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ABSTRACT

Nimmala, Harsha Naga Teja. M.S.M.E., Purdue University, August 2019. Smart
Manufacturing Using Control and Optimization. Major Professor: Ali Razban

Energy management has become a major concern in the past two decades with

the increasing energy prices, overutilization of natural resources and increased carbon

emissions. According to the department of Energy the industrial sector solely con-

sumes 22.4% of the energy produced in the country [1]. This calls for an urgent need

for the industries to design and implement energy efficient practices by analyzing the

energy consumption, electricity data and making use of energy efficient equipment.

Although, utility companies are providing incentives to consumer participating in De-

mand Response programs, there isn’t an active implementation of energy management

principles from the consumer’s side. Technological advancements in controls, automa-

tion, optimization and big data can be harnessed to achieve this which in other words

is referred to as “Smart Manufacturing” . In this research energy management tech-

niques have been designed for two SEU (Significant Energy Use) equipment HVAC

systems, Compressors and load shifting in manufacturing environments using control

and optimization.

The addressed energy management techniques associated with each of the SEUs

are very generic in nature which make them applicable for most of the industries.

Firstly, the loads or the energy consuming equipment has been categorized into flexible

and non-flexible loads based on their priority level and flexibility in running schedule.

For the flexible loads, an optimal load scheduler has been modelled using Mixed

Integer Linear Programming (MILP) method that find carries out load shifting by

using the predicted demand of the rest of the plant and scheduling the loads during

the low demand periods. The cases of interruptible loads and non-interruptible have
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been solved to demonstrate load shifting. This essentially resulted in lowering the

peak demand and hence cost savings for both “Time-of-Use” and Demand based

price schemes.

The compressor load sharing problem was next considered for optimal distribution

of loads among VFD equipped compressors running in parallel to meet the demand.

The model is based on MILP problem and case studies was carried out for heavy duty

(>10HP) and light duty compressors (<=10HP). Using the compressor scheduler,

there was about 16% energy and cost saving for the light duty compressors and

14.6% for the heavy duty compressors.

HVAC systems being one of the major energy consumer in manufacturing indus-

tries was modelled using the generic lumped parameter method. An Electroplating

facility named Electro-Spec was modelled in Simulink and was validated using the real

data that was collected from the facility. The Mean Absolute Error (MAE) was about

0.39 for the model which is suitable for implementing controllers for the purpose of

energy management. MATLAB and Simulink were used to design and implement the

state-of-the-art Model Predictive Control for the purpose of energy efficient control.

The MPC was chosen due to its ability to easily handle Multi Input Multi Output

Systems, system constraints and its optimal nature. The MPC resulted in a temper-

ature response with a rise time of 10 minutes and a steady state error of less than

0.001. Also from the input response, it was observed that the MPC provided just

enough input for the temperature to stay at the set point and as a result led to about

27.6% energy and cost savings. Thus this research has a potential of energy and cost

savings and can be readily applied to most of the manufacturing industries that use

HVAC, Compressors and machines as their primary energy consumer.
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1. INTRODUCTION

With the growing population and incessant demands, energy management and con-

servation has become a major challenge in the smart grid. Demand side management

programs are being initiated around the globe so as to reduce the overall energy load

and emissions that pose a threat to the non-renewable forms of energy and environ-

ment respectively. As a result, in the recent years, there has been an exponential

increase in the interest for energy management research. According to energy.gov,

the Department of Energy of United States spends approximately $5.9 on energy re-

search for clean and better utilization of energy resources. Besides the United States,

South Korea and Germany have been actively implementing “smart” manufacturing

techniques to optimize production, energy consumption and cost in response to this

activity [2]. Process and other energy intensive industries have already resorted to

smart systems to run plants in an economical and productive manner. The purpose

of this thesis is to investigate and implement the potential overlooked energy sav-

ing practices for major energy consuming systems in manufacturing industry using

optimization and control.

1.1 Smart Manufacturing

Smart manufacturing is a type of manufacturing where the optimized techniques

and processes are used to obtain maximum yield while keeping the energy footprint

and costs low. This is made possible with the advanced modelling, controls, op-

timization, and big data that has been on rise in the past decade. In fact smart

manufacturing is regarded as the industrial revolution 4.0 as a result of this. Ac-

cording to The National Institute of Standards and Technology (NIST) [3], Smart

Manufacturing systems are fully integrated, collaborated manufacturing systems that
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respond in real time to meet changing demands and conditions in the factory in the

supply network and customer needs. This is exactly what this thesis is attempts

to achieve by using tapping the energy management techniques using control and

optimization.

1.2 Demand Side Management

Demand Side Management refers to the energy measures taken from the demand

side (consumer) to reduce the electricity bills and utility infrastructure costs. This is

usually done by shifting or scheduling the consumption of energy from high demand

periods to low demand ones. For example costumers could use renewable resources or

energy storage devices like batteries for their energy needs during the high demand

periods. Another simple yet effective way would be to prioritize the energy needs and

schedule the low priority energy needs during the off peak periods. DSM can also be

implemented at subsystem level by carrying out energy audits to find out potential

energy saving methods, installing energy efficient equipment like VFDs, improving

the schedule of machines, upgrading the control systems of the energy demanding

systems such as the HVAC. The following figure shows how load shifting can be used

to smoothen the peak demand and hence the demand based charges which is one of

the most commonly used DSM techniques.,

1.3 Research Milestones

Problem Statement: The HVAC systems together with the air compressors and

electric motors consume more than half of the total energy in the manufacturing

sector. This significant share of energy consumption is a result of inefficient energy

management practices which in turn strain the utility companies and increase the

utility bills and carbon footprint. Hence, there is a dire need of optimizing the

energy consumption through energy management and energy efficient control and

optimization systems
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Figure 1.1. Demand side management by load shifting [4]

Major objectives in this research are,

• Identification and selection of potential energy management techniques and pro-

cesses to increase energy efficiency and reduce costs

• Development of a mathematical model that can schedule the flexible machines

with the help of the Demand Side Management.

• Development of a compressor scheduler that can distribute the loads between

compressors so that the demand is satisfied in a cost effective manner

• Generic modelling of a manufacturing facility using lumped parameter mod-

elling and validation using real data

• Using state-of-the-art MPC to reduce the total energy consumption by the

HVAC fans while meeting the temperature requirements of the manufacturing

facility

As per the U.S Energy Information Administration, the manufacturing sector

consumes about 75% of all the energy used by the industrial sector which translate
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to 20,008 TBtu and 1064 MMT Co2 emissions [5]. In both the energy intensive and

non energy intensive manufacturing, the primary consumers of energy in the nation

are HVAC and manufacturing systems. In fact, HVAC alone consumes 62% of the

total non-manufacturing energy [6]. Manufacturing systems mainly include assembly

line or production line machines that are powered by electric motors.

Compressed air systems that are widely used for drying, power tools and painting

applications account for almost 10% of all the electricity used in the country according

to energy.gov [7]. Smart manufacturing and demand response strategies together can

improve the energy efficiency of HVAC, compressors and production lines. Systems

can be optimized at system and component level using control and optimization

which are a subset of smart manufacturing. Manufacturing industries want high

quality and energy efficiency to keep their throughput and profits high and costs low.

When compared to residential and commercial consumers, industrial consumers are

less flexible to scheduling due to throughput and time constraints. Therefore there is

a need to consider problems that are flexible and non-flexible in terms of scheduling.

Optimally scheduling the production line machines can reduce the peak energy

consumption in manufacturing. Abdul et el [8] have developed an energy management

model that adjusts the set points of controllable equipment in response to real time

pricing i.e demand shifting. However, the pricing has to be notified to the consumer

1 hour in advance and a complex optimization problem is solved every two hours

which is computationally expensive. Also, the forecasted data has been assumed to

be accurate enough. In [6], a demand response model was used to schedule production

line by taking into account its heat transfer characteristics and thereby controlling

the HVAC system. The outcome is optimal schedule for the production line and

total reduction in peak production without the violation of production and comfort

constraints. Although, the heat transfer was well modelled, the HVAC system was

vaguely modelled by converting the temperature to heat load and without consider-

ing other temperature disturbances. Also, this implementation requires temperature

forecast of the building which is quite challenging in a manufacturing environment.
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Another commonly used technique for production line scheduling is job shop schedul-

ing where the objective is to assign n jobs to m machines of different processing times

such that the make span is minimum. This has been extended to achieve minimum

energy use by et el [9],by adding a secondary cost function that takes into account

the idle time, processing time and startup time of machines. A similar approach has

been taken by the authors in [10], to optimize the energy consumption and make

span using a biologically inspired Particle Swarm Optimization (PSO). Both of these

works lack a generic nature in the problem formulation which is essential for produc-

tion line problems that can be different types. Also non-flexible scheduling was not

considered in either of these works. Authors in [11] used a Discrete event model to

model machines and buffer in an manufacturing environments and suggested Model

Predictive Control as a method to reduce the energy consumption while meeting the

make span requirement. However they didn’t show the how the effective processing

time can be calculated and any of the results obtained by the MPC implementation.

Some works have tried to integrate smart manufacturing and demand response.

In the smart manufacturing paradigm, demand side management is one of the major

energy saving measure that has been actively researched and implemented in the past

decade. The most commonly proposed solution to the decrease the peak demand is

the penetration of renewable resources. For example, in [12] the authors have used a

hierarchical Model Predictive Control system for the utilization of renewable resources

when there is peak demand as a part of active demand side management. They have

carried out load shifting for this purpose using the weather forecast, price signals and

the MPC for a case study involving a residential building. In [13], a Demand Response

(DR) model has been proposed for cases where there are additional renewable power

generation units like solar generator and wind generator. Using a model that is based

on Mixed Integer Linear Programming (MILP), they were able to optimally shift

loads to reduce peak demand and use renewable energy to meet demands that cannot

be compromised. In both these works, the high costs of installation and maintenance

of these renewable resources and their uncertainty in the delivering power outweighs
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the energy saving cost. Particle Swarm Optimization was used by Hashemi et el

in [14] to solve for optimal schedule of loads in residential, commercial and industrial

sectors. This work lacks the consideration of non-flexible loads which are the most

common loads in the manufacturing sector.

The design of HVAC systems is much more complicated in manufacturing sector

than in commercial and residential sectors due to the uncertainties and stochastic

temperature disturbances in manufacturing make the modelling and control of the

thermal system quite intricate. Therefore, there needs to a system level modelling

approach that is generic enough to be applied in all the manufacturing environments

yet be able to capture the necessary heat transfer dynamics for the control system de-

sign. One such commonly used model is the “Resister-Capacitor lumped parameter”

model that is simple yet robust enough to handle disturbances [15]. The application

of Economic-MPC (MPC with custom cost function involving price and energy) in

building HVAC system was explored in [16] where a RC thermal model was established

and energy and pricing were minimized. Though, the Particle Swarm Optimization

(PSO) and EMPC were quite effective in avoiding suboptimal solutions (energy opti-

mal schedules) and converging quickly as per these works, the objective function that

was minimized by the PSO was dependent on the time varying prices rather than the

demand which is not the case of states like Indiana where the consumers are charged

based off their peak demand. Real time optimization based on economy and MPC

were combined together to create E-MPC for a chemical plant in [17] with storage

units. Again The E-MPC accounted for the product market pricing rather than the

power usage of the energy consuming subsystems. Black box modelling (input-output

data based modelling) was used extensively with the help of system identification tool

in MATLAB to builds thermal state space models for MPC in [18]. Though this may

seem like a plausible option, only the energy data is readily available in most the

industries. A supervisory architecture was used to facilitate demand side manage-

ment by using the plant wide optimization in conjunction with MPC in HVAC and

refrigeration systems to reduce the peak demand [19]. The above implementations are
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just focused on one of the systems instead of consider the entire manufacturing plant.

In [20], MILP was used in conjunction with MPC for energy management in micro

grids. However this is only applicable for small size micro grids with storage systems.

Most of the works related to MPC for building energy management in literature have

been done on residential and commercial buildings rather than manufacturing facili-

ties where there is a huge potential for energy savings. This has been addressed in this

thesis by modelling a real manufacturing facility using a generic modelling method,

validating it and then implementing MPC for energy and cost savings.

In manufacturing, different types of air compressors are used for a variety of pur-

poses. Compressors have various control schemes such as Start/Strop, Load/Unload,

Modulating, Variable displacement and Variable speed. Out of these, Variable dis-

placement control (Variable Speed Drive, VSD) is the most efficient control as it

varies the motor operation based on the load and avoids unwanted motor loads. As

per GAMBICA (UK’s Trade Association for Instrumentation, Control, Automation

and Laboratory Technology) [21], VSD’s can help lower the energy consumption by

50% for air compressors. A further step is to optimally schedule the already efficient

VSD compressors in parallel to further lower the energy footprint. Guise et el [22]

proposed a novel control scheme based on MPC that lowers the upper and lower

pressure set points and reduces the energy consumption for a VSD screw compressor.

The shortcoming of this implementation is that the air flow requirements need to

be forecasted for a given time horizon which was left out as a future scope. In [23],

the authors have devised a framework that can optimally distribute the load between

parallel compressors using MILP formulation. In this work, compressor maps were

used to make sure that compressor are run at optimal conditions and MILP was used

to optimally switch between compressor with minimal surge. Though this implemen-

tation yielded positive results, this is only suitable for applications involving only

centrifugal compressors. In [24] authors have used such an approach for compressor

scheduling problem. Given N number of compressors, their objective was to schedule

the compressors to different clients based on their flowrate and pressure limits such
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that the total cost of installing and operating the compressors is minimized. The

compressors that have been considered in this work were based on Start/Stop control

which is one the most energy inefficient control methods for compressors. Hanh et

el [25] used genetic algorithms for scheduling compressors to different customers for

gas pipeline operations. The idea is to select the optimal set of compressor to operate

so that the fuel cost, start-up cost and gas cost is minimal. Neural networks were

used for demand forecasting and genetic algorithms were used to find the minimum of

the objective function. The study however uses penalties on the objective functions

to include constraints and genetic algorithms always don’t provide optimal solutions

like MILP. To the author’s knowledge, there exists no work that has been done on

the scheduling of VSD compressors in parallel setting.

From the previous works on energy management and energy efficiency for smart

manufacturing, it can be clearly seen that the previous works lack the implementation

of generic MPC in manufacturing, demand based scheduling systems and compressor

load distribution systems. In the thesis, this gap has been addressed by taking an

energy oriented control and optimization approach that is well suited for a manufac-

turing environment.
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2. SCHEDULING PROBLEM

2.1 Linear Programming

The purpose of this chapter is to introduce the readers to the concept of scheduling.

In a typical scheduling problem, the goal is to find a set of assignments to machines

so that a given objective is minimized or maximized. This is a common problem that

is solved in the field of Computer Science and is referred to as Job Shop Scheduling

(JSP). In such a problem, there are “m” jobs that need to be completed by “n”

machines of different processing times and powers. The objective is the assignment

of these jobs to the machines such that the jobs are completed in the least amount of

time and effort (power consumption).

Scheduling problems are usually solved using a mathematical optimization tech-

nique called Linear Programming (LP) [26]. In a LP problem, a cost that is function

of a set of variables is minimized or maximized and is subjected to variable con-

straints. The constraints are linear and can be inequalities or equalities or both. The

feasible region is determined by the constraints. The solution to the linear program-

ming problem is the values of the variables provide the “best” possible value of the

cost. Example problem 1 illustrates how LP works

Maximize Z = 3x+ 2y

Subject to 4x+ 2y ≤ 15

x+ 2y ≤ 8

x− y ≤ 2

x ≥ 0

y ≥ 0

(2.1)
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There can be variations in the LP problem such as Integer Programming and

Mixed Integer Programming. As the name suggests, integer programming is a LP

problem with variables that can take only integer values and the MILP problem is

one where the variables can be integers of variables. Figure 2.1 shows the feasible

solution space for the given problem and the optimum solution for MIP, LP and IP

problems.

Figure 2.1. MIP, LP and IP problems and their solutions

The maximum Z = 34 which occurs at point (6, 4) and the minimum Z = 34

occurs at (-1,-3). The above example is a simple illustration of LP, however when

there are 3 or more variables LP problems cannot be simply solved by plotting as

higher dimension spaces are difficult to visualize. Such problems are solved using

simplex, Big M and other advanced LP techniques. MIP has been used in this thesis

for the scheduling problems as it is required to find the status of machines (integer)

and the power/capacity assignments (variable).



11

2.1.1 Brand and Bound Algorithm

The complexity of solving MILP problems is NP-hard which means that they

cannot be solved by any known algorithm in polynomial time and the complexity

of the problem increases exponentially with time [27]. This type of problems are

mostly solved using Branch and Bound which searches for the solution by dividing the

relaxed problem it into smaller sets of problems and without actually enumerating all

the possible solutions which significantly reduces the time complexity of the problem.

This algorithm is similar to how decision trees that have nodes and branches work.

The algorithm starts with an initial computation of the relaxed solution (solution

with only equalities) at the root node. From the root node, more nodes (or sub

problems) are branched out (or explored) by increasing or decreasing the value of the

decision variables. Whenever, a node is found to lead to an unfeasible solution (less

optimal than parent node) or violate the bounds of the decision variables, that node

is fathomed (the children nodes of that node are not explored and other adjacent

nodes is explored). This process continues until the optimum solution (min or max)

is found. This way the algorithm can search through the solution space without

actually listing out all the possible solutions by pruning. Branch and Bound has been

illustrated using the following example [28] and figures 2.2 and 2.3. Example problem

2 further illustrates the working of the algorithm.

Maximize 13x1 + 8x2

Subject to x1 + 2x2 ≤ 8

x1 ≤ 8

x2 ≤ 8

(2.2)

As explained earlier, the solution starts with the relaxed problem IP 0 and then

branches out by looking at the possible values x1 can take. In the next level, the

nodes IP 1 and IP 2 are the relaxed solutions for x1 ≥ 3 and x1 ≤ 2 without the

remaining constraints violated respectively. IP 2 is fathomed as it is worse than IP 1

and the children nodes( IP 3 and IP 3 ) of IP 1 are explored for better solutions. IP 3
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Figure 2.2. Solution to example problem 2 using branch and bound

is fathomed as it leads to a infeasible solution that violates constraints 2a and 2b(

x1 ≥ 3 and x1 ≥ 3 ). On the other hand, IP 4 is fathomed as it yields a cost that

is worse than its parent node IP 1 . IP 0 is the best solution that maximizes the cost

function in case of inequality constraints. This way the Brand and Bound algorithm is

able to find optimal solution efficiently without looking into all the possible solutions.

The MIP problems in MATLAB can be solved using the intlinprog() function that

uses brand and bound algorithm. The inputs to this function are the cost function,

inequalities, equalities. All of these are input as matrices and the position of each

matrix element corresponds to the respective decision variable that is involved in the

equation/inequality/cost function. Branch and Bound algorithm is then used to find

the optimal solution to the problem. Major steps in this algorithm has been shown

in the flow chart below.
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Figure 2.3. Branch and Bound algorithm flowchart
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3. ENERGY ORIENTED CONTROL

3.1 Optimal Control

This chapter serves to provide a basic understanding about optimal control and

the Model Predictive Control that has been used for the energy efficient control of

HVAC systems in manufacturing industries. There are several control techniques that

are used in industries such as the Programmable Logic Control (PLC), Proportional

Integral Derivative (PID) Control and ON/OFF controller. Although these control

techniques satisfy the performance requirements but they are not the most optimum

input to the actuators. In case of ON/OFF controller, the input goes from zero to full

and keeps running the machine until the set point is reached. Although this type of

control has its roots from optimal control, the response is oscillatory about the dead

band which is undesirable and it starts and stops the machine quite frequently. As for

the PID control, it may be able to continuous adapt and follow the set point, however

it cannot handle Multi Input Multi Output System (MIMO) and constraints and is

susceptible to integral windup. PLC control is purely based on logic for very simple

systems like valves and cannot be used for complex systems altogether. Optimal

control techniques like the MPC provide the best possible input to the system with

respect to the objective function. If the objective function requires minimum energy

effort, then the inputs provided by the MPC is energy efficient.

For any optimal control problem the idea is to find a maximum or minimum of a

given functional which is basically a function of function as show below,

J =

∫ t1

t0

F (t, x(t), ẋ(t))dt (3.1)

Where F (t, x (t) , ẋ (t)) could represent a nonlinear system of states x (t) and

ẋ (t) . This problem is usually solved by the Pontryagin’s maximization principal
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or Hamilton Jacobi equation [29]. This cost function is usually subject to certain

constraints that could be bounds that are placed on the system. Also, depending

on what needs to be minimized the cost function can be modified, for example for a

system defined by ẋ (t) = Ax (t) + B (u) , y (t) = Cx (t) for which the objective is to

drive the states from x (t0) to x (t) while expending the least amount of energy, the

cost function becomes,

J =

∫ t1

t0

u2dt (3.2)

Solving this problems yields a solution with the least input effort or energy. Con-

tinuous systems are converted to their counterparts using zero order hold that repli-

cates the evolution of the state through time, by holding each value for the given

sample time period.

3.1.1 Discrete Linear Quadratic Regulator(LQR) Controller

For a discrete systems defined by

x (n+ 1) = Ax (n) +Bu (n) , y (n) = Cx (n) (3.3)

The LQR problem is to find inputs u (0) . . . .u (N − 1) that makes the following

cost as small as possible

J(u) = x(N)TPx(N) +
N−1∑
k=0

x(k)TQx(k) + u(k)TRu(k) (3.4)

Where P is the final state cost, Q (diagonal matrix) is the cost related to the

states and R is the cost related to input. The Q and R matrices are used for tuning

the LQR controller. The controller becomes more aggressive or reaches the states

faster at the expense of oscillations when the elements in Q are large. By making R

large, the controller is forced to move the states with the least possible input effort. A

balance needs to be set between these two matrices to achieve the desired performance
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without high overshoot (oscillations) or large rise time. The solution to the above

problem can be found using Dynamic Programming or Backward Riccati Recursion

3.2 Model Predictive Control

Model Predictive Control is one of the most robust multivariate control system

primarily that has been used in process and manufacturing industries since the 1980s.

It is essentially an optimal control system wherein the past and current states and

outputs are used to optimize a cost function along a definite horizon (also known

as receding horizon) to track the reference trajectory. One of the major strengths

of MPC is its ability to handle constraints of MIMO systems. The following figure

depicts the ideology behind the functionality of the MPC.

Figure 3.1. Receding horizon control of MPC showing the manipu-
lated and controlled variables

The most common form of the cost function that is used for MPC is the Quadratic

cost function based on that of Linear Quadratic Regulator. This cost function is

minimized to obtain predict the outputs and inputs until the end of the horizon (k to

k+p). Then the first control input is implemented and the outputs and the states are

used as a feedback for optimizing the cost function the next horizon (k+1 to k+p+1).
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This process is repeated for every horizon. The typical cost function of MPC is as

follows

J =

Np∑
k=0

(ŷ − r)TQ(ŷ − r) +

Np∑
k=0

∆uTR∆u (3.5)

In the above cost function, y is the predicted output and r is the reference output.

Delta u is the difference in the between the predicted input. These values are summed

until the end of the prediction horizon in the cost function. Q and R are the weight

matrices (similar to the LQR controller) that can be used to control the penalty on

the inputs and outputs. Starting with the discrete system state space in equation 1.

The dimensions of x, A, B, u, C and y are n x 1, n x n, n x 1, n x m, m x n. The

state space is first augmented by performing a difference operation on equation 4 and

matrix manipulations [30],

∆x(k + 1) = x(k + 1)− x(k), (3.6)

∆u(k) = u(k)− u(k − 1) (3.7)

∆x(k) = x(k)− x(k − 1) (3.8)

 ∆x(k + 1)

y(k + 1)

 =

 A OT

CA 1

 ∆x(k)

y(k)

+

 B

CB

∆u(k) (3.9)

y(k) =
[

∆ 1
] ∆x(k)

y(k)

 (3.10)

∆x (k + 1)

y (k + 1)

 ,
 A OT

CA 1

 ,
 B

CB

 , [O 1
]
and

∆x (k)

y (k)

 are shorthanded as

x (k + 1),A,x (k),C and B respectively. The next step which the prediction part

is done as follows,
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x(k + 1|k) = A(k) +B∆u(k) (3.11)

x(k + 2|k) = Ax(k + 1|k) +B∆u(k + 1)

Substituting & in 7a in 7b

x(k + 2|k) = A2x(k) + AB∆u(k) +B∆u(k + 1) (3.12)

For a prediction horizon that is of length Np and the control horizon of length Nc,

the state vector for the last timestep is

x(k+Np|k) = ANpx(k)+ANp−1B∆u(k)+ANp−2B∆u(k)+. . .+ANp−NcB∆u(k+Nc−1)

Putting it together Y = Fx (k) + Φ∆U where

F =



CA

CA2

CA2

...

CANp



F =



CB 0 0 . . . 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


and ∆U is a vector of the future inputs. After minimizing the cost function in 6

without any constraints,

∆u(k) = [IO . . . O]
(
ΦTΦ + R

)−1 (
ΦT r(k)− ΦTFx(k)

)
(3.13)

To minimize the same cost function with respect to the state space model, input,

input rate and output bounds, quadratic programming methods are used which is
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basically an extension of linear programming discussed in the previous chapter. Figure

3.2 shows the majors steps of the MPC.

Figure 3.2. Flowchart for the basic Model Predictive Control Design
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3.3 State Estimation

As mentioned above, for the MPC to make predictions about the states and find

the optimal inputs sequence, the present states should be available. In practice, it

may be difficult or expensive to measure all the states. In such cases, an observer

that mimics the actual model is used to make estimates of the states. The most

commonly used observer is the Luenberger observer that is defined as follows for a

discrete system in equation 3.3,

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− Cx̂(k)) (3.14)

Taking the difference between x (k + 1) and x̂ (k + 1)

x̃(k + 1) = (A− LC)x̃(k) (3.15)

As long as the poles of A-LC are within the unit circle the, observer error is bound

to decrease exponentially. An extension to this discrete observer is the Kalman filter

which is an optimal state estimator that can be used for stochastic systems that have

uncertainty in the inputs and states. It can be used for systems that have process

noise (model mismatch) and measurement noise. The Kalman filter essentially uses

the measurements of the outputs and the model predictions of the state to estimate the

states with higher confidence(less variance). This way even if the inputs and outputs

have disturbances, model has mismatches and all states except the outputs aren’t

available for measurement which is the case in most of the real systems, the MPC

in conjunction with a Kalman filter can steer the states along the desired trajectory.

Major steps of the Kalman filter are shown in figure 3.3.
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Figure 3.3. Kalman filter process flow chart [31]
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4. MODELLING

In this chapter, the modelling of the three main problems in this thesis is discussed.

The Optimal Load Shifter (OLS) is first formulated and modelled, followed by the

Compressor Load Scheduler (CLS) and the lumped parameter modelling of thermal

systems. These models and formulations are then used for the model validation,

case studies and results in the upcoming chapters. The subsystems that have been

targeted for energy management using control and optimization are HVAC system,

compressor and machines that are driven by electrical motors. These have been chosen

as these together are integral part of most of the manufacturing plants. Energy and

cost saving can be done at different levels while meeting the demand constraints as

follows (figure 4.1).

The process flow starts (figure 4.1) with the forecasted demand which is the input

to both the compressor systems and the flexible machine.

Mixed Integer Linear Programming is proposed schedule the machines and the

compressors, while Model Predictive Control is proposed for the control of the HVAC

system. The energy usage is minimized by shifting the flexible loads to time intervals

when the demand rate is decreasing or low (load shifting) which is done by the Branch

and Bound Algorithm (figure 3.3). This makes sure that only the non-flexible or non-

shift able loads are not used at the same time as the flexible ones resulting in overall

reduction in the peak demand thus potential cost savings.

The loads can be divided into flexible and non-flexible loads based on their usage

priority and time of use flexibility. Flexible loads are the ones that can be scheduled

during the low demand periods or in other words can be flexible in terms of when

they are used during the day. Non-flexible loads are the opposite i.e they need to

be run at a certain time thus being non-flexible in terms of scheduling. HVAC sys-

tems and Compressors are the ones most of the industries and these need to be run



23

Figure 4.1. Proposed energy management framework using control
and optimization

continuously sometimes without any interruption. Therefore HVAC systems can only

be made energy efficient by deploying control system that operates it just enough to

meet the room requirements and saves energy. The same can be said for the compres-

sors, however there are cases where a group of compressors run together in parallel

configuration to meet the demand of the plant. In such cases, there is a need to opti-

mally distribute the loads among the compressors so that the compressors run in their

efficient conditions and less costs can be incurred. Flexible loads are machines that

are mostly powered by electrical motors and are of lower priority when compared to

the non-flexible. Due to their lower priority these loads or machines can be scheduled

during low demand periods.
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4.1 Optimal Load shifter

As mentioned previously, to avoid peak demand charges the Peak to Average

Ratio (PAR) should be reduced. Demand side management techniques includes load

shifting, peak clipping, valley filling, electrification, energy efficiency and flexible load

shape (figure 4.2). In the figure below, each of these DSM techniques illustrate how

the power peak is modified to reduce energy consumption and/or costs.

Figure 4.2. Commonly used Demand Side Management techniques;
Peak Clipping, Valley Filling, Load Shifting, Energy Efficiency, Elec-
trification, Flexible Load Shape

Considering the peak demand charges in Indiana where the consumer is charged

the peak demand cost throughout the period, load shifting and valley filling(figure

4.2) are the suitable ones in reducing peak demand as it helps in rescheduling the

flexible loads such that they are used only during the low peak periods. If at least

half of the plant/consumer demand can be predicted, the rest of it can be efficiently

scheduled such that the peak demands of the both the halves do not occur at the

same time thus shifting the load. The forecasted demand is the input the optimal

load shifter and the output is the start and stop sequences (scheduling) of the flexible
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loads for a given time horizon. The below formulation is valid for two assumptions 1)

it can be applicable for machines running for more than 1 time step and are flexible

and interruptible 2) if the loads are only flexible then it is applicable for machines

whose minimum run time is at least 1 time step . Finally, this model also assumes

that the minimum runtime of each machine is greater than or equal to the sample

time of the predicted demand.

Pi : Average power consumption of machine i

Dt : Predicted demand at time t

n : Number of machines

εi : Number of starts for each machine

xi,t : Binary decision variable that indicates the state of the ith energy system at

time t

The cost function f is as follows

Min f =
T∑
t=1

N∑
i=1

xi,t
−1

avg (Dt+1, Dt)Pi

(4.1)

S.T:

Demand Constraint:

24∑
t=1

n∑
i=1

xt,i = εi where i = 1, 2 . . . n

Binary Constraints:

xi ∈ {0, 1}

For flexible and uninterruptable loads two more constraints need to be added to

the formulation to make sure that the machine that is uninterruptable runs for the

prescribed period continuously.

T∑
t=1

N∑
i=1

xi,t +Myk = γi

where γi is the number o intervals machine i is supposed to run continuously for

. k is the number of combinations of the decision variables for this to occur.
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Where M is a very large number and y is a slack variable that is used to select

the optimal combination form the possibilities above. This is done using another

constraint involving y

k∑
1

yk = k − 1

The above cost function when minimized gives the solution that moves most of

the loads to the lower demand region of the curve. This helps in reducing the overall

demand which is caused by both flexible and non-flexible loads. This flexible load

scheduling problem is solved in MATLAB using the inbuilt function called intlinprog

() that handles MILP using branch and bound optimization algorithm.

4.1.1 Examples for illustration

Load Shifting test case 1: Flexible and Interruptible loads

Problem: A hypothetical demand(shown in blue in figure 4.3) has been predicted

for the next 5 hours and it is required to schedule the start of two machines that run

for two hours during this time horizon in an energy efficient manner. These machines

are flexible and interruptible i.e they can be started and stopped at any time to reduce

excessive demand and cost. The figure below shows the default schedule of the two

machines

Blue line is the predicted demand profile and the rectangular blocks represent the

schedule of the two machines. Machine one lasts for the first two time steps and

Machine starts at timestep 3 and continues until time step 5.

Solution

Input: Predicted demand profile, number of machines and time horizon

Find: Start status of each machine at every timestep i.e xi,t where t = 1,2,3,4,5

and i =1,2
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Figure 4.3. Default load schedule for flexible and interruptible loads

Where xi,t is the status of machine i at time t, Dt is the predicted demand at

time t, and Pi is the average power consumed by machine i. The cost function f is as

follows

Maxf =
T∑
t=1

N∑
i=1

xi,t
−1

avg (Dt+1, Dt)Pi

=
1

P1

(
−1

avg (D2, D1)
x1,1 +

−1

avg (D3, D2)
x1,2 +

−1

avg (D4, D3)
x1,3

+
−1

avg (D5, D4)
x1,4 +

−1

avg (D6, D5)
x1,5

)
+

1

P2

(
−1

avg (D2, D1)
x2,1

+
−1

avg (D3, D2)
x2,2 +

−1

avg (D4, D3)
x2,3 +

−1

avg (D5, D4)
x2,4

+
−1

avg (D6, D5)
x2,5

)
(4.2)

Constraints:
∑T

t=1

∑N
i=1 xt,i = εi where εi is the number of times ith machine

needs to be started. Here εi =2 for i=1,2.

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 = 2
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Figure 4.4. Optimal schedule of the two machines found by the algorithm

x1,2 + x2,2 + x2,3 + x2,4 + x2,5 = 2

After using intlinprog to solve the problem using branch and bound in MATLAB,

the following result was obtained(figure 4.4).

From the above figure, it can be noted that, the algorithm has scheduled the

machines to only run during the off demand time steps (1 to 2 and 5 to 6) which is

desired for energy efficiency.

Load Shifting test case 2: Flexible and Uninterruptible loads

Problem: The test demand has been predicted for the next 5 hours and it is

required to schedule the start of two machines that run for two hours during this

time horizon in an energy efficient manner. Machine 2 is flexible and interruptible

while machine 1 is flexible but not interruptible i.e once started it cannot be stopped

until it completes its job.

Figure 4.5 shows the default status of the two machines. Machine 1 and 2 run

continuous for two time steps and stop one after the other. This default configuration

is non-optimal as the machines are running during the high demand periods as well.

Solution
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Figure 4.5. Default sequence of the two machines

Input: Predicted demand profile, number of machines and time horizon

Find: Start status of each machine at every timestep i.e xi,t where t = 1,2,3,4,5

and i =1,2

Where xi,t is the status of machine i at time t, Dt is the predicted demand at

time t, and Pi is the average power consumed by machine i. The cost function f is as

follows

Minf =
T∑
t=1

N∑
i=1

xi,t
−1

avg (Dt+1, Dt)Pi

=
1

P1

(
−1

avg (D2, D1)
x1,1 +

−1

avg (D3, D2)
x1,2 +

−1

avg (D4, D3)
x1,3

+
−1

avg (D5, D4)
x1,4 +

−1

avg (D6, D5)
x1,5

)
+

1

P2

(
−1

avg (D2, D1)
x2,1

+
−1

avg (D3, D2)
x2,2 +

−1

avg (D4, D3)
x2,3 +

−1

avg (D5, D4)
x2,4

+
−1

avg (D6, D5)
x2,5

)
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Constraints:
∑T

t=1

∑N
i=1 xt,i = εi where εi is the number of times ith machine

needs to be started. Here εi =2 for i=1, 2.

x1,1 + x1,2 + x1,3 + x1,4 + x1,5 = 2

x1,2 + x2,2 + x2,3 + x2,4 + x2,5 = 2

In addition to above constraint, the following constraints makes sure that machine

1 runs continuous for 2 time periods∑T
t=1

∑N
i=1 xi,t+Myk = γi where γi is the number o intervals machine i is supposed

to run continuously for . k is the number of combinations of the decision variables

for this to occur.

In this problem, since only machine 1 is uninterruptable,

x1,1 + x1,2 +My1 = 2

x1,2 + x1,3 +My2 = 2

x1,3 + x1,4 +My3 = 2

x1,4 + x1,5 +My4 = 2

Where M is a very large number and y is a slack variable that is used to select

the optimal combination form the possibilities above. This is done using another

constraint involving y
k∑
1

yk = k − 1

y1 + y2 + y3 + y4 = 3

The above constraint allows only one of the possible combinations (start sequences

of machine 1) to be allowed while computing the cost. The following result(figure 4.6)

was obtained when this problem was solved using Intlingprog in MATLAB,. In the

results section the similar cases have been solved for more complex scenarios using

the real demand from Compressors.

From figure 4.6, it can be seen that machine 1 runs continuously without inter-

ruption from time step 1 to 3 and machine two runs from time step 1 to 2 and then
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Figure 4.6. Optimal schedule was found for case 2 by operating the
machines during the low demand periods

from 5 to 6. Clearly, machine 1 constraint of running without interruption has not

been violated and the most energy efficient schedule (machines are running during

periods of low demand) has been found by the algorithm.

4.2 HVAC Modelling

In this thesis, for the HVAC system white box modelling has been used. In the

white box modelling itself, there are many approaches to modelling a HVAC systems

which involves nonlinear Partial differential equations or simple lumped parameter

model. Lumped parameter model has been chosen due to its simplicity that later

translates into smaller dimensional state space. Also, it is more intuitive and easier

to deal with the heat transfer in terms of conduction, convection and radiation in 1-D

(heat transfer in one of the dimension dominates the others). In the lumped parameter

model, every system is analogous to a Resistance-Capacitance (RC) circuit. In this

case, from the first law of thermodynamics
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∆U = Q−W (4.3)

Which can be re-written as ∆E = Ein − Eout where E terms can be either Heat

(Q) or Work (W). RC model for HVAC systems assumes that the temperature is

uniform in the room and only has gradient in a single dimension. The three modes of

heat transfer namely conduction, convection and radiation can be as shown in table

4.1.

Figure 4.7 shows the zones(zone 1 is the target zone) and thermal circuit of the

zones(adapted from [16]). In a typical RC modelling, the space is basically divided

into n nodes. These nodes represent walls or zones(adjacent rooms of the target

zone). The walls are treated as capacitors that store some of the heat that is being

transferred through them. Between two nodes there can be one or more thermal

resistance that dictates the rate of change of temperature between the nodes. The

central node which usually is the node representing the target zone temperature can

have external heat sources like heat generation in the zone, radiation and the HVAC

input flow rate. For models that do not have windows radiation(Qabs in the figure 4.7)

can is considered negligible, as the convection and conduction are the more dominant

modes of heat transfer when there is a thick medium for heat transfer like a wall

. This also helps in keeping the model from being highly non-linear(radiation is 4th

power of temperature) which makes it easier to implement control system design.

The differential equations of the lumped parameter model of zone 1 are as follows

Bottom : Cw2
dTw4

dt
=
Tz3 − Tw4

Rz3,w4

− Tw4 − Tz1

Rz1,w4

(4.4)

Center : Cz1
dTw4

dt
= Qint+QHV AC+

Tw1 − Tz1

Rin1 +Rw1
2

+
Tw2 − Tz1

Rin2 +Rw2
2

−Tz1 − Tw4

Rz1,w4

−Tz1 − Tw3

Rz1,w3

left : Cw3
dTw3

dt
=
Tz2 − Tw3

Rz2,w3

− Tw3 − Tz1

Rz1,w3
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Table 4.1. Conduction, Convection and Radiation in terms of the circuit model

Sl.No Conduction Convection Radiation

Definition Heat transfer

though a solid body.

Heat transfer be-

tween solid surface

and fluid

Heat transfer be-

tween bodies due to

EM waves

Equation Q̇ = kATh−Tl

l
Q̇ =

Th−Tl

Rth

Q̇ = hA∆T Q̇ = ∆T
Rcv

Q̇ = εhrA (T1 − T2)

Q̇ = ∆T
Rr

Circuit

Ana-

logue
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Figure 4.7. Zone model of the room (top), Lumped parameter model
of zone 1(bottom) [16]

Top : Cw2
dTw2

dt
=

Tz1 − Tw2

Rin2 +Rw2
2

− Tw2 − Tout
Rout2 +Rw2

2

Right : Cw1
dTw1

dt
=

Tz1 − Tw1

Rin1 +Rw1
2

− Tw1 − Tout
Rout1 +Rw1

2

QHV AC = mzica (Tsi − Tzi)

Where mass flow rate mzi is the input and Qradi , Qint are the disturbance input.

The states include all the temperature variables and the output is the target zone
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temperature. For VAV systems where the temperature is fixed (cooling/heating) and

the air mass flow is varied as per the temperature requirement, the problem becomes

nonlinear due to the QHV AC term that has the product of the input mass flow rate

and the target zone temperature. However, the model is linear for CAV systems

where input mass flow rate is fixed and the temperature is the variable.

4.3 Compressor Load Scheduler

Figure 4.8. Efficiency vs % full load of light duty and heavy duty motors [32]

The main purpose of load scheduling is to save energy in a by optimally dis-

tributing load among a set of energy systems that are working towards meeting the

demand additively. Since, the motor in a compressor consumes most of the energy,

this study has been focused on running the compressor motors at their most efficient

points depending on the size and load. In most of the motor driven systems like

compressors efficiency drastically decreases with part loads or lower. This is more

pronounced in compressors of 10HP or lower (figure 4.8) [31]. Given two such equally

sized compressor, it is optimal to run one at full load and keep the other one switched

off rather than splitting the load. This makes sure that the energy systems are not

run at their inefficient points and are turned off or idles when needed. This can be
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extended to more than two compressors or systems of similar nature where it is best

to keep them running at loads greater than part load. However, this may not be the

case for compressors with higher HP as the cost of running a bigger compressor solely

outweighs the relatively higher efficiency at full loads as seen from figure 4.8 [32].

Thus the two modes have been considered for the load scheduler. One for the light

duty compressors with HP equal to or less than 10 and the other for heavy duty com-

pressors with more than 10HP. Figure 4.8 from the DOE shows how the efficiency

decreases with the decrease in the load for three different electric motors. The same

trend can be seen from table 4.2 [33] for the VFDs associated with the motors. Thus

it can be concluded that low duty compressors should be run at at least 70% load

to keep them efficient and heavy duty compressors are uniformly efficient above 20%

loads.

Table 4.2. Efficiency vs load of different compressor VFDs [33]

The concept of job shop scheduling can be applied for optimal scheduling of energy

systems in order to reduce the energy and electricity consumption. In a typical job

shop problem, there are “n” jobs and “m” machines that can perform these jobs

operation by a sequence of “k” operations. Constraints are imposed when the machine

is available to run in the time horizon. The solution to the Travelling Salesman

Problem(TSS)problem is scheduling the tasks of the jobs on each of the devices such
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that the total time of processing is minimized. In this work, this type of formulation

has been generalized and modified so that it can be applied to compressors that have

pumps equipped with VFDs. This model assumes that the compressors with VFDs

are running in parallel to meet the CFM together at a certain pressure set point. The

variables used for the formulation are very generic and are as follows,

Input: Total demand that needs to be met by the energy systems through load

distribution

Minimizef =
∑N

i=1 Constant i ∗ State i +
∑N

i=1 Output i

Constraints:

• Total output from the systems must be greater than or equal to the demand

• The output of the ith system is within the output bounds(between 0 and some

value)

• States are binary i.e they can only take the values of 1(system is “ON” ) and

0(system is “OFF” )

• The output is greater than 0 iff the system is “ON” and 0 iff the system is

“OFF”

Expected Solution: The systems shall be run in their most efficient points i.e

high loads and as many systems as possible should be shut off to save energy. The

formulation is as follows,

d : Total demand

qi : Output capacity of the ith energy system

qi,max : Maximum Output capacity of the ith energy system

qj,min : Minimum Output capacity of the ith energy system

xi : Binary decision variable that indicates the state of the ith energy system

Ci : Cost associated with operating the ith energy system.

Min f =
N∑
i=1

Cixi +
N∑
i=1

qi (4.5)
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S.T:

N∑
i=1

qixi ≥ d(non linear)

qi,min ≤ qi ≤ qi,max, qi+1,min ≤ qi+1 ≤ qi+1,max, . . . . . . . . . qi,min ≤ qi ≤ qi,max

xi ∈ {0, 1}

From the above, it can be seen that the formulation is a modified and simpler

version of the work in [25] which makes it easier to solve. The inputs to this problem

are total demand, minimum and maximum output capacities of the N energy systems.

The cost function consists of two terms; the first is the cost of running the ith energy

system and the second is the cost of having low output capacity for the energy system.

Ci is a constant that depends on the size of the subsystem and it has been used so

that the more energy intensive systems are chosen less frequently . 4.4a ensures

that the total output capacity of the running energy systems is at least as much as

the demand and this constraint is non-linear. 4.4b is used for keeping the output

capacities bounded between the full load and no load. 4.4c shows that xi is a binary

variables that can take either 0 or 1. The outputs variables are xi and pi provide with

the number of energy systems that are running and their respective assigned output

capacities.

The above scheduling problem is solved using as a MILP problem. Though this

formulation is expected to give optimal results (illustrated in the below example),

the model still needs to be validated so that the solution is not sub optimal and the

feasible solution exist for every problem. Also, MINLP gets computationally expen-

sive as the number of decision variables increase. This is not the case with MILP,

therefore it is better to convert the model into a MILP problem. The cost function in
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the formulation is linear however constraint (4.5a) that involves the product of deci-

sion variables is what makes the formulation non-linear. This constraints essentially

ensures that qi is 0 only when x is zero(off) and is greater than zero when x is 1(on)

besides fulfilling the demand constraint. Therefore this constraint can be linearized

and the problem is reformulated as a MILP as follows,

Min f =
N∑
i=1

Cixi +
N∑
i=1

qi (4.6)

S.T:

Demand Constraint:
N∑
i=1

qi ≥ d (4.7)

Bounds: qi,min ≤ qi ≤ qi,max . . . . . . qN,min ≤ q ≤ qN,max

Logical Constraints: qi − qi,maxxi ≤ 0 . . . . . . . . . qN−qN,maxxN ≤ 0

Binary Constraints: xi ∈ {0, 1}

Thus the model is a linear integer programming problem that basically splits the

CFM among the VFD compressors in an optimal fashion (energy efficient) by making

sure that the compressors stay away from part loads. Case studies further prove how

the proposed energy efficient load sharing strategy can be effective saving the overall

energy consumption and costs.
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5. MODEL VALIDATION

The purpose of this chapter is to prove that the proposed modelling generic technique

for the HVAC system is realizable and applicable. This has been done by modelling

a real manufacturing facility using the modelling technique and validating it with the

input and output data collected at the actual facility. Since the Optimal Load Shifter

and the Compressor Load Scheduler are just mathematical formulations rather than

models they have been directly tested using the case studies (Results Chapter).

5.1 HVAC Model Validation

To represent small scale manufacturing industries, a company named Electro-Spec

that specializes in Electroplating, Passivation and Heat treating services [33] has been

chosen. To validate the model, the inputs (HVAC mass flow rate and disturbances)

and output (Temperature in the plant) of the actual plant were logged for 5 days.

Table 5.1 shows the details of the sensor and loggers that were used to log the input

and output parameters for model validation.

For heating and cooling purposes, Electrospec uses 3 Rooftop Units and 2 Pack-

aged that are based on On/OFF control with a maximum Volumetric flow rate of

47m3/s and minimum volumetric flow rate of 4.7m3/s . Since the actual plant has

numerous disturbances affecting the temperature, at least the major temperature

disturbances had to be accounted for model validation accuracy. This includes the

1500 T5s light bulbs that are rated 35 W each and are about 10% efficient (90%

of the power consumed is dissipated as heat), an oven that releases exhaust gases

at 116◦F (46.67◦C) and 40 different chemical tanks(of similar dimensions) that keep

releasing heat at an average temperature of 150◦F (65.56◦C). Since the material prop-

erties of the chemicals in the tanks were not available, these tanks were approximated
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Table 5.1. Sensors and Loggers used for Model Validation

# Sensor Qty Purpose Placement Specifications Sampling

rate

1 Temperature

Sensor and

Datalogger

8 Measure and

log surrounding

rooms tempera-

tures

Close to the

thermostat in the

room

-40◦ to 122◦ F(-40 ◦

C to 50 ◦ C) ± 0.45◦

F from 32◦ to 122◦

F (± 0.25◦ C from

0◦ to 50◦ C)

1 sample/min

2 Temperature

Sensor and

Datalogger

5 Measure average

plant temperature

Close to the ther-

mostats in the

plant

-40◦ to 122◦ F(-40 ◦

C to 50 ◦ C) ± 0.45◦

F from 32◦ to 122◦

F (± 0.25◦ C from

0◦ to 50◦ C)

1 sample/min

3 Current

Sensor

5 Measure the 3

phase current of

the HVAC blower

fans

Hooked to the

one of the 3

phase wires of

the HVAC blower

fans

10-100Amps ±

4.5% of full scale

1 sample/min

as 40 tanks containing HCl(being the most common chemical in the tanks). The wall

surrounding the plants have been named based on the material properties and the

zones that they cover (figure 5.1). Each zone temperature is the disturbance and its

associated wall temperature is the state that affects the temperature of the system.

Figure 5.1 shows the plant layout (provided by Electro-Spec personnel) with zone

names and sensor locations. Table 5.2 shows the common parameters values used

to model the Electro-Spec plant using the RC HVAC method. Table 5.3 shows the

material properties of the zone walls.

There are other uncertain disturbances such as the loading/unloading area that is

open at irregular intervals to the outside temperature for operating the forklifts and

other equipment that havent been accounted for in this model.
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Table 5.2. Parameters used for Electro-Spec plant model

Parameter Definition Value

Cp Specific heat capacity of air 1005 J
kg
.K

hi Convection coefficient of inner walls 5 W
m2 .K

ho Convection coefficient of outer wall 20 W
m2 .K

V min Minimum Volumetric flow rate of air from HVAC 4.7m3/s

V max Maximum Volumetric flow rate of air from HVAC 47m3/s

Table 5.3. Heat Disturbances at Electro-Spec

Disturbance Quantity Temperature

Oven Exhaust 1 320◦F (160◦C)

Chemical Tanks 40 ∼ 150◦F (65.56◦C)

T5 lamps 1500 95◦F (35◦C)

Then using the exact heat transfer and mechanical properties of the materials in

the plant for the model, Electro-Spec plant was modelled using Simulink as shown

in figure 5.2. To use the apply the same temperature disturbances as that of the

actual plant that were logged in the plant using a sampling time of 1min, the whole

system was converted from continuous to discrete with the same sample time(clearly

illustrated in figure 5.4) . Figure 5.4 shows the exploded view of the plant and one

of its subsystem.

The discrete model was linearized about the initial conditions of the plant . The

state space model was found to be Controllable and Observable. The final model had

34 states, 1 input,1 output and 32 disturbances. Figure 5.5 shows the root locus of

the Electro-Spec model which can be used to assess the stability of the system.. From

the root locus, it can be seen that all the poles are within the unit circle. This means

that the system is stable and can be used for implementing control systems.
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Figure 5.2. Simulink block diagram model of the Electro-Spec Plant.
The inputs are the HVAC flow rate and the surrounding room tem-
perature data (S1K, S2K,S3K,S4K,S5K,S6K and O1K)
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Figure 5.3. Exploded view of the Electro-Spec Plant model showing
all the subsystems (zone walls) and disturbances
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Figure 5.4. Exploded view of the S2 zone wall subsystem. The inputs
to this bloack are the plant temperature and S2 room temperature
and the output is the S2 zone wall temperature.R21 and R22 are the
thermal resistances, cs2 is the thermal capacity of S2 zone wall

Figure 5.5. Root locus of the Electro-Spec plant model

Then the temperature response of the model and that of actual plant were com-

pared by applying the same input flow rate to the model as shown in figure 5.6
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Figure 5.6. Comparison between the Actual Temperature of the plant
and the model temperature for 1 day (86400 seconds) with the same
input volumetric flow rate of 47 m3/s

From figure 5.6, it can be clearly seen that the model is quite accurate in terms

of mimicking actual plant. Deviations in the temperature are mainly due to the

assumptions based on which the RC HVAC model for Electro-Spec was built and

other stochastic temperature variation factors that have been previously mentioned.

To find the model validation accuracy, the Mean Absolute Error [34] test was carried

out using the following equation

MAE =
1

n

n∑
j=1

|yj − ŷj| (5.1)

The MAE for this model is 0.39 which means that there is an average error of

0.39 Kelvins between the actual manufacturing facility and model. This model was

further used for applying the energy efficient Model Predictive Control as shown in

the results section of this report.
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Table 5.4. Zone Wall properties

Zone Wall Name Material Area in ( m2

)

Volume

( m3 )

S1 Concrete 23.980 4.872

S2 Gypsum 52.84 5.73

S2 Other side Gypsum 27.31 2.772

S3 Polystyrene 53.821 5.468

S4 Polystyrene 36.391 5.468

S5i Gypsum 25.966 2.638

S5j Gypsum 22.97 2.334

S5k Gypsum 22.97 2.334

S6 Fiberglass, Air, Steel 29.729 7.55

S6 Upper 1 Fiberglass 29.729 1.507

South To lower Fiberglass, Air, Steel 149.015 30.847

South To Upper Fiberglass 298.03 15.139

S1 Upper Fiberglass 17.477 0.866

S6 Upper 2 Fiberglass 31.586 1.601

West To lower Fiberglass, Air, Steel 18.084 22.604

West To Upper Fiberglass 10.234 10.234

North To Upper Right Fiberglass 183.146 9.326

North To Lower Right Fiberglass, Air, Steel 73.57 18.67

S5 Upper Fiberglass 41.67 2.112

North To Upper Left Fiberglass 232.256 11.775

North To Lower Left Fiberglass, Air, Steel 92.902 23.595

S2 Upper Fiberglass 55.912 2.834

East To Upper Fiberglass 45.874 2.326

East To Lower Fiberglass, Air, Steel 20.810 5.287

S3 Upper Fiberglass 53.735 2.78

S4 Upper Fiberglass 39.567 2.006
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6. COMPUTATIONAL RESULTS

6.1 Case Study: Optimal load shifter

As mentioned in the modelling section of the optimal load shifter, real data from a

compressor running at Electro-Spec has been used to show how the predicted demand

can be useful in energy efficient scheduling of the flexible machines.

The demand data of the compressor is defined as follows

Compressor power =
√

3
∗
I∗V (6.1)

Where I is the current and V is the voltage The data had been logged at a sample

time of 1 min. This was adequate enough to capture the changes in the 3 phase current

of the compressor and any lower sampling times would result in the inclusion of high

frequency noise. Since the model requires the sample time of the predicted data to

be at least as much as the minimum run time( the minimum amount of time the

machine has to run once it has been started)of the machine, it may sound feasible to

use existing data. Without down sampling the number of decision variables increase

with the number of machines and scheduling horizon. For example, for a scheduling

horizon of 2.5 hours and two machines, the number of variables would be at least

300 which is undesirable. However, down sampling too much has its drawbacks in

that some of the surges of the demand would not be recorded due to the loss of the

data points. Thus it is crucial to first analyze the data in terms of the surge times

and minimum run time of the machine. Figures 6.1 shows the actual demand data (1

minute sample time) and down sampled (5 minute sample time) demand data for of

a compressor for 2.5 hours

The objective was to schedule all the machines in the low demand period while not

violating the machine runtime constraints(figure 6.2). As discussed earlier, flexible
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Figure 6.1. Compressor demand data sampled after down sampling

machines can be interruptible or uninterruptable. Interruptible machines just need

to run for a minimum run time that is equal to the sample time of the demand

data before they can be stopped or continued. Uninterruptable machines can have a

minimum run time that is equal to n times the sample time of the demand [35].

Load Shifting case 1: Flexible and Interruptible loads

Problem Statement: Two machines both of which have a minimum runtime of

5 minutes need to be scheduled for a total runtime of 75 minutes and 50 minutes

respectively.

The cost function formulation is as follows

Maxf =
30∑
t=1

2∑
i=1

xi,t
−1

avg (Dt+1, Dt)Pi

Constraints:
∑30

t=1

∑2
i=1 xt,i = εi where εi is the number of timesteps the machine

should be in running state
30∑
t=1

xt,2 = 15

30∑
t=1

xt,1 = 10
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The above cost function and constraints were input as matrices in intlinprog func-

tion. Figure 6.3 shows the optimal run time sequence generated by the optimization

model.

Blue line is the predicted demand profile and the rectangular blocks represent

the schedule of the two machines. The bottom rectangular blocks correspond to

the sequence of machine runs for machine 1 and the top ones correspond to that of

machine 2. Similar notation will be followed for the rest of the figures related to

optimal machine scheduling. From visual inspection in figure 6.3 it can be found that

the algorithm makes sure that the machines are run only in the low demand regions.

Also, since the minimum runtime of the machine is same as that of the sample time,

there are no additional mathematical constraints (equations 5.1 c and d) associated

with it which makes it easier for the algorithm to find the global minimum.

Load Shifting case 2: Flexible and Uninterruptible loads

Problem: Two scenarios have been tested for this case. In both the scenarios,

machine 1 is flexible and uninterruptable (minimum run time is not same as demand

sample time) for a certain period while machine 2 is flexible and interruptible.

For the first scenario machine 1 minimum runtime is 10minutes and its total run

time is 20 and the total runtime for machine 2 is 50 minutes. Machine 1 minimum

runtime is 15 minutes for both machines and the total run time is 30 minutes for

machine 1 and 50 minutes for machine 2 in the second scenario. The formulation is

as follows,

Minf =
30∑
t=1

2∑
i=1

xi,t
−1

avg (Dt+1, Dt)Pi

Constraints:
30∑
t=1

xt,2 = 4

30∑
t=1

xt,1 = 10

x1,1 + x1,2 + x1,3 +My1 = 2
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x1,2 + x1,3 + x1,3 +My2 = 2

...

x1,34 + x1,35 +My35 = 2

x2,1 + x2,2 +My36 = 2

x2,2 + x2,3 +My37 = 2

...

x1,33 + x1,34 +My70 = 2

35∑
1

yk = 3

70∑
36

yk = 9

The formulation for the second scenarios is quite similar to the first except for the

change in the minimum time parameters for both machines.

As can be seen from figures 6.4 and 6.5 the algorithm schedules the machines

such that the machines are run only during the low demand time steps. Also, the

constraints for machine 1 is satisfied for both the scenarios i.e uninterruptable runtime

and the total runtime. This is made possible through the additional constraints

that force the algorithm to consider all the possible combinations of the machine

sequence and selects the ones that have the lease cost. The total number of variables

for scheduling 2 machines flexible and uninterruptable over a period of 2.5 hours is
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at least 60 depending on the minimum runtime. Intlingprog() which is the integer

programming solver in MATLAB solves for 89 variables within 0.2 seconds which

means that more than 2 machines and longer schedule periods are feasible using the

load shifter. For detailed problem formulation in MATLAB refer to Appendix A or

the illustrative examples.

6.2 Case Study: Compressor Scheduler

In this case study, 6 industrial grade compressors with VSDs have been chosen to

test the heavy-duty mode and light duty mode of the load scheduler. The specifica-

tions of the compressors are detailed in table 6.1. The objective here is to schedule

in an energy efficient way while meeting the demand thus reducing costs [25].

Table 6.1. Light duty and heavy duty compressors used for the case study

# Name Max CFM at 100

PSI

HP

1 Quincy QT-54 16 5

2 Emax ERVK070003 29 7.5

3 CPVSd 10 BM 43 10

4 Atlas GA37 125 AFF 229 50

5 J75 Mohawk VSD 341 75

6 EMAX 100-HP Rotary Screw Air Compres-

sor

423 100

The first three compressors would be tested using the light duty mode and the

last three will be tested using the heavy duty mode as per their HP ratings.

Case 1: A total demand of 25cfm at 100 Psi has to be met by 3 light duty

compressors with Max CFMs q1,max =229 CFM, q2,max =341 CFM , q3,max =423

CFM at the same pressure.
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Find: x1 , x2 , x3 (systems states) and q1 , q2 , q3 (Compressor CFM)

As mentioned in the modelling section only the constants corresponding to the

states of the compressors are chosen to follow the triangle law of sides i.e C1=3,C2=4

and C3=5

Minf =
∑N

i=1Cixi+
∑N

i=1 qi

Minf = 3 x1 +4 x2 +5 x2 + q1 + q2 + q3

Compressor Scheduler Solution: x1 = 0, x2 = 1, x3 = 0, q1 = 0, q2 = 25, q3 = 0 .

In, other words only compressor 2 should run at 25CFM (100Psi).

The flow of the algorithm is as follows,

Figure 6.7 shows the results obtained using the MATLAB code that uses intlin-

prog()(branch and bound algorithm) to find the optimal solution for scenario 1.

To show the effectiveness of the light duty mode, the results obtained using this

mode have been compared to a scheduling system that loads the compressors in the

increasing order of their capacities. The following equation is used to find the cost

of running each of the compressors over a period of 5 hours for both the schedulers

being compared,

Cost =
(bhp)x (0.746)x (#of operating hours)x

(
$

kWh

)
x (%time)x (%full load bhp)

Moto Efficiency

Using $ 0.10 per KWh(Indiana) and the specs of each of the compressor in table

6.1 the cost incurred without using the proposed scheduler for scenario 1 is $ 3.07

and that when the scheduler is used is $ 2.58 which translates to about 16% energy

and cost savings.

Case 2: A total demand of 400cfm at 100 Psi has to be met by the 3 heavyduty

compressors with Max CFMs q1,max =229 CFM, q2,max =341 CFM , q3,max =423 CFM

at the same pressure. Find: x1 , x2 , x3 (systems states) and q1 , q2 , q3 (Compressor

CFM)

In this case only the constants corresponding to the capacities of the compressors

are chosen i.e i.e D1=1, D2=4 and D3=5
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Minf =
∑N

i=1 xi+
∑N

i=1Diqi

Minf = x1 + x2 + x2 + 1q1 + 2q2 + 3q3

Compressor Scheduler Solution: x1 = 1, x2 = 1, x3 = 0, q1 = 229, q2 = 271, q3 = 0

which means that compressor 1 should run at full load and and 2 should run at 271

CFM. Figure 6.8 shows the results obtained using the MATLAB code for scenario 2.

A parallel compressor system without the heavy duty mode would not switch to

each of the compressor in the increasing order of their capacities. To show the ef-

fectiveness of the proposed compressor scheduler in the above scenario, it has been

compared to a system where the compressor whose capacity is closest to the total

capacity is used first and the rest of the demand is fulfilled by the remaining com-

pressor in the decreasing order of their capacity. Using equation and 0.10$ /Kwh for

Indiana, the cost incurred without using the proposed scheduler for scenario 1 is $

50.6 and that when the scheduler is used is $ 43.18. Therefore, the scheduler can

result in about 14.6% lesser costs if used for scheduling heavy duty air compressor

systems.

6.3 HVAC MPC

The validated Simulink model representing the Electro-Spec plant was used to

show the effectiveness of the MPC in decreasing energy consumption hence the costs.

In terms of the practical implementation of such a control system, the blower fans

need to equipped with Variable Frequency Drives(VFDs) so that the fans can run just

enough to meet the heating or cooling loads without wasting energy unnecessarily.

The model that was built using the RC modelling technique is first the model was

first linearized about the equilibrium points (294K) and converted into continuous

state space form. Then using the zero order hold and sampling time, it is converted

to discrete state space form. This has to be done for two reasons 1)MPC works with

only discrete models and 2)the disturbances and the inputs that were measured at

the facilities are obviously discrete in time(sampled at 1 sample per second). Then
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as discussed in the MPC section, the matrix was converted to augmented form and

corresponding matrixes Y, F and Φ were found. Since, the MPC requires, the past

and present states of the systems Kalman filter based state estimator of MATLAB

was used to achieve this. The MPC controller was implemented in Simulink which

has a cost function as follows (as per MATLAB Documentation),

J (u) =

p∑
i=1

{
wy

i

sy
[rj (k + i|k)− yj (k + i|k)]

}2

+

p−1∑
i=1

{
w∆u

i

su
[uj (k + i|k)− yj (k + i− 1|k)]

}2

+ ρεε
2
k

(6.2)

Which is subject to the following constraints,

x (k + 1) = Ax (k) +Bu (k) , y (k) = Cx (k)

ymin(i)

sy
− εkV y

min (i) ≤ y (k + i|k)

sy
≤
ymax(i)

sy
− εkV y

max (i) , i = 1 : p, j = 1 : n

umin(i)

su
− εkV u

min (i) ≤ u (k + i− 1|k)

su
≤
umax(i)

su
− εkV u

max (i) , i = 1 : p, j = 1 : n

∆umin(i)

sy
− εkV ∆u

min (i) ≤ ∆u (k + i− 1|k)

sy
≤

∆umax(i)

sy
− εkV ∆u

max (i) , i = 1 : p, j = 1 : n

Where y is the output, u is the input, ∆u is the input rate, and wy
i and w∆u

i

are the weights associated with the ith tracking and input rate terms respectively.

εk is used as slack variable to soften the constraints whenever possible to keep the

controller from stopping without finding the solution. The above cost function is

responsible for reference tracking and controlling the change in the input (reducing

the energy). This is subject to the discrete state space model and bounds placed on

the output, input and input rate. Figure 6.9 shows simplified block diagram of how

the controller and Electro-Spec plant are connected together and figure 6.10 shows

its Simulink model .At the facility the HVAC fans are running at full speed to cool

the space.

Before starting the simulation, the input which is HVAC flow rate was constrained

between 4.7 and 47 m3/s as these were the physical limiations of the HVAC systems

at the actual facility and the rate of flow rate was constrained between 5 m3/s2 and
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-5 m3/s2 which is quite reasonabale for most fans with VFDs. To get acceptable

performance with less overshoot or oscillations or more rise time, the MPC was tuned

by the changing the weights wy
i and w∆u

i . The MPC was tested on the plant model

for a setpoint of 296K as shown in figure 6.11 and 6.12. In figure 6.12, the blue plot

respresents the actual temperature at the facility with the fans running at full speed

and providing a maximum CFM of 47 m3/s . The red plot on the other hand is the

simulated temperature response of the plant with the same inputs and disturbances .

From figure 6.11, it can be seen that the output response has a slight % overshoot

(50% ) in the beginning, but has a very good tracking (steady state error of 0.001),

a rise time of 16 minutes and a settling time of 46 minutes despite the input and

input rate constraints. In figure 6.12, the difference between the red line and the blue

line represent the potential energy savings associated with the MPC implementation.

This performance is reasonable since in a plant environment temperature fluctuations

of about 2◦F over a period of 1 hour are tolerable than a large rise time that leads to

discomfort for longer periods of time. The total HVAC fan power consumption(as per

the measured average 3 phase current at the facility) in case of the existing ON/OFF

control(3 phase) is given by

P =
5∑
1

V ∗
√

3

= 460V ∗
√

3 ∗ (24.61 + 24.42 + 17.38 + 14.22 + 13.83)Amps = 75.260KW

The average Input rate as per figure 31 is 33.996 m3/s. The power consumption of

the HVAC fans with the proposed controller is 54.436KW. This is about 27.6% reduc-

tion in the power and energy consumption. The assumption here is that the current

varies almost linearly with the air flow rate which was used to linearly interpolate the

power consumption using the average input rate of the Controller.
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Figure 6.2. Flow chart of the Optimal Load Shifting problem
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Figure 6.3. Optimal machine schedule for case 1. Each block in the
x axis is the 5 minute timestep which is down sampled timestep from
figure 6.1

Figure 6.4. Optimal machine schedule for scenario 1 of Flexible and
Uninterruptible machines case
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Figure 6.5. Optimal machine schedule for scenario 2 of Flexible and
Uninterruptible machines case
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Figure 6.6. Flow chart for the Compressor Load Shifting problem
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Figure 6.7. The solution for compressor case 1. X is a vector of the
decision variables that indicates the status of the compressors(first
three values) and the CFMs assigned to the compressors(last three
values)

Figure 6.8. The solution for compressor case 2. X is a vector of the
decision variables that indicates the status of the compressors(first
three values) and the CFMs assigned to the compressors(last three
values)
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Figure 6.9. Simulink Schematic for the Electrospec Model with MPC

Figure 6.10. Simulink block diagram of the HVAC model with MPC
(block on the left)
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Figure 6.11. Controlled plant temperature using the MPC for a set point of 295K

Figure 6.12. Controlled plant input flow rate using the MPC for a
set point of 296K
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7. SUMMARY AND CONCLUSION

In this thesis, the potential energy saving strategies have been explored for the SEU

systems which are the HVAC, Compressors and machines driven by electrical motors.

The proposed energy management techniques have been proved to be effective in

reducing the energy and costs. The OLS was used to achieve load shifting and valley

filling which resulted in lower peak demand and costs. The CLS was used to distribute

loads among compressors such that all the compressor run in their most efficient

conditions for energy efficiency. The lumped parameter HVAC model was used to

model a manufacturing facility and the MPC was implemented as the HVAC control

for the validated model to improve the energy savings.

In case of the optimal shifter, there is potential for cost saving even though the

energy consumption is same due to the load shifting that reduces the peak demand.

This is usefully manufacturing industries that are located in regions with utilities

that have TOU and Peak Demand schemes. The Compressor scheduler was able to

reduce the energy and cost for both the heavy and light duty compressors and this

is a generic formulation that can be used regardless of the compressor type as long

as the compressor is VFD type and works with other compressor in parallel config-

uration. The MPC pertaining to its optimal nature was able to reduce the overall

energy consumption by running the fan only when needed. The total framework when

implement has a potential of saving upto 40% of energy and costs as summarized in

the below table. Table 7.1 summarizes the cost and energy savings of the proposed

energy management framework.
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Table 7.1. Estimated energy savings with the proposed framework

# Energy Management

Technique

Type Savings

1 Optimal Load Shifter Optimization 27.6% Energy and Cost

saving

2 Compressor

Scheduler

Optimization 14.6% (Heavy duty) and

16% (Light duty)Energy

and Cost saving

3 HVAC MPC Control System Cost Savings depending

on the peak demand price

or TOU price
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A. COMPRESSOR SCHEDULER CODE

1 d=25;

2 f = [ 3 ; 4 ; 5 , ; 1 ; 1 ; 1 ] ;

3 in tcon = [1 2 3 4 5 6 ] ;

4

5 %l i n e a r i n e qua l i t y c on s t r a i n t s .

6 % A = [−1 ,−1 ,0 ,0 ;0 ,0 ,−1 ,−1;−50 ,0 ,1 ,0 ;0 ,−100 ,0 ,1 ] ;

7 % b = [−1 ,−100 ,0 ,0 ] ;

8 A = [−1 −1 −1 0 0 0;−16 0 0 1 0 0 ;0 −29 0 0 1 0 ;0 0 −43 0 0 1 ;0 0 0

−1 −1 −1];

9 b = [−1 0 0 0 −d ] ;

10 Aeq= [ ] ; beq = [ ] ;

11

12 %bound con s t r a i n t s .

13 lb = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

14 ub = [ 1 ; 1 ; 1 ; 1 6 ; 2 9 ; 4 3 ] ; % Enforces x (3 ) i s b inary

15

16 %Cal l i ng i n t l i n p r o g .

17 x = i n t l i n p r o g ( f , intcon ,A, b , Aeq , beq , lb , ub )
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B. LOAD SHIFTING CODE

1 f unc t i on [ ] = loadsh i f t va lmod2 f (n , ta ,T,ST,nT,M2)

2 t i c

3 c l o s e a l l ;

4 nd=n−1;

5 ta=ta ( 1 : n) . ’ ;

6 tad=mean ( [ ta ( 1 : end−1) ; ta ( 2 : end ) ] ) ;

7 tad=1./ tad ;

8 ndT=T/ST−1

9 f 1=[−1/p1;−1/p2 ] ;

10 f 2=repmat ( f1 , nd , 1 ) ;

11 in tcon = 1:2∗nd+nd−ndT ;

12 tad=repelem ( tad , 2 ) ;

13 tadd=tad . ’ ;

14 f=f2 .∗ tadd ;

15 f =[ f ; z e r o s (nd−ndT , 1 ) ]

16 %l i n e a r i n e qua l i t y c on s t r a i n t s .

17 zo=[0 −1];

18 zone=repmat ( zo , 1 , ndT)

19 Azone=[−1 zone ] ;

20 A0(1 : 2∗nd−l ength (Azone ) )=ze ro s ;

21 A1=[Azone A0 ] ;

22 A2=repmat (A1 , nd−ndT , 1 ) ;

23 % id =[0 :2 : 2∗nd−4] ;

24 id = [0 : 2 : 2∗ ( nd−ndT) −2];

25 A3=ce l l 2mat ( arrayfun (@(x ) c i r c s h i f t (A2(x , : ) , [ 1 id ( x ) ] ) , ( 1 : numel ( id )

) ’ , ’ un ’ , 0 ) ) ;

26 Aeye=(−10)∗ eye (nd−ndT) ;

27

28 A=[A3 Aeye ]

29 Ae=eye (2 ) ;
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30 Aeq1=repmat (Ae , nd , 1 ) . ’ ;

31 Aeq2=[Aeq1 ze ro s (2 , nd−ndT) ] ;

32 Aeqzo=[ z e ro s (1 ,2∗nd) ones (1 , nd−ndT) ] ;

33

34 Aeq=[Aeq2 ; Aeqzo ]

35 %Aeq=Aeq2

36 beq = [nT/ST M2 nd−nT/ST

37

38 %bound con s t r a i n t s .

39 lb=ze ro s (2∗nd+nd−ndT , 1 ) . ’

40 ub=ones (2∗nd+nd−ndT , 1 ) . ’

41

42 %Cal l i ng i n t l i n p r o g .

43 [ x , f v a l ] = i n t l i n p r o g ( f , intcon ,A, b , Aeq , beq , lb , ub ) ;

44

45 t=1:n ;

46 p lo t ( t , ta )

47 % plo t ( t , t25 )

48 hold on

49 %de f au l t f l e x i b l e load schedu le

50

51 r e c t ang l e ( ’ Po s i t i on ’ , [ 1 0 1 1 ] )

52 r e c t ang l e ( ’ Po s i t i on ’ , [ 2 0 1 1 ] )

53 r e c t ang l e ( ’ Po s i t i on ’ , [ 3 0 1 1 ] )

54 r e c t ang l e ( ’ Po s i t i on ’ , [ 4 0 1 1 ] )

55 %load s h i f t e d schedu le

56

57 f i g u r e

58 % plo t ( t , t25 )

59 p lo t ( t , ta )

60 hold on

61

62 k=0;

63 f l a g =0;

64 i =1;
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65 k=1;

66 toc

67 whi le k<=nd

68 i f x (2∗k )˜=0 | | x (2∗k−1)˜=0

69 r e c t ang l e ( ’ Po s i t i on ’ , [ k 0 1 x (2∗k−1) ] )

70 r e c t ang l e ( ’ Po s i t i on ’ , [ k 1 1 x (2∗k ) ] )

71 end

72 k=k+1;

73 end

74 di sp (x ) ;

75 end


