy. In contrast, smaller datasets or smaller

DLN architectures have lesser range of input/parameter values and are thus at a risk

of suffering a large accuracy drop with discretization.

Fig. 7.8 shows the accuracy results for Imagenet (trained on AlexNet). We only

show the top-5 adversarial accuracy. We see similar trends as CIFAR100. Note, the

XNOR models are trained for 50 epochs, while full-precision models are trained for

90 epochs. As a result, we see lower baseline accuracy (ε = 0) in the former case. Like

CIFAR100, the loss in clean test accuracy between 2b and 8b input discretization is

minimal for each model. Also, the accuracy difference between clean and ε = 16/255

adversarial data for 2b−XNOR (0.9%) is much lower than 2b−full precision models

(2.8%). This highlights the intrinsic robustness capability of binarized networks even

for large-scale datasets.

161

Fig. 7.8. Top-5 Adversarial accuracy on test data for increasing ε values
on binarized and full-precision (32b weights) models trained on Imagenet
with different input discretization:8b, 2b

7.4.5 Other Attack Scenarios

Till now, we have focused on WB attack scenarios. For the sake of completeness,

we analyzed the adversarial accuracy in gray-box attack scenarios for CIFAR100

dataset with XNOR/ full-precision models with 2b, 8b input discretization (Table 7.7).

Here, the CIFAR100 attack model for an XNOR (or full-precision parameter) target is

a separately trained XNOR (or full-precision parameter) model, respectively. Note,

the attack model is a ResNet20 architecture with 2b, 8b input precision depending

upon the input precision of the target. Essentially, we attack an XNOR-2b (or Full-

2b) model with another XNOR-2b (Full-2b) model trained separately. The adversaries

are created using FGSM. In this regime, even though the attack model is different from

the target, the nature of input discretization is known to the attacker (hence, gray-box

attack scenario). In Table 7.7, higher accuracy (∼> 25%) observed for large range

of ε values in the 8b input regime establishes that gray-box attacks are weaker than

WB. A noteworthy observation here is that gray-box attacks on 2b input discretized

models (both full-precision and XNOR) seem to be stronger for ε = 4, 8/255 than

WB attacks (refer to Fig. 7.7). However, WB attacks (Fig. 7.7) are extensively

more devastating in the higher ε > 8/255 regime than gray-box. We conjecture that

transferred attacks have more variability in the perturbations generated with lower ε

162

FGSM. As a result, a model (XNOR or full-precision) may not be able to counter such

variability. While this variability remains in the higher ε range, the gray-box nature of

the attack decreases the overall strength. Further investigation is required to analyze

the nature of transferred attacks in a low ε regime on input-/parameter-discretized

networks. This observation is a novel result as prior works on input transformation

schemes (note, no parameter discretization has been explored in earlier works) have

mostly focused on white-box or gray-box attacks for ε > 8/255 regime and have thus

never observed this phenomenon of higher vulnerability in gray-box than WB regime

for low ε perturbations.

Table 7.7.
Gray-Box Adversarial accuracy with CIFAR100 for varying ε with differ-
ent combinations of input and parameter discretization.

Model Clean ε:4/255 ε:8/255 ε:16/255 ε:32/255

XNOR-2b 49.9 44.6 39.6 30.7 18.7

Full-2b 63.9 59.4 54.2 43.8 24.5

XNOR-8b 51.1 42.9 35.6 25.4 16.3

Full-8b 66.2 56.9 48.3 34.1 19.63

To show the effectiveness of discretization against black-box attacks created with

FGSM, we analysed the CIFAR10 dataset with BNN/ full-precision models with

2b, 4b input discretization. Here, the CIFAR10 attack model is a separately trained

full-precision parameter model with 8b input discretization. It is evident from this at-

tack/target model experimental setting that both input and parameter discretization

regimes of the target model are unknown to the attacker (hence, BB attack scenario).

Table 7.8 illustrates the results. Here, we observe higher adversarial accuracy (nearly

equal to the clean accuracy) for a larger range of perturbations ε = 4, 8, 16/255. For

ε = 32/255, the adversarial accuracy drops significantly. The higher range of accuracy

in this case proves that BB attacks are the weakest among gray-box and WB attacks.

163

Table 7.8.
Black-Box Adversarial accuracy with CIFAR10 for varying ε with different
combinations of input and parameter discretization.

Model Clean ε:4/255 ε:8/255 ε:16/255 ε:32/255

BNN-2b 81 79.8 79.8 79.8 56.1

Full-2b 82 81.8 81.8 81.7 54.1

BNN-4b 81.9 80.74 72.5 66.9 59.73

Full-4b 81.1 80.75 71.7 65.4 57.4

7.4.6 Comparison with Prior Works

A significant contribution of our analysis is that we include input or parameter

discretization during training and highlight the relevance of discretized training for

adversarial robustnees. To further elucidate the effectiveness of discretization during

training phase, we compare our results with that of prior works of Xu et al. [145]

and Galloway et al. [149]. Xu et al. propose to use color depth bit reduction along

with 2× 2 median filter smoothing (referred to as feature squeezing) to detect adver-

sarial images. However, Xu et al. train a model with full-precision inputs and use

feature squeezing during the test phase to identify clean vs. adversarial input. We

replicated their experiments by utilizing the open source framework and code made

available by the authors [157]. Galloway et al. simply analysed the effect of attacking

binarized neural networks (without input discretization). We utilized the open source

framework [158], to investigate how input-and-parameter discretized models perform

in attack scenarios (crafted with the widely used CleverHans library to benchmark

adversarial vulnerability of neural networks [159]) as compared to only parameter

discretized models.

Table 7.9 - 7.12 summarizes our comparative analysis for MNIST, CIFAR10 and

ImageNet. Here, we conducted multi-step white box iterative attacks with iso-attack,

perturbation parameters and model architectures to have a fair comparison with prior

164

works. The various cases are as follows: a) Carlini-Wagner L2 attack (CWL2 [160])

over 10, 40, 100 attack iterations [149] on FCN1 architecture for MNIST (Table 7.9),

b) Projected Gradient Descent (PGD [152]) attack over 100 attack iterations with

ε = 0.3 for MNIST on a 4-layer convolutional architecture as [144, 145] (Table 7.10),

c) PGD attack over 40 attack iterations with ε = 8/255 for CIFAR10 on a ResNet

architecture as [144, 145] (Table 7.11), d) PGD attack over 40 attack iterations with

ε = 4/255 for Imagenet on a InceptionResNetV2 architecture as [144, 145] (Table

7.12).

Table 7.9.
WB adversarial accuracy subject to Carlini-Wagner L2 attacks of increas-
ing strength on MNIST dataset with different combinations of input and
parameter discretization. The adversarial accuracy shown is for different
iterations of CWL2 attacks: 10, 40, 100.

Network Model Clean
CWL2 Attack

Iterations: 10/ 40/ 100

FCN1
BNN-2b (Galloway [149]) 99 98/38/0.1

BNN-2b (Ours) 96.4 96/57/10

Table 7.10.
WB adversarial accuracy subject to PGD attacks of ε = 0.3 over 100 steps
on MNIST dataset with different combinations of input and parameter
discretization.

Network Model Clean
PGD Attack

ε = 0.3

4-layer CNN
Full-2b (Xu [145]) 98.8 75.3

BNN-2b (Ours) 96.4 82.7

In each case, we compare our combined input/parameter discretized network

proposal (either XNOR or BNN with 2b, 3b input precision: BNN − 2b, BNN −

165

Table 7.11.
WB adversarial accuracy subject to PGD attacks of ε = 8/255 over 40
steps on CIFAR10 dataset with different combinations of input and pa-
rameter discretization.

Network Model Clean
PGD Attack

ε = 8/255

ResNet
Full-3b (Xu [145]) 76.1 32.5

BNN-3b (Ours) 78.4 42

Table 7.12.
WB adversarial accuracy subject to PGD attacks of ε = 4/255 over 40
steps on Imagenet dataset with different combinations of input and pa-
rameter discretization.

Network Model Clean
PGD Attack

ε = 4/255

InceptionResNetV2
Full-3b (Xu [145]) 65.6 10.1

XNOR-3b (Ours) 59 18.8

3b,XNOR − 3b) that are trained with quantized input and weight values to prior

works : a) Xu et al. where only 2b, 3b input discretization is performed during the

testing phase on a full-precision network (Full−3b, Full−2b), b) Galloway et al. [149]

where only parameter discretization is performed and only MNIST results for itera-

tive WB attacks are available. As mentioned earlier, the inclusion of input/parameter

discretization during training serves as a major benefactor in advancing adversarial

robustness of models. Consequently, we observe a substantial improvement over Xu

et al. in Table 7.10,7.11, 7.12. It is worth mentioning that iterative attacks cause

drastic drop in accuracy in CIFAR10 and Imagenet datasets than simpler MNIST

data. This can be addressed by using adversarial training defense. Thus, we can

deduce that while discretization extends the inherent robustness of a model, adver-

sarial training is pertinent for defense against stronger iterative attacks. The results

166

in Table 7.9 illustrate the effectiveness of input discretization (during training) as an

extra layer of intrinsic defense in addition to the binarized parameter or activation

model.

7.5 Discussion

Low-precision models or quantization techniques, so far, have been explored to re-

duce the resource utilization of DLNs for energy-efficient deployment on edge devices.

We have demonstrated that discretization also warrants security against adversarial

attacks, thereby, offering a key benefit of robustness in hardware implementation for

a certain range of attacks. Our work also exposes the vulnerability of quantization

or discretization techniques for multi-step iterative attacks necessitating the use of

adversarial training with discretization as an improved defense strategy. In summary,

the main findings/recommendations from this work are:

• Input discretization is major benefactor for adversarial robustness (with both

binarized and full-precision) models. 2b input discretized models (without ad-

versarial training) yield similar adversarial accuracy as adversarially trained 8b

input models for lower ε values. Robustness against higher ε and multi-step

attack requires adversarial training.

• Binarized (low-precision weights/activations) models are intrinsically more (al-

though, slight) robust than full-precision (32b weights/activations) models. Ad-

versarial training needs to be carefully done on sufficient capacity binarized

networks to attain similar adversarial robustness as the full-precision models.

• Combining input and parameter discretization is an efficient way of obtain-

ing adversarial robustness to a moderate range of perturbation values without

conducting the iterative adversarial training.

167

• Performing adversarial training on models with combined input and parameter

discretization improves the adversarial accuracy (∼> 10%) in comparison to

adversarially trained full-precision models with 8b inputs.

Our work unravels a simple idea that: hardware optimization related techniques can

potentially resolve or resist software vulnerabilities (specifically, adversarial attacks).

While we focus on discretization, there is a lot of future scope to explore other

efficiency-driven techniques (such as, stochasticity, model pruning etc.) to gauge

their implication on adversarial robustness. As seen earlier, standard discretization

remains vulnerable to stronger multi-step attack scenarios and hence needs to be de-

fended with adversarial training or data augmentation. We believe that stochasticity

or pruning techniques tied with discretization can possibly resist better, even against

stronger attacks. This requires further investigation. Finally, through this work, our

goal is to project the security advantages of discretization techniques that are pri-

marily used to deploy efficient DLN models in general-purpose (GPU) or accelerator

(TPU or FPGA) computing platforms, thereby, paving possible research directions

of exploring efficiency-robustness tradeoff in artificial intelligence applications.

168

8. IMPLICIT GENERATIVE MODELING OF RANDOM

NOISE DURING TRAINING FOR ADVERSARIAL

ROBUSTNESS

8.1 Introduction

Despite surpassing human performance on several perception tasks, Machine Learn-

ing (ML) models remain vulnerable to adversarial examples. In fact, adversarial in-

puts transfer across models: same inputs are misclassified by different models trained

for the same task, thus enabling simple Black-Box (BB) 1attacks against deployed

ML systems [161].

Several works [162–164] demonstrating improved adversarial robustness have been

shown to fail against stronger attacks [165]. The state-of-the-art approach for BB de-

fense is ensemble adversarial training that augments the training dataset of the target

model with adversarial examples transferred from other pre-trained models [166]. [167]

showed that models can even be made robust to White-Box (WB)1 attacks by closely

maximizing the model’s loss with Projected Gradient Descent (PGD) based adversar-

ial training. Despite this progress, errors still appear for perturbations beyond what

the model is adversarially trained for [168].

There have been several hypotheses explaining the susceptibility of ML models

to such attacks. The most common one suggests that the overly linear behavior of

deep neural models in a high dimensional input space causes adversarial examples [7,

169]. Another hypothesis suggests that adversarial examples are off the data manifold

[170–172]. Combining the two, we infer that excessive linearity causes models to

extrapolate their behavior beyond the data manifold yielding pathological results for

1BB (WB): attacker has no (full) knowledge of the target model parameters

169

slightly perturbed inputs. A question worth asking here is: Can we improve the

viability of the model to generalize better on such out-of-sample data?

In this chapter, we propose Noise-based Prior Learning (NoL), wherein we in-

troduce multiplicative noise into the training inputs and optimize it with Stochastic

Gradient Descent (SGD) while minimizing the overall cost function over the training

data. Essentially, the input noise (randomly initialized at the beginning) is gradually

learnt during the training procedure. As a result, the noise approximately models

the input distribution to effectively maximize the likelihood of the class labels given

the inputs. Fig. 8.1 (a) shows the input noise learnt during different stages of train-

ing by a simple convolutional network (ConvNet2 architecture discussed in Section

8.3.2 below), learning handwritten digits from MNIST dataset [48]. We observe that

the noise gradually transforms and finally assumes a shape that highlights the most

dominant features in the MNIST training data. For instance, the MNIST images are

centered digits on a black background. Noise, in fact, learnt this centered character-

istic. Fig. 8.1 suggests that noise discovers some knowledge about the input/output

distribution during training. Fig. 8.1 (b) shows the noise learnt with NoL on colored

CIFAR10 images [50] (on ResNet18 architecture [154]), which reveals that noise tem-

plate (also RGB) learns prominent color blobs on a greyish-black background, that

de-emphasizes background pixels.

Increasing training epochs

Initial Epoch1 Epoch7 Final(a) (b) Initial Final

Fig. 8.1. (a) Noise learnt with NoL on MNIST data- (b) Noise learnt with
NoL on CIFAR10 data- with mini-batch size =64.The template shown is
the mean across all 64 noise templates.

170

A recent theory [173] suggests that adversarial examples (off manifold misclassified

points) occur in close proximity to randomly chosen inputs on the data manifold that

are, in fact, correctly classified. With NoL, we hypothesize that the model learns to

look in the vicinity of the on-manifold data points and thereby incorporate more out-

of-sample data (without using any direct data augmentation) that, in turn, improves

its generalization capability in the off-manifold input space. We empirically evaluate

this hypothesis by visualizing and studying the relationship between the adversarial

and the clean inputs using Principal Component Analysis (PCA). Examining the in-

termediate layer’s output, we discover that models exhibiting adversarial robustness

yield significantly lower distance between adversarial and clean inputs in the Princi-

pal Component (PC) subspace.We further harness this result to establish that NoL

noise modeling, indeed, acquires an improved realization of the input/output distri-

bution characteristics that enables it to generalize better. To further substantiate

our hypothesis, we also show that NoL globally reduces the dimensionality of the

space of adversarial examples [174]. We evaluate our approach on classification tasks

such as MNIST, CIFAR10 and CIFAR100 and show that models trained with NoL

are extensively more adversarially robust. We also show that combining NoL with

ensemble/PGD adversarial training significantly extends the robustness of a model,

even beyond what it is adversarially trained for, in both BB/WB attack scenarios.

8.2 Noise-based Prior Learning

8.2.1 Approach

The basic idea of NoL is to inject random noise with the training data, continually

minimizing the overall loss function by learning the parameters, as well as the noise

at every step of training. The noise, N , dimensionality is same as the input, X, that

is, for a 32× 32× 3 sized image, the noise is 32× 32× 3. In all our experiments, we

use mini-batch SGD optimization. Let’s assume the size of the training minibatch

is m and the number of images in the minibatch is k, then, total training images

171

are m × k. Now, the total number of noisy templates are equal to the total number

of inputs in each minibatch, k. Since, we want to learn the noise, we use the same

k noise templates across all mini-batches 1, 2, ...,m. This ensures that the noise

templates inherit characteristics from the entire training dataset. Algorithm 1 shows

the training procedure. It is evident from Algorithm 1 that noise learning at every

training step follows the overall loss (L, say cross-entropy) minimization that in turn

enforces the maximum likelihood of the posterior.

Algorithm 6 Noise-based Prior Learning of a model f with parameters θ, Loss

Function L.
Input: Input image X, Target label Y , Noise N , Learning rates η, ηnoise

Output: Learnt noise N and parameters θ.

1: Randomly initialize the parameters θ and Noise N : {N1, ...Nk}.

2: repeat

3: for each minibatch {X [1], ..., X [m]}

4: Input X= {X1, ..., Xk}

5: New input X= {X1 ×N1, ..., Xk ×Nk}

6: Forward Propagation: Ŷ = f(X; θ)

7: Compute loss function: L(Ŷ , Y)

8: Backward Propagation: θ = θ - η∇θL; N = N - ηnoise∇NL

9: end

10: until training converges

Since adversarial attacks are created by adding perturbation to the clean input

images, we were initially inclined toward using additive noise (X + N) instead of

multiplicative noise (X ×N) to perform NoL. However, we found that NoL training

with X×N tends to learn improved noise characteristics by the end of training. Fig.

8.2 (a) shows the performance results for different NoL training scenarios. While NoL

with X +N suffers a drastic ∼ 10% accuracy loss with respect to standard SGD on

clean data, X ×N yields comparable accuracy. Furthermore, we observe that using

172

only negative gradients for training the noise (i.e. ∇NL ≤ 0) during backpropagation

with NoL yields best accuracy (and closer to that of standard SGD trained model).

Visualizing a sample image with learnt noise after training, in Fig. 8.2 (b), shows

X + N disturbs the original image severely, while X × N has a faint effect, corrob-

orating the accuracy results. Since noise is modeled while conducting discriminative

training, the multiplicative/additive nature of noise influences the overall optimiza-

tion. Thus, we observe that noise templates learnt with X ×N and X +N are very

different. We also analyzed the adversarial robustness of the models when subjected

to WB attacks created using the Fast Gradient Sign Method (FGSM) for different

perturbation levels (ε) (Fig. 8.2 (a)). NoL, for both X ×N/X +N scenarios, yields

improved accuracy than standard SGD. This establishes the effectiveness of the noise

modeling technique during discriminative training towards improving a model’s in-

trinsic adversarial resistance. Still, X×N yields slightly better resistance than X+N .

Based upon these empirical studies, we chose to conform to multiplicative noise train-

ing. 2 Note, WB attacks, in case of NoL, are crafted using the model’s parameters

as well as the learnt noise N .

In all our experiments, we initialize the noise N from a random uniform distri-

bution in the range [0.8, 1]. We select a high range in the beginning of training

to limit the corruption induced on the training data due to the additional noise.

During evaluation/testing, we take the mean of the learnt noise across all the tem-

plates ((
∑k

i=1Ni)/k), multiply the averaged noise with each test image and feed it to

the network to obtain the final prediction. Next, we present a general optimization

perspective considering the maximum likelihood criterion for a classification task to

explain adversarial robustness. It is worth mentioning that while Algorithm 1 de-

scribes the backpropagation step simply by using gradient updates, we can use other

techniques like regularization, momentum etc. for improved optimization.

2Additional studies on other datasets comparing X +N vs. X ×N with different gradient update
conditions can be found in Appendix (Section 8.5.1). See, experimental details and model description
for Fig. 8.2 in Appendix (Section 8.5.3).

173

It is noteworthy to reiterate that in our NoL approach, we introduce a random set

of noise templates (say, K noise templates) to the training data (say, M number of

total training instances in the dataset), where, K << M . Here, as we learn the noise

templates (N : {N1, ...NK}) over the duration of training, the noise templates (ran-

domly initialized at the beginning of training) begin to model the input distribution

(as seen from Fig. 8.1). The fact that the same set of noise templates are introduced

batch-wise (when training with mini-batch gradient descent) with the training data,

enables the prior modeling property. Thus, in Fig. 8.1, we see the evolution of the

noise templates from random distribution in the initial epoch to some shape (char-

acteristic of input data) in the final epoch (as they are learnt with backpropagation

N := N −∇NL). NoL is in contrast to previous works [175–177], wherein, random

noise is injected to the training dataset, which can be viewed as having same number

of noise templates as the number of training instances, that is, K = M . Here, the

noise templates are simply used to perturb the training data to impose some regular-

ization effect during training. These noise templates are ‘not learnt’ unlike NoL. In

such cases, each batch (when training with mini-batch gradient descent) of training

data sees a different set of random noise templates drawn from a given distribution.

Referring to Fig 8.1, with random noise injection as [175–177], we will see that the

noise template remains random as shown in the initial epoch throughout the training

process till the final epoch.

8.2.2 Adversarial Robustness from Likelihood Perspective

Given a data distribution D with inputs X ∈ Rd and corresponding labels Y , a

classification/discriminative algorithm models the conditional distribution p(Y |X; θ)

by learning the parameters θ. Since X inherits only the on-manifold data points,

a standard model thereby becomes susceptible to adversarial attacks. For adversar-

ial robustness, inclusion of the off-manifold data points while modeling the condi-

tional probability is imperative. An adversarially robust model should, thus, model

174

p(Y |X,A; θ), where A represents the adversarial inputs. Using Bayes rule, we can

derive the prediction obtained from posterior modeling from a generative standpoint

as:

argmax
Y

p(Y |X,A) = argmax
Y

p(A|X, Y)p(X, Y)

p(X,A)
= argmax

Y
p(A|X, Y)p(X|Y)p(Y)

(8.1)

Initial Final with negative gradient
𝛁𝛁𝑵𝑵𝑳𝑳

X+N X*N (a) (b)

CIFAR10 Accuracy (in %) of ResNet18 target model for WB-
FGSM attacks for 𝜀𝜀 =(8/16)/255 for different training
scenarios with ExL.

Fig. 8.2. For multiplicative and additive noise training scenarios- (a) -
accuracy comparison of NoL with SGD (b) -RGB noise template learnt
with NoL on CIFAR10 data. In (b), a sample training image of a ‘car’
before and after training with noise is shown. Note, we used the same
hyperparameters (batch-size =64, η, ηnoise etc.) and same inital noise
template across all scenarios during training. Noise shown is the mean
across 64 templates.2

The methods employing adversarial training [10,166,167] directly follow the left-

hand side of Eqn. 8.1 wherein the training data is augmented with adversarial samples

(A ∈ A). Such methods showcase adversarial robustness against a particular form of

adversary (e.g. `∞-norm bounded) and hence remain vulnerable to stronger attack

scenarios. In an ideal case, A must encompass all set of adversarial examples (or the

entire space of off-manifold data) for a concrete guarantee of robustness. However,

it is infeasible to anticipate all forms of adversarial attacks during training. From a

generative viewpoint (right-hand side of Eqn. 8.1), adversarial robustness requires

175

modeling of the adversarial distribution while realizing the joint input/output distri-

bution characteristics (p(X|Y), p(Y)). Yet, it remains a difficult engineering challenge

to create rich generative models that can capture these distributions accurately. Some

recent works leveraging a generative model for robustness use a PixelCNN model [171]

to detect adversarial examples, or use Generative Adversarial Networks (GANs) to

generate adversarial examples [178]. But, one might come across practical difficulties

while implementing such methods due to the inherent training difficulty.

With Noise-based Prior Learning, we partially address the above difficulty by

modeling the noise based on the prediction loss of the posterior distribution. First,

let us assume that the noise (N) introduced with NoL spans a subspace of potential

adversarial examples (N ⊆ A). Based on Eqn. 8.1 the posterior optimization crite-

rion with noise (N) becomes argmaxY p(Y |X,N) = argmaxY p(N |X, Y)p(X|Y)p(Y).

The noise learning in NoL (Algorithm 1) indicates an implicit generative modeling

behavior, that is constrained towards maximizing p(N |X, Y) while increasing the like-

lihood of the posterior p(Y |X,N). We believe that this partial and implicit generative

modeling perspective with posterior maximization, during training, imparts an NoL

model more knowledge about the data manifold, rendering it less susceptible toward

adversarial attacks.

Intuitively, we can justify this robustness in two ways: First, by integrating noise

during training, we allow a model to explore multiple directions within the vicinity

of the data point (thereby incorporating more off-manifold data) and hence inculcate

that knowledge in its underlying behavior. Second, we note that noise learnt with

NoL inherits the input data characteristics (i.e. N ⊂ X) and that the noise-modeling

direction (∇NL) is aligned with the loss gradient, ∇XL (that is also used to calculate

the adversarial inputs, Xadv = X + εsign(∇XL)). This ensures that the exploration

direction coincides with certain adversarial directions improving the model’s general-

ization capability in such spaces. Next, we empirically demonstrate using PCA that,

noise modeling indeed embraces some off-manifold data points. Note, for fully guar-

anteed adversarial robustness as per Eqn. 8.1, the joint input/output distribution

176

(p(X|Y), p(Y)) has to be realized in addition to the noise modeling and N should

span the entire space of adversarial/off-manifold data. We would like to clarify that

the above likelihood perspective is our intuition that noise might be inculcating some

sort of generaive behavior in the discriminative classification. However, more rigorous

theoretical analysis is required to understand the underlying behavior of noise.

8.2.3 PC Subspace Analysis for Variance & Visualization

PCA serves as a method to reduce a complex dataset to lower dimensions to

reveal sometimes hidden, simplified structure that often underlie it. Since the learned

representations of a deep learning model lie in a high dimensional geometry of the data

manifold, we opted to reduce the dimensionality of the feature space and visualize the

relationship between the adversarial and clean inputs in this reduced PC subspace.

Essentially, we find the principal components (or eigen-vectors) of the activations of

an intermediate layer of a trained model and project the learnt features onto the

PC space. To do this, we center the learned features about zero (F), factorize F

using Singular Value Decomposition (SVD), i.e. F = USV T and then transform

the feature samples F onto the new subspace by computing FV = US ≡ FPC . In

Fig. 8.3 (b), we visualize the learnt representations of the Conv1 layer of a ResNet18

model trained on CIFAR-10 (with standard SGD) along different 2D-projections of

the PC subspace in response to adversarial/clean input images. Interestingly, we see

that the model’s perception of both the adversarial and clean inputs along high-rank

PCs (say, PC1- PC10 that account for maximum variance in the data) is alike. As we

move toward lower-rank dimensions, the adversarial and clean image representations

dissociate. This implies that adversarial images place strong emphasis on PCs that

account for little variance in the data. While we note a similar trend with NoL (Fig.

8.3 (a)), the dissociation occurs at latter PC dimensions compared to Fig. 8.3 (b). A

noteworthy observation here is that, adversarial examples lie in close vicinity of the

clean inputs for both NoL/SGD scenarios ascertaining former theories of [173].

177

To quantify the dissociation of the adversarial and clean projections in the PC

subspace, we calculate the cosine distance (DPC = 1
N

∑N
i=1 1− FPCcleani·F

PC
adv i

FPCcleani2F
PC
adv i2

) between

them along different PC dimensions. Here, N represents the total number of sample

images used to perform PCA and F PC
clean(F PC

adv) denote the transformed learnt rep-

resentations corresponding to clean (adversarial) input, respectively. The distance

between the learnt representations (for the Conv1 layer of ResNet18 model from the

above scenario) consistently increases for latter PCs as shown in Fig. 8.4 (a). In-

terestingly, the cosine distance between adversarial and clean features measured for

a model trained with NoL noise is significantly lesser than a standard SGD trained

model. This indicates that noise enables the model to look in the vicinity of the origi-

nal data point and inculcate more adversarial data into its underlying representation.

Note, we consider projection across all former dimensions (say, PC0, PC1,...PC100)

to calculate the distance at a later dimension (say, PC100) i.e., DPC100 is calculated

by taking the dot product between two 100-dimensional vectors: FPCclean,FPCadv . Please

note, in the remainder of the chapter, NoL noise denotes the prior or noise learnt

during the training procedure by minimizing the loss of a neural network. As per

Algorithm 1, we use the same set of templates over each training minibatch that en-

sures that the noise templates randomly initialized at the beginning of training learn

and evolve to model the input characteristics (as illustrated in Fig. 8.1). Specifically,

NoL noise refers to the learnt noise templates N : {N1, ...Nk} as shown in Algorithm

1.

To further understand the role of NoL noise in a model’s behavior, we analyzed the

variance captured in the Conv1 layer’s activations of the ResNet18 model (in response

to clean inputs) by different PCs, as illustrated Fig. 8.4 (b). If si = {1, ...,M} are

the singular values of the matrix S, the variance along a particular dimension PCk

is defined as: V ark = 100× (
∑k

i=0 si
2/
∑M

i=0 si
2). V ark along different PCs provides

a good measure of how much a particular dimension explains about the data. We

observe that NoL noise increases the variance along the high rank PCs, for instance,

the net variance obtained from PC0-PC100 with NoL Noise (90%) is more than that of

178

standard SGD (76%). In fact, we observe a similar increase in variance in the leading

PC dimensions for other intermediate blocks learnt activations of the ResNet18 model

[See Appendix (Section 8.5.2)]. We can infer that the increase in variance along the

high-rank PCs is a consequence of inclusion of more data points during the overall

learning process. Conversely, we can also interpret this as NoL noise embracing

more off-manifold adversarial points into the overall data manifold that eventually

determines the model’s behavior. It is worth mentioning that the variance analysis of

the model’s behavior in response to adversarial inputs yields nearly identical results

as Fig. 8.4 (b) [Appendix (Section 8.5.2)].

(a)

(b)

Fig. 8.3. Relationship between the model’s understanding of adversarial
and clean inputs in PC subspace when trained with (a) NoL (b) SGD.

Interestingly, the authors in [179] conducted PCA whitening of the raw image data

for clean and adversarial inputs and demonstrated that adversarial image coefficients

for later PCs have greater variance. Our results from PC subspace analysis corrobo-

rates their experiments and further enables us to peek into the model’s behavior for

adversarial attacks. Note, for all the PCA experiments above, we used 700 random

images sampled from the CIFAR-10 test data, i.e. N = 700. In addition, we used

179

(a) (b)

Fig. 8.4. (a) Cosine Distance between the model’s response to clean and
adversarial inputs in the PC subspace. (b) Variance of the Conv1 layer
of ResNet18 model. (a), (b) compare the SGD/ NoL training scenarios.

the Fast Gradient Sign Method (FGSM) method to create BB adversaries with a step

size of 8/255, from a different source model (ResNet18 trained with SGD).

8.3 Results

8.3.1 Attack Methods

Given a test image X, an attack model perturbs the image to yield an adversarial

image, Xadv = X + ∆, such that a classifier f misclassifies Xadv. In this work, we

consider `∞ bounded adversaries studied in earlier works [7, 166, 167], wherein the

perturbation (∆∞ ≤ ε) is regulated by some parameter ε. Also, we study robustness

against both BB/WB attacks to gauge the effectiveness of our approach. For an

exhaustive assessment, we consider the same attack methods deployed in [166,167]:

Fast Gradient Sign Method (FGSM): This single-step attack is a simple way to

generate malicious perturbations in the direction of the loss gradient ∇XL(X, Ytrue)

as: Xadv = X + εsign(∇XL(X, Ytrue)).

Random Step FGSM (R-FGSM): [166] suggested to prepend single-step attacks

with a small random step to escape the non-smooth vicinity of a data point that

might degrade attacks based on single-step gradient computation. For parameters ε, α

(α = ε/2), the attack is defined as: Xadv = X + εsign(∇XL(X,Ytrue)), where X =

180

X + αsign(N (0d, Id)).

Iterative FGSM (I-FGSM): This method iteratively applies FGSM k times with

a step size of β ≥ ε/k and projects each step perturbation to be bounded by ε.

Following [166], we use two-step iterative FGSM attacks.

Projected Gradient Descent (PGD): Similar to I-FGSM, this is a multi-step

variant of FGSM: Xadv
t+1 =

∏
(Xadv

t +αsign(∇XL(X, Ytrue))) . [167] show that this

is a universal first-order adversary created by initializing the search for an adversary

at a random point followed by several iterations of FGSM. PGD attacks, till date,

are one of the strongest BB/ WB adversaries.

8.3.2 Experiments

We evaluated NoL on three datasets: MNIST, CIFAR10 and CIFAR100. For

each dataset, we report the accuracy of the models against BB/WB attacks (crafted

from the test data) for 6 training scenarios: a) Standard SGD (without noise), b)

NoL, c) Ensemble Adversarial (EnsAdv) Training (SGDens), d) NoL with EnsAdv

Training (NoLens), e) PGD Adversarial (PGDAdv) Training (SGDPGD), f) NoL with

PGDAdv Training (NoLPGD). Note, SGDens and SGDPGD refer to the standard ad-

versarial training employed in [166] and [167], respectively. Our results compare how

the additional noise modeling improves over standard SGD in adversarial susceptibil-

ity. Also, we integrate NoL with state-of-the-art PGD/Ensemble adversarial training

techniques to analyze how noise modeling benefits them. In case of EnsAdv training,

we augmented the training dataset of the target model with adversarial examples

(generated using FGSM), from an independently trained model, with same architec-

ture as the target model. In case of PGDAdv training, we augmented the training

dataset of the target model with adversarial examples (generated using PGD) from

the same target model. Thus, as we see later, EnsAdv imparts robustness against BB

attacks only, while, PGD makes a model robust to both BB/WB attacks. In all ex-

periments below, we report the WB/BB accuracy against strong adversaries created

181

with PGD attack. In additon, for BB, we also report the worst-case error over all

small-step attacks FGSM, I-FGSM, R-FGSM, denoted as Min BB in Table 8.1, 8.2.

Note, NoL scenario refers to our proposed approach (or Algorithm 1) wherein we

introduce multiplicative noise at the beginning of training and eventually learn the

noise while minimizing the loss for model parameters. NoLens refers to the scenario

wherein we combine EnsAdv training with NoL (or Algorithm 1 with EnsAdv train-

ing). That is, a model is trained with adversarial data augmentation and also has

multiplicative noise that is eventually learnt during the training procedure. In this

case, since we show both clean and FGSM-based BB adversarial input data during

training, we can expect that the learnt noise will model both clean/BB-adversarial

input distribution. NoLPGD refers to the scenario where PGDAdv training is com-

bined with NoL (or Algorithm 1 with PGDAdv training). Here, we perform the

prior noise modeling (with multiplicative noise injected at the beginning of training)

while training a network with both clean and PGD-based WB adversarial data. We

can expect the learnt noise to model both clean/WB-adversarial input distribution

in this case. As we will see later, NoLens, NoLPGD will serve as good indicators of

how integrating the prior noise learning approach with the adversarial defense meth-

ods, SGDens, SGDPGD, improves their ability to defend against a larger range of

perturbations/attacks.

All networks were trained with mini-batch SGD using a batch size of 64 and mo-

mentum of 0.9 (0.5) for CIFAR (MNIST), respectively. For CIFAR10, CIFAR100 we

used additional weight decay regularization, λ = 5e− 4. Note, for noise modeling, we

simply used the negative loss gradients (∇NL ≤ 0) without additional optimization

terms. In general, NoL requires slightly more epochs of training to converge to similar

accuracy as standard SGD, a result of the additional input noise modeling. Also, NoL

models, if not tuned with proper learning rate, have a tendency to overfit. Hence,

the learning rate for noise (ηnoise) was kept 1-2 orders of magnitude lesser than the

overall network learning rate (η) throughout the training process. All networks were

182

implemented in PyTorch.3

MNIST: For MNIST, we consider a simple network with 2 Convolutional (C)

layers with 32, 64 filters, each followed by 2×2 Max-pooling (M), and finally a Fully-

Connected (FC) layer of size 1024, as the target model (ConvNet1: 32C-M-64C-M-

1024FC). We trained 6 ConvNet1 models independently corresponding to the different

scenarios. The EnsAdv (NoLens, SGDens) models were trained with BB adversaries

created from a separate SGD-trained ConvNet1 model using FGSM with ε = 0.1.

PGDAdv (NoLPGD, SGDPGD) models were trained with WB adversaries created

from the same target model using PGD with ε = 0.3, step-size = 0.01 over 40 steps.

Table 8.1 (Columns 3 - 5) illustrates our results for BB attacks under different

perturbations (ε)4. NoL noise considerably improves the robustness of a model toward

BB attacks compared to standard SGD. Without adversarial training, standard SGD

and NoL suffer a drastic accuracy decline for ε > 0.1. With EnsAdv training, the

robustness improves across all ε for both SGDens, NoLens. However, the robustness is

significantly accentuated in NoLens owing to the additional noise modeling performed

during EnsAdv training. An interesting observation here is that for ε = 0.1 (that was

the perturbation size for EnsAdv training), both NoLens/SGDens yield nearly similar

accuracy, ∼ 98%. However, for larger perturbation size ε = 0.2, 0.3, the network

adversarially trained with NoL noise shows higher prediction capability (∼> 5%)

across the PGD attack methods. Columns 6-7 in Table 8.1 show the WB attack

results. All techniques except for the ones with PGDAdv training fail miserably

against the strong WB PGD attacks. Models trained with NoL noise, although

yielding low accuracy, still perform better than SGD. NoLPGD yields better accuracy

3Appendix (Section 8.5.3) provides a detailed table of different hyperparameters used to train the
source and target models in each scenario corresponding to all experiments of Table 8.1, 8.2 .
Appendix (Section 8.5.3) shows different visualization of noise learnt (N) in each scenario of Table
8.1, 8.2.
4For fair comparison, BB attacks on SGD,NoL, SGDens, NoLens were crafted from another
model trained with standard SGD on natural examples as in [166]. While, BB attacks on
SGDPGD, NoLPGD were crafted from a model trained with PGDAdv training (without noise mod-
eling) on adversarial examples as in [167] to cast stronger attacks.

183

than SGDPGDeven beyond what the network is adversarially trained for (ε > 0.3).

Note, for PGD attack in Table 8.1, we used a step-size of 0.01 over 40/100 steps

to create adversaries bounded by ε = 0.1/0.2/0.3. We also evaluated the worst-case

accuracy over all the BB attack methods when the source model is trained with NoL

noise (not shown). We found higher accuracies in this case, implying NoL models

transfer attacks at lower rates. As a result, in the remainder of the chapter, we

conduct BB attacks from models trained without noise modeling to evaluate the

adversarial robustness.

Table 8.1.
MNIST Accuracy (in %) of ConvNet1 target model for different
scenarios. ε = 0.1/0.2/0.3 for SGD,NoL, SGDens, NoLens; ε = 0.3/0.4
for SGDPGD, NoLPGD. For PGD attack, we report accuracy for 40-/100-
step attacks. Accuracy < 5%, in most places, have been omitted and
marked as ‘-’.

Scenario Clean Min BB PGD-40 PGD-100 PGD-40 PGD-100

(———————BlackBox—————) (—WhiteBox—)

SGD 99.1 77.9/20.6/4.3 75/9.9/- 74.5/8/- 22.3/-/- -

NoL 99.2 83.6/30.5/9.6 80.5/20.6/- 80/18/- 29.4/-/- -

SGDens 99 98.5/92.6/73.2 98/89.3/71 98.1/88/57 2.1/-/- -

NoLens 99.1 99/94.7/76 98.8/93.4/79 98.7/91.9/66 3.3/-/- -

SGDPGD 97.9 91.8/29 93.6/48.7 92.3/20 90/27 86.5/4.5

NoLPGD 98 93/42.2 94/60.4 92.6/28.7 90.7/55.7 88/20.1

CIFAR: For CIFAR10, we examined our approach on the ResNet18 architecture.

We used the ResNext29(2×64d) architecture [180] with bottleneck width 64, cardi-

nality 2 for CIFAR100. Similar to MNIST, we trained the target models separately

corresponding to each scenario and crafted BB/WB attacks. For EnsAdv training, we

used BB adversaries created using FGSM (ε = 8/255) from a separate SGD-trained

network different from the BB source/target model. For PGDAdv training, the tar-

get models were trained with WB adversaries created with PGD with ε = 8/255,

184

step-size=2/255 over 7 steps. Here, for PGD attacks, we use 7/20 steps of size 2/255

bounded by ε. The results appear in Table 8.2.

For BB, we observe that NoL (81%/63.2% for CIFAR10/100) significantly boosts

the robustness of a model as compared to SGD (50.3%/44.2% for CIFAR10/100).

Note, the improvement here is quite large in comparison to MNIST (that shows only

5% increase from SGD to NoL). In fact, the accuracy obtained with NoL alone

with BB attack, is almost comparable to that of an EnsAdv/PGDAdv trained model

without noise (SGDens, SGDPGD). The richness of the data manifold and feature

representation space for larger models and complex datasets allows NoL to model

better characteristics in the noise causing increased robustness. As seen earlier, NoL

noise (NoLens, NoLPGD) considerably improves the accuracy even for perturbations

(ε = (16, 32)/255) greater than what the network is adversarially trained for. The in-

creased susceptibility of SGDens, SGDPGD for larger ε establishes that its capability

is limited by the diversity of adversarial examples shown during training. For WB

attacks as well, NoLPGD show higher resistance. Interestingly, while SGD, SGDens

yield infinitesimal performance (< 5%), NoL,NoLens yield reasonably higher ac-

curacy (> 25%) against WB attacks. This further establishes the potential of noise

modeling in enabling adversarial security. It is worth mentioning that BB accuracy of

SGDPGD, NoLPGD models in Table 8.1, 8.2 are lower than SGDens, NoLens, since the

former is attacked with stronger attacks crafted from models trained with PGDAdv4.

Attacking the former with similar adversaries as latter yields higher accuracy.

PC Distance & Variance Analysis : Next, we measured the variance and

cosine distance captured by the Conv1 layer of the ResNet18 model corresponding

to different scenarios (Table 8.2). Fig. 8.5 shows that variance across the leading

PCs decreases as NoLPGD > SGDPGD > NoLens > NoL > SGDens > SGD. In-

clusion of adversarial data points with adversarial training or noise modeling informs

a model more, leading to improved variance. We note that NoLens and SGDPGD

yield nearly similar variance ratio, although SGDPGD gives better accuracy than

NoLens for similar BB and WB attacks. Since we are analyzing only the Conv1

185

Table 8.2.
CIFAR10/ CIFAR100 Accuracy (in %) of ResNet18/ ResNext-
29 target model for different scenarios. ε = 8

255
/ 16
255
/ 32
255

for
NoL, SGD, NoLens, SGDens, NoLPGD, SGDPGD. For PGD attack, we
report accuracy for 7-/20-step attacks. Accuracy < 5%, in most places,
have been omitted and marked as ‘-’.

Scenario Clean Min BB PGD-7 PGD-20 PGD-7 PGD-20

(———————BlackBox—————) (———WhiteBox——–)

ResNet18 (CIFAR10)

SGD 88.8 50.3/32/16.2 34/23/17.1 28/11.2/6.2 2.1/-/- -

NoL 87.1 81/76/67 80.1/75.7/66.4 80/74.8/61 39.1/29.2/23 -

SGDens 86.3 81.3/76.6/68.3 80.9/75.1/67.1 80.2/74.4/63 0.8/-/- -

NoLens 86.4 84.4/81.4/72.6 83/80/71.3 82.7/79/71 29/21/16.5 -

SGDPGD 83.2 71.3/58/50 69.9/62/50.1 54.2/50.3/46 58.4/48/42 57.3/42.8/28

NoLPGD 83 73/62/56.8 71/65/53 57.6/53.7/49.8 63/59/57 59.2/45/30.1

ResNext29 (CIFAR100)

SGD 71 44.2/38.4/26.7 42.7/35/25.4 40.5/27/17 - -

NoL 69.4 63.2/58.5/50.1 62.9/54.3/48.4 62.3/53.1/42.5 19/14/10.3 -

SGDens 69.8 64.8/60.9/50 63.6/57.5/45.4 63/56/42 2.5/-/- -

NoLens 67.3 65.1/62.8/57 64.8/61.4/52.2 64.4/58/49 18/14/11 -

SGDPGD 71.6 57.5/48/38.4 56/45/41.3 48/40/38.4 51.5/49.8/46 50.4/43/33

NoLPGD 69 66.3/62/59.9 63/58.7/54.1 52.3/50/40.8 58.1/56/53 53/48/37.9

layer, we get this discrepancy. In Fig. 8.5, we also plot the cosine distance be-

tween the adversarial (created from FGSM with specified ε) and clean inputs in the

PC subspace. The distance across different scenarios along latter PCs increases as:

NoLPGD < SGDPGD < NoLens < NoL < SGDens < SGD. A noteworthy observa-

tion here is, PC distance follows the same order as decreasing variance and justifies the

accuracy results in Table 8.2. The decreasing distance with NoL compared to SGD

further signifies improved realization of the on-/off-manifold data. Also, the fact that

NoLPGD, NoLens have lower distance for varying ε establishes that integrating noise

modeling with adversarial training compounds adversarial robustness. Interestingly,

186

for both variance and PC distance, NoL has a better characteristic than SGDens.

This proves that noise modeling enables implicit inclusion of adversarial data with-

out direct data augmentation, as opposed to EnsAdv training (or SGDens) where

the dataset is explicitly augmented. This also explains the comparable BB accuracy

between NoL, SGDens in Table 8.2.

ϵ =8/255 ϵ =32/255

Fig. 8.5. [Left] Variance (in response to clean inputs) across different
scenarios for the first 700 PC dimensions. [Middle, Right] Cosine dis-
tance across 700 PCs between clean and adversarial representations for
varying ε. SGDens, SGDPGD exhibit improved variance (and lower
distance) than SGD, suggesting PC variance/ distance as a good
indicator of adversarial robustness. PCA was conducted with sample
of 700 test images.

ϵ =8/255 ϵ =32/255

(b)(a)

Fig. 8.6. Adversarial subspace dimensionality for varying ε for- (a) -BB
adversaries crafted from a model trained with natural examples (b) -WB
adversaries crafted for models trained with PGDAdv training.

Adversarial Subspace Dimensionality : To further corroborate that NoL

noise implicitly embraces adversarial points, we evaluated the adversarial subspace

187

dimension using the Gradient-Aligned Adversarial Subspace (GAAS) method of [174].

We construct k orthogonal vectors r1, .., rk ∈ {−1, 1} from a regular Hadamard ma-

trix of order k ∈ {22, 23, .., 27}. We then multiply each ri component-wise with the

gradient, sign(∇XL(X, Ytrue)). Hence, estimating the dimensionality reduces to find-

ing a set of orthogonal perturbations, ri with ri∞ = ε in the vicinity of a data point

that causes misclassification. For each scenario of Table 8.2 (CIFAR10), we select

350 random test points, x, and plot the probability that we find at least k orthogonal

vectors ri such that x + ri is misclassified. Fig. 8.6 (a), (b) shows the results with

varying ε for BB, WB instances. We find that the size of the space of adversarial

samples is much lower for a model trained with NoL noise than that of standard

SGD. For ε = 8/255, we find over 128/64 directions for ∼ 25%/15% of the points

in case of SGD/NoL. With EnsAdv training, the number of adversarial directions

for SGDens/NoLens reduces to 64 that misclassifies ∼ 17/15% of the points. With

PGDAdv training, the adversarial dimension significantly reduces in case of NoLPGD

for both BB/WB. As we increase the perturbation size (ε = 32/255), we observe

increasingly reduced number of misclassified points as well as adversarial dimensions

for models trained with noise modeling. The WB adversarial plot, in Fig. 8.6 (b),

clearly shows the reduced space obtained with noise modeling with PGDAdv training

(NoLPGD) against plain PGDAdv (SGDPGD) for ε = (8, 32)/255.

Loss Surface Smoothening: By now, it is clear that while NoL alone can defend

against BB attacks (as compared to SGD) reasonably well, it still remains vulnerable

to WB attacks. For WB defense and to further improve BB defense, we need to

combine NoL noise modeling with adversarial training. To further investigate this,

we plotted the loss surface of MNIST models on examples x = x+ ε1 · gBB + ε2 · gWB

in Fig. 8.7, where gBB is the signed gradient, sign(∇XL(X, Ytrue)source), obtained

from the source model (crafting the BB attacks) and gWB is the gradient obtained

from the target model itself (crafting WB attacks), sign(∇XL(X, Ytrue)target). We see

that the loss surface in case of SGD is highly curved with steep slopes in the vicinity

188

of the data point in both BB and WB direction. The EnsAdv training, SGDens,

smoothens out the slope in the BB direction substantially, justifying their robustness

against BB attacks. Models trained with noise modeling, NoL (even without any

data augmentation), yield a softer loss surface. This is why NoL models transfer BB

attacks at lower rates. The surface in the WB direction along ε2 with NoL,NoLens

still exhibits a sharper curvature (although slightly softer than SGDens) validating

the lower accuracies against WB attacks (compared to BB attacks). PGDAdv, on

the other hand, smoothens out the loss surface substantially in both directions owing

to the explicit inclusion of WB adversaries during training. Note, NoLPGD yields a

slightly softer surface than SGDPGD (not shown). The smoothening effect of noise

modeling further justifies the boosted robustness of NoL models for larger perturba-

tions (outside ε-ball used during adversarial training). It is worth mentioning that we

get similar PCA/ Adversarial dimensionality/ loss surface results across all datasets.

SGD SGDens

Data Point, x

NoL NoLens NoLPGD

Fig. 8.7. Loss surface of models corresponding to MNIST (Table8.1).

189

8.4 Discussion

We proposed Noise-based Prior Learning, NoL, as a reliable method for improving

adversarial robustness. Specifically, our key findings are:

1) We show that noise modeling at the input during discriminative training improves

a model’s ability to generalize better for out-of-sample adversarial data (without

explicit data augmentation).

2) Our PCA variance and cosine distance analysis provides a significant perspective

to visualize and quantify a model’s response to adversarial/clean data.

A crucial question one can ask is, How to break NoL defense? The recent

work [165] shows that many defense methods cause ‘gradient masking’ that eventually

fail. We reiterate that, NoL alone does not give a strong BB/WB defense. However,

the smoothening effect of noise modeling on the loss (Fig. 8.7) suggests that noise

modeling decreases the magnitude of the gradient masking effect. NoL does not

change the classification model that makes it easy to be scaled to larger datasets while

integrating with other adversarial defense techniques. Coupled with other defense,

NoL performs remarkably (even for larger ε values). We combine NoL with EnsAdv

& PGDAdv, which do not cause obfuscated gradients and hence can withstand strong

attacks, however, upto a certain point. For WB perturbations much greater than the

training ε value, NoL+PGDAdv also breaks. In fact, for adaptive BB adversaries

[166] or adversaries that query the model to yield full prediction confidence (not just

the label), NoL+EnsAdv will be vulnerable. Note, advantage with NoL is, being

independent of the attack/defense method, NoL can be potentially combined with

stronger attacks developed in future, to create stronger defenses.

While variance and principal subspace analysis help us understand a model’s be-

havior, we cannot fully describe the structure of the manifold learnt by the linear

subspace view. However, PCA does provide a basic intuition about the general-

ization capability of complex image models. In fact, our PC results establish the

superiority of PGDAdv training ([167] best defense so far), in general, as a strong

190

defense method and can be used as a valid metric to gauge adversarial susceptibility

in future proposals. Finally, as our likelihood theory indicates, better noise modeling

techniques with improved gradient penalties can further improve robustness and re-

quires further investigation. Also, performing noise modeling at intermediate layers

to improve variance, and hence robustness, are other future work directions.

A final note on novelty of NoL. As noted earlier, there have been past

works [175–177] where the training dataset is perturbed with random noise, and the

perturbed images are then used to train a deep neural network. The role of such noise

is to impose better regularization effect (or reduce overfitting) during training which,

in turn, improves a models generalization capability or inference accuracy [177]. It

is worth mentioning that such methods do not result in adversarial robustness (also,

verified in [7]). In the proposed NoL approach, the input noise (randomly initialized

at the beginning of training) is gradually learnt during the training procedure. The

fact that we train the noise (or prior) is the major distinguishing factor between

our approach and previous works [175–177] that simply perturb the training data

with random noise. The implicit prior modeling property of NoL goes beyond simple

regularization and in fact, results in adversarial robustness (wherein, a model’s ability

to generalize on adversarial data improves). Our PC distance and variance analysis

(in Section 8.2.3, 8.3.2) further attest the capability of the learnt noise (or prior)

to embrace adversarial points into the data manifold thereby improving a model’s

adversarial accuracy. In fact, our results in Table 8.2 show that standalone NoL

achieves better white-box accuracy than the ensemble adversarial training defense

approach SGDens. This implies that even some white-box perturbations are inherited

in this implicit noise modeling procedure. Such adversarial robustness cannot be

attained with a setup of training over randomly perturbed examples as [175, 176].

Finally, we would also like to point out that our noise-based prior learning can possibly

render some regularization effects on a model during training. The smoothened loss

curves in Fig. 8.7 observed with NoL in comparison to SGD verifies the regularized

model behavior.

191

8.5 Appendix

8.5.1 Justification of X+N vs X×N and use of ∇LN ≤ 0 for noise modeling

Fig. 8.8. Noise learnt for multiplicative vs. additive noise inclusion during
NoL training with MNIST data

In Fig. 8.8, for MNIST dataset, we show the noise template learnt when we use

multiplicative/additive noise (N) for Noise-based Prior Learning. The final noise-

integrated image (for a sample digit ‘9’) that is fed to the network before and after

training is also shown. Additive noise disrupts the image drastically. Multiplicative

noise, on the other hand, enhances the relevant pixels while eliminating the back-

ground. Accuracy corrsponding to each scenario is also shown and compared against

standard SGD training scenario (without any noise). Here, we train a simple convo-

lutional architecture (ConvNet: 10C-M-20C-M-320FC) of 2 Convolutional (C) layers

with 10, 20 filters, each followed by 2×2 Max-pooling (M) and a Fully-Connected

(FC) layer of size 320. We use mini-batch SGD with momentum of 0.5, learning rate

(η=0.1) decayed by 0.1 every 15 epochs and batch-size 64 to learn the network param-

eters. We trained 3 ConvNet models independently corresponding to each scenario for

30 epochs. For the NoL scenarios, we conduct noise modelling with only negative loss

192

gradients (∇LN ≤ 0) with noise learning rate, ηnoise = 0.001, throughout the training

process. Note, the noise image shown is the average across all 64 noise templates.

Fig. 8.9. Noise learnt for different training conditions with NoL on CI-
FAR10 dataset

In Fig. 8.9, we showcase the noise learnt by a simple convolutional network (Con-

vNet: 10C-M-20C-M-320FC), learning the CIFAR10 data with NoL (multiplicative

noise) under different gradient update conditions. As with MNIST (Fig. 8.8), we

observe that the noise learnt enhances the region of interest while deemphasizing the

background pixels. Note, the noise in this case has RGB components as a result of

which we see some prominent color blobs in the noise template after training. The

performance table shows that using only negative gradients (i.e. ∇LN ≤ 0) during

backpropagation for noise modelling yields minimal loss in accuracy as compared to a

standard SGD trained model. We use mini-batch SGD with momentum of 0.9, weight

decay 5e-4, learning rate (η=0.01) decayed by 0.2 every 10 epochs and batch-size 64

to learn the network parameters. We trained 4 ConvNet models independently cor-

responding to each scenario for 30 epochs. For the NoL scenarios, we conduct noise

modelling by backpropagating the corresponding gradient with noise learning rate

(ηnoise = 0.001) throughout the training process. Note, the noise image shown is the

average across all 64 noise templates.

193

8.5.2 PC variance for SGD and NoL scenarios in response to adversarial

and clean inputs across different layers of ResNet18

Fig. 8.10. Variance captured in PC dimensions of intermediate layers’
activations (in response to clean data) of a ResNet18 model trained with
NoL and SGD on CIFAR10 data

In Fig. 8.10, we show the variance captured in the leading Principal Component

(PC) dimensions for the inital convolutional layer’s (Conv1) and intermediate blocks

learnt activations of a ResNet-18 model trained on CIFAR10 data. We compare

the variance of the learnt representations (in response to clean inputs) for each block

across two scenarios: SGD (without noise) and NoL (with noise). Note, we capture the

variance of the final block’s activations before average pooling. That is, the activations

ofBlock4 have dimension 512×4×4. We observe that NoL noise increases the variance

along the high rank PCs. Also, as we go deeper into the network, the absolute

difference of the variance values between SGD/NoL decreases. This is expected as

the contribution of input noise on the overall representations decreases as we go deeper

into the network. Moreover, there is a generic-to-specific transition in the hierarchy

of learnt features of a deep neural network. Thus, the linear PC subspace analysis to

194

quantify a model’s knowledge of the data manifold is more applicable in the earlier

layers, since they learn more general input-related characteristics. Nonetheless, we

see that NoL model yields widened variance than SGD for each intermediate layer

except the final Block4 that feeds into the output layer. We use mini-batch SGD

with momentum of 0.9, weight decay 5e-4, learning rate (η=0.1) decayed by 0.1 every

30 epochs and batch-size 64 to learn the network parameters. We trained 2 ResNet-

18 models independently corresponding to each scenario for 60 epochs. For noise

modelling, we use ηnoise = 0.001 decayed by 0.1 every 30 epochs. Note, we used a

sample set of 700 test images to conduct the PCA.

Fig. 8.11. Variance captured in the leading Principal Component (PC)
dimensions for the Conv1 and Block1 learnt activations in response to
both clean and adversarial inputs for ResNet-18 models corresponding to
the scenarios discussed in Fig. 8.10

In Fig. 8.11, the model’s variance for both clean and adversarial inputs are exactly

same in case of NoL/SGD for Conv1 layers. For Block1, the adversarial input

variance is slighlty lower in case of SGD than that of clean input. With NoL, the

variance is still the same for Block1. This indicates that PC variance statistics cannot

differentiate between a model’s knowledge of on-/off- manifold data. It only tells us

whether a model’s underlying representation has acquired more knowledge about the

data manifold. To analyze a model’s understanding of adversarial data, we need to

195

look into the relationship between the clean and adversarial projection onto the PC

subspace and measure the cosine distance. Note, we used the Fast Gradient Sign

Method (FGSM) method [7] to create BB adversaries with a step size of 8/255, from

another independently trained ResNet-18 model (source) with standard SGD. The

source attack model has the same hyperparameters as the SGD model in Fig. 8.10

and is trained for 40 epochs.

8.5.3 Experimental Details and Model Description

Fig. 8.12. Noise templates shown for different training scenarios with
noise-enabled prior learning

196

In Fig. 8.12, we show the noise templates learnt with noise modeling corresponding

to different training scenarios of Table 8.1, 8.2: NoL (only noise modeling), NoL PGD

(noise modeling with PGDAdv training NoLPGD), NoL ens (noise modeling with En-

sAdv training NoLens) for MNIST and CIFAR10 data. A sample image (X × N)

before and after training with different scenarios is shown. The fact that every train-

ing technique yields different noise template shows that noise influences the overall

optimization. Column 1 shows the noise template and correponding image (X ×N)

before training, Coulmns 2-4 show the templates after training. Note, noise shown is

the mean across 64 templates.

Table 8.3.
Hyperparameter Table for training ResNet18 models on CIFAR10 data

Model Type Training

Method

Epochs η/ηadv η, ηadv

decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv

decay/step-

size

Test

Accuracy

in (%)

Target

SGD 120 0.1/– 0.1/30 – – 88.8

NoL 120 0.1/– 0.1/30 0.001/– 0.1/30 87.1

SGDens 80 0.1/0.05 0.1/30 – – 86.3

NoLens 120 0.1/0.05 0.1/30 0.001/0.0005 0.1/30 86.4

SGDPGD 122 0.1/0.1 0.1/20 – – 83.2

NoLPGD 122 0.1/0.1 0.1/20 0.001/0.0005 0.1/20 83

Source
SGD 300 0.1/– 0.1/100 – – 89

PGDAdv 122 0.1/0.1 0.1/20 – – 83

EnsAdv SGD 31 0.1/– 0.1/30 – – 81

The Pytorch implementation of ResNet-18 architecture for CIFAR10 and ResNext-

29 architecture for CIFAR100 were taken from [181]. For CIFAR10/CIFAR100, we

use mini-batch SGD with momentum of 0.9, weight decay 5e-4 and batch size 64 for

training the weight parameters of the models. A detailed description of the learning

197

rate and epochs for ResNet18 model (corresponding to Table 8.2) is shown in Table

8.3. Similarly, Table 8.4 shows the parameters for ResNext-29 model. The hyper-

parmeters corresponding to each scenario (of Table 8.3, 8.4) are shown in Rows1-6

under Target type. The hyperparameters for the source model used to attack the

target models for BB scenarios is shown in Row 7/8 under Source type. We use BB

attacks from the SGD trained source model to attack SGD,NoL,NoLens, PGDens.

We use BB attacks from a model trained with PGD adversarial training (ε = 8/255,

step-size=2/255 over 7 steps) to craft strong BB attacks on SGDPGD, NoLPGD. The

model used to generate black box adversaries to augment the training dataset of the

SGDens, NoLens target models is shown in Row 9 under EnsAdv type.

Table 8.4.
Hyperparameter Table for training ResNext29 models on CIFAR100 data

Model Type Training

Method

Epochs η/ηadv η, ηadv

decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv

decay/step-

size

Test

Accuracy

in (%)

Target

SGD 100 0.1/– 0.1/40 – – 71

NoL 58 0.1/– 0.1/20 0.001/– 0.1/20 69.4

SGDens 42 0.1/0.05 0.1/20 – – 69.8

NoLens 48 0.1/0.05 0.1/20 0.001/0.0005 0.1/20 67.3

SGDPGD 52 0.1/0.05 0.1/20 – – 71.6

NoLPGD 52 0.1/0.05 0.1/20 0.001/0.0005 0.1/20 69

Source
SGD 34 0.1/– 0.1/10 – – 67.2

PGDAdv 48 0.1/0.05 0.1/20 – – 68.4

EnsAdv SGD 45 0.1/– 0.1/20 – – 71.3

How to conduct Ensemble Adversarial Training? Furthermore, in all our

experiments, for EnsAdv training (SGDens), we use a slightly different approach

than [10]. Instead of using a weighted loss function that controls the relative weight

of adversarial/clean examples in the overall loss computation, we use a different learn-

198

ing rate ηadv/η (ηadv < η) when training with adversarial/clean inputs, respectively,

to learn the network parameters. Accordingly, while performing adversarial train-

ing with noise-based learning (NoLens), the noise modeling learning rate in addi-

tion to overall learning rate, ηadv/η, for adversarial/clean inputs is also different,

ηnoiseadv/ηnoise (ηnoiseadv < ηnoise).

Table 8.5.
Hyperparameter Table for training ConvNet1/ConvNet2 models on
MNIST data

Model Type Training

Method

Epochs η/ηadv η, ηadv

decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv

decay/step-

size

Test

Accuracy

in (%)

Target

ConvNet1

SGD 100 0.01/– 0.1/50 – – 99.1

NoL 150 0.01/– 0.1/50 0.001/– 0.1/50 99.2

SGDens 64 0.01/0.005 0.1/30 – – 99

NoLens 32 0.01/0.005 0.1/30 0.001/3.3e-5 0.1/30 99.1

SGDPGD 142 0.01/0.01 0.1/30 – – 97.9

NoLPGD 162 0.01/0.01 0.1/30 1e-4/1e-5 0.1/30 98

Source

(ConvNet2)

SGD 15 0.01/– –/– – – 98.6

PGDAdv 128 0.01/0.01 0.1/30 – – 97

EnsAdv

ConvNet1

SGD 15 0.01/– –/– – – 98.8

How to conduct PGD Adversarial Training? For PGD adversarial training

(SGDPGD), we used the techniques suggested in [182]. [182] propose that training on

a mixture of clean and adversarial examples (generated using PGD attack), instead of

literally solving the min-max problem described by [167] yields better performance.

In fact, this helps maintain good accuracy on both clean and adversarial examples.

Like EnsAdv training, here as well, we use a different learning rate ηadv/η (ηadv <

η) when training with adversarial/clean inputs, respectively, to learn the network

199

parameters. Accordingly, while performing PGD adversarial training with noise-based

learning (NoLPGD), the noise modeling learning rate in addition to overall learning

rate, ηadv/η, for adversarial/clean inputs is also different, ηnoiseadv/ηnoise (ηnoiseadv <

ηnoise)

Note, the adversarial inputs for EnsAdv training of a target model are created

using BB adversaries generated by standard FGSM from a source (shown in Row 9

of Table 8.3, 8.4), while PGDAdv training uses WB adversaries created with PGD

attack from the same target model. We also show the test accuracy (on clean data)

for each model in Table 8.3,8.4 for reference. Note, the learning rate in each case

decays by a factor of 0.1 every 20/30 epochs (Column 5 in Table 8.3, 8.4).

Table 8.6.
Hyperparameter Table for training ResNet18 models on CIFAR10 data for
different types of noise modeling (X +N,X ×N) with all/ only negative
gradient ∇LN

Noise

Modeling

Type

Gradient

∇LN

Epochs η η

decay/step-

size

ηnoise ηnoise

decay/step-

size

Test

Accuracy

in (%)

X +N Negative 120 0.1 0.1/30 0.001 0.1/30 78.1

X +N All 120 0.1 0.1/30 0.001 0.1/30 77.1

X ×N Negative 120 0.1 0.1/30 0.001 0.1/30 87.1

X ×N All 120 0.1 0.1/30 0.001 0.1/30 85.1

SGD - 120 0.1 0.1/30 - - 88.9

For MNIST, we use 2 different architectures as source/ target models. ConvNet1:

32C-M-64C-M-1024FC is the model used as target. ConvNet2: 10C-M-20C-M-320FC

is the model used as source. Here, we use mini-batch SGD with momentum of 0.5,

batch size 64, for training the weight parameters. Table 8.5 shows the hyperparame-

ters used to train the models in Table 8.1. The notations here are similar to that of

200

Table 8.3. Note, the source model trained with PGDAdv training to craft BB attacks

on NoLPGD, SGDPGD was trained with ε = 0.3, step-size=0.01 over 40 steps.

Model Description for Fig. 8.2

We use mini-batch SGD with momentum of 0.9, weight decay 5e-4 and batch size

64 for training the weight parameters of the models in Table 8.6.

201

9. SUMMARY & FUTURE WORK

Neural networks are being increasingly deployed across the entire computing spectrum

from data centers to mobile devices to drive artificial intelligence (AI) applications.

AI is undoubtedly disrupting society as it is becoming ubiquitous- sometimes to the

extent that AI models replace humans and take decision autonomously- in domains

like healthcare, transportation or education among others. However, the vulnerability

of AI models particularly to adversarial attacks poses a threat on the integration of

AI for critical applications (that can cause fatal failures). Further, the advent of IoT

(Internet-of-Things) has created the need to embed on-chip intelligence in mobiles,

wearables and related devices. The limited resources and power budget of IoT devices,

however, prohibits the deployment of large neural networks (that are both power

hungry and memory intensive). Thus, democratization of AI in the future presses the

need for accurate, energy-efficient and robust realization of neural networks.

In this thesis, we presented some design techniques spanning both conventional

deep learning networks (DLNs) and biologically-inspired spiking neural networks

(SNNs). SNNs naturally offer more energy-efficient computations due to the inher-

ent sparse, event-driven nature of neuronal processing and communication. However,

SNNs lack appropriate training techniques that can push their applicability towards

a large range of AI systems. To that effect, we described unsupervised/supervised

learning rules for training deep SNNs and recurrent SNNs that yields state-of-the-art

results with computationally efficient learning (chapter 4, 5, 6). Additionally, we pro-

posed several complementary approaches focusing on ensemble implementations of

SNNs using the principle of ‘divide-and-conquer’ [183,184]. Here, the main idea is to

divide the task into simpler problems and learn simple networks on them individually.

Finally, during evaluation, we combine the decision of each network. This reduces

202

the training complexity of an SNN and also allows the individual networks to learn

better, discriminative features about the input causing improved accuracy [185].

On the deep learning end, DLNs have enabled a wide-range of AI applications,

but incur high compute and memory costs. To reduce the inference cost for DLNs,

we proposed techniques exploiting the inherent variability in input data to come up

with an early-classification strategy. Here, easy inputs are classified at early layers

and hard inputs at latter layers, without any impact of output accuracy (chapter 2).

In fact, we used the consensus in the characteristic features (color/texture) across

images in a dataset, as discussed in chapter 3, to decompose the original classification

problem and construct a tree of classifiers (nodes) with a generic-to-specific transition

in the classification hierarchy [69]. The initial nodes of the tree separate the instances

based on feature information and selectively enable the latter nodes to perform ob-

ject specific classification. The proposed FALCON methodology [69] allows selective

activation of only those branches and nodes of the classification tree that are relevant

to the input while keeping the remaining nodes idle, resulting in energy-efficiency.

FALCON was later adapted to more generic tree-based DLN implementations [186].

Finally, we explored different quantization themes to analyse the robustness of

low-precision DLNs against adversarial attacks (chapter 7). We also proposed a new

noise-based learning technique that imparts intrinsic adversarial resiliency to DLNs

(chapter 7). A significant contribution of chapter 7 is the PCA variance and cosine

distance analysis that provides a novel perspective to visualize and quantify a model’s

response to adversarial/clean data. We also conducted a comprehensive analysis on

the adversarial robustness of SNNs [18]. Our analysis reveals that SNN robustness

is largely dependent on the corresponding training mechanism. We observe that

SNNs trained by spike-based backpropagation are more adversarially robust than the

ones obtained by ANN-to-SNN conversion rules in several whitebox and blackbox

scenarios. In [18], we also proposed a simple, yet, effective framework for crafting

adversarial attacks from SNNs. This method of crafting adversaries can potentially

203

be used in the future to craft stronger attacks and measure the adversarial resiliency

of SNNs, in comparison to DLNs.

Future Work Conditional Deep Learning (chapter 2) offers useful insights into

the computationally efficient characteristics of a DLN’s inference. In the future, it

is worth investigating the applicability of CDL or the early termination strategy to-

wards implementing distributed edge-cloud intelligence. One way of doing this can

be a hybrid precision DLN with low-precision weights/activations in the early layers

predicting easy or simple inputs and higher-precision weights/activations in the latter

layers for the harder inputs. Scaling the precision in a principled manner will result

in a computationally efficient DLN architecture without accuracy loss. Thus, CDL

strategy with hybrid precision scaling can lead to edge-cloud partitioned implemen-

tation of a DLN with partitioned inference. Similarly, CDL can be combined with

reinforcement learning systems or deep Q-networks (DQNs) to implement efficient

drone-navigation systems. Intelligence of the drone, concerning training and infer-

ence of the DQN, are generally deployed on cloud servers. However, the continuous

on-/off-loading of data between the cloud and the drone leads to increased latency

in processing time per frame. CDL can enable efficient distributed autonomous in-

telligence (with early layers and exit branches implemented on the device and latter

layers on cloud). With properly trained exit branches, we can expect fast and accurate

decision making on the drone itself.

Similarly, the insights developed for Adaptive Synaptic Plasticity (chapter 5) can

be extended towards implementing a deep SNN with better generalization and trans-

fer learning capability. The spike-based learning strategies for reservoirs and auto-

encoder based learning in deep SNNs (chapter 6, 4) can be refined further to improve

accuracy on image recognition tasks as well as, extend to beyond-vision applica-

tions [187,188].

Finally, as we move towards an AI-driven world, there will be a growing need for a

formal definition of the notion of robustness and interpretability of learning systems.

Our recent work’s analysis on the stability of training of reservoirs for a sequential task

204

is an initial work in this direction [189]. We formalized the training convergence not

just as a measure of accuracy, but in terms of eigenvalue spectra (which is, shrinking

of spectral circle as training progresses). Similarly, for robustness, a strong and well-

motivated definition for adversarial attacks (similar to principal component analysis

shown in chapter 8) can directly facilitate research in the formal verification of neural

networks.

To conclude, let me re-iterate the question (by Alan Turing) from the abstract

of the thesis, ‘Can machines think?’. This question presents several opportunities

for research across the computing stack from algorithm-to-hardware. Today, machine

intelligence is broadly pursued by the deep learning and the neuromorphic computing

community in the design space of energy-accuracy trade-off. Despite the spectacular

advances in both algorithm and hardware to enable ubiquitous AI, the community’s

understanding of adversarial robustness still is at its infancy. Going forward, there is

a need to explore the energy-accuracy-robustness trade-off cohesively with algorithm-

hardware co-design to create truly functional cognitive systems.

REFERENCES

205

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” Nature, vol.
529, no. 7587, pp. 484–489, 2016.

[2] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in Neural Information Processing
Systems, 2015, pp. 1135–1143.

[3] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch, “Activity-
driven, event-based vision sensors,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. IEEE, 2010, pp. 2426–2429.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[5] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” in Joint
European conference on machine learning and knowledge discovery in databases.
Springer, 2013, pp. 387–402.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[8] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in Security and Pri-
vacy (EuroS&P), 2016 IEEE European Symposium on. IEEE, 2016, pp. 372–
387.

[9] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and
accurate method to fool deep neural networks,” in Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), no. EPFL-
CONF-218057, 2016.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[11] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial
examples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

206

[12] P. Laskov et al., “Practical evasion of a learning-based classifier: A case study,”
in Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014, pp.
197–211.

[13] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in Proceedings
of the 2016 Network and Distributed Systems Symposium, 2016.

[14] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adver-
sarial perturbations against deep neural networks for malware classification,”
arXiv preprint arXiv:1606.04435, 2016.

[15] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box
attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[16] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial
attacks on neural network policies,” arXiv preprint arXiv:1702.02284, 2017.

[17] V. Behzadan and A. Munir, “Vulnerability of deep reinforcement learning to
policy induction attacks,” in International Conference on Machine Learning
and Data Mining in Pattern Recognition. Springer, 2017, pp. 262–275.

[18] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy, “A
comprehensive analysis on adversarial robustness of spiking neural networks,”
Accepted in International Joint Conference on Neural Networks (IJCNN), arXiv
preprint arXiv:1905.02704, 2019.

[19] P. Panda, A. Sengupta, and K. Roy, “Energy-efficient and improved image
recognition with conditional deep learning,” ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), vol. 13, no. 3, p. 33, 2017.

[20] ——, “Conditional deep learning for energy-efficient and enhanced pattern
recognition,” in Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2016. IEEE, 2016, pp. 475–480.

[21] P. Panda, S. Venkataramani, A. Sengupta, A. Raghunathan, and K. Roy,
“Energy-efficient object detection using semantic decomposition,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp.
2673–2677, 2017.

[22] P. Panda and K. Roy, “Unsupervised regenerative learning of hierarchical fea-
tures in spiking deep networks for object recognition,” in Neural Networks
(IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp. 299–306.

[23] P. Panda, J. M. Allred, S. Ramanathan, and K. Roy, “Asp: Learning to forget
with adaptive synaptic plasticity in spiking neural networks,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. PP, no. 99, pp. 1–1,
2017.

[24] F. Zuo*, P. Panda*, M. Kotiuga, J. Li, M. Kang, C. Mazzoli, H. Zhou, A. Bar-
bour, S. Wilkins, B. Narayanan et al., “Habituation based synaptic plasticity
and organismic learning in a quantum perovskite,” Nature Communications,
vol. 8, 2017, *Equal Author Contribution.

[25] P. Panda and K. Roy, “Learning to generate sequences with combination of heb-
bian and non-hebbian plasticity in recurrent spiking neural networks,” Frontiers
in neuroscience, vol. 11, p. 693, 2017.

207

[26] P. Panda, I. Chakraborty, and K. Roy, “Discretization based solutions for secure
machine learning against adversarial attacks,” arXiv preprint arXiv:1902.03151,
2019.

[27] P. Panda and K. Roy, “Implicit generative modeling of random noise during
training for adversarial robustness,” arXiv preprint arXiv:1807.02188, 2018.

[28] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[29] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends R© in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[30] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning,” in NIPS workshop
on deep learning and unsupervised feature learning, vol. 2011, no. 2. Granada,
Spain, 2011, p. 5.

[31] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in Advances in Neural Information Processing Systems, 2012, pp. 1223–1231.

[32] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[34] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and A. Raghu-
nathan, “Spindle: Spintronic deep learning engine for large-scale neuromorphic
computing,” in Proceedings of the 2014 international symposium on Low power
electronics and design. ACM, 2014, pp. 15–20.

[35] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-effort
classifiers for energy-efficient machine learning,” in Proceedings of the 52nd An-
nual Design Automation Conference. ACM, 2015, p. 67.

[36] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional
networks,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. IEEE, 2010, pp. 2528–2535.

[37] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” in Advances in Neural Information Processing
Systems, 2014, pp. 3320–3328.

[38] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-
shelf: an astounding baseline for recognition,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2014 IEEE Conference on. IEEE, 2014,
pp. 512–519.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” arXiv
preprint arXiv:1409.4842, 2014.

208

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” arXiv preprint
arXiv:1502.01852, 2015.

[41] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-
feat: Integrated recognition, localization and detection using convolutional net-
works,” arXiv preprint arXiv:1312.6229, 2013.

[42] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in International conference on artificial intelligence
and statistics, 2010, pp. 249–256.

[43] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012, pp. 3642–3649.

[44] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[45] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[46] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[47] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environ-
ment for machine learning,” in BigLearn, NIPS Workshop, no. EPFL-CONF-
192376, 2011.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[49] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object
recognition with invariance to pose and lighting,” in Computer Vision and Pat-
tern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 2. IEEE, 2004, pp. II–97.

[50] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.

[51] L. Hansen, “Tiny imagenet challenge submission,” CS 231N, 2015.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” arXiv preprint arXiv:1512.03385, 2015.

[53] R. B. Palm, “Prediction as a candidate for learning deep hierarchical models of
data,” Technical University of Denmark, 2012.

[54] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information
and computer sciences, vol. 44, no. 1, pp. 1–12, 2004.

[55] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” arXiv preprint arXiv:1211.5063, 2012.

209

[56] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Computer Vision, 2009
IEEE 12th International Conference on. IEEE, 2009, pp. 2146–2153.

[57] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in Proceedings of the 30th International
Conference on Machine Learning (ICML-13), 2013, pp. 1058–1066.

[58] P. Dubey, “Recognition, mining and synthesis moves computers to the era of
tera,” 2005.

[59] S. Venkataramani, V. Bahl, X.-S. Hua, J. Liu, J. Li, M. Phillipose, B. Priyantha,
and M. Shoaib, “Sapphire: An always-on context-aware computer vision system
for portable devices,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2015. IEEE, 2015, pp. 1491–1496.

[60] J. Hosang, R. Benenson, P. Dollár, and B. Schiele, “What makes for effective
detection proposals?” 2015.

[61] L. Deng and J. C. Platt, “Ensemble deep learning for speech recognition.” in
INTERSPEECH, 2014, pp. 1915–1919.

[62] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for facial
point detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 3476–3483.

[63] H. Levkowitz and G. T. Herman, “Glhs: A generalized lightness, hue, and sat-
uration color model,” CVGIP: Graphical Models and Image Processing, vol. 55,
no. 4, pp. 271–285, 1993.

[64] A. K. Jain, N. K. Ratha, and S. Lakshmanan, “Object detection using gabor
filters,” Pattern Recognition, vol. 30, pp. 295–309, 1997.

[65] S. Arivazhagan and L. Ganesan, “Texture classification using wavelet trans-
form,” Pattern recognition letters, vol. 24, no. 9, pp. 1513–1521, 2003.

[66] M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, “Identification using en-
crypted biometrics,” in Computer Analysis of Images and Patterns. Springer,
2013, pp. 440–448.

[67] G.-H. Hu, “Optimal ring gabor filter design for texture defect detection using a
simulated annealing algorithm,” in Information Science, Electronics and Elec-
trical Engineering (ISEEE), 2014 International Conference on, vol. 2. IEEE,
2014, pp. 860–864.

[68] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-10,”
Unpublished manuscript, vol. 40, 2010.

[69] P. Panda, A. Ankit, P. Wijesinghe, and K. Roy, “Falcon: Feature driven se-
lective classification for energy-efficient image recognition,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2017.

[70] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. Merolla, K. Boahen et al.,
“Neurogrid: A mixed-analog-digital multichip system for large-scale neural sim-
ulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–716, 2014.

210

[71] J. Park, S. Ha, T. Yu, E. Neftci, and G. Cauwenberghs, “A 65k-neuron 73-
mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array
transceiver,” in Biomedical Circuits and Systems Conference (BioCAS), 2014
IEEE. IEEE, 2014, pp. 675–678.

[72] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A mil-
lion spiking-neuron integrated circuit with a scalable communication network
and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[73] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time clas-
sification and sensor fusion with a spiking deep belief network,” Frontiers in
neuroscience, vol. 7, 2013.

[74] W. Maass and H. Markram, “On the computational power of circuits of spiking
neurons,” Journal of computer and system sciences, vol. 69, no. 4, pp. 593–616,
2004.

[75] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona,
S. Chen, and B. Linares-Barranco, “Mapping from frame-driven to frame-free
event-driven vision systems by low-rate rate coding and coincidence processing–
application to feedforward convnets,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 35, no. 11, pp. 2706–2719, 2013.

[76] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[77] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of
hierarchical representations with convolutional deep belief networks,” Commu-
nications of the ACM, vol. 54, no. 10, pp. 95–103, 2011.

[78] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object recogni-
tion,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on. IEEE, 2007, pp. 1–8.

[79] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through
spike-timing-dependent synaptic plasticity,” Nature neuroscience, vol. 3, no. 9,
pp. 919–926, 2000.

[80] P. U. Diehl, M. Cook, M. Tatsuno, and S. Song, “Unsupervised learning of
digit recognition using spike-timing-dependent plasticity.” Frontiers in Compu-
tational Neuroscience, 2015.

[81] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,
“Why does unsupervised pre-training help deep learning?” The Journal of
Machine Learning Research, vol. 11, pp. 625–660, 2010.

[82] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[83] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise
training of deep networks,” Advances in neural information processing systems,
vol. 19, p. 153, 2007.

211

[84] A. van Schaik, “Building blocks for electronic spiking neural networks,” Neural
networks, vol. 14, no. 6, pp. 617–628, 2001.

[85] N. Anwani and B. Rajendran, “Normad-normalized approximate descent based
supervised learning rule for spiking neurons,” in Neural Networks (IJCNN),
2015 International Joint Conference on. IEEE, 2015, pp. 1–8.

[86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, p. 3, 1988.

[87] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in con-
volutional architectures for object recognition,” in Artificial Neural Networks–
ICANN 2010. Springer, 2010, pp. 92–101.

[88] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proceedings of the
25th international conference on Machine learning. ACM, 2008, pp. 1096–1103.

[89] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[90] A. Mahendran and A. Vedaldi, “Understanding deep image representations by
inverting them,” arXiv preprint arXiv:1412.0035, 2014.

[91] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks
for energy-efficient object recognition,” International Journal of Computer Vi-
sion, vol. 113, no. 1, pp. 54–66, 2015.

[92] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in Neural Networks (IJCNN), 2015 International Joint Conference
on. IEEE, 2015, pp. 1–8.

[93] N. Madroñal, J. M. Delgado-Garćıa, A. Fernández-Guizán, J. Chatterjee,
M. Köhn, C. Mattucci, A. Jain, T. Tsetsenis, A. Illarionova, V. Grinevich et al.,
“Rapid erasure of hippocampal memory following inhibition of dentate gyrus
granule cells,” Nature communications, vol. 7, 2016.

[94] R. M. French, “Semi-distributed representations and catastrophic forgetting in
connectionist networks,” Connection Science, vol. 4, no. 3-4, pp. 365–377, 1992.

[95] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks,”
arXiv preprint arXiv:1312.6211, 2013.

[96] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in
cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[97] W. Maass, “Networks of spiking neurons: the third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[98] S. Martin, P. Grimwood, and R. Morris, “Synaptic plasticity and memory: an
evaluation of the hypothesis,” Annual review of neuroscience, vol. 23, no. 1, pp.
649–711, 2000.

212

[99] S. Grossberg, “How does a brain build a cognitive code?” in Studies of mind
and brain. Springer, 1982, pp. 1–52.

[100] G. A. Carpenter and S. Grossberg, “The art of adaptive pattern recognition by
a self-organizing neural network,” Computer, vol. 21, no. 3, pp. 77–88, 1988.

[101] O. Hardt, K. Nader, and Y.-T. Wang, “Glua2-dependent ampa receptor endo-
cytosis and the decay of early and late long-term potentiation: possible mecha-
nisms for forgetting of short-and long-term memories,” Phil. Trans. R. Soc. B,
vol. 369, no. 1633, p. 20130141, 2014.

[102] D. M. Villarreal, V. Do, E. Haddad, and B. E. Derrick, “Nmda receptor an-
tagonists sustain ltp and spatial memory: active processes mediate ltp decay,”
Nature neuroscience, vol. 5, no. 1, pp. 48–52, 2002.

[103] P. W. Frankland, S. Köhler, and S. A. Josselyn, “Hippocampal neurogenesis
and forgetting,” Trends in neurosciences, vol. 36, no. 9, pp. 497–503, 2013.

[104] W. Zhang and D. J. Linden, “The other side of the engram: experience-driven
changes in neuronal intrinsic excitability,” Nature Reviews Neuroscience, vol. 4,
no. 11, pp. 885–900, 2003.

[105] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device vari-
ations in a spiking neural network with memristive nanodevices,” IEEE Trans-
actions on Nanotechnology, vol. 12, no. 3, pp. 288–295, 2013.

[106] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell
type,” Journal of neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998.

[107] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive stdp-based spike
pattern learning,” Neural computation, vol. 21, no. 5, pp. 1259–1276, 2009.

[108] L. Abbott and S. Song, “Temporally asymmetric hebbian learning, spike tim-
ing and neural response variability,” Advances in neural information processing
systems, pp. 69–75, 1999.

[109] M. Muhlbaier, A. Topalis, and R. Polikar, “Incremental learning from unbal-
anced data,” in Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, vol. 2. IEEE, 2004, pp. 1057–1062.

[110] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-dependent plasticity
in balanced random networks,” Neural computation, vol. 19, no. 6, pp. 1437–
1467, 2007.

[111] R. Morris, “Do hebb: The organization of behavior, wiley: New york; 1949,”
Brain research bulletin, vol. 50, no. 5, p. 437, 1999.

[112] D. Goodman and R. Brette, “Brian: a simulator for spiking neural networks in
python,” 2008.

[113] S. Basu, M. Karki, S. Ganguly, R. DiBiano, S. Mukhopadhyay, S. Gayaka,
R. Kannan, and R. Nemani, “Learning sparse feature representations using
probabilistic quadtrees and deep belief nets,” Neural Processing Letters, pp.
1–13, 2015.

213

[114] R. Laje and D. V. Buonomano, “Robust timing and motor patterns by taming
chaos in recurrent neural networks,” Nature neuroscience, vol. 16, no. 7, pp.
925–933, 2013.

[115] F. Zenke, E. J. Agnes, and W. Gerstner, “Diverse synaptic plasticity mecha-
nisms orchestrated to form and retrieve memories in spiking neural networks,”
Nature communications, vol. 6, 2015.

[116] S. Klampfl and W. Maass, “Emergence of dynamic memory traces in cortical
microcircuit models through stdp,” Journal of Neuroscience, vol. 33, no. 28,
pp. 11 515–11 529, 2013.

[117] K. Rajan, Spontaneous and stimulus-driven network dynamics. Columbia Uni-
versity, 2009.

[118] K. Rajan, L. Abbott, and H. Sompolinsky, “Stimulus-dependent suppression
of chaos in recurrent neural networks,” Physical Review E, vol. 82, no. 1, p.
011903, 2010.

[119] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. An-
dreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch et al., “Convo-
lutional networks for fast, energy-efficient neuromorphic computing,” Proceed-
ings of the National Academy of Sciences, p. 201604850, 2016.

[120] S. R. Kheradpisheh, M. Ganjtabesh, and T. Masquelier, “Bio-inspired unsuper-
vised learning of visual features leads to robust invariant object recognition,”
Neurocomputing, vol. 205, pp. 382–392, 2016.

[121] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features
through spike timing dependent plasticity,” PLoS Comput Biol, vol. 3, no. 2, p.
e31, 2007.

[122] W. Maass, “Liquid state machines: motivation, theory, and applications,” Com-
putability in context: computation and logic in the real world, pp. 275–296, 2010.

[123] N. Srinivasa and Y. Cho, “Unsupervised discrimination of patterns in spiking
neural networks with excitatory and inhibitory synaptic plasticity,” Frontiers
in computational neuroscience, vol. 8, p. 159, 2014.

[124] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent
neural network training,” Computer Science Review, vol. 3, no. 3, pp. 127–149,
2009.

[125] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks-with an erratum note,” Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report, vol. 148,
no. 34, p. 13, 2001.

[126] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations,”
Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[127] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity from
chaotic neural networks,” Neuron, vol. 63, no. 4, pp. 544–557, 2009.

214

[128] P. U. Diehl and M. Cook, “Learning and inferring relations in cortical net-
works,” arXiv preprint arXiv:1608.08267, 2016.

[129] M. Wehr and A. M. Zador, “Balanced inhibition underlies tuning and sharpens
spike timing in auditory cortex,” Nature, vol. 426, no. 6965, pp. 442–446, 2003.

[130] R. Legenstein and W. Maass, “Edge of chaos and prediction of computational
performance for neural circuit models,” Neural Networks, vol. 20, no. 3, pp.
323–334, 2007.

[131] C. Van Vreeswijk, H. Sompolinsky et al., “Chaos in neuronal networks with
balanced excitatory and inhibitory activity,” Science, vol. 274, no. 5293, pp.
1724–1726, 1996.

[132] J.-Y. Chen, P. Lonjers, C. Lee, M. Chistiakova, M. Volgushev, and
M. Bazhenov, “Heterosynaptic plasticity prevents runaway synaptic dynam-
ics,” Journal of Neuroscience, vol. 33, no. 40, pp. 15 915–15 929, 2013.

[133] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of spike timing-
dependent plasticity,” Journal of Neuroscience, vol. 26, no. 38, pp. 9673–9682,
2006.

[134] T. E. de Campos, B. R. Babu, and M. Varma, “Character recognition in natural
images.” in VISAPP (2), 2009, pp. 273–280.

[135] K. Rajan and L. Abbott, “Eigenvalue spectra of random matrices for neural
networks,” Physical review letters, vol. 97, no. 18, p. 188104, 2006.

[136] V. L. Girko, “Circular law,” Theory of Probability & Its Applications, vol. 29,
no. 4, pp. 694–706, 1985.

[137] A. Lazar, G. Pipa, and J. Triesch, “Sorn: a self-organizing recurrent neural
network,” Frontiers in computational neuroscience, vol. 3, 2009.

[138] J. Thiele, P. Diehl, and M. Cook, “A wake-sleep algorithm for recurrent, spiking
neural networks,” arXiv preprint arXiv:1703.06290, 2017.

[139] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[140] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Advances in neural information processing systems, 2016,
pp. 4107–4115.

[141] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European Confer-
ence on Computer Vision. Springer, 2016, pp. 525–542.

[142] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial
images using input transformations,” in International Conference on Learning
Representations, 2018.

[143] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding:
One hot way to resist adversarial examples,” in International Conference on
Learning Representations, 2018.

215

[144] J. Chen, X. Wu, Y. Liang, and S. Jha, “Improving adversarial robustness by
data-specific discretization,” arXiv preprint arXiv:1805.07816, 2018.

[145] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial exam-
ples in deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[146] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets
robustness,” in International Conference on Learning Representations, 2019.

[147] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[148] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 and cifar-100 datasets,” URl:
https://www. cs. toronto. edu/kriz/cifar. html (vi sited on Mar. 1, 2016), 2009.

[149] A. Galloway, G. W. Taylor, and M. Moussa, “Attacking binarized neural net-
works,” in International Conference on Learning Representations, 2018.

[150] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” in International Con-
ference on Learning Representations, 2018.

[151] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in International Conference on Learning Representations, 2016.

[152] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference
on Learning Representations, 2018.

[153] https://github.com/itayhubara/BinaryNet.pytorch.

[154] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[155] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on. Ieee, 2009, pp. 248–255.

[156] https://github.com/jiecaoyu/XNOR-Net-PyTorch.

[157] https://evadeML.org/zoo.

[158] https://github.com/AngusG/cleverhans-attacking-bnns.

[159] N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, and P. McDaniel,
“cleverhans v1.0.0: an adversarial machine learning library,” arXiv preprint
arXiv:1610.00768, 2016.

[160] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017,
pp. 39–57.

216

[161] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security.
ACM, 2017, pp. 506–519.

[162] D. Krotov and J. J. Hopfield, “Dense associative memory is robust to adversarial
inputs,” arXiv preprint arXiv:1701.00939, 2017.

[163] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597.

[164] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval net-
works: Improving robustness to adversarial examples,” in International Con-
ference on Machine Learning, 2017, pp. 854–863.

[165] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” arXiv preprint
arXiv:1802.00420, 2018.

[166] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel, “Ensemble
adversarial training: Attacks and defenses,” arXiv preprint arXiv:1705.07204,
2017.

[167] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[168] Y. Sharma and P.-Y. Chen, “Breaking the madry defense model with l 1-based
adversarial examples,” arXiv preprint arXiv:1710.10733, 2017.

[169] Y. Lou, X. Boix, G. Roig, T. Poggio, and Q. Zhao, “Foveation-based mecha-
nisms alleviate adversarial examples,” Center for Brains, Minds and Machines
(CBMM), arXiv, Tech. Rep., 2016.

[170] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning.(2016),” Book in
preparation for MIT Press. URL: http://www. deeplearningbook. org, 2016.

[171] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Lever-
aging generative models to understand and defend against adversarial exam-
ples,” arXiv preprint arXiv:1710.10766, 2017.

[172] H. Lee, S. Han, and J. Lee, “Generative adversarial trainer: Defense to adver-
sarial perturbations with gan,” arXiv preprint arXiv:1705.03387, 2017.

[173] J. Gilmer, L. Metz, F. Faghri, S. S. Schoenholz, M. Raghu, M. Wattenberg, and
I. Goodfellow, “Adversarial spheres,” arXiv preprint arXiv:1801.02774, 2018.

[174] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “The space
of transferable adversarial examples,” arXiv preprint arXiv:1704.03453, 2017.

[175] H. Noh, T. You, J. Mun, and B. Han, “Regularizing deep neural networks by
noise: Its interpretation and optimization,” in Advances in Neural Information
Processing Systems, 2017, pp. 5109–5118.

217

[176] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness of classifiers:
from adversarial to random noise,” in Advances in Neural Information Process-
ing Systems, 2016, pp. 1632–1640.

[177] G. Hinton, “https://www.youtube.com/watch?v=LN0xtUuJsEI,” Neural Net-
works for Machine Learning, Coursera, (Lecture 9.3).

[178] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting clas-
sifiers against adversarial attacks using generative models,” in International
Conference on Learning Representations, vol. 9, 2018.

[179] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial images,”
2017.

[180] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transfor-
mations for deep neural networks,” in Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 5987–5995.

[181] Github, “https://github.com/kuangliu/pytorch-cifar/tree/master/models.”

[182] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit pairing,” arXiv
preprint arXiv:1803.06373, 2018.

[183] P. Panda, G. Srinivasan, and K. Roy, “Ensemblesnn: Distributed assistive stdp
learning for energy-efficient recognition in spiking neural networks,” in 2017
International Joint Conference on Neural Networks (IJCNN). IEEE, 2017,
pp. 2629–2635.

[184] G. Srinivasan, P. Panda, and K. Roy, “Spilinc: Spiking liquid-ensemble comput-
ing for unsupervised speech and image recognition,” Frontiers in neuroscience,
vol. 12, 2018.

[185] P. Wijesinghe, G. Srinivasan, P. Panda, and K. Roy, “Analysis of liquid en-
sembles for enhancing the performance and accuracy of liquid state machines,”
Frontiers in Neuroscience, vol. 13, p. 504, 2019.

[186] D. Roy, P. Panda, and K. Roy, “Tree-cnn: a hierarchical deep convolutional neu-
ral network for incremental learning,” arXiv preprint arXiv:1802.05800, 2018.

[187] P. Panda and N. Srinivasa, “Learning to recognize actions from limited training
examples using a recurrent spiking neural model,” Frontiers in neuroscience,
vol. 12, p. 126, 2018.

[188] D. Roy, P. Panda, and K. Roy, “Learning spatio-temporal representations using
spike-based backpropagation,” openreview.net, 2018.

[189] P. Panda, E. Soufleri, and K. Roy, “A comprehensive analysis on adversarial
robustness of spiking neural networks,” Accepted in International Joint Confer-
ence on Neural Networks (IJCNN), arXiv preprint arXiv:1905.03219, 2019.

