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ABSTRACT

Wijesinghe, Parami Ph.D., Purdue University, August 2019. Neuro-inspired com-
puting enhanced by scalable algorithms and physics of emerging nanoscale resistive
devices. Major Professor: Roy K. Professor.

Deep ‘Analog Artificial Neural Networks’ (AANNs) perform complex classification

problems with high accuracy. However, they rely on humongous amount of power to

perform the calculations, veiling the accuracy benefits. The biological brain on the

other hand is significantly more powerful than such networks and consumes orders of

magnitude less power, indicating some conceptual mismatch. Given that the biologi-

cal neurons are locally connected, communicate using energy efficient trains of spikes,

and the behavior is non-deterministic, incorporating these effects in Artificial Neural

Networks (ANNs) may drive us few steps towards more realistic neural networks.

Emerging devices can offer a plethora of benefits including power efficiency, faster

operation, and low area, in a vast array of applications. For example, memristors

and Magnetic Tunnel Junctions (MTJs) are suitable for high density, non-volatile

Random Access Memories when compared with CMOS implementations. In this

work, we analyze the possibility of harnessing the characteristics of such emerging

devices, to achieve neuro-inspired solutions to intricate problems.

We propose how the inherent stochasticity of nano-scale resistive devices can be

utilized to realize the functionality of spiking neurons and synapses, that can be incor-

porated in deep stochastic Spiking Neural Networks (SNN) for image classification

problems. While ANNs mainly dwell in the aforementioned classification problem

solving domain, they can be adapted for a variety of other applications. One such

neuro-inspired solution is the Cellular Neural Network (CeNN) based Boolean satisfi-

ability solver. Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that
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constitute one of the hardest classes of constraint satisfaction problems. We provide

a proof of concept hardware based analog k-SAT solver that is built using MTJs.

The inherent physics of MTJs, enhanced by device level modifications, is harnessed

here to emulate the intricate dynamics of an analog, CeNN based, satisfiability (SAT)

solver.

Furthermore, in the effort of reaching human level performance in terms of accu-

racy, increasing the complexity and size of ANNs is crucial. Efficient algorithms for

evaluating neural network performance is of significant importance to improve the

scalability of networks, in addition to designing hardware accelerators. We propose

a scalable approach for evaluating Liquid State Machines: a bio-inspired computing

model where the inputs are sparsely connected to a randomly interlinked reservoir

(or liquid). It has been shown that biological neurons are more likely to be connected

to other neurons in the close proximity, and tend to be disconnected as the neurons

are spatially far apart. Inspired by this, we propose a group of locally connected

neuron reservoirs, or an ensemble of liquids approach, for LSMs. We analyze how

the segmentation of a single large liquid to create an ensemble of multiple smaller

liquids affects the latency and accuracy of an LSM. Our results illustrate that the

ensemble approach enhances class discrimination (quantified as the ratio between the

Separation Property (SP) and Approximation Property (AP)), leading to improved

accuracy in speech and image recognition tasks, when compared with a single large

liquid. Furthermore, we obtain performance benefits in terms of improved inference

time and reduced memory requirements, due to lower number of connections and the

freedom to parallelize the liquid evaluation process.
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1. INTRODUCTION

The transistor invented about 7 decades ago has been subjected to substantial scal-

ing, allowing more functionality into a given area. It is now possible to integrate

enormous amount of functions including audio-visual communication, video record-

ing, graphical processing, web browsing, etc. to a pocket sized area, in to which only

a radio with 4 transistor amplifier could fit, in 1950’s. Since then over the years,

the number of transistors inside a chip approximately doubled every year till now,

validating the empirical observation [1] of Gordon E. Moore. The vigorous scaling

of transistors will eventually hit the atomic limitations leaving further validity of

Moore’s law in jeopardy. To continue further scaling, novel devices have emerged as

promising candidates for a plethora of applications. For example, memristors and

Magnetic Tunnel Junctions (MTJs) are suitable for high density, non-volatile Ran-

dom Access Memories when compared with CMOS implementations. Representing a

complex functionality that requires a significant number of devices with a single or

less number of alternative devices is as important as scaling the size of a single device.

Along with the advancements in the device domain, a significant improvement in

the algorithms sector is also visible. More research is focused on the brain inspired

computing that allows massive parallelism along with the flexibility to ‘learn from

outcomes in the past’, in contrast to the traditional Von-Neuman computing. The

brain inspired computing models can be extended to vast array of applications even

though it mainly dwells in the classification problem solving domain. Up to date,

deep artificial neural networks (ANNs) have given the best performance with respect

to classification accuracy. For an example, SENet that won the 2017 ILSVRC, is

a deep Convolutional Neural Network (CNN) with the reported lowest top 5 error

(the correct class is not within the top 5 selection of classes according to the network

output) of 2.251% on ImageNet data set [2]. However, such networks require huge
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power and time if the algorithms are implemented in software in a computer. For an

instance, SE-ResNet requires ∼ 3.2GFLOPS (number of operations per second) [2]. It

has been shown experimentally that by conserving energy via spike based operation,

the brain has evolved to achieve its prodigious signal-processing capabilities using

orders of magnitude less power than the state-of-the-art supercomputers. Therefore,

with the intention to pave pathways to low power neuromorphic computing, much

consideration is given to realistic artificial brain modeling. Furthermore, the need for

scalable algorithms/architectures also arise to improve the speed of computations in

large scale ANNs.

Given that the actual communication inside the brain transpires using streams of

non-deterministic spikes [3], [4], [5], recently more attention is focused on introduc-

ing stochasticity to traditional neuro-inspired computations. However, implementing

randomness using CMOS devices is complex and thus requires a significant amount

of resources such as area and power [6]. Even though the stochastic switching behav-

ior of emerging resistive devices has shown to be unfavorable in applications such as

memory, it can be embraced to efficiently represent features in neuromorphic comput-

ing. We propose a stochastic deep spiking neural network, of which both the synaptic

and neuron functionality are represented by memristors. It was observed that the

proposed all-memristor based hardware design offers lower power consumption, and

lower area and delay product, when compared with the CMOS based design, for an

image recognition application.

It has also been shown that the biological neurons are arranged in locally connected

clusters [7]. Inspired by the above, we propose an ensemble approach for liquid

state machines (LSMs). Traditional LSMs have a set of randomly interlinked spiking

neurons, which is known as the liquid. In the effort of trying to reach human accuracy

levels, increasing the size and complexity of the networks tend to be an essential

requirement. Larger and complex networks are sluggish and power hungry. In order

to address this, in the ensemble approach, we split a large liquid in to an ensemble

of smaller liquids, and evaluate them in parallel. The class discrimination capability
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of the liquid improves in the proposed ensemble approach, when compared with the

traditional LSM architecture. Owing to the improved class discrimination property,

the proposed approach gives better accuracy. Furthermore, the liquid ensemble has

less number of connections and hence deliver lower amount of computations and lower

memory requirement than the conventional LSM approach with the same number of

neurons. The smaller liquids could also be evaluated in parallel, leading to faster

results.

Another feature of biological neurons is that they tend to get activated in parallel

and asynchronously [8]. Similarly, the cells in a Cellular Neural Network (CeNN)

operate in parallel, in contrast to conventional fully connected ANNs, and hence are

faster. The fast operation of CeNNs are mainly used for large scale image processing

applications. Inspired by the CeNN architecture, an analog Boolean Satisfiability

(SAT) solver has been proposed [9]. The approach uses the benefits of seeking a

solution in parallel, in contrast to the current state of the art SAT solvers that use

sequential variable assigning and backtracking. The inherent physics of magnetic

tunnel junctions can effectively be harnessed to emulate such a system. With certain

device level modifications, the magnetic tunnel junctions (MTJs) can mimic the dy-

namics of the proposed analog SAT solver. Implementing the system using CMOS

devices alone can be complex and thus potentially take longer delays and consume

significant amounts of power. Furthermore, it has been explained that addition of

stochasticity will reduce the transient time of convergence to a solution, in the analog

system [9]. The inherent stochasticity present in MTJ switching due to thermal noise

is thus beneficial when implementing the system.

The next few subsections will give an introduction to the types of neural networks,

and the nanoscale resistive devices of interest in this work.
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1.1 Neuro-Inspired architectures

1.1.1 Spiking neural networks

Even though the exact mechanisms of communication between biological neurons

still remain unknown, it has been shown experimentally that neurons use spikes for

communication and the nature of the neuron activation is non-deterministic [3], [4],

[5]. Brain uses orders of magnitude less power than the state-of-the-art supercom-

puters via spike based operation [10]. The inception of the Spiking Neural Networks

(SNN) concept is a consequence of the above.

Spiking neural networks consist of an array of (leaky) integrate and fire neurons.

The neurons will increase/decrease their membrane potentials depending upon the

incoming spikes, strengthened or weakened by the synaptic weights. Once the neu-

ron’s membrane potential goes above its threshold, it will generate a spike and then

return to its reset potential. A typical Spiking neural network structure is as shown

in figure 1.1. The excitatory layer neurons receive input spike trains, and generate

output spike trains. The inhibitory layer neurons help in suppressing the spiking

activity of the excitatory neurons that did not fire. The work presented here does

not use integrate and fire neurons even though the communication is carried out via

spikes. The neurons take a stochastic form. i.e., depending upon the strength of the

total spikes applied on the neuron during a specific time step, it will fire with a certain

probability which is a function of the applied input. Once a neuron fires, it will be

reset to receive an input during the next time step. The system is synchronous.

SNNs use both unsupervised (Spike Time Dependent Plasticity (STDP) [11] based)

and supervised (backpropagation) training. The work presented here uses a super-

vised learning algorithm and the network is trained as an ANN using stochastic gra-

dient descent based backward propagation method. The network is then converted

to an SNN.
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Fig. 1.1. (a) The three layers of a typical spiking neural network; Input
layer, Excitatory layer, Inhibitory layer. (b) The dynamics of a single
leaky integrate spiking neuron to an incoming spike train (from an ex-
citatory neuron). When the membrane potential goes above Vthresh, the
neuron generates an output spike and it remains idle for incoming spikes
for a duration of trefrac.

1.1.2 Cellular neural networks

The inception of Cellular Neural Networks goes back to 1988 [12]. It is a large

scale nonlinear analog computational model that is initially used for image processing

applications. It can also be used to solve a set of partial differential equations [13].

Due to the massive parallelism present in CeNN platforms [12], [14] they are faster

than conventional digital computation methods that operate in a serial fashion [15].

CeNNs are made of massive aggregate of regularly spaced circuit clones called cells

that communicate with each other directly through its neighbors. This ‘cell’ is the

basic element in a CeNN, and it contains linear and non-linear circuit elements such as

linear capacitors, linear resistors and linear and non-linear controlled and independent

sources. Each cell can be considered as a neuron and is connected to its neighboring

cells. Cells that are not directly connected, communicate indirectly via other cells.

Figure 1.2 (a) shows the neighborhood to which a single cell is connected. The

neighborhood of r has a total of (2r + 1)2 − 1 amount of cells connected to a single

cell. Figure 1.2 (b) illustrates the first defined internal circuit architecture of a single

cell in a CeNN by L. Chua. It contains one independent voltage source Eij, one
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Fig. 1.2. (a) The neighborhood of a cell Cij for r = 2 and r = 3 in a
cellular neural network (b) The internal circuit schematic of a single cell
Cij in a cellular neural network. Neighboring cells are Ckl.

independent current source I, one capacitor C, two linear resistors Rx, and Ry and

current sources, linearly controlled by the neighboring cells’ input voltages vukl, and

the feedback from the output voltage vykl. The cell of interest is denoted as Cij,

and the neighboring cells are shown as Ckl. The nonlinear element in each cell is a

piece-wise-linear voltage-controlled current source Ixy = ( 1
Ry

)f(vxij), where f(.) is the

characteristic function.

Implementing CeNN computers is an ongoing research and both analog and dig-

ital type CeNNs are available [14] even though the latter is not as beneficial as the

analog counterpart in terms of speed. Despite their exceptional performance in im-

age processing applications, CeNNs suffer from noise effects and often lack precision.

In this work we present a CeNN implemented using Magnetic Tunnel Junctions, of

which the inherent thermal noise is beneficial for a Boolean Satisfiability Solver.
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1.1.3 Liquid State Machines (LSM)

Liquid State Machines (LSMs) [16] fall under the spiking neural network category.

However, their architecture is different from a traditional SNN since it is a recurrent

neural network (RNN) and mainly used for spatio-temporal data related tasks. An

LSM consists of a set of inputs sparsely connected to a randomly and recurrently

interlinked pool of spiking neurons called the ‘liquid’. The liquid is connected to an

output classifier, which can be trained using standard methods such as Spike Timing

Dependent Plasticity, backpropagation, delta rule etc. [17]. LSMs have been used for a

variety of applications including robot control [18], sequence generation [19], decoding

actual brain activity [20], action recognition [21], speech recognition [16, 22–26], and

image recognition [25,27–29].

LSMs gained their popularity due to two main reasons. First, the LSM archi-

tecture is neuro-inspired. As explained previously, biological neurons communicate

via trains of spikes [30, 31]. Furthermore, the gene regulation network (GRN) of

the Bacterium ‘Escherichia Coli’ (E-Coli) was experimentally assessed and shown to

behave similar to an LSM [32]. The E. Coli has the capacity for perceptual catego-

rization, especially for discrimination between complex temporal patterns of chemical

inputs. Second, LSMs have simple structure and lower training complexity among

other RNNs. The claim is that, sufficiently large and complex liquids inherently pos-

sess large computational power for real-time computing. Therefore, it is not necessary

to “construct” circuits to achieve substantial computational power.

1.2 Emerging nano-scale resistive devices

1.2.1 Magnetic Tunnel Junctions

A magnetic tunnel junction (MTJ) is a thin tunneling oxide layer (MgO) sand-

wiched between two ferromagnetic layers. One layer is called the pinned layer (PL)

which is magnetically hardened to have a fixed magnetization direction in order to
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Fig. 1.3. The Heavy Metal-Magnetic Tunnel Junction structure. (a) High
resistive (RAP ) anti-parallel state of an MTJ (b) Low resistive (RP ) paral-
lel state of an MTJ. The Tunnel Magneto-Resistance (TMR) is a measure
of the normalized difference of these resistances. Typical values of the
TMR ranges from 150%-600% [33, 34]. (c) An HM-MTJ structure. The
charge current through the HM layer underneath the MTJ, gets split into
up and down spins, inducing a perpendicular spin current which can re-
verse the magnetization of the free layer through the Spin Orbit Torque
phenomenon.

act as a reference layer. The other ferromagnetic layer is known as the free layer

(FL) and the magnetization of this layer can be switched by a charge current going

through the device. MTJs can be classified in to two main categories depending upon

the stable direction of magnetization of the FL. If the direction is perpendicular to

the FL, then the device is known as a Perpendicular magnetic anisotropy (PMA)

MTJ. If the stable direction is parallel to the plane of the FL, it is known as an In

Plane Magnetic Anisotropy (IMA) MTJ. This work is focused on IMA MTJ device

and the term MTJ refers to this type of device throughout this section.
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The phenomenon of switching the FL magnetization by sending a current through

the device (MTJ) is known as Spin Transfer Torque induced switching. Another

mechanism of switching the FL magnetization direction is by means of a charge

current passing through a Heavy Metal (HM) underlayer. This phenomenon is known

as the spin orbit torque and appeared to be more energy efficient than using STT

when switching an IMA nano-magnet. Due to the large spin-orbit-coupling exhibited

by heavy metals (like Ta, Pt etc. [35]), the charge current flowing through the HM

layer gets split into up and down spins, as shown in Figure 1.3. The spin splitting

creates a spin gradient and results in flow of a spin current perpendicular to the

direction of the charge current. This spin current incident on the free layer of the

MTJ, can switch the magnetization of the free layer through the aforementioned

STT phenomenon. Thus, a current flowing between terminals 1 and 2 can switch

the orientation of the free layer magnet. If the magnetizations of the two layers are

oriented in the same direction, the MTJ is said to be in the parallel state and exhibits a

low resistance across the device. If the two magnetizations are pointed in the opposite

directions (antiparallel state) the MTJ exhibits a high resistance across the device.

The current state of the MTJ can be read by sensing the resistance offered by the

MTJ measured perpendicular to the plane of the ferromagnets, between terminals

3 and 1/2. The tunnel magneto-resistance (TMR) of the MTJ is a measure of the

normalized difference between the resistances of the anti-parallel and the parallel

state. This difference in resistance can be easily converted into an output low or

high voltage using an inverter configuration for memory applications. Further, due

to the nature of the STT phenomenon and the nano-scale sizes of the ferromagnets,

thermal noise plays an important role in the switching process of the MTJs. As a

result, for a constant input current and for a given switching time, the MTJ switching

mechanism exhibits stochastic behavior [36]. The switching probability of the MTJ

can be controlled by the amount of current flowing though the HM layer. Following

are some favorable features exhibited by the HM-MTJ structures
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Table 1.1.
Device simulation parameters

Parameters Values

Free layer area, AMTJ 20× 40 nm2

Free layer thickness, tss 1.72nm

Gilbert’s damping factor, α 0.02

Saturation Magnetization, MS 1257.3 KA/m

Interface Anisotropy, Ki 1.3 ergs/cm2

Spin hall angle, θSH 0.3

Heavy metal layer thickness 3 nm

Heavy metal layer resistance 50Ω

Oxide thickness, tox 1.5nm

Tunnel Magneto-Resistance, (TMR) 180%

Switching current, (full switch, AP → P , 20ns) 17µA

• The three terminal nature of the SHE-MTJ allows independent optimization of

the read and write paths resulting in low write currents [37]

• Since the HM resistance remains a constant, (in contrast to the MTJ device

itself) the write speed can be controlled by changing the voltage applied across

the HM layer

• The efficiency of spin current generated due to the spin-orbit-coupling phe-

nomenon has been shown to be> 1 [35] (with proper dimensions), resulting in

low write-current requirements.
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The magnetization dynamics of the free layer is given by the Landau-Lifshitz-

Gilbert-Slonczewski equation and can be written as [38]

(1 + α2)

|γ|
∂m̂

∂t
= −m̂×

−→
HEFF − αm̂× m̂×

−→
HEFF +

1

|γ|
(αm̂×

−−→
STT +

−−→
STT ) (1.1)

m̂ = [mxx̂ myŷ mz ẑ] (1.2)

where α is the Gilbert damping constant, γ is the gyro-magnetic ratio, m̂ is the

unit vector in the direction of the magnetization, t is the continuous time, and
−→
HEFF

is the effective magnetic field including the demagnetization field and the interface

anisotropy field. (
−−→
STT ) is the spin transfer torque term given by

−−→
STT = |γ|β

(
m̂× (εm̂)× p̂

)
, β =

~Js
2qµ0MstFL

(1.3)

where q is the charge of an electron, µ0 is vacuum permeability, ~ is the modified

Planck’s constant, tFL is the thickness of FL and Ms is the saturation magnetization.

Js is the spin current density incident on the free layer of the MTJ and ε is the spin

polarization efficiency. The relationship between this spin current and the charge

current density is as shown below

IS
IC

=
AMTJθshe
AHM

(
1− sech

(
tHM
λsf

))
, (1.4)

For this work, all the material parameters were selected according to prior exper-

imental work [39,40]. These parameters are recorded in Table 1.1.

1.2.2 Memristors

Nanoscale resistive devices have been extensively studied as a leading candidate

for non-volatile memory [41], reconfigurable logic [42], and analog circuits [43]. The

possibility of using different types of memristors in different types of neural networks

has also been explored. For example, the ability to change resistance due to voltage
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pulses makes the memristor a better candidate for STDP learning [44]. Some mem-

ristors show unstable intermediate resistance states which are suitable as synapses to

represent the short-term memory and long-term memory functionality [45].

The typical nano-scale resistive device is based on a metal-insulator-metal (MIM)

structure. The resistance change in these devices can be attributed to the formation

of a conductive filament inside the insulator (Ag, amorphous Si (a − Si), Pt based

devices), change in the phase due to Joule heating and cooling (chalcogenide based

devices), or field assisted drift/diffusion of ions (TiO2 based devices). These processes

e

Ag
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Anode

Cathode

Device in Off state (Roff)

Device in On state (Ron)Metal filament formation

Electro-crystalizationAg+ Cation migration

a-Si/SiO2 Ag+

Ag

E
fi

e
ld

Ag 

filament

Anode

Cathode

Anode

Cathode

(a) (b) (c)

(d) (e)

Ag

Fig. 1.4. The standard SET operation for an ECM type memristor (a)‘Off’
state of a memristor has higher resistance due to the sandwiched insulating
material. (b) To ‘SET’ the device, positive voltage must be applied to
the active electrode with respect to the inert electrode. Ag cations start
traveling towards the inert electrode due to the Efield. (c),(d) The Ag+

ions get combined with electrons and crystalize forming a metal filament.
(e) Once a full metal filament is formed between the two electrodes, the
resistance of the device lowers.
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have shown to be random in nature. For this work, the a− Si based metal filament

formation devices (Electrochemical Metallization devices or ECM devices [46, 47])

were considered due to multiple reasons as explained below. However, it must be noted

that this particular type of device was selected as an example for a memristor to show

the applicability of it for the deep stochastic SNNs. A different type of a memristor

can suit better in different contexts (network accuracy, power consumption etc.). For

example, the HfOx based devices have higher endurance and lower switching time

[48]. Ag/AgSiO2 devices reset after a certain time period eliminating the requirement

for resetting [49].

a − Si memristors typically have very high resistance (σ ∼ 3 × 10−5Ωcm−1 at

310K). When power consumption is considered, it is better to have high resistances

in memristive crossbars. It is also possible to adjust the lower resistance of the device

to suit the constraints of the crossbar driving sources. This can be done by tuning

the a − Si growth conditions (RON can be varied from ∼ 100MΩ to 10kΩ) during

the PECVD or LPCVD deposition processes [50]. The ON-OFF ratio of the device

is high (∼ 107) as well [51]. Having a higher ratio implies the higher reliability of

programming a single state under variations in multi-bit configurations [52]. This is

also better in terms of sensing if a memristor has switched or not, in the context of

a neuron. Unlike some types of memristors, the a−Si memristors require high write

voltages. For an example, the nanoporous SiOx based devices have very low forming

voltages (∼ 1.4V) [53]. Having smaller operating voltages in memristive crossbars

require sophisticated sensing mechanisms. This also signals a reliability concern for

the nanoporous multi-bit SiOx devices, while operating in a crossbar with larger

driving voltages. In contrast, the a− Si based memristor can operate at 2V reading

voltages without disturbing the device resistance [50].

The ECM devices consist of an insulating membrane (a− Si, SiO2, Al2O3) sand-

wiched between two active (Ag) and inert electrodes (Pt, T i). When the device is in

its higher resistance (Roff ) state, it is considered as storing a logic ‘0’ (in memory).

When writing a ‘1’ to the device (SET or ‘turning on’), a positive voltage must be
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applied to the active electrode with respect to the inert electrode. At this point, the

active electrode dissolution transpires and cations from the active electrode start mi-

grating towards the inert electrode where it gets electro-crystalized, forming a metal

filament (termed as the ‘forming process’ [47]). Once a full metal filament has grown

between the two electrodes, there is a sudden drop in resistance. The aforementioned

process is graphically explained in Figure 1.4. The low resistance (Ron) stage of the

device is assigned to logic ‘1’.

The possibility of the a− Si (Ag based) devices to act both as a muti-bit storage

and as a stochastic switch [51] is beneficial for this work since it can act both as a

neuron and a synapse. As explained above, in an a − Si based memristor, a metal

filament is formed between the two contacts when going from OFF to ON state.

The Ag particles goes to the defect sites inside a − Si and creates this filament.

Depending on the number of defects, the I-V characteristics of the device shows

multiple abrupt jumps in currents [51]. Devices with lower lengths will have lower

number of defects and are much suitable for binary switching applications (which is

the neuron in our work). When programming for multi levels, current/voltage must

be controlled properly. It has been experimentally shown the possibility to store

8 levels of resistances (3-bit storage) [51] using the same write voltage pulse and

different series resistors (Rs) to control the current. Each Rs resulted in different

final resistance values of the memristor. Given the fact that a 30nm device can store

3-bit levels, and the resistance of memristors are proportional to the device length, it

can be fairly assumed that a 60nm device can store 4-bit levels. It has been shown

that nanoporous SiOx memristors can store up to 9-bits [53] per cell. Such devices

can give higher accuracy if used in hardware ANNs to represent the synapses.

Even though the stochasticity is helpful to represent the functionality of a stochas-

tic neuron, it may not be beneficial for the supervised learning scheme being explored

in this work for multi-bit synapses. Due to stochasticity, programming using a single

voltage pulse with the selected control resistor may not guarantee the device trans-

ferring to the expected resistance level. Furthermore, due to variations, the value
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of resistance at each level may change. Therefore, the need for better memristor

programming schemes arise. It has been experimentally shown that TiO2 based fila-

ment type memristors can be programmed to have a required resistance (within 1%

accuracy) using a novel programming scheme, despite the variations [54].
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2. CONSTRAINT SATISFACTION ENABLED BY SPIN

ORBIT TORQUE MAGNETIC TUNNEL JUNCTIONS

2.1 Boolean Satisfiability Problem

The Boolean satisfiability problem investigates whether there exists an assign-

ment for the input variables that satisfies a given Boolean formula. k-SAT is widely

utilized in many practical applications including automated planning [55], test pat-

tern generation [56], hardware model checking [57], software program testing [58] and

timing analysis [59]. k-SAT problems are NP-complete (k ≥ 3) [60, 61]. i.e., there

are no known algorithms that can guarantee a solution for a SAT problem in poly-

nomial time, making it extremely difficult to solve most satisfiability problems with

reasonable computational resources. Numerous research efforts have been directed

towards realizing improved SAT solvers [9, 62–66], since a polynomial time solution

to k-SAT implies efficient solutions to a large number of hard optimization problems.

The standard conjunctive normal form (CNF) of any Boolean k-SAT problem with

N variables can be written as

F = (x1∪x2∪x3)∩(x2∪x1∪x5)∩...(x4∪x5∪x3) (2.1)

where xi ∈ {0, 1} is a variable and each clause is the disjunction (OR, ∪) of k (k = 3

in this case) such variables or their negation (x̄i). The propositional formula F is a

conjunction (AND, ∩) of M number of such clauses. The hardness of a SAT problem

can be measured as the ratio between the number of clauses and the variables, known

as the constraint density αc (section 2.2).
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2.2 Analog Approaches for solving Boolean Satisfiability Problem

Analog computational approaches have recently demonstrated promising results

in a diverse array of applications [67] including aforementioned constraint satisfac-

tion [9, 62, 68]. A recent analog formulation of a k-SAT solver has demonstrated its

potential on locating a solution for the Boolean satisfiability problem in polynomial

continuous-time [62]. However, implementing this set of analog formulae using a

digital computer will diminish the polynomial time benefits, due to varying compu-

tational complexities between different time steps. Also, a hardware implementation

of this analog k-SAT solver [62] is not ideal [69], due to the exponential energy fluc-

tuations in the system, which allowed the polynomial continuous time convergence

in the first place. Consequently, a Cellular Neural Network (CeNN) based analog

SAT solver with bounded variables was proposed [9], and it is more appealing for

hardware implementations. Although this bounded system does not have polynomial

time complexity, noise effects in the analog hardware can potentially reduce the long

transient times [9] in the system, as we demonstrate in this work. The dynamics of

this analog SAT solver, which is also the framework of our work, can be defined by

the following set of equations [9].

ṡi(t) =
dsi(t)

dt
= −si(t) + Af(si(t)) +

∑
m

cmig(am(t)) (2.2)

ȧm(t) =
dam(t)

dt
=− am(t) +Bg(am(t))−

∑
i

cmif(si(t)) + 1− k (2.3)

Here the variable si represents the state of the ith (i = 1, 2, ..., N) Boolean variable

(xi) and am represents the “satisfiedness” of the mth (m = 1, 2, ...,M) clause of the

Boolean function. C is the problem specific ‘interconnection matrix’ of size M ×N .

The functions f() and g() are the thresholding functions applied on variables si and

am, respectively, as follows (Figure 2.1 shows this graphically)

f(si) =
1

2
(|si + 1| − |si − 1|) (2.4)
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g(am) =
1

2
(1 + |am| − |1− am|) (2.5)

When the Boolean variable is true (xi = 1), then the value of si after thresholding

will be equal to 1 (i.e. f(si) = 1). When it is false (xi = 0), then f(si) = −1.

The vector f(s) can be considered as a solution to the k-SAT problem when all the

transient variations have stopped and the system is in a stable state. The variable

am determines whether the mth (m = 1, 2, ...M) clause is satisfied at a given moment

depending upon the values of the s variables. When the value of variable am after

thresholding is 0 (i.e. g(am) = 0), then the corresponding mth clause is satisfied. It

will not have any impact on the dynamics of the system afterwards. The system

converges to a solution of the Boolean function (get stabilized), when vector g(a) is

zero. The parameters A and B (‘self-coupling parameters’) are constants and C is a

matrix of size (M,N) that is unique to a given propositional formula F . The elements

of the c matrix can be defined as follows. Cm is the mth clause.

(a) (b)

Fig. 2.1. The thresholding functions (a) f() and (b) g() of the analog SAT
solver defined by equations (2.4) and (2.5)
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cmi =


1 if xi ∈ Cm

−1 if xi ∈ Cm

0 if xi 6∈ Cm and xi 6∈ Cm

(2.6)

The constraint density (αc) can be considered as a measure of hardness of a k-SAT

problem and is defined as the ratio between the number of clauses and the number

of variables

αc = M/N (2.7)

In the easy SAT region, only few constraints are there to be satisfied leading to a

small αc. When the number of clauses in the problem is large, deciding whether the

propositional formula is unsatisfiable (UNSAT) is easy. There is an intermediate range

(hard SAT), where solving the satisfiability problem can be challenging. It has been

shown that, for 3-SAT, the hardest problem regime is when the constraint density

(a) (b)
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Fig. 2.2. The time evolution of s and a (in (a) and (b) respectively)
variables when solving a random 3-SAT problem with 10 variables using
the system defined by equations (2.2) and (2.3). The constraint density
(αc) of the problem is 4.25. The self-coupling parameters A and B are
set to 1.3 and 2.3 respectively. Only dynamics of five variables are shown
here for clarity. The system has converged to a solution at the 80th time
step. Note that g(a) is zero after this time.
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αc of the Boolean function is 4.25 and for a 4-SAT problem, the hardest regime is at

αc=9.55 etc [9,70–72]. Also, the worst-case complexity of any k-SAT problem depends

exponentially on the number of variables, N [61]. The above explained CeNN based

system gives solutions to k-SAT problems even in their hardest regime. However,

proper tuning of self-coupling parameters A and B is indispensable to achieve better

performance. Figure 2.2 depicts the time evolution of s and a variables when solving

a 3-sat problem with 10 variables, using proper A,B values for equations (2.2,2.3).

2.3 Magnetic Tunnel Junctions mimicking the behavior of the CeNN

based SAT solver

In this work, we present a hardware platform built on nano-scale spintronic de-

vices, which can successfully emulate the behavior of the aforementioned SAT solver.

As a matter of fact, recent studies have demonstrated efficient hardware models that

utilize the underlying device physics of nano-electronic structures to perform com-

putationally intensive calculations [73–76]. In this work, each differential equation

(2.2 and 2.3) is modeled by a single MTJ with an underlying heavy metal (Ta,Pt,

etc.) layer. Our numerical results demonstrate that, the MTJ based SAT solver ex-

hibits a polynomial dependency, between the number of variables and the real time

for convergence, even for SAT problems that are known to be hardest to solve. We

conjecture that, this is due to the non-deterministic nature of our system caused by

the random thermal noise, and also due to the added complexities associated with

MTJs.

The proposed hardware based SAT-solver is a collection of heavy metal-MTJ (HM-

MTJ) structures, interfaced through simple CMOS peripheral circuitry as described

in the section 2.4. The device-circuit structure we propose is generic and can be

adapted to solve a given k-SAT problem. The HM-MTJ structure is composed of two

ferromagnetic layers called the pinned layer (PL) and the free layer (FL), separated

by a thin tunneling oxide (MgO) layer and an HM under-layer (figure 1.3 (c)). The
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PL magnetization direction (p̂) is fixed and acts as a reference. In contrast, the

magnetization direction m̂ of the FL can be switched by passing a current through the

HM under-layer, using the Spin Orbit Torque (SOT) phenomenon. Such a technique

has emerged as an energy-efficient mechanism for magnetization reversal [39, 77, 78].

Furthermore, the three terminal structure of this MTJ with a heavy metal under

layer is beneficial in this work due to the possibility of simultaneous read and write

to an MTJ [79]. This is impossible to achieve in a two terminal MTJ structure that

requires the write current to flow through the tunnel junction.

The resistance measured across the MTJ varies with the magnetization of the FL,

and shows two stable states; high resistive (RAP ) anti-parallel (AP) state, and low

resistive (RP ) parallel (P) state. Equations 2.8 and 2.9 depict how the resistance

across the MTJ (RMTJ) varies with the direction of the FL magnetization, where

θfp is the angle between the directions of FL and PL magnetizations [80]. The mag-

netization reversal dynamics of an MTJ with an applied current can be explained

using the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equations [38]. The speed of

this magnetization reversal can be controlled by the magnitude of the current pass-

ing through the HM layer. However, due to the effect of random thermal noise on

nano-scale magnets, the MTJ switching speed follows a Gaussian distribution.

RMTJ =

(
1

RP

(
cos(

θfp
2

)

)2

+
1

RAP

(
sin(

θfp
2

)

)2
)−1

(2.8)

θfp = cos−1
(
m̂.p̂

)
(2.9)

The resistance across an MTJ, RMTJ , can be easily converted into a voltage by

using a simple resistor divider circuit. In the proposed hardware implementation of

the SAT solver, each si and am variable from equations 2.2 and 2.3 are represented

using a single HM-MTJ structure. The state of these variables at a particular time

instant are given by the resistance across the corresponding MTJ device. The cou-

plings between the s and a variables (terms
∑

m cmig(am(t)) and −
∑

i cmif(si(t))

in equations 2.2 and 2.3) are mapped as currents through the HM layer using the

interface circuitry explained in a separate section.
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It can be intuitively explained how our MTJ based SAT solver mimics the system

elaborated in equations (2.2 - 2.3). One main feature of this system is that, the

current values of the variables depend on their previous states as well as some inputs.

Similarly, the FL magnetization of an MTJ depends on its previous magnetization

as well as the driving current. Another feature of the system in (2.2 - 2.3) is that,

when the feedback from am towards the dynamics of si (i.e.,
∑

m cmig(am(t0))) is

zero after a particular time t0, si will move towards +A if si(t0) > 0, and −A if

si(t0) < 0 , provided A > 1. Similarly, in an MTJ, an instantaneous removal of a

current through the HM layer, will lead the free layer magnetization to settle down

either to the parallel state or to the anti-parallel state. The state to which the magnet

settles down is highly dependent upon the resistance it had at the time of removal of

the current, in the absence of thermal noise. When the angle between the PL and FL

magnetization directions θfp >
π
2

(θfp <
π
2
), and if the drive current is zero, then the

final FL magnetization will settle down to the anti-parallel (parallel) state. However,

it should be noted that this phenomenon occurs under certain conditions. In this

work, we optimized the FL thickness according to the following equation to exhibit

the above behavior.

tss =
2Ki

(Nzz −Nyy)µ0M2
s

(2.10)

where Ki is the energy density constant for interface perpendicular anisotropy and

Nzz, Nyy are the demagnetization factors along y and z directions. The derivation

of this FL thickness is explained in detail in section 2.3.1. The new traversal of the

magnetization of a device with a thickness of tss is illustrated in figures 2.3(a),(b).

Figures 2.3(c),(d) depicts the magnetization traversal of an MTJ with a thickness

larger than tss for reference. Note the smooth transition of the FL magnetization

component along the easy axis (denoted as Mx) in figure 2.3(a) in contrast to the

oscillatory transition of that in figure 2.3(c). In the light of this observation, we name

tss as the seamless switching thickness of an MTJ.



23

0 5 10 15
-1

-0.5

0

0.5

1

Time (ns)

M
x
,M

y
,M

z

 

 

M
x

M
y

M
z

0 5 10 15
-1

-0.5

0

0.5

1

Time (ns)

M
x
,M

y
,M

z

 

 

M
x

M
y

M
z

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

MxMy

M
z

(a) (b)

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

MxMy

M
z

(c) (d)

Fig. 2.3. An MTJ changing its state from P to AP due to an applied cur-
rent. (a) Time evolution of the components of unit magnetization vector
in an MTJ with a FL thickness of tss (b) Unit magnetization traversal
(in 3 dimensional space) of an MTJ with a FL thickness of tss (c) Time
evolution of the components of unit magnetization vector in an MTJ with
a FL thickness larger than tss (d) Unit magnetization traversal (in 3 di-
mensional space) of an MTJ with a FL thickness larger than tss. Notice
the lack of oscillations in Mx in (a), during the magnetization reversal of
the FL, in contrast to (c).

2.3.1 Seamless switching Thickness for dominant in plane magnetic anisotropy

MTJ devices.

The state of an MTJ at a particular time instant depends on its previous state,

and the current that passes through the the HM layer. In order to mimic the CeNN

based dynamic system (equation 2.2 - 2.3), it is important that the state of an MTJ

(when there is no applied current) goes to the parallel (anti-parallel) state, if the
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angle between the FL and the PL magnetization is θfp < π/2 (θfp > π/2). We have

optimized the thickness of the FL so that the MTJ exhibits this behavior. Figure 2.4

shows how a typical MTJ with a dominant in-plane magnetic anisotropy field (IMA-

MTJ) behaves (here the actual thickness is larger than the value we have derived).

The color of each point in the graph refers to the ultimate state to which the free

layer magnetization settles down with no current applied. The position of each point

shows the initial condition [φ,θ] in standard spherical coordinate notations.

We will now explain how we can make the MTJ state go towards the parallel

(anti-parallel) state when θfp < π/2 (θfp > π/2) at a particular time instant after

which there is no driving current. Let us first consider the fields that affect the FL

magnetization. The
−→
HEFF in the LLGS equation (1.15) consists of two major types of

anisotropy fields; the demagnetization field and interface anisotropy field. For typical

choices of materials for MTJs, these anisotropy fields are of the following form.

Demagnetization field [81]

HD = [−MsNxxmx −MsNyymy −MsNzzmz] (2.11)

Interface anisotropy field [82]

H⊥ = [0 0
2Ki

µ0MstFL
mz] (2.12)

Where Nxx, Nyy and Nzz are the demagnetization factors, and Ki is the energy

density constant for the perpendicular interface anisotropy. When the applied current

to the MTJ through the HM layer is zero, the current induced spin transfer torque will

not be present (i.e.
−−→
STT = 0). The component of the magnetization that contributes

to the resistance is the one along the direction of the fixed layer (or easy axis which

is x̂ in this particular case). The dynamics of that component of magnetization is as

follows.
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(b)(a)

Fig. 2.4. The two colors show the state to which the free layer magnetiza-
tion settles down in a typical IMA-MTJ (FL thickness 6= tss in equation
(2.3)). There is no current or external field applied, and the initial condi-
tion is (φ, θ) in standard spherical coordinate notations. Note that thermal
noise is not present in this analysis. The pinned layer magnetization is
in +x̂ direction. It is evident that the angle between the free and pinned
layer (θfp) does not alone decide the final state of the MTJ. (b) shows the
same final states in (a) in 3-dimensional space.

(
1 + α2

|γ|

)
∂mx

∂t
= −

(
m̂×

−→
HEFF + αm̂× m̂×

−→
HEFF

)
.x̂

= −
(
myH

z
EFF −mzH

y
EFF − α|m̂|

2Hx
EFF

+ αmx

(
mxH

x
EFF +myH

y
EFF +mzH

z
EFF

))
= −

(
−mymzNzzMs +mymzNyyMs +

2Ki

µ0MstFL
mymz

+ α
(

(1−m2
x)NxxMsmx −mxm

2
yNyyMs −mxm

2
zNzzMs

+
2Ki

µ0MstFL
mxm

2
z

))

(2.13)

According to the above equations, it is evident that the final state of the free

layer magnetization does not solely depend on the sign of mx. The existence of terms

such as mymz suggests that the final state will depend even on my and mz as well,
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Fig. 2.5. Seamless switching thickness (tss) solved self consistently for
a rectangular IMA-MTJ device. “Derived thickness” (blue) is the tss
obtained from equation 2.3 with demagnetization parameters that corre-
spond to the thickness in x axis. “Thickness” (red) is the 1:1 graph of FL
thickness.

justifying the behavior depicted by figure 2.4. To address this, we use a FL thickness

as follows.

This thickness tss will make the x̂ component of the precession term (m̂×
−→
HEFF ).x̂

zero in the LLGS equation. The updated magnetization dynamics is shown in equa-

tion 2.14. Note that during the derivation we used the fact that Nzz > Nyy > Nxx.

This is due to the special dimension requirement that must be followed to allow the

magnetization to be stable in the x̂ direction. The aspect ratio between the length

and the width must be greater than one, as graphically shown in figure 1.3.

(
1 + α2

|γ|

)
∂mx

∂t
= mxαMs(1−m2

x)(Nyy −Nxx) (2.14)
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Now the dynamics depict a direct relationship with the sign of mx. When mx > 0,

(mx < 0) the final state will be parallel (antiparallel) when no spin current is present,

provided that the PL magnetization is directed towards +x̂ direction. The effect of

noise and process variations is not considered in this section. It is separately discussed

in section 2.6.1. Note that the demagnetization factors Nzz, Nyy (in equation 2.3) in

return depends on the dimensions of the FL including the thickness [83]. Therefore,

solving for the tss must be done self consistently. Figure 2.5 shows the evaluation of

this tss (or the ‘seamless switching’ thickness) for a particular MTJ device.

The new FL final magnetization states of an MTJ with the optimized thickness

are graphically shown in figure 2.6. It illustrates how the magnetization converges

to a state under zero drive current when the free layer thickness is tss. Note that

the final magnetization depends on just whether mx is positive or negative, at the

time the write current is made zero. The effect of noise will make the final state, a

probabilistic function of the magnitude of mx. i.e. higher the magnitude of mx, more

likely it is that the final state will solely depend on the sign of mx as shown in figure

2.6 (c) and (d).

2.3.2 Theorems to prove the functionality equivalence of the MTJ based

system to the CeNN based system

It is mathematically shown [9] that the system explained in section 2.2 satisfies

three theorems that demonstrate the properties of the model. The same theorems are

used here, to show that our hardware SAT solver demonstrates the same properties.

Following are the three theorems.

• Theorem 1: Variables s and a remain bounded.

• Theorem 2: Every k-SAT solution has a corresponding stable fixed point

• Theorem 3: A stable fixed point always corresponds to a solution
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(a) (b)

(c) (d)

Fig. 2.6. The color shows the state to which the free layer magnetization
settles down in our proposed IMA-MTJ device, when there is zero current
or external field applied on the MTJ, with an initial condition (φ,θ). (a),
(b) show the converged final state in absence of thermal noise. (c), (d)
show the converged final state when noise is present. (b) and (d) show
the same final states in (a) and (c) respectively, in 3 dimensional space.

As explained previously, the state of each MTJ can be measured as a voltage and

the input to each MTJ is supplied as a current through the HM layer. However, for

simplicity, we will not discuss this resistance to voltage conversions in this section. We

will elaborate only using the magnetization dynamics along the easy axis of the MTJs

since it gives a direct mapping to the resistance of the MTJs, and thus the output volt-

age. There are two types of MTJs in our design; a type and s type. The states (resis-

tances) of s type MTJs (si = [si,x si,y si,z]
T ,∀i ≤ N) give the solution to a satisfia-

bility problem F and the states of a type MTJs (am = [am,x am,y am,z]
T ,∀m ≤M)
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exhibit the “satisfiedness” of the respective clauses. The easy axis of both a and s

type MTJs is the x̂ axis and the pinned layer magnetization is pointed towards −x̂

direction. We define the FL magnetization component along the easy axis of s type

MTJs as −1 ≤ si,x ≤ 1. When the system has converged to a solution, si,x = +1

(si,x = −1) represents xi = 1 (xi = 0) in the Boolean formula F for ∀i ≤ N . For the

a type MTJs, the FL magnetization component along the easy axis is am,x. When the

system has converged to a solution, clause m in F must be satisfied, and am,x = −1

for ∀m ≤ M . Further, we apply a rectifying function similar to g() on am,x. The

direction of current is defined such that, a positive (negative) current will drive that

MTJ towards anti parallel (parallel) state. We will not use the effect of noise and pro-

cess variations for the proof of the following theorems. Such effects will be analyzed

separately in section 2.6.1.

(1 + α2

|γ|

)∂si,x
∂t

=αsi,xMs(1− s2i,x)(Nyy −Nxx) + ks,STT (1− s2i,x)
∑
m

cmig(am,x)

(2.15)

(1 + α2

|γ|

)∂am,x
∂t

=αam,xMs(1− a2m,x)(Nyy −Nxx)

+ ka,STT (1− a2m,x)(1− k −
∑
i

cmisi,x) (2.16)

ks,STT =
~kshe,sIsε
2qµ0MsVs

, ka,STT =
~kshe,aIaε
2qµ0MsVa

(2.17)

kshe,s =
AMTJ,sθshe
AHM,s

(
1− sech

(
tHM,s

λsf

))
, kshe,a =

AMTJ,aθshe
AHM,a

(
1− sech

(
tHM,a

λsf

))
(2.18)
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cmi =


1 if xi ∈ Cm

−1 if xi ∈ Cm

0 if xi 6∈ Cm and xi 6∈ Cm

(2.19)

The above equation set defines the behavior of our MTJ based SAT solver. The

subscripts s and a denotes that the given parameter is related to the MTJs that

represent variable s and a, respectively. Ms is the saturation magnetization, I is

the charge current through the HM layer, V is the volume of the FL, θshe is the

Spin Hall Effect (SHE) angle, λsf is the spin flip length, tHM is the thickness of the

FL, AMTJ is the area of the FL at the HM and FL interface, and AHM is the area

perpendicular to the charge current through the HM. Cm is the mth clause. Note

that including the field-like torque term (equation 1.3 must be updated in this case

to
−−→
STT = |γ|β

(
m̂×

(
εm̂× p̂+ ε

′
p̂
))

, where ε and ε
′

are dimensionless factors that

describe the effectiveness of the spin transfer process) changes the above ks,STT and

ka,STT terms (equation 2.15, 2.16). Instead of ε in these terms, a new factor of ε+αε
′

will be present. This can be viewed as a slight increment to the charge current (Is,

Ia). However, due to the small damping factor α, this effect is smaller and thus not

considered for the following analysis.

Theorem 1 : Variables s and a remain bounded

si = [si,x si,y si,z] and am = [am,x am,y am,z] are unit magnetization vectors.

si,x and am,x are the components along the easy axis x̂ , as defined earlier. The highest

possible value of these are +1 and the lowest is −1.

Therefore all si,x and am,x remain bounded for all time instances.
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Theorem 2: Every k-SAT solution has a corresponding stable fixed point

Let s∗i,x be a solution to a SAT formula F for i = 1, 2, ..., N . The point (s∗x, a
∗
x)

where

s∗i,x = ±1, ∀i ≤ N a∗m,x = −1,∀m ≤M (2.20)

is a stable fixed point of the dynamic system.

According to the equations 2.15 and 2.16, it is evident that both
∂s∗i,x
∂t

and
∂a∗m,x
∂t

are

zero. (note that a∗m,x < 0, g(a∗m,x) = 0). Therefore the point (s∗x, a
∗
x) is a fixed point.

In order to prove stability, we shall give a small perturbation of |s∗i,x| − |si,x| = δi,s

and am,x−a∗m,x = δm,a. Note that |si,x| ≤ 1 and |am,x| ≤ 1 since they are components

of unit vectors si and am. Such perturbations will result in positive (1 − s2i,x ) and

positive (1 − a2m,x). If the variable xi is present in the mth clause (cmi 6= 0), and if

the clause is satisfied by s∗i,x, then cmis
∗
i,x = 1. If the clause is not satisfied, then

cmis
∗
i,x = −1. Accordingly the sum

∑
i cmis

∗
i,x can take k + 1 possible values; −k,

−k + 2,...,k − 2, k. The value −k corresponds to the mth clause not being satisfied.

Other cases imply that there exists at least one variable satisfying the clause. As per

our assumption that s∗i,x is a solution of the SAT problem F ,

∑
i

cmis
∗
i,x ≥ −k + 2 → 1− k −

∑
i

cmis
∗
i,x ≤ −1 (2.21)

Due to the perturbation, there will be a negative current through HM in the a

type MTJs. This will shift am,x towards a∗m,x (i.e. towards −1 or parallel state). As

long as |δm,a| < 1, the am,x after thresholding g(am,x) is zero, leading to a zero current

through the HM of the s type devices. When there is no current through the HM of

the s type devices, as long as |δi,s| < 1, si,x will reach s∗i,x. Therefore, the solution

point (s∗x, a
∗
x) is a stable fixed point.
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Theorem 3 : A stable fixed point always corresponds to a solution

Let us assume that there exists a stable fixed point (s∗x, a
∗
x) for the Boolean SAT

problem with some unsatisfied clauses where |s∗i,x| = 1 and |a∗m,x| = 1. Since 1−s∗i,x2 =

0 and 1− a∗m,x2 = 0, automatically

(1 + α2

|γ|

)∂s∗i,x
∂t

= 0,
(1 + α2

|γ|

)∂a∗m,x
∂t

= 0 (2.22)

By multiplying both sides of the equation 2.15 by sign(s∗i,x), we obtain

(1 + α2

|γ|

)∂|s∗i,x|
∂t

=α|s∗i,x|Ms(1− s∗i,x
2)(Nyy −Nxx)

+ ks,STT (1− s∗i,x
2)
∑
m

sign(s∗i,x)cmig(am,x)
(2.23)

since (s∗x, a
∗
x) is a fixed point by assumption,

(1− s∗i,x
2)

(
α|s∗i,x|Ms(Nyy −Nxx) + ks,STT

( ∑
sign(s∗i,x)cmi=1

g(a∗m,x)−

∑
sign(s∗i,x)cni=−1

g(a∗n,x)
))

= 0

(2.24)

Let us assume that there are P number of unsatisfied clauses in which the variable

xi or x̄i appears.

∑
sign(s∗i,x)cni=−1

g(a∗n,x) = P (2.25)

For the other clauses that are satisfied at the fixed point, g(a∗m,x) = 0. This will

lead to,

(1− s∗i,x
2)
(
α|s∗i,x|Ms(Nyy −Nxx)− ks,STTP

)
= 0 (2.26)

However, since
ks,STT

αMs(Nyy−Nxx) > 1 depending upon the typical values of parameters,

|s∗i,x| 6=
ks,STTP

αMs(Nyy−Nxx) . This leads to (1 − s∗i,x
2) = 0 become the sole reason for the
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existence of the stationary point. Similar situation exists for state dynamics of a-type

MTJs. Let us consider an unsatisfied clause m, and the corresponding dynamics. As

mentioned previously, for an unsatisfied clause,
∑

i cmis
∗
i,x = −k. Further, since a∗m,x

is a stationary point as per our assumption,
(

1+α2

|γ|

)
∂a∗m,x
∂t

= 0. Therefore

(1− a∗m,x
2)
(
αa∗m,xMs(Nyy −Nxx) + ka,STT

)
= 0 (2.27)

However, a∗m,x 6= −
ka,STT

αMs(Nyy−Nxx) since it violates our initial assumption that the

clause is not satisfied (a∗m,x > 0). Note that Nyy > Nxx. This leads to (1− a∗m,x2) = 0

become the sole reason for the existence of the stationary point. Now let us introduce

small perturbations δi,s and δm,a to the system such that, |s∗i,x| − |si,x| = δi,s and

am,x − a∗m,x = δm,a. As mentioned in theorem 2, this will lead to

(1− si,x2) > 0, (1− am,x2) > 0 (2.28)

Since the perturbation is small, |si,x| ∼= 1, |am,x| ∼= 1 is valid as well. When

si,x ∼= +1, only the clauses where the variable appears as its complement (cmi = −1)

are not satisfied. Similarly, when si,x ∼= −1, the clauses where cmi = 1 are not

satisfied.

(1 + α2

|γ|

)∂si,x
∂t

=

(1− si,x2)
(
αsi,xMs(Nyy −Nxx)− ks,STTP−

)
< 0, forsi,x > 0

(1− si,x2)
(
αsi,xMs(Nyy −Nxx) + ks,STTP+

)
> 0, forsi,x < 0

(2.29)

Where P± =
∑

cmi=±1 g(am,x). In the light of this, it can be observed that there

exists an unstable direction along which the dynamics can escape from the stationary

point (s∗x, a
∗
x). That is, ||s∗i,x − si,x(t)|| ≤ δ for any t > t0 is not valid (with t0 being

the time at which the perturbation is applied). Therefore, this disproves the initial

assumption that (s∗x, a
∗
x) is a stable stationary point. Therefore, if there exists a stable

stationary point in the defined continuous system, they correspond only to solutions

of the SAT problem F .
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Fig. 2.7. (a) The MTJ circuit for an s/a variable. The input current
through the HM layer will change the state of the MTJ and this change
will be measured by the amplifiers. The read current is assumed to be
constant and its magnitude should be small so that it does not hinder the
proper operation of the system. The MTJ resistance changes with the
input current. The non-inverting amplifier output generates the ‘state’
(f(si)/g(am)) and the inverting amplifier output generates the ‘inverse-
state’ (f(si)/g(am)) of an MTJ. (b) The reference circuit of the differential
amplifier. VOUT is the non-inverting output and VOUT is the inverting
output.

2.4 Structure of the SAT solver

In this section, it will be elaborated how the system in (2.2-2.3) is mapped to

an array of HM-MTJs with a CMOS control interface. Each s and a variable in

(2.2-2.3) is represented by the resistance of an MTJ. The resistance of the MTJ can

be read as a voltage difference, when a constant read current (IREAD) flows through

the MTJ. Note that this read current must be sufficiently small (< 1µA) to not to

interfere with the proper operation of the system. The functions f() and g() can be

generated efficiently using a differential amplifier shown in figure 2.7(a). Note that

the amplifier is connected to the bottom of the magnet (not the heavy metal layer).

This is to avoid the small variable voltage (∆V ) induced across the HM layer due to
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Fig. 2.8. The outputs of the differential amplifiers connected to variable
s and a during a state change of an MTJ from parallel to anti parallel
state.

the varying current that flows through it. These amplifiers will increase the voltage

differences incurred due to the changing resistance of the MTJs. The state AP results

in a larger voltage difference between nodes A and B with respect to that resulting

from P state. In our structure, the AP and the P states of an MTJ that represents an

s variable, gets mapped in to +1 and -1 states in equation (2.2) respectively. In a k-

SAT problem, a variable can appear as xi, or its negation (x̄i) in the mth clause. This

information is encoded in the elements of the connection matrix cmi, as explained

in section 2.2. In order to account for different values of cmi at the circuit level,

we generate the ‘state’ (f(si)/g(am)) and the ‘inverse-state’ (f(si)/g(am)) signals of

an MTJ. These signals are produced at the amplification stage outputs, as shown

in figure 2.7(b). A differential amplifier is employed to read the voltage difference
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across an MTJ. Additionally, a source degenerated common source amplifier is used

as a second amplification stage, to boost the voltage to the desired levels. A third

amplifier is employed in the design to generate the aforementioned inverse functions

(f() and (g()). The complete schematic of the amplification stages used in this work is

shown in figure 2.7(b). The same amplifier architecture with different control voltages

was used for interfacing with MTJs representing both a and s variables. The outputs

VOUT (f(si) or g(am)) and VOUT (f(si) or g(am)) are used to drive the MOSFETs

controlling the current through the heavy metal layers (figure 2.9).

Figure 2.8 (c) elaborates how the above mentioned ‘states’ and ‘inverse states’ vary

with the resistance of an MTJ. Each differential amplifier output will vary between

a predefined high voltage (VsH , VaH), and a low voltage (VsL, VaL). Therefore, the

state -1 and +1 of variable s will be mapped to VsL and VsH at the output of the

non-inverting (VsH and VsL at the output of inverting) amplifier. For the variable a,

the non-inverting (inverting) amplifier output will be VaL (VaH) when the resistance

of the MTJ is less than (Rap +Rp)/2 and VaH (VaL) when the resistance is Rap.

The term
∑

m cmig(am(t)) in equation 2.2, and the term −
∑

i cmif(si(t)) + 1− k

in equation 2.3 (the coupling between variable si and am) are mapped as currents

through the HM layers of MTJs, that represent s variables and a variables, respec-

tively. At a particular time instant when the mth clause is not satisfied, if the con-

nection parameter cmi is positive, the current should drive the MTJ that represents

variable si towards the AP state. Similarly, when cmi is negative, the current should

drive that MTJ towards the P state, and when cmi is zero, the current through the

HM should be zero. Figure 2.9 (a, b) graphically explains how this is realized at

the circuit level. Figure 2.9 (c, d) shows the circuit realization of the feedback from

the si variable acting on the am variable, depending upon the connection parameter

cmi. When cmi is positive (negative), −cmif(si(t)) should drive the MTJ that rep-

resents am towards the P (AP) state. The two transistor structures (heavy metal

current controllers) in Figure 2.9(c, d) should provide an output voltage of Vo, when

the input f(si(t)) = f(si(t)) = (Vdd + VSS)/2. This is to make sure that there is no
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Fig. 2.9. The input connection diagram of the SAT solver. The input
connection to an si node from am, if (a) cmi is negative (b) cmi is positive.
The input connection to an am node from si, if (c) cmi is positive (d)cmi
is negative. Here the charge current from left to right through the HM
layer drives the MTJ towards the AP state. The value of V0 is smaller
than VDD but larger than Vss. The sizing of the transistors must be done
appropriately. (e) Outputs of three a nodes connected to an si node. The
connection parameters (cm1, cm2 and cm3) between si and a1,a2 and a3 are
-1,-1 and 1, respectively. (f) Outputs of three s nodes connected to an
am node. The connection parameters (cm1, cm2 and cm3) between am and
s1,s2 and s3 are -1,1 and -1, respectively.

current through the HM layer when si(t) = 0. For the figure 2.9, we assume that a

charge current from left to right through an HM layer, drives the MTJ on top towards

the AP state. Figure 2.9(e,f) illustrates the final structure of the SAT solver with

all the control logic. The connections in the ‘network’ depends on the SAT prob-

lem to be solved. Therefore, the connecting switches must be initialized depending

upon the problem. Note that when the number of clauses of a problem increases, the

connections become more complex.
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Fig. 2.10. The varying current through the heavy metal layer of two
MTJs that represent (a) s variable and (b) a variable of a 10-variable SAT
instance (αc = 4.25). The currents were obtained via HSPICE following
the circuits explained in figure 2.9, simulated in IBM 45nm technology.
The resultant time evolution of the free layer magnetization along the x̂
direction is shown on right for (c) s variable and (d) a variable.

2.5 Dynamics of the MTJ based SAT solver

In order to observe the functionality of our SAT solver, circuit level simulations

were conducted. Figure 2.10 illustrates the currents through the heavy metal layers of

the two MTJs representing s variable and a variable that correspond to a 10-variable

hard SAT instance. The results were obtained from HSPICE simulations using IBM

45nm technology node. The resultant evolution of the free layer magnetization along

the x̂ direction (Mx) is shown on the right (figure 2.10(c) and (d)). Note that a

positive current drives the MTJ towards AP (+1) state and a negative current drives

the MTJ towards P(−1) state in the figure.
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As elaborated in the section 2.2, the constraint density (αc) is an indicator of the

hardness to solve a particular SAT instance. In order to observe the functionality

of our solver for SAT instances with different hardness levels, we solved randomly

generated 3-SAT problems with different constraint densities, and different number

of variables. Figure 2.11 shows the magnetization dynamics of three MTJs that corre-

spond to three variables in two 20 variable 3-SAT problems, each having a constraint

density of 4.25 and 3.00, respectively. The color of the trajectories in figure 2.11(c,d)

indicates the normalized energy of the system at that particular point. This energy

of the system can be defined by the following equations.

E(a, s) =
M∑
m=1

amK
2
m (2.30)

Km = 2−k
N∏
i=1

(1− cmisi) (2.31)

where M and N are the number of clauses and the number of variables in the k-

SAT problem, respectively. The energy is a function of the number of clauses not

satisfied at a particular instant. This can be used as a cost function to determine the

“satisfiedness” of a particular problem at a given instant. Notice that the trajectories

in figure 2.11 (c), (d) pass through higher energy states as the system tries to converge

to a solution. This shows that our system escapes local minimum points naturally,

unlike other algorithms [84] where simulated annealing is necessary to escape from

such local minimum points.

2.5.1 Approximate polynomial time solution

We also solved randomly generated satisfiable 3-SAT problems in the hard regime

(αc = 4.25) for different number of variables (20, 30, 40, 50). We have calculated the

number of problems solvable within 10µs for the purpose of illustration. However,

since our system has no limit cycles owing to thermal noise (more details are available

in section 2.6), we argue that our proposed method will probably reach a solution
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Fig. 2.11. The time evolution of three variables in a 20 variable 3-SAT
problem with different constraint densities. (a) and (c) correspond to
a SAT problem with a constraint density αc = 3 whereas (b) and (d)
correspond to a SAT problem with a constraint density αc = 4.25. (c) and
(d) show the trajectories of the same 3 variables in (a) and (b) respectively,
while converging to a solution inside a hypercube Q3. The color presents
the energy of the system at a given state. The starting point is a green
circle and the end point (solution) is the vertex with a white circle.

if sufficient time has been provided, given that a solution exist. We monitored the

fraction of problems not solved by the algorithm at time t and the result is depicted

in figure 2.12. It is evident that the fraction of problems not solved p(t), has an expo-

nential decay with time t. The relationship between p(t) and t can be approximated

by

p(t) = re−λ(N)t+γ (2.32)

where r and γ are constants. The decay rate λ obeys λ(N) = bN−β, with β ≈ 1.1.

Therefore the continuous time t needed to solve a (1− p) fraction of problems can be

written as

t(p,N) =
(
γ + ln(r/p)

)
b−1Nβ (2.33)

This implies that the time to solve a (1−p) fraction from a set of k-SAT problems is

of polynomial complexity. This polynomial relationship still holds when the fraction of
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Fig. 2.12. Computational complexity of the SAT solver (a) The fraction
of problems p(t) not yet solved at real time t, for 3-SAT problems with
αc = 4.25, for N= 20, 30, 40 and 50. Averages were calculated with
103 instances for each N . (b) The decay rate λ for different number of
variables. λ takes the form λ(N) = bN−β with β approximately 1.1 (note
the log scale).

problems left unsolved is a fixed number (irrespective of the number of variables) [62].

That is, the time taken to solve all possible k-SAT formulas for a given N and αc

(Θ(k,N, αc)), except for a constant amount of problems c (p(t) = c/Θ(k,N, αc)),

would follow a relationship as shown below when N → ∞ (if we assume that the

relationship in equation 2.32 and 2.33 still holds as N →∞).

t(p,N) ∼ Nβ+1ln(N) (2.34)

A previous proposal [62] shows a similar relationship for the time required to

solve k-SAT problems. However, the relationship is not valid in real time if a digital

computer is to be used for the calculations. It is because, the complexity of the

analog system varies over time, and when solving each step, it would take different

real time values depending upon the complexity. Since our method is purely based on

hardware, we argue that the above polynomial time relationship is valid in real time

for our proposed system. We conjecture that this behavior is due to multiple reasons

including the thermal noise associated with the MTJs. It has also been predicted [9]
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that, the noise effects may avoid long transient oscillations. Our results too suggest

that higher amounts of noise leads to faster convergence (section 2.35). It must be

noted that, this proposed MTJ based SAT solver does not behave identical to the

cellular neural network based solver in equations (2.2-2.3). Our solver has some added

complexities not present in the CeNN based system (refer to the set of equations in

section 2.3). We conjecture that such complexities offered by the device physics, act

favorable to give faster solutions to SAT problems as well. However, these benefits

come at the cost of handling the circuit limitations (fan-out etc.) that can arise when

solving problems with larger N .

2.6 Variation Analysis

2.6.1 Effect of Thermal Noise

Thermal noise has significant impact on the switching dynamics of nano-magnets.

Equation 2.35 explains the renowned Brown’s model [85] that captures the behavior

of thermal noise which can be used as a random magnetic field in the LLGS equations.

~HThermal = ~ς

√
2αkBT

|γ|MsV
(2.35)

~ς is a vector with components that are zero mean Gaussian random variables with

standard deviation of 1. V is the volume of the free layer, T is the temperature, and

kB is the Boltzmann’s constant. The time discretization value dt must be included

in the numerator when solving the equation numerically. The existence of thermal

noise is mandatory for the proper operation of our SAT solver. This is due to the tilt

of the FL magnetization with the easy axis, induced by thermal noise without which

a magnet cannot be switched. Results indeed show that, under zero thermal noise,

the magnetizations evolve to frozen non-solution states.

As implied by equation (2.15) and (2.16) in section 2.3, the state m̂ = [mxx̂ myŷ mz ẑ] =

[±1 0 0] of a magnet is stable in the absence of noise. Any magnitude of current
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Fig. 2.13. The effect of absence of thermal noise on the operation of the
SAT solver. (a) The states of 3 MTJs that represent three s variables
(S1, S2, S3) when the thermal noise is not present. The system seems as if
it has stabilized even though the solution is not correct. (b) The charge
current through the same three MTJs in (a). A positive current drives
an MTJ towards the AP state (+1) and a negative current will drive it
towards the P state (−1). Note that the positive current through the
second device is insufficient to flip the state

(other than∞) is not capable of switching the magnet as long as the magnetization is

perfectly aligned with the positive or negative x̂ direction (easy axis). In our proposed

system, the switching between the two stable states of a set of MTJs should continu-

ously occur until the system converges to a solution. However, when the thermal noise

is not present, a magnetization can end up in the [mxx̂ myŷ mz ẑ] = [±1 0 0]

state. If the state of that MTJ must be changed in the process of converging to a

solution, it will be impossible. When thermal noise is present, it will induce a slight

tilt in the FL magnetization with the x̂ direction. When trying to switch an MTJ

using a current, this tilt of the FL magnetization has a significant contribution. The

switching time between two states of an MTJ is a strong function of this tilt [86].

When the tilt is zero, the switching time can be explained as infinite. Figure 2.13 il-

lustrates the time evolution of the states of three MTJs, that represent three variables

when solving a 3-SAT problem with 20 variables. The effect of thermal noise is ig-
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nored for this case. We have forced an initial condition for the system to Mx = 0 (i.e.

the resistance values of all the MTJs that represent the variable s is (Rap + Rp)/2).

This can be done by passing a current through the heavy metal, perpendicular to the

write current direction in figure 1.3 (c). Even though the states show that they have

stabilized (note S1, S2, and S3 after 75ns in figure 2.13(a)), there exists a current

through the heavy metal layer of the second device (note I2 is not zero after 75ns in

figure 2.13(b)). This current tries to drive the state of the MTJ towards the other

direction. Note, a positive current drives an MTJ towards the AP state (+1) and

a negative current will drive it towards the P state (−1). Despite the presence of

current (I2) through the second device, the magnet does not flip to [+1 0 0] state.

This is because the tilt the FL magnetization has with the easy axis is too small, and

the current is not sufficient to drive the state towards [+1 0 0]. This is a ‘frozen

non-solution state’ that occurs only in the absence of thermal noise. Therefore, it is

evident that the system fails under zero thermal noise.

In the next two subsections, it will be explained how the thermal noise assists in

avoiding limit cycles and the impacts of larger thermal noise on the time to converge

to a solution.

Not behaving as a chaotic dynamic system and absence of limit cycles.

We define the states of all the MTJs that represent variable s as HN = [−1, 1]N .

The parallel state is mapped to −1 and the anti-parallel state is mapped to +1. The

boundary of HN is the N hypercube QN , with vertices VN = {−1, 1}N . The solution

space to a particular problem can be a subset of these VN . Let us denote such a

solution by VN
sol = {VNi, VNj, ...}. Due to the effect of thermal noise, the solution to

which the system will ultimately converge has minimal dependency with the initial

states of the MTJs. For example, let us consider a SAT problem that has multiple

solutions V sol
N and solving it in two trials with the same initial states of MTJs. The

output solutions in the two trials may not be the same even though the starting



45

conditions were identical. This implies that our system does not show any chaotic

behavior (it is not deterministic) in contrast to the system given by equations 2.2 and

2.3.

If the states of the MTJs that represent variable s continuously change in a periodic

manner (it has entered a limit cycle), it is possible that the system never reaches a

solution (even if there exists one). That is, si(t) = si(t + nT ) for ∀n = 1, 2, ... and

si(t) is not a solution of the system. This is known as the system getting trapped in

a limit cycle [62]. It is shown that for the system explained in equations 2.2 - 2.3,

this can occur for certain coupling parameter (A, B) choices [9]. However, due to the

added stochasticity from the thermal noise, we argue that our MTJ based SAT solver

does not get trapped in limit cycles. It is highly probable that our system reaches a

solution if sufficient amount of time is provided.

Increased temperature resulting in faster solution convergence

Now let us consider how different amounts of thermal noise will affect the operation

of our MTJ based SAT solver. Temperature can affect the amount of thermal noise

applied on an MTJ device (equation 2.35). Sufficiently higher temperatures on MTJs

with smaller switching energy barriers, can cause the state of an MTJ to oscillate

over time, even without any input current or magnetic field [63]. We solved randomly

generated 20 variable, 3-SAT problems at different temperatures and observed the

percentage of problems that can be solved within 10µs. As figure 2.14(a) illustrates,

it is evident that in the range of 20◦C − 130◦C, there is no significant degradation in

the percentage of problems solved within 10µs. However, according to figure 2.14(b),

it appears that the average time to solve a k-SAT problem decreases by ∼ 100ns with

increasing temperature in the range 20◦C − 130◦C.
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Fig. 2.14. (a) The percentage of randomly generated 20 variable SAT
problems (αc = 4.25) solved at different temperatures within 10µs. (b)
Average time to solve a 20 variable SAT problem at different temperatures.

2.6.2 Effect of process variations

In our design, we selected a particular thickness (tss) for the free layers of the

MTJs. In reality, it is impossible to achieve the exact thickness due to number of

reasons including atomic limitations, process variations, fabrication limitations etc.

How much precession is present along the easy axis is dependent upon how much the

actual thickness has deviated from tss. In order to observe the effects of thickness

variations on the operation of our proposed SAT solver, we consider two scenarios.

1. Global variation of thickness

2. Local variation of thickness.

In the first case, we perturb all the thicknesses of MTJs in our system by some

constant percentage from tss. For a particular percentage global variation in thick-

ness, we solved randomly generated 20 variable, SAT problems. Then the percentage

of problems solvable within 10µs, and the average time to solve a single problem

was observed. Figure 2.15 (a) illustrates that there is no significant change in the

percentage of solvable problems when the global variations in thickness is changed

from −5% to +10%. However, as figure 2.15 (b) shows, the average convergence time
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Fig. 2.15. (a) The percentage of randomly generated 20 variable SAT
problems (αc = 4.25) solved at different percentage variations in thick-
ness (from the seamless switching thickness, tss) of the free layer within
10µs. (b) Average time to solve a 20 variable SAT problem at different
percentage variations in thickness of the free layer. The variations are con-
sidered as global. i.e., all the devices in the SAT solver has the thickness
with same deviation from tss

increases when the deviations in thickness increases. We also observed that the solver

no longer works if the thickness is less than a particular value. This is the limit at

which the perpendicular magnetic anisotropy (PMA) becomes dominant and the FL

magnetization stabilizes in ẑ axis instead of x̂ axis. We observed this when the actual

thickness is ∼ −10% deviated from the tss, for the choice of materials and dimensions

used in this work. In the second case, we change thicknesses of all the MTJs according

to a Gaussian distribution with a 3σ value (where σ is the standard deviation) of 10%

from the tss. The solver gave an average convergence time of 588.31ns and was able

to solve 97% of randomly generated 20 variable, 3-SAT instances within 10µs.

During the fabrication process, non-idealities such as edge damage [87,88] can be

introduced to the MTJs. Such non-idealities can change the parameters associated

with the devices and might affect the performance of the proposed SAT solver. We

investigate the effect of global variations of three parameters, viz. interface anisotropy

energy density constant (Ki), width and length.
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The changes inKi due to edge damage can be modeled as a linearly varyingKi over

a small length from the edge towards the center of the MTJ [87]. For the experiments,

we assumed that the Ki variations near the edge can be represented by an effective Ki

(Keff
i ) throughout the magnet. Figure 2.16 shows how the computation time changes

due to global variations in the Keff
i as a percentage from the nominal Ki.

We observed that the increased/decreased Keff
i results in increased computation

time. This is due to the fact that tss is dependent upon Ki (equation 2.3). Since

increased Keff
i results in increased tss and vice versa, the trend in figure 2.16 is similar

to the mirror image (along y axis) of the ‘computation time vs thickness’ curve in

figure 2.15(b). However, figure 2.16 (b) shows that the percentage of problems solved

does not have a significant impact from the Keff
i variations.

We further observed how the changes in shape anisotropy (due to changes in di-

mensions) affect the performance of our MTJ based SAT solver. We induced global

variations in the range of ±15% to the widths and lengths of the MTJs and observed

the change in computation time by means of 20-variable hard SAT instances. Fig-

ure 2.17 summarizes the results obtained. Figure 2.17 (a) and (c) illustrate that,

decreased dimensions decreases the computation time and vice versa. This is due to

the reduction in the energy barrier with reduced dimensions. We thus conclude that

the reduced dimensions improves the performance of our solver.

Intuitively, since the non-ideal effects such as edge damage can potentially reduce

the switching current of a magnet [87], the computation time of our system must

reduce. If an edge damage free-MTJ switches within t1 amount of time due to an I1

current, a magnet with edge damage switches faster than t1 for the same current, I1.

To view the above effect on computation time of our solver, we increased the applied

current on all MTJs by 10%. This resulted in an average computation time reduction

of about 36% for 20-variable hard SAT problems.

As explained in prior work [87], the effects of edge damage is minimal on MTJs

with larger dimensions. Furthermore, it has been shown [88] that using smaller accel-

erating voltages during the ion milling fabrication process reduces the edge damage
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Fig. 2.16. The effect of global variations in interface anisotropy energy
density constant Ki, over the (a) computation time of the system, and (b)
the percentage of 20-variable SAT instances solved within 10µs

as well. These counter measures can be exploited to avoid consequent performance

degradation of the proposed SAT solver if required.

2.7 Power consumption and computation time of the SAT solver

In this section, we will present the power consumption and computation time of

our proposed system, and compare with existing methodologies. In order to calculate

the power consumption, we used SPICE simulations in IBM 45nm technology. The

measured average power consumption over solving 1, 000, 20-variable (our software

based LLGS solving framework could not handle bigger benchmarks such as ‘ais8’

[89]) hard SAT problems (constraint density αc = 4.25) was 1.37mW. The power

requirements of each section of the solver are presented in Table 1. We observed

that the peripheral circuits such as amplifiers and voltage controlled current drivers

consume a significant portion of power. The power consumption of the total MTJ

and heavy metal layer structures is approximately about 20% of the total power

consumption of the system. Similarly, a recent work of a hardware realization [69]

of an analog approach [62], also explains that their overall power consumption to be

significant (numerical value not specified), due to the usage of op-amps. In another
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Fig. 2.17. The effect of global variations in lengths and widths of MTJs
over the computation time of the system, and the percentage of 20-variable
SAT instances solved within 10µs. (a),(b) shows the effects on computa-
tion time and percentage of problems solved when the length is varied from
−15% to +15%, with respect to the nominal length. (c) and (d) respec-
tively show the effects on computation time and percentage of problems
solved, when the width of the free layer is varied

design [68], the CeNN based SAT solving algorithm [9] used in our work was realized

using op-amp based integrators. The power consumption was reported as 140µW

for a 4-variable, 4-clause problem. For comparison, we evaluated the average power

consumption of our MTJ based solver for similar 4-variable 4-clause SAT instances,

and witnessed a power consumption of 84µW, which is about 40% smaller than the

aforementioned analog hardware design [68].

Digital hardware for realizing typical SAT solving algorithms such as GRASP [64],

DPLL [90] etc. can be found in literature. [91–93]. A custom IC [91] designed for such

an algorithm reported a power consumption of 871µW. This is about 37% lower than
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Table 2.1.
Power consumption of the MTJ based SAT solver

Component
Power

consumption

Read circuitry 300nW

Amplifiers 315µW

Voltage controlled HM current drivers 827µW

Driving current through HM 235µW

Total 1377µW

our design. However, these digital approaches are slower than analog solvers due to

the step-by-step decision making and backtracking required for solving a problem.

It is also noteworthy that our proposal is an asynchronous method in contrast to

the above synchronous methods. Therefore, the need for a clock signal and the

power associated with it is not present in our design. Our system automatically goes

to a minimum energy point (which is a solution) and stabilizes there as explained

mathematically in section 2.3.

In order to obtain the computation time of our system, we conducted system level

simulations using random 1, 000, 20-variable hard SAT instances. The time taken to

solve all 1, 000 problems (100%) were evaluated and the average computation time per

instance was 553ns. This computation time was then compared with a state-of-the-art

software SAT solver, Minisat [95]. The same 1, 000 problems were solved using Minisat

in a 3.6GHz processor and the average computation time was evaluated (1.44ms). We

observed an average speed-up of 2.6 × 103 with respect to Minisat. Prior hardware

SAT solver designs in literature have also presented their speed-up with respect to

Minisat, and the values are summarized in Table 2 for comparison. Note that the
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Table 2.2.
Speed-up of hardware based SAT solvers with respect to purely software
based solvers

Hardware solver
Speed-up with respect to

software based solvers

Reconfigurable SAT solver [92] 90 (3.6GHz processor)

BCP accelerator [94] 6.7 (3.6GHz processor)

BCP accelerator [93] 4 (3.3GHz processor)

MTJ based solver 2.6× 103 (3.6GHz processor)
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Boolean Constraint Propagation (BCP) accelerator [94] in Table 2 has reported the

speed up with respect to a purely software based algorithm (modified zChaff [63])

which has the same performance for BCP when compared with Minisat. Furthermore,

the analog CeNN based system [9] built using op-amp based integrators [68] has an

average computation time of 15µs for 10 variable, 2-SAT problems. Our MTJ based

proposal has an average run time (over 1, 000 instances) of 186ns for 10 variable 3-sat

(αc = 4.25) problems (showing that the MTJ based solver is ∼ 30× faster).

2.8 Conclusion

Boolean satisfiability is an NP-complete problem (k ≥ 3) that finds utility in

vast array of applications [55–59]. Analog solutions to the satisfiability problem has

recently appeared attractive [9, 62, 68] due to the massive parallelism available when

solving, in contrast to the stepwise search algorithms. In this work, we provide a

proof of concept hardware based analog SAT-solver using Magnetic Tunnel Junctions

driven by the Spin Orbit Torque Phenomenon. We have mathematically shown how

the inherent device physics of MTJs closely mimics an existing analog approach [9] to

solving the Boolean satisfiability problem. Device and circuit level simulations were

conducted to solve hard satisfiability problems in order to observe the performance

and functionality of our proposed system. According to the observations, we witnessed

that the proposed SAT solver is capable of finding a solution to a significant fraction

(>85%) of hard SAT problems in polynomial time. We conjecture that this is due

to the inherent thermal noise present in MTJs and the device complexities added on

top of the existing analog approach [9]. The SAT solver automatically comes out of

local minimum points and limit cycles due to thermal noise. Therefore, it is highly

probable that the system reaches a solution if sufficient time is provided, given that

the SAT problem has a solution. Further, the variation analysis illustrates that our

proposed solver is robust to variations in the MTJ thickness in the range of -5%

to 10%. Larger variations result in higher average convergence time. The proposed
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MTJ based SAT solver is 2.6×103 times faster than a state-of-the-art software solver,

Minisat. The work presented in this section is published in [96]
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3. ALL-MEMRISTOR STOCHASTIC DEEP SPIKING

NEURAL NETWORKS

Even though the exact mechanisms of communication between biological neurons

still remain unknown, it has been shown experimentally that neurons use spikes for

communication and the nature of the firing of neurons (spike generation) is non-

deterministic [3–5]. By conserving energy via spike based operation [10], the brain

has evolved to achieve its prodigious signal-processing capabilities using orders of

magnitude less power than the state-of-the-art supercomputers. Therefore, with the

intention to pave pathways to low power neuromorphic computing, much consider-

ation is given to more realistic artificial brain modeling [97]. The inception of the

Spiking Neural Networks (SNN) concept is a consequence of above. It has recently

emerged as an active area of research owing to its resemblance of the “actual human

brain” [46].

In a spiking neural network, the communication between neurons take place by

means of spikes. The information is typically encoded in the rate of occurrence of

spikes. Different learning schemes have been proposed over the past, and Spike Time

Dependent Plasticity (STDP) based learning is widely used due to the consistency of

the concept with experimental statistics [98]. However, the STDP learning is typically

limited to a network with a single layer of excitatory neurons and a single layer of

inhibitory neurons [99]. The aptitudes of such a single fully connected layer spiking

neural network is limited when compared with the high recognition performances

offered by deep ANNs. Up to date, deep ANNs have given the best performance

with respect to classification accuracy. For an example, SENet which won the 2017

ILSVRC, is a deep Convolutional Neural Network (CNN) with the reported lowest top

5 error (the correct class is not within the top 5 selection of classes according to the

network output) of 2.251% on ImageNet data set [2]. However, such networks require
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huge power and time if a von-Neumann computer is to be used for computation. For

an instance, SE-ResNet requires power for ∼3.2GFLOPS (number of operations per

second) [2].

As an effort of embedding the classification accuracy of such ANNs with the spike

based low power operation of SNNs, numerous research efforts have been focused on

crafting Deep Spiking ANNs [100]. One of the interesting mechanisms of executing the

above is by exploiting certain optimization techniques to convert a fully trained deep

ANN to an SNN [101,102]. The work suggested in [101] outperforms all previous SNN

architectures to date on MNIST database. Despite the existence of Deep SNNs in the

algorithmic level, minimal consideration is dedicated towards devices and realizing

such algorithms in hardware level.

With the intention to reduce the energy consumption of the powerful Deep ANNs

while preserving the biological plausibility, a non-deterministic, memristive device

based hardware architecture for a Deep Stochastic SNN is proposed here. Memristors

have been widely used in literature as synapses in neural networks [44,45]. The multi-

level storage capability has made the memristor an ideal candidate for the synapses

in a neural network. Even though this multi-level behavior of the memristors seems

appealing to emulate the behavior of an analog neuron as well (different voltage write

pulses (inputs) result in different memristor resistances (output); there is an upper and

a lower bound for the resistances; this signals similar functionality of a thresholding

function), reliability concerns might arise due to the inherent stochasticity. This

stochasticity in memristors has been experimentally shown [49,51] and the statistical

measures suggest that the switching probability of these devices can be predicted.

For example, the switching times follow a Poisson distribution for Silver/amorphous

Silicon/poly Silicon (Ag/a− Si/p− Si) based devices.

Memristors offer a variety of favorable features such as higher write-erase cycles

(1012 [103]), higher yield, CMOS compatibility, lower area etc. Despite these ben-

efits, high programming voltages and long pulse durations, [104] or other feedback

write mechanisms [105] are mandatory to ensure the switching of the devices, for
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applications such as memory, that require very low failure rates. Rather than trying

to reduce such non-deterministic effects, in this work we propose an effort to em-

brace the stochasticity in an efficient way, with the ambition to go towards a more

realistic neuron. We propose the memristor as a probabilistic switch to represent

the stochastic neuron in a supervised deep stochastic spiking neural network, and

memristive crossbar arrays with multi-bit capability to represent the ‘inner product’

computation between the incoming spikes and the synaptic weights. We introduce

this structure as ‘All-Memristor’ neural network due to the fact that the two main

functionalities of a neural network are being taken care of by memristors. We elabo-

rate how the ANNs can be trained, in order to incorporate a stochastic memristor as

a neuron. The gradient descent based backward propagation scheme must be mod-

ified to account for the probabilistic function which may be different from standard

activation functions (ReLU, sigmoid
( 1

1 + e−x
)
, etc.) of a neuron. We will further

elaborate certain favorable features accompanied by memristors that makes it suit-

able to emulate a stochastic neuron. We propose circuit architectures that can be used

to realize the proposed All-Memristor network. Then the impact of certain variations

towards the accuracy of the network is explored. Finally the energy consumption of

the All-Memristor based network is compared with the CMOS counterpart.

Even though the possibility of harnessing the inherent stochasticity of the mem-

ristor for neuromorphic computations has been mentioned previously [106–108], the

complete analysis of it for deep stochastic SNNs has not yet been studied. Further,

stochastic integrate and fire neurons (with a focus on devices) have been proposed in

literature [109, 110] for unsupervised learning SNNs and they are different from this

work, where we have specifically designed the neuron to suit deep supervised neural

networks which are capable of performing complex tasks with better accuracy [101].

A complete analysis of hardware neural network with memristors is provided here, to

which four key features of the brain; high accuracy, low power, spike based informa-

tion transferring, and stochasticity are embedded.



58

(a) (b)

2 4 6
0

0.2

0.4

0.6

0.8

1

Write pulse magnitude (V)

P
ro

b
a
b
ili

ty

 

 

pw = 100ns

pw = 1ms

pw = 100ms

pw = 1ms

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Write pulse width (ms)

P
ro

b
a
b
ili

ty

 

 

write voltage = 4.5V

Fig. 3.1. (a) The switching probability of a memristor with varying mag-
nitude of the pulse. (b) The Switching probability of a memristor with
varying pulse width

3.1 Stochasticity in memristor devices

Despite the copious favorable features offered by memristive devices, the stochas-

ticity of changing its state has induced reliability concerns. To make the memristor

a deterministic device in order to appropriate it for applications such as non-volatile

memories, reconfigurable logic etc., significant consideration must be provided to the

operating region of the devices. As an example, the TiO2 based memristive devices

have a typical threshold voltage of 1V in order to ‘SET’ the device [111] for memory

applications. This is the magnitude of the voltage write pulse that provides a higher

confidence (ex: > 0.99) of writing a logic 1. If a writing pulse of 0.5V is applied

instead of 1V, the device may change its state with a certain probability which is less

than 1. It is evident that increasing the reliability comes at the cost of high power

consumption. Our work is an effort to utilize the stochastic behavior of the nanoscale

resistive devices while operating in the low-power non-deterministic regime.

The formation of the filament in a ECM type memristor is a highly voltage bias

dependent process. The anode metal particle hopping rate is given by [47]

Γ =
1

τ
= νe−E

′
a(V )/kBT (3.1)

where kB is the Boltzmann’s constant, T is the temperature, τ is the character-

istic switching time, and ν is the attempt frequency. −E ′a(V ) is the bias dependent
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Fig. 3.2. The typical structure of a convolutional neural network. There
are two main sections in a CNN in terms of functionality. The convo-
lutional layers (followed by subsampling to reduce the large number of
computations) perform the feature extractions from an input (ex: image),
and the fully connected layer classifies the inputs depending upon the
extracted features.

activation energy. The time required for the formation of the metal filament is shown

to follow a Poisson distribution [51]. The probability of switching within the next ∆t

duration after a t amount of time can be defined as

P (t) =
∆t

τ
e−t/τ (3.2)

The dependency between the characteristic switching time and the voltage of the

write pulse is given by

τ(V ) = τ0e
−V/V0 (3.3)

τ0 =
1

ν
eEa/kBT , V0 = 2nkBT/q (3.4)

where Ea is the activation energy at zero voltage bias, n is the number of anode

metal particle sites, q is the charge of an electron.

If a particular write voltage pulse is applied on the memristor, according to above

equations, it can be noted that the switching probability depends on two key factors.

1. The magnitude of the pulse.

2. The width of the pulse
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Fig. 3.1 (a) shows how the magnitude of the write pulse affects the switching

probability curve and Fig. 3.1 (b) shows the effect of the width of the write pulse.

For a rate based spiking neural network, if a memristor must be incorporated as a

spiking neuron, the width of the spikes must ideally be the same (variations might be

present and their effect is analyzed in the results section). Therefore, the magnitude

of the pulses must be controlled to bring the memristor to its stochastic operating

regime. From equation (3.2), the cumulative probability of switching when a voltage

V is applied on the memristor for a t amount of time is

P = 1− e−t/τ = 1− exp(− tν

eEa/kBT
eV q/2nkBT ) (3.5)

Once the write time t is selected for the network, all the parameters in the above

function is fixed (i.e., P = f(V )).

3.2 Deep Stochastic Spiking Neural Networks

3.2.1 Convolutional neural networks basics

CNNs have multiple hidden layers of neurons between the input and output layers.

For an example, the CNN in Fig. 3.2 has 2 convolution layers, two subsampling layers

and one fully connected layer. Each convolution and fully connected layer involves

calculating the summation of some weighted inputs and then sending the outcome of

it through an activation function. This output is fed as an input to the next layer.

Calculating the set of synaptic weight values is called training and stochastic gradient

descent method is usually used to back-propagate the error at the output and update

the weight values. Typical activation functions for a CNN include sigmoid function,

tan hyperbolic function and rectified linear function. The activation function for the

stochastic neuron in this work is a probabilistic function as will be described in the

next section.
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3.2.2 Stochastic neurons

Let us first consider an analog neuron with an activation function f . The input to

the neuron is the weighted summation of the set of outputs from the previous layer.

The output of the neuron can be given as

y = f(x · w) (3.6)

where x is the output vector from the previous layer and w is the set of synaptic

weights. The output varies between 0 and 1. Therefore, x can be in the form of

x = [0, 1]N with N being the number of fan-in neurons. In contrast, the neurons in

spiking neural networks, communicate in terms of Poisson spike trains. i.e., instead

of the analog input vector x, we would have x̃(t) = {0, 1}N where 1 represents a

spiking event and 0 represents a non spiking event. In an integrate and fire neuron or

leaky integrate and fire neuron, the activities at the inputs are integrated over time

until the accumulated value (membrane potential) reaches a certain threshold value.

Once this threshold value is crossed, the neuron will produce an output spike (neuron

fires) and reset the membrane potential. The stochastic spiking neuron that is being

discussed in this work does not temporally accumulate the spiking activities until it

reaches a predefined threshold. Instead, it incorporates a probability function that

observes the spiking activities at the input from the pre-layer neurons during a time

step, and produce a spike with a certain probability that depends on the weighted

summation of these activities. Throughout this document, the ‘spiking neuron’ term

refers to the above context.

3.2.3 ANN to stochastic SNN conversion

In this section, we elaborate on the conversion of an ANN to an SNN and its

associated error. There are two types of spiking networks in terms of the way the

data is encoded in the pulses. One method is encoding the information in the exact

time a spike occurs. In this work, we are considering the second method where the



62

information is included in the rate of the spikes. When converting an ANN to such

an SNN, the analog input of an ANN must be rate encoded as a Poisson spike train.

The expected value of the input spike events can be elaborated as (for N = 1)

〈
x̃(t)

〉
=

∑
t x̃(t)

T
= x (3.7)

where T is a sufficiently large number of time steps. Let us assume that we

have considered a probabilistic activation function similar to the analog activation

function f (or in other words, consider that the ANN was trained with a function

similar to the probability curve f of a device). Here the neuron gives an output spike

with a certain probability defined by f depending upon the input events (spiking/not

spiking). When there is a spike at time t, x̃(t) = 1. The corresponding probability

of getting a spike at the output is ỹ(t) = f(x̃(t) ·w) = f(w), where w is the synaptic

weight. Similarly, when there is no spike at time t, x̃(t) = 0 and the probability of

getting a spike at the output is ỹ(t) = f(0). The expected output can be elaborated

as 〈
ỹ(t)

〉
= x · f(1 · w) + (1− x) · f(0 · w) (3.8)

As we explained in section 3.1, the probability of switching a memristor with a

voltage pulse of constant pulse width and the input (x ·w) encoded as the magnitude,

takes the form of (for the exact relationship, refer to equation (3.5). We have refrained

from using the extra constants for simplicity of elaboration and understanding. These

constants does not affect the concepts that are being discussed in this section)

f(x · w) = 1− exp(−ex·w) (3.9)

Therefore the expected value of the output is

〈
ỹ(t)

〉
= x ·

(
1− exp

(
− ew

))
+
(
1− x

)(
1− e−1

)
(3.10)

For an ideal ANN to SNN mapping (one to one mapping), this expected value

must be similar to f(x · w). However, as the above equation suggests,
〈
ỹ(t)

〉
takes a

linear form with input x. As explained in [112], the difference between f(x · w) and
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Fig. 3.3. (a)The stochastic spiking neuron structure. Incoming inputs
are spikes. Depending upon the weighted summation, of spikes, the oc-
currence of a spike at the output will be determined according to the
probability function f . (b) The distribution of weights of a network when
trained according to a device level probabilistic curve assuming an analog
behavior. (c) The expected value of the SNN neuron output for different
expected values at the input, and ANN neuron output for different inputs.
We have considered two weight values; 0.5 and 2. Negative inputs refer
to the cases where the synaptic weight value is negative (d) The ANN
to SNN conversion error distribution. Maximum error appears close to
0.5 input spike rate and |w| = 1. However, the error value is not very
significant.

〈
ỹ(t)

〉
grows with the increasing weight value (Fig. 3.3 (c)). However, according to

the distribution of weights illustrated in Fig. 3.3 (b) (for a deep ANN trained with the

activation function f), all the weight values come under the window of |w| < 2. We

can now get an estimate for the error when mapping the ANN to an SNN, assuming

the probability of having any spiking rate
〈
x̃(t)

〉
= x = [0, 1] is equally likely (uniform

distribution). Fig. 3.3 (d) shows the error when we consider having a weight value in

the range |w| < 2 according to the distribution in Fig. 3.3 (b).
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3.2.4 Training the ANN before converting to an SNN

As mentioned in the previous section, we use an activation function similar to the

switching probability curve of a memristor given by equation (3.9). The weight update

rule should change according to this activation function. The stochastic gradient

descent weight update rule is as follows

∆wij = −η ∂E
∂wij

= −η ∂E
∂oj

∂oj
∂netj

∂netj
∂wij

(3.11)

oj = f(netj) (3.12)

Where E is the cost function that must be minimized for a given input (preferably

the squared error at the output). oj is the output of the jth neuron, netj is the

weighted summation of inputs coming into the jth neuron and η is the learning rate.

The term
∂oj
∂netj

changes according to the following equation due to the choice of our

device defined activation function.

∂oj
∂netj

= (oj − 1)ln(1− oj) (3.13)

The bias values in the network are considered to be constant and do not get up-

dated during training. The constant value corresponds to the probability of switching

at the output of the neuron during an event of ‘no spike’. Any output probability

during a no spike event can be selected by properly adjusting this bias value.

3.3 ‘All memristor’ stochastic SNN architecture

In this work, we consider a deep spiking convolutional neural network which is

trained offline, using the switching probability curve explained in the previous section.

All the synaptic weights are realized by the conductance of multi-level memristors (4-

b discretization levels were used for this case [112–114]. A multilevel writing scheme

was proposed in [52] for TiO2 based memristors using the model in [115]. The authors

claim that the system can write any number of levels given that the on/off ratio is
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Fig. 3.4. (a) A schematic of a fully connected layer in a neural network
with N input neurons and M output neurons. (b) The crossbar struc-
ture that represents the inner product functionality between the incoming
spikes and the synaptic weights

high). The spike trains are short voltage pulses. The inner product between the

incoming spikes and the synaptic weights at time t can be efficiently calculated by

using a crossbar structure. Let V (t) = {0, 1}N be the incoming voltage spikes from N

neurons towards the N ×M crossbar (N pre-layer neurons, M post-layer neurons in

a fully connected structure). If a conductance value in the crossbar is Gi,j, then the

inner-product between the voltage pulses, and the conductances of the memristors

connected to the jth metal column, is the current that flows through the jth metal

column itself (Ij(t)).

Ij(t) = V (t) · [G1,j, G2,j...GN,j]
T (3.14)

Ideally, the above value must be converted to a proportional voltage that can

bring the memristor to the ‘stochastic regime’ as explained previously. This can be

done by sending the above current through a resistor and appropriately amplifying

the voltage across it. However, incorporating such measuring resistors (Rmeas) cause

non-ideal inner products [112]. Therefore, the measuring resistance must be made

considerably small with respect to the values of other resistors that emulate the

synaptic functionality. A crossbar coupled with measuring resistors is shown in Fig.

3.4. Simple low power amplifiers can be incorporated to amplify the voltage across

the measuring resistor (Fig. 3.4) as required. The input impedance of the amplifier is
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very large. The output impedance is comparatively smaller than the off-resistances of

a memristor. The output voltage of the amplifier is biased to give the same probability

that the network is trained for (refer to the explanation in section 3.2 D) during an

event of no spike. The negative weights are realized by conditionally selecting between

positive and negative voltages as shown in Fig. 3.4. For example, if the weight is

negative at the (i, j) cross-point in the cross bar, then the memristor between the ith

positive metal row and jth metal column is turned off and vice-versa .

Each time step of operation of the SNN architecture, consists of three key tasks;

write, read and reset. The write step involves the calculation of weighted addition

of the spike events in a given time step using the crossbar, and applying the corre-

sponding voltage to the memristor. In order to observe whether the memristor has

switched, a read phase is carried out. This can be done by a resistor divider circuit

as shown in Fig. 3.5. If the memristor switched during the write phase, then the

inverter output will be high. Else, it will be low.

Due to the variations in the ON,OFF resistances, the voltage at the resistor divider

arrangement can vary. This may lead to erroneous identification of an occurrence of

a spike, if a properly designed inverter is not present. To account for such potential

errors, an inverter with a sharper characteristic curve and a controlled trip point must

be used. The inverter will then identify if the resistance of the neuron memristor has

gone below a certain threshold resistance (which is a spiking activity). Fig. 3.6 shows

the response of the inverter we used in this work. The input voltage variations due

to changes in ON and OFF states are shown in red for a standard deviation (σ) of

20%. We conducted 100, 000 Monte-Carlo simulations to check the number of false

identifications of a spike for different values of σ. For σ = 100% in ON resistance,

we witnessed a false identification of a spike 0.007% of the time for the inverter

characteristics in Fig. 3.6.

The spiking events identified by the inverter, can be stored in buffers until the

next time step. After the read phase, all the memristors will be reset to be used in

the next time step. Resetting ‘all’ the memristors is necessary since a write pulse



67

From crossbar

Rread

READRESET

WRITE

To the storage

buffers

Vread

Vwrite

Vreset

(a) (b)

WRITE

READ

RESET

tWRITE

tREAD

tRESET

t

t

t

Ag

Pt/Ti

a-Si/SiO2

Fig. 3.5. (a)The stochastic memristor neuron (b) The temporal variation
of write, read, and reset control signals within a single time step

may contribute to the growth of a conductive filament in a memristor even though it

was unable to fully switch the device. Fig. 3.5 (b) shows the aforementioned write,

read and reset temporal activities.

3.3.1 Implementation of the network layers using memristive crossbars

In this section, we will discuss how the fully connected, convolutional and subsam-

pling layers are implemented using memristive crossbars. The governing operation in

all these layers is the dot product, and a crossbar can be utilized efficiently for this.

Fig. 3.4 clearly shows how a fully connected layer with N input neurons and M out-

put neurons can be implemented. The convolutional operation can be implemented

as shown in Fig. 3.7. As the figure illustrates, the convolution operation consists of

a kernel moving over the image, getting the weighted summation in each location.

A single such weighted summation can be implemented by first converting the cor-

responding section of the image and the kernel in to vectors and then mapping the

weight values to memristors in a column in the crossbar as shown in Fig. 3.7. When

mapping one entire layer with Min input channels and Mout output feature maps, the

input must be divided into sections of k × k ×Min (assuming a kernel size of k × k).

The crossbar should also have a similar number of conductances to obtain a single

element in the output maps. Multiple such crossbars should be there to account for
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all aforementioned input chunks. Subsequently, all the layers in the CNN can be

spatially mapped across several crossbars. Consequently, The area consumption of

the entire memristive hardware required to execute the CNN can be estimated as the

sum of area of all such crossbars and associated peripherals (buffers, amplifiers etc.).

Additionally, the inference delay is estimated as the time required to sequentially

propagate data across the crossbars mapped to the CNN layers. For the calculation

of energy consumption, we are doing a circuit level analysis.

At the output of each crossbar, the measuring resistor, the amplifier and read,

reset circuitry must be there as shown in Fig. 3.4 and 3.5. In the architectural level,

there are multiple ways of dividing the convolution operation into multiple realizable

crossbar sizes [116], [117], [118]. When dividing the operation into a number of

crossbars, summing amplifiers must be incorporated to add the outputs of multiple

crossbars and feed to the memristor neurons.

Subsampling layer (averaging) takes a similar form as above since it performs the

convolution operation with a kernel size equal to the scaling factor, and all the kernel

elements being equal. Therefore the subsampling layer can be implemented by using
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the same convolutional layer architecture. The input channels and the output maps

must be selected as equal. The stride in the subsampling layer is equal to the scaling

factor. In each filter set, except for the corresponding channel’s filter weights, all the

other channels’ filter weights must be zero. This is due to the fact that there is only

one kernel to map each input channel to a single output feature.

3.4 MNIST Data Classification with the Stochastic memristor based neu-

ral network

In order to view the functionality of the All-Memristor based deep stochastic SNN,

we have created an algorithm-device-circuit framework and tested on a standard digit

recognition data set, MNIST. The architecture selected for this work is a convolutional

neural network (28× 28− 6c5− 2s− 12c5− 2s− 10o [119]). The CNN structure as

mentioned in section 3.2 is well known for its high recognition accuracies on complex

data sets and we have chosen it for this work to show the applicability of the proposed
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devices on state-of-the-art neural networks. It is noteworthy that this proposed device

architecture is applicable to any type of ANN (ex: fully connected) since the basic

computational blocks (calculating the weighted summation) remain the same. The

CNN used in this work has 2 convolutional layers followed by subsampling. Each

convolutional kernel is of size 5×5 and there are 6 and 12 feature maps at the output

of first and second convolutional layers respectively. The input image is of size 28×28

(an image of a digit in MNIST data set) and the pixel intensity dependent spike

activity is fed to the first convolutional layer. The input spikes can also be generated

by directly applying voltages to a set of memristors with an amplitude proportional to

the intensity of the pixels. The memristors would then generate homogeneous Poisson

spike trains proportional to the intensity of the image pixels. After each convolution

layer, a subsampling with the kernel size 2x2 is present and this is simply averaging

the spiking activity of few neurons. A fully connected layer appears between the

second subsampled convolutional layer output and the network output. There are

10 output neurons to account for the 10 digits (classes) in the dataset. The network

was trained as an ANN for 60000 images of handwritten digits, with the probabilistic

switching curve of a memristor as the activation function of neurons, following the

process mentioned in section 3.2. The stochastic memristor neuron model is built

according to the set of equations elaborated in section 3.1.

The trained network was then tested on 10, 000 images of handwritten digits as a

spiking neural network. Instead of evaluating the outputs of neurons as analog values,

the probability of switching is determined according to the voltages applied on the

memristors. These voltages depend on the weighted summation of input spikes that

goes in to the neuron. We observed the spiking activities at the 10 output neurons

over a 100 time steps (each including a write, read, and a reset phase) and the winner

is considered as the neuron that gave the highest number of spikes during the total

time interval. We obtained a classification accuracy of 97.84% with a write pulse

of 10ns, after detecting the spiking activity over 100 time steps. Fig. 3.8 shows the

spiking activities at the 10 output neurons over 100 time steps for 5 randomly selected
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Fig. 3.8. The spiking activities of the 10 output neurons of the All-
Memristor neural network over 100 time steps for randomly selected 5
images in the testing data set

images from the testing data set. The accuracy we obtained for this network shows a

slight degradation when considered with the baseline ANN with sigmoidal activation

functions that provides an accuracy of 98.9%. This degradation is due to the circuit

and device related considerations we took in to account while converting the ANN

to an SNN. One of the reasons is the fact that we quantized the synaptic weights to

suit the currently available multi-level memristors with 4-bit levels. Another reason

is the non-ideality due to the inclusion of the measuring resistor described in section

3.2. The ANN to SNN conversion error (section 3.1) has an impact on the accuracy

degradation as well.

In the next few subsections, we will discuss about the circuit level implementations

and analyze the impact of different types of variations on our All-Memristor deep

stochastic SNN.

Providing the accurate voltage to the memristive neuron is important. In order to

verify that the correct voltages are being supplied to the neurons, we conducted circuit

level simulations for our network. We used IBM 45nm technology node for CMOS
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Fig. 3.9. The variations in the input voltages to the memristors. The
difference between the actual and the ideal voltage (∆V ) that is being
applied to a (a) convolutional layer and a (b) fully connected layer. (c)
The probabilistic switching curve and the cut off voltages. (d) The ∆V
when the applied voltages to the memristors are limited to Vhigh and Vlow

devices. We first found the input spiking activities that must be applied to each layer,

for 1000 random images in the testing data set. Then the corresponding voltages were

applied to the inputs of the layers implemented in circuit level. After that, voltages

applied on each memristor neuron was measured. Finally, the difference between

these voltages and the actual voltages that must be ideally applied on memristors

were calculated.

Fig. 3.9 (a) and (b) show the probability density functions (PDF) of these voltage

differences (∆V ) for a convolutional layer and the fully connected layer of our network

respectively. As the figure illustrates, for the convolutional layer, the differences in

voltages fall well below ±40mV (∼ 3σ). However, for the fully connected layer, we
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Fig. 3.10. The input output characteristics of the amplifier circuit. Note
the non-linearities in the response at considerably high and low voltages

noticed significant ∆V values. It is noteworthy that this does not affect the correct

functionality of the network. The reason can be explained as follows.

If a considerably high voltage is applied on the memristor, it is possible to state

with higher confidence that the device will switch. For an example, if the applied

voltage is larger than Vhigh (Fig. 3.9 (c)), it switches 99.9% of the time. Similarly,

when a sufficiently lower voltage is applied (< Vlow), it can be stated with higher

confidence that the device does not switch. In contrast to a convolutional layer, the

output of the final fully connected layer is forced to be a set of zeros and a one during

training. Due to this, the actual mapped voltages to the output neurons will be higher

than Vhigh or lower than Vlow. Therefore, the output neuron memristors will operate

on the deterministic region (Fig. 3.9 (c)). However, the designed amplifiers may not

work linearly when the inputs are very high or low. i.e., as shown in Fig. 3.10, the

amplifier output gets saturated. This behavior in the amplifier is appropriate since

applying higher voltages to the memristor leads to higher power consumption and

faster device degradation. The higher differences in Fig. 3.9 (b) is due to such non

linearities in the amplifier. We limited the applied voltage range from Vlow to Vhigh

to the same data we obtained for the Fig. 3.9 (b). These cut off voltages result in

0.001 and 0.999 probability values respectively. This range is a good approximation
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given that the final classification accuracy is decided based upon a number of spikes;

not just a single spike. The results in Fig. 3.9 (d) shows the updated differences and

they fall below ±100mV(∼ 3σ). It will be shown in the next section that the network

experiences only about ∼ 3% accuracy degradation for variations in the memristor

input voltage with σ = 200mV.

3.5 Variation Analysis

3.5.1 Impact of variations in the input voltages to the neurons

In this section we observe the effect of variations in the neuron input voltages on

the classification accuracy of the network. We conduct the experiment by changing

the bias voltages of the neurons. As elaborated in section 3.2 D, a bias value must

be selected to account for the output probability of the neuron during a non-spiking

event. i.e., if no spike appears at the input of the neuron, the bias voltage is the

write pulse magnitude that will be applied to the memristor neuron. We perturbed

all the neuron bias voltages following a Gaussian distribution with variable stan-

dard deviations from 50mV to 300mV. 50 independent Monte-Carlo simulations were

conducted on all the 10000 test images. As Fig. 3.11 illustrates, the classification

accuracy degrades by ∼ 14% when the σ is increased from 50mV to 300mV. The

impact on accuracy increases exponentially with the increased amount of variations

in the bias voltage. For an example, a 0.2V will result in just 3% degradation in

accuracy which is almost three times smaller compared to the 14% degradation for a

300mV variation. We would thus declare that the network is robust to variations in

bias voltages less than 200mV. The circuit simulations in the previous section show

that the input voltage to the neurons are well below 100mV.
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Fig. 3.11. Average classification accuracy with percentage variations in
memristor neuron bias voltage. The variations follow a Gaussian distribu-
tion and independent Monte-Carlo simulations were conducted over the
entire 10,000 testing image set for 50 trials.

3.5.2 The impact of write time on accuracy

As explained in section 3.1, in order to operate in the stochastic regime of a

memristor, smaller write pulse widths require larger voltages and vice versa. It is

however noteworthy that the switching probability curves for different pulse widths

have almost the same sharpness (Fig. 3.1 (a)). The sharpness of the probability curve

directly impacts the accuracy. Sharper curves will result in more classification errors.

For an example, if the network was trained with a sharper curve, a slight change in a

synaptic weight (due to weight quantization according to the multi-level memristors)

value will result in a huge deviation at the output of a neuron to which the specific

weight is connected. Fig. 3.12 shows how the classification accuracy varies with the

number of time steps considered for different write pulse widths. Higher number of

time steps will result in higher accuracy. As the figure illustrates, confirming our

prior argument about the sharpness, we do not see any significant relationship with

respect to accuracy degradation under varying write pulse width. However, it must

be noted that the bias voltage in the amplifier must be increased with the reducing
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Fig. 3.12. The accuracy variation with increasing number of steps for
different write pulse widths for the All-Memristor neural network

write pulse width. Larger voltages might damage the device and also cause in larger

power consumptions.

When the network is trained for a given write pulse width (i.e., for a particular

probability curve), the variations in this write pulse width when the network is in

actual operation, may cause classification accuracy degradations. In order to observe

this, we perturbed the write pulse width by a certain percentage and checked the

accuracy at the output of the network for all the 10000 images in the testing dataset.

For a network that was trained for a 100ns write pulse width, we observed only a 0.64%

accuracy degradation for a 20% perturbation (i.e. 20ns perturbation), and a 0.79%

degradation in accuracy for a 50% perturbation. The same percentage perturbations

were applied to a network which was trained assuming a 20ns write pulse width.

The degradation in accuracy we observed was 0.93% and 1.03% for 20% and 50%

perturbation in write pulse width respectively. This explains that the network is very

robust to the variations in the write pulse width.

3.5.3 The impact of synaptic weight variations

In our network, the synaptic functionality is performed by memristive crossbar

arrays. Variations can be present in the memristor resistances in these crossbars due
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to multiple reasons including the deviations occurred during programming, the effects

of temperature, and temporal drifts in resistance due to the applied small voltages.

Since such process variations is a common issue [120], we tested the robustness of

our memristor based SNN system to variations in synaptic weights. We perturbed

all synaptic weights we obtained from our modified offline training scheme, follow-

ing a Gaussian distribution with different standard deviation (σ) values. Fig. 3.13

illustrates how the classification accuracy deviated with the increasing standard de-

viation (it is considered as a percentage of the weight). The accuracy degrades by

∼ 4.5% when the standard deviation is 20%. For smaller σ values around 10%, the

accuracy degradation is about 0.5%. Despite the inherent error resiliency associated

with neural networks, the accuracy degradation is significant when σ = 50%. The

work in [121] also shows higher degradation in accuracy when memristors have high

variations. However, the experimentally measured variability for a filament based

device was as small as δR/R ∼ 9% according to [122]. Our network is robust to

variations of this magnitude.

As shown in [123], the typical write mechanisms will induce variations in multi

level memristors. In order to account for this, high precision write mechanisms must

be incorporated. A feedback write scheme would be appropriate to make sure that

the proper value has been transferred to the memristors [54], [105]. The work in [54]

experimentally shows the possibility to tune the memristive device within 1% accuracy

degradation with respect to the desired state, within the dynamic range of the device.

Furthermore, the usage of on-chip learning schemes will be helpful to account for these

variations [124]

Resistance variations can occur in the neuron memristor as well. However, this

does not cause any significant read error at the output since the off to on resistance

ratio is in the order of 104 − 107 [51] and the resistor divider circuit is capable of

detecting this large drop with almost zero error (refer to section 3.3). Further, as long

as the amplifier output impedance is low, the write operation does not get affected

by the variations in the neuron memristor.
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Fig. 3.13. Average classification accuracy with percentage variations in
synaptic weights. The variations follow a Gaussian distribution and inde-
pendent Monte-Carlo simulations were conducted over the entire 10,000
testing image set for 50 trials.

3.5.4 Accuracy degradation of the network due to the measuring resistor

Rmeas

In a memristive crossbar, the weighted summation of a set of input voltages are

given in terms of a current. This current is given by the equation (3.14). It must

then be converted in to a voltage to feed the neuron memristor. In order to do so,

a measuring resistor was incorporated as shown in Fig. 3.4. Due to this measuring

resistor, the resultant current witnesses some non-linearities. The actual current

flowing through the Rmeas can be given by the following equation

Ij(t) =
V (t) · [G1,j, G2,j...GN,j]

T

1 +Rmeas

∑N
i=1Gi,j

(3.15)

As explained in section IV, having a smaller Rmeas with respect to the
∑N

i=1Gi,j

will approximately make the current close to the inner product between V (t) and G.

In order to view the effect of the magnitude of this Rmeas towards the accuracy of

the network, we evaluated the network with different Rmeas values. Fig. 3.14 shows

how the accuracy changes with the value of Rmeas. Higher resistances result in higher

accuracy degradations.
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Fig. 3.14. Average classification accuracy with different values of measur-
ing resistors (Rmeas).

3.5.5 The Impact of variations in neuron memristors

The switching probability of a neuron memristor depends on the two fitting pa-

rameters τ0 and V0 (equation (3.4)). Due to variations, different memristors in the

network can have different τ0 and V0 values. In order to view the effect of the variations

in these parameters towards the accuracy of the network, Monte- Carlo simulations

were conducted. The parameters were perturbed following a normal distribution while

considering the experimental values [51] as the mean. As Fig. 3.15 (a) illustrates, the

effect of the variations in τ0 (up to 20%) towards the accuracy of the network is small

(∼ 5%). In contrast, the accuracy of the network is sensitive to the variations in V0.

When the percentage variation of V0 goes above 6%, the accuracy degrades signifi-

cantly (Fig. 3.15 (b)). When a particular memristor has a higher V0 value, the neuron

corresponding to that memristor has a lower probability of switching than what it

was designed for, and vice versa. However, the experimental studies have shown that

the thickness can affect the V0 value and this effect is not significant. For example, it

has been shown that when the thickness of the memristor was scaled by a factor of 2

(increased by 100%), the V0 increases only by ∼ 35% [51], [109]. Therefore, it can be

argued that a 5− 10% variation in dimensions will not cause significant classification

accuracy degradation.
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Fig. 3.15. Average classification accuracy with percentage variations in
fitting parameter (a) τ0 and (b) V0 of the neuron memristors. The vari-
ations follow a Gaussian distribution with mean selected according to
experimental values. Monte-Carlo simulations were conducted over the
entire 10,000 testing images.

Cycle-to-cycle variations in ON and OFF resistances of the neuron memristors can

occur as well. However, these variations have already been accounted for while ex-

perimentally obtaining the switching probability curve. Furthermore, the memristors

degrade after a certain number of set-reset cycles. This can impact the probabilistic

switching curve and thus the accuracy of the network. In order to view the impact

of these changes, we perturbed the probabilistic switching curve by a small amount

(∆P ) and simulated the network on 5000 images for 100 iterations. As Fig. 3.16

illustrates, the network is robust for variations in the probabilistic switching curve.

However, sufficient data is not available in literature to exactly represent the effect of

memristor degradation on the probabilistic switching curve (for the particular device

we selected).

3.6 Delay and energy consumption of the SNN

As we noted in Fig. 3.1, in order to get the same switching probability for a

memristor, the lower write pulse widths require higher write pulse magnitudes. Since

the relationship between the energy and the write pulse width is not quite intuitive,
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Table 3.1.
Device simulation parameters

Parameters Values

On resistance (Ron) 500kΩ [50]

On/Off ratio 103 [50]

Thickness of the insulation, ta−Si 60nm [51]

Fitting parameter V0 0.22 [51,109]

Fitting parameter τ0 2.85× 105 [51, 109]

Crossbar operating voltage 1V [50]

we calculated the energy consumption of a single neuron for different write pulse

widths. The results are summarized in Fig. 3.17. Here we assumed a spiking activity

of 0.5 at the input. The results suggest that larger pulse widths result in larger energy

consumption. This is due to the exponential relationship between the voltage and

pulse width. For example, if the write pulse width must be reduced from 1µs to

100ns to achieve faster operation, the required voltage increment is just 500mV and

the energy consumption would be better than the memristor operating in 1µs (even

though the power consumption reduced).

When considering the energy consumption of the entire system per image classi-

fication, the number of time steps (write, read, and reset cycles) plays an important

role. The accuracy of the network increases with the number of time steps over which

the winning neuron is decided (Fig. 3.12). A reasonable accuracy (above 96%) can

be reached within 10 time steps as shown in Fig. 3.12. However, for more complex

datasets, the convergence time can be much higher (∼ 50 time steps) [125] due to the

fact that the data sets are much bigger, and more number of neurons are required to
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Fig. 3.16. Average classification accuracy with percentage variations in
probabilistic switching curve. Each point in the probability curve was per-
turbed by a ∆P amount following a Gaussian distribution. The accuracy
of the network was measured over 5000 images on the testing data set

increase the accuracy [126]. Hence, for our energy comparison with CMOS baseline,

we conservatively choose 50 time steps for SNN inference.

In order to calculate the energy consumption of the whole network, we used SPICE

simulations in IBM 45nm technology. We considered the average spiking activities

for the images in the testing data set. The crossbar voltages must be selected ap-

propriately (depending upon the type of memristors used) so that the drift in the

resistance values over time is minimal. All the important parameters involved in this

work are included in Table 3.1. The energy required for a single write to the neuron

memristor (along with the amplifier) for a switching probability of 50% is 249fJ. A

single reset and a single read operation consumes ∼ 500fJ and ∼ 1.4fJ amount of en-

ergy respectively. The average energy per image classification was 115nJ. Note that

in our energy estimation for CNN execution (both memristive and CMOS hardware)

we assume that input data is available in the form of spikes (two voltage levels). Such

Poisson rate-encoded spike streams can be potentially obtained from event-driven

sensors [127]. The energy consumption due to the event-sensor operation would be a

common component to both the memristor and CMOS implementations. The afore-
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mentioned energy number includes the energy associated with the peripheral buffer

read and write, crossbars, and the read-write-reset of the neurons.

We observed that the energy of the crossbar is the dominant component and this

is justifiable due to the fact that the number of synapses are orders of magnitude

larger than the number of neurons. For example, the last fully connected layer of the

network has 1920 synapses and the number of neurons are only 10. This is a ∼ ×200

difference and thus we state the results are justifiable. The second dominant energy

component is from the reset operation. This is because of the fact that the reset must

be conducted in the deterministic region of operation of a memristor. That is, a high

enough voltage pulse must be used to ensure that the device has turned off. Since

the resistor value is now lower, the energy consumption is larger for this step. To

address this, feedback reset mechanisms can be incorporated [104]. This will allow

the operation in lower voltage stochastic regime with some feedback control circuitry

that conditionally gets activated. Furthermore, a novel stochastic volatile memristor

has been proposed in [49] as a true random number generator. It has been shown

experimentally that once this memristor is turned on, it returns to its off state after

a small duration of time (∼ 100µs) eliminating the requirement to force reset as we

propose in this work. The write voltage is also lower (0.5V, for a 300µs pulse) in

this device when compared with Ag/a − Si/p − Si (3.3V for 1ms pulse [51]) and

TiO2 devices. This may even eliminate the requirement of high gain amplifiers that

consume power. We thus argue that there are other types of memristor devices that

can allow energy efficient implementation using the architecture we propose here.

Our goal is addressing the applicability of electric field driven memristors in general

for deep stochastic SNN. Therefore we conducted the energy calculations without the

lack of generality.
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Table 3.2.
Area and delay of CMOS and memristor based implementations

Implementation Area (×10−3µm2) Delay
Area×Delay

(ns mm2)

Memristor based

Crossbars 2895

210ns 652Neurons 154

Buffers 56

CMOS based 190 28µs 5320

3.6.1 Comparison with CMOS implementation

For the purpose of comparison of our work, we used the CMOS spiking network

baseline proposed in [118]. The weight data are stored in SRAM. Subsequently,

neurons in the CNN are temporally scheduled on the computation core comprised of

FIFOs and neuron units. Each neuron computation involved moving data (input and

weight) from SRAM to FIFOs and moving the computed outputs from neuron units

back to SRAM when computation is completed. The energy of the CMOS design

along with the data fetching energy from the memory, is ∼ 736nJ (with 130nJ for

memory accessing, 64nJ for buffers, and 542nJ for neurons). The energy number

is for iso-number of time steps as our proposed All-Memristor network (50 steps).

This is approximately 6.4 times larger than the energy consumption of the proposal.

However, we would like to point out that memristor neurons degrade faster over time

when compared with CMOS neurons, even though the endurance of memristors is

significant (up to 1012 set-reset cycles). Larger operating voltages may speed up this

degradation process as well [104]. The on-off resistance ratio of a memristor changes

after a certain number of write cycles and may have different switching probability

curves other than the one used for training the network. This will lead to lowered
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Fig. 3.17. (a) The neuron power consumption and (b) energy consumption
for different write pulse widths. The experiment was for an amplifier
output voltage that corresponds to a switching probability of 0.5 for the
selected write pulse width. Even though the power consumption reduces
with the increasing pulse width, the energy consumption grows.

classification accuracies as explained in section 3.5 F. However, retraining might help

in regaining some lost accuracy but the feasibility of this is debatable.

In order to find the delay and area of our design, we divided the computation

in to 128 × 128 memristive crossbar arrays following the procedure mentioned in

section 3.3 A. The total area of the design (including crossbars, neuron memristors,

buffers, amplifiers, and inverters) was ∼ 3mm2 (Table 3.2). The crossbar cell size

was assumed to be 100F 2 [128]. In our design, for a write time of 10ns [51], a single

step takes 42ns (crossbar access time of ∼ 10ns [129] [128], read and buffer time

∼ 2ns, reset time ∼ 20ns). The latency for a single spike is 210ns (the propagation

time through the full network). The latency for a single spike for the spiking CMOS

architecture [118] takes 28µs for the same network. In order to fairly compare the

two implementations, we are estimating the area × delay product. The product for

our proposal is 652nsmm2. For the CMOS implementation, the value is 5320nsmm2

(which is ∼ 8× bigger and thus worse).
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3.7 Conclusion

Memristive switching devices have shown to be promising candidates for an enor-

mous array of applications including logic, memory and neuromorphic computing.

However, their inherent stochasticity has given life to reliability concerns. Numerous

mechanisms involving larger write pulse widths, larger operating voltages, or feedback

architectures have been proposed to drive these highly stochastic devices to their de-

terministic operating regime. As a result, we have to pay in terms of larger power

consumption. This work is an effort of exploring an avenue where such stochastic-

ity can be embraced rather than eliminating, with the goal of reducing power con-

sumption. The proposal is embedding the functionality of a stochastic neuron to a

memristor while representing the synaptic weights by a memristive crossbar to build

the“All-Memristor Deep Stochastic SNN”.

We tested the functionality of the network using the MNIST handwritten digit

data set and witnessed a very low accuracy degradation (∼ 1%) when compared with

the deep ANN baseline. The design space of the network was estimated by applying

variations and we observed that our proposal is robust to variations in the synaptic

weights (σ < 20%), neuron bias voltages (< 200mV), probabilistic curve, and the

write time durations (∼ 50% of the pulse widths). The steepness of the activation

function of a neural network affects the accuracy of the output and makes it less

robust to variations. The constant steepness of the switching probability curve of

a memristor (the probabilistic activation function) over different write times gives

more flexibility for the memristor to be utilized in platforms with different speed

limits without creating any accuracy degradation.

Smaller write pulse widths require larger voltages to bring the memristor to its

stochastic region of operation. However, the required increment in voltage magnitude

to operate 10 times faster is small (< 500mV) leading to lower energy consumption at

the neuron in fast operating platforms. Furthermore, the total energy consumption of

the proposal is 6.4 times smaller, and the area×delay product is 8 times smaller when
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compared with the digital CMOS counterpart. The work presented in this section is

published in [130].
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4. LIQUID ENSEMBLES FOR ENHANCING THE

PERFORMANCE AND ACCURACY OF LIQUID STATE

MACHINES

Over the past few decades, artificial neural algorithms have developed to an ex-

tent that they can perform more human-like functions. Recurrent Neural Networks

(RNNs) and their variants such as Long Short Term Memory (LSTM) networks have

become the state-of-the-art for processing spatio-temporal data. The massive RNNs

of today, can describe images in natural language [131], produce handwriting [132],

and even make phone calls to book appointments [133]. Such fascinating, human-like

capabilities are obtained at the cost of increased structural and training complexity,

and thus significant power consumption, storage requirements, and delay.

In this work we focus on a particular type of spiking RNN; the Liquid State Ma-

chine (LSM) [16]. An LSM consists of a set of inputs sparsely connected to a randomly

and recurrently interlinked pool of spiking neurons called the ‘liquid’. The liquid is

connected to an output classifier, which can be trained using standard methods such

as Spike Timing Dependent Plasticity (STDP), backpropagation, delta rule etc. [17].

LSMs have been used for a variety of applications including robot control [18], se-

quence generation [19], decoding actual brain activity [20], action recognition [21],

speech recognition [16,22–26], and image recognition [25,27–29].

LSMs gained their popularity due to two main reasons. First, the LSM architec-

ture is neuro-inspired. Spike base communication is used by biological systems, and

they are faster and more efficient than state-of-the-art supercomputers [30, 31]. Sec-

ond, LSMs have simple structure and lower training complexity among other RNNs.

The claim is that, sufficiently large and complex liquids inherently possess large com-

putational power for real-time computing. Therefore, it is not necessary to “con-

struct” circuits to achieve substantial computational power. However, such simple
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structure of LSMs comes with an accuracy trade-off. A plethora of work in the

literature suggests mechanisms for improving the accuracy of LSMs including train-

ing the liquid connections [28] and involving multiple layers of liquids to form deep

LSMs [134]. Despite the accuracy improvement, these mechanisms found in litera-

ture tend to alter the standard simple structure of LSMs. Choosing an LSM for a

particular application and improving its accuracy at the cost of added complexity,

nonetheless questions the motivation behind choosing an LSM in the first place.

Without deviating from the inherent simplicity of the LSM structure, several basic

approaches can be used to improve its accuracy. One such fundamental approach is to

increase the number of neurons within the liquid. However, the number of connections

within the liquid also increases following a quadratic relationship with the number of

neurons. Furthermore, the sensitivity of accuracy to the liquid neuron count decreases

with the number of neurons beyond a certain point. In other words, enlarging the

liquid introduces scalability challenges, and the accompanied cost tends to veil the

accuracy benefits. The percentage connectivity also plays a role in improving the

accuracy. Either high or low percentage connectivity results in accuracy degradation,

signaling the existence of an optimum connectivity.

Note, there are two key properties that measure the capacity of an LSM: separa-

tion and approximation [16]. Aforementioned basic approaches; changing the number

of neurons and connectivity in the liquid, indeed has an impact on the above mea-

sures. Based on separation and approximation, we propose an “ensemble of liquids

approach” that can improve the classification accuracy (compared to a single large

LSM) with reduced connectivity. The approach is scalable and preserves the simplic-

ity of the network structure. In our ensemble of liquids approach, we split a large

liquid into multiple smaller liquids. These resultant liquids can be evaluated in par-

allel since they are independent of each other, which leads to performance benefits.

Furthermore, for a given percentage connectivity, the number of connections available

in the ensemble approach is less than that of a single liquid with the same number

of neurons. This reduces the storage requirement of the LSM as well. We used a
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variant of the Fisher’s linear discriminant ratio [135,136] (the ratio between the sep-

aration and approximation) to quantify how well the ensemble of liquids represents

the spatio-temporal input data. We observed that increasing the liquid count beyond

a certain point reduces the accuracy of the LSM. This signals the existence of an

optimum number of liquids, which is highly dependent upon the application and the

number of neurons in the liquid. We show that dividing the liquid provides both ac-

curacy and performance benefits for spatial and temporal pattern recognition tasks,

on standard speech and image data sets.

The ‘ensemble’ concept has been previously used [137] for echo state networks or

ESNs [138], which are similar in architecture to LSMs but use artificial rate-based

neurons. Rather than using a single ESN predictor, multiple predictors (component

predictors) were used and their predictions were combined together to obtain the final

outcome. This approach was proposed to avoid the instability of the output of each

individual predictor, since the input and internal connection weights are assigned

randomly. The final ensemble outcome was obtained by averaging the predictions

of the component predictors. The approach in [137] is different from our work since

we design the ensemble of liquids by removing certain connections from a bigger

reservoir. Furthermore, only a single classifier is used at the output in our work

in contrast to [137]. The authors in [16] conducted a small experiment with two

time-varying signals, which shows that using four liquids is better than using a single

liquid in terms of enhancing the separation property. However, in their experiments,

the four liquids in total have four times the number of neurons as the single liquid

case. Therefore, it is not obvious whether the improvement in separation is solely

due to having four “separate” liquids. The increased number of neurons itself might

have played a role in enhancing the separation. In contrast, we analyze the effects

of dividing a large liquid into multiple smaller units, while leaving the total number

of neurons the same. Research [29] also shows that multiple liquids perform better

than a single liquid, at higher number of neurons. The input to liquid connections
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in [29] were trained in an unsupervised manner. Also note that each liquid was fed

with distinct parts of an input, and hence is different from this work.

4.1 Liquid State Machine (baseline)

The conventional structure of an LSM consists of an input layer sparsely connected

to a randomly interlinked pool of spiking neurons called the liquid. The liquid is

then connected to a classifier which has synaptic weights that could be learnt using

supervised training algorithms for inference.

4.1.1 Liquid neurons

The neurons within the liquid are leaky integrate-and-fire neurons [139] of two

types; excitatory and inhibitory neurons. The number of excitatory (E) neurons and

inhibitory (I) neurons were selected according to a 4 : 1 ratio, as observed in the

auditory cortex [140]. The membrane potential (V ) of a neuron increases/decreases

as a pre excitatory/inhibitory neuron connected to it spikes that is described by

τ
dV

dt
= (Erest − V ) + ge(Eexc − V ) + gi(Einh − V ) (4.1)

where Erest is the resting membrane potential, τ is the membrane potential decay time

constant, Eexc and Einh are the equilibrium potentials of excitatory and inhibitory

synapses, and ge and gi are the conductance values of the excitatory and inhibitory

synapses, respectively. As the membrane potential reaches a certain threshold, the

neuron generates a spike. The membrane potential drops to its reset potential upon

generating a spike as shown in Figure 4.1(a), and then enters its refractory period

trefrac during which it produces no further spikes. The formulations elaborated in [141]

were used for modeling the dynamics of the spiking neurons.
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Fig. 4.1. (a) The dynamics of the membrane potential (V ) of a spiking
neuron. Each spike shown below the graph will increase the membrane
potential. When V reaches the threshold Vthresh, the neuron will generate
a spike and V will drop to the rest potential Vrest for a trefrac duration
of time. This duration is called the refractory period, and the neuron
stays idle within this period. [36] (b) The structure of the liquid state
machine. The input is connected to a reservoir with two types of neurons;
inhibitory and excitatory. The reservoir is then connected to a classi-
fier which is typically trained using supervised learning methods. The
percentage connectivity between different types of pre and post neurons
(Ppre→post) are as indicated in the figure.
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4.1.2 Liquid connections

The input is sparsely connected to the liquid (In→E connections). The percent-

age input to liquid connectivity (PIN→E) plays an important role in achieving good

accuracy as will be explained in subsection 4.8.2. The liquid is composed of connec-

tions from excitatory to excitatory neurons (E→E), excitatory to inhibitory neurons

(E→I), inhibitory to excitatory neurons (I→E), and inhibitory to inhibitory neu-

rons (I→I). In our notation, the first letter indicates the pre-neuron type (PRE)

and the second letter denotes the post-neuron type (POST ). The selected per-

centage connectivity (PIN→E , PE→E , PE→I , PI→E, PI→I) within the liquid are

shown in Table 4.1. These percentage connectivity values worked the best in terms

of accuracy, for the neuron parameter selections in this work shown in Table 4.2.

The strengths of all the connections (W ∈ [0, 1]NPRE×NPOST ) were selected ran-

domly [16] from a uniform distribution U(0, 1) [29,142]. A randomly generated mask(
M ∈ {0, 1}NPRE×NPOST ,mij ∈M

)
decides which connections exist to obtain the de-

sired sparsity/percentage connectivity

(
PPRE→POST =

∑
(∀i,∀j)mij

(NPRE×NPOST )
× 100%

)
. Here

NPRE and NPOST are the number of PRE and POST neurons, respectively. The

dynamic conductance change model was used for synapses. i.e., when a pre-synaptic

neuron fires, the synaptic conductance instantaneously changes according to their

strengths and then decays exponentially with a time constant [141]. Following equa-

tion shows the dynamics of a synapse (ge) with an excitatory pre-neuron. τge is the

decay time constant. This is similar to the post-synaptic current model in [143].

τge
dge
dt

= −ge (4.2)

4.1.3 Output classifier

The liquid is connected to a classifier which is trained in a supervised manner.

As suggested in [16], a memory-less readout (the readout is not required to retain

any memory of previous states) can be used to classify the states of the liquid. The
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Table 4.1.
Percentage connectivity within the liquid

Type of connectivity Percentage connectivity

(Speech recognition)

Percentage connectivity

(Image recognition)

TI-alpha TI-10 MNIST E-MNIST

Input – Excitatory 34% 23% 10% 10%

Input – Inhibitory 0% 0% 0% 0%

Excitatory – Excitatory 40% 40% 40% 40%

Excitatory – Inhibitory 40% 40% 40% 40%

Inhibitory – Excitatory 50% 50% 50% 50%

Inhibitory – Inhibitory 0% 0% 0% 0%

liquid state in this work is the normalized spike count of the excitatory neurons [144]

within a duration of T , when the input is applied. There is a liquid state vector

(si ∈ [0, 1]NE , NE is the number of excitatory neurons) per applied input (i). The

collection of all the state vectors were then used to train the classifier using gradient

descent error backpropagation algorithm [145], similar to [29]. By doing this, we do

discard some temporal information. However, since we do not use “anytime-speech-

recognition” (a liquid with a classifier which is capable of recognizing a speech input,

before the entire temporal signal is applied to the liquid) proposed in [146], the above

classification method is sufficient to achieve reasonable accuracy (as per the accuracy

values reported in other LSM works) for the applications we are considering in this

work.
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Table 4.2.
Spiking neuron parameters of the liquid state machine

Parameter name Parameter value

Excitatory weight decay time constant, tge 1ms

Inhibitory weight decay time constant, tgi 2ms

Threshold Inhibitory, threshi −40mV

Threshold Excitatory, threshe −52mV

Inhibitory rest potential, vrest,i −60mV

Excitatory rest potential, vrest,e −65mV

4.2 Ensemble approach for LSMs

In this section, we explain our proposed ensemble of liquids approach, which

improves the scalability of LSMs. The proposed approach is different from the en-

semble works available in literature on a variety of network types (feed-forward fully

connected spiking and analog neural networks), where multiple classified outputs of

independently trained networks are combined together to increase the probability of

correct classification [147, 148]. In this work, we analyze the impact of dividing a

reservoir, such that all the resultant small reservoirs can potentially be evaluated

in parallel, for an applied input. As explained in the previous section, the typical

structure of an LSM has an input, a liquid where neurons are sparsely interlinked,

and a readout trained using supervised learning methods (Figure 4.1(b)). In our en-

semble approach, the same number of liquid neurons (Ntot) is divided to create an

Nens number of smaller liquids, as shown in Figure 4.2. While dividing the liquid,

the number of excitatory neurons (N i
E) to inhibitory neurons (N i

I) ratio in the ith

(i = 0, 1, ..., Nens) liquid is maintained at 4 : 1. The percentage connectivity is also

adjusted to suit the new reduced number of neurons ( Ntot
Nens

) in a liquid. This is done by
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Fig. 4.2. The structure of the ensemble approach. The liquid in the
standard LSM is split up to create an ensemble of smaller liquids. The
input is sparsely connected to all the liquids. The output of all the liquids
are concatenated to form one large liquid state vector, and connected to
a single readout that is trained using supervised learning methods.

first creating a standard LSM explained in the previous section with Ntot
Nens

number of

neurons and adjusting all the percentage connectivity values till we get a reasonable

accuracy. Then the input to liquid percentage connectivity (PIN→E) was exhaustively

changed until the accuracy peaks for a given application, which is then used for all

the experiments reported in this work.
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Each small liquid has its own liquid state vector, which is the normalized spike

count of all the excitatory neurons in the respective liquid within a duration of T , as

explained in the previous section. All the state vectors produced by each individual

liquid in the ensemble are concatenated to form one large state vector per input.

Note that the length of the concatenated state vectors are the same for both the

single liquid case (baseline) and for the ensemble of liquids, since the total number of

neurons are held constant for a fair comparison. The concatenated state vector is used

to train a single readout using gradient descent backpropagation. This division of one

large liquid to form an ensemble of liquids enhances class discrimination associated

with LSMs as elaborated in the next section.

4.3 Properties of LSMs

Two macroscopic properties of an LSM, namely, Separation Property (SP) and

Approximation Property (AP), can be used to quantify a liquid’s ability to provide

an improved projection of the input data. With respect to classification applications,

SP gives a measure of the liquid’s ability to separate input instances that belong

to different classes. AP, on the other hand, gives a measure of the closeness of the

liquid’s representation of two inputs that belong to the same class.

Several methods of quantifying the SP and AP as a measure of the computational

power (kernel quality) of an LSM are suggested in [16,149]. Two methods of measuring

the SP are pairwise separation property and linear separation property. The pairwise

separation property is the distance between two continuous time states of the liquid

(xu(t) and xv(t)), resulting from two different input spike trains (u(t) and v(t)). Here

the continuous time states x(t) are defined as the vector of output values of linear

filters with exponential decay (with time constant 30ms [16]) at time t. The distance

can be calculated by the Euclidean norm between xu(tn) and xv(tn) at sample point

tn. The final pairwise separation property can be evaluated by obtaining the average

across all the sampled instances (at tn), as explained in the following equation
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SPpw =
1

Nsamples

Nsamples∑
n=1(0<tn<T )

||xu(tn)− xv(tn)|| (4.3)

where Nsamples is the number of sample points. The pairwise separation property

(SPpw) can be used as a measure of the kernel quality for two given inputs. However,

most real life applications deal with more than two input spike trains. To address

this, linear separation property is proposed as a more suitable quantitative measure

to evaluate the computational power of a liquid in an LSM. The linear separation

property (SPlin) is the rank of the N ×m matrix Ms, which contains the continuous

time states (xu1(t0), ..., xum(t0)) of the liquid as its columns. The continuous time

state xui(t0) is the liquid response to the input ui (these inputs are from the training

set), sampled at t = t0. If the rank of the matrix is m, it guarantees that any given

assignment of target outputs yi ∈ R at time t0 can be attained by means of a linear

readout [149]. The rank of Ms is the degree of freedom the linear readout has, when

mapping xui to yi. Even though the rank is < m, it can still be used as a measure of

kernel quality of the LSM [149].

Ms =
[
xu1(t0), ..., xui(t0), ..., xum(t0)

]
(4.4)

SPlin = rank
(
Ms

)
The AP of the LSM can also be measured by the aforementioned rank concept as

shown in [149, 150]. Instead of using significantly different examples in the training

set, now the continuous time states xuji
(t0) of the liquid are measured by feeding

jittered versions of ui (uji ) to the liquid. The rank of the matrix Ma that has m such

continuous time states xuj1
(t0), ..., xujm(t0) sampled at t0 as its columns, is evaluated

as a measure of the generalization capability of the liquid for unseen inputs. Unlike

SPlin, lower rank of Ma suggests better generalization.

Both AP and SP are important in measuring the computational quality of a liquid.

For example, very high quantitative measure for SP and very low measure for AP is

ideal. If one liquid has very high SP and a mediocre AP, it is hard to decide whether
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the particular liquid is better than another liquid with mediocre SP and a very small

AP. Therefore, in order to compare the quality of different liquid configurations, a

combined measure that involves both SP and AP is required. To address this, we

use some insights from Fisher’s Linear Discriminant Analysis (LDA) [135, 136, 151].

LDA is utilized to find a linear combination (f(.)) of d features that characterizes or

separates two or more classes (ωi) of objects. The linear combination as shown in the

equation below can be used as a classifier, or as a dimensionality reduction method

before classification.

yi = f(xi) = Wxi (4.5)

where yi is the output vector (Y = [y1, ..., yn] ∈ RL×n), that corresponds to the set

of input features, xi (X = [x1, ..., xn] ∈ Rd×n, each feature xi is a column vector),

W ∈ RL×d is the weight matrix that describes the linear relationship, L is the number

of classes, and n is the number of data samples. The projection from LDA maximizes

the separation of instances from different classes, and minimizes the dispersion of

data from the same class, simultaneously, to achieve maximum class discrimination.

The approximation capability is quantified by the matrix Sw called the ‘within class

scatter matrix’ that is specified by

Sw =
L∑
i=1

P (ωi)Σ̂i (4.6)

where P (ωi) is the probability of class ωi, Σ̂i is the sample covariance matrix [152]

for class ωi. The separation capability is given by the ‘between class scatter matrix’

(Sb) that is described by

Sb =
L∑
i=1

P (ωi)(µi − µg)(µi − µg)T (4.7)

where µi is the sample mean vector (centroid) of class ωi, and µg is the global sample

mean vector. In classical LDA, the optimum weight matrix can be found by maxi-

mizing the objective function called Fisher’s Discriminant Ratio (FDR) [136] that is

computed as

FDR = tr(S−1w Sb) (4.8)
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where tr(.) is the trace operation. For this work, the capability of the liquid to

produce a good representation of the input data is quantified by a variant of the

above ratio. The FDR is applied on the states of the liquid. However, when the

data dimensionality (number of liquid neurons) is large in comparison to the sample

size (n), the aforementioned scatter matrices tend to become singular [153] and the

classical LDA cannot be applied. Hence, we use a modified discriminant ratio (DR)

given by the following function:

DR = tr(Sb)tr(Sw)−1 (4.9)

Note that the trace of Sw measures the closeness of each liquid state to its corre-

sponding class mean as illustrated in Figure 4.3(a), and the trace of Sb measures

the distance between each class centroid and the global centroid in multidimensional

space as depicted in Figure 4.3(b). High tr(Sb) suggests high SP (hence better) and

smaller tr(Sw) suggests better AP.

4.4 Experimental setup

The performance of the ensemble of liquids approach is compared against a single

liquid baseline detailed in section 4.1, with the aid of two spatial image recognition

applications and two spatio-temporal speech recognition applications. The liquid was

modeled in BRIAN [154], a Python-based spiking neural network simulator, and the

spiking activities of the neurons were recorded to calculate the liquid state vectors.

The state vectors corresponding to the training input instances of each data set were

then used to train a single fully-connected classification layer using the stochastic gra-

dient descent algorithm [155,156]. The accuracy of the trained network was calculated

on the testing data sets.

4.4.1 Data sets used for illustration

The two spatio-temporal (speech) data sets used in this work are:



101

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

𝑙1

𝑙2

𝑙3

𝑎1 =𝑙𝑖,1

𝑎2 = 𝑙𝑖,2

𝑎3 =𝑙𝑖,3

𝑎1 + 𝑎2 + 𝑎3 = 𝑡𝑟𝑎𝑐𝑒 𝑆𝑤 𝑙1 + 𝑙2 + 𝑙3 = 𝑡𝑟𝑎𝑐𝑒{𝑆𝑏}

𝜇𝑔𝜇1

𝜇2

𝜇3

(a) (b)

𝑙𝑖,1

𝑙𝑖,3

𝑙𝑖,2

Fig. 4.3. The graphical representation of the components of the discrimi-
nant ratio (DR) for a set of two dimensional data points that belongs to
three classes. (a) tr(Sw) gives a measure of the addition of all the squared
distances from the class means to each data point. This must be lower
to have better approximation property. Here li,j denotes the squared dis-
tance between the ith data point in class j to the class centroid, µj (b)
tr{Sb} gives a measure of the addition of the squared distances between
the global mean and each class mean. High value for tr{Sb} signals higher
separation property. Here li denotes the squared distance from the global
mean µg to the centroid of class i.

1. Digit sub-vocabulary of the TI46 speech corpus [157] (TI-10)

2. TI 26-word “alphabet set”; a sub-vocabulary in the TI46 speech corpus [157]

(TI-alpha)

TI-10 consists of utterances of the words ‘zero’ through ‘nine’ (10 classes) by 16

speakers. There are 1594 instances in the training data set and 2542 instances in the

testing data set. TI-alpha, on the other hand, has utterances of the words ‘A’ through

‘Z’ (26 classes). There are 4142 and 6628 instances in the training and testing data

sets, respectively. For the spatial data sets (images), we used the handwritten digits
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from the MNIST [158] data set containing 60, 000 images of digits 0 through 9 in the

training set and 10, 000 images in the testing set. In addition, we also created an

extended MNIST data set that contains all the images from the original MNIST data

set, and the same set of images transformed by rotation, shifting, and noise injection.

It has 240, 000 images in the training data set and 40, 000 images in the testing data

set.

4.4.2 Input spike generation

The first step is converting the images or the analog speech signals to spike trains

to be applied as inputs to the liquid. For spatial data (images), there are p number

of input spike trains fed in to the liquid, with p being the number of pixels in an

image. The mean firing rate of each spike train is modulated depending upon the

corresponding pixel intensity. Each input image pixel (ith pixel) is mapped to a

Poisson distributed spike train with the mean firing rate (ri for the ith image pixel)

proportional to the corresponding pixel intensity (Ii) that is specified by

ri =
Scount,i
T

∝
(
Ii

255

)
(4.10)

where Scount,i is the number of spikes generated by the ith input neuron within a

time period of T . For example, mean firing rate in this work for a white pixel (pixel

intensity Ii = 255) is selected as 63.75Hz. For a black pixel (pixel intensity Ii = 0),

the mean firing rate is 0Hz. Each image is presented to the liquid for a duration of

300ms (= T ).

For the speech data, the audio samples available in wave format were preprocessed

based on Lyon’s Passive Ear model [159] of the human cochlea, using Slaney’s MAT-

LAB auditory toolbox [160]. The model was used to convert each audio sample to

temporal variation in the intensity of 39 frequency channels. These intensity values

at each time step j (Ii,j) were then normalized and used as the instantaneous firing

probability of an input neuron i (i = {1, 2, ..., 39}). The time step in this work is

0.5ms.
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4.5 The kernel quality improvement due to the ensemble approach

In this section, we will explore the effects of dividing a large liquid, by means

of standard measures for SP and AP explained in section 4.3. We involve the same

general tasks suggested in [149,150], to compare the SP and AP. In order to measure

the pointwise separation property, we generated 100 input spike trains u(t) and v(t)

with different distances dinu,v between them. The distance between two input spike

trains is evaluated according to the methodology explained in [149]. The two spike

trains were first filtered with a Gaussian kernel e−(t/τin)
2
, and then the Euclidean

distance between them were measured. τin was selected as 5ms [16].

dinu,v =
||u(t) ∗ e−(t/τin)2 − v(t) ∗ e−(t/τin)2||

T
(4.11)

The same 100 u(t) and v(t) signals were fed in to LSMs with different number

of liquids (Nens = 1, 2, 4, 8, 10), and the pairwise separation property was calculated

according to Equation 4.3. The average SPpw was evaluated over 10 different weight

initialization trials and the results are shown in Figure 4.4. As the figure illustrates,

the SPpw improves with the distance dinu,v between two inputs, and also with the

number of liquids in the LSM.

For the linear separation property, we applied 400 randomly generated input sig-

nals ui(t) to LSMs with different number of liquids (Nens = 1, 2, 4, 8, 10). The resul-

tant states (xui(t0)) were used to create the matrix Ms explained in Equation 4.4. The

average SPlin (= rank(Ms) = rs) was evaluated among five different sets of inputs

and five different weight initializations (i.e., 25 trials altogether) and the results are

finalized in Figure 4.5. As the figure illustrates, the SPlin increases with the number

of liquids. However, the rate of increment of SPlin reduces with the increasing number

of liquids.

For the generalization property, we conducted same above experiment with a

different state matrix Ma. To create this matrix, we involved 400 jittered versions

of the input signal ui(t), (uji (t)) as explained in section 4.3. In order to create a



104

u
v

u
v

𝑑
𝑢
,𝑣

𝑖𝑛
=
0
.2

Pa
ir

w
is

e
 S

e
p

ar
at

io
n

Pa
ir

w
is

e
 S

e
p

ar
at

io
n

Distance between u, v (𝑑𝑢,𝑣
𝑖𝑛 )

𝑑
𝑢
,𝑣

𝑖𝑛
=
0
.4

Number of liquids

𝑑𝑢,𝑣
𝑖𝑛

200 × 10
250 × 8
500 × 4
1000 × 2
2000 × 1

(a) (b)

(c) (d)

Time (s) Time (s)

Fig. 4.4. The effect of dividing a large liquid on SPpw, at different distances
dinu,v between inputs. Two input spike trains u and v are illustrated at
(a)dinu,v = 0.2 and (b)dinu,v = 0.4. (c) The variation of pairwise separation
with the distances between inputs, at different number of liquids (d) The
variation of pairwise separation with the number of liquids, at different
input distances dinu,v

jittered version of ui(t), we shifted the spike times by a small delay ∆t taken from

a Gaussian distribution as explained in [16]. The average rank of the matrix Ma

is shown in Figure 4.5. A lower rank of Ma (ra) suggests better approximation of

intra-class input examples. According to the figure, ra increases with the number of

liquids. This signals the liquid losing its ability to generalize intra-class inputs.
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𝑟𝑠 = 𝑟𝑎𝑛𝑘 𝑀𝑠

𝑟𝑎 = 𝑟𝑎𝑛𝑘 𝑀𝑎

Fig. 4.5. The average rank of state matrix Ms that indicates the inter-
class separability (in red) and the average rank of the matrix Ma which
is an indication of the intra-class generalization capability (in blue)

We observed that the SPpw improves by 3.06 in the 10-liquid ensemble approach,

when comparing with the single liquid baseline. The SPlin improvement is 1.26×.

For a similar set of experiments (for Ntot = 135), the authors in [150] explored the

kernel quality of an LSM of which the reservoir connections were trained using a

structural plasticity rule [161]. The reported improvement in SPpw is 1.36×, whereas

the improvement in SPlin is 2.05× when compared with a randomly generated tra-

ditional LSM. It is noteworthy that when training using structural plasticity, the

inter-class separation capability can be improved, with respect to a traditional liquid

with random connections. Without involving such complex learning techniques, one

can obtain improved separation by simply dividing a liquid as shown in our work.

However, note that such reservoir connection learning methods can simultaneously

preserve the ability of the LSM to approximate intra-class examples, which is not

attainable by the ensemble approach, at higher number of liquids. As explained in

section 4.3, the ability of a liquid to produce a better representation of an input is
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a measure of both SP and AP. In the next section, we will explore this combined

measure of SP and AP defined as DR in section 4.3, on real world spatio-temporal

data classification tasks.

4.6 Impact of the ensemble approach on accuracy of different applications

Using the experimental setup explained in the previous section 4.4, we initially

simulated our baseline single liquid LSM (section 4.1) for the four data sets. We

used 500, 2000, 1000, 1000 neurons in total within the liquid for the TI-10, TI-alpha,
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Fig. 4.6. The average (over five trials) discriminant ratio (DR) trends
with different number of liquids in an ensemble for two speech recognition
tasks; (a) TI-alpha dataset, (b) TI-10 dataset, and two image recognition
tasks; (c) standard MNIST dataset, (d) extended MNIST dataset. The
total number of neurons in each ensemble of liquids were kept the same.
Note that all the DR trends increase with the number of liquids, and
saturates after a certain point, that depends on the application



107

83

84

85

86

87

88

89

90

0 2 4 6 8 10 12

A
cc

u
ra

cy
 %

Number of liquids

Extended MNIST dataset

91

91.5

92

92.5

93

93.5

94

94.5

95

95.5

96

0 2 4 6 8 10 12

A
cc

u
ra

cy
 %

Number of liquids

Standard MNIST dataset

76

77

78

79

80

81

82

83

84

85

86

0 2 4 6 8 10 12

A
cc

u
ra

cy
 %

Number of liquids

TI-Alpha speech dataset

94

94.5

95

95.5

96

96.5

97

97.5

98

0 2 4 6 8 10 12

A
cc

u
ra

cy
 %

Number of liquids

TI-10 Digit speech dataset

(a) (b)

(c) (d)

𝑁𝑒𝑛𝑠,𝑜𝑝𝑡 𝑁𝑒𝑛𝑠,𝑜𝑝𝑡

𝑁𝑒𝑛𝑠,𝑜𝑝𝑡 𝑁𝑒𝑛𝑠,𝑜𝑝𝑡

Fig. 4.7. The average (over five trials) accuracy (percentage) trends with
different number of liquids in an ensemble, for two speech recognition
tasks; (a) TI-alpha test dataset, (b) TI-10 test dataset, and two image
recognition tasks; (c) standard MNIST test dataset, (d) extended MNIST
test dataset. The total number of neurons in each ensemble of liquids
were kept the same. Note that all the accuracy trends peak at a certain
point, that depends on the application

standard MNIST, and extended MNIST pattern recognition tasks, respectively. We

refined the percentage connectivity for each task as shown in Table 4.1. The classifier

was trained using the liquid states corresponding to the training examples, and the

classification accuracy of the trained network was obtained for unseen instances from

the test data set. For each application, we then created an ensemble of liquids with

Ntot
Nens

number of neurons in each small liquid. For all the four applications, we evaluated

the SP and AP for different number of liquids in the ensemble (Nens = 1, 2, 4, 5, 8, 10)

and quantified how good is the input representation of the ensemble of liquids using
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DR (explained in section 4.3). Figure 4.6 shows that the DR increases up to a

certain number of liquids in the ensemble and then saturates for the four different

applications we have considered. This signals that the ensemble of liquids, in principle,

gives a better representation of the input with increasing number of liquids until

a certain point. In order to verify whether this improvement in the DR actually

implies an improvement in classification accuracy, we evaluated the LSM accuracy for

different number of liquids (Nens = 1, 2, 4, 5, 8, 10) for the four different classification

applications. Figure 4.7 shows that the accuracy indeed improves with the number of

liquids until a certain point. Let us denote this point as the ‘peak accuracy point’ and

the corresponding number of liquids for that point as the ‘optimum number of liquids’

(Nens,opt). We noticed that the Nens,opt is a function of the application, and that

increasing Nens beyond Nens,opt actually results in accuracy loss. When comparing

Figure 4.6 and Figure 4.7, it is evident that the point at which the DR saturates is

the same as Nens,opt. This explains that dividing a large liquid into multiple smaller

liquids enhances the class discrimination capability of the liquid, leading to improved

classification accuracy. However, note that after the Nens,opt point, the DR saturates

whereas the accuracy degrades. The DR does not offer a direct mapping of the

accuracy of an LSM. However, it could still be utilized as a measure of identifying

the point at which the accuracy starts to drop (Nens,opt). This is the same point at

which the DR stops improving.

Figure 4.8 plots the variation of the individual DR components; separation
(
SP =

tr(Sb)
)

and approximation
(
AP = tr(Sw)

)
with the number of liquids for the TI-

alpha speech recognition task. Figure 4.8 shows that SP improves continuously with

the number of liquids. Improved separation suggests larger dispersion among the

centroids of the liquid states corresponding to instances from different classes, which

renders the input representations provided by the liquid easier to classify. This is

illustrated in the cartoon in Figure 4.9(a) for a set of two-dimensional data points from

two classes, wherein higher SP while maintaining the same AP results in enhanced

class discrimination capability. At the same time, Figure 4.8 indicates that AP also
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Fig. 4.8. The trends of different measures associated with LSMs, with the
increasing number of liquids. (a) Accuracy, (b) Approximation property
(AP), (c) Separation property (SP) and (d) Discriminant ratio (DR).
The LSM is trained for TI-alpha speech recognition application. Both AP
and SP continuously increases with the number of liquids. Note that the
increment in AP is more significant than that of SP for larger number of
liquids.

increases with the number of liquids, implying that larger number of liquids leads

to higher dispersion between projected inputs from the same class. Higher AP for a

given SP is not desirable since it could potentially lead to overlap among instances

belonging to different classes as depicted in Figure 4.9(b), thereby degrading the

class discrimination capability. Since both SP and AP increases, the ratio DR gives

a better measure about the overall effect of the proposed ensemble approach on the

classification accuracy of the LSM rather than the individual components per se. As

shown in Figure 4.8, the DR increases until a certain number of liquids, signaling
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SP ↑, AP constant SP constant,  AP ↑
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Separation
improvement

>
Approximation

degradation

Separation
improvement

<
Approximation

degradation

Fig. 4.9. A cartoon that shows the distribution of two dimensional data
points that belong to two classes under different conditions. (a) A case
with increased SP while maintaining the same AP. (b) A case where the
AP is increased while maintaining the same SP. Note that the class bound-
aries can get overlapped leading to classification errors. Hence, increased
AP is not desirable. (c) and (d) shows two scenarios where both SP and
AP increased from the baseline distribution of data points (figure in the
middle). (c) The improvement in SP is larger than the degradation in
AP. (d) The improvement in SP is not sufficient to compensate for the
AP degradation, leading to overlapped class boundaries

the dominance of the improvement in SP over the degradation in AP as graphically

illustrated in Figure 4.9(c). In contrast, as the number of liquids is increased beyond

Nens,opt, DR saturates since the increment in SP is no longer sufficient to compensate

for the degradation in AP as shown in Figure 4.8. When the dispersion between

classes (due to increment in SP) is not sufficient to compensate for the dispersion

occurring for instances within the same class (due to AP degradation), there can be
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Fig. 4.10. The distribution of the liquid state vectors, as a projection to
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liquids. The liquid state vectors (represented as dots) correspond to three
classes in the MNIST image data set. Each class has randomly picked 1000
liquid state vectors. Distributions related to point 3 and 4 show less
overlapping between classes, and the data points are more concentrated at
the class mean points in contrast to 6 , which has significant overlapping
that caused the accuracy degradation.

overlaps among class boundaries as depicted in Figure 4.9(d), leading to accuracy loss

as experimentally validated in Figure 4.7 across different applications.
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In order to graphically view the variation in SP and AP with the number of

liquids for the applications considered in this work, we used Principal Component

Analysis (PCA) to plot the high-dimensional liquid states in a low-dimensional space.

Generally, the first few principal components preserves the most variance in a given

high-dimensional data set. Hence, the same object in multi-dimensional space can

be visualized in low-dimensional space with insignificant changes. To create such a

low-dimensional projection of the liquid state vectors for different input patterns, we

reduced their dimension using PCA and plotted the two most significant Principal

Components (PCs) corresponding to the two largest eigenvalues. Figure 4.10 plots

the 800-dimensional liquid state vectors, projected to the two-dimensional space using

the first two PCs, for 1000 randomly picked input patterns from three classes in the

MNIST data set. Figure 4.10 clearly illustrates why the accuracy improves till the

Nens,opt point and degrades beyond that as explained below. The single liquid case

shows concentrated (low AP), but overlapped data (low SP). This is where the AP is

the lowest due to the concentrated data points. As the number of liquids increases,

the classes become clearly separated. Note that the points belonging to the same

class also moves away from their respective centroids due to the increased AP. This

ultimately results in the aforementioned overlapping between the classes for number

of liquids larger than Nens,opt, which gives rise to more misclassifications.

4.7 Benefits of the ensemble approach

The ensemble of liquids approach creates smaller liquids where the dynamics of

one network does not affect another. When evaluating the spike propagation within

the liquids, these smaller liquids can be run independently and in parallel. Since

the evaluation time is a higher order polynomial function of the number of neurons,

computing few smaller liquids in parallel instead of computing one large liquid is

beneficial in terms of reducing the inference time. Note that the evaluation of a large

liquid can also be parallelized. The liquid dynamics vary temporally, and for digital
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simulations, it can be divided in to multiple time steps. Each evaluated neuron state

in the liquid at one time step is temporally correlated to that of the next time step.

Therefore, the liquid evaluation process cannot be temporally divided for parallelizing

the operation. Furthermore, since all the neurons are connected to each other (with a

given sparsity), the dynamics of one neuron is dependent upon that of other neurons

connected to it. Therefore, ‘fully independent’ simulations are also not possible at the

neuron level. However, the matrix-vector manipulations involved in each time step

can be parallelized. Simply put, in finding the pre-synaptic currents of the neurons,

the matrix-vector multiplication between the spiking activity and the weight matrix

must be evaluated as shown below (with respect to excitatory neurons for example).

∆ge(ti) = WS(ti) (4.12)

where ∆ge(ti) is the instantaneous jump of conductance at time ti (refer to Equa-

tion 4.2 ), S(ti) is the spiking activity vector of N number of neurons in the liquid

at time ti, and W ∈ RN×N is the connection matrix that defines the liquid. Con-

sider dividing the above process in to multiple processing cores. The division of the

operation in to two cores using row-wise striped matrix decomposition requires the

matrix W to be divided in to two parts (Figure 4.11(a)). During each simulation time

step (ti), each core evaluates membrane potentials S1(ti+1) =
[
s1(ti+1), ..., sN/2(ti+1)

]
and S2(ti+1) =

[
sN/2+1(ti+1), ..., sN(ti+1)

]
. For the next time step, these S1 and S2

must be concatenated and requires communication between cores. In contrast, a con-

catenation is not required until the end of the total simulation duration (T ) in our

ensemble approach (Figure 4.11 (b)). Due to the lack of communication overhead

between processors, the ensemble approach is faster than a parallelized version of the

single liquid baseline among Nens number of processors. In fact, due to the aforemen-

tioned communication overheads, efficient parallel processing can be hindered even

in Graphical processing units (GPUs) [162]. However, in any method of evaluating

the liquid dynamics, note that the ensemble approach has less number of connections

than a single liquid baseline. Therefore, the ensemble approach has reduced amount



114

𝑡1

𝑡2𝑡1 𝑡𝑛−1

𝑊 𝑆(𝑡1)

×

×

×

=

=

𝑡2

×

×

=

=

×

×

×

×

×

×

𝑆1(𝑡2)

𝑆2(𝑡2)

𝑆(𝑡2)

𝑆1(𝑡3)

𝑆2(𝑡3)

𝑆(𝑡3)

𝑊1

𝑊2

𝑊1

𝑊2

𝑊1

𝑊2

𝑆1(𝑡1)

𝑆2(𝑡1)

𝑆1(𝑡2)

𝑆2(𝑡2)

𝑆1(𝑡2)

𝑆2(𝑡2)

𝑆1(𝑡3)

𝑆2(𝑡3)

𝑆1(𝑡𝑛−1)

𝑆2(𝑡𝑛−1)

𝑆1(𝑡𝑛)

𝑆2(𝑡𝑛)

𝑊1

𝑊2

𝑊1

𝑊2

𝑆(𝑡1)

𝑆(𝑡1)

𝑆(𝑡2)

𝑆(𝑡2)

(a)

(b)

Fig. 4.11. (a) The division of matrix-vector multiplication using row-
wise striped matrix decomposition, for the single liquid baseline LSM.
Note that during each time step, the generated S1 and S2 vectors need
to be concatenated to form the S vector (represents the spiking activty
of the liquid), which requires communication between cores. (b) The
“embarrassingly parallel” nature, and the reduced amount of operations
in the ensemble approach allows two small liquids to run in parallel as two
independent tasks, until the end of the last simulation time step tn.

of computation leading to lower evaluation time. Different studies have shown de-

signing hardware accelerators for spiking neural network platforms [163–165]. In the

context of reducing the design complexity, above methods could potentially benefit

from the low connection complexity, and “embarrassingly parallel” nature [166] of

our ensemble approach.
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The inference time is the addition of the liquid evaluation time and the classi-

fier evaluation time. The liquid evaluation time was calculated by giving 100 input

instances to the LSM model solver and estimating the average liquid computation

time per input. The classifier evaluation time is significantly lower than the liquid

computation time (∼ ×10). Note that the classifier training time is similar in the

baseline (single liquid LSM) and the ensemble approach, since there are equal number

of neurons in the liquid and the number of trained weights are the same.

Once an LSM is trained, the connections within the liquid and the classifier weights

must be stored. LSMs with large liquids require more space. In the ensemble ap-

proach, the number of connections within the liquid are significantly lower than the

single liquid baseline. For example, assume dividing a liquid with Ntot number of

neurons in to Nens number of smaller liquids with Ntot
Nens

amount of neurons in each

of them. The number of connections available within the liquid for the single liq-

uid baseline is ∼ N2
tot whereas the number of connections in the multi-liquid case

is ∼ ( Ntot
Nens

)2Nens =
N2
tot

Nens
. This shows that the number of connections reduces by a

factor of Nens when dividing a large liquid into Nens smaller liquids, given that the

percentage connectivity stays the same. Figure 4.12(a) and Figure 4.12(b) illustrate

how the memory requirement varies for different number of liquids for the MNIST

image recognition and TI-alpha speech recognition applications, respectively. When

the optimum accuracy point for the ensemble approach is considered, we witnessed

87% reduction in the amount of memory, 55% reduction in inference time, and a

7.3% improvement in accuracy simultaneously, for the TI-alpha speech recognition

application. For the MNIST handwritten digit recognition application, we witnessed

78% reduction in the amount of memory, 72% reduction in the inference time, and

3.9% improvement in classification accuracy.
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Fig. 4.12. The total memory reduction (%), inference time reduction (%)
with respect to the baseline, and accuracy for different number of liquids
in the ensemble. Two applications were considered; (a) temporal data
classification problem (TI-alpha) (b) spatial data classification problem
(MNIST).

4.8 Conventional methods of improving the accuracy versus the ensemble

approach

The simple structure and training of LSMs, come with an accuracy trade-off, when

compared with other non-reservoir computing techniques such as LSTM networks

[167]. Different mechanisms have been studied in the literature such as training

the connections in the reservoir [134], using expensive learning rules (for example,

backpropagation through time [167]), and selecting complex architectures [28], in

order to improve the accuracy of liquid state machines. However, these methods

will increase the complexity of the LSM resulting in poor performance with respect

to latency, despite the higher accuracy. Furthermore, a liquid can be considered as

a universal computational medium. A single liquid with multiple trained readouts

can be used for multiple applications [168]. Above methods such as training the

connections within the liquid will make the LSM restricted to one application. In

this section, we will explain two basic methods of improving accuracy, while leaving
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Fig. 4.13. (a) The accuracy of an LSM with a single liquid, measured
at different number of neurons, for a speech recognition application (TI-
alpha). (b) The average liquid evaluation time of an LSM measured at
different number of neurons

the structural and training simplicity of LSMs intact, and compare the results with

the ensemble approach.

4.8.1 Increasing the number of neurons in the liquid

As explained in [143], sufficiently large and complex liquids possess large com-

putational power. Increased number of neurons in the liquid will result in increased

number of variables for the classifier. Based on ‘multiple linear regression’ methods of

predicting a function, increased number of predictor variables (in this case the num-

ber of neurons), will result in better prediction [126, 169]. Therefore, increasing the

number of neurons will improve the prediction accuracy of the LSM. Note however

that using enormous number of predictor variables/neurons will make the network

suffer from overfitting. Figure 4.13(a) shows how the accuracy of an LSM varies with

the number of neurons in the reservoir for the TI-alpha speech recognition task. As

Figure 4.13(a) illustrates, the accuracy initially increases with the number of neu-
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rons and then saturates after a certain point. Increased number of neurons implies

increased connections within the liquid, given that the percentage connectivity stays

the same. The number of connections within the liquid shows a square relationship

∼ νN2
tot with the number of neurons Ntot, where ν is the global percentage connec-

tivity. Due to this, evaluation time of the liquid increases exponentially as shown in

Figure 4.13(b). Therefore, when the number of neurons are already high, the accuracy

improvement we obtain by further increasing the number of neurons is not worth the

resultant performance and storage requirement penalty. Furthermore, the accuracy

saturates around ∼ 79.2% for the TI-alpha application (for Ntot ≥ 800). Note that

we have also adjusted the percentage connectivity at each point in the graph, to get

the best accuracy for a given number of neurons. However, the ensemble approach

for Ntot = 1000 and Nens = 4 gives ∼ 83% accuracy, which is larger than the accuracy

achievable by increasing the number of neurons in a single liquid.

4.8.2 Percentage Connectivity within the liquid

The percentage connectivity within the LSM is an important measure of the spik-

ing activity of a liquid. The spiking activity of the liquid could show two negative

behaviors which could drastically reduce the accuracy of the network, viz. patho-

logical synchrony and over-stratification [170]. Pathological synchrony occurs when

the neurons get caught in infinite positive feedback loops resulting in heavy contin-

uous spiking activity. Over-stratification can be defined as the opposite extreme of

the above. Here, the neurons do not propagate an input signal properly, resulting

in reduced spiking activity. Both the above behaviors result in similar outcomes for

input instances of different classes (hence poor separation between classes), mak-

ing classification tasks hard. We noticed that lower connectivity (PIn→E) results in

over-stratification (Figure 4.14(a)) whereas higher connectivity results in pathological

synchrony (Figure 4.14(b)).
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Fig. 4.14. Illustration of two negative behaviors of an LSM at different
input to liquid percentage connectivity values. Each raster plot shows
the spiking activity of the liquid neurons over time. The application is
a speech recognition task (TI-alpha). (a) Over-stratification at low per-
centage connectivity. (b) Pathological synchrony at higher percentage
connectivity. (c) An instance that shows clear differences between spiking
activity of the liquid neurons in contrast to (a) and (b)

We changed the percentage connectivity between different combinations of pre-

and post-neuron types (E − E, I − E,E − I) till we obtain good accuracy avoiding

pathological synchrony and over-stratification (Figure 4.14 (c)). After that, we re-

fined the input-liquid connectivity for further accuracy improvement. Figure 4.15(a)

shows how the accuracy changes with the percentage connectivity of the input to

liquid connections. Liquids with different number of neurons have different optimum

connectivity values as shown in Figure 4.15(b). The application is recognizing spoken

letters in TI-alpha speech corpus. The maximum accuracy achievable by changing

the percentage connectivity (PIN→E) for Ntot = 1000 is ∼ 79% (refer to the green

colored trend in Figure 4.15(a)). This is smaller than that achievable (∼ 83%) by our

ensemble approach with Ntot = 1000 and Nens = 4.

Furthermore, we simultaneously changed the PE→E and PIN→E percentage connec-

tivity values of LSMs with different number of liquids, and evaluated the accuracy.

Four PIN→E values (0.1, 0.2, 0.4, 0.6) and three PE→E values (0.2, 0.4, 0.6) were se-
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Fig. 4.15. (a) The accuracy trend with varying input – liquid percentage
connectivity, for different number of liquid neurons. The experiment is
done on a single liquid LSM conducting a speech classification task (TI-
alpha). (b) The percentage connectivity that gives the best accuracy at
different number of neurons.

lected for the experiment. The summarized results are illustrated in the 3D plot in

Figure 4.16. The color code of the figure gives the accuracy of a particular combina-

tion of connectivity values. Across all LSM configurations with different number of

liquids, we witnessed that higher PIN→E and higher PE→E results in accuracy degra-

dation. Sparser connectivity gives better results. As the figure illustrates, at sparser

connectivity values, a single liquid LSM offers lower accuracy than an LSM with Nens

liquids (refer to the upper left corner of the 3D plots). The ‘maximum capacity’ of

each LSM configuration (for a given number of liquids) is plotted in Figure 4.17(a).

The ‘maximum capacity’ is the best accuracy attainable from a particular liquid con-

figuration, after optimizing the percentage connectivity values (in the selected range).

As Figure 4.17(a) illustrates, maximum accuracy obtained from the single liquid con-

figuration is smaller than that of other configurations. We also plotted the average

accuracy of a given LSM configuration across all percentage connectivity values (Fig-

ure 4.17(b)). The average accuracy to some extent could be thought of as the outcome
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Fig. 4.16. The accuracy of LSMs with Nens = 1, 2, 4, 5, 8, 10 at different
percentage connectivity (PE→E and PIN→E) values, for the TI46-alpha
classification task

one would witness in a given LSM configuration for an arbitrarily selected connec-

tivity value (within the specified sparse connectivity region of the experiment). The

average accuracy of the single liquid LSM configuration is lower than that of multiple

liquids.

In section 4.7, we explored the benefits of the ensemble approach due to reduced

number of connections in the liquid. A single liquid LSM configuration has Nens times

more number of connections as the LSM with Nens number of liquids as explained in

section 4.7. In order to view if a single liquid with sparser connectivity offers better

accuracy than an LSM with Nens number of liquids and higher percentage connec-
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Fig. 4.17. (a)The maximum accuracy among all the LSM configurations
with different PIN→E and PE→E (b)The average accuracy across all the
LSM configurations with different PIN→E and PE→E

tivity, we conducted an experiment. In other words, the goal of the experiment is

to view the accuracy of two LSM configurations with same number of connections.

The dominant component of the number of connections in an LSM is the connections

between the excitatory neurons. Therefore, we varied the PE→E for two LSM con-

figurations (Nens = 1 and Nens = 4) and observed the accuracy for the TI46-alpha

application. Figure 4.18 illustrates that for PE→E < 0.57, the multiple liquid config-

uration (Nens = 4) provides better accuracy, suggesting that the ensemble approach

gives better results even under same number of connections in comparison to the

single liquid baseline. For example, the ensemble approach gives ∼ 83% accuracy at

PE→E = 0.4 and for the same number of connections, (i.e. at PE→E = 0.1), the single

liquid LSM configuration gives lower accuracy (∼ 76%). However, for PE→E > 0.57,

single liquid LSM seems to perform better. Hence we conclude that at higher degrees

of sparsity, the ensemble approach performs better than a single liquid baseline with

the same number of connections.

Apart from the percentage connectivity, different connectivity patterns within the

liquid were also considered in literature. For example, a probabilistic local connectiv-
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Fig. 4.18. The accuracy variation of the single liquid LSM baseline and
ensemble approach (Nens = 4) at different percentage connectivity values
(PE→E). The accuracy of the ensemble approach at PE→E = 0.4 is higher
than the accuracy of the single liquid LSM at PE→E = 0.1. Note that the
number of connections in both the cases considered are the same. The
accuracy was evaluated on the TI46-alpha classification task

ity within the liquid, inspired by the connectivity in biological neurons is suggested

in [143]. As explained in [16], [171], and [172], the further apart two neurons are,

more ‘likely’ it is that they are not connected to each other. The existence of a

connection between two neurons (all the neurons were arranged in a 3D lattice ini-

tially) is hence modeled as a probabilistic function (Pcon) of the Euclidean distance

(D2(a, b)) between neuron a and b. λ is a parameter which controls both the aver-

age number of connections and the average distance between two neurons. C is the

highest probability that two neurons are connected (occurs at λ → ∞). Multiple

values of C (i.e., CE→E, CE→I , CI→E) can be used depending upon the type of pre-

and post-neurons being connected. The probabilistic function Pcon is as described by

the following equation:
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Fig. 4.19. The accuracy varying with λ, for two different sets of C pa-
rameter selections, (a) CE→E = 0.4, CE→I = 0.4, CI→E = 0.5, and (b)
CE→E = 0.8, CE→I = 0.8, CI→E = 1.0. This is a single liquid-LSM, which
classifies speech patterns in the TI-alpha dataset. There are 1008 neurons
in the liquid which are arranged in a 6× 6× 28 sized 3D column.

Pcon = Ce−
D2(a,b)

λ2 (4.13)

Figure 4.19 shows how the accuracy varies with λ for two different sets of C values

in a liquid that has 1008 neurons. The application is recognizing the utterances of the

letters in the English alphabet (TI-alpha). The neurons were arranged in a 3D column

(6×6×28) approximately preserving the dimensional ratios of the neural microcircuit

column proposed in [143]. As Figure 4.19 illustrates, the highest accuracy attained

was ∼ 78%. The accuracy of an LSM (1000 neurons, refined percentage connectivity

values) with randomly pruned connections (without considering the probabilistic local

connectivity model) was 77.6% for the same application.

The ensemble approach, to a certain extent, is similar to the aforementioned

notion of ‘local connectivity’, since we split up a large liquid into multiple smaller

liquids which avoids long connections. In the probabilistic local connectivity model,

the dynamics of each neuron in the liquid are dependent upon that of other neurons,

since they are all directly or indirectly connected. In contrast, the ensemble approach
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Fig. 4.20. The accuracy varying with the number of liquids in the ensemble
approach, for different total number of neurons (Ntot). The LSM classifies
speech data in the TI-alpha dataset.

allows multiple small networks to be evaluated in parallel since they are independent,

making the evaluation time smaller. Furthermore, the accuracy of four liquids with

250 neurons in each is 83%, which is considerably higher than the highest accuracy

attainable (for the ranges of parameters we have considered) through probabilistic

local connectivity (78% for 1008 neurons) model, for the same speech application.

4.9 Limitations of the ensemble approach

In this section, we analyze whether dividing a liquid with any number of neu-

rons (Ntot) would result in similar accuracy improvements. To this effect, we created

ensembles of liquids with different total number of neurons (Ntot). As Figure 4.20

illustrates, liquids with large number of neurons show clear sign of accuracy improve-

ment when divided into smaller liquids. However, when the number of neurons is

smaller, dividing the liquid may result in decreased accuracy. For example, note that
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the accuracy reduces continuously when a liquid with 250 neurons is divided. This re-

sult is similar to the observation in [29], where the authors have shown that the input

and liquid subdivision is beneficial for LSMs with large number of neurons. Similarly,

here the ensemble approach makes sense only for LSMs with large number of neurons

in them. In conclusion, we state the following with respect to the applicability of

the ensemble approach for LSMs. In order to improve the accuracy of an LSM, the

number of neurons can be increased. However, beyond a certain point, accuracy does

not improve further. In such a case, the ensemble approach can be utilized to fur-

ther increase the accuracy. Such accuracy improvements are not attainable by means

of other simple methods that preserve the structural and training simplicity of the

standard LSM, such as changing the connectivity.

4.10 Multiple liquid-multiple readouts (MLMR) approach

When moving from the single liquid approach to the ensemble of liquids approach,

any benefit in terms of classifier training time was not observed. This is due to the

fact that the number of total liquid neurons is the same, and we are using a single

classifier. In this section, we analyze, if including a readout at the end of each small

liquid is beneficial than having a single readout for all the liquids. The basic structure

of this multiple liquid-multiple readouts (MLMR) approach is shown in Figure 4.21.

In contrast to our previous approach, this structure could be viewed as a collection

of small LSMs (s-LSMs). Each s-LSM is trained individually, and the final classifica-

tion is done by considering either the maximum outcome, or the majority vote among

all the local classifiers. During training, we do not use all the training data points for

each local s-LSM classifier. Instead, we divide the training space among the ensemble

of s-LSMs based on the following two criteria:

1. Random training space division (RD)

2. Clustered training space division (CD)
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Fig. 4.21. The structure of the multiple liquid-multiple readout (MLMR)
approach. There are multiple small liquids, and individual classifiers at
the end of each liquid. These are defined as small LSMs or s-LSMs. Final
outcome (global output) is calculated by considering the maximum vote
among all the local classified outputs from the s-LSMs (local outputs)

In random training space division (RD) method, we randomly divide the training

data space among the ensemble of s-LSMs, and feed them to obtain the corresponding

liquid state vectors at the output of each liquid. These state vectors were then used

to train the local classifiers attached to each s-LSM in the ensemble using gradient

descent error backpropagation. For example, if there are Nens number of s-LSMs and

Ntrain number of examples in the training set, each s-LSM will be trained with Ntrain
Nens

number of randomly picked training examples. On the other hand, in the clustered

input space division (CD) method, we divide the training instances into certain clus-

ters depending upon their features, (for instance, we have selected ‘original’, ‘rotated’,
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‘shifted’ and ‘noisy’ images from the extended MNIST dataset as clusters) and used

them to train each readout. Here, an s-LSM has specific knowledge about the cluster

of examples that it is trained with, and zero knowledge about other clusters. There-

fore, an s-LSM may not correctly identify an input that belongs to a different cluster,

apart from what it was trained with, leading to large accuracy degradation at the

global classifier. For example, if a rotated image of digit ‘1’ is given as the input, the

s-LSM that was trained with rotated images will correctly recognize the given image.

i.e., the output neuron−1 gives the highest outcome (there are 10 output neurons and

they are indexed as neuron−0 through neuron−9 as shown in Figure 4.22). Other

s-LSMs may not recognize this input correctly, potentially leading to another neuron

apart from neuron−1 to give a high value at the outputs of their corresponding clas-

sifiers. When getting the final outcome using ‘maximum output’ method, the neuron

that gives the highest value over all the s-LSMs may not be neuron−1. Instead, it

could be some different neuron from an s-LSM that was not trained with rotated

images. To address this issue, we use an ‘inhibition’ criterion to suppress the s-LSMs

from giving high outputs for cluster types that they are not trained with. Initially

we divide the training space into clusters along with their standard target vectors

(vectors of which the length is equal to the number of classes L. If the input belongs

to the ith class, then the ith element in the vector will be ‘1’ and the other elements

will be ‘0’. Refer to Figure 4.22). Then, we randomly select 10% of the training

instances from each cluster (foreign instances), and add them to the training space

of all other clusters. The target vectors of the foreign instances are forced to have all

their elements equal to 1/L (L is the number of classes) and we name this target vec-

tor as ‘inhibitory label vector’. This will force each s-LSM outcome to be low, when

the presented input does not belong to the cluster with which the s-LSM was trained.

This method is explained graphically in Figure 4.22, by means of an example.

We used the handwritten digit recognition application with the extended MNIST

data set, to check the accuracy, performance, and training time of the aforementioned

methods. The training data set was divided into 4 clusters; original MNIST images,



129

Original Target 

vectors

Target vectors for 10% 

noisy, shifted, and 

rotated images 

(foreign instances)

Noisy data Rotated data Shifted data

Neuron -0

Neuron -1

Neuron -9

⋮

(a) (b)

(c)

Inputs

Time

Noisy

Shifted

Rotated

Maximum 
vote

Original

Target vectors of the training space of one s-LSM

Fig. 4.22. (a) Target vectors that correspond to images in the extended -
MNIST data set. (b) Examples from the clustered training data space of
the extended MNIST dataset. (c) The clustered training space division
method. Each s-LSM is trained with a particular cluster of images, and
an additional 10% of the images in the other clusters (foreign data). The
target vectors of the foreign data are modified to have each value equal
to 0.1

noisy images, rotated images and shifted images. Total number of neurons were 1000

and each s-LSM has 250 neurons. The connectivity is set as indicated in Table 4.1.

Table 4.3 reports the accuracy of the above explained two training space division

methods (RD and CD) along with the accuracy of the baseline (single liquid with

1000 neurons). The accuracy of the two methods (RD → 82.5% and CD → 83.1%)

are inferior to that of the baseline (86.9%).

When comparing with RD method, CD gives better accuracy for the same number

of neurons. The reason for this can be explained as follows. The clusters in the
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Fig. 4.23. (a) The t-Distributed Stochastic Neighbor Embedding (t-SNE)
of the high dimensional input data points, in 2D space for better visualiza-
tion. The distribution of data points that belong to three clusters (‘Noisy’,
‘Shifted’, and ‘Rotated’) stay spatially separated. (b) The distribution of
data points of digit ‘1’ and digit ‘0’ that belongs to three clusters.

Table 4.3.
Accuracy of different ensemble approaches

Approach (total number of neurons= 1000) Accuracy (%)

Single liquid, single readout (baseline) 86.9

4 ensembles, single readout (MLSR) 89.0

4 ensembles, 4 readouts, (MLMR) random training

space division (RD)

82.5

4 ensembles, 4 readouts, (MLMR) clustered train-

ing space division (CD)

83.1

training dataset can have different overlapping/non-overlapping distributions. For

instance, three clusters (‘noisy’, ‘shifted’, ‘rotated’) in the considered example in
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Fig. 4.24. (a) The graphical representation of the RD method trying
to classify digit ‘0’ and digit ‘1’ that belong to three clusters using a
linear classifier. Note that the digit ‘0’ that belong to the shifted cluster
is misclassified as digit ‘1’. (b)The graphical representation of the CD
method trying to classify digit ‘0’ and digit ‘1’. The particular classifier
shown has learned to correctly classify digit ‘0’ and digit ‘1’ that belong
to ‘shifted’ cluster. Furthermore, it recognizes the data points that belong
to foreign clusters due to the proposed inhibition criterion. The dashed
lines show the classifier decision boundaries.

this work follow three different distributions as shown in Figure 4.23(a). The figure

elaborates the t-Distributed Stochastic Neighbor Embedding (t-SNE) [173] of the

high dimensional images that belong to the aforementioned three clusters, for better

visualization in the lower dimensional space (2D). Due to this separate distributions,

examples that belong to the same class but in different clusters may not spatially

stay together in the higher dimensional space. For example, Figure 4.23(b) shows the

data points that correspond to digit ‘0’ and digit ‘1’ in different clusters, and neither

the data points of digit ‘0’ nor ‘1’ stay together. Let us consider the RD method,

and how it tries to classify the aforementioned digit ‘0’ and digit ‘1’. If there are Ntot

amount of training examples and L classes, the number of examples that belongs to

class i each classifier sees is Nex,i = Ntot
L×Nens . The Nex,i number of examples a classifier
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Fig. 4.25. Normalized total memory requirement, inference time, and
training time of the clustered training space division method (CD), ran-
dom training space division method (RD), and the single liquid baseline.
The results are under iso-accuracy conditions.

in RD method sees belongs to Nens number of clusters and they are distributed all

over as shown in Figure 4.23(b). According to the figure, the two classes are not

linearly separable. Therefore, the RD method leads to more misclassifications as

elaborated in Figure 4.24(a). In contrast, a classifier trained for ‘shifted’ data cluster

in CD method fits to a decision boundary that classifies digit ‘0’ and digit ‘1’ that

onlybelongs to ‘shifted’ data cluster. Owing to the proposed inhibition criterion, the

classifier trained for ‘shifted’ examples in CD tries to put the data points that belong

to other clusters into a single category. As the Figure 4.24(b) illustrates, the classes:

‘digit 0’, ‘digit 1’, and ‘foreign’ are more linearly separable by CD method than the

RD method, and this leads to higher accuracy in RD method.
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Selecting more foreign examples would result in the classifier to concentrate more

on fitting the foreign data into ‘inhibitory label vectors’, instead of classifying data in

the corresponding cluster. Consider adding an xf% of foreign instances per cluster.

This would result in adding
(Nens−1)xf%

(Nens−1)xf%+1
overall percentage of extra data that does

not belong to the cluster to which the classifier must be trained. The training space

of the classifier that must be trained for ‘shifted’ images consists of the following

‘sets’: 1)shifted digit ‘0’, 2) shifted digit ‘1’,..., 10)shifted digit ‘9’, randomly selected

images from 11)‘noisy’ cluster, 12) ‘original’ cluster, 13)‘rotated’ cluster. We selected

a percentage, that will pick approximately equal number of data points from each of

the aforementioned 13 sets. In our particular example, to make ∼ 7.7%(= 100/13) of

the training space to be attached to each of the above ‘sets’, xf% needs to be selected

as 10%. The total percentage of the foreign instances are 23%
(

=
(Nens−1)xf%

(Nens−1)xf%+1

)
per

cluster.

In order to see if there is any benefit in the MLMR approach when achieving a

‘given’ accuracy, we reduced Ntot in the baseline to match the accuracy of both the

RD and CD methods. The memory requirement, inference time, and training time

were calculated for two scenarios. First, Ntot in the baseline was selected such that

both the baseline and the RD method have the same accuracy (82.5%). Second, Ntot

in the baseline was selected such that it matches the accuracy of the CD method

(83.1%). In each of the above scenarios, the obtained memory requirement, inference

time, and training time values were normalized with respect to the baseline. These

normalized values for the two cases are shown in a single graph in Figure 4.25. The CD

method is better in terms of memory requirement and inference time, in comparison

to the single liquid baseline and RD method. We calculated the total number of MAC

(multiply and accumulate) operations during training to estimate the training time

(it is a function of the number of neurons in a liquid, number of output neurons, and

number of training examples). Lowest training time was achieved in the RD method.

The CD method offers 56% reduction in memory and 45% reduction in inference time,

with respect to the baseline. For a 1000 total number of neurons, the 4 ensemble case



134

with a single classifier (studied in section 4.6. Let us denote this method as multiple

liquids, single readout or MLSR approach) resulted in 78% reduction in memory usage

and 72% reduction in inference time along with 2.1% accuracy improvement (hence

better than both CD and RD methods under the memory usage and inference time

metrics). However, in terms of training time, the MLSR approach did not show any

improvement, whereas the MLMR showed 88% reduction with respect to the baseline.

4.11 Conclusion

We have presented an ensemble approach for Liquid State Machines (LSMs) that

enhances separation and approximation properties, leading to accuracy improve-

ments. The separation property in LSMs measures the dispersion between projected

liquid states from different classes, whereas the approximation property indicates the

concentration of the liquid states that belong to the same class. The ratio between

SP and AP (DR) is a measure of the class discrimination. We witnessed that the

DR increases when a large liquid is divided into multiple smaller independent liq-

uids across four speech and image recognition tasks. We observed the existence of

an optimal number of liquids (Nens,opt) until which the DR increases and saturates

thereafter. Owing to the improvement in the DR in our proposed ensemble approach,

we noticed an LSM accuracy enhancement with increasing number of liquids. The

accuracy peaked at the same Nens,opt point at which each DR saturated, for different

recognition tasks. This validated the existence of an optimal number of liquids which

gives the best accuracy for the LSM, and this point is highly dependent upon the

application and the total number of liquid neurons.

There is plethora of complex approaches that concentrate on improving the ac-

curacy of LSMs, including learning the liquid connections [28, 134]. In contrast to

such works, our proposed approach does not change the simple structure and training

methods of LSMs. Furthermore, the ensemble approach gives better accuracy when

compared with other simple mechanisms of improving the LSM accuracy such as in-
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creasing the number of neurons, changing the percentage connectivity, and utilizing

the probabilistic local connectivity models. Apart from providing improved accuracy,

the proposed ensemble approach comes with other benefits including lower memory

requirement and lower inference time. We have shown that creating an ensemble

of liquids leads to lower inter-connections in comparison to a single liquid with the

same number of neurons. Furthermore, the liquid evaluation can potentially be par-

allelized in the ensemble approach due to the existence of small independent liquids.

This results in reduced LSM inference time. The accuracy improvement with increas-

ing number of liquids in the ensemble becomes less evident when the total number

of neurons is small. In fact, creating an ensemble of liquids with a small number of

neurons will rather reduce the accuracy. Hence the ensemble approach makes sense

for LSMs with large number of neurons [29].

Since there is no benefit in terms of training time between a single-liquid LSM

and the proposed ensemble approach (MLSR), we investigated the MLMR approach

where a classifier is added to each small liquid in the ensemble. By dividing the

training example space to train each small LSM, we were able to attain significant

benefits in terms of training time, when compared with MLSR approach. There

are multiple classifiers that were trained independently in the MLMR approach, and

the final output is the maximum vote of all the local classifiers. The set of multiple

liquid-classifier units are in fact a collection of small LSMs (noted as s-LSMs). Despite

the performance benefits during training, we noticed an accuracy degradation in the

MLMR approach, when compared with both the MLSR approach and the single-

liquid baseline LSM with equal number of liquid neurons. The reason for this can

be explained as follows. The classifiers in each s-LSM are smaller than that of the

baseline and the MLSR approaches. A large classifier (as in the baseline and MLSR

approach) has more number of parameters and is capable of fitting in to an unknown

function better than a small classifier [169], leading to improved accuracy. The work

presented in this section is published in [174].
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5. SUMMARY AND FUTURE WORK

In this work, the possibility of enhancing neuro-inspired computing by means of

scalable algorithms and inherent device physics of emerging nanoscale resistive devices

was observed. Chapter 2 elaborates the realization of a neuro-inspired solution for the

constraint satisfiability problem. Magnetic Tunnel Junctions (MTJs) were shown to

be mimicking certain complex dynamics of Cellular Neural Networks, and thus were

useful in efficiently implementing the SAT solver. Certain device level modifications

were involved such as ‘seamless switching thickness’ to match the functionality of

the cellular neural network based Boolean satisfiability solver. The simulation results

show faster convergence to a solution in the proposed system and the possibility of

finding a solution in polynomial time to a significant fraction of 3-SAT problems

(N ≤ 50). Furthermore, the system is ∼ 2.6 × 103 times faster than a state of the

art software SAT solver, Minisat, and robust to dimension variations in the range of

−5% to 10%. The temperature increments further reduces the computation time of

the solver and it is more power efficient than CMOS implementation of the cellular

neural network based analog SAT solvers.

The proposed SAT solver provides a satisfying assignment for variables in a SAT

problem which has a solution. If an unsatisfiable problem is assigned to the solver,

the MTJ dynamics will keep on oscillating without converging. Hence the proposed

hardware SAT solver is not useful in identifying the satisfiability of a certain SAT

instance. However, given that the solver converges fast when there is a solution, it can

be used in combination with other CMOS based solvers to identify the satisfiability of

a SAT instance. One approach would be to use a predefined time duration until which

the hardware solver tries to converge to a solution. If the solver converges within the

given duration, it will provide a satisfying assignment to the variables in the given

SAT instance (i.e, the instance is satisfiable). If the solver does not converge, it does
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not imply that the problem is not satisfiable. Other mechanisms must be involved

to check the satisfiability of the instance in such a situation. More analysis on the

feasibility and potential benefits of the above must be studied.

In chapter 3, the possibility of using the inherent stochasticity of memristors to

realize a deep stochastic spiking neural network was analyzed. The functionality of the

neuron was replaced by stochastic binary memristors and the synaptic functionality

was performed by multi-level memristors, creating the ‘all-memristor neural network’.

The work is an effort to incorporate three key features of the actual brain; low power

operation, spike based communication, and stochasticity, in an ANN. It was shown

how the training mechanism can be updated to suite the stochastic activation function

of the neuron. Circuit and system level simulations show that the network is robust

to voltage (< 200mV) and synaptic (σ < 20%) variations. The network is ∼ 6.4×

energy efficient, and the area × delay product was ∼ 8 times smaller than the CMOS

implementation of the same spiking neural network. The benefits comes at the cost

of loosing only an insignificant amount (∼ 1%) of accuracy in a hand written digit

recognition application.

In this work, the device of interest was an a − Si based electro-checmical met-

alization (ECM) memristor. Other types of memristors can also be used to realize

the deep SNN architecture. For example, a device that requires lower reset energy

will be a good substitute. The reset energy is the second dominant component of the

total energy consumption of the network. This is because of the fact that the reset

must be conducted in the deterministic region of operation of a memristor, which

requires a sufficiently high voltage pulse to ensure that the device has turned off. A

volatile memristor has been proposed in [49] as a random number generator. The

device switching dynamics are stochastic and the SET state of it is not stable hence

it eventually (within ∼ 100µs) goes to the RESET state. If such a device is used in

our design, it will completely eliminate the requirement to force reset the memristors.

The write voltage of the device is also lower (0.5V , for a 300µs pulse) when compared
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with the a − Si based ECM device in this work. Possible improvements with other

novel devices must be investigated.

In chapter 4, a neuro-inspired scalable approach for improving the speed of large

scale liquid state machines (LSMs) was proposed. The presented ensemble approach

that enhances separation and approximation properties (SP and AP), further leads

to accuracy improvements. It was witnessed that the DR (The ratio between SP and

AP) increases when a large liquid is divided into multiple smaller independent liquids

across four speech and image recognition tasks. It was observed that the existence of

an optimal number of liquids (Nens,opt) until which the DR increases and saturates

thereafter. Owing to the improvement in the DR in our proposed ensemble approach,

an LSM accuracy enhancement with increasing number of liquids was noticed. The

accuracy peaked at the same Nens,opt point at which each DR saturated, for different

tasks.

The proposed approach is simple when compared with other approaches that

concentrate on improving the accuracy of LSMs, including learning the liquid con-

nections [28, 134]. Apart from providing improved accuracy, the proposed ensemble

approach comes with other benefits including lower memory requirement and lower

inference time. We have shown that creating an ensemble of liquids leads to lower

inter-connections in comparison to a single liquid with the same number of neurons.

Furthermore, the liquid evaluation can potentially be parallelized in the ensemble

approach due to the existence of small independent liquids. This resulted in reduced

LSM inference time.

The proposed multiple liquid - multiple readout (MLMR) approach explores the

possibility of assigning inputs from different clusters in the data set to different small

liquids, and train each readout with a fraction of the full data set. This will signifi-

cantly reduce the training time when compared with the single readout LSM archi-

tecture. The considered application was classifying digits in the extended MNIST

data set, and the clusters were selected as ‘Noisy’, ‘Original’, ‘Shifted’, and ‘Rotated’

images. It would be beneficial to observe possibilities of using other forms of clusters.
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For example, a set of digits in the MNIST data set can be assigned to a single small

LSM (s-LSM) in the ensemble.

The separation and approximation properties which were used to quantify better

class discrimination can be extended to find better LSM architectures. For example,

different forms of multi-layer LSMs can be analyzed to identify whether they improve

SP and AP. Having liquid ensembles as first layers (in a multi-layer LSM) will help

in extracting subtle features of the inputs (since the ensemble approach enhances

the separation property) and would potentially increase the overall network accuracy.

Furthermore, in contrast to verifying whether a particular architecture gives better

SP and AP, novel learning methods based on the metrics can be explored. We are

currently focusing on using the SP and AP metrics on an echo state network (a

recurrent neural network which has a pool of analog neurons connected to each other

- ‘the reservoir’, and a readout layer. Simply put, it is the non-spiking counterpart of

the liquid state machine) that converts voice commands in to handwriting.
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