
SOLVING TIME PREDICTION PROBLEMS IN NETWORKS USING

GRAPHLETS AND EMBEDDING BASED LOCAL FEATURES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Vachik S. Dave

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mohammad Al Hasan, Co-Chair

Department of Computer Science, Purdue University Indianapolis

Dr. David Gleich, Co-Chair

Department of Computer Science, Purdue University West Lafayette

Dr. Christopher W. Clifton

Department of Computer Science, Purdue University West Lafayette

Dr. Snehasis Mukhopadhyay

Department of Computer Science, Purdue University Indianapolis

Approved by:

Dr. Voicu Popescu

Head of the Graduate Program

iii

To my parents for their unconditional love, and patience.

iv

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my Ph.D. advisor Professor Moham-

mad Al Hasan for his continuous support during my doctoral study. He introduced me

to advanced research in information retrieval, graph analysis, and machine learning.

He guided me to develop critical and independent thinking for any research problem.

He taught me, how to design experiments to validate the research ideas, and how to

write high-quality papers to present research contributions. He always gave me the

freedom to investigate various research problems of my interest and skill-set. I also

learned a lot by taking his graduate level data mining and algorithm courses, which

were beneficial to my academic research, as well as, to my professional career.

Next, I would like to pay gratitude to all professors who served as my thesis com-

mittee members, namely Professor David Gleich, Professor Christopher Clifton and

Professor Snehasis Mukhopadhyay for their guidance, encouragement, and sugges-

tions to improve my thesis work. Additionally, I like to thank Professor Chandan

K. Reddy of Virginia tech. for his valuable guidance during my learning of Survival

Analysis models and its application in the graph analysis domain. I also like to thank

Dr. Nesreen K. Ahmed (Intel Labs) for her important feedback and guidance in the

graphlet counting project of my thesis.

Lastly, I am grateful to my parents and my sister for their long-term support and

love. Their love and companionship have been my greatest motivation to complete my

Ph.D. thesis. I would like to thank them for patience and continuous encouragement

during these stressful times. Also, I would like to thank my friends and lab-mates for

their constant support during my Ph.D. journey.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xiii

ABBREVIATIONS . xvi

ABSTRACT . xvii

1 INTRODUCTION . 1

1.1 Contributions . 3

1.1.1 Time prediction in a directed network 4

1.1.2 Time prediction in an undirected network 6

1.1.3 Edge feature design using local graphlet frequency 7

1.1.4 Attributed network embedding for features 8

1.1.5 Index for shortest distance query in a directed network 10

1.2 Organization of the Thesis . 11

1.3 Preliminaries . 12

1.3.1 Notations. 12

1.3.2 Graphlets . 12

1.3.3 Network Embedding . 13

1.3.4 Survival analysis models . 15

2 RELATED WORKS . 19

2.1 Reciprocal link time prediction . 19

2.2 Predicting triangle completion time . 21

2.3 Local graphlet counting methods . 22

2.4 Neural network based network embedding 23

2.5 Index for shortest distance query in a directed network 24

3 PREDICTING RECIPROCAL LINK CREATION TIME 26

vi

Page

3.1 Introduction . 26

3.2 Problem Formulation . 29

3.3 Dataset Study . 30

3.3.1 Modeling interval time using Parametric Distribution 32

3.3.2 Social Stratification in Enron 33

3.4 Topological Feature Study . 34

3.4.1 Directed Altruism Based Features 34

3.4.2 Social Stratification Based Features 36

3.4.3 Feature analysis . 39

3.5 Proposed methodology using survival analysis 42

3.6 Survival models for the RLTP problem 45

3.6.1 Cox Regression . 46

3.6.2 Parametric Models . 46

3.7 Algorithmic framework . 48

3.8 Experiments and Results . 50

3.8.1 Datasets . 51

3.8.2 Experimental Setting . 51

3.8.3 Evaluation Metrics . 52

3.8.4 Comparison results of survival models and regression models . . 53

3.8.5 Comparison with GLM . 57

3.8.6 Importance of ever-waiting links 59

3.8.7 Importance of reciprocal links with small interval time 60

3.8.8 Contribution of Top-5 features 62

3.9 Chapter Summary . 63

4 TRIANGLE COMPLETION TIME PREDICTION 65

4.1 Introduction . 65

4.2 Problem statement . 67

4.2.1 Problem formulation. 67

vii

Page

4.3 Dataset study . 69

4.3.1 Study of triangle generation rate. 70

4.3.2 Interval time analysis. 70

4.4 GraNiTE Model . 72

4.4.1 Graphlet-based Time-ordering Embedding. 73

4.4.2 Time-preserving Node Embedding. 76

4.4.3 Model inference and optimization. 78

4.4.4 Interval time prediction. 79

4.5 Experiments and results . 80

4.5.1 Experiment settings. 81

4.5.2 Comparison results. 83

4.5.3 Convergence and dimensionality study. 86

4.5.4 Importance of inclusion of time while learning embedding. . . . 87

4.5.5 Study importance of each embedding approach. 88

4.6 Chapter Summary . 89

5 COUNTING EDGE-CENTRIC LOCAL GRAPHLETS 91

5.1 Introduction . 91

5.2 Problem formulation . 93

5.2.1 Problem definition . 96

5.3 Proposed method . 96

5.3.1 3 and 4 sized local graphlet counting 97

5.3.2 5-size Local Graphlet Counting 100

5.3.3 Generic Counting Algorithm 106

5.3.4 Counting frequency of non-symmetric local graphlets 109

5.3.5 Complexity Analysis . 111

5.3.6 Parallelizing the E-CLoG . 111

5.4 Experiments and Results . 112

5.4.1 Runtime Comparison . 113

viii

Page

5.4.2 Scalability . 116

5.4.3 Link Prediction . 116

5.5 Chapter Summary . 118

6 ATTRIBUTED NETWORK EMBEDDING FOR RELATED ATTRIBUTES120

6.1 Introduction . 120

6.2 Problem Formulation . 121

6.3 Methodology . 122

6.3.1 Model Design . 122

6.3.2 Model Optimization . 125

6.4 Experiments and Results . 126

6.4.1 Data Preparation . 126

6.4.2 Comparison Works . 128

6.4.3 Experiment Settings . 128

6.4.4 Comparison Results . 129

6.4.5 Job Clustering . 130

6.4.6 Case Study . 131

6.4.7 Example of Job and Skill Recommendations 133

6.4.8 Parameter Study . 134

6.4.9 Convergence Study . 135

6.5 Chapter Summary . 135

7 ATTRIBUTED NETWORK EMBEDDING FOR SPARSE INDEPENDENT
ATTRIBUTES . 137

7.1 Introduction . 137

7.1.1 The solution and contribution. 138

7.2 Problem Statement . 139

7.3 Neural-Brane: Attributed Network Embedding Framework 141

7.3.1 Embedding Layer . 142

7.3.2 Hidden Layer . 144

ix

Page

7.3.3 Output and BPR Layers . 145

7.3.4 Model inference and optimization 146

7.3.5 Model complexity analysis. 147

7.4 Experiments and Results . 148

7.4.1 Experimental Setup . 148

7.4.2 Quantitative Results . 152

7.4.3 Analysis of Parameter Sensitivity and Algorithm Convergence 156

7.4.4 Effect of Pooling Strategy and Number of Training Triples . . 157

7.4.5 Scalability study . 158

7.4.6 Effectiveness of BPR loss and contribution of other Neural-
Brane layers . 159

7.5 Chapter Summary . 159

8 INDEX FOR SHORTEST DISTANCE QUERY IN A DIRECTED NET-
WORK . 161

8.1 Introduction . 161

8.2 Method . 163

8.2.1 Topological compression . 163

8.2.2 Index generation . 169

8.2.3 Index for weighted graph . 172

8.2.4 Query processing . 173

8.2.5 Theoretical proofs for correctness 174

8.3 Indexing for general directed graph 179

8.3.1 Distance for dummy edges: . 180

8.3.2 Modification in index and query processing 182

8.3.3 Correctness revisited . 184

8.4 Experimental evaluation . 184

8.4.1 Datasets . 185

8.4.2 Results and Discussion . 186

8.5 Chapter Summary . 189

x

Page

9 CONCLUSION AND FUTURE WORKS 190

REFERENCES . 192

VITA . 207

xi

LIST OF TABLES

Table Page

3.1 Basic statistics of the datasets used in the RLTP study. 31

3.2 Correlation of features with Interval time 38

3.3 Correlation of features with Low and High Interval times 42

3.4 Density, Survival and Hazard functions for the distributions used with
AFT model. λ is scale parameter and k is shape parameter for both
Weibull and log-logistic distribution. For log-normal distribution µ is the
mean (location parameter), σ2 is the variance and Φ is cumulative distri-
bution function of normal distribution. 47

3.5 Epinion Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period. 54

3.6 MC-Email Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period. 55

3.7 Enron Dataset: TD-AUC results [mean (±standard deviation)] with dif-
ferent splits used for training period. 55

3.8 TD-AUC results [mean (±standard deviation)] for various methods on
synthetic datasets. 56

3.9 Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with and without ever-waiting Links on real datasets. . . 58

3.10 Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with and without ever-waiting Links on synthetic datasets.59

3.11 Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with top5-features and all features. 62

4.1 Statistics of datasets (* T in years for DBLP) 67

4.2 User parameters for the embedding methods 82

4.3 Comparison experiment results using MAE for interval times in 1st (≤
30days) and 2nd-month (31-60days). [for DBLP dataset: 0-2 years
and 3-7 years]. For GraNiTE, % improvement over the best competing
method (underlined) is shown in brackets. 83

xii

Table Page

4.4 Pearson correlation between l1 distance (in embedding space) and interval
times. 87

5.1 Summary of the notations . 98

5.2 List of enumerating and non-enumerating 5 sized local graphlet types . . 101

5.3 Set of values for template variables to count various 5 size local graphlets 109

5.4 Dataset statistics . 112

5.5 Runtime comparison between E-CLoG and GRAFT (d = days, h = hours,
m = minutes, s = seconds) . 114

5.6 Comparison results for Link Prediction Problem 117

5.7 Useful graphlets for link prediction . 118

6.1 Comparison results for job transition recommendation. (Embedding di-
mension = 50) . 129

6.2 Top 10 job and skill recommendations for 3 different job owners 132

7.1 Statistics of Four Real-World Datasets 149

7.2 Quantitative results of Macro-F1 between the proposed Neural-Brane and
other baselines for the node classification task using logistic regression on
various datasets (embedding dimension = 150). [∗GraphSAGE for Arnet-
miner is not able to complete after 2 days.] 152

8.1 Intermediate index generated from the DAG in Figure 8.2(b) 171

8.2 Index for the DAG in Figure 8.1 . 172

8.3 Real world datasets and basic information 185

8.4 Average Query Time for DAG (µs) . 187

8.5 Average Query Time for General Graph (µs) 187

xiii

LIST OF FIGURES

Figure Page

1.1 Major contributions of the thesis. 4

1.2 size-4 graphlets . 12

3.1 An illustration of reciprocal link time prediction RLTP problem. 28

3.2 Histogram of interval time of reciprocal link. 31

3.3 Goodness of fit comparisons for different distributions. 33

3.4 Relation of In/OutRatio and linking back probability in Epinion dataset . 38

3.5 DirectedDist vs. Interval Time . 40

3.6 Comparison of GLM and cox regression . 57

3.7 Epinion Dataset: Comparison of training with top 20% reciprocal links
and all reciprocal links. 60

3.8 MC-Email Dataset: Comparison of training with top 20% reciprocal links
and all reciprocal links. 61

3.9 Enron Dataset: Comparison of training with top 20% reciprocal links and
all reciprocal links. 61

4.1 Simple illustration of the utility of TCTP problem for providing improved
friend recommendation. In this figure, user A is associated with 4 triangles,
whose predicted completion times are noted as label on the triangles’ final
edges (red dotted lines). The link recommendation order for A at a time
T , based on the earliest triangle completion time, is shown in the table on
the right. 65

4.2 Frequency of new edges (green line) and new triangles (blue line) created
over time. Ratio of newly created triangle to the newly created link fre-
quency is shown in red line. Y-axis labels on the left show frequency of
triangles and link, and the y-axis labels on right show the triangle to link
ratio value. 68

4.3 Plots of cumulative distribution function (CDF) for interval times 69

4.4 Interval time prediction for edge (u, v) using Proposed GraNiTE. 71

4.5 Local graphlets for given edge (u, v) . 72

xiv

Figure Page

4.6 Learning of the graphlet embedding matrix using three data instances . . . 74

4.7 Learning of the node embedding matrix using two edges (node-pairs). . . . 77

4.8 (u, v) as 4-triangle link . 80

4.9 Comparing random feature based method with GraNiTE. 84

4.10 Convergence patterns and dimensionality study 85

4.11 Comparing TimeLess embedding method with GraNiTE. 86

4.12 Scatter plots of 1000 random instances to show correlation of l2-distance
with interval times. 88

4.13 Comparing Time-preserving Node embedding with GraNiTE. 89

5.1 3-4 size local graphlets . 95

5.2 Example of 4 size non local graphlets. Left: a non-local edge orbit of
4-path, structurally identical to g2; right: a non-local edge orbit of tailed-
triangle, structurally identical to g5 and g6. 95

5.3 5 size local graphlets . 101

5.4 Illustration of how different values of l2 and l3 generates different graphlet
types . 103

5.5 5 clique graphlet counting . 108

5.6 Example of edge symmetric and non-symmetric graphlets 110

5.7 Strong scaling results for a variety of graphs. I obtain 14x–20x speedup
using 70 threads. 115

6.1 Data Preparation . 127

6.2 Clustering of similar job-categories in embedding space 130

6.3 Clustering of non similar job-categories in embedding space 130

6.4 Comparison of job transitions of a user 131

6.5 Performance of the proposed models for different learning rate values . . 134

6.6 Performance of the proposed models for different embedding dimensions . 135

6.7 Convergence study for both proposed embedding methods 136

7.1 Neural-Brane architecture. Given a node u, au is its binary attribute
vector and nu is its adjacency vector. The model training uses node-
triplets (u, i, j), such that (u, i) ∈ E and (u, j) 6∈ E 140

xv

Figure Page

7.2 The figure shows the mechanism of the embedding layer for the vertex b of
a toy attributed graph. The graph contains 5 vertices and 6 edges, where
each vertex is associated with a collection of nodal attributes. For example,
vertex b is connected to vertices {a, c, d} and associated with attributes
{x2, x6}, respectively. The cardinality of the attribute set {x1, · · · , x7} is 7. 141

7.3 The visualization comparison among various embedding methodologies for
Caltech36 and Reed98 datasets . 154

7.4 The performance of node clustering . 155

7.5 Analysis of the embedding dimension and convergence 156

7.6 Study effects of pooling strategy and # training triples 157

7.7 Scalability Study and importance of BPR loss and other layers of the
Neural-Brane. 158

8.1 Pre-processing of DAG before Compression: (a) Original DAG G and (b)
Modified DAG Gm. The dummy edges data structure (DummyEdges)
associated with this modified DAG is shown to the right. 163

8.2 (a) 1-Compressed Graph G1, (b) Modified 1-compressed Graph G1
m, (c)

2-Compressed Graph G2 . 168

8.3 Shortest path from u to v passing through x 175

8.4 Dummy edge handling . 179

8.5 Average Query time comparison . 188

8.6 Index Building time for Synthetic graphs 188

xvi

ABBREVIATIONS

RLTP Reciprocal Link Time Prediction

TCTP Triangle Completion Time Prediction

FFNN Feed Forward Neural Network

SVR Support Vector Regression

BFS Breadth First Search

SVM Support Vector Machine

LDA Latent Dirichlet Allocation

GLM Generalized Linear Model

SCC Strongly Connected Component

DAG Directed Acyclic Graph

AFT model Accelerated Failure Time model

MLE Maximum Likelihood Estimation

AUC Area Under Curve

TD-AUC Time-Dependent AUC

PR-AUC Precision-Recall AUC

LGFD Local Graphlet Frequency Distribution

HR Hit Rate

NDCG Normalized Discounted Cumulative Gain

BPR Bayesian Personalized Ranking

NNMF Non-Negative Matrix Factorization

NMI Normalized Mutual Information

NGF Normalized Graphlet Frequency

MAE Mean Absolute Error

xvii

ABSTRACT

Vachik S. Dave Ph.D., Purdue University, August 2019. Solving Time Prediction
Problems in Networks using Graphlets and Embedding based Local Features. Major
Professor: Mohammad Al Hasan.

Real-world networks are inherently dynamic; vertices and edges of these networks

appear or disappear in a systematic pattern over time. Hence, the exact time at

which the network elements, such as, the vertices or the edges appear or disappear

is important information for modeling such networks. Additionally, as we predict

a future event (say, link generation) on the network, it is also important to predict

the exact time of that future event, because the availability of the event time makes

the event prediction more valuable in terms of real-life utility of that prediction.

Unfortunately, existing works on dynamic networks do not consider the time value;

neither do they use the time information for modeling the network nor do they predict

the time of a future event.

In this thesis, I have solved the event time prediction variant of multiple well-

known problems in social networks. For instance, link prediction is a well known and

possibly the most-studied problem in network analysis. But, the existing solutions to

this task only predict whether a future link will appear or not—on some occasions,

with a probability value. Unlike the existing works, in my thesis, I have proposed

machine learning solutions that answer the question, “when will a link appear?”,

instead of answering whether a link will appear. I have also developed methods to

use the time value of a link for the network modeling task, specifically, for learning

features of a network element (a vertex, or an edge), which can subsequently be

used for predicting the time value of a future event in the network. As I solve the

time prediction problem in the network, I target to predict the link creation time in

xviii

both directed and undirected networks. To put it succinctly, this thesis opens up a

new dimension in the network analysis task, where the time of the event has been

considered explicitly both in the modeling and also in the prediction. The specific

time prediction problems that I have designed are discussed below.

The first problem is Reciprocal Link Time Prediction (RLTP) problem, which is

designed to predict the creation times of reciprocal links. RLTP is a versatile tool

which can be applied to many real-world applications. For example, RLTP can be

used to predict the elapsed time between receiving an email and sending its reply,

or it can be used to determine the follow-back time or friend request acceptance

time in online social networks. The second problem is Triangle Completion Time

Prediction (TCTP) problem, which is designed to predict the creation time of a link

that completes one or more triangles. A triangle is a prominent and basic building

block of social networks and it is shown by researchers that the majority of new

links created in social networks complete a triangle(s) in the network. Hence, a

good solution of this problem can effectively improve the performance of various

network analysis problems such as the link prediction problem, network expansion

study, network generation models, community structure generation. Also, a solution

of this problem provides an ordering of the future links based on their creation time,

which is very useful to rank the user recommendations in different domains. Lastly,

time prediction is the main theme of my research, but the machine learning solutions

to such prediction problems require effective and efficient feature generation schemes,

which can scale to large, and complex networks. So, some of my published works,

which are also part of this thesis, focused on building effective features for network

time prediction.

1

1. INTRODUCTION

In network analysis domain, recently dynamic networks are becoming increasingly

popular due to the fact that many real-world networks are dynamic in nature, for

example, email networks, road networks, biological networks, and social networks

such as Twitter, Facebook, LinkedIn, etc. Hence, researchers started studying the

growing nature of these dynamic networks [1–4], and more recently they proposed

various models for network evolution [5–7]. Note that, the growth of these networks

is mainly contributed by creation of new nodes and edges over a period of time. Hence,

the creation time, time-stamp of a node/edge creation event, is a crucial component

of the dynamic networks. However, the predominant network analysis problems avoid

the creation time from their prediction and modeling tasks [8,9]. For instance, one of

the prominent problems, the link prediction problem [10], aims to predict whether a

link will be created in the future or not [9,11], but it completely ignores the prediction

of the creation times of future links.

The creation times of the future links contain valuable insights of a dynamic

network that can significantly improve various real-world applications of network

analysis problems. The creation times provide comprehensive information on the

future links and hence substantially enhance the performance of many applications

of the link prediction problem. For instance, when an online social network platform

wants to recommend a friend, it is much better for them if they can recommend

a friend who is likely to accept the friend request (a link creation event) in a day

(the creation time) than recommending a user who may accept the friend request

after a week. Likewise, if we are looking for an endorsement from a friend on our

LinkedIn profile (another link creation event), we would not only prefer to ask a

person who will provide the endorsement, but also would prefer that the person

provides the endorsement immediately (the creation time). The utility of the creation

2

time prediction goes beyond better link prediction for social media platforms, rather

considering the creation time in social network prediction opens a completely new

dimension for network evolution study and helps researchers to design more realistic

network growth models. For example, closing an open triple is a phenomenon used

by several network models [12–14], but knowing the time, when an open triangle

will close?, can help us to obtain a dynamic network model which can generate a

large number of snapshots of a network at a continuous temporal axis. Hence, the

time prediction problem, which predicts the creation times of the future links, helps to

improve the performance of many real-world applications and is also useful in different

network analysis studies. But unfortunately, the time prediction problem has never

been studied by researchers for either directed or undirected networks, which is the

main focus of this thesis.

The time prediction problem is a highly challenging problem, mainly because, it

is a regression problem and so inherently it is a more difficult task than correspond-

ing classification problems. For instance, the popular link prediction problem is a

binary classification problem [10], where the task is to find a decision boundary that

discriminates node-pairs based on whether a link will appear between a node-pair

in the future or not. On the other hand, to solve the time prediction problem, we

need to model the creation times of the past links such that the prediction model can

produce creation times of all future links. Another challenge in solving the time pre-

diction problem is the unavailability of adequate features. As creation time is ignored

from the objective of major network analysis problems, researchers also neglected the

temporal aspect of dynamic networks while designing network features. Hence, none

of the traditional network features capture the creation time patterns [9]. Therefore,

designing and generating effective features to solve the time prediction problem is an

important part of this thesis.

Generally, the link creation event in a real-world network is not completely arbi-

trary, but follows a fixed set of patterns and builds specific structures [15–17]. These

link creation patterns have been studied by social scientists and to explain the most

3

frequent creation patterns they proposed different social theories such as reciprocal

altruism [18], directed altruism [19] and social balance theory [20]. In [18], R. Trivers

explains how the reciprocal altruism drives users to create more reciprocal links in a

directed network. This reciprocal altruism phenomenon suggests that the creation of

reciprocal links is more likely in the future, but it does not explain the patterns of

the creation times of the reciprocal links. To fill this gap, I design, study and solve

the reciprocal link time prediction (RLTP) problem in a directed network, which asks

the question “when will a reciprocal link appear?”. Similarly, T. Antal et al. [20] and

other researchers [21,22] observe prevalence of the social balance theory in real-world

networks; the theory states that an open triple is an imbalanced structure and it

tends to convert into a triangle, which is a balanced structure. Based on this theory,

researchers have designed and solved a triad closure problem, which predicts whether

an open triple will be closed in the future or not [13,22,23]. However, conveniently, all

these works also ignore the creation time of the triangle i.e. creation time of the third

closing link. To predict the creation time of the third link of a triangle, I design the

triangle completion time prediction (TCTP) problem in an undirected network. In

my dissertation research, I study both RLTP and TCTP problems and provide novel

methods with effective features to solve both (RLTP and TCTP) time prediction

problems.

1.1 Contributions

In this thesis, I provide novel and efficient solutions for time prediction problems

in both directed and undirected networks using meaningful and useful features de-

signing. In directed networks, I solve the reciprocal link time prediction (RLTP)

problem, For that, first I calculate useful topological features based on directed al-

truism [19] and social stratification [24] theories. During these calculations, I find

that existing methods for calculating the shortest distance feature are highly inef-

ficient [25, 26]. Therefore, I develop an efficient and novel indexing method named

4

Time Prediction
Tasks

Reciprocal link time
prediction (RLTP)

[ICWSM 2017, SNAM 2018]

Triangle completion time
prediction (TCTP)
[ECML-PKDD 2019]

Features

Edge-centric local graphlet
counting

[IEEE BigData 2017]

Attributed Network
embedding based features

[CIKM 2018, DSEJ 2019]

TopCom: Shortest
distance indexing

[DEXA 2015]

Fig. 1.1.: Major contributions of the thesis.

TopCom, to quickly answer the shortest distance query in a directed network. With

these topological features and survival analysis methods, I am able to solve the RLTP

problem accurately. While solving the RLTP problem I observe that, similar to any

other difficult task, for time prediction problem finding a suitable set of features is

extremely important and traditional topological features cannot capture comprehen-

sive information local to a given node-pair (edge). Hence, I design edge features

using graphlet frequencies local to an edge and provide a highly efficient algorithm

to count these local graphlets. After that, I propose a novel representation learning

base method to incorporate this graphlet based information in network embedding.

Lastly, I design an efficient framework to solve the triangle completion time pre-

diction (TCTP) problem in an undirected network. In the following subsections, I

provide a brief discussion on each of the major contributions of this thesis mentioned

in Figure 1.1.

1.1.1 Time prediction in a directed network

The majority of directed social networks, such as Twitter, Flickr, and Google+

follow a social psychology phenomenon called reciprocal altruism during edge creation.

This reciprocal altruism drives a source vertex to create a reciprocal link with a target

5

vertex which has created a directed link towards the source in an earlier time. Based

on this phenomenon, scientists have designed and solved a problem of predicting the

possibility of creation of reciprocal links—a task known as “reciprocal link prediction”.

Reciprocal link prediction is a binary classification task; as we discussed before,

predicting the creation times of the reciprocal links is a more important problem.

Additionally, this problem is interesting and useful in the real world; for example,

after sending an email, a user is always interested to know the reply time; after

endorsement on LinkedIn, a user is interested to know when the endorsement receiver

will reciprocate the behavior; after following a person on Twitter a user would like

to know when the other person will follow back; and so on. To answer all these

questions, I design and solve a novel problem named Reciprocal Link Time Prediction

(RLTP) [27].

Surprisingly, no existing work has considered solving the RLTP problem, partly

because it is an extremely challenging problem. There are two major challenges in

solving this problem: First, the presence of ever-waiting links in the graph (i.e.,

parasocial links for which a reciprocal link is not formed within the observation pe-

riod), which makes the traditional supervised regression methods unsuitable for such

graph data; Second, there is a lack of effective features, since well-known link predic-

tion features are designed for undirected networks and for binary classification tasks,

hence they do not work well for the time prediction task.

To solve the RLTP problem, we need to understand the behavior of the creation

times of reciprocal links. For that, I study three real-world datasets and design

topological features inspired from two social psychology phenomena: 1) Directed

Altruism and 2) Social Stratification. I thoroughly study the relation of these features

with reciprocal link creation time and show the usefulness of these features [28]. After

that, I discuss why solving this problem using traditional regression models is not

efficient. Instead, I map this problem into a survival analysis framework and solve it

using different survival analysis models. Through experiments on real-world datasets,

I prove that survival models consistently perform better than many known regression

6

models such as Ridge/Lasso regression, Feed-Forward Neural Networks (FFNN) and

Support Vector Regression (SVR).

1.1.2 Time prediction in an undirected network

It is a known fact that the prevalence of triangles in social networks is much higher

than their prevalence in a random network. It is caused predominantly by the social

phenomenon that friends of friends are typically friends themselves. A large number

of triangles in social networks is also due to the “small-world network” property [15],

which suggests that in an evolving social network, new links are formed between nodes

that have short distance between themselves. Leskovec et al. [29] have found that

depending on the kinds of networks, 30 to 60 percent of new links in a network are

between vertices that are only two-hops apart, i.e., each of these links is the third

edge of a new triangle in the network. High prevalence of triangles is also observed

in directed networks, such as, trust networks, and follow-follower networks—social

balance theory [20] can be attributed for such observations.

The knowledge of triangle completion time is practically useful. For instance,

given that the majority of new links in a network complete a triangle, the knowledge—

whether a link will complete a triangle in a short time—can be used to improve the

performance of a link prediction model [9]. Specifically, by utilizing this knowledge, a

link prediction model can assign a different prior probability of link formation when

such links would complete a triangle in the near future. Besides, link creation time

is more informative than a value denoting the chance of link formation. Say, an

online social network platform wants to recommend a friend; it is much better for the

platform if it recommends a member who is likely to accept the friend request in a day

or two than recommending another who may accept the friend request after a week or

few weeks. In the e-commerce domain, a common product recommendation criterion

is recommending an associated item (say, item2) of an item (say, item1) that a user

u has already purchased. Considering a user-item network, in which item1 − item2

7

is a triangle’s first edge, item1 − u is the triangle’s second edge, the TCTP task

can be used to determine the best time interval for recommending the user u the

item2, whose purchase will complete the u− item1 − item2 triangle. Given the high

prevalence of triangle in real-life networks, the knowledge of triangle completion time

can also improve the solution of various other network tasks that use triangles, such

as, community structure generation [14], designing network generation models [29],

and generating link recommendation [30].

To solve the TCTP problem, I provide an effective framework that uses two rep-

resentation learning based network embedding models. The main objective of the

embedding approaches is to embed edges with similar triangle completion time in

close proximity in the latent space, which is a completely different objective than the

majority of existing network embedding models [31–33], which captures the struc-

tural similarity and proximity in the representation vector for a node. This model

also incorporates graphlet based structural information into the embedding vectors.

I show using thorough experiments that the proposed framework is an accurate and

effective approach to solve the TCTP problem.

1.1.3 Edge feature design using local graphlet frequency

In recent years, graphlet counting has emerged as an important task in topological

network analysis because of its ability to capture key graphical patterns of a network.

It is known that global graphlet frequency is a very useful feature for graph classifi-

cation in a variety of domains [34–36], also it is used for network modeling [37] and

other network analysis studies. However, all these applications use global graphlet

frequencies to get features of a whole network but global graphlets cannot provide

features for a node or an edge.

On the other hand, the graphlets counted locally for a given edge (node-pair) can

be used as edge features, which can also be used in many network analysis tasks

such as link prediction, edge classification, etc. Though there are plenty of graphlet

8

counting works in the literature [34, 38, 39], very few works obtain local graphlet

frequencies for a given node or edge. Especially, there is not a single work that

provides graphlet frequencies up to size-5 for a given edge. Therefore, I develop

a novel scalable method called E-CLoG (Edge Centric Local Graphlet) [40], which

calculates local graphlet counts for a given edge (node-pair). This method can provide

counts of local graphlets up to size-5.

E-CLoG is highly efficient in counting local graphlets and these graphlet frequen-

cies are effective edge features for solving the link prediction problem. For comparison,

there exists very few recent works that can handle size-5 graphlet counting, but all

the existing works are for global graphlet counting. Out of which, I found one recent

method (GRAFT) which counts graphlets edge-wise i.e. GRAFT counts graphlets

for each edge in the graph and later combines the counts to provide global graphlet

counts. I compare the performance of E-CLoG with GRAFT and prove that our

method is highly efficient and scalable compared to the state of art edge based count-

ing work. I utilize the normalized graphlet frequency vector as edge features for link

prediction task and show significant improvement in the link prediction performance

compared to traditional topological features such as common neighbors, adamic-adar,

preferential Attachment, Katz measure, etc. for real world datasets.

1.1.4 Attributed network embedding for features

In the past few years, we have witnessed a surge in research on embedding the ver-

tices of a network into a low-dimensional, dense vector space. The embedded vector

representation of the vertices in such a vector space enables effortless invocation of

off-the-shelf machine learning algorithms, thereby facilitating several downstream net-

work mining tasks, including node classification [41], link prediction [31], community

detection [42], job recommendation [43], and entity disambiguation [44]. Most exist-

ing network embedding methods, including DeepWalk [32], LINE [33], Node2Vec [31],

and SDNE [45], utilize the topological information of a network with the rationale

9

that nodes with similar topological roles should be distributed closely in the learned

low-dimensional vector space. While this suffices for node embedding of a bare-bone

network, it is inadequate for most of today’s network datasets which include useful

information beyond link connectivity. Specifically, for most of the social and com-

munication networks, a rich set of nodal attributes is typically available, and more

importantly, the similarity between a pair of nodes is dictated significantly by the

similarity of their attribute values. Yet, the existing embedding models do not pro-

vide a principled approach for incorporating nodal attributes into network embedding

and thus fail to achieve the performance boost that may be obtained through mod-

eling attribute based nodal similarity. Intuitively, a joint network embedding that

considers both attributional and relational information could entail complementary

information and further enrich the learned vector representations.

We provide a few examples from real-life networks to highlight the importance

of vertex attributes for understanding the role of the vertices and to predict their

interactions. For example, users on social websites contain biographical profiles like

age, gender, and textual comments, which dictate who they befriend with, and what

are their common interests. In a citation network, each scientific paper is associated

with a title, an abstract, and a publication venue, which largely dictates its future

citation patterns. In fact, nodal attributes are specifically important when the net-

work topology fails to capture the similarity between a pair of nodes. For example, in

the academic domain, two researchers who write scientific papers related to “machine

learning” and “information retrieval” are not considered to be similar by existing em-

bedding methods (say, DeepWalk or LINE) unless they are co-authors or they share

common collaborators. In such a scenario, node attributes of the researchers (e.g.,

research keywords) are crucial for compensating for the lack of topological similarity

between the researchers. In summary, by jointly considering the attribute homophily

and the network topology, more informative node representations can be expected.

Hence, we provide an effective and robust network embedding approach called Neural-

Brane that incorporates attribute information into structural information.

10

1.1.5 Index for shortest distance query in a directed network

Finding the shortest distance between two nodes in a graph (distance query) is

one of the most useful operations in graph analysis. Besides the application that

stands for its literal meaning, i.e. finding the shortest distance between two places

in a road network, this operation is useful in many other applications in social and

information networks. For instance, in social networks, the shortest path distance is

used in the calculation of different centrality metrics, including closeness centrality

and betweenness centrality [46, 47]. It is also used as a criterion for finding highly

influential nodes [48], and for detecting communities in a network [1]. Scientists have

also used shortest path distance to generate features for predicting future links in

a network [9]. In information networks, shortest path distance is used for keyword

search [49], and also for relevance ranking [50].

Due to the importance of the shortest path distance problem, researchers have

been studying this problem from the ancient time, and several classical algorithms

(Dijkstra, Bellman-Ford, Floyd-Warshall) exist for this problem, which run in poly-

nomial time over the number of vertices and the number of edges of the network.

However, as real-life graphs grow in the order of thousands or millions of vertices,

classical algorithms deem inefficient for providing real-time answers for a large num-

ber of distance queries on such graphs. For example, for a graph of a few thousand

vertices, a contemporary desktop computer takes an order of seconds to answer a

single query, so thousands of queries take tens of minutes, which is not acceptable for

many real-time applications. Hence, there is a growing interest for the discovery of

more efficient methods for solving this task. We propose TopCom, an indexing based

method for obtaining an exact solution of a distance query in an arbitrary directed

graph.

11

1.2 Organization of the Thesis

This thesis includes several research articles that I published over a period of six

years of my doctoral study. The time prediction problem in a directed network named

reciprocal time prediction (RLTP) problem is published in two steps, first the primary

study is published in AAAI International Conference on Web and Social Mining

(ICWSM), 2017 and the elaborated study with prediction methods is published in

Springer journal Social Network Analysis and Mining (SNAM), 2018. This research is

presented in Chapter 3. In Chapter 4, I discuss the triangle completion time prediction

(TCTP) problem and explain a novel framework to solve the TCTP problem. This

work is currently under review at an international conference.

In the remaining chapters, I discuss efficient methods for generating features that

help to solve the time prediction problems accurately. To generate graphlet based

edge features, I have developed a scalable and efficient algorithm called E-CLoG,

which calculates edge-centric graphlet frequencies. This E-CLoG algorithm is thor-

oughly explained in Chapter 5 and it is published in IEEE International Conference on

Big Data (IEEE BigData), 2017. I have also designed representation learning based

features using two novel attributed network embedding methods. The first method

assumes that the node attributes are inter-related and it learns representation vec-

tors for both nodes and attributes into the same latent space. This representation

learning method is published in ACM International Conference on Information and

Knowledge Discovery (CIKM), 2018 and it is discussed in Chapter 6. The second

method is described in Chapter 7, where the network embedding approach assumes

that the attributes are sparse and independent. The article, which discusses the sec-

ond embedding method, is accepted for publication in SpringerOpen Journal Data

Science and Engineering (DSE), 2019. I have also developed an indexing method to

efficiently answer the shortest distance query in a directed network. This indexing

method is discussed in Chapter 8, which is published in the International Conference

on Database and Expert Systems Applications (DEXA), 2015. Lastly, in Chapter 9, I

12

briefly conclude the thesis and discuss future directions for solving the time prediction

problems.

1.3 Preliminaries

In this section, I provide background information on the topics related to this

thesis.

1.3.1 Notations.

Throughout this thesis, scalars are denoted by lowercase letters (e.g., n). Vectors

are represented by boldface lowercase letters (e.g., x). Bold uppercase letters (e.g.,

X) denote matrices, the ith row of a matrix X is denoted as xi and jth element of

the vector xi is represented as xji . The transpose of the vector x is denoted by xT .

The dot product of two vectors is denoted by 〈a,b〉. ‖X‖F is the Frobenius norm of

matrix X. Calligraphic uppercase letter (e.g., X) is used to denote a set and |X | is

used to denote the cardinality of the set X .

1.3.2 Graphlets

Fig. 1.2.: size-4
graphlets

In the simplest language, a graphlet is a set of a small

number of connected nodes that creates specific structures.

For example, there are two types of graphlets with 3 nodes

(size-3 graphlets) i.e. an open triple and a closed triangle.

Similarly, there are a total of 6 different graphlets of size-4 as

shown in Figure 1.2. The occurrences or frequencies of these

graphlets in a network, are good representatives of the overall structural properties

of the network [34]. While calculating frequency, we count only induced graphlets,

where an induced graphlet of a network is a subgraph of the network such that the

13

selected subgraph includes all edges from the original network between nodes of the

subgraph. Formally,

Definition 1.3.1 (Induced graphlet) For a given undirected network G(V , E), where

V is the set of vertices and E is the set of edges; an undirected subgraph g(V ′, E ′) is

an induced graphlet of G(V , E), if V ′ ⊆ V and E ′ consists of all of the edges in E that

have both endpoints in V ′. �

If |V ′| = k, we call it a k-size induced graphlet, or in-short, a k-graphlet in

G. The frequencies of these induced graphlets are used as graph features for a graph

classification problem [34]. Similarly, we can use graphlet frequencies as node features

if we count it for node-centric local graphlets, where the targeted node is always a part

of the graphlets. For example, in [51], the authors use frequencies of node-centric local

graphlets to solve the node classification task. Similarly, we can count the frequencies

of graphlets local to an edge (edge-centric local graphlets) to get edge features and

use them to solve the link prediction problem [40]. The edge-centric local graphlet

is an induced graphlet that includes the targeted edge. Below, I formally define the

edge-centric local graphlets:

Definition 1.3.2 (Edge centric local graphlet) Say, g(V ′, E ′) is a k-graphlet of

a graph G(V , E). Now, given an edge (u, v) ∈ E, g is called an edge centric local

graphlet, if (u, v) ∈ E ′ and w ∈ V ′ \ {u, v} ⇒ w ∈ Γ(u) ∪ Γ(v). �

Where, Γ(u) is a set of neighbors of node u ∈ V . I use edge-centric local graphlet

frequencies to solve the TCTP problem.

1.3.3 Network Embedding

A network embedding is a lower dimensional representation of network elements

such that the representation vector preserves important information from the network

such as topological proximity, structural and conceptual similarity, and community

14

structure. To find such network embeddings, researchers have proposed various repre-

sentation learning approaches that capture topological proximity and network struc-

tural information [33, 45], where majority of these representation learning methods

find a low dimensional vector for each node in a network [31,41]. Formally,

Definition 1.3.3 (Representation learning Method) For a given undirected net-

work G(V , E), where V is the set of vertices and E is the set of edges, the objective is

to learn a mapping function f : u → mu, where u ∈ V and mu ∈ IRk is a k dimen-

sional representation vector for node u. This learned mapping function f is called

representation learning method and corresponding matrix of vectors M ∈ IR|V|×k is

called network embedding matrix. �

Note that, this learned embedding matrix M must preserve useful network infor-

mation for various downstream tasks. Also, the dimensionality of the representation

vector (k) should be far lesser than the number of nodes i.e. k � |V|. These lower di-

mensional vectors for each node can be used as informative node features and proved

to be very useful for various network analysis tasks such as node classification [41],

link prediction [31], and community detection [42].

To learn the suitable representation vectors for each node, we can use traditional

statistical methods such as principal component analysis (PCA), where an adjacency

matrix A ∈ IR|V|×|V| can be used to find an informative lower dimensional (|V| ×

k) matrix. However, many recent network embedding approaches learn the latent

representation for each node of a network using more specialized methods such as

random walk based method [32], matrix factorization based methods [52,53] or deep

neural network based methods [45,54].

There are mainly two broad categories of embedding approaches, 1) transductive

methods and 2) inductive methods. The majority of embedding approaches assume

that the node set V is fixed and hence their embedding methods cannot produce a

representation vector for a new node z /∈ V , these methods are called transductive

methods [31,33,55,56]. On the other hand, there are few recent methods that use in-

15

ductive learning approaches which can produce representation vectors for an unknown

new “out-of-sample” nodes [57–59].

1.3.4 Survival analysis models

Survival analysis is widely used in the medical domain to predict survival time or

time to a specific event (such as death) for patient datasets [60], [61]. In the survival

analysis setup, for a set of instances under observation, events happen over a time

period, from which a survival model learns the temporal patterns of these events

and predicts the survival time. Broadly, all types of survival analysis models try to

predict the survival time of an instance in the data by modeling three functions: 1)

Survival function, 2) Hazard function and 3) Event density function. Definitions and

relationship between these three functions are described below:

Survival function S(t): Survival models provides a principled approach for interval

time prediction by modeling a survival function, which is defined as the probability

value that the reciprocal edge creation does not happen for a given parasocial link

before a specified time t.

S(t) = Pr(T ≥ t)

Here, T is a random variable representing the time of the reciprocal edge creation

event.

Hazard function λ(t): It is the reciprocal event rate at time t conditional on the fact

that the reciprocal event has not occurred until that time t,

λ(t) =
f(t)

S(t)
(1.1)

16

where f(t) is the reciprocal event density function, which is given as follows:

f(t) =
d

dt
(1− S(t)) = − d

dt
S(t)

We can observe that both the survival function and the hazard function are in-

terrelated and we can model either function for the interval time prediction. There

are two types of widely used survival models: 1) semi-parametric models and 2)

parametric models.

Semi-parametric Cox regression model

Cox regression model [62] is the most widely used semi-parametric model for

predicting the (interval) time taken for a reciprocal event to occur. The basic Cox

model follows the proportional hazard assumption, for which the hazard function

λ(t | xi) takes the following form:

λ(t | xi) = λ0(t)× exp(β1xi1 + β2xi2 + ...+ βdxid)

= λ0(t)× exp(xTi β)
(1.2)

where, xi is the (topological) feature vector of a parasocial link represented as ith data

instance in the training data and d is the dimensionality of the features. Here, λ0(t) is

called baseline hazard function, and β is the model parameter which Cox regression

model learns. The Cox regression is called semi-parametric because the baseline

hazard function λ0(t) can be any non-negative function of time. The probability of

occurrence of reciprocal event for the ith parasocial link (data instance) at time t can

be represented as ratio λ(t|xi)∑
j∈Rt

λ(t|xj) , where Rt is the set of all instances for which the

17

reciprocal event did not happen until t. The product of these probabilities gives the

partial likelihood function:

L(β) =

np∏
i=1

[
exp(xTi β)∑
j∈Rt exp(xTj β)

]Ci
(1.3)

Here, np is the total number of parasocial links that appeared during the training

period and Ci is an event indicator value, i.e., if the reciprocal link for the ith parasocial

link appears during the training period then Ci = 1 otherwise Ci = 0. The model

parameter β is learnt by minimizing the negative log likelihood function. If β̂ is the

optimal model parameter, we have:

β̂ = argmin
β

1

np

np∑
i=1

[
−Ci(xTi β) + Ci log

(∑
j∈Rt

exp(xTj β)

)]
(1.4)

To find this β̂, Cox proposed a partial likelihood based optimization method. [62].

Parametric Models

The main idea behind a parametric model is that it assumes that the interval

time follows a specific statistical distribution. There are two ways to relate interval

time and a statistical distribution: first, assume that the actual interval time for

all parasocial links follows a distribution; and second, assume that the logarithm of

the interval time follows a distribution. The models under the first assumption are

referred to as linear regression models, and the models under later assumption are

called accelerated failure time (AFT) models.

Generally, parametric models use a maximum likelihood estimation (MLE) ap-

proach to learn model parameters. Let’s assume that all the parameters of a model

are represented by β = (β1, β2, ...)
T . For a given parasocial link (say ith link in the

training data), if it is an ever-waiting link, then the corresponding survival function

18

S(t,β) at time t (in fact, any t value during a training period) should be near 1, and

if it is not an ever-waiting link then the reciprocal event density function f(ti,β) at

time ti (time of reciprocal event for the ith parasocial link) should be high (near to

1) for that link. Hence, the likelihood of all parasocial links of a training period is

the product of their reciprocal event density functions or survival functions based on

their state (whether the link is ever-waiting or not), i.e.

L(β) =
∏
Ci=1

f(ti,β) ·
∏
Ci=0

S(ti,β) (1.5)

Linear regression model: The statistical linear regression with least squares esti-

mation is widely used for a variety of regression tasks. However, the issue with this

model is that it cannot use information from ever-waiting links. For interval time

prediction this issue can be handled by using a specific survival model such as the

Buckley-James model (BJ model). The BJ model first estimates the interval time of

training ever-waiting links using the Kaplan-Meier (KM) [63] estimation method and

then by using all parasocial links from training period to train a linear model. This

linear model can be trained using the MLE method as described above.

Accelerated Failure Time (AFT) model: An AFT model assumes that the loga-

rithm of the interval times log(TInt) follows a statistical distribution and it is linearly

related to the (topological) feature vectors. The general form for AFT regression

model is

log(TInt) = X · β + σ · ε (1.6)

where X is the covariate matrix of size np × d where ith row of X is xi, β is a d

dimensional coefficient vector (model parameters), σ (σ > 0) is an unknown scale

parameter, and ε is an error variable which follows a similar distribution to log(TInt).

19

2. RELATED WORKS

In network analysis, there are many prediction problems on nodes and edges such as

node classification [64], edge classification [65], community detection [66] and link

prediction [67]. Researchers have proposed various solutions for these problems such

as network propagation based methods [68,69], topological features based methods [9,

70], matrix factorization based methods [71, 72] and more recently embedding based

methods [32,73].

Though none of the above works solve time prediction problems, there are a few

research articles, which are directly or indirectly related to the time prediction prob-

lems discussed in this thesis. Hence, in this chapter, first, I discuss the related works

for both time prediction problems i.e. Reciprocal link time prediction (RLTP) and

triangle completion time prediction (TCTP). Also, I observe that adequate feature

designing is an internal part of accurate prediction approach, therefore, in this thesis,

I design effective features and provide efficient methods to build these features. So

next in this chapter, I discuss previous related works for various feature generation

methods. For that first, I review related works on local graphlet counting methods ;

next, I discuss previous network embedding approaches and finally, I review existing

indexing methods for shortest distance query in a directed network.

2.1 Reciprocal link time prediction

The traditional binary classification task of link prediction has received enormous

attention over the years since the inception of this problem by Liben-Nowell and

Kleinberg in 2003 [10]. Over the years researchers have solved the link prediction

problem for a variety of graphs - for example link prediction in homogeneous networks

[67, 74, 75], link prediction in heterogeneous information networks [30, 76], and link

20

prediction for knowledge graphs [77, 78]. Other related problems, such as link/sign

prediction and ranking in signed social network [79,80], and a recommendation system

using link prediction techniques [81] have also been studied.

Reciprocal link prediction is a variant of link prediction which works on directed

networks. Even though the majority of social and communication graphs are directed,

only a few works exist which consider predicting reciprocal links. In one of the earliest

works, J. Hopcroft et al. [24] predicted reciprocal edges in a Twitter network. How-

ever, many of the features that they proposed are too specific to the Twitter dataset

and do not apply to a generic directed network. N. Gong et al. [82] compared re-

ciprocal and parasocial link creation in Google+ and Flickr datasets and solved the

reciprocal link prediction problem as an outlier detection task using one-class SVM.

Authors of [83] compared structural differences of reciprocal links and parasocial

links and they also studied a Twitter dataset and corresponding node features to

predict reciprocal links. In another work [84], the authors reported that the majority

of reciprocating links are created within a very short time after the creation of corre-

sponding parasocial links. B. Dumba et al. [4] studied the structural properties of a

reciprocal network and discussed user behavior patterns.

A closely related problem to reciprocal link prediction is online dating recom-

mendation. There exist a few works that solve this problem, mainly by using tradi-

tional recommendation methods with novel feature extraction processes. For example,

in [85] the authors modified the classical collaborative filtering method for the dating

recommendation task. P. Xia et al. [86, 87] proposed different reciprocal score ma-

trices and used them with collaborative filtering for a recommendation. The authors

in [88] proposed an LDA (Latent Dirichlet Allocation) based approach to learn latent

preferences of users with two side matching based recommendations. Recently, X.

Zang at al. [89] proposed a method that extracts profile-based features, topological

features, and preference features from a dating social network for a recommendation.

All the existing works discussed so far target the binary classification problem, which

predicts whether the reciprocal link will be created or not. On the other hand, in this

21

thesis, I target to predict the creation time of the reciprocal links, which is a more

difficult problem than the binary classification problem.

2.2 Predicting triangle completion time

There exist many works which study triangle statistic and their distribution in

social networks. The majority of these works are focused on triangle counting in a

network [90–93]. While a few other works investigate how different network models

perform in generation synthetic networks whose clustering coefficient matches with

real-life social networks [94]. However, none of these works target to predict the

triangle completing edges. There are only a few works that study the prediction

problem for the triangle completion, which I discuss below.

Romero and Kleinberg [95] initially studied the directed closure (feed-forward tri-

angle completion in a directed network) process and its relation with preferential

attachment. Another study is done by T. Lou et al. [22], where they investigate how

the reciprocal links and triangle completing links are developed using social theories

and also provide a solution based on a graphical model to predict these links in a

directed network. After that, H. Huang et al. [13, 96, 97] thoroughly study a micro-

blogging social network and observe various user demographics based and social the-

ory based factors in the formation of triangles. They proposed an extended version

of the graphical model proposed by T. Lou et al. to predict the triangle completion

problem in online social networks. Note that, these works study triangle completion

in directed networks, but there are few other works that study triangle completion

in an undirected network. For example, M. Zignani et al. [98] provides metrics to

understand dynamic properties of a social network by studying link delay and tri-

angle completion delay. Lastly, Estrada and Arrigo [23] proposed a communicability

distance based objective to predict the creation of triangle completing edges.

None of the above works study and solve the time prediction problem, which is

one of the main objectives of this thesis. To the best of our knowledge, there are only

22

two works that target the time prediction problem; the first one is by Y. Sun et al.

[99] and the second by M. Li et al. [100]. In both of these works, the authors have

extracted unique features for a DBLP-like (author-paper) heterogeneous network. Y.

Sun et al. proposed the meta path based topological features and used a generalized

linear model (GLM) for the prediction task. Similarly, M. Li et al. proposed a novel

time difference labeled path (TDLP) based method for the knowledge graph. Both

methods are designed specifically for DBLP like networks, hence they are difficult

to apply to other general networks. On the other hand, in this thesis, I study and

solve time prediction problem in general directed and undirected networks without

any assumptions on networks.

2.3 Local graphlet counting methods

There are various methods proposed to count graphlets in a given network, where

initial works count only size 3 graphlets i.e. open and close triangles in the net-

work [93]. Recently, there are multiple works for graphlet counting, which gives

global graphlet counts for larger graphlets of size 4 and 5 [34, 39, 101, 102]. As the

counting cost increases with larger networks , there are few works that give good

estimation of the global graphlet counts [103–105].

However, all these works are giving global graphlet counts and there are very

few works address local graphlet counting, for example, Y. Lim et al. [106] and L.

De Stefani et al. [107] have proposed estimation method to count local triangles from

streaming data. Similarly, C. Seshadhri et al. [108] proposed a sampling based method

that estimates the local clustering coefficient. But, all these local graphlet counting

works give counts local to a node, on the other hand our method is providing an

edge attribute i.e. our method counts local graphlets for a given edge. Best of our

knowledge, there is only one work that counts local graphlets for an edge by N. Ahmed

et al. [109]. However, N. Ahmed et al. are counting up to 4 size graphlets and they

do not count all graphlets obtained by different edge orbit. I believe, a given edge

23

in different orbits represents different characteristics of the edge, hence finding the

count of graphlets with all possible edge orbits is very important. Hence, I provided

an algorithm to count all 3, 4, 5 size local graphlets including all possible different

orbits of the given edge.

2.4 Neural network based network embedding

Recently, there are many works on representation learning on graphs (a.k.a. net-

work embedding). For example, approaches such as DeepWalk [32] and Node2Vec [31]

learn the node embeddings based on either uniform or biased random walks by ex-

tending the Skip-Gram language model. LINE [33] utilizes first and second order

proximities and trains the embedding by negative sampling. GraRep [55] is a factor-

ization based approach that leverages both local and global structural information.

Furthermore, a few neural network based approaches are proposed for network em-

bedding, such as SDNE [45], DNGR [73] and HNE [110]. The detailed network

embedding survey is available in the article [111].

Most of the aforementioned works only investigate the topological structure for

network embedding, which is in fact only a partial view of an attributed network. To

bridge this gap, a few attributed network embedding based approaches [52–54, 112–

115] are proposed. The general philosophy of such works is to integrate nodal fea-

tures, such as text information, into a topology-oriented network embedding model

to enhance the performance of downstream network mining tasks. For example,

TADW [52] performs low-rank matrix factorization considering graph structure and

text features. AANE [53] also uses a generalized matrix factorization approach to

incorporate textual information associated with nodes. However, such matrix factor-

ization based methods have a huge limitation as they are not scalable. EP-B [112]

is an embedding propagation based approach, which is a modification of locally lin-

ear embedding (LLE) [116]. Furthermore, TriDNR [54] adopts a two-layer neural

networks to jointly learn the network representations by leveraging inter-node, node-

24

word, and label-word relationships. Similarly, if we can create heterogeneous graphs

using node and its attributes, we can use PTE [113] to merge attributes information

in embedding. However, the training procedure of three (or more) components is

difficult to weight and adjust; additionally, TriDNR uses DeepWalk to access textual

information associated with node which can handle only a continuous ordered text

(sentences) as node attributes. UPP-SNE [114] is another DeepWalk based approach

with non-linear function for merging attributes into embedding. Notice that, the

majority of these methods only consider sparse textual features associated with each

node, and fail to handle the node attributes with rich types in general. The objective

of our embedding approach is to design a general embedding method that can handle

both sparse textual attributes and dense graphlet based attributes.

2.5 Index for shortest distance query in a directed network

Shortest distance on a directed graph has many interesting works. In this section

I discuss the most important works among these under two categories: (1) Online

shortest distance calculation, (2) Offline (Index based) shortest distance calculation.

The first, online calculation mainly includes Breadth First Search (BFS), Dijkstra’s

algorithm and Bidirectional Dijkstra’s algorithm. Here, I mainly discuss index based

related works. Mainly because for large graphs, online methods are slower than an

indexing based method, so most of the recent research efforts are concentrated towards

indexing based methods. The literature for shortest distance indexing is quite vast,

so, I review few of the works that have published in the recent years. For a detailed

review, I refer the readers to read [117, 118]. Here, I discuss few of the recent and

relevant indexing based works.

Many of the existing works for shortest distance computation is specifically de-

signed for the road networks [119–126]. Such networks show hierarchical structures

with the presence of junctions, hubs, and highways; the shortest distance computa-

tion methods for these networks exploit the hierarchical structure for compressing

25

distance matrix or for building distance indices [120,124]. Finding exact shortest dis-

tance in a large graph is a costly task, hence few researchers have proposed methods

for computing estimated shortest distance [127–130]. The most common among

the estimated shortest distance based methods is the landmark based method, which

selects a set of landmark nodes based on some criteria and finds shortest paths that

must go through those landmark nodes. The main task here is to decide the set of

vertices that are optimal choice as landmarks. However, it has been shown that this

optimization problem is NP-Hard [130], so researchers adopt various heuristics based

approaches for choosing those landmarks.

There are some other works for finding shortest distance in large graphs which

are proposed very recently; examples include [25, 26, 131–138]. Many of these have

unique ideas, so it is difficult to categorize them under a generic shortest path method.

For example, Gao et al. [136] use a relational approach and propose an index called

SegTable which stores local segments of a shortest distance. Zhu at al. [131] propose

a method to answer single source shortest distance query for a huge graph on disk.

Akiba et al. [135] propose a unique pruning method based on degree of a vertex, which

can efficiently reduce the search space of BFS. Highway centric label (HCL) [132] is

one of the fastest recent methods that is proposed for a shortest distance query on

both directed and undirected graphs. In a follow-up work, Xiang proposes TreeMap

[26], a tree decomposition based approach for solving distance query exactly; the

author compares TreeMap’s solution with those of HCL to show that the former has

better performance. Another recent method is called IS-Label which is proposed by

Fu et al. [25]. They have also shown that that IS-Label has superior performance

than HCL. I compare proposed method TopCom with both IS-Label and TreeMap,

which are among the best of the existing index based methods.

26

3. PREDICTING RECIPROCAL LINK CREATION TIME

3.1 Introduction

Reciprocity is a phenomenon in social psychology which mandates that people

should repay voluntarily what another person has provided for them. It is different

from altruism [139] in the way that reciprocity follows from others’ initial action,

while altruism is a spontaneous action of gift-giving without the hope or expectation

of future positive responses. There also exists another social psychology, named

reciprocal altruism, which is a behavior whereby one performs an act of gift-giving

with the expectation that the receiving person will act in a similar manner at a later

time [18]. People’s day-to-day activities on online social networks are filled with many

examples of reciprocal altruism: we follow a friend’s Twitter feed with the hope that

he will follow back our feed; we like a friend’s Facebook posts or her Flicker images

with the expectation that she will do the same; we endorse our friends for their

technical skill in LinkedIn hoping that they will return the favor in a similar manner.

However reciprocity usually is in conflict with another social phenomenon called

social stratification, which favors hierarchical arrangement of people in a society based

on various factors such as power, wealth, and reputation [24]. This phenomenon is

prevalent in online social networks as well, but in a different manner. Apparently, for

such networks, the social hierarchy is reflected in various prestige metrics which rank

vertices based on their topological bearings, such as pagerank, and in-degree. Given

this hierarchical arrangement in an online social network, people who are higher up

in the hierarchy are sometimes reluctant to perform a reciprocal act for an individual

who is lower in the hierarchy; they instead defer the reciprocal action to a later time,

or sometimes indefinitely.

27

For reciprocal link creation, understanding the criteria which control the interval

time and building learning models which predict the interval time are important.

From a research standpoint, such studies help scientists to understand the interaction

between reciprocity and social stratification phenomena. From the perspective of

real-life applications in social network analysis, such prediction models enable better

link suggestions, where the interval time is also factored in within the suggestion.

Reciprocity, along with the interval time for reciprocal link creation, is particularly

important for recommendation in online dating systems [86].

The majority of existing works on link prediction assume an undirected network [9,

140], in which the concept of reciprocal edges does not exist. A few works consider

reciprocal link prediction [24,82] in a directed network where the prediction is binary,

yielding a yes/no answer to the question of whether a reciprocal link will be created

within a fixed observation window. Several other works utilize reciprocity as a tool

for network compression [141] and information propagation in social networks [142].

Reciprocal links also influence the degree correlations in complex networks, hence

they play an important part in modeling the growth of directed social networks [143].

However, none of the existing works consider predicting the interval time for the

creation of a reciprocal edge.

Extending a model which solves a binary class reciprocal link prediction problem

to a model which predicts the interval time of reciprocal links is non-trivial. The

major challenge for interval time prediction is that typical link prediction features for

an undirected network, such as common neighbors, Jaccard’s similarity, and Adamic-

Adar do not have a well-defined counterpart for directed networks, which makes

interval prediction a difficult task. Additionally, for generating the training data for

building a prediction model, a network is observed for a finite time window, and

the absence of a reciprocal link within that time window does not necessarily mean

the absence of that reciprocal edge, because a reciprocal edge might have formed

outside (after) the observation time window. This yields numerous right censored

data instances, for which the target variable, i.e., the reciprocal link formation time

28

Fig. 3.1.: An illustration of reciprocal link time prediction RLTP problem.

is not available. Traditional supervised regression models cannot include censored

data instances in the training data and hence perform poorly in predicting reciprocal

link creation time.

I explain the cases of right-censored data instances in reciprocal interval time pre-

diction task using a toy example shown in Figure 3.1. In this figure I show a small

part of an email communication network consisting of only three vertices representing

three persons, A, B, and C. The observation period of this network has five times-

tamps, T1 to T5. At T1, C sends an email to B, thus creating the first of the directed

links (such links are called parasocial links). At T2, the parasocial link from A to B

is created. At T3, the reciprocal link from B to C is created; thus the interval time

of this edge is T3 − T1. At T3, another parasocial link (B → C) is created. More

links are created in subsequent time intervals T4 and T5. At T5, I reach the end of

29

the observation period, but the reciprocal link from C to A is yet to be created. The

potential reciprocal link C → A is an instance of right-censored data for which we

only know that the interval time is higher than T5 − T1; this value, as well, can be

infinity in the case that the link is never created. Either way, the exact value of the

target variable for this reciprocal edge is unknown. Unfortunately, for any reasonable

observation time window, a significantly large number of potential reciprocal links are

censored data instances, which is the main challenge for the task of reciprocal link

creation time prediction.

In this chapter, I present a supervised learning model for predicting the interval

time for the creation of a reciprocal edge between a pair of vertices in an online social

network, given that a parasocial edge already exists between the vertex-pair. I study

real-life networks and validate a collection of topological features that may influence

the reciprocal edge creation time. Then, we design the prediction task as a survival

analysis problem and choose five censored regression models. My experimental results

show that Cox regression performs better than traditional supervised learning models

for reciprocal link prediction.

3.2 Problem Formulation

Definition 3.2.1 Directed time-stamped network. Consider a network G(V , E),

where V is the set of vertices and E is the set of directed edges. T is a set of time

values, and τ is a mapping function, which maps an edge to one of the time values

in the set T , i.e., τ : E → T . For an edge e ∈ E, te ∈ T denotes the creation time of

the edge e. Collectively, G, T , and τ are called a directed time-stamped network.�

For vertices u, v ∈ V and link e = (u, v) ∈ E the corresponding time-stamp te can

be represented as tuv. If an edge e is created multiple times, I keep only the oldest

(earliest) creation time and assign that to te. For a vertex u ∈ V , Γin(u) and Γout(u)

are the set of in-neighbors and the set of out-neighbors of u, and d(u, v) is the directed

shortest path distance from u to v.

30

Definition 3.2.2 Reciprocal/Parasocial Link. For a pair of vertices, u, and v,

the edge (u, v) ∈ E is called a parasocial link if the edge (v, u) /∈ E. On the other

hand, if (v, u) ∈ E and (u, v) ∈ E, and tvu < tuv then (u, v) is called a reciprocal link.

�

The objective of the RLTP problem is to predict the time of a reciprocal link for

the given parasocial link with time. The interval time for a reciprocal link (u, v) is

defined as Int(u, v) = tuv − tvu. My model for the RLTP problem actually predicts

Int(u, v), instead of predicting tuv (the reciprocal link creation time). Nevertheless,

the reciprocal link creation time tuv can be obtained from the model by using the

expression tvu+Int(u, v). The advantage of predicting Int(u, v) instead of predicting

tuv is that for predicting Int(u, v) we do not need to use the parasocial link creation

time tvu as part of input of the model, which makes the model independent of temporal

bias. Thus the supervised model of my proposed RLTP task uses only the topological

features of an edge (u, v) as its covariates and the interval time Int(u, v) as its target

variable, making the model simple.

3.3 Dataset Study

In this section, I discuss the datasets that I use in this study. I also provide some

statistical analysis of the datasets; specifically, for each of these datasets, I provide

the empirical distribution of observed interval time and its goodness of fit with known

statistical distributions. For the Enron dataset, the persons (along with their rank in

the company) associated to a vertex is known, so in this dataset I have also performed

a qualitative study by checking for the evidences of social stratification phenomenon,

which I present at the end of this section.

I used three real-world directed network datasets for this study. We selected

datasets where reciprocal link creation is an important (meaningful) event; another

selection criterion is that the datasets should have a sufficient number of reciprocal

links to train and test the models [144]. The first dataset, Epinion is a trust network

31

Table 3.1.: Basic statistics of the datasets used in the RLTP study.

Dataset |V| |E| |T | Recipro

Epinion 131, 828 841, 373 938 0.3083
MC-Email 167 5, 783 237 0.876
Enron 182 3, 007 944 0.6053

 0

 0.5

 1

 1.5

 2

 2.5

 3

1-
10

11
-2

0

21
-3

0

31
-4

0

41
-5

0

51
-7

5

76
-1

00

10
1-

20
0

20
1-

30
0

30
1-

40
0

40
1-

50
0

lo
g

 (
 #

 i
n

st
a

n
ce

s
)

Interval time (in days)

Epinion

MC-Email

Enron

Fig. 3.2.: Histogram of interval time of reciprocal link.

where a directed link from one vertex to another represents the fact that the former

trusts the latter. The RLTP task for this dataset is to find the time at which a

trusted person acknowledges that (s)he also holds a similar sentiment towards the

other person. The dataset was collected from KONECT web page.1 I have also

collected two email datasets: MC-Email2 and Enron. Both of these datasets are

email communication networks from two distinct enterprises, and for these datasets

the RLTP task is to predict the response time for an email. More information on

these datasets is provided in Table 3.1, where |V|, |E|, |T |, and Recipro are the

1http://konect.uni-koblenz.de/networks/
2This is Manufacturing Company email dataset available from R. Michalski’s website, https://

www.ii.pwr.edu.pl/~michalski

32

number of vertices, the number of edges, the number of timestamps (in days), and

the reciprocity of the dataset within the observation window, respectively.

For these three datasets, I plot the histogram of the interval time for reciprocal

links in log scale (Figure 3.2). I observed that the majority of the responses are

received within a short period of time (within 10 days or less). However, there also

exist a few late responders whose reply time is much larger than the average reply

time.

3.3.1 Modeling interval time using Parametric Distribution

From the distribution plots in Figure 3.2 I observe that the number of reciprocal

link instances reduces exponentially with the increment of the interval time (note that,

y-axis is in log-scale). Hence, I fit different exponential family distributions to model

the time interval of reciprocal link for all three datasets. Specifically, I fit exponential

distribution, normal distribution, logistic distribution, log-normal distribution, log-

logistic distribution and Weibull distribution. To evaluate the goodness of fit I use

the following four metrics: Kolmogorov-Smirnov (KS) statistic, Cramer-von Mises

(CM) statistic, Aikake’s Information Criterion (AIC) [145] and Bayesian Information

Criterion (BIC) [146]. In Figure 3.3, I show the quality of fitting results. The results

of BIC are very similar to AIC for all three datasets, so I did not show the results

of BIC. As depicted in Figure 3.3, exponential, normal, and logistic distributions

(shown in red) have relatively high distance from empirical distribution compared to

log-normal, log-logistic and Weibull distributions (shown in black). For the Enron

dataset, Weibull distribution performs the best over all metrics. Similarly, for the

Epinion and the MC-Email datasets log-logistic distribution fits the best. Results of

log-normal distribution are very similar to both Weibull and log-logistic distributions.

Hence, I use log-normal, log-logistic and Weibull distributions for parametric survival

models, which are discussed later in Section 3.6.

33

3.3.2 Social Stratification in Enron

One of the influencing factors for late responses to a specific user is social stratifi-

cation - particularly in corporations, people tend to give quicker replies to their supe-

rior as compared to their colleagues and other juniors. I study the Enron dataset, for

which the employee details are available with email communications. In the dataset,

“Louise Kitchen” is a president; I observed that her email replying practice follows

social stratification phenomenon. She generally takes more than 2−3 days to reply to

people with lower ranking positions such as vice-president (VP), employees, etc. For

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Epinion MC-Email Enron

D
is

ta
n

ce
 v

al
u

e

Datasets

exponential
normal
logistic

log-normal
log-logistic

weibull

(a) Kolmogorov-Smirnov statistic

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Epinion MC-Email Enron

L
o

g
 (

D
is

ta
n

ce
 v

al
u

e)

Datasets

exponential
normal
logistic

log-normal
log-logistic

weibull

(b) Cramer-von Mises statistic

 4

 4.5

 5

 5.5

 6

Epinion MC-Email Enron

L
o
g

 (
in

fo
rm

at
io

n
 l

o
ss

)

Datasets

exponential
normal
logistic

log-normal
log-logistic

weibull

(c) Aikake’s Information Criterion

Fig. 3.3.: Goodness of fit comparisons for different distributions.

34

example, she replied to VPs “Kevin Presto”, “James Steffes” and “Fletcher Sturm”

in 3, 6 and 19 days respectively. She replied to “Sally Beck” (Chief Operating Offi-

cer) in 5 days. On the other hand she replied to “David Delainey” (Chief Executive

Officer (CEO)) on the same (0) day. Another example is “Philip Allen”, who is a

manager; he replied within a day to higher ranking officers such as “David Delainey”

(CEO), “Barry Tycholiz” (VP), “Hunter Shively” (VP) and “Richard Shapiro” (VP).

On the other hand, he took 2 to 3 days to reply to “Michael Grigsby” (manager),

“Jay Reitmeyer” (employee) and “Matthew Lenhart” (employee).

3.4 Topological Feature Study

In online social networks, user behavior based features are useful for solving differ-

ent problems, such as, link prediction [140], personality prediction [147], user attribute

prediction [148], link sign prediction [149], prediction of positive and negative users

in Twitter [150], etc. Hence, I believe social (behavioral) phenomena based topologi-

cal features can contribute substantially to solve the RLTP problem. Though there

are works that study and design user behavior features such as topic-specific mod-

eling [151], a behavioral model for Facebook wall posts [152], etc., I assume to have

only topological information. Topological features that I use comes from two different

social phenomena: directed altruism and social stratification. Below I discuss them

in two different sections.

3.4.1 Directed Altruism Based Features

Directed altruism in social networks is described in [19], where the authors have ar-

gued that people are more generous to friends and friends of friends than to a complete

stranger. This phenomenon also reflects in people’s reciprocal link creation behav-

ior. Below, I define some topological features which quantify the directed altruism

phenomena for reciprocal link prediction.

35

Shortest directed distance: In this problem, one directional link (v, u) already

exists, and I am predicting the creation time for the reverse link (u, v). Generally

people are more generous to indirect friends than complete strangers. Hence u is

more likely to respond quickly to v for small value of the directed distance from u to

v i.e.

DirectedDist(u, v) = d(u, v)

Common in/out neighbors count: The number of common neighbors is a

frequently used topological feature for the link prediction task in undirected networks;

however, for directed graphs, I have two separate features: common in-neighbors and

common out-neighbors. Both of these topological features capture the idea that if a

user has more common neighbors with another user, then she is more likely to reply

fast. Also, more common friends increase the network flow, which is an important

factor for building trust [19] and with higher trust people tend to reply faster.

Commonin(u, v) = |Γin(u) ∩ Γin(v)|

Commonout(u, v) = |Γout(u) ∩ Γout(v)|

Jaccard coefficient (In/Out): The Jaccard coefficient is another widely used

topological feature for undirected networks. It is the normalized version of common

neighbors counts. Similar to the common neighbor count feature, this feature also

split into two features due to the directed-ness of the edges. Jaccard coefficients

help to predict the trust level between two nodes. Since, higher trust leads to faster

response, this is a good feature for the RLTP task.

Jaccardin =
|Γin(u) ∩ Γin(v)|
|Γin(u) ∪ Γin(v)|

Jaccardout =
|Γout(u) ∩ Γout(v)|
|Γout(u) ∪ Γout(v)|

36

Local Reciprocity. In [82], the authors studied two local reciprocity features

and they showed relative influence of both features on linking back probability. The

first is Acceptance Local Reciprocity (ALR), which is defined as:

ALR(v) =
|Γin(v) ∩ Γout(v)|

|Γin(v)|

I compute ALR for the head node (v) of the reciprocal link (u, v). This feature

captures the tendency of node v to accept a link. The second feature is Request

Local Reciprocity (RLR), defined as:

RLR(u) =
|Γin(u) ∩ Γout(u)|
|Γout(u)|

I compute RLR for the tail node (u) of the reciprocating link (u, v). RLR represents

the response behavior of the node u and captures its tendency to initiate a reciprocal

link.

3.4.2 Social Stratification Based Features

It is observed that in online social networks people behave according to their status in

the network [24]. A similar behavior is observed in many real world applications, such

as the one described in Section 3.3 or in online dating [153]. I have also shown evidence

of social stratification in Enron dataset, specifically in connection to the RLTP task.

The following topological features quantify the extent of social stratification that is

practiced by the node u or v.

Preferential Attachment: This feature computes a value which reflects the so-

cial stratification induced rank order of a given node. The basic idea of preferential

attachment is to give more weight to the higher degree nodes. Traditionally, preferen-

tial attachment has been computed for undirected networks, so I change the formula

to adapt it for a directed networks. For undirected graph, it is simply the product

of the degrees of the node u and v. For directed graph, I take the product of the

37

out-degree of the tail node (u) and the in-degree of the head node (v) of a prospective

reciprocal link (u, v). The formula is given below:

PrefAtt(u, v) = |Γout(u)| × |Γin(v)|

Preferential Jaccard: PrefJacc is inspired by both Preferential Attachment and

Jaccard Coefficient. It is a trade-off between two concepts—first, high degree nodes

are prone to create more edges, and second, nodes prefer to connect with similar nodes

(social stratification). Both these phenomena can influence reciprocal edge creation.

I calculated PrefJacc by using the following equation:

PrefJacc(u, v) =
|Γout(u) ∩ Γin(v)|
|Γout(u) ∪ Γin(v)|

In/Out Ratio: A node in the upper hierarchy has a tendency to a create re-

ciprocal edges with other nodes at the same hierarchy level than to nodes which are

at a lower hierarchy level [24]. To reflect this knowledge in this model, I need to

find an efficient way for comparing the hierarchy of a pair of nodes, which I compute

by the ratio of their in-degrees and the ratio of their out-degrees. Higher InRatio

is indicative of higher tendency of the numerator node to attract links compared to

the denominator node; similarly, higher OutRatio represents a higher tendency of the

numerator node to create links compared to the denominator node. In this way, these

two features capture the relative patterns of link creation and link acceptance by the

pair of the vertices. For reciprocating link (u, v), I calculate InRatio and OutRatio

by using the following equations:

InRatio =
|Γin(u)|
|Γin(v)|

OutRatio =
|Γout(u)|
|Γout(v)|

38

 0

 0.005

 0.01

 0.015

 0.02

 0.025

0.
1-

5

5.
1-

10

10
.1

-1
5

15
.1

-2
0

20
.1

-2
5

25
.1

-3
0

30
.1

-4
0

40
.1

-5
0

50
.1

-6
0

60
.1

-7
0

70
.1

-8
0

80
.1

-1
00

L
in

k
in

g
 b

a
c
k

 P
r
o
b

a
b

il
it

y

In Ratio

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

0.
1-

1.
1

1.
2-

2.
2

2.
3-

4

4.
1-

5.
5

5.
6-

7.
3

7.
4-

9.
5

9.
6-

12

12
.1

-1
4

14
.1

-1
5.

5

15
.6

-1
8

18
.1

-2
5

25
.1

-2
8

28
.1

-3
0

L
in

k
in

g
 b

a
c
k

 P
r
o
b

a
b

il
it

y

Out Ratio

Fig. 3.4.: Relation of In/OutRatio and linking back probability in Epinion dataset

PageRank: PageRank represents the prestige of the node in the network. I use

both, pagerank of u and pagerank of v as features. If PageRank(u) is lower than

PageRank(v), then the node u is highly likely to respond faster to the node v.

Table 3.2.: Correlation of features with Interval time

Features/ Datasets Epinion MC-Emails Enron

DirectedDist -0.04127 -0.03792 -0.13336
CommonIn 0.38109 0.33447 0.44398
CommonOut 0.27254 0.31194 0.27534
JaccardIn 0.17161 0.22101 0.24831
JaccardOut 0.11015 0.18925 0.20195
RLR(u) -0.00290 0.05820 0.16053
ALR(v) -0.06093 0.15383 0.19256
PrefAtt 0.19289 0.23930 0.25443
PrefJacc 0.09136 0.20054 0.25502
InRatio -0.03165 -0.07053 -0.14302
OutRatio -0.01132 0.04269 0.13108
PageRank(u) 0.24783 -0.07523 -0.07609
PageRank(v) 0.14300 0.00211 0.02049

39

3.4.3 Feature analysis

To validate the strength of these features (13 in total) for predicting the interval

time of reciprocal edges, I compute the Pearson’s correlation of the above topological

features with the interval time value for three real-life graph datasets (Table 3.1) and

show the correlation values in Table 3.2. As we can see, for the MC-Emails dataset

most of the features (mainly Commonin, Commonout, JaccardIn, JaccardOut, PrefAtt

and PrefJacc) have good correlation value (between 0.2 to 0.5). Similarly, for the

Enron dataset the same set of features is highly related to interval time. But, for

Epinion dataset the correlation values for most of the features are poor except for

Commonin, Commonout, and PageRank(u); the worst features are InRatio, OutRatio

and RLR(u). To check the influence of these features on reciprocal link creation,

I also check the average linking back probability over different range of values for

different features. I discuss observation in the following paragraphs.

In Figure 3.4, I plot the observation for two of the features: InRatio and OutRatio.

Here, for each bin of InRatio, the linking back probability is calculated as a fraction

of reciprocal links over all the links in that bin. Figure 3.4 clearly shows high linking

back probability for higher InRatio and lower OutRatio, which is expected behavior

for these features. In [82], the authors provided a thorough study of some features,

such as, RLR(u) and ALR(v), and proved their significant influence on reciprocal link

creation.

in Figure 3.5, I show three plots (one for each dataset) of DirectedDist vs. interval

time. Within each plot I have several graphs, each representing the directed distance

value between the vertices. Along the x-axis is the interval time and along the y-axis

is the number of reciprocal link instances that have the corresponding interval time.

For all dataset, I observe that links with small directed distance value (such as, 2

or 3) can have high interval time, i.e. the reciprocal link may appear after many

days; but as distance increases there are few or almost no instances of reciprocal links

with high interval time. This observation may appear counterintuitive as I expect

40

0 100 200 300 400 500 600
Interval Time (in days)

100

101

102

103

104

Nu
m
be

r o
f I
ns

ta
nc

es

Distance=2
Distance=3
Distance=4
Distance=5

(a) Epinion Dataset

0 20 40 60 80 100 120 140 160
Interval Time (in days)

100

101

102

103

Nu
m
be

r o
f I
ns
ta
nc
es

Distance=2
Distance=3
Distance=4
Distance=5

(b) MC-Email Dataset

0 100 200 300 400
Interval Time (in days)

100

101

Nu
m
be

r o
f I
ns

ta
nc

es

Distance=2
Distance=3
Distance=4
Distance=5

(c) Enron Dataset

Fig. 3.5.: DirectedDist vs. Interval Time

41

short distance to influence a short interval time. However, This observation can be

explained as follows: people tend to trust other people who are within their circles,

and they will ultimately create a reciprocal links with them, even if they do not do it

immediately. On the other hand, for people who are outside someone’s circle (having

a high directed distance value, such as 4 or 5), reciprocal links will be created either

in a short interval time or will not be created at all. The short interval time can

be the cases when two strangers meet in-person in a social event and then mutually

agree to be connected online (or trust each other). On the other hand, the negative

case happens, when a stranger trusts (or sends an invite to) someone, and the second

person just ignore that forever. Due to this complex relation, the correlation between

directed distance and interval time is poor, yet I consider DirectedDist to be a useful

feature.

Correlation with Low and High Interval time.

There are a variety of different social behaviors that influence the interval time,

hence some social based features impact the interval time differently over a period. To

understand the impact of different features over a period, I split the target variable

(interval time) into lower and higher range and calculate feature correlations with

lower and higher interval times separately. For this study, I calculate average interval

time for each dataset and if the interval time is less or equal to average interval time

I call it low interval time, otherwise, we call it high interval time. For each dataset

and each feature I calculate the correlation value between the feature and low and

high interval times; these correlation values are shown in Table 3.3.

In Table 3.3, I observe that features like Commonin, Commonout, JaccardIn,

JaccardOut, PrefAtt and PrefJacc have high correlation with higher interval time.

For the Enron dataset, some of these features (Commonin, JaccardIn and PrefJacc)

are highly correlated to lower interval time as well. For the MC-Email dataset, Di-

rectedDist, ALR(v), Out Ratio and PageRank(v) have noticeable correlation with

lower interval time and other two features (RLR(u) and In Ratio) are inversely corre-

42

Table 3.3.: Correlation of features with Low and High Interval times

Datasets Epinion MC-Emails Enron
Features Low High Low High Low High

DirectedDist -0.00387 -0.04587 0.14453 -0.06022 -0.04023 -0.15364
CommonIn 0.06671 0.33821 0.00018 0.41728 0.22168 0.35640
CommonOut 0.07231 0.24064 0.06639 0.27446 0.04738 0.20793
JaccardIn 0.07765 0.15312 -0.04154 0.29774 0.17726 0.10033
JaccardOut 0.06829 0.13183 -0.07426 0.22517 0.07820 0.06360
RLR(u) -0.03937 0.06628 -0.17897 0.02467 0.07949 0.06348
ALR(v) -0.01783 -0.07657 0.15905 0.09455 0.08760 0.06401
PrefAtt 0.03049 0.14439 -0.00163 0.31220 0.06305 0.32053
PrefJacc 0.04258 0.13021 -0.06545 0.23248 0.16523 0.09010
InRatio -0.01251 -0.01751 -0.15333 -0.04297 -0.10385 -0.09571
OutRatio -0.00700 -0.02610 0.29600 -0.06979 0.00578 0.12331
PageRank(u) 0.06118 0.20674 -0.07606 -0.09756 -0.00557 -0.12452
PageRank(v) 0.02399 0.14362 0.31830 -0.13432 0.01606 0.03715

lated to lower interval time. One surprising observation for the MC-Email dataset is

that PageRank(v) is the poorest feature (Table 3.2), but highly correlated with both

lower and higher interval times, mainly because the feature is positively correlated for

lower interval time and inversely correlated with higher interval time. From Table 3.3

I understand that for different datasets user behavior varies and hence a distinct set

of features becomes influential to the interval time (especially lower interval time) of

that dataset.

3.5 Proposed methodology using survival analysis

Survival analysis is widely used in the medical domain to predict survival time or

time to a specific event (such as death) for patient datasets [60], [61]. In the survival

analysis setup, for a set of instances under observation, events happen over a time

period, from which a survival model learns the temporal patterns of these events and

predicts the survival time. Here, I propose a novel method to map the RLTP problem

to a survival analysis task and explain survival analysis concepts from a reciprocal

43

link creation perspective. For these concepts, I also provide suitable terminology for

the RLTP problem to describe my approach clearly.

Beginning of graph expansion and study period: At the first time-stamp, a

given directed time-stamped network is static (initialized); the beginning of graph

expansion is the second time-stamp from when new links are added to the static

network. Survival analysis assumes a starting time of the study, from when a model

starts to observe for the events. In the RLTP problem, the beginning of graph ex-

pansion serves as the starting time of the study. For the RLTP problem, I divide

the time-stamps of the network into train and test time periods, and I observe the

network for the reciprocal link creation till the end of the train period, so the last

time-stamp in the train period is considered to be the end of the study. Thus the

time window from the beginning of graph expansion to the last time-stamp of train

period is considered to be the study period which is the same as the train period.

Reciprocal event: For a parasocial link (v, u), if a reciprocal link (u, v) is created

during the training period, I call it a reciprocal event, which is the event of interest

in the RLTP problem. In the RLTP problem each parasocial link is a data instance,

time-stamp of a parasocial link generation is the time when the data instance is

considered into the network for study. Hence, the time-stamp of a parasocial link

generation is called the starting time of observation for that data instance (an

ordered pair of vertices).

ever-waiting links: I study the network for a limited time window (train period),

and hence for a set of parasocial links, the corresponding reciprocal event may not be

observed before the end of the study (last time-stamp of training period). I call these

links ever-waiting links. ever-waiting links carry the information that the reciprocal

link creation event did not happen till the end of the train period. In the survival

44

analysis terminology the ever-waiting links are also called censored instances; I use

both of these terms interchangeably.

In a traditional regression task, ever-waiting links may either be ignored, because

the target value (the interval time) for these instances are unknown, or they may be

retained with an arbitrarily chosen large interval time, which is higher than the time

difference between the end of the study time and the starting time of observation for

that parasocial link. The first of the above approaches ignores important information;

specifically, the ignored fact is that the interval time for ever-waiting links is higher

than the time difference between the end of the study and the starting time of obser-

vation for that parasocial link. The second approach is simply a crude approximation

of the target value. As mentioned before, the main reason to map the RLTP problem

into survival regression analysis framework is to exploit the important information

provided by the ever-waiting links.

Target value of survival regression model: The time difference between the

starting time of observation (parasocial link generation time) and the time-stamp

of the reciprocal edge creation is the interval time which I want to predict in the

RLTP task. For a reciprocal edge (u, v), the interval time is defined as Int(u, v), as

is discussed in Section 3.2. In a traditional survival model, the interval time is called

the life-span of an instance as for these models “death” is the event of interest. Hence

survival models that predict survival time can be adopted to predict the interval time

for the RLTP problem. For training the prediction model, I need a feature vector for

each data instance, along with the survival time and a binary event indication value

(event occurred or not). For the RLTP problem, the feature vector of a parasocial edge

is xi ∈ Rd, a vector of topological features (Section 3.4) for the i’th parasocial link in

training data, where feature dimension d is 13 (number of topological features). For

each parasocial links of the training period, if the reciprocal event has occurred during

training period then life-span of parasocial link is the interval time with the event

indication value set to 1; otherwise, for ever-waiting links, the time difference between

45

the last time-stamp of training and time-stamp of the parasocial link generation is

the survival time with event indication value set to 0. Given this training dataset

the target value (the interval time) of test instances are predicted by using a trained

survival model. I use various survival models, which I discuss in the next subsection.

3.6 Survival models for the RLTP problem

As explained in the previous section, any survival model can be adopted to solve

the RLTP problem. There are two types of widely used survival models: 1) semi-

parametric models and 2) parametric models. Parametric models assume that interval

time follows a known statistical distribution; hence, if the interval time for a dataset

follows a distribution then parametric models perform very good for the dataset

compared to a semi-parametric models. However for many real-world datasets, it is

difficult to find a suitable statistical distribution that fits well to the interval time,

for these datasets semi-parametric models perform better than parametric models,

because semi-parametric models do not assume any underlying distribution, rather

they try to learn the actual distribution from the data. As I discussed in Section 3.3,

some of the datasets are good fit for a statistical distribution but others are not.

Hence, I conduct experiments with both semi-parametric and parametric models to

offer a comprehensive study of the RLTP problem. In this section, I describe these

selected semi-parametric and parametric models and their adaptation for solving the

RLTP problem.

Note that, for a given parasocial link if corresponding reciprocal link is not likely

to be created at time t then Survival function value for t is high. On the other

hand, if the corresponding reciprocal link is highly likely to be created at time t

then the reciprocal event density function value should be high and that leads to a

higher value of the Hazard function. We can observe that both survival function and

hazard function are interrelated and we can model either function for the interval time

prediction. Next, I describe how semi-parametric Cox regression models the hazard

46

function to solve the RLTP problem. Later I discuss parametric methods (BJ-model

and AFT models) and their approach for modeling the survival function with the

help of different statistical distributions.

3.6.1 Cox Regression

For solving the RLTP problem, I use regularized Cox model to avoid over-fitting.

We observe in Section 3.4.3 that only a few features have a strong correlation with

the target variable, so I want to use a sparse regularization model. I use Elastic

Net regularization. In literature, a Cox model with Elastic Net regularization is also

known as Cox model with Elastic Net (EN) penalty [154]. The penalty term PEN is:

PEN(β) =
d∑

k=1

[
α|βk|+

1

2
(1− α)β2

k

]
(3.1)

Where, 0 < α ≤ 1 and with EN penalty the objective function of the Cox model

(Equation 1.4), becomes

β̂ = argmin
β

1

np

np∑
i=1

[
−Ci(xTi β) + Ci log

(∑
j∈Rt

exp(xTj β)

)]
+ γ · PEN(β) (3.2)

Here, γ > 0 is a regularization constant. For solving this optimization task, I can

use the maximum partial likelihood estimator proposed in [62]; it uses the Newton-

Raphson method to iteratively find the estimated β̂ which minimizes the Equation

(3.2).

3.6.2 Parametric Models

The main idea behind a parametric model is that it assumes that the interval

time follows a specific statistical distribution. There are two ways to relate interval

47

Table 3.4.: Density, Survival and Hazard functions for the distributions used with
AFT model. λ is scale parameter and k is shape parameter for both Weibull and log-
logistic distribution. For log-normal distribution µ is the mean (location parameter),
σ2 is the variance and Φ is cumulative distribution function of normal distribution.

Distributions Density Function Survival Function Hazard Function

Weibull λktk−1 · exp(−λtk) exp(−λtk) λktk−1

Log-Normal 1√
2πσt

exp(− (log(t)−µ)2

2σ2) 1− Φ(log(t)−µ
σ

)
1√
2πσt

exp(− (log(t)−µ)2

2σ2
)

1−Φ(
log(t)−µ

σ
)

Log-Logistic λktk−1

(1+λtk)2
1

1+λtk
λktk−1

1+λtk

time and a statistical distribution: first, assume that the actual interval time for

all parasocial links follows a distribution; and second, assume that the logarithm of

the interval time follows a distribution. The models under the first assumption are

referred to as linear regression models, and the models under later assumption are

called accelerated failure time (AFT) models.

Linear regression model: The statistical linear regression with the least squares

estimation is widely used for a variety of regression tasks. However, the issue with

the model is that it cannot use information from ever-waiting links. For interval time

prediction this issue can be handled by using a specific survival model such as the

Buckley-James model (BJ model). The BJ model first estimates the interval time of

training ever-waiting links using the Kaplan-Meier (KM) [63] estimation method and

then by using all parasocial links from training period to train a linear model. This

linear model can be trained through MLE as described above. For more practical

use, Wang et al. [155] proposed twin boosting method with BJ estimator, I use this

method to solve the RLTP problem.

Accelerated Failure Time (AFT) model: An AFT model assumes that the loga-

rithm of the interval times log(TInt) follows a statistical distribution and it is linearly

48

related to the (topological) feature vectors. The general form for AFT regression

model is

log(TInt) = X · β + σ · ε (3.3)

where X is the covariate matrix of size np × d where ith row of X is xi, β is a d

dimensional coefficient vector (model parameters), σ (σ > 0) is an unknown scale

parameter, and ε is an error variable which follows a similar distribution to log(TInt).

For the problem, I use the three most suitable distributions (see Figure 3.3) for interval

time, the details of which are given in Table 3.4.

3.7 Algorithmic framework

In Algorithm 6, I describe a general framework of my proposed method. First I

divide the time-stamps of the input graph into train and test periods as mentioned

in line 1 of Algorithm 6. After that I create training data instances (train-set) and

test data instance (test-set) from the corresponding train and test periods (Lines

2-4). Then I calculate topological features for each parasocial link (data instance)

in the train-set and test-set as described in Lines 5-10 of Algorithm 6. After that

I generate target variable for each data instance (Lines 11-26), for which I observe

the corresponding reciprocal link in the graph. For a parasocial link e ∈ train-set, if

the corresponding reciprocal link is generated during train period then interval time

Int(e) (Section 3.2) is the target value with event indicator value Ce = 1 otherwise

time difference between the link creation and end of training period act as the target

value with event indicator value Ce = 0.

49

Algorithm 1: The Framework

1: For time-stamps (t0 to tM) of the input graph, divide the starting p%
time-stamps as training period (t0 - tp) and remaining as testing period (tp+1 -
tM).

2: train-set← all parasocial links generated before/at time-stamp tp.
3: test-set← all parasocial links generated after time-stamp tp and immortal links.
4: Sort edge in train-set and test-set based on its edge creation time. {optional}
5: for each (edge) e ∈ train-set do
6: Gte ← create a snapshot of the network at te − 1. {sorting helps in this step}
7: xe ← generate topological features (Section 3.4) for edge e from the snapshot

Gte.
8: add xe to X.
9: Similarly, generate topological features for edges in the test-set and generate
Xtest.

10: for each e ∈ train-set do
11: if e has a reciprocal link er in dataset then
12: if ter ≤ tp then
13: ye ← Int(e)← ter − te {target value for the parasocial edge (data

instance)}
14: Ce ← 1 {event indicator value for the parasocial edge (data instance)}
15: else
16: ye ← tp − te {target value for the ever-waiting link (data instance)}
17: Ce ← 0
18: else
19: ye ← tp − te {target value for the ever-waiting link (data instance)}
20: Ce ← 0
21: add ye to T trInt.
22: add Ce to Ctr.
23: for each e ∈ test-set do
24: if e has a reciprocal link er in dataset then
25: ye ← Int(e)← ter− te {target value for the parasocial edge (data instance)}
26: Ce ← 1
27: else
28: ye ← tM − te {target value for the ever-waiting link (data instance)}
29: Ce ← 0
30: add ye to T testInt .
31: add Ce to Ctest.
32: {Use one of the methods among Cox, BJ, and AFT; below I call all three

methods}
33: cox ← cocktail(X, T trInt, Ctr) {method of fastcox (R package)}
34: {For given distribution dist}
35: AFTdist ← survreg(X, T trInt, Ctr,distribution=dist) {method of survival (R

package)}
36: BJmodel ← bujar(X, T trInt, Ctr) {method of bujar (R package)}
37: The cox, AFTdist and BJmodel contain the model parameters β.
38: test-res← predict interval time ye for each edge e ∈ test-set using Xtest and β.
39: evaluate test-res using T testInt and Ctest.

50

Similarly, I generate target values for data instance of test-set as explained in

Lines 27-35 of Algorithm 6. Then, I use R libraries to train the survival models with

training data and predict target values for the test data to generate the test results

(test-res) and lastly I evaluate that test-res.

3.8 Experiments and Results

I conducted a set of rigorous experiments to demonstrate the benefit of using

censored information and the superiority of the survival models to solve the RLTP

problem. I used five survival models: Cox regression model, AFT model with Weibull,

log-normal and log-logistic distributions, and Buckley-James (BJ) regression model.

To prove the fact that the survival models are better suited for solving the RLTP

problem, I compared them with traditional regression models such as ridge regression

(RidgeReg), lasso regression (LassoReg), feed forward neural networks (FFNN) and

support vector regression (SVR). Note that these traditional regression models cannot

use censored information (ever-waiting links). I also compare Cox regression model

with generalized linear model (GML), which is an adopted model from [99].

In addition to the suitability of the survival models for the RLTP problem, I

also demonstrate the usability of the ever-waiting links. For that, we conducted

experiments where I train the survival models without censored information and

compare the performance of the models on the test dataset. I report the improvement

in the performance when the ever-waiting links are used for training the survival

models.

Lastly, I conduct an experiment to show that reciprocal links with short interval

time contain enough information required for training the survival models.

51

3.8.1 Datasets

For the experiments, I use three real world datasets Epinion, MC-Email and

Enron. I discuss these datasets in Section 3.3 and basic statistics of the datasets are

shown in Table 3.1.

Generating a synthetic dataset for the RLTP problem is a challenging task, be-

cause in the literature most of the synthetic graph generation models try to mimic

basic real-world properties such as power-law degree distribution [156], community

structures [2], etc. All these methods generate directed networks with extremely low

reciprocity—generally, less than 1%. Durak et al. have proposed a synthetic network

generation algorithm which also considers reciprocity [157]. We use this algorithm

for generating three synthetic graphs where the vertex count varies between 10, 000

(10K) to 30, 000 (30K) with increments of 10K. Edges of these synthetic networks

have no time-stamps; hence, I assign random time-stamps between 0 to 100 to paraso-

cial links. The time-stamps of reciprocal links of these synthetic networks are selected

by matching the reciprocal link interval time of the Epinion dataset through the best

fit Weibull distribution.

3.8.2 Experimental Setting

For the experiments, I divide the time-stamps of a dataset into two non-overlapping

continuous partitions, where the earlier partition is the train period and the latter

is the test period. In three different experiments, I use, respectively, 60%, 70% and

80% of the earlier time-stamps as the train periods and the remaining time-stamps

as the test period. For synthetic datasets, a 70:30 split of the time-stamps is used as

the train and test period of the experiments. For calculating the topological features

explained in Section 3.4 for a parasocial link (data instance), I take a snapshot of the

network until the time-stamp of the corresponding reciprocal link or end of the train

period (whichever is earlier).

52

Like any other link prediction task, RLTP also suffers from the class imbalance

issue, where the number of positive instances (Ci = 1) is much smaller than that

of the negative instances. To alleviate this problem I use the well-known majority

undersampling [158] strategy as discussed below: all the reciprocal links generated

during a train period are considered in the training data pool as positive instances

and only 50% of the parasocial links generated during the same period are censored

negative instances (Ci = 0) in the pool. The test data pool (and their labels) are

also generated similarly from the test period. As train and test data instances need

to be from their corresponding time periods, I use a modified K-fold cross validation,

where each fold contains a random subset of train and test data instances from their

respective pools. For all the experiments, I used 5-fold cross validation in this manner.

For minimizing the objective function (Equation (3.2)) of censored problem for-

mulation of RLTP, for the Cox regression model, I used cocktail algorithm [159]

(the library is provided by the authors of [159]). For AFT models and BJ regres-

sion, I used Survival package5 and Bujar package6, respectively, available in R. For

RidgeReg, LassoReg and SVR, I used scikit-learn python library and for FFNN, I used

Matlab NNtoolbox. I used TopCom indexing method [160, 161] (Chapter 8) to find

shortest directed distance feature. To choose the best parameters of SVR, I used grid

search, where the cost parameter C takes values from {0.0001, 0.001, 0.01, 0.1, 1.0}

and Epsilon (ε) takes values from {0.0001, 0.001, 0.01, 1.0}.

3.8.3 Evaluation Metrics

Datasets generated from directed time-stamped networks are longitudinal data

and for the RLTP problem the datasets also contain censored information. Evaluating

models on these datasets using traditional evaluation metrics is not suitable, instead I

use time-dependent AUC (also known as c-Index), which is widely used in longitudinal

data analysis [162].

5cran.r-project.org/package=survival
6cran.r-project.org/web/packages/bujar/index.html

53

For a pair of data instances, assume (yi, yj) and (ŷi, ŷj) are the target and the

predicted values, respectively. The time-dependent AUC is defined as the probability

of ŷi > ŷj given yi > yj. If target yi has only 2 possible values, then time-dependent

AUC is the same as the popular AUC (Area Under ROC Curve) metric for classifica-

tion. Similar to the AUC metric, time-dependent AUC takes values between 0 to 1,

where 1 is the best possible value for this metric. Time-dependent AUC (TD-AUC)

is calculated as follows:

TD-AUC =
1

ncnt

∑
i:Ci=1

∑
yj>yi

1(ŷj > ŷi) (3.4)

where, ncnt is total count of (yi,yj) pairs such that Ci = 1 (the event has occurred)

and yj > yi holds.

For the Cox regression model, the predicted value is the hazard value and for a

higher hazard value the event occurs earlier, hence the time-dependent AUC for Cox

can be calculated as:

TD-AUC =
1

ncnt

∑
i:Ci=1

∑
yj>yi

1(xTi β̂ > xTj β̂) (3.5)

3.8.4 Comparison results of survival models and regression models

I compared the selected survival models with four other traditional regression

models and the results are shown in Tables 3.5, 3.6 and 3.7, where columns represent

different training splits and each row represents a prediction model. A horizontal bar

separates the traditional regression models in the upper part and the survival based

models in the lower part. Here, each table cell shows mean and standard deviation

for TD-AUC values. For most of the cases, the Cox regression model performs the

best.

For the Epinion dataset, as depicted in Table 3.5, the Cox regression model per-

forms the best with mean TD-AUC 0.7364, 0.7463 and 0.7485 for training period

54

with 60%, 70% and 80% splits of time-stamps, respectively. Here, with increase in

the training data we can clearly see improvement in the performance, which is an

expected behavior because with more training examples the model learns better. BJ

model is the next best with performance very close to the Cox model. For this model

also, the mean TD-AUC improves from 0.7312 to 0.7416 as we increase the training

data. Similar behavior is observed for other survival models, but the performance of

the AFT models is, unfortunately, not good for the dataset. This can be attributed

to the fact that AFT models make strict distribution assumptions on the data and

such assumption may not be suitable for the Epinion dataset (Figure 3.3).

For the Epinion dataset, among the traditional regression based methods, ridge

regression performs better than any other competing methods with mean TD-AUC

in the range between 0.60 and 0.61. But, when we compare its performance over

different training splits, we see that its performance does not improve as we increase

the training data. The same behavior holds for other traditional regression methods,

such as Lasso regression and FFNN. One possible explanation for this behavior is

model under-fitting; that is, the majority of the errors in the traditional regression

models are coming from the bias error, so the error does not improve much with a

larger dataset which reduces variance error only. On the other hand, survival analysis

Table 3.5.: Epinion Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.6185 (±.0018) 0.6086 (±.0013) 0.6060 (±.0018)
LassoReg 0.6169 (±.0013) 0.6020 (±.0014) 0.6039 (±.0017)
FFNN 0.5510 (±.1296) 0.5048 (±.0822) 0.4456 (±.0725)
SVR 0.4791 (±.0005) 0.4871 (±.0039) 0.4914 (±.0030)
BJ Model 0.7312 (±.0010) 0.7339 (±.0020) 0.7416 (±.0021)
Weibull 0.3807 (±.0763) 0.5210 (±.1446) 0.5232 (±.1282)
logNormal 0.3660 (±.0388) 0.4461 (±.0283) 0.4283 (±.0305)
logLogistic 0.4901 (±.0098) 0.5110 (±.0196) 0.5132 (±.0188)
Cox 0.7364 (±.0025) 0.7436 (±.0016) 0.7485 (±.0028)

55

Table 3.6.: MC-Email Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.6213 (±.0087) 0.6083 (±.0146) 0.6014 (±.0125)
LassoReg 0.5884 (±.0100) 0.5709 (±.0201) 0.5686 (±.0074)
FFNN 0.4199 (±.0800) 0.4609 (±.0964) 0.5069 (±.0915)
SVR 0.5462 (±.0154) 0.5737 (±.0187) 0.5530 (±.0150)
BJ Model 0.5898 (±.0087) 0.5910 (±.0146) 0.6103 (±.0059)
Weibull 0.6139 (±.0075) 0.6171 (±.0069) 0.6315 (±.0166)
logNormal 0.6391 (±.0053) 0.6463 (±.0015) 0.6695 (±.0116)
logLogistic 0.6380 (±.0121) 0.6494 (±.0062) 0.6747 (±.0201)
Cox 0.6527 (±.0097) 0.6558 (±.0125) 0.6797 (±.0062)

Table 3.7.: Enron Dataset: TD-AUC results [mean (±standard deviation)] with dif-
ferent splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.5732 (±.0073) 0.5847 (±.0159) 0.5318 (±.0164)
LassoReg 0.5740 (±.0076) 0.5850 (±.0152) 0.5309 (±.0178)
FFNN 0.4900 (±.0258) 0.5407 (±.0434) 0.5363 (±.0561)
SVR 0.5490 (±.0080) 0.5680 (±.0176) 0.5608 (±.0136)
BJ Model 0.5292 (±.0120) 0.6096 (±.0076) 0.5599 (±.0121)
Weibull 0.5710 (±.0168) 0.6319 (±.0050) 0.5980 (±.0096)
logNormal 0.5713 (±.0146) 0.6146 (±.0097) 0.5862 (±.0129)
logLogistic 0.5787 (±.0171) 0.6224 (±.0069) 0.5917 (±.0101)
Cox 0.5854 (±.0166) 0.6311 (±.0110) 0.5919 (±.0084)

based models are more sophisticated, which enables them to design complex functions

for predicting the time, thus overcoming the under-fitting issue.

For the MC-Email dataset, the overall behavior of the models is very similar to

the Epinion dataset. Here again the Cox regression model performs the best with

mean TD-AUC between 0.65 and 0.68 and its results are improved for larger training

data. Performance of different AFT models vary, but they all perform better than

all of the traditional regression methods. In particular, AFT with log-logistic and

log-normal distributions perform great and their mean TD-AUC is very close to the

56

Table 3.8.: TD-AUC results [mean (±standard deviation)] for various methods on
synthetic datasets.

Method 10K 20K 30K

RidgeReg 0.5210 (±.0029) 0.4949 (±.0018) 0.5203 (±.0023)
LassoReg 0.5150 (±.0034) 0.4876 (±.0059) 0.5091 (±.0048)
FFNN 0.4999 (±.0517) 0.4967 (±.0151) 0.5068 (±.0631)
SVR 0.5379 (±.0021) 0.4963 (±.0026) 0.5473 (±.0015)
BJ Model 0.5589 (±.0011) 0.5232 (±.0013) 0.5557 (±.0008)
Weibull 0.5641 (±.0036) 0.4954 (±.0027) 0.5559 (±.0015)
logNormal 0.5670 (±.0027) 0.4991 (±.0030) 0.5618 (±.0011)
logLogistic 0.5597 (±.0029) 0.4985 (±.0042) 0.5576 (±.0019)
Cox 0.5604 (±.0025) 0.5282 (±.0026) 0.5558 (±.0016)

results of the Cox regression as shown in Table 3.6. The performance of all survival

models improve as we provide more training data. On the other hand, best among

the competing methods is ridge regression with a mean TD-AUC between 0.60 and

0.62. As I have discussed earlier, this model suffers from under-fitting problem.

For the Enron dataset, results are shown in Table 3.7. Here, for the training

period with 60% split, Cox regression performs the best with mean TD-AUC 0.58.

For the other two splits, AFT model with Weibull distribution performs the best with

mean TD-AUC 0.63 and 0.59. The BJ model performs poorly compared to the other

survival models with mean TD-AUC ranging from 0.52 to 0.6, but the performance

of BJ model is still better than all competing regression methods for training period

with 70% and 80% splits of time-stamps. For this dataset, for 80% training split, none

of the models have better performance than the other splits. This is due to the fact

that this dataset is extremely sparse and it has only 3, 007 links created during 944

time-stamps (Table 3.1). Hence even the 80% split does not provide more informative

training samples to perform good prediction on remaining data.

The results for synthetic networks are shown in the Table 3.8 by using the mean

TD-AUC and standard deviation metrics. As we observe the results in this table,

We can easily conclude that survival models always perform better than traditional

57

Epinion MC-Email Enron
Datasets

0.50

0.55

0.60

0.65

0.70

0.75

0.80

TD
 -
AU

C

GLM cox regression

Fig. 3.6.: Comparison of GLM and cox regression

regression methods. For two datasets with 10K and 30K node instances, the AFT

model with log-normal distribution performs the best among all, while for the dataset

with 20K nodes the Cox regression performs the best. The performance of survival

models is consistently very similar except for dataset with 20K node where Cox and

BJ models clearly perform better than AFT models. Among competing methods,

SVR always performs better than others.

3.8.5 Comparison with GLM

Sun et al. [99] proposed a method to predict link generation time in a heteroge-

neous network, where they design a unique feature for the task and use the feature

with generalized linear model (GLM) for the prediction task. This proposed feature is

designed based on meta-path (a simple path with link label information) in a hetero-

geneous network. I adopted this feature for a homogeneous network and the adopted

feature can be described as a number of simple paths of size k between two nodes.

Counting the number of simple paths is an extremely costly operation especially for

a large dataset such as the Epinion network; hence for this experiment, I use k upto

58

5 i.e. k ∈ {2, 3, 4, 5} for all three networks, Epinion, MC-Email and Enron. I provide

these homogeneous feature values to GLM (with gamma distribution) to solve the

RLTP problem. For this experiment I use a 70% split of time-stamps as train period

and remaining 30% as test period. The results of this experiment are depicted in Fig-

ure 3.6, where GLM is compared with the Cox regression model for all three datasets.

From Figure 3.6, I observe that the Cox regression outperforms the GLM model for

all three datasets by noticeable margins. I believe, one of the main reasons for the

poor performance of the GLM based method is that the feature proposed by [99] is

carefully designed for an author-paper based heterogeneous network and its adoption

in a homogeneous network is not very useful.

Table 3.9.: Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with and without ever-waiting Links on real datasets.

Epinion
model w/o ever-waiting with ever-waiting %incr

BJ Model 0.4580 (±.0042) 0.7416 (±.0021) 61.94
Weibull 0.4096 (±.0090) 0.5232 (±.1282) 27.73
logNormal 0.4218 (±.0035) 0.4283 (±.0305) 1.53
logLogistic 0.3767 (±.0024) 0.5132 (±.0188) 36.23
Cox 0.4975 (±.0024) 0.7485 (±.0028) 50.45

MC-Email
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.4787 (±.0131) 0.6103 (±.0059) 27.51
Weibull 0.5517 (±.0101) 0.6315 (±.0166) 14.46
logNormal 0.6342 (±.0146) 0.6695 (±.0116) 5.56
logLogistic 0.6331 (±.0152) 0.6747 (±.0201) 6.57
Cox 0.6102 (±.0137) 0.6797 (±.0062) 11.38

Enron
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5499 (±.0134) 0.5599 (±.0121) 1.82
Weibull 0.5330 (±.0237) 0.5980 (±.0096) 12.20
logNormal 0.5344 (±.0070) 0.5862 (±.0129) 9.71
logLogistic 0.5379 (±.0053) 0.5917 (±.0101) 10.01
Cox 0.5481 (±.0234) 0.5919 (±.0084) 7.99

59

Table 3.10.: Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with and without ever-waiting Links on synthetic datasets.

10K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5730 (±.0045) 0.5589 (±.0011) -2.46
Weibull 0.4847 (±.0096) 0.5641 (±.0036) 16.37
logNormal 0.5564 (±.0102) 0.5670 (±.0027) 1.89
logLogistic 0.5546 (±.0128) 0.5597 (±.0029) 0.92
Cox 0.4910 (±.0037) 0.5604 (±.0025) 14.14

20K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.4956 (±.0062) 0.5232 (±.0013) 5.57
Weibull 0.4951 (±.0025) 0.4954 (±.0027) 0.06
logNormal 0.4984 (±.0018) 0.4991 (±.0030) 0.15
logLogistic 0.4965 (±.0055) 0.4985 (±.0042) 0.41
Cox 0.4938 (±.0098) 0.5282 (±.0026) 6.97

30K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5548 (±.0049) 0.5557 (±.0008) 0.17
Weibull 0.4544 (±.0020) 0.5559 (±.0015) 22.35
logNormal 0.5270 (±.0044) 0.5618 (±.0011) 6.61
logLogistic 0.5243 (±.0042) 0.5576 (±.0019) 6.35
Cox 0.4637 (±.0051) 0.5558 (±.0016) 19.86

3.8.6 Importance of ever-waiting links

I conducted experiments to show the importance of ever-waiting links and the

results are depicted in Tables 3.9 and 3.10. Table 3.9 shows the increment in TD-

AUC up to 62% in the real-world datasets, when the survival models are provided

with censored information (ever-waiting links) during the training, as compared to

when the models are trained without censored information. For the Epinion dataset,

the increment in the results is significant (more than 27% for all models) except AFT

with log-normal distribution. Similarly, for the MC-Email and the Enron datasets

the increment is up to 27%, which is substantial. As shown in Table 3.10, for the

synthetic datasets we also have very similar increment in the results except for the BJ

model with datasets of 10K nodes. For the most part the increment in performance

is high for the Cox regression and the AFT with Weibull distribution. However, for

60

60% 70% 80%
Train split

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
D
 -
 A
U
C

BJ_20

BJ_all

weibull_20

weibull_all

logNormal_20

logNormal_all

logLogistic_20

logLogistic_all

cox_20

cox_all

Fig. 3.7.: Epinion Dataset: Comparison of training with top 20% reciprocal links and
all reciprocal links.

other models the increment is limited to around 10%. The modest contribution of

ever-waiting links for the case of synthetic networks can be attributed to the network

generation model. I used Durak et al’s model [157], which selects pairs of vertices for

reciprocal link creation based on only degree distribution without considering any of

the social phenomena, so the features that we are using may be not very effective for

the synthetic datasets.

3.8.7 Importance of reciprocal links with small interval time

For the RLTP problem, reciprocal links carry very useful information and this

information is not distributed uniformly over all reciprocal links. I described in

Section 3.3 that for most of the reciprocal links the corresponding time interval is

relatively small, and very few have high time interval as depicted in Figure 3.2. The

reciprocal links for which the corresponding time interval is equal to or less than 20%

of the maximum time interval among all the time intervals of reciprocal links in the

dataset are called “top 20%” reciprocal links. I trained survival models with top 20%

61

60% 70% 80%
Train split

0.45

0.50

0.55

0.60

0.65

0.70

T
D
 -
 A
U
C

BJ_20

BJ_all

weibull_20

weibull_all

logNormal_20

logNormal_all

logLogistic_20

logLogistic_all

cox_20

cox_all

Fig. 3.8.: MC-Email Dataset: Comparison of training with top 20% reciprocal links
and all reciprocal links.

60% 70% 80%
Train split

0.40

0.45

0.50

0.55

0.60

0.65

T
D
 -
 A
U
C

BJ_20

BJ_all

weibull_20

weibull_all

logNormal_20

logNormal_all

logLogistic_20

logLogistic_all

cox_20

cox_all

Fig. 3.9.: Enron Dataset: Comparison of training with top 20% reciprocal links and
all reciprocal links.

reciprocal links (with ever-waiting links) and compared the results of these models

with results of models trained with all reciprocal links (with ever-waiting links).

Results for these experiments are shown in Figures 3.7, 3.8, 3.9, where all red bars

represent different models trained with top 20% reciprocal links and all black bars

represent the same models trained using all reciprocal links. We can see that, for all

62

Table 3.11.: Time-Dependent AUC results [mean (±standard deviation)] for survival
analysis methods with top5-features and all features.

Epinion
model top5-features all-features %incr
BJ Model 0.6541 (±.0027) 0.7339 (±.0020) 12.20
Weibull 0.4878 (±.0872) 0.5210 (±.1446) 6.80
logNormal 0.3157 (±.0062) 0.4461 (±.0283) 41.32
logLogistic 0.3360 (±.0032) 0.5110 (±.0196) 52.10
Cox 0.6292 (±.0056) 0.7436 (±.0016) 18.19

MC-Email
model top5-features all-features %incr
BJ Model 0.4728 (±.0059) 0.5910 (±.0146) 25.00
Weibull 0.5503 (±.0102) 0.6171 (±.0069) 12.13
logNormal 0.5802 (±.0074) 0.6463 (±.0015) 11.40
logLogistic 0.5917 (±.0125) 0.6494 (±.0062) 9.76
Cox 0.5738 (±.0187) 0.6558 (±.0125) 14.29

Enron
model top5-features all-features %incr
J Model 0.5995 (±.0061) 0.6096 (±.0076) 1.69
Weibull 0.5985 (±.0140) 0.6319 (±.0050) 5.58
logNormal 0.5972 (±.0130) 0.6146 (±.0097) 2.92
logLogistic 0.6043 (±.0070) 0.6224 (±.0069) 2.99
Cox 0.5964 (±.0069) 0.6311 (±.0110) 5.82

three datasets, survival models trained with top 20% reciprocal links perform very

similar or better to the models trained with all reciprocal links. This observation

supports my argument that all reciprocal links do not carry same amount of informa-

tion, but notable amounts of information lie in the reciprocal links with short interval

time.

3.8.8 Contribution of Top-5 features

In Section 3.4.3, I study correlation of different features with interval time. Through

this experiment, I study the contribution of top five highly correlated features (top5-

features) to solve the RLTP problem. From the Table 3.2, we can find these top5-

features for each real-world dataset. We can see, for Epinion dataset Commonin,

63

Commonout, JaccardIn, PrefAtt and PageRank(u) are highly correlated features.

Similarly, for both MC-Email and Enron datasets Commonin, Commonout, JaccardIn,

PrefAtt and PrefJacc are the top5-features (Table 3.2). For this comparison study,

I prepared train and test instances similarly as described in Section 3.8.2 with 70%

training split, but the difference is, here each data instance is represented by only

corresponding top5-features. I use survival models (Section 3.6) with top5-features

data to solve the RLTP problem.

Table 3.11 shows results for the comparison experiment with mean TD-AUC value

and standard deviation for 5 independent runs. The last column in the Table 3.11

shows the increment in the mean TD-AUC value from top5-features data to all fea-

tures data. This table clarifies the importance of the other features with lower corre-

lation values (Table 3.2), because for both the Epinion and the MC-Email datasets

the increment in the results is noticeable. But for the Enron dataset the increment is

not very impressive; I believe low number of data instances and very high correlation

of top5-features are the main reasons for this shortcoming.

3.9 Chapter Summary

In this chapter, I proposed a novel problem, namely, reciprocal link time prediction

(RLTP), which has wide applicability in email, social and other directed networks.

I designed various socially meaningful topological features specifically for directed

networks, which are useful to solve the RLTP problem. I mapped the RLTP prob-

lem into a survival analysis task and through experiments on three real-life network

datasets, we showed that such a framework is better suited than traditional regres-

sion based approaches for solving the RLTP problem. I demonstrated that using

ever-waiting links for training adds valuable information to the prediction models. I

also investigated the information contributed by the reciprocal links and show that

the majority of the required information lies in the top few percent (20%) of the

reciprocal links. To the best of my knowledge this is the first study on time interval

64

prediction for reciprocal links, which is useful to answer response time for emails or

friend requests. It can also be used for recommendation in trust networks for sug-

gesting a new connection (parasocial link) for which, the predicted response time is

very small.

65

4. TRIANGLE COMPLETION TIME PREDICTION

4.1 Introduction

In this chapter, I formally define the triangle completion time prediction (TCTP)

problem and provide a novel framework to solve the TCTP problem. As I mentioned

in Chapter 1, TCTP helps to solve various real-world problems, for example recom-

mendation in an online social network, the user who is going to accept the friend

request earlier should be recommended first as illustrated in the Figure 4.1. Also,

the knowledge of triangle completion time can also improve the solution of various

other network tasks that use triangles, such as, community structure generation [14],

designing network generation models [29], and generating link recommendation [30].

Fig. 4.1.: Simple illustration of the utility of TCTP problem for providing improved
friend recommendation. In this figure, user A is associated with 4 triangles, whose
predicted completion times are noted as label on the triangles’ final edges (red dotted
lines). The link recommendation order for A at a time T , based on the earliest triangle
completion time, is shown in the table on the right.

66

Here, I propose a novel framework called GraNiTE 1 for solving the T riangle

C ompletion T ime Prediction (TCTP) task. The GraNiTE is a network embedding

based model, which first obtains latent representation vectors for the triangle complet-

ing edges; the vectors are then fed into a traditional regression model for predicting

the time for the completion of a triangle. The main novelty of GraNiTE is the design

of an edge representation vector learning model, which embeds edges with similar

triangle completion time in close proximity in the latent space. Obtaining such em-

bedding is a difficult task because the creation time of an edge depends on both local

neighborhood around the edge and the time of the past activities of incident nodes.

So, existing network embedding models [31] which utilize the neighborhood context

of a node for learning its representation vector is inadequate. To achieve the desired

embedding, GraNiTE develops a novel supervised approach which uses local graphlet

frequencies and the edge creation time. The local graphlet frequencies around an

edge is used to obtain a part of the embedding vector, which yields a time-ordering

embedding. Also, the edge creation time of a pair of edges is used for learning the

remaining part of the embedding vector, which yields a time-preserving embedding.

Combination of these two brings edges with similar triangle completion time in close

proximity of each other in the embedding space. Both the vectors are learned by using

a supervised deep learning setup. Through experiments on five real-world datasets, I

show that GraNiTE reduces the mean absolute error (MAE) to one-forth of the MAE

value of the best competing method while solving the TCTP problem.

The rest of the chapter is organized as follows. In Section 2, I define the TCTP

problem formally. In Section 3, I show some interesting observation relating to triangle

completion time on five real-world datasets. The GraNiTE model is discussed in

Section 4. In Section 5, I present experimental results which validate the effectiveness

of my model over a collection of baseline models. Section 6 concludes the work.

1GraNiTE is an anagram of the bold letters in Graphlet and Node based Time-preserving
Embedding.

67

Table 4.1.: Statistics of datasets (* T in years for DBLP)

Datasets |V| |E| |T | (days) |∆|

BitcoinOTC 5, 881 35, 592 1, 903 33, 493
Facebook 61, 096 614, 797 869 1, 756, 259
Epinion 131, 580 711, 210 944 4, 910, 076
DBLP 1, 240, 921 5, 068, 544 23∗ 11, 552, 002
Digg-friend 279, 374 1, 546, 540 1, 432 14, 224, 759

4.2 Problem statement

4.2.1 Problem formulation.

Given, a network G = (V , E), where V is a set of vertices and E is a set of edges.

For a time-stamped network, given a set of time-stamps T , there also exists a mapping

function τ : E → T , which maps each edge e = (u, v) ∈ E to a time-stamp value,

τ(e) = tuv ∈ T denoting the creation time of the edge e. A triangle ∆abc in a network

is formed by the vertices a, b, c ∈ V and the edges (a, b), (a, c), (b, c) ∈ E . If exactly

one of the three edges of a triangle is missing, I call it an open triple. Say, among the

three edges above, (a, b) is missing, then the open triple is denoted as Λc
ab. I use ∆

for the set of all triangles in a graph.

Given an open triple Λw
uv, the objective of TCTP is to predict the time-stamp

(tuv) of the missing edge (u, v), whose presence would have formed the triangle ∆uvw.

But, predicting the future edge creation time from training data is difficult as the

time values of training data are from the past. So I make the prediction variable an

invariant of the absolute time value by considering the interval time from a reference

time value for each triangle, where reference time for a triangle is the time-stamp

of the second edge in creation time order. For example, for the open triple Λw
uv

the reference time is the latter of the time-stamps twu, and twv. Thus the interval

time (target variable) that I want to predict is the time difference between tuv and

the reference time, which is max(twu, twv). The interval time is denoted by Iuvw;

68

0 250 500 750 1000 1250 1500 1750
time (in days)

100

101

102

103

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

10

20

30

40

50

60

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(a) BitcoinOTC dataset

0 200 400 600 800
time (in days)

100

101

102

103

104

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

5

10

15

20

25

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(b) Facebook dataset

0 200 400 600 800
time (in days)

102

103

104

105

106

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

10

20

30

40

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(c) Epinion dataset

0 5 10 15 20
time (in years)

105

106

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

1.0

1.5

2.0

2.5

3.0

3.5

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(d) DBLP dataset

0 200 400 600 800 1000 1200 1400
time (in days)

100

101

102

103

104

105

tri

an
gl

es
 a

nd
 li

nk
s c

re
at

ed

triangles created
links created

0

10

20

30

40

tri
na

gl
es

/li
nk

 ra
tio

trinagles/link ratio

(e) Digg-friend dataset

Fig. 4.2.: Frequency of new edges (green line) and new triangles (blue line) created
over time. Ratio of newly created triangle to the newly created link frequency is
shown in red line. Y-axis labels on the left show frequency of triangles and link, and
the y-axis labels on right show the triangle to link ratio value.

mathematically, Iuvw = tuv −max(twu, twv). Then the predicted time for the missing

edge creation is tuv = Iuvw +max(twu, twv).

Predicting the interval time from a triangle specific reference time incurs a prob-

lem, when a single edge completes multiple (say k) open triples, I call such an edge a

k-triangle edge. For such a k-triangle edge, ambiguity arises regarding the choice of

triples (out of k triples), whose second edge should be used for the reference time—for

each of the reference time, a different prediction can be obtained. I solve this problem

by using a weighted aggregation approach, a detailed discussion of this is available in

Section 4.4.4 “Interval time prediction”.

69

0 200 400 600 800
1000

1200
1400

1600
1800

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(a) BitcoinOTC dataset

0 100 200 300 400 500 600 700 800 900

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(b) Facebook dataset

0 100 200 300 400 500 600 700 800 900

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(c) Epinion dataset

0 2 4 6 8 10 12 14 16 18 20 22
Interval time

0.7

0.8

0.9

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(d) DBLP dataset

0 200 400 600 800
1000

1200
1400

Interval time

0.0

0.2

0.4

0.6

0.8

1.0

P(
X

<=
 x

)

time of 3rd link - time of 1st link
time of 3rd link - time of 2nd link

(e) Digg-friend dataset

Fig. 4.3.: Plots of cumulative distribution function (CDF) for interval times

4.3 Dataset study

The problem of predicting triangle completion time has not been addressed in

any earlier works, so before embarking on the discussion of my prediction method, I

like to present some observations on the triangle completion time in five real-world

datasets. Among these datasets, BitcoinOTC 2 is a trust network of Bitcoin users,

other datasets are collected from Konect 3, from which, Facebook and Digg-friend

are online friendship networks, Epinion is an online trust network and DBLP is a

co-authorship network. Overall information, such as the number of vertices (|V|),

edges (|E|), time-stamps (|T |) and triangles (|∆|) for these datasets are provided in

table 4.1.

2http://snap.stanford.edu/data/
3http://konect.uni-koblenz.de/

70

4.3.1 Study of triangle generation rate.

As network grows over time, so do the number of edges and the number of triangles.

In this study, my objective is to determine whether there is a temporal correlation

between the growth of edges and the growth of triangles in a network. To observe

this behavior, I plot the number of new edges (green line) and the number of new

triangles (blue line) (y-axis) over different time values (x-axis); Figure 4.2 depicts

five plots, one for each dataset. The ratio of newly created triangle count to newly

created link count is also shown (red line).

Trend in the plots is similar; as time passes, the number of triangles and the

number of links created at each time stamp steadily increase (except Epinion dataset),

which represents the fact that the network is growing. Interestingly, triangle to link

ratio is also increases. This happens because as a network gets more dense, the

probability that a new edge will complete one or more triangles increases. This trend

is more pronounced in Digg-friend and DBLP networks. Especially, in Digg-friend

network, each link contributes around 20 triangles during the last few time-stamps.

On the other hand, for BitcoinOTC, Facebook and Epinion datasets, the triangle

to link ratio increases slowly. For Facebook dataset, after slow and steady increase,

I observe a sudden hike in all three values around day 570. After investigation, I

discovered that, it is a consequence of a newly introduced recommendation feature by

“Facebook” in 2008. This feature, exploits common friends information which leads

to create many links completing multiple open triples.

4.3.2 Interval time analysis.

For solving TCTP, I predict interval time between the triangle completing edge

and the second edge in time order. In this study, I investigate the distribution of the

interval time by plotting the cumulative distribution function (CDF) of the interval

time for all the datasets (blue lines in the plots in Figure 4.3). For comparison, these

71

Regression Model

guv

g41

g42

g0

g1

g2

:

g43

𝑑1 = 3

E

𝐞𝑢𝑣 = 𝐠𝑢𝑣
𝐓 ∙ 𝐄

u

v
v

a

b
:

u

𝑑2 = 4

E′

𝐞′𝑢𝑣 = 𝒆′𝑢 − 𝒆′𝑣

P𝐫𝐞𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐟𝐨𝐫 𝑘-triangle links

𝐟𝑢𝑣 = 𝐞𝑢𝑣||𝐞′𝑢𝑣

Interval time prediction
of edge (u,v)

(1 × 𝑑1) (1 × 𝑑2)

(1 × 𝑑)

Fig. 4.4.: Interval time prediction for edge (u, v) using Proposed GraNiTE.

plots also show the interval time between triangle completing edge and the first edge

(red lines).

From Figure 4.3, I observe that for all real-world datasets the interval time between

the third link and the second link creation follows a distribution from exponential

family; which means most of the third links are created very soon after the generation

of the second link. This observation agrees with the social balance theory [20]. As

per this theory, triangles and individual links are balanced structures while an open

triple is an imbalanced structure. All real-world networks (such as social networks)

try to create a balanced structure by closing an open triple as soon as possible; which

is validated in Figure 4.3 as the red curve quickly reaches to 1.0 compared to the

ascent of the blue curve.

72

Fig. 4.5.: Local graphlets for given edge (u, v)

4.4 GraNiTE Model

GraNiTE model first obtains a latent representation vector for an edge such that

edges with similar interval time have latent vectors which are in close proximity. Such

a vector for an edge is learned in a supervised fashion by concatenating two kinds

of edge embeddings: first, a graphlet-based edge embedding, which embeds the local

graphlets into embedding space such that their embedding vectors capture the infor-

mation of edge ordering based on the interval time. So, I call the edge representation

obtained from the graphlet-based embedding method time-ordering embedding. Sec-

ond, a node-based edge embedding that learns node embedding such that proximity

of a pair of nodes preserves the interval time of the triangle completing edge. I call the

node-based edge embedding time-preserving embedding. Concatenation of these two

vectors gives the final edge representation vector, which is used to predict a unique

interval time for a given edge.

The overall architecture of GraNiTE is shown in Figure 4.4. Here nodes u, v

and local graphlet frequency vector of edge (u, v) are inputs to the GraNiTE. E and

73

E′ are graphlet embedding and node embedding matrices, respectively. For an edge

(u, v), corresponding time-ordering embedding euv ∈ IRd1 and time-preserving em-

bedding e′uv ∈ IRd2 are concatenated to generate final feature vector fuv = euv||e′uv ∈

IRd(=d1+d2). This feature vector fuv is fed to a regression model that predicts inter-

val time for (u, v). Lastly, I process the regression model output to return a unique

interval time for (u, v), in case this edge completes multiple triangles. In the follow-

ing subsections, I describe graphlet-based time-ordering embedding and node-based

time-preserving embedding.

4.4.1 Graphlet-based Time-ordering Embedding.

In a real world network, local neighborhood of a vertex is highly influential for a

new link created at that vertex. In existing works, local neighborhood of a vertex is

captured through a collection of random walks originating from that vertex [32], or by

first-level and second level neighbors of that node [33]. For finding local neighborhood

around an edge I can aggregate the local neighborhood of its incident vertices. A

better way to capture edge neighborhood is to use local graphlets (up to a given

size), which provide comprehensive information of local neighborhood of an edge [40].

For an edge (u, v), a graphical structure that includes nodes u, v and a subset of

direct neighbors of u and/or v is called a local graphlet for the edge (u, v). Then, a

vector containing the frequencies of (u, v)’s local graphlets is a quantitative measure

of the local neighborhood of this edge. In Figure 4.5, I show all local graphlets

of an edge (u, v) up to size-5, which I use in my time-ordering embedding task.

To calculate frequencies of these local graphlets, I use E-CLoG algorithm [40] of

Chapter 5, which is very fast and parallelizable algorithm because graphlet counting

process is independent for each edge. After counting frequencies of all 44 graphlets 4,

I generate normalized graphlet frequency (NGF), which is an input to my supervised

embedding model.

4Note that, by strict definition of local graphlet, g3 and g7 are not local, but I compute their
frequencies anyway because these are popular 4-size graphlets.

74

s = 𝑝=1
𝑑1 𝑒𝑝

si sksj

diffij=|si-sj|

ReLU(diffij− diffik)

diffik=|si-sk|

𝑦𝑖 ≤ 𝑦𝑗 ≤ 𝑦𝑘

g41

g42

g0

g1

g2

:

g43

E

(44 × 𝑑1)

𝐞 = 𝐠𝐓 ∙ 𝐄

(1× d1) = (1× 44) ∙ (44× d1)

𝐞𝒊 𝐞𝒌𝐞𝒋

Graphlet

Frequency

Layer

Graphlet

Embedding

Layer

Output

Layer

gj gi gk

Fig. 4.6.: Learning of the graphlet embedding matrix using three data instances

Graphlet frequencies mimic edge features which are highly informative to capture

the local neighborhood of an edge. For instance, the frequency of g1 is the common

neighbor count between u and v, frequency of g5 is the number of 2-length paths,

and frequency of g43 is the number of five-size cliques involving both u and v. These

features can be used for predicting link probability between the vertex pair u and v.

However, these features are not much useful when predicting the interval time of an

edge. So, I learn embedding vector for each of the local graphlets, such that edge

representation built from these vectors captures the ordering among the edges based

on their interval times, so that they are effective for solving the TCTP problem. In

the following subsection graphlet embedding model is discussed.

75

Learning Model.

The embedding model has three layers: graphlet frequency layer, graphlet embed-

ding layer and output layer. As shown in the Figure 4.6, graphlet frequency layer

takes input, graphlet embedding layer calculates edge embedding for the given set

of edges using graphlet embedding matrix and graphlet frequencies, and the out-

put layer calculates my loss function for the embedding, which I optimize by using

adaptive gradient descent. The loss function implements the time-ordering objective.

Given, three triangle completing edges i, j and k and their interval times, yi, yj, and

yk, such that yi ≤ yj ≤ yk, my loss function enforces that the distance between the

edge representation vectors of i and j is smaller than the distance between the edge

representation vectors of i and k. Thus, the edges which have similar interval time

are being brought in a close proximity in the embedding space.

Training data for this learning model is the normalized graphlet frequencies (NGF)

for all training instances (triangle completing edges with known interval values), which

are represented as G ∈ IRm×gn , where m is the number of training instances and gn

is equal to 44 representing different types of local graphlets. Each row of matrix G

is an NGF for a single training instance i.e. if ith element corresponds to the edge

(u, v), gi (= guv) is its normalized graphlet frequency. The target values (interval

time) of m training instances are represented as vector y ∈ IRm. Now, the layers of

the embedding model in Figure 4.6 are explained below:

Graphlet frequency layer : In input layer I feed triples of three sampled data instances

i, j and k, such that yi ≤ yj ≤ yk with their NGF i.e. gi gj, and gk.

Graphlet embedding layer : This model learns embedding vectors for each local graphlets,

represented with the embedding matrix E ∈ IRgn×d1 , where d1 is the (user-defined)

embedding dimension. For any data instance i in training data G, corresponding

time-ordering edge representation ei ∈ IRd1 is obtained by vector to matrix multipli-

76

cation i.e. ei = gTi · E. In the embedding layer, for input data instances i, j and k, I

calculate three time-ordering embedding vectors ei, ej and ek using this vector-matrix

multiplication.

Output layer : This layer implements my loss function. For this, first I calculate the

score of each edge representation using vector addition i.e. for ei the score is si = Σd1
p=1

epi . After that, I pass the score difference between instances i and j (diffij) and the

score difference between i and k (diffik) to an activation function. The activation

function in this layer is ReLU, whose output I minimize. The objective function after

regularizing the graphlet embedding matrix is as below:

Og = min
E

∑
∀(i,j,k)∈Tijk

ReLU(diffij − diffik) + λg · ‖E‖2
F (4.1)

where, diffij = |si− sj|, λg is a regularization constant and Tijk is a training batch of

three qualified edge instances from training data.

4.4.2 Time-preserving Node Embedding.

This embedding method learns a set of node representation vectors such that the

interval time of an edge is proportional to the l1 norm of incident node vectors. If

an edge has higher interval time, the incident node vectors are pushed farther, if the

edge have short interval time, the incident node vectors are close to each other in

latent space. Thus, by taking the l1 norm of node-pairs, I can obtain an embedding

vector of an edge which is interval time-preserving and is useful for solving the TCTP

problem. As depicted in the Figure 4.7, this embedding method is composed of three

layers: input layer, node & edge embedding layer, and time preserving output layer.

Functionality of each layer is discussed below:

77

Input

Layer

Node &

Edge

Embedding

Layer

Time

Preserving

Output

Layer

𝐞′𝒖 𝐞′𝒙

z

a

b

:

y

(|𝑉| × 𝑑2)

E′
𝐞′𝒗 𝐞′𝒚

>𝑦𝑢𝑣 𝑦𝑥𝑦

𝑠diff
′ = 𝐞𝒖𝒗

′
𝟐 − 𝐞𝒙𝒚

′
𝟐

𝑅𝑒𝐿𝑈(𝑦diff − 𝑠diff
′)

𝑦diff = 𝑚 × (𝑦𝑢𝑣 − 𝑦𝑥𝑦)

𝐞′𝒖𝒗 = 𝐞′𝒖 −𝐞′𝒗 𝐞′𝒙𝒚 = 𝐞′𝒙 −𝐞′𝒚

u v x y

Fig. 4.7.: Learning of the node embedding matrix using two edges (node-pairs).

Input layer : For this embedding approach, input includes two edges, say (u, v) and

(x, y) with their interval times, yuv and yxy. The selection of these two edges is based

on the criterion that yuv > yxy.

Node & edge embedding layer : In this layer, I learn embedding matrix E′ ∈ IR|V|×d2 ,

where d2 is (user-defined) embedding dimension. From the embedding matrix E′,

I find node embedding for a set of 4 nodes incident to the edges (u, v) and (x, y).

For any node u, node embedding vector is e′u ∈ IRd2 i.e. uth element of matrix

E′. From the node embedding vectors e′u and e′v, I calculate corresponding time-

preserving edge embedding vector for (u, v). The time-preserving edge embedding is

defined as l1-distance between the node embedding vectors, i.e. e′uv = |e′u−e′v| ∈ IRd2 .

78

Time-preserving output layer : The objective of this embedding is to preserve the

interval time information into embedding matrix, such that time-preserving edge

vectors are proportional to their interval time. For that, I calculate an edge score

using l2-norm of an edge embedding, i.e. (u, v) edge score s′uv = ‖e′uv‖2. I design

the loss function such that edge score difference s′diff = s′uv − s′xy between edges (u, v)

and (x, y) is proportional to their interval time difference yuv − yxy. The objective

function of the embedding is

On = min
E′

∑
∀(u,v),(x,y)∈Tuv,xy

ReLU(ydiff − s′diff) (4.2)

+λn · ‖E′‖2
F

where, ydiff = m × (yuv − yxy), λn is a regularization constant, Tuv,xy is a training

batch of edge pairs, and m is a scale factor.

4.4.3 Model inference and optimization.

I use mini-batch adaptive gradient decent (AdaGrad) to optimize the objective

functions (Equations 4.1 and 4.2) of both embedding methods. Mini-batch Ada-

Grad is a modified mini-batch gradient decent approach, where learning rate of each

dimension is different based on gradient values of all previous iterations [163]. This

independent adaption of learning rate for each dimension is especially well suited for

graphlet embedding method as graphlet frequency vector is mostly a sparse vector

which generates sparse edge embedding vectors. For time-preserving node embed-

ding, independent learning rate helps to learn the embedding vectors more efficiently

such that two node can maintain its proximity in embedding space proportional to

interval time.

For mini-batch AdaGrad, first I generate training batch, say T , from training

instances. For each mini-batch, I uniformly choose training instances that satisfy

the desired constrains: for graphlet embedding, a training instance consists of three

79

edges i, j and k, for which yi ≤ yj ≤ yk and for time-preserving node embedding, a

training instance is an edge pair, i = (u, v) and j = (x, y), such that, yi ≤ yj During

an iteration, AdaGrad updates each embedding vector, say e, corresponding to all

samples from training batch using the following equation:

et+1
i = eti − αti ×

∂O

∂eti

where, eti is an ith element of vector e at iteration t. Here I can see that at each

iteration t, AdaGrad updates embedding vectors using different learning rates αti for

each dimension.

For time complexity analysis, given a training batch T , the total cost of calculating

gradients of objective functions (Og and On) depends on the dimension of embedding

vector i.e. Θ(di), di ∈ {d1, d2}. Similarly, calculating learning rate and updating

embedding vector also costs Θ(di). In graphlet embedding, I need to perform vector

to matrix multiplication, which costs Θ(44 × d1). Hence, total cost of the both

embedding methods is Θ(44× d1 + d2) = Θ(d1 + d2). As time complexity is linear to

embedding dimensions, both embedding methods are very fast in learning embedding

vectors even for large networks.

4.4.4 Interval time prediction.

I learn both time-ordering graphlet embedding matrix and time-preserving node

embedding matrix from training instances. I generate edge representation for test

instances from these embedding matrices, as shown in Figure 4.4. This edge represen-

tation is fed to a traditional regression model (I have used Support Vector Regression)

which predicts an interval time. However, predicting the interval time of a k-triangle

link poses a challenge, as any regression model predicts multiple (k) creation times

for such an edge. The simplest approach to overcome this issue is to assign the mean

of k predictions as the final predicted value for the k-triangle link. But, as we know

mean is highly sensitive to outliers especially for the small number of samples (mostly

80

k ∈ [2, 20]), so using a mean value does not yield the best result. From the discussion

in Section 4.3.2 “Interval time analysis”, we know that triangle interval time follows

exponential distribution. Hence I use exponential decay W (Iuvw) = w0 ·exp(−λ ·Iuvw)

as a weight of each prediction, where λ is a decay constant and w0 is an initial value.

I calculate weighted mean which serves as a final prediction value for a k-triangle

link.

Fig. 4.8.: (u, v) as 4-
triangle link

In Figure 4.8, I show a toy graph with cre-

ation time of each link and (u, v) is a 4-triangle

link. Let’s assume this model predicts 4 interval

times (40, 3, 1, 1) corresponding to four open triangles

(Λa
uv,Λ

b
uv,Λ

c
uv,Λ

d
uv) respectively. Hence, I have 4 pre-

dicted creation times i.e. (5 + 40 = 45, 51, 50, 51)

for link (u, v). So, the final prediction for the

edge (u, v) is calculated by using the equation be-

low:

t̂uv =
W (40)× 45 +W (3)× 51 +W (1)× 50 +W (1)× 51

W (40) +W (3) +W (1) +W (1)
(4.3)

4.5 Experiments and results

I conduct experiments to show the superior performance of the proposed GraN-

iTE in solving the TCTP problem. No existing works solve the TCTP problem, so I

build baseline methods from two approaches described as below:

The first approach uses features generated directly from the network topology.

1. Topo. Feat. (Topological features) This method uses traditional topological

features such as common neighbor count, Jaccard coefficient, preferential at-

tachment, adamic-adar, Katz measure with five different β values {0.1, 0.05, 0.01,

81

0.005, 0.001}. These features are well-known for solving the link prediction

task [9]. I generate topological features for an edge (last edge of triangle) from

the snapshot of the network when the second link of the triangle appears; tri-

angle interval time is also computed from that temporal snapshot.

2. Graphlet Feat. In this framework I use local graphlet frequencies of an edge

(last edge of triangle) as a feature set for the time prediction task. These

graphlet frequencies are also calculated from the temporal snapshot of the net-

work as mentioned previously in Topo. Feat.

The second approach uses well known network embedding approaches.

3. LINE [33]: LINE embeds the network into a latent space by leveraging both

first-order and second-order proximity of each node.

4. Node2vec [31]: Node2vec utilizes Skip-Gram based language model to analyze

the truncated biased random walks on the graph.

5. GraphSAGE [58]: It presents an inductive representation learning framework

that learns a function and generates embeddings by sampling and aggregating

features from a node’s local neighborhood.

6. AROPE [164]: AROPE is a matrix decomposition based embedding approach,

which preserves different higher-order proximity for different input graphs and

it provides global optimal solution for a given order.

7. VERSE [165]: It is a versatile node embedding method that preserves specific

node similarity measure(s) and also captures global structural information.

4.5.1 Experiment settings.

For this experiment, I divide the time-stamps of each dataset into three chronolog-

ically ordered partitions with the assumption that initial partition is network growing

82

Table 4.2.: User parameters for the embedding methods

Datasets Learning-Rate (α) Regularization (λ) Scale-Factor (m)

BitcoinOTC 0.1 0.00001 0.0001
Facebook 0.1 0.0001 1.0
Epinion 0.1 0.000001 0.1
DBLP 0.0001 0.00001 0.01
Digg-friend 0.0001 0.00001 0.0001

period, which spans from the beginning up to 50% of total time-stamps. The second

partition, which spans from 50% to 70% of the total time-stamps, is the train period,

and finally, from 70% till the end is the test period. I select the edges completing

triangles during the train period as training instances and the edges completing tri-

angles during the test period as test instances. I also retain 5% of test instances

for parameter tuning (performance on these instances are excluded in the reported

results).

There are a few user defined hyper-parameters in the proposed GraNiTE. For

both embedding approaches, I fix the embedding dimensions as 50, i.e. d1 = d2 =

50. Hence, the final embedding dimension is d = 100 as discussed in Section 4.4

“GraNiTE Model”. The regularization rates for both embedding methods are set

as same value λg = λn from set {0.000001, 0.00001, 0.0001} using grid search ap-

proach. Similarly, initial learning rate for AdaGrad optimization is selected from set

{0.1, 0.01, 0.001, 0.0001} for both embedding methods. For time preserving node em-

bedding, the scale factor (m) is selected from set {1.0, 0.1, 0.01, 0.001, 0.0001} using

grid search method. For each dataset, actual parameter values used for the compari-

son experiments are mentioned in Table 4.2. The training batch size is 100 and the

number of epochs is set to 50. Additionally, for predicting time of k-triangle links,

decay constant (λ) and initial weight (w0) are set to 1.0 for calculating exponential

decay weights. Lastly, I use support vector regression (SVR) with linear kernel and

penalty C = 1.0 as a regression method for GraNiTE and for all competing methods.

For fair comparison, SVR is identically configured for all methods.

83

Table 4.3.: Comparison experiment results using MAE for interval times in 1st (≤
30days) and 2nd-month (31-60days). [for DBLP dataset: 0-2 years and 3-7
years]. For GraNiTE, % improvement over the best competing method (underlined)
is shown in brackets.

Dataset Topo. Feat. Graphlet Feat. LINE Node2vec GraphSAGE AROPE VERSE GraNiTE

Bitcoin-
OTC

≤ 30d 17.22 17.7 8.86 26.68 11.99 28.62 25.81 8.08 (0.09%)

31-60d 21.92 18.29 34.03 16.55 28.84 21.59 20.56 19.75 (−19.34%)

Avg. 19.57 17.995 21.445 21.615 20.415 25.105 23.185 13.911 (22.7%)

Facebook

≤ 30d 7.78 7.93 8.36 7.95 8.37 7.93 7.98 5.39 (32.46%)

31-60d 32.04 30.9 31.98 32.87 31.96 32.55 32.73 13.32 (56.89%)

Avg. 19.91 19.415 20.17 20.41 20.165 20.24 20.355 9.355 (51.82%)

Epinion

≤ 30d 15.88 14.31 12.52 17.09 13.79 14.3 19.85 3.28 (73.8%)

31-60d 22.02 24.82 25.18 20.17 23.45 23.22 17.9 5.36 (70.06%)

Avg. 18.95 19.565 18.85 18.63 18.62 18.76 18.875 4.32 (76.8%)

DBLP

≤ 30d 0.526 0.525 0.527 0.527 0.526 0.526 0.5267 0.379 (27.79%)

31-60d 3.623 3.618 3.624 3.623 3.623 3.624 3.623 0.973 (73.11%)

Avg. 2.0745 2.0715 2.0755 2.075 2.0745 2.075 2.0748 0.6759 (67.37%)

Digg-
friends

≤ 30d 6.75 6.25 6.03 7.73 5.95 7.37 6.95 1.75 (70.59%)

31-60d 41.06 37.34 38.77 32.66 38.85 34.34 34.75 9.52 (70.85%)

Avg. 23.905 21.795 22.4 20.195 22.4 20.855 20.85 5.635 (72.1%)

For all competing embedding methods the embedding dimensions are set as 100,

same size of the feature vector (d = 100). I grid search the different tunning parame-

ters to find the best performance of these embedding methods. I select learning rate

from set {0.0001, 0.001, 0.01, 0.1} for all methods. For Node2vec, I select walk bias

factors p and q from {0.1, 0.5, 1.0} and number of walks per node is selected from

{5, 10, 15, 20}. For AROPE, the order of proximity is selected from set {1, 2, 3, 4, 5}.

For VERSE, I select personalized pagerank parameter α from set {0.1, 0.5, 0.9}.

4.5.2 Comparison results.

I evaluate the models using mean absolute error (MAE) over two groups of interval

times: 1-month (≤ 30 days) and 2-months (31 to 60 days) for all datasets, except

DBLP, for which the two intervals are 0-2 years and 3-7 years. Instances that have

higher than 60 days of interval time are outlier instances, hence they are excluded.

Besides, for real-life social network applications, predicting an interval value beyond

two months is probably not very interesting. Within 60 days, I show results in two

84

BitcoinOTC Facebook Epinion DBLP Digg-friend
Datasets

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Random Feature
GraNiTE

(a) Comparing random feature
based method with GraNiTEfor
predicting up to 30 days.

BitcoinOTC Facebook Epinion DBLP Digg-friend
Datasets

0

5

10

15

20

25

30

35

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Random Feature
GraNiTE

(b) Comparing random feature
based method with GraNiTE for
predicting between 31-60 days.

Fig. 4.9.: Comparing random feature based method with GraNiTE.

groups: 1-month, and 2-month, because some of the competing methods work well

for one group, but not the other.

First, I compare proposed method with a naive baseline, which is random vectors

of the same dimensions (100) as features to solve TCTP. This comparison results are

shown in Figure 4.9 and we can observe that GraNiTE outperforms random features

based method for both small and large interval ranges for all dataset. For other

baseline methods, comparison results for all five datasets are shown in Table 4.3,

where each column represents a prediction method. Rows are grouped into five,

one for each dataset; each dataset group has three rows: small interval (≤ 30d), large

interval (30-60d) and Average (Avg.) over these two intervals. Results of the proposed

method (GraNiTE) is shown in the last column; besides MAE, in this column I also

show the percentage of improvement of GraNiTE over the best of the competing

methods(underlined). The best results in each row is shown in bold font.

I can observe from the table that the proposed GraNiTE performs the best for all

the datasets considering the average. The improvements over the competing methods,

at a minimum, 22.7% for the BitcoinOTC dataset, and, to the maximum, 76.8% for

the Epinion dataset. If I consider short and long intervals (≤ 30d and 30-60d) inde-

pendently, GraNiTE performs the best in all datasets, except BitcoinOTC dataset.

85

0 10 20 30 40 50
Epochs

100

200

300

400

500

ob
je
ct
iv
e
fu
nc

tio
n
va

lu
e
(e
q.
 1
)

BitcoinOTC
Facebook
Epinion
DBLP
Digg-friend

(a) Convergence trends of
graphlet embedding

0 10 20 30 40 50
Epochs

0.4

0.6

0.8

1.0

ob
je
ct
iv
e
fu
nc
tio

n
va
lu
e
(e
q.
 2
)

BitcoinOTC
Facebook
Epinion
Digg-friend

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ob
je
ct
iv
e
fu
nc
tio

n
va
lu
e
fo
r D

BL
P

DBLP

(b) Convergence trends of
time preserving node embed-
ding

25+25 50+50 75+75 100+100
Dimensions (d1+d2)

0

2

4

6

8

10

12

14

M
ea

n
Ab

so
lu
te
 E
rro

r (
M
AE

)

BitcoinOTC
Facebook
Epinion

DBLP
Digg-friend

(c) GraNiTE behavior for dif-
ferent embedding dimensions
for ≤ 30d.

Fig. 4.10.: Convergence patterns and dimensionality study

However, notice that for BitcoinOTC dataset, although Node2vec performs the best

for large interval times, for small interval times its performance is extremely poor (al-

most thrice MAE compared to GraNiTE). Only GraNiTE shows consistently good

results for both small and large interval ranges over all the datasets.

Another observation is that, for all datasets, results of large interval times (31-

60 days) is worse than the results of small interval time (≤ 30 days). For competing

methods, these values are sometimes very poor that it is meaningless for practical use.

For instance, for Epinion, each of the competing methods have an MAE around 20 or

more for large interval, whereas GraNiTE has an MAE value of 5.36 only. Likewise,

for Digg-friends, each of the competing methods have an MAE more than 20, but

GraNiTE’s average MAE is merely 5.63. Overall, for both intervals over all the

datasets, GraNiTEshows significantly (t-test with p-value � 0.01) lower MAE than

the second best method. The main reason for poor performance of competing methods

is that, those methods can capture the local and/or global structural information

of nodes/edges but fail to capture temporal information. While for GraNiTE, the

graphlet embedding method is able to translate the patterns of local neighborhood

into time-ordering edge vector; at the same time, time preserving node embedding

method is able to capture the interval time information into node embedding vector.

Both of the features help to enhance the performance of GraNiTE.

86

BitcoinOTC Facebook Epinion DBLP Digg-friend
Datasets

0

2

4

6

8

10

12

14

16

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

Random Feature
GraNiTE

(a) Comparing TimeLess embed-
ding method with GraNiTEfor
predicting up to 30 days.

BitcoinOTC Facebook Epinion DBLP Digg-friend
Datasets

0

5

10

15

20

25

30

35

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

TimeLess Embedding
GraNiTE

(b) Comparing TimeLess embed-
ding method with GraNiTE for
predicting between 31-60 days.

Fig. 4.11.: Comparing TimeLess embedding method with GraNiTE.

4.5.3 Convergence and dimensionality study.

Here, I study the convergence trend of both embedding methods. As shown in

Figure 4.10a, for time-ordering graphlet embedding method each dataset converges

quickly i.e. after 15 epochs the objective function value doesn’t change much. Simi-

larly, for time-preserving node embedding method all datasets achieve the convergence

by 25 epochs as shown in Figure 4.10b.

I also study the behavior of the proposed GraNiTE for different embedding di-

mensions. For this study, again I keep the same dimensions for both embedding i.e.

d1 = d2 and select their values from set {25, 50, 75, 100}. The prediction results for

small interval times using each dimension are depicted in Figure 4.10c. From the

figure, I can observe that performance for lower dimensions are very similar, but with

higher dimensions the model gradually starts having higher test errors, mainly be-

cause the more complex model overfits the training instances. I observe that results

for large interval times are very similar.

87

4.5.4 Importance of inclusion of time while learning embedding.

The proposed framework GraNiTE uses time information while learning the em-

bedding and hence temporal patterns are encoded into the learned representation

vectors. I modified the proposed embedding approach such that it doesn’t incorpo-

rate timing information during learning. This modified embedding method is simi-

lar to the embedding method discussed in Chapter 6, where the triple 〈x, y, z〉 are

sampled such that (x, y) closes a triangle(s) and (x, z) does not. I call this modi-

fied method TimeLess embedding method. I solve the TCTP using the TimeLess

embedding vectors as features and compare the results with the proposed method

GraNiTE. The comparison results are depicted in Figure 4.11. The figure shows the

superiority of the proposed GraNiTE over TimeLess embedding method. The per-

formance of the TimeLess embedding method is very similar to GraphSAGE method

discussed previously in the Section 4.5.2. However, it fails to perform significantly

better than all existing baseline methods and GraNiTE outperforms theTimeLess

embedding method. I believe the key reason for this behavior is the absence of the

timing information from the representation vectors.

Table 4.4.: Pearson correlation between l1 distance (in embedding space) and interval
times.

Datasets Train set Test set

BitcoinOTC 0.62 0.38
Facebook 0.60 0.38
Epinion 0.55 0.38
DBLP 0.24 −0.02
Digg-friend 0.55 0.27

88

Distance between node-pairs

In
te
rv
al
 ti
m
e

(a) BitcoinOTC dataset

Distance between node-pairs

In
te
rv
al
 ti
m
e

(b) Facebook dataset

Distance between node-pairs

In
te
rv
al
 ti
m
e

(c) Epinion dataset

Distance between node-pairs
0

2

4

6

8

In
te
rv
al
 ti
m
e

(d) DBLP dataset

Distance between node-pairs

In
te
rv
al
 ti
m
e

(e) Digg-friend dataset

Fig. 4.12.: Scatter plots of 1000 random instances to show correlation of l2-distance
with interval times.

4.5.5 Study importance of each embedding approach.

In this section, first I verify my claim that proximity of time-preserving node

embedding captures interval time by studying the time to distance relation. Next, I

compare the performance of time-preserving node embedding (only) with GraNiTE

to learn importance of graphlet-based time-ordering embedding.

For the first task, I calculate l1-distance between node-pair (of a triangle com-

pleting edge) in the embedding space and find the Pearson correlation between the

l1-distances and interval times. The results for the experiment are shown in Ta-

ble 4.4, where I can see that l1-distance and interval time is highly correlated for all

the datasets and for both train and test instances; except for DBLP dataset. For

DBLP dataset, the biggest interval time is 9 years, which is a very small number;

so this correlation value can be improved by tunning the scale factor (m). For other

datasets, I can see the similar behavior of high correlation in Figure 4.12, which de-

89

6

7

8

9

10

11 10.44

6.03

9.08

5.64

Time-preserving_Node_Emb
GraNiTE

BitcoinOTCFaceboo
k Epinion DBLP Digg-frien

d
0

1

2

3

M
ea
n
Ab

so
lu
te
 E
rro

r (
M
AE

)

3.36 3.28

0.451 0.449

2.34 2.13

(a) Comparing Time-preserving
Node embedding performance for
predicting upto 30 days.

BitcoinOTC Facebook Epinion DBLP Digg-frien
d

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea
n
Ab

so
lu
te
 E
rro

r (
M
AE

)

19.9

14.0

5.36

0.972

9.74

19.95

13.65

5.36

0.968

9.76

Time-preserving_Node_Emb
GraNiTE

(b) Comparing Time-preserving
Node embedding performance for
predicting between 31-60 days.

Fig. 4.13.: Comparing Time-preserving Node embedding with GraNiTE.

picts the distance to interval time scatter plots for 1000 random instance from all five

datasets.

For the second task, I conduct comparison experiment between GraNiTE and

time-preserving node embedding (only). In this experiment, for time-preserving node

embedding (only), I drop graphlet-based time-ordering embedding from proposed

GraNiTE, i.e. I consider fuv = e′uv in Figure 4.4. For this experiment, I keep the

same parameter values and same dimensionality for GraNiTE (d1 + d2 = 100) and

time-preserving node embedding (d1 = 0 and d2 = 100). The results for the experi-

ments are depicted in Figure 4.13. I can learn from the Figure 4.13a that for smaller

interval time the graphlet-based time-ordering embedding adds important informa-

tion that reduces the prediction error for GraNiTE; while for larger interval times,

both methods performs very similar.

4.6 Chapter Summary

Here, I propose a novel problem of triangle completion time prediction (TCTP)

and provide an effective and robust framework GraNiTE to solve this problem by us-

ing time-ordering graphlet embedding and time-preserving node embedding methods.

Through experiments on five datasets, I show the superiority of my proposed method

90

compared to baseline methods which use known graph topological features, graphlet

frequency features or popular and state-of-art network embedding approaches. To the

best of my knowledge, I am the first to formulate the TCTP problem and to propose

a novel framework for solving this problem.

91

5. COUNTING EDGE-CENTRIC LOCAL GRAPHLETS

5.1 Introduction

Frequency distribution of small induced subgraphs (aka graphlets) captures key

connectivity patterns in a given network, hence this distribution is increasingly be-

ing used for various network analysis tasks. For instance, Rahman et al. [34] and

Ahmed et al. [38] have used graphlet frequencies for network classification; Ugander

et al. [37] have used the same for modeling network structures. Besides these, graphlet

frequencies have also been used for solving problems in various other disciplines, ex-

amples include biological network comparisons [35,36], image classification [166], and

building graph kernels for chemoinformatics [167]. In all the above applications, a vec-

tor representing the frequency (normalized or unnormalized) of small-sized graphlets

(typically 3 to 5 vertices) induced in a network is used as a signature for capturing

the local connectivity patterns of the entire network as a whole. Obtaining such a

vector is a costly task, but several recent algorithms have been proposed for solving

it efficiently [34, 38, 39]. To overcome the lack of scalability issue, parallel [38, 168]

and sampling based approximation algorithms [103,169] have also been proposed.

Global graphlet frequencies are useful for network analysis tasks where the entire

network as a whole needs to be modeled for the task of network-level classification or

comparison. Unfortunately, the majority of the real-life network analysis tasks do not

consider the network as a whole, rather they consider vertices or edges as first-class

entities, and perform prediction on the attributes of nodes or edges. For example,

Popular tasks on social networks, such as, expert search, and role discovery, are

performed by some form of node classification [64]. On the other hand, tasks like link

prediction [9], relationship-type prediction, and product recommendation are solved

by edge classification [65]. For solving such tasks, a global graphlet count considering

92

the entire network is not much useful. I rather want to obtain graphlet counts within

the local contex of a vertex or an edge for capturing the topological neighborhood

around that vertex or edge. This variant of graphlet counting is called local graphlet

counting, which is increasingly being used for network analysis tasks. For instance,

V. Vacic et al. [170] have used local graphlet counts to classify protein residues, A.

Nabhan et al. [171] have used local graphlet counts for keyword identification from

text. Many of the link prediction features, such as Adamic-Adar, Jaccard-Coefficient,

and Preferential Attachment are functions of local frequency of a specific graphlet,

namely, a triangle.

Although very useful, there are not many works that have considered counting

the local graphlet frequencies, beyond triangles. An ad-hoc solution to this defi-

ciency is to restrict a large graph within a local context by building a contextual

subgraph and then apply global graphlet count algorithm on that subgraph. For in-

stance Hermansson et al. [172] have built an ego network of a given node and then

used global graphlet counting on the ego network to obtain a local graphlet counter.

Such a method is an approximation, and more importantly they are overkill because

a global graphlet counting method needs to be called for all vertices (for obtaining

node-centric graphlet counts) or for all edges (for obtaining edge-centric counting).

There exist several works which address local graphlet counting for the case of trian-

gles. For example, Y. Lim et al. [106] and L. De Stefani et al. [107] have proposed

estimation method to count local triangles from streaming data. Recently, Ahmed

et al. [173] have proposed an efficient parallel algorithm for exact and approximate

local graphlet counting upto size 4-vertex graphlets. However, the number of 4-size

topologies is usually too small to capture comprehensive topological patterns. An-

other important shortcoming of the existing local graphlet counting methods is that

they do not find the local graphlet counts for different vertex and/or edge orbits.

This is a severe shortcoming because orbits represent the role of a vertex or an edge

within a given graphlet. An aggregated count of a graphlet, without considering

orbits, misrepresents the local topological configuration around a vertex or an edge.

93

I provide an efficient method, namely E-CLoG 1 for obtaining local graphlet counts

with respect to a given edge in a graph. E-CLoG counts all 3, 4, and 5-sized local

graphlets considering all possible edge orbits of a graphlet. By considering edge

orbits I count 8 size-4 and 32 size-5 graphlets. The method is efficient because it

does not enumerate all of the above graphlets, rather it only enumerates 4 out of 8

size-4 graphlets, and 14 out of 32 size-5 graphlets. The remaining graphlet counts

are obtained in constant time by combinatorial calculation over carefully-designed

data structures. I also provide a parallel implementation of E-CLoG, which is highly

scalable. In this chapter,

1. I propose E-CLoG, a highly efficient method for counting edge-centric local

graphlets up-to size-5 considering edge orbits. To the best of my knowledge,

E-CLoG is the first work that obtains local graphlet counts for size-5 graphlets.

It is also the first work which considers edge orbits in its counts.

2. I also provide a shared-memory, multi-core implementation of E-CLoG, which

makes it even more scalable for very large real-world networks.

3. I show experiments which validate E-CLoG’s effectiveness as local features for

network analysis, specifically for the task of link prediction.

5.2 Problem formulation

Let G(V , E) be a simple, undirected graph, where V is the set of vertices and E

is the set of edges. For a vertex u ∈ V , neighbors of u are represented by Γ(u) =

{v|(u, v) ∈ E} and degree of u is represented by d(u) = |Γ(u)|.

Definition 5.2.1 (Induced graphlet) An undirected graph g(V ′, E ′) is an induced

graphlet of G(V , E), if V ′ is a subset of V and E ′ consists of all of the edges in E that

have both endpoints in V ′. If |V ′| = k, we call it k-size induced graphlet, or in-short,

k-graphlet in G. I also consider that all k-graplets are connected. �

1E-CLoG stands for Edge Centric Local Graphlet.

94

In this work, given a graph G(V , E) and a specific edge e = (u, v) ∈ E , we count

the frequency of edge centric local graphlets. Such an edge centric local graphlet

(say, g) must include the given edge e; besides, the remaining vertices of g must be

a neighbor of u and/or a neighbor of v. Below is a formal definition of edge-centric

local graphlets.

Definition 5.2.2 (Edge centric local graphlet) Say, g(V ′, E ′) is a k-graphlet of

a graph G(V , E). Now, given an edge (u, v) ∈ E, g is called an edge centric local

graphlet, if (u, v) ∈ E ′ and w ∈ V ′ \ {u, v} ⇒ w ∈ Γ(u) ∪ Γ(v). �

Say, Gk(u, v) is the set of all connected graphical topologies such that each member

of this set is a possible k-size edge centric local graphlet with respect to an edge (u, v).

In Figures 5.1 we show all members of G3(u, v) and G4(u, v), and in Figure 5.3, I show

all members of G5(u, v). In each of these graphlets, the edge (u, v) is clearly identified.

Notice that, if we ignore the vertex labels u and v, there are multiple graphlets in

these figures, which are topologically identical. For examples, in Figure 5.1 graphlets

g7 and g8 have the same 4 size graph structure (lets call it two-triangles), but they

are represented as two different graphlets (g7 and g8). I identify these structurally

identical graphlets differently, based on edge orbit of the given edge (u, v). Below I

formally define edge orbit and other necessary terminologies.

Definition 5.2.3 (Graphlet Isomorphism) A graphlet g1(V1, E1) is said to be iso-

morphic to another graphlet g2(V2, E2), if there exists a bijective function fiso : V1 →

V2 such that (u, v) ∈ E1 ⇔ (fiso(u), fiso(v)) ∈ E2 and the bijection function fiso is

called graphlet isomorphism from g1 to g2. �

Definition 5.2.4 (Graphlet Automorphism) A graphlet automorphism is graphlet

isomorphism with itself, i.e. a bijection function fauto that maps the set of vertices

V1 back to V1 with a different permutation and satisfies the prosperities of graphlet

isomorphism. �

95

Definition 5.2.5 (Edge orbit) For a given graphlet g1(V1, E1), edges (u, v), (u′, v′) ∈

E1 are in same orbit if an automorphism fauto of g1 exists such that u = fauto(u
′) and

v = fauto(v
′). �

Fig. 5.1.: 3-4 size local graphlets

Fig. 5.2.: Example of 4 size non local graphlets. Left: a non-local edge orbit of
4-path, structurally identical to g2; right: a non-local edge orbit of tailed-triangle,
structurally identical to g5 and g6.

Notice that, if two edges are in the same orbit they must have the same pair

of degrees for their incident vertices. On the other hand, if two edges do not have

the same pair of degrees then they are definitely in different orbits. For example, in

Figure 5.1 graphlet types g7 and g8 are separated based on the orbit of (u, v), here

d(u) = 2, d(v) = 3 in g7 and d(u) = 3, d(v) = 3 in g8.

96

In this study, each local graphlet, separated by structure or edge orbit of the given

edge, is referred as a graphlet type or a graphlet, and I obtain its count. For instance

in Figure 5.1, there are 10 (g0− g9) graphlet types. Notice that, I do not count some

graphlet types which have different edge orbits because they are not identified as a

local graphlet. For example in Figure 5.2 both 4-path and tailed-triangle graphlets

have different edge orbits than corresponding graphlet types in Figure 5.1, but they

are not local because the vertex y in both the graphlets in Figure 5.2 is neither

neighbor of u nor neighbor of v. Hence, I do not count frequency for such non-local

graphlet types.

5.2.1 Problem definition

Given an edge (u, v) of an undirected graph G(V , E), my goal is to count the

number of appearances of each k {3, 4, 5} size local graphlet type for the edge (u, v)

in the graph G.

5.3 Proposed method

In existing works, there are two distinct philosophies for counting graphlets: count-

ing by enumeration and counting with algebraic expressions. In the first philosophy,

each of the graphlet instances are enumerated at least once. It becomes very costly

for large graphs as the number of graphlets in these graphs easily exceeds hundreds of

billions. On the other hand, counting with algebraic expression is cheap as counting

is performed by using a combinatorial approach. Unfortunately, combinatorial count-

ing is easy for size-3 or size-4 graphlets, but it becomes difficult for size-5 graphlets

because the number of graphlet configurations is substantially higher for the case of

size-5 than size-4. Also, for the case of local graphlet counting, edge orbits need to

be considered, which makes it even more difficult.

The proposed method for local graphlet counting is a hybrid approach, which

enumerates only a subset of local graphlets and obtains the count of the remaining

97

local graphlets in constant time by using algebraic expression. Another key innova-

tion of my method is that it utilizes the count of sub-graphlets to efficiently com-

pute the count of a larger size graphlet, which contains the sub-graphlet. Thus, my

method first counts the size-3 local graphlets, and then use these to count size-4 local

graphlets, and then iteratively use those counts to count size-5 local graphlets. Finally,

the proposed method uses a generic counting algorithm, which counts the frequency

of different graphlets by setting the value of a small number of template variables,

which makes the method easy to understand and implement. In Section 5.3.1, I first

discuss the method used to count 3- and 4-size local graphlet types. Then, in Sec-

tion 5.3.3, I discuss the method for counting 5-size graphlets. In Table 5.1 I show

all the notations that are used in the discussion. Note that, for remaining discussion

in this chapter, not all sets are shown in calligraphic uppercase letter, for example

Γ(u), T,Nu, Nv, Ti, Nui, Nvi, S1, S2 and S3 are all various sets as shown in Table 5.1.

5.3.1 3 and 4 sized local graphlet counting

Given an edge (u, v), counting size-3 local graphlets is easy. There are only two

such graphlets, open triple (g0) and triangle (g1), and both the structures have only

one edge orbit. I count them from Γ(u) and Γ(v) by finding three disjoint sets

of vertices: T , Nu, and Nv, where T = Γ(u) ∩ Γ(v), Nu = Γ(u) \ T , and Nv =

Γ(v) \ T . Note that, vertices u and v are not included in any of these sets, i.e.

u, v 6∈ (T ∪ Nu ∪ Nv), this is because I consider only simple graph without any self

loop so no vertex is a neighbor of itself. Also T,Nu and Nv are pair-wise disjoint i.e.

Nu ∩ T = φ & Nv ∩ T = φ & Nu ∩Nv = φ

T contains the vertices which are neighbors of both u and v, thus forming a triangle

and Nu contains neighbors of u which are not neighbors of v, so these vertices are

terminal vertices of open triples centered at u, and identically, Nv contains the ter-

98

Table 5.1.: Summary of the notations

Notations Meaning

(u, v) Edge for which local graphlets are being computed
d(u) Degree of the node u
Γ(u) Set of neighboring nodes of the node u
T Set of nodes creating triangles with edge (u, v)
Nu Set of nodes that is only neighbor of u not v
Nv Set of nodes that is only neighbor of v not u

i, j, k
Variables, instantiated as 3rd , 4th and 5th nodes
(after u and v) of 5 size graphlets.

Ti Set of neighboring nodes of i which are also in T
Nui Set of neighboring nodes of i which are also in Nu

Nvi Set of neighboring nodes of i which are also in Nv

S1, S2, S3
Set variables, which take set as a value, depending on
the membership of i, j and k, respectively.

l1, l2, l3
Binary variables, l1 = 1 if i, j is connected, otherwise 0
similarly, l2 = 1 | l3 = 1 if i, k | j, k is connected, otherwise 0.

C(i, j)S1,S2,S3

l1,l2,l3

Count of set of graphlet type(s) for given i, j and
different values of S3, l2, l3.

t
Takes values from {1, 2, 3, 4}, based on values of l2 and
l3 (1 for 11,2 for 01, 3 for 10, and 4 for 00).

bi
Bias value need to be deducted to maintain the
i 6= j 6= k property.

di, d Dividing factor(s) to handle duplicate counting.

minal vertices of open triples centered at v. Then f0 = |Nu| + |Nv| and f1 = |T |.

This completes the counting of size-3 graphlets.

There are total eight size-4 local graphlets, of which I enumerate 4 of them, and

I obtain the count of the remaining graphlets in constant time by using algebraic

expression. Besides, for efficient enumeration, I use the set T , Nu and Nv which I

obtain while counting the size-3 local graphlets.

Counting g9 (4-clique): Any vertex x ∈ T forms a triangle with (u, v). Now,

if another vertex y ∈ Γ(x) also forms a triangle with (u, v), the induced topology

(u, v, x, y) forms a 4-clique. To avoid double counting, I use the condition that the

identifier of x is higher than that of y.

99

Counting g4 (4-cycle): If x ∈ Nu, y is a neighbor of x, and y ∈ Nv, then (u, v, x, y)

forms a 4-cycle.

Counting g5 (tailed-triangle): This graphlet has two edge orbits, g5 and g6, of

which I enumerate g5 (tailed-triangle with (u, v) as tail), and obtain g6 in constant

time. If, x ∈ Nu, and y is a neighbor of x, and y ∈ Nu, then (v, u, x, y) forms a g5,

in which v is the tail vertex. To avoid double counting, I use the constraint x > y.

A symmetric enumeration where x ∈ Nv obtains tailed-triangle with u as the tail

vertex.

Counting g7 (two-triangles): This graphlet has two edge orbits, g7 and g8, of

which I enumerate g7 and obtain g8 in constant time. If x ∈ Nu, and y ∈ Γ(x), and

y ∈ T , (u, x, y, v) forms a two triangle with (u, y) as the diagonal edge. A symmetric

enumeration where x ∈ Nv obtains two-triangles with (v, y) as the diagonal edge.

The frequencies of the remaining four graphlet types (g2, g3, g6, g8) can be calcu-

lated in constant time by using the following equations:

f2← |Nu| × |Nv| − f4 (5.1)

f3←
(
|Nu|

2

)
+

(
|Nv|

2

)
− f5 (5.2)

f6← |T | × f0− f7 (5.3)

f8←
(
|T |
2

)
− f9 (5.4)

The detailed steps for the method are available in Algorithm 2. In this algorithm

I use f to represent the frequency vector that contains frequency of all the graphlet

types (size 3, 4 and 5) and fN represents frequency of a specific graphlet type gN .

In the algorithm lines 5-14 generates three distinct sets T,Nu and Nv. The map data

structure, status map, maps a vertex to values α, β, or γ to represent the membership

from sets T,Nu, or Nv, respectively. In the Algorithm 2, lines 17-20 shows iteration

over elements of T and counting 4-clique frequency and lines 21-28 (29-34) show

iteration over elements of Nu (Nv) to count frequencies of graphlet types g4, g5, and

100

Algorithm 2: get 3− 4 GraphletCount(G, u, v)
1: initialize frequencies // f0− f41 ← 0
2: initialize unique neighbor sets of u and v // Nu ← {} , Nv ← {}
3: initialize common neighbor set // T ← {}
4: initialize status of each vertex in G // for each x do status map(x)← φ
5: for each x ∈ Γ(u) do
6: if x 6= v then
7: Nu ← Nu ∪ x, status map(x)← α // α represents membership of Nu
8: for each x ∈ Γ(v) do
9: if x 6= u then
10: if status map(x) = α then
11: T ← T ∪ x, status map(x)← γ // overwrite α with γ (membership of T)
12: Nu ← Nu \ x // remove the element x from Nu
13: else
14: Nv ← Nv ∪ x, status map(x)← β // β represents membership of Nv
15: f0← |Nu|+ |Nv | // number of unique neighbors (no triangles)
16: f1← |T | // number of triangles
17: for each x ∈ T do
18: for each y ∈ Γ(x) do
19: if status map(y) == γ and y < x then
20: f9← f9 + 1 // 4clique
21: for each x ∈ Nu do
22: for each y ∈ Γ(x) do
23: if status map(y) == α and y < x then
24: f5← f5 + 1 // tail-triangle with (u, v) as tail
25: else if status map(y) == β then
26: f4← f4 + 1 // 4cycle
27: else if status map(y) == γ then
28: f7← f7 + 1 // 2triangles with (u, y) as diagonal link
29: for each x ∈ Nv do
30: for each y ∈ Γ(x) do
31: if status map(y) == β and y < x then
32: f5← f5 + 1 // tail-triangle with (u, v) as tail
33: else if status map(y) == γ then
34: f7← f7 + 1 // 2triangles with (v, y) as diagonal link
35: calculate f2, f3, f6, f8 using Equations 5.1, 5.2, 5.3, 5.4.
36: return f, T,Nu, Nv , status map

g7. Note that, this algorithm has some similarity to the algorithm of Ahmed et

al. [173]. However, their work does not consider counting all edge orbits. Further,

their work only considers upto size 4-vertex graphlets, which is substantially simpler

than the case of size-5 graphlets, which I discuss next.

5.3.2 5-size Local Graphlet Counting

For counting 5-size local graphlet types, I utilize the enumeration of 4-size local

graphlets. Given edge (u, v), and a 4-size local graphlet, we first obtain all feasible

fifth nodes, and based on the connections of the fifth node with the 4-size graphlet

nodes, I identify and count different 5-size graphlet types. This method appears

101

straight-forward, but counting all 5 size local graphlet types efficiently and avoiding

enumeration of all graphlet types is a challenging task. This method enumerates only

14 local graphlet types of size 5 and calculates other 18 graphlet types in constant

time using algebraic expressions. See the Table 5.2.

Table 5.2.: List of enumerating and non-enumerating 5 sized local graphlet types

Enumerated
g11, g14, g17, g20, g22, g23, g26, g27, g28,
g33, g34, g37, g39, g41

Not enumerated
g10, g12, g13, g15, g16, g18, g19, g21, g24,
g25, g29, g30, g31, g32, g35, g36, g38, g40

A key observation regarding a size-5 local graphlet for a given edge (u, v) is that

the remaining three vertices of this graphlet must be from T , Nu, or Nv. This is

due to the definition of local edge-centric graphlet, which requires that the remaining

three vertices to be neighbors or u, or v or both (see Definition 5.2.2). I denote

these vertices as i, j and k, such that they are distinct, i.e., i 6= j 6= k; the 3rd vertex

is represented as i, the 4th as j and the 5th as k. Now, there are total 9 different

combinations based on the joint membership of i, j, and k within the sets T , Nu, and

Fig. 5.3.: 5 size local graphlets

102

Nv and each of these combinations lead to different sets of local graphlets. Besides,

these combinations are exhaustive i.e., they cover each and every local edge-centric

graphlet given the edge (u, v). Also, there is no false-positive, that is every choice of

three vertices i, j, and k within these the sets T,Nu and Nv leads to a valid graphlet

which I need to consider in my counting. So, for counting all size-5 local graphlets

given (u, v), if suffices that I count all graphlets by efficiently enumerating i, j, and

k over the three sets T , Nu and Nv.

To write a generic algorithm that enumerates and counts graphlets within each of

the above 9 combinations, I use three selector variables S1, S2, S3, which take values

from sets T,Nu, and Nv based on the membership of i, j, k within these sets. For

instance, for an enumeration, if i, j, k ∈ T I have S1 = S2 = S3 = T . Thus, values

of S1, S2, and S3 denote an equivalence class, and local size-5 graphlets within one

equivalence class can be counted efficiently. Now, conditioned on the equivalence

class, edges between the vertices {u, v} and {i, j, k} are already fixed. But, based on

the existence of edges between i, j, and k one equivalence class may lead to more

than one local graphlet. I use the binary variable l1, l2, l3 ∈ {1, 0} for denoting edge

existence between i, j, and k; l1 = 1 if (i, j) ∈ E else 0, l2 = 1 if (i, k) ∈ E else 0 and

l3 = 1 if (j, k) ∈ E else 0. This leads to 8 possible choices within an equivalent class.

From the above discussion, I can obtain a simple size-5 local graphlet enumerator,

using three nested for loops for vertices i, j, and k, each iterating over the set T , Nu

and Nv and within the body of the innermost for loop, the enumerator determines the

graphlet type based on the value of l1, l2, and l3. However, such a method enumerates

all local graphlet instances and hence is not efficient.

My approach for counting 5-size graphlets is that I enumerate over each 4-size

graphlets and then without enumeration I count the number of different graphlets

based on the topological disposition of possible 5th node. This saves a large num-

ber of enumerations and yields a vastly improved local graphlet counting algorithm.

Besides, the degree of freedom of search space becomes smaller, because when a 4-

graphlet is given, the third and fourth vertices, i, j are fixed, and the values of S1, S2

103

(a) Example of graphlet types created using
variable l2 = 0/1 and fixed S3 = Nu and l3 =
0

(b) Example of graphlet types created using
variable l2 = 0/1 and fixed S3 = Nu and l3 =
1

Fig. 5.4.: Illustration of how different values of l2 and l3 generates different graphlet
types

and l1 are known; then the values of S3, l2 and l3 decide the specific type of the size-5

graphlet.

Example: In Figure 5.4, I show a specific enumeration, in which i ∈ T and j ∈ Nv,

and I would like to count all local graphlets for which the fifth vertex k belongs to

Nu, i.e., the selector variable, S3 = Nu. The possible candidates for the k vertices

are shown within dotted ovals. Also, in this example the vertex i, and j are not

connected, so l1 = 0. Now, the four possible values of l2, l3 create four different types

of size-5 graphlets, which are g12, g21, g23, and g32. The left figure shows the case

for l3 = 0 (k is not connected with j) and the right figure shows the case for l3 = 1

(k and j are connected). For both the left and the right figures, the vertices shown

in the dotted oval labeled as “group1” exhibit l2 = 0 and produce g12 (on left figure)

and g23 (on the right figure). Likewise, the vertices in “group2” stands for l2 = 1

and they produce g21 (on left figure) and g32 (on right figure). �

104

To facilitate effective counting by iterating over 4-graphlets, I compute a few more

vertex-sets beyonds T , Nu and Nv, by utilizing Γ(i), the adjacency vector of the third

vertex i. For different values of l1, the 4th vertex j belongs to different subsets of the

sets, T,Nu or Nv. For example, if S2 = T , then for l1 = 1, j must belong to Γ(i) ∩ T

and for l1 = 0, j belong to T \ Γ(i). I represent these sets as below:

Ti = Γ(i) ∩ T , Nui = Γ(i) ∩Nu , Nvi = Γ(i) ∩Nv

Ti = T \ Γ(i), Nui = Nu \ Γ(i), Nvi = Nv \ Γ(i)

In the template algorithm I refer to the above sets by using their selector variable.

For example, for the selector variable S3, I will write the set as S3i which is equal to

Γ(i) ∩ S3; thus S3i can be Ti, or Nui or Nvi depending on whether S3 is T , Nu or Nv.

As mentioned earlier, for a given 4-size graphlets, say, (u, v, i, j), I count (without

enumeration) the number of different graphlets based on the topological disposition

of possible 5th node . To facilitate this, we define the term C(i, j)S1,S2,S3

l1,l2,l3
. It represents

the total count of size-5 graphlets which contain (u, v, i, j) as their sub-graphlet. In

C(i, j)S1,S2,S3

l1,l2,l3
, i and j are given, thus S1, S2, and l1 are already fixed. Thus the value of

C(i, j)S1,S2,S3

l1,l2,l3
is the number of 5-graphlets for the assigned values of S3, l2 and l3. By

fixing these three variables, I can obtain the count of a specific graphlet. For example,

C(i, j)S1,S2,S3

l1,1,0
represents the count of a graphlet type generated from the current i, j

vertices and all possible k ∈ S3 such that l2 = 1, l3 = 0. More specific example is

C(i, j)T,T,T1,1,1 , which represents count of 5 size clique for given i, j values. Because, here

all three vertices i, j, k are connected to both u and v and they themselves are also

pair-wise connected(l1 = l2 = l3 = 1), which creates fully connected 5 size subgraph

(5-clique). Similarly, C(i, j)T,T,T1,0,1 represents count of graphlet type g40 for given i, j

values.

For unknown values of l2 and/or l3, I use ∗, hence total count of graphlet types

for given values of i, j, S3 and l2 but unknown value of l3 can be represented as

C(i, j)S1,S2,S3

l1,l2,∗ . For example, total count of graphlet types {g12, g18} in Figure 5.4a

can be represented as C(i, j)T,Nv ,Nu0,∗,0 and total count from Figure 5.4b is C(i, j)T,Nv ,Nu0,∗,1 .

Similarly, if both l2 and l3 are unknown then I use C(i, j)S1,S2,S3

l1,∗,∗ , so C(i, j)T,Nv ,Nu0,∗,∗ is

105

the total count for all the four kinds of graphlets in Figure 5.4. Now the value of

C(i, j)S1,S2,S3

l1,∗,∗ can be obtained by using the following theorem.

Theorem 5.3.1

C(i, j)S1,S2,S3

l1,∗,∗ =

|S3|, if (S3 6= S1 ∧ S3 6= S2)

|S3|−1,
if ((S3 = S1 ∧ S3 6= S2)

∨(S3 6= S1 ∧ S3 = S2))

|S3|−2, if (S3 = S1 ∧ S3 = S2)

Proof For each value of k ∈ S3, the induced graphlet (u, v, i, j, k) matches a specific

local graphlet type, but irrespective of the graphlet type it always adds a count to

C(i, j)S1,S2,S3

l1,∗,∗ . Hence, count of the C(i, j)S1,S2,S3

l1,∗,∗ is same as the cardinality of S3. Now,

if vertices i and/or j are also from the same set as S3 i.e. S1 = S3 and/or S2 = S3

(note that S1, S2, S3 can take only three different values from {T,Nu, Nv}, and they

can have same values), then I need to deduct the total count by 1 if only i or only j

is from the same set and deduct the count by 2 if both i, j are from the same set as

S3. Because all three vertices (i, j, k) need to be distinct (i 6= j 6= k) to generate a

5-size local graphlet.

For the case when the value of l2, or l3 is also known, I have the following theorem.

Theorem 5.3.2

C(i, j)S1,S2,S3

l1,1,∗ =

|S3i|−1, if (S3 = S2 ∧ l1 = 1)

|S3i|, otherwise

C(i, j)S1,S2,S3

l1,∗,1 =

|S3j|−1, if (S3 = S1 ∧ l1 = 1)

|S3j|, otherwise

Proof For C(i, j)S1,S2,S3

l1,1,∗ , I know that k ∈ S3 ∩ Γ(i), hence total possible count is

equal to the size of the set S3i = S3 ∩ Γ(i). I also need to ensure that j 6= k, hence if

106

S2 = S3 and j is also a neighbor of i (to make a symmetry to the condition that k is

a neighbor of i), I need to deduct the count by one. A similar argument also holds

for C(i, j)S1,S2,S3

l1,∗,1 .

Now, the following Theorem and corollaries help us to count several graphlets in

constant time simply by using algebraic expression.

Theorem 5.3.3

C(i, j)S1,S2,S3

l1,∗,∗ = C(i, j)S1,S2,S3

l1,0,0
+ C(i, j)S1,S2,S3

l1,0,1
+ C(i, j)S1,S2,S3

l1,1,0
+ C(i, j)S1,S2,S3

l1,1,1

Corollary 5.3.4

C(i, j)S1,S2,S3

l1,0,0
= C(i, j)S1,S2,S3

l1,∗,∗ − C(i, j)S1,S2,S3

l1,∗,1 − C(i, j)S1,S2,S3

l1,1,∗ + C(i, j)S1,S2,S3

l1,1,1

Corollary 5.3.5

C(i, j)S1,S2,S3

l1,1,0
= C(i, j)S1,S2,S3

l1,1,∗ − C(i, j)S1,S2,S3

l1,1,1

Corollary 5.3.6

C(i, j)S1,S2,S3

l1,0,1
= C(i, j)S1,S2,S3

l1,∗,1 − C(i, j)S1,S2,S3

l1,1,1

5.3.3 Generic Counting Algorithm

In Algorithm 3, I provide a generic algorithm for counting all 5 size local graphlets.

In this generic algorithm, I consider the following variables, S1, S2, S3, t, bi, di and d as

template variables and a specific set of values for these variables gives the frequency

of a specific graphlet type. Among these S1, S2 and S3 are selector variables (for

vertices i, j and k), t is an integer between 1 and 4 depending on the joint value of l2

and l3, bi is the bias which is the count adjustment when multiple selector variables

107

have the same value. The bias values are computed by using Theorem 5.3.1 and

Theorem 5.3.2. Even after addressing for the obvious duplication by maintaining

order among the vertices i, j, and k, some graphlets are generated multiple times, di

and d are normalizing factors to ensures that each of the local graphlets are counted

once and exactly once.

The detailed information on graphlet type and the associated values of the tem-

plate variables are shown in Table 5.3. As shown in this table, the variable S1 takes

values from Nu or T , S2 takes values conditioning on the fact whether the second

vertex is adjacent to first vertex or not. So, it takes values from Ti, Nui, Nvi or their

complements Ti, Nui, Nvi. And S3 takes value from Nu, Nv, or T . The bias and

normalizing factor values are also shown in this table. In this table, I also have three

other variables, S1r, S2r and S3r. They will be discussed in Section 5.3.4.

Algorithm 3 uses a sub-routine, Algorithm 4, where |S3ij| represents value of

C(i, j)S1,S2,S3

l1,1,1
. Using Theorem 5.3.2, Corollary 5.3.5 and 5.3.6, I calculate frequencies

of specific graphlet types represented as f2ij and f3ij in the algorithm. Similarly,

line 5 of the algorithm gives frequency of a graphlet type where k is not connected

to either i or j using Theorem 5.3.1 and Corollary 5.3.4. The deduction from the

Algorithm 3: Template Algorithm for Graphlet number N

1: assign S1, S2, S3 to the right set for graphlet N from Table 5.3
2: select t ∈ {1, 2, 3, 4}, bi, di, and d for graphlet N from Table 5.3
3: 〈l1i, l2i, l3i, l4i〉 ← 0 // initialization
4: for all i ∈ S1 do
5: 〈l1oldij , l2oldij , l3oldij , l4oldij 〉 ← 0 // initialization
6: for all j ∈ S2 do
7: 〈l1newij , l2newij , l3newij , l4newij 〉 ←

〈l1oldij , l2oldij , l3oldij , l4oldij 〉+ get freq k(i, j, S3)
8: 〈l1oldij , · · · , l4oldij 〉 ← 〈l1newij , · · · , l4newij 〉

// end of loop for j
9: lti ← lti + (ltnewij − bi)/di

// end of loop for i
10: fN ← fN + lti/d

108

Algorithm 4: get freq k(i, j, S3)

1: S3ij ← S3i ∩ S3j

2: v1 = |S3ij|
3: v2 = |S3i| − |S3ij|
4: v3 = |S3j| − |S3ij|
5: v4 = |S3| − |S3i| − |S3j|+ |S3ij|
6: return 〈v1, v2, v3, v4〉

(a) 5 clique graphlet (i = a) (b) 5 clique graphlet (i = b/c)

Fig. 5.5.: 5 clique graphlet counting

total count (in both Theorem 5.3.1 and 5.3.2) for maintaining i 6= j 6= k property, is

adopted as a bias value bi in the Algorithm 3.

Example: Frequency of the 5 size clique i.e. graphlet type g41 can be calculated

using template variable values S1 = T , S2 = Ti, S3 = T , t = 1, bi = 0, di = 2 and

d = 3. For 5 size clique, as shown in the Figure 5.5, three vertices (a, b, c) other than u

and v need to be from set T , hence S1 = T , S2 = T and S3 = T and all three vertices

need to be interconnected, so I use S2 = Ti (l1 = 1) and t = 1 (f1ij ⇒ l2 = 1, l3 = 1).

Now, as we can see for each i, selection of j and k are interchangeable i.e. in Figure

5.5a j and k are interchangeable between vertices b and c. Therefore this graphlet

will be counted twice for each i, which leads to di = 2. Similarly, from Figure 5.5b,

we can see that I select all of the three vertices (a, b, c) as an i one by one (Algorithm

3: line 1), hence I need to divide the total count by 3 i.e. d = 3.

109

Table 5.3.: Set of values for template variables to count various 5 size local graphlets

grap-
S1 S2 S3 t bi di d S1r S2r S3rhlet

g10 Nu Nui Nv 4 0 1 2 Nv Nvi Nu

g11 Nu Nui Nu 4 2 · |S2| 2 3 Nv Nvi Nv

g12 T Nui Nv 4 0 1 1 − − −
g13 Nu Nui Nv 4 0 1 2 Nv Nvi Nu

g14 T Nui Nu 4 |S2| 2 1 T Nui Nv
g15 Nu Nui Nu 4 0 1 2 Nv Nvi Nv

g16 Nu Nui Nv 3 0 1 1 Nv Nvi Nu

g17 T Ti Nu +Nv 4 0 1 2 − − −
g18 T Nui Nu 4 0 1 1 T Nvi Nv

g19 Nu Nui Nu 3 |S2| 1 2 Nv Nvi Nv
g20 Nu Nui T 4 0 1 2 Nv Nvi T
g21 T Nui Nv 4 0 1 1 T Nvi Nu

g22 Nu Nui Nv 1 0 1 2 Nv Nvi Nu

g23 T Nui Nv 3 0 1 1 − − −
g24 Nu Nui Nv 3 0 1 1 Nv Nvi Nu
g25 T Nui Nu 2 0 2 1 T Nvi Nv

g26 T Ti T 4 2 · |S2| 2 3 − − −
g27 T Ti Nu +Nv 4 0 1 2 − − −
g28 Nu Nui Nu 1 0 2 3 Nv Nvi Nv
g29 T Nui Nu 3 0 1 1 T Nvi Nv
g30 T Nui T 4 0 1 1 T Nvi T
g31 T Nui Nv 2 0 1 1 − − −
g32 T Nui Nv 3 0 1 1 T Nvi Nu
g33 Nu Nui Nv 1 0 1 2 Nv Nvi Nu
g34 T Nui Nu 1 0 2 1 T Nvi Nv
g35 T Ti T 4 0 1 2 − − −
g36 T Nui T 2 0 1 1 T Nvi T
g37 T Nui Nv 1 0 1 1 − − −
g38 T Nui T 3 |S2| 1 2 T Nvi T
g39 T Nui T 1 0 1 2 T Nvi T
g40 T Ti T 3 |S2| 1 2 − − −
g41 T Ti T 1 0 2 3 − − −

5.3.4 Counting frequency of non-symmetric local graphlets

Definition 5.3.1 (Vertex orbit) For a given graphlet g(V,E), vertexes u, v ∈ V

are in same orbit if an automorphism fauto of g exists such that u = fauto(v). �

Definition 5.3.2 (Symmetric local graphlets) For a given edge (u, v) a local graphlet

g is called symmetric if vertices u and v are in the same vertex orbit for g. �

For symmetric local graphlets I do not need to count frequency for reverse sequence

of the vertices v, u (instead of u, v). For a symmetric local graphlet, d(u) = d(v) and

110

(a) Example of edge Symmet-
ric graphlet

(b) Examples of edge non-symmetric graphlets

Fig. 5.6.: Example of edge symmetric and non-symmetric graphlets

graphlet structure remains the same after exchanging neighborhood of the vertices u

and v. For example, as shown in Figure 5.6a for graphlet type g31, d(u) = d(v) = 3

and when I exchange neighbors of u and v the graphlet structure remains the same,

because vertex u and v are in the same orbit. On the other hand, Figure 5.6b shows

two examples of non-symmetric graphlets of type g19 and g27.

To calculate the correct frequency for non-symmetric graphlets, I need to count

occurrence of the graphlet with reverse sequence of the vertices. For example, in

Figure 5.6b(1) a, b and c all are neighbors of u and d(u) = 4. However to count

the correct frequency of the graphlet type g19, we need to count frequency for the

graphlet shown in Figure 5.6b(2) where d(v) = 4 and a′, b′ and c′ all are neighbors

of v. To count the correct frequency for the graphlet in Figure 5.6b(1), template

variables take values S1 = Nu, S2 = Nui and S3 = Nu. But to count frequency of

the graphlet in Figure 5.6b(2), the variable values become S1r = Nv, S2r = Nvi and

S3r = Nv, where S1r represents reverse version of S1 as shown in Table 5.3. Template

variables t, bi, di and d remain the same for both cases. Because when I calculate f3ij

using Algorithm 4, Nuj (S3j) also includes vertex represented by i (here a), hence I

need to subtract 1 from f3ij for each j. I subtract this value combined using bias

111

bi = |S2|. Lastly, we also count the same graphlet two times considering i = a and

i = c, hence we divide the global count by d = 2.

Another example of non-symmetric graphlet is graphlet type g27. To count correct

frequency for this type, I just need to sum up possible unique neighbors of u and

unique neighbors of v (with red dotted line). To calculate both cases as shown in

Table 5.3, I just need to put two different values (Nu and Nv) of template variable S3

and sum the resultant frequency values.

5.3.5 Complexity Analysis

For 5-size local graphlets counting, any regular algorithm generally takes O(∆3)

time for each edge [34], where ∆ is maximum degree in the graph G. However,

time complexity of this method for counting 5 sized local graphlets (Algorithm 3) is

O((Tmax + Nmax
u + Nmax

v)3), where Tmax is the largest value of |T | out of all edges

of the graph. Similarly Nmax
u and Nmax

v represents largest value of |Nu| and |Nv|

respectively. For any edge (u, v), |Nu| = d(u) − |T | and |Nv| = d(v) − |T |, and for

any real-world sparse network 0 ≤ Tmax � ∆. Also, for any node with highest

degree there is very low probability that |T | = 0, hence |T | > 0 and Nmax
u ≤ ∆ and

Nmax
v ≤ ∆.

5.3.6 Parallelizing the E-CLoG

E-CLoG is embarrassingly parallelizable, as the main work is performed over two

for loops and operations inside the loops are independent for each iteration. Addi-

tionally, each edge can have unique independent data structure (T,Nu, Nv) values,

hence parallel computation over edges is highly effective for large number of edges. I

use only second strategy in my implementation.

112

Table 5.4.: Dataset statistics

Datasets |V | |E| Avg.Deg

arenas-meta 453 2025 8.94
arenas-pgp 10680 24316 4.55
as-caida 26475 53381 4.03
ca-AstroPh 18771 198050 21.10
com-amazon 334863 925872 5.53
com-dblp 317080 1049866 6.62
douban 154908 327161 4.22
facebook-wosn 63731 817035 25.64
loc−brightkite 58228 214078 7.35
maayan-vidal 3023 6149 4.07
opsahl-powergrid 4941 6594 2.67
petster-hamster 2426 16630 13.71
reactome 6229 146160 46.93
roadNet-CA 1965206 2766607 2.82
roadNet-PA 1088092 1541898 2.83
roadNet-TX 1379917 1921660 2.79
topology 34761 107719 6.20
wordnet-words 146005 656999 9.00

5.4 Experiments and Results

I conducted three different experiments to show efficiency, scalability and usability

of the proposed method. In the first experiment, I compare running time of my

method with GRAFT [34]. In the second experiment I show that, nearly linear

speed-up can be achieved for the parallel version of the E-CLoG. Lastly, in the third

experiment, I show the utility of local graphlet frequencies for solving link prediction

problem.

I collected 18 different graph datasets from different domains from KONECT 2. I

have 3 biological networks: arenas-meta is a metabolic network of the roundworm,

maayan-vidal and reactome are networks of protein-protein interactions in humans.

Arenas-png is an interaction network of users of the Pretty Good Privacy (PGP)

2Koblenz Network Collection: http://konect.uni-koblenz.de/

113

algorithm. As-caida and topology are networks of autonomous systems of the In-

ternet. ca-AstroPh and com-dblp are co-authorship graphs, and com-amazon is a

co-purchase network of Amazon. There are four different types of online social net-

works: douban is an online recommendation based social network, facebook-wosn is

an online friendship network, loc-brightkite is a location based social network and

petster-hamster is a friendship network of pet owners. I have few infrastructure

based networks, such as opsahl-powergrid is a power-grid network, and three road

networks roadNet-CA, roadNet-PA and roadNet-TX for three different states of

the USA. Wordnet-words is a lexical network of words from the WordNet dataset.

Some basic statistics such as number of vertices (|V |), number of edges (|E|), and

average degree (Avg.Deg) for the datasets are shown in the Table 5.4.

5.4.1 Runtime Comparison

There exist no methods that perform local edge-centric graphlet counting for size-

5 graphlets. Two recent global methods for exact counting of size-5 graphlets exist,

GRAFT [34], and ESCAPE [174]; from which, GRAFT iterates over each of the edges

of the input graph and aggregates the sub-counts of the graphlets that are incident to

the edge of that iteration. At the end, it divides the duplicity factors of each graphlets

to obtain the global graphlet counts. Thus GRAFT, indirectly, is an edge centric local

graphlet counting method, which produces count of local 5-graphlets for each edge.

In this experiment, I compare GRAFT’s running time with E-CLoG’s running time

by finding the total time of computing local graphlets over all the edges. Note that,

This comparison is a bit unfair for E-CLoG as it generates frequencies of local 5-

graphlets of all edge orbits, totalling 32 graphlets, but GRAFT generates frequency

of only 21 size-5 graphlets. Also note, among the 21 topologies that GRAFT counts,

two topologies 5-path and 5-cycle are not counted by E-CLoG as they are not local

graphlets as per definition. For this comparison, I extend E-CLoG and compute

these two counts also. Lastly, GRAFT does not provide parallel implementation,

114

Table 5.5.: Runtime comparison between E-CLoG and GRAFT
(d = days, h = hours, m = minutes, s = seconds)

Datasets E-CLoG (serial) GRAFT E-CLoG (parallel)

arenas-meta 5.2s 2.67m 0.36s
arenas-pgp 14.6s 13.49m 1.06s
as-caida 160.98m > 8.51d 8.56m
ca-AstroPh 23.51m 3d 1.58m
com-amazon 4.3m 9.82h 24.22s
com-dblp 14.32m 1.56d 56.31s
douban 5.41m 10.02h 15.43s
facebook-wosn 210.94m > 4.01d 13.03m
loc−brightkite 43.93m > 7.15d 2.54m
maayan-vidal 1.71s 47.39s 0.11s
opsahl-powergrid 0.0556s 0.3292s 0.01s
petster-hamster 43.44s 54.79m 3.24s
reactome 98.9m > 7.15d 6.72m
roadNet-CA 17.71m 2.2m 5.1m
roadNet-PA 5.52m 1.07m 1.57m
roadNet-TX 8.64m 1.38m 2.49m
topology 510.7m > 7.15d 26.17m
wordnet-words 93.13m > 4.01d 5.43m

hence I use single thread computation for my method for fair comparison. The other

exact global graphlet counting method, ESCAPE, does not iterate over the edges

so it cannot produce counts for local edge graphlets and is not comparable with my

method.

Table 5.5 shows the runtime comparison between E-CLoG and GRAFT over all

18 different graph datasets listed in Table 5.4. First column is the dataset name, the

second and third columns show the E-CLoG’s time and the GRAFT time, respec-

tively. The reported time for both the methods is the time for counting local graphlets

for all edges for each dataset after averaging the run-time over 5 runs. For a better

understanding, I write different time units (such as, s for seconds, m for minutes, h

for hour, and so on.) besides the time values. As we can see, for most of the datasets

E-CLoG runs one or two orders of magnitude faster than GRAFT. For 6 datasets,

115

GRAFT is unable to complete the counting even after few days (> in the Table 5.5),

while E-CLoG completed the counting in few hours on those datasets. A specific

example can be wordnet-words dataset, for which E-CLoG took only 93.13 minutes

(= 1.5 hours), but GRAFT did not finish in 4 days! In 13 of 16 graphs, E-CLoG

performs very good. Other 3 graphs in which GRAFT did better than E-CLoG, in-

terestingly, are all road networks. A possible reason for this is during enumeration

GRAFT first aligns an edge of a tree graphlet with the given edge, and then performs

costly checks for counting cyclic graphlets. Since, road networks are mostly tree net-

works, they run very fast on GRAFT. However, most of the real-life networks have a

substantial number of cycles, for those graphs, GRAFT is very poor.

In this table, I also show the runtime of parallel version of E-CLoG in Column

4. This parallel version uses 72 threads. For most of the graphs, the parallel version

improves the runtime significantly. For instance, for facebook graph the parallel

version runs in 13 minutes whereas the single-thread version runs in 211 minutes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 10 20 30 40 50 60 70

S
p

ee
d

-U
p

#Threads

as-caida
facebook-wosn

reactome
topology

wordnet-words

Fig. 5.7.: Strong scaling results for a variety of graphs. I obtain 14x–20x speedup
using 70 threads.

116

5.4.2 Scalability

This section investigates the parallel performance of the proposed algorithm. The

parallel algorithm for local graphlet counting has lock-free updates due to the parti-

tioning of edges across the processing units and each edge is guaranteed to be pro-

cessed by a single worker. For these experiments, I used a machine with two Intel

Xeon E5-2699 v3 platform with 2.30GHz CPUs. Each processor has 18 cores with

46MB of L3 cache and 256KB of L2 cache. The machine has 256GB of memory, how-

ever, E-CLoG never came close to using all of it. E-CLoG scales well as the number

of processing units increase. In particular, strong scaling is observed in Figure 5.7

for the 5 graphs having the worst running time for serial execution. I obtain 14x–20x

speedup using 70 threads for most graphs.

5.4.3 Link Prediction

Given a pair of non-adjacent vertices u, and v in a social network, link predic-

tion task predicts whether the vertices will form a link in future. In a supervised

classification setup, link prediction task is typically solved by using a fix set of topo-

logical features which determine the topological similarity between u and v. In this

experiment I will demonstrate that local graphlet frequency distribution (LGFD) for

the edge (u, v) captures topological properties (around the vertices u, v) that have

substantially more predictive power than the traditionally used topological features

for link prediction.

For this experiment, I use three datasets which are time-stamped networks. From

Table 5.4, only two datasets (facebook-wosn and topology) have time-stamps affili-

ated with edges. Here, facebook-wosn has 333, 923 unique time-stamps and topology

has 23, 768 unique time stamps, which I use. I also create DBLP co-authorship net-

work with time-stamps (yearly) from AMiner 4. To create this network, I select a

set of authors who have published 2 or more papers in database and data mining

4https://aminer.org/data

117

Table 5.6.: Comparison results for Link Prediction Problem

ROC-AUC PR-AUC
Datasets Topo-feat LGFD Topo-feat LGFD

facebook-wosn 0.5519 0.9101 0.6784 0.9351
topology 0.8179 0.9366 0.8837 0.9415
DBLP 0.6897 0.7411 0.7703 0.7822

conferences and from these selected authors I generate induced co-authorship graph.

This network has 4, 545 authors with 20, 491 connections over 45 years.

For experiment, I divide the time-stamps of each dataset into three chronologi-

cally ordered partitions, network growing period, train period and test period; from

the beginning up to 70% of total time-stamps is network growing period, 70% to

85% is train period, and from 85% till the end is the test period. An edge cre-

ated in train period is a positive train instance and an edge created (for the first

time) during this test period is a positive test instance. I take random node pairs

which do not have a connecting edge till the end of the training period as negative

train instances and random disconnected node pairs as negative test instances. In

this experiment, we use local graphlet frequencies normalized over all local graphlet

types (42) as a features set. For comparison with these local graphlet frequencies,

I use 10 traditional topological features : number of common neighbors, Jaccard’s

coefficient, preferential attachment, adamic-adar and Katz for 5 different β values

(0.1, 0.05, 0.01, 0.005, 0.001). Note that, Katz, adamic-adar and Jaccard’s coefficient

are proven to be the best topological features for link prediction. Also, computing

some of these link prediction features on a large network is substantially more costly

than computing local graphlet frequency. For instance, for all datasets computing

Katz takes several days! For supervised classification I use linear SVM (Support

Vector Machine), for which the regularization coefficient C is chosen by grid-search

from values {0.001, 0.01, 0.1, 1.0, 10.0, 100.0} using a random 20% of test instances as

118

Table 5.7.: Useful graphlets for link prediction

Datasets Graphlets with high individual AUC

facebook-wosn g0, g5, g12, g14, g16, g18, g20, g21, g25, g29, g34
topology g0, g5, g11, g14, g15, g18, g19, g20, g25, g29, g34

DBLP
g0, g2, g5, g12, g14, g18, g20, g21, g25, g27, g29,
g34, g36, g39

a validation set. I evaluate the link prediction results using Area Under Curve ROC

(ROC-AUC) and Precision-Recall AUC (PR-AUC)

In Table 5.6 I show the link prediction comparison results. For both the metrics,

LGFD substantially improve the link prediction performance, typically 10% to 45%

improvement in both kinds of AUC has been observed. This is not surprising because

local graphlet frequency actually encodes information that traditional topological fea-

tures encode. These results show high discriminative power of graphlet frequencies

to identify future links, but not all local graphlet types are equally important. So I

conducted an analysis study to find out frequencies for which specific local graphlets

are highly impactful. For the study, I find normalized graphlet frequency of each

graphlet which is treated as a predicted probability of a classifier to calculate individ-

ual AUC value for each graphlet type. In Table 5.7, I show list of graphlet types for

which AUC is above 85% for facebook-wosn and topology datasets and above 70%

for DBLP dataset. This table shows which graphlet type is an important feature by

itself, and it also highlights the fact that 5 size local graphlets are commonly very

good features for link prediction task.

5.5 Chapter Summary

In this work, I present a very efficient algorithm for computing the frequencies of

edge-centric local graphlets of size upto 5. The experimental results show that the

proposed method is very efficient, and scalable for large real-life networks. I also show

119

the utility of local graphlet count for predicting future links in a social or collaboration

network.

120

6. ATTRIBUTED NETWORK EMBEDDING FOR

RELATED ATTRIBUTES

6.1 Introduction

In this chapter, I present a representation learning framework for joint learning

of representation vectors of both nodes and its attributes in a single vector space.

Note that, networks with a finite set of attributes can be represented as two sepa-

rate networks; first is a network of nodes and second is a bipartite graph of nodes

and attributes. In this embedding approach, I treat the input network with nodal

attributes as two networks as described in next section of this chapter. Addition-

ally, this embedding method assumes that node attributes are inter-related and these

relations are partially known, which creates another network of attributes. For the

proposed representation learning method, I generate three networks, node-node net-

work, node-attribute bipartite network and attribute-attribute network, from the

input attributed network. Specifically, I use these three networks as inputs to the

representation learning model and use both Bayesian personalized ranking and mar-

gin based loss functions to learn the vector representations. I conducted experiments

on a real-world dataset from a well-known job portal company, where the input net-

works are job-job transition graph, job-skill graph, and skill-skill graph. I provided

job and skill recommendations using the proposed embedding approach and com-

pare with several baseline methods to show that the proposed representation learning

framework yields better representation vectors.

121

6.2 Problem Formulation

Let G = (V , E ,A) be an attributed network, where V is a set of n nodes, and E

is a set of edges, and A is a set of attributes. There exist a many to many mapping

function f : V → A to identify the connection between nodes and corresponding

attributes. I can convert this attributed network into two separate networks as below:

Definition 6.2.1 (Node-node network) A node-node network is represented as

Gvv(V , Ev), where Ev = E is a set of edges between the node.

For nodes u, v ∈ J , an edge from u to v is represented as evuv = (u, v) ∈ Ev. The total

number of nodes is denoted as nv = |V|.

Definition 6.2.2 (Node-attribute network) A bipartite graph Gva(V ∪ A, Eva),

where V is a set of nodes, A is a set of attributes with number of attributes na = |A|

and Eva =
⋃nv
i=1{f(i)} is a set of edges from a node to a corresponding attribute.

As discussed before, this method assumes attributes are inter-related and create

a network

Definition 6.2.3 (Attribute-attribute network) Let Gaa(A, Ea) be an undirected

attribute relation network, where A is a set of attributes, Ea is a set of edges between

the related attributes.

Formally, given node-node networkGvv, node-attribute networkGva and attribute-

attribute network Gaa, my goal is to obtain k-dimensional representation of nodes

(W) and attributes (W′) into a shared latent space. Here, W = [wT
1 ,w

T
2 , ...,w

T
nj]

T ∈

IRnv×k, where wi is ith column of embedding matrix W, which is the representation of

the ith node. Similarly, W′ = [w′T1 ,w
′T
2 , ...,w

′T
ns]

T ∈ IRna×k is the attribute represen-

tation matrix. The embedding matrices W and W′ should preserve the connectivity

information from graphs Gvv and Gaa, respectively. Additionally, these matrices also

leverage signals from graphs Gva and through Gva, node similarity information prop-

agates to W′ and attribute similarity information propagates to W.

122

6.3 Methodology

In this section, I discuss our proposed representation learning model. My goal

is to encode the local neighborhood structures captured by the three networks into

k-dimensional node and attribute embedding matrices that captures the structural

and conceptual similarities between nodes and attributes.

6.3.1 Model Design

First, I capture node-node similarity information from graph Gvv. The main

intuition behind the proposed embedding model is that similar nodes need to be

closer in latent space compared to non-similar nodes. For example, for an edge

exy ∈ Ev the vector representation wx of node x should be closer to wy compared

to wz when exz /∈ Ev. I calculate the affinity score between two embedding vectors

using a dot product operation, hence the affinity score between node x and node y

is represented as Avxy = 〈wx,wy〉. More precisely, we are interested in having higher

affinity score between node x and node y compared to node x and node z given

exy ∈ Ev and exz /∈ Ev, i.e. Avxy > Avxz. We can model the probability function

that preserves the order Avxy > Avxz for given wx, wy and wz. Specifically, I utilize

two functions for this modeling task, 1) sigmoid function σ(v) = 1
1+e−v

and 2) ReLU

function ReLU(v) = max(0, v). In the following, I show the formulation only for

sigmoid function, and it is very similar for the ReLU function. The probability that

the order Avxy > Avxz is preserved can be formulated as below:

P (Avxy > Avxz | wx,wy,wz) = σ(Avxyz) (6.1)

where,

Avxyz = Avxy − Avxz = 〈wx,wy〉 − 〈wx,wz〉 (6.2)

123

From equation 6.1, it is clear that the higher the value of Avxyz, the better the

ordering is preserved. Hence, our goal is to maximize the probability for preserving

all the ranking orders of all training triplets (x, y, z), where exy ∈ Ev and exz /∈ Ev. I

assume that all training triplets are sampled independently, thus the joint probability

of preserving all training ranking orders, P (>|W), can be represented as below:

P (>|W) =
∏

(x,y,z)∈Dvv
P (Avxy > Avxz | wx,wy,wz)

=
∏

(x,y,z)∈Dvv
σ(Avxyz)

=
∏

(x,y,z)∈Dvv
σ(Avxy − Avxz) (6.3)

Where Dvv is a set of training triplets from graph Gvv. I aim to maximize the

joint probability of training triplets (equation 6.3). For the computational simplicity,

I minimize the negative log of this joint probability instead, which is shown as follows:

Ovv = min
W
− ln P (>|W)

= min
W
−

∑
(x,y,z)∈Dvv

ln σ(Avxy − Avxz) (6.4)

The optimization objective shown in equation 6.4 helps to achieve desirable node

embedding, where similar nodes have higher affinity score than non-similar nodes.

Similarly, I obtain the attribute embedding matrix W′ ∈ IRna×k, which preserve

the attribute similarity information. For the attribute-attribute network Gaa, our

124

goal is to obtain higher affinity scores for related attribute. This can be achieved

using the following optimization objective:

Oaa = min
W′
− ln P (>|W′)

= min
W′
−

∑
(x,y,z)∈Dss

ln σ(Aaxy − Aaxz)

= min
W′
−

∑
(x,y,z)∈Dss

ln σ(〈w′x,w′y〉 − 〈w′x,w′z〉) (6.5)

Where, w′i is the ith column of the attribute embedding matrix W′, Daa is a set of

training triplets sampled from graph Gaa and affinity score between attributes x and

y is denoted as Aaxy = 〈w′x,w′y〉. The objective function shown in the equation 6.5 is

to maximize the difference in terms of affinity scores between related attributes and

non-relevant attributes in the graph Gaa.

Lastly, I incorporate information from node-attribute bipartite graph Gva into the

node embedding matrix W and attribute embedding matrix W′. In order to achieve

that, I sample two attribute ya and za such that the attribute ya is associated with

node xv and the attribute za is not connected to node xv. Here I compute the affinity

score between node xv and attribute ya as Avaxvya = 〈wxv ,w
′
ya〉. Note that for a given

node xv, I select its corresponding node latent vector from W and for the attribute ya

I select its corresponding latent vector from W′. The objective function is formulated

as below:

Ova = min
WW′

− ln P (>|W,W′)

= min
WW′

−
∑

(xv ,ya,za)∈Dva
ln σ(Avaxvya − Avaxvza)

= min
WW′

−
∑

(xv ,ya,za)∈Dva
ln σ(〈wxv ,w

′
ya〉 − 〈wxv ,w

′
za〉) (6.6)

Where Dva is a set of training triplets sampled from graph Gva.

125

The goal of the proposed network embedding framework is to unify these three

types of relations (Gvv, Gva, Gaa) together to learn high quality node and attribute

embedding matrices. An intuitive manner is to collectively embed these three graphs,

which can be achieved by minimizing the following objective function:

O(W,W′) = min
WW′

Ovv +Ova +Oaa + λ · (‖W‖2
F + ‖W′‖2

F) (6.7)

Where λ is a regularization co-parameter and ‖·‖2
F is l2 regularization for both em-

bedding matrices to avoid over-fitting.

I call the proposed method with sigmoid function as Joint-BPR, as equations 6.4, 6.5

and 6.6 are in the similar spirit to Bayesian Personalized Ranking (BPR) [44, 175].

Similarly, I call the proposed method with ReLU function as Joint-Margin.

6.3.2 Model Optimization

Our proposed embedding framework has two model parameters W and W′, which

are node and attribute embedding matrices. I learn these matrices using mini-batch

gradient decent. Specifically, I sample triples (x, y, z) from each of the three graphs

(Gvv, Gva, Gaa), where (x, y) are connected and (x, z) are dis-connected pair of nodes

in the corresponding graphs as discussed in the previous section. For each mini-batch,

I compute derivative of the objective function shown in equation 6.7 with respect to

W and W′ and update the matrix values using the following equations:

Wt+1 = Wt − α×
∂O(W,W′)

∂W
(6.8)

W′
t+1 = W′

t − α×
∂O(W,W′)

∂W′ (6.9)

where α is the learning rate. Additionally, I initialize both matrices from normal

distribution with 0.0 mean and 0.1 standard deviation. For better understanding of

the proposed methodology, I provide the pseudo-code of our method in Algorithm 1.

126

Algorithm 5: Pseudo-code for the proposed embedding framework

Input: Gvv, Gva, Gaa, embedding dimension k, batch size b, learning rate α,
regularization coefficient λ

Output: Node embedding matrix W and attribute embedding matrix W′.
1: Initialize W,W′ as k-dimensional matrices with 0 mean and 0.1 standard

deviation from normal distribution
2: Given Gvv, Gva, Gaa, construct training triplet sets Dvv, Dva, and Daa

respectively using uniform sampling technique
3: for each training instance in training sample sets do
4: Update involved parameters using min-batch gradient descent as described in

Sections 3.1, 3.2
5: return W,W′.

6.4 Experiments and Results

I conducted experiments on real-world dataset that I received from a popular job

portal company. I generated three graphs from the data

1. job transition graph: It is a network of jobs that has connection between jobs

based on transition from one job to other. This graph is treated as node-node

network.

2. job-skill graph: It is a bipartite graph between jobs and related skills, here the

jobs are node and corresponding skills are attributes. So this is a node-attribute

network.

3. skill co-occurrence graph: It is a graph inter-connecting skills based on its fre-

quent co-occurrence on job posting. This graph is treated as attribute-attribute

network.

Below, I briefly describe how these three graphs are generated.

6.4.1 Data Preparation

This method relies on utilizing three networks, namely, (i) job transition graph, (ii)

job-skill graph, and (iii) skill co-occurrence graph. In order to build these networks, 20

127

million resumes are collected from one of the largest human capital solution company

in the US. Then parse each resume to extract the work history section which is then

parsed to extract the job title and employment date. After that the job titles in a

resume are ordered in the temporal order such that job x is placed before job y if

the employment date of x is earlier than the employment date of y. Therefore, in

the job transition network an edge exy represents that job x listed in a resume before

job y in the work history section. Lastly, we normalized the set of job titles using

Carotene [176], an in-house job classification tool in CareerBuilder. This step reduces

the number of unique jobs to 4325 with 2, 432, 231 distinct job transitions. Note that

although job transition graph is directed, for learning the representation vector, it is

treated as an undirected graph.

For the skill co-occurrence network, the skills extracted from each resume are

connected, so an edge es1s2 means both skills s1 and s2 are listed in the same resume

at least once. Then any edge with co-occurrence value smaller than 10 is removed

to avoid poor quality relations, that left us with 6214 unique skills co-occurring in

11, 760, 132 different ways. To further reduce the noisy connections, the weights on the

edges are calculated using Point-wise Mutual Information (PMI) and use reasonable

weight threshold to filter poor quality edges.

Lastly, to build the job-skill bipartite graph, each skill is extracted from the de-

scription of job x in all the job postings that has job x. Then job to skill connections

are created by using another method described in [177], which creates a graph that

connects 4325 jobs to 6214 skills using 103, 073 edges.

Job transition Graph

Resume Data

Past Employment Job title to
Core Skills

Job transitions

Skill co-occurrence
Graph

Skills co-occurrence

Millions of Resumes

Job Skill Graph

Fig. 6.1.: Data Preparation

128

6.4.2 Comparison Works

I conduct comparison experiments to show superiority of the proposed methods

on our real-world dataset discussed in the previous section. For this experiment, I

compare with three baseline methods.

• Bigram: It estimates the job transition probability based on first-order Markov

assumption i.e. it uses popularity of the target job in the network to calcu-

late the transition probability. It is considered as one of the most competitive

method in practice for densely connected graphs.

• AANE [53]: Accelerated Attributed Network Embedding is a state-of-art em-

bedding method that incorporates nodal attributes with topology using joint

matrix factorization to learn low-dimensional network representation.

• PTE [113]: Predictive Text Embedding incorporates all three graphs, namely

Job transition, Job skill and Skill co-occurrence, into single network represen-

tations using matrix factorization. The objective of this method is to minimize

the distance between empirical similarity distribution and embedding similarity

distribution using KL-divergence.

6.4.3 Experiment Settings

For conducting these experiments, I create train and test set using leave-one-out

strategy i.e. for each job in Gvv I randomly keep one of the neighboring job as

positive test instance and the remaining neighboring jobs as positive train instance.

Ranking all jobs is a costly task, hence I uniformly select 100 jobs (over all jobs in the

dataset) as negative test instances. For evaluation, I use Hit-Rate (HR@10) from top

10 ranked jobs and calculate Normalized Discounted Cumulative Gain (NDCG@10)

up to position 10 for evaluation. I also calculate pair-wise/local AUC (Equation 6.10)

129

Table 6.1.: Comparison results for job transition recommendation. (Embedding di-
mension = 50)

Metrics Bigram AANE PTE Joint-BPR Joint-Margin

HR@10 0.2742 0.8964 0.9260 0.9055 0.9575
NDCG@10 0.1479 0.7151 0.7332 0.7060 0.7826
local AUC 0.6682 0.9622 0.9722 0.9698 0.9835

for test set T which includes pair (x, y), where x is a test node and y is a positive

target job. I uniformly sample (100) negative jobs (TJx−) for each test node x.

local AUC =
1

|T |
∑

(x,y)∈T

1

|TJx−|
∑

z∈TJx−
1(Avxy > Avxz) (6.10)

For the proposed method, I use mini-batch gradient descent for the optimization.

Specifically, I set learning rate as 0.1, regularization coefficient value as 0.0001, batch-

size as 100 and number of epochs as 20. I use the same configuration for PTE for fair

comparison. Also, I keep the embedding dimension as 50 for all embedding methods

(Joint-BPR, Joint-Margin, AANE and PTE). For AANE, I perform grid search

to select regularization parameter λ = 0.01 from set {0.0001, 0.001, 0.01, 0.1} and

penalty parameter ρ = 0.1 from set {0.05, 0.1, 0.5, 1}.

6.4.4 Comparison Results

The comparison results are depicted in the Table 6.1. I observe that both proposed

methods (Joint-BPR and Joint-Margin) outperform the Bigram method substan-

tially. Additionally, the proposed methods also improve the performance over AANE;

for example, Joint-Margin achieves around 7% increment in hit-rate and 10% in-

crement in NDCG over AANE. Notably, PTE performs better than other baselines

and also outperforms one of the proposed methods (Joint-BPR) by small margin.

One of the possible reasons for good performance by PTE is that it uses all three

graphs to learn the job embedding. However, our proposed method Joint-Margin

130

−20 −15 −10 −5 0 5 10 15 20

−20

−10

0

10

20

Business and Financial Operations jobs
Sales and Related jobs

(a) Bussiness and Finance
VS. Sales

−20 −15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

15

Healthcare Practitioners and Technical jobs
Personal Care and Service jobs

(b) Healthcare practitioners
VS. Personal care service

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

Food Preparation and Serving Related Occupations
Farming, Fishing and Forestry Occupations

(c) Food and serving VS.
Farming and fishing

Fig. 6.2.: Clustering of similar job-categories in embedding space

−30 −20 −10 0 10 20 30 40 50

−30

−20

−10

0

10

20

30

Computer and Mathematical jobs
Architecture and Engineering jobs
Community and Social Services jobs −20 −15 −10 −5 0 5 10 15

−20

−10

0

10

20

Community and Social Services jobs
Legal jobs
Education Training�and Library jobs −20 −10 0 10 20

−15

−10

−5

0

5

10

15

20

Healthcare Support jobs
Protective Service jobs
Sales and Related jobs

Fig. 6.3.: Clustering of non similar job-categories in embedding space

outperforms all competing methods and improves the Hit-rate by 3.4% and NDCG

by 6.74% compared to the second best method, which is PTE.

6.4.5 Job Clustering

I categorize all jobs into different groups using O*Net 1 job-categories. I plot our

job embeddings generated from our proposed Joint-Margin to check the clustering

behavior of the jobs into the latent space. As I have many different job-categories,

I plot two similar categories into same figure to show that proposed embeddings can

distinguish similar categories in the latent space, for example I plot “Bussiness and

Finance jobs” with “Sales and related jobs” in Figure 6.2a , “Healthcare Practitioners

jobs” with “Personal care and service jobs” in Figure 6.2b and “Food preparation

1https://www.onetonline.org

131

−600 −400 −200 0 200 400

−600

−400

−200

0

200

400

600

Application_Analyst
PeopleSoft_Analyst/Developer,Functional_Analyst
Application_Analyst Skills
other job(s) skills

(a) Distance between Applica-
tion analyst and other jobs

−800 −600 −400 −200 0 200 400 600 800
−800

−600

−400

−200

0

200

400

600

800

PeopleSofl_Analyst
PeopleSoft_Developer
PeopleSofl_Analyst Skills
other job(s) skills

(b) Relation of PeopleSoft an-
alyst and PeopleSoft devel-
oper

−600 −400 −200 0 200 400 600
−600

−400

−200

0

200

400

PeopleSoft_Developer
Functional_Analyst
PeopleSoft_Developer Skills
other job(s) skills

(c) Relation of PeopleSoft de-
veloper and Functional ana-
lyst

Fig. 6.4.: Comparison of job transitions of a user

and serving jobs” with “Farming, fishing and forestry jobs” in Figure 6.2c. I also plot

three non-similar groups together to show strong clustering behavior among jobs from

the same job-category as depicted in Figure 6.3. Notice that, though I do not use

these O*Net job-category information to generate job embedding, still the proposed

embedding generates correct clusters in the latent space.

6.4.6 Case Study

I study a professional, who switched 3 jobs during her career. She started working

as “Application analyst” in August 1993 and switched to a new job as “PeopleSoft

analyst” in January 1994. She worked there almost four years and then switched to

a new job as “PeopleSoft developer” in October 1998. Finally after three years, in

July 2001 she switched to a “Functional analyst” job and worked there until 2015. I

observe that in the first job transition, the professional switched the job very quickly,

probably because the job domain was not very suitable for her. However, judging from

her longer job duration in the later jobs, I suspect that those jobs were satisfying and

the later job transitions were merely for better career prospect and career progression.

To check the quality of the proposed Joint-Margin, I check recommendation for

these jobs, i.e., “Application analyst”, “PeopleSoft analyst” and “PeopleSoft devel-

132

Table 6.2.: Top 10 job and skill recommendations for 3 different job owners

Civil Engineer Photographer Cafe Manager
Jobs Skills Jobs Skills Jobs Skills

Structural Engineer Civil Engineering Creative Manager Graphic Design Operations Manager Customer Service
Geotechnical Engineer Surveying Graphic Artist Adobe InDesign Food Service Manager Management
Transportation Engineer MicroStation Production Artist Printing Restaurant Manager Training
Traffic Engineer Geotechnical Eng. Art Director Adobe Photoshop General Manager Leadership
Staff Engineer Professional Eng. Graphic Designer Photography Banquet Manager Operations
Surveyor AutoCAD Production Director Adobe Flash Restaurant Supervisor Rotation
CAD Technician Land Development Media Assistant Adobe Dreamweaver Store Director Food Services
Transmission Engineer Elevation Package Designer Adobe Creative Suite Operations Manager Retailing
Water and Wastewater Eng Site Planning Layout Designer (Arts) Web Design Field Service Manager Sales
Architectural Designer Physical Education Videographer Adobe Illustrator Department Head (Sales) Merchandising

oper” using our job embedding. For “Application analyst” jobs, our recommendation

suggests “PeopleSoft analyst” job at 45th position. On the other hand, for “People-

Soft analyst” job, our method suggests “PeopleSoft developer” job at 4th rank. For

the “PeopleSoft developer” job, the rank of “Functional analyst” job is 2. As we can

see, the recommendation using the proposed embedding methodology provides good

ranking for jobs that are satisfactory, and leads to better career prospect.

In Figure 6.4, I plot all four jobs and corresponding skills using job and skill

embeddings to understand the recommendation behavior of our method. We observe

from Figure 6.4a that “Application analyst” is far in latent space compared to other

three jobs and skill set for “Application analyst” is also not well aligned with skill

set of the other three jobs. However, there are a few overlapping skills which qualify

“Application analyst” as a precursor for the other three jobs. Note that “Application

analyst” is a generic job, from which 880 distinct job transitions happened in our

dataset; among them “PeopleSoft analyst” is ranked 45 in recommendation, possibly

because of the common skills between these two jobs. This explains the benefit of

using skill information in the proposed embedding. In the remaining two plots in this

figure, I show relation between “PeopleSoft analyst”, “PeopleSoft developer” and

“Functional analyst” jobs. As can be seen in Figures 6.4b, 6.4c, their skill sets are

highly indistinguishable in the latent space as these jobs are well aligned in the career

progression trajectory in that job sector.

133

6.4.7 Example of Job and Skill Recommendations

Here, I study recommendations for three job owners from different domains and

show that the proposed method provides highly relevant suggestions. As I mentioned

before, the proposed method embeds the jobs and skills into a shared latent space,

thus I can provide job recommendation as well as skill recommendation. I list top

10 recommended jobs and skills for three different jobs in Table 6.2. From the ta-

ble, I observe that the recommended jobs are typically more specialized job or a job

that one can achieve after being promoted. For instance, a “photographer” is rec-

ommended “graphic artist” and “production artist” jobs, which are more specialized

jobs than the photographer. He is also suggested jobs, such as “creative manager”

and “art director”, which are jobs that a photographer can obtain after a career

advancement. For skill recommendation, I provide highly relevant (mandatory) and

advanced skills required in the domain as shown in the Table 6.2. For example, for

a good “photographer”, knowing “photography”, “printing” and “Adobe photoshop”

are mandatory, but he could get suitable higher level jobs if he acquires skills such

as “graphic design”, “web designing” and different Adobe tools. Similar observations

can be made for the recommendation of other two jobs that I have studied.

Note that, by sharing information among three different input graphs our proposed

model can recommend skills which have not been associated to a job in the job-skill

bipartite graph. For instance, the graph Gjs does not contain any connection between

the job“civil engineer” and the skill “site planning”. However, our proposed method

is able to learn the relation between these two and put them nearer in the latent space

such that the skill appears as top skills for the “civil engineer” job. This verifies our

claim that while learning the job and skill representations, I leverage information from

all three graphs and this method provides higher quality job and skill embedding.

134

0.01 0.05 0.1 0.5
Learning Rate

0.75

0.80

0.85

0.90

0.95

Hi
t-R

at
e
(H

R@
10

)

Joint-BPR
Joint-Margin

(a) Learning Rate vs HR

0.01 0.05 0.1 0.5
Learning Rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ND
CG

@
10

Joint-BPR
Joint-Margin

(b) Learning Rate vs NDCG

0.01 0.05 0.1 0.5
Learning Rate

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

AU
C

Joint-BPR
Joint-Margin

(c) Learning Rate vs AUC

Fig. 6.5.: Performance of the proposed models for different learning rate values

6.4.8 Parameter Study

For the proposed method, there are two major influential parameters, first is the

learning rate (α) and second is the embedding dimension (k). In this study, I analyze

the influence of both parameters separately over the recommendation performance of

the proposed methods. For both experiments, I keep the regularization coefficient,

batch-size and epoch count the same as mentioned in Section 6.4.3.

Learning Rate Study

For this experiment, I keep the embedding dimensions as 50 and select the learning

rate from set {0.01, 0.05, 0.1, 0.5}. I report the performance using Hit-Rate, NDCG

and AUC in Figure 6.5. In the figure, we can observe that the performance of the

proposed models improve drastically from learning rate 0.01 to 0.05, precisely 27.5%

and 22.5% improvement in terms of NDCG@10 for Joint-BPR and Joint-Margin

respectively. The possible explanation is due to the fact that with lower learning rate,

the model converges slowly, while with higher learning rate, the model will converge

to its optimum quickly.

Embedding Dimension Study

For this experiment, I keep the learning rate as 0.1 and select the embedding di-

mensions from the set {30, 40, 50, 60, 70}. I report the performance using Hit-Rate,

NDCG and AUC in the Figure 6.6. This figure shows continuous improvement in

the performance for larger embedding dimensions, however, this improvement is not

135

30 40 50 60 70
Embedding Dimensions

0.88

0.90

0.92

0.94

0.96

Hi
t-R

at
e
(H
R@

10
)

Joint-BPR
Joint-Margin

(a) Embedding Dimensions
vs HR

30 40 50 60 70
Embedding Dimensions

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

ND
CG

@
10

Joint-BPR
Joint-Margin

(b) Embedding Dimensions
vs NDCG

30 40 50 60 70
Embedding Dimensions

0.960

0.965

0.970

0.975

0.980

0.985

0.990

AU
C

Joint-BPR
Joint-Margin

(c) Embedding Dimensions
vs AUC

Fig. 6.6.: Performance of the proposed models for different embedding dimensions

noticeable after embedding dimensions reach 50. For example, there is around 5%

improvement in terms of NDCG@10 when the embedding dimension increases from

30 to 50 for Joint-BPR, but performance degrades in terms of NDCG@10 when the

embedding dimension increases from 50 to 70.

6.4.9 Convergence Study

Finally I study the convergence behavior of the proposed methods. In particular,

I calculate objective function value (Equation 6.7) at each epoch and plot the results

in Figure 6.7a, where blue line represents Joint-BPR and red line shows the behavior

of Joint-Margin. Figure 6.7a also shows that both models converge in 3-4 epochs.

I also evaluate performance of the proposed models after each epoch using hit-rate,

NDCG and AUC. For this evaluation, results are depicted in Figures 6.7b and 6.7c.

From both figures, I observe that the recommendation performance of both embedding

models become steady after a few epochs.

6.5 Chapter Summary

I propose a novel representation learning based solution for attributed network

with inter-related attributes. The proposed representation learning model utilizes

136

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Jo
in
t-B

PR

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Jo
in
t-M

ar
gi
n

(a) Convergence of the objec-
tive function

1 2 3 4 5 6 7 8 9 1011121314151617181920
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

HR
NDCG
AUC

(b) Joint-BPR performance
over epochs

1 2 3 4 5 6 7 8 9 1011121314151617181920
Epochs

0.50

0.60

0.70

0.80

0.90

1.00

HR
NDCG
AUC

(c) Joint-Margin perfor-
mance over epochs

Fig. 6.7.: Convergence study for both proposed embedding methods

the pairwise ranking objective which learns job and skill vector representations into

a shared latent space using three pre-processed graphs. The embedding approach

utilize node-node connection and attribute-attribute connection information to ele-

vate attribute and node embedding vectors,respectively. I show through real-world

dataset that this joint embedding approach not only allows us to provide high quality

job recommendation but also provides skill suggestions required to obtain the new

job. The comparison experiments and case studies demonstrate that our proposed

methodology consistently outperforms several existing state-of-the-arts for the job

and skill recommendation.

137

7. ATTRIBUTED NETWORK EMBEDDING FOR

SPARSE INDEPENDENT ATTRIBUTES

7.1 Introduction

The past few years, network embedding is attracting many researchers for its su-

perior ability to solve different network analysis problems. This embedding based

local node features play a vital role in performance while solving node based network

analysis tasks such as node classification [41], link prediction [31], and community

detection [42]. Because of wide applicability, researchers proposed many network em-

bedding methods such as DeepWalk [32], LINE [33], Node2Vec [31], and SDNE [45].

Most of these existing embedding methods capture neighborhood information by dis-

tributing topologically similar nodes closely in the learned vector space. But these

methods are unable to use auxiliary information of a network that is available as

node/edge attributes.

Recently, a few works have been proposed which consider attributed network em-

bedding [52,53,114]; however, the majority of these methods use a matrix factorization

approach, which suffers from some crucial limitations. For example, earliest among

these works is Text-Associated DeepWalk (TADW) [52], which incorporates the text

features of nodes into DeepWalk by factorizing a matrix M constructed from the

summation of a set of graph transition matrices. But, SVD based matrix factoriza-

tion is both time and memory consuming, which restricts TADW to scale up to large

datasets. Furthermore, obtaining an accurate matrix M for factorization is difficult

and TADW instead factorizes an approximate matrix, which reduces its representa-

tion capacity. Huang et al. [53] proposed another matrix factorization (MF) based

method, known as, Accelerated Attributed Network Embedding (AANE). It suffers

from the same limitation as TADW. Another crucial limitation of the above methods

138

is that they have a design matrix which they factorize, but such a matrix cannot

deal with nodal attributes of rich types. In summary, the representation power of a

matrix factorization based method is found to be poorer than a neural network based

method, as I will show in the experiment section of this chapter.

I found two most recent attributed network embedding methods, GraphSAGE

and Graph2Gauss, which use deep neural network methods. To generate embedding

of a node, GraphSAGE [58] aggregates embedding of its multi-hope neighbors using a

convolution neural network model. GraphSAGE has a high time complexity, besides

such ad-hoc aggregation may introduce noise which adversely affects its performance.

Recently, Bojchevski et al. [56] proposed the Graph2Gauss (G2G), where they embed

each node as a Gaussian distribution. G2G uses a neural network based deep encoder

to process the nodal attributes and obtains an intermediate hidden representation,

which is then used to generate the mean vector and the covariance matrix of the

learned Gaussian distribution of a node. As a result, in G2G’s learning, the interaction

between the attribute information and the topology information of a node is poor. On

the other hand, the learning pipeline of the proposed Neural-Brane enables effective

information exchange between the attribute and topology of a node, making it much

superior than G2G while learning embedding for attributed networks. It is worth

noting that some recent works have proposed semi-supervised attributed network

embedding considering the availability of node labels [54, 178], but the focus in this

embedding method is unsupervised attributed network embedding, for which vertex

labels are not available.

7.1.1 The solution and contribution.

I present Neural-Brane, a novel method for attributed network embedding. For a

vertex of the input network, Neural-Brane infuses its network topological information

and nodal attributes by using a custom neural network model, which returns a single

representation vector capturing both the aspects of that vertex. The loss function

139

of Neural-Brane utilizes BPR [175] to capture attribute and topological similarities

between a pair of nodes in their learned representation vectors. Specifically, the

BPR objective elevates the ranking of a vertex-pair having similar attributes and

topology by embedding the vertices in close proximity in the representation space,

in comparison to other vertex-pairs which are not similar. The key aspects of this

chapter are:

1. I propose Neural-Brane, a custom neural network based model for learning node

embedding vectors by integrating local topology structure and nodal attributes.

The source code (with datasets) of the Neural-Brane is available at: https:

//git.io/fNF6X

2. Neural-Brane has a novel neural network architecture which enables effective

mixing of attribute and structure information for learning node representation

vectors capturing both the aspects of a node. Besides, it uses Bayesian per-

sonalized ranking as its objective function, which is superior than cross-entropy

based objective function used in several existing network embedding works.

3. Extensive validations on four real-world datasets demonstrate that Neural-

Brane consistently outperforms 10 state-of-the-art methods, which results in

up to 25% Macro-F1 lift for node classification and more than 10% NMI gain

for node clustering respectively.

7.2 Problem Statement

Let G = (V , E ,A) be an attributed network, where V is a set of n nodes, and E is

a set of edges, and A is a n×m binary attribute matrix such that the row ai denotes

a row attribute vector associated with node i in G. Each edge (i, j) ∈ E is associated

with a weight wij. The neighbors of node i is represented as N (i). m is the number

of node attributes in A. I use A(i) to denote the non-zero attribute set of node i.

140

BPR Layer

Output Layer

Hidden Layer

Embedding

Layer

Input Data

Embedding

Hidden

Output

ni
ai

CONCAT-LOOKUP Max-Pooling Integration

fu fjfi

𝑅𝑒𝐿𝑈(𝑾 ∙ 𝐟𝑻 + 𝒃)

hu
hjhi

𝑠𝑢𝑖 = 𝐡𝐮, 𝐡𝐢 𝑠𝑢𝑗 = 𝐡𝐮, 𝐡𝐣

−ln 𝜎 𝑠𝑢𝑖 − 𝑠𝑢𝑗

nu
au nj

aj

Fig. 7.1.: Neural-Brane architecture. Given a node u, au is its binary attribute vector
and nu is its adjacency vector. The model training uses node-triplets (u, i, j), such
that (u, i) ∈ E and (u, j) 6∈ E .

The attributed network embedding problem is formally defined as follows: given

an attributed network G = (V , E ,A), I aim to obtain the representation of its vertices

as a n×d matrix F = [fT1 , ..., f
T
n]T ∈ IRn×d, where fi is the row vector representing the

embedding of node i. The representation matrix F should preserve the node proximity

from both network topological structure E and node attributes A. Eventually, F

serves as feature representation for the vertices of G, as such, that they can be used

for various downstream network mining tasks.

141

1 0 1 1 00 1 0 0 0 1

Inputs

𝐯𝑏
(𝒏𝒃𝒓)

𝐯𝑏
(𝒂𝒕𝒕𝒓)

𝑪𝑶𝑵𝑪𝑨𝑻 ̵𝑳𝑶𝑶𝑲𝑼𝑷

𝑴𝑷 ∙ [max−pooling]

⨁ [concat]

a

e

c

d
[x4]

[x2, x4, x5]

[x2, x6]

[x2]

[x1, x3 , x7]

b

𝐟𝑏 (1 × 𝑑)

(3 × 𝑑2)(2 × 𝑑1)

(1 × 𝑑1) (1 × 𝑑2)

e

a

b
c

d

𝑑2 = 4

𝐏′

x5

x6

x1

x2

x3

x4

x7

𝑑1 = 3

𝐏

x2

x6
𝐏𝑏
(𝒂𝒕𝒕𝒓)

a

c

d
𝐏𝑏
′(𝒏𝒃𝒓)

Fig. 7.2.: The figure shows the mechanism of the embedding layer for the vertex b
of a toy attributed graph. The graph contains 5 vertices and 6 edges, where each
vertex is associated with a collection of nodal attributes. For example, vertex b is
connected to vertices {a, c, d} and associated with attributes {x2, x6}, respectively.
The cardinality of the attribute set {x1, · · · , x7} is 7.

7.3 Neural-Brane: Attributed Network Embedding Framework

In this section, I discuss the proposed neural Bayesian personalized ranking model

for attributed network embedding. The model uses a neural network architecture

with embedding layer, hidden layer, output layer, and BPR layer from bottom to

top, as illustrated in Figure 7.1. Specifically, the embedding layer learns a unified

vector representation of a node from the vector representation of its nodal attributes

and neighbors; the hidden layer applies nonlinear dimensionality reduction over the

embedding vectors of the nodes, the output layer and the BPR layer enable model

inference through back-propagation.

142

7.3.1 Embedding Layer

The embedding layer has two embedding matrices P, and P′; each row of P is a d1

dimensional vector representation of an attribute, and each row of P′ is a d2 dimen-

sional vector representation of a vertex (both d1 and d2 are user-defined parameter).

These matrices are updated iteratively during the learning process. For a given ver-

tex u, embedding layer produces u’s latent representation vector fu by learning from

embedding vectors of u’s attributes and neighbors, i.e., corresponding rows of P and

P′, respectively; thus the neighbors and attributes of u are jointly involved in the con-

struction of u’s latent representation vector (fu), which enables Neural-Brane to bring

the latent representation vectors of nodes with similar attributes and neighborhood

in close proximity in the latent space.

I illustrate the vector construction process using a toy attributed graph in Fig-

ure 7.2. Given the vertex b from the toy graph, the embedding layer first takes its

attribute and adjacency vectors (from P and P′) as input and then generates its

corresponding attributional and nodal embedding matrices (P
(attr)
b and P

′(nbr)
b) by

using the CONCAT-LOOKUP(·) function. After that, attributional and neighborhood

embedding vectors are obtained from P
(attr)
b and P

′(nbr)
b by using the max-pooling op-

eration respectively. Finally, the learned attributional and neighborhood embedding

vectors are concatenated together to obtain the final embedding representation of the

vertex b. Below I provide more details of the operations in embedding layer.

Encoding attributional information.

Given a node u ∈ V and the attribute matrix A, au ∈ IR1×m is A’s row cor-

responding to u’s binary attribute vector. I apply a row-wise concatenation based

embedding lookup layer to transform au into a latent matrix, P
(attr)
u , as shown below:

P(attr)
u = CONCAT-LOOKUP(P,au), (7.1)

143

where P ∈ IRm×d1 is the attribute embedding matrix in which each row is a d1 (user

defined parameter) sized vector representation of an attribute. Lookup is performed

by CONCAT-LOOKUP(·) function which first performs a row projection on P by

selecting the rows corresponding to the attribute-setA(u) and then stacks the selected

vectors row-wise into the matrix P
(attr)
u ∈ IR|A(u)|×d1 . Then I apply a max-pooling

operation on the generated P
(attr)
u matrix in order to transform it into a single vector.

Specifically, max-pooling operation retains the most informative signal by extracting

the largest value in each dimension (i.e., column) of the matrix P
(attr)
u to obtain vattru .

vattru = MP (P(attr)
u), (7.2)

where vattru ∈ IR1×d1 is the latent vector representation of node u based on its attri-

butional signals, and MP (·) denotes the max-pooling operation.

Encoding network topology.

Given a node u, I describe its neighborhood by using a binary adjacency vector,

denoted as nu ∈ IR1×n, in which u’s neighbors are set to 1, and the rest of entries are

set as 0. Similar to the operations I use for encoding the attributional information,

I apply a row-wise concatenation based lookup layer to transform nu into a latent

matrix P
′(nbr)
u and then apply max-pooling operation on the obtained latent matrix.

Thus,

P′(nbr)u = CONCAT-LOOKUP(P′,nu) (7.3)

vnbru = MP (P′(nbr)u), (7.4)

where P′ ∈ IRn×d2 is the neighborhood embedding matrix for lookup (similar to

matrix P), and P
′(nbr)
u ∈ IR|N (u)|×d2 is the obtained latent matrix generated from the

CONCAT-LOOKUP(·) function. Moreover, vnbru ∈ IR1×d2 obtained from the MP (·)

144

operation is the latent vector representation of node u based on its neighborhood

topology.

Integration component.

Once I obtain the vector representation of node u from both its attributional

information and topological structure as developed in Equations 7.1, 7.2, 7.3 and 7.4,

I further integrate both latent vectors into a unified vector representation by vector

concatenation, as shown below:

fu = vattru || vnbru := [vattru vnbru], (7.5)

where fu ∈ IR1×d (d1 + d2 = d), and “||” denotes the vector concatenation operation.

7.3.2 Hidden Layer

Given the obtained embedding vector fu ∈ IR1×d for node u in the attributed

network G, the hidden layer aims to transform its embedding vector into another

representation hu, in which signals from attributes and neighborhood of a vertex

interact with each other. Formally, given fu, the hidden layer produces hu ∈ IR1×h by

the following formula:

hTu = ReLU(WfTu + b) (7.6)

Here I use rectified linear functionReLU(x), defined as max(0, x), as the activation

function for achieving better convergence speed. Parameters W ∈ IRh×d and b ∈

IRh×1 are weights and bias for the hidden layer, respectively; h is a user-defined

parameter denoting the number of neurons in the hidden layer. It is worth mentioning

that in the hidden layer, all the nodes share the same set of parameters {W,b}, which

enables information sharing across different vertices (see the box denoted as “Hidden

Layer” in Figure 7.1).

145

7.3.3 Output and BPR Layers

Given a node pair u and i, I use their corresponding representations hu and

hi from hidden layer (Equation 7.6) as input for the output layer. The task of

this layer is to measure the similarity score between a pair of vertices by taking

the dot product of their representation vectors. Since this computation uses the

vector representation of the vertices from the hidden layer, it encodes both attribute

similarity and neighborhood similarity jointly. The similarity score between vertices

u and i, defined as sui, is calculated as 〈hu,hi〉.

BPR layer implements the Bayesian personalized ranking objective. For the

embedding task, the ranking objective is that the neighboring nodes in the graph

should have more similar vector representations in the embedding space than non-

neighboring nodes. For example, the similarity score between two neighboring vertices

u and i, should be larger than the similarity score between two non-neighboring nodes

u and j. As shown in Figure 7.1, given the vertex triplet (u, i, j), I model the proba-

bility of preserving ranking order sui > suj using the sigmoid function σ(x) = 1
1+e−x

.

Mathematically,

P
(
sui > suj|hu,hi,hj

)
= σ

(
sui − suj

)
=

1

1 + e−
(
〈hu,hi〉−〈hu,hj〉

) (7.7)

As I observe from Equation 7.7, the larger the difference between sui and suj, the

more likely the ranking order sui > suj is preserved. By assuming that all the triplet

based ranking orders generated from the graph G to be independent, the probability

of all the ranking orders being preserved is defined as follows:

∏
(u,i,j)∈D

P (i >u j) =
∏

(u,i,j)∈D

σ
(
sui − suj

)
, (7.8)

146

where D represents training triplet sets generated from G and i >u j is a shorthand

notation denoting sui > suj; the notation is motivated from the concept that i is

larger than j considering the partial order relation >u.

The goal of my attributed network embedding is to maximize the expression in

Equation 7.8. For the computational convenience, I minimize the sum of negative-

likelihood loss function, which is shown as below:

L(Θ) = −
∑

(u,i,j)∈D

lnσ
(
sui − suj

)
+ λ · ||Θ||2F (7.9)

where Θ = {P,P′,W,b} are model parameters used in all different layers, and

λ · ||Θ||2F is a regularization term to prevent model overfitting.

7.3.4 Model inference and optimization

I employ the back propagation algorithm by utilizing mini-batch gradient descent

to optimize the parameters Θ = {P,P′,W,b} in this model. First step of mini-

batch gradient descent is to sample a batch of triplets from G. Specifically, given an

arbitrary node u, I sample one of its neighbors i, i.e., i ∈ N (u), with the probability

proportional to the edge weight wij. On the other hand, I sample its non-neighboring

node j, i.e., j 6∈ N (u), with the probability proportional to the node degree in the

graph. Next, for each mini-batch training triplets, I compute the derivative and

update the corresponding parameters Θ. For that, first I find the gradient of the

objective function in Equation 7.9 with respect to model parameter,

∂L(Θ)

∂Θ
= −

∑
(u,i,j)∈D

∂ lnσ
(
sui − suj

)
∂Θ

+ λ
∂||Θ||2F
∂Θ

= −
∑

(u,i,j)∈D

(
1− σ(sui − suj)

)
· ∂
∂Θ

(
sui − suj

)
+ 2λ||Θ||F (7.10)

Now, for each model parameter I find ∂
∂Θ

(sui − suj) using the chain rule. In

particular, by back-propagating from Bayesian personalized ranking layer to hidden

147

Algorithm 6: Neural-Brane Framework

Input: G = (V , E ,A), embedding dimensions d1, d2, batch size b, learning rate α,
regularization coefficient λ.

Output: Attributional embedding matrix P and neighborhood embedding matrix
P′.

1: Initialize all model parameters Θ = {P,P′,W,b} with 0 mean and 0.01
standard deviation from the Gaussian distribution.

2: repeat
3: Construct the mini-batch of node-triples (u, i, j).
4: Calculate fu, fi, fj using Equations 7.1, 7.2, 7.3, 7.4, 7.5.
5: Calculate hu,hi,hj based on the Equation 7.6.
6: Calculate sui = 〈hu,hi〉 and suj = 〈hu,hj〉
7: Calculate L(Θ) using Equation 7.9.
8: Update the gradients of Θ = {P,P′,W,b} using the back-propagation.
9: until Convergence

10: return P,P′.

layer, I update the gradients w.r.t. weight matrix W and bias vector b accordingly.

Then in the embedding layer, I update the gradients of the corresponding embedding

vectors (i.e., rows) in {P,P′} associated with all the neighboring nodes and attributes

involved in each mini-batch training triplets respectively. Mathematically,

Θt+1 = Θt − α× ∂L(Θ)

∂Θ
(7.11)

where α is the learning rate. In addition, I initialize all model parameters Θ by using

a Gaussian distribution with 0 mean and 0.01 standard deviation. The pseudo-code

of the proposed Neural-Brane framework is summarized in Algorithm 6.

7.3.5 Model complexity analysis.

For the time complexity analysis, given the sampled training triplet set D, the

total costs of calculating and updating gradients of L w.r.t. corresponding embedding

vectors involved in {P,P′} are O(d). Similarly, the total costs of computing and

updating gradients of L w.r.t. parameters {W,b} in the hidden layer are O(hd+h).

148

To generate training mini-batch, I use degree proportional sampling and its time

complexity is O(n). Therefore, the total computational complexity of the proposed

methodology for Neural-Brane is |D|∗
(
O(d)+O(hd+h)+O(n)

)
. As time complexity

of the Neural-Brane is linear to the embedding size, hidden layer dimension and input

graph size, it is extremely fast. For example, it takes around 15 minutes to learn

embedding for the largest dataset Arnetminer (see Table 7.1). We can easily observe

that the space complexity for the proposed Neural-Brane is proportional to input

graph size and embedding size i.e. O(n · d).

7.4 Experiments and Results

In this section, I first introduce the datasets and baseline comparisons used in this

work. Then I thoroughly evaluate the proposed Neural-Brane through two down-

stream data mining tasks (node classification and clustering) on four real-world net-

works, for which node attributes are available. Finally, I analyze the quantitative

experimental results, investigate parameter sensitivity, convergence behavior, and

the effect of pooling strategy of Neural-Brane.

7.4.1 Experimental Setup

Datasets. I perform experiments on four real-world datasets, whose statistics are

shown in Table 7.1. The largest among these networks has around 15.75K vertices,

and 109.5K edges. Note that, publicly available networks exist, which are larger than

the networks that I use in this work, but those larger networks are neither attributed

nor they have class label for the vertices, so I cannot use those in the experiment.

Nevertheless, the largest dataset Arnetminer, has more nodes, edges and attributes

than datasets used by recent attribute embedding papers [52,114]. More description

of the datasets is given below.

149

Table 7.1.: Statistics of Four Real-World Datasets

Dataset # Nodes # Edges # Attributes # Classes

CiteSeer 3, 312 4, 732 3, 703 6
Arnetminer 15, 753 109, 548 135, 647 5
Caltech36 671 15, 645 64 2
Reed98 895 17, 631 64 2

CiteSeer1 is a citation network, in which nodes refer to papers and links refer to

citation relationship among papers. Selected keywords from the paper are used as

nodal attributes. Additionally, the papers are classified into 6 categories according to

its research domain, namely Artificial Intelligence (AI), Database (DB), Information

Retrieval (IR), Machine Learning (ML), Human Computer Interaction (HCI), and

Multi-Agent Analysis.

Arnetminer2 is a paper relation network consisting of scientific publications from

5 distinct research areas. Specifically, I select a list of representative conferences and

journals from each of them. 1) Data Mining (KDD, SDM, ICDM, WSDM, PKDD);

2) Medical Informatics (JAMIA, J. of Biomedical Info., AI in Medicine, IEEE Tran.

on Medical Imaging, IEEE Tran. on Information and Technology in Biomedicine);

3) Theory (STOC, FOCS, SODA); 4) Computer Vision and Visualization (CVPR,

ICCV, VAST, TVCG, IEEE Visualization and Information Visualization) 5) Database

(SIGMOD, VLDB, ICDE). Authors and keywords similarity between two papers are

used for building edges. Keywords from paper title and abstract are used as attributes.

Caltech36 and Reed98 [179] are two university Facebook networks. Specifically,

each node represents a user from the corresponding university and edge represents

user friendship. The attributes of each node is represented by a 64-dimensional one-

hot vector based on gender, major, second major/minor, dorm/house, and year. I

use student/faculty status of a node as the class label.

1https://linqs.soe.ucsc.edu/data
2https://aminer.org/topic paper author

150

Baseline Comparison.

To validate the benefit of the proposed Neural-Brane, I compare it against 10 dif-

ferent methods. Among all the competing methods, DeepWalk, LINE, and Node2Vec

are topology-oriented network embedding approaches. NNMF, DeepWalk + NNMF,

GraphSAGE, PTE-KL, TADW, AANE and G2G are state-of-the-arts for combin-

ing both network structure and nodal attributes for network representation learning.

Note that PTE-KL is a semi-supervised embedding approach, and I hold the label

information out for a fair comparison.

1. DeepWalk [32]: It utilize Skip-Gram based language model to analyze the

truncated uniform random walks on the graph.

2. LINE [33]: It embeds the network into a latent space by leveraging both first-

order and second-order proximity of each node.

3. Node2Vec [31]: Similar to DeepWalk, Node2Vec designs a biased random walk

procedure for network embedding.

4. Non-Negative Matrix Factorization (NNMF): The model captures both

node attributes and network structure to learn topic distributions of each node.

5. DW+NNMF: It simply concatenates the vector representations learned by

DeepWalk and NNMF.

6. GraphSAGE [58]: GraphSAGE presents an inductive representation learning

framework that leverages node feature information (e.g., text attributes) to

efficiently generate node embeddings in the network.

7. PTE-KL [113]: Predictive Text Embedding framework aims to capture the

relations of paper-paper and paper-attribute under matrix factorization frame-

work. The objective is based on KL-divergence between empirical similarity

distribution and embedding similarity distribution.

151

8. TADW [52]: Text-associated DeepWalk combines the text features of each

node with its topology information and uses the MF version of DeepWalk.

9. AANE [53]: Accelerated Attributed Network Embedding learns low-dimensional

representation of nodes from network linkage and content information through

a joint matrix factorization.

10. G2G [56]: Graph2Gauss learns node representation such that each node vector

is a Gaussian distribution.

Parameter Setting and Implementation Details.

There are a few user-defined hyper-parameters in the proposed embedding model.

I fix the embedding dimension d = 150 (same for all baseline methods) with d1 =

d2 = 75. For the number of neurons in hidden layer h, I set it to be 150. For the

regularization coefficient λ in the embedding model (see Equation 7.9), I set it as

0.00005. In addition to that, I fix the learning rate α = 0.5 (see Equation 7.11)

and batch size to be 100 during the model learning and optimization. For baseline

methods such as GraphSAGE, PTE-KL, AANE, G2G and others, I select learning

rate α from the set {0.01, 0.05, 0.1, 0.5}3 using grid search. Similarly for PTE-KL,

TADW and other baseline methods regularization coefficient λ is selected from the set

{0.01, 0.001, 0.0001}. For random walk based baselines (DeepWalk and Node2Vec),

I select the best walk length from the set {20, 40, 60, 80}. For the rest of hyper-

parameters, I use default parameter values as suggested by their original papers.

3For GraphSAGE I also check smaller values of α i.e. {10−4, 10−5, 10−6} as suggested in the pa-
per [58].

152

Table 7.2.: Quantitative results of Macro-F1 between the proposed Neural-Brane
and other baselines for the node classification task using logistic regression on various
datasets (embedding dimension = 150). [∗GraphSAGE for Arnetminer is not able to
complete after 2 days.]

Citeseer

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.4952 0.4304 0.5462 0.4367 0.5185 0.4418 0.5456 0.5756 0.5684 0.5860 0.6375±.0075

50% 0.5199 0.4590 0.5632 0.4619 0.5598 0.4621 0.5647 0.5900 0.5844 0.5939 0.6450±.0026

70% 0.5318 0.4600 0.5743 0.4711 0.5780 0.4662 0.5732 0.6106 0.5996 0.6003 0.6508±.0115

Arnetminer

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE∗ PTE-KL TADW AANE G2G Neural-Brane

30% 0.7281 0.5364 0.7729 0.6087 0.6968 - 0.5341 0.7969 0.7902 0.8062 0.8693±.0016

50% 0.7336 0.5422 0.7837 0.6541 0.7016 - 0.5426 0.8031 0.8009 0.8145 0.8713±.0017

70% 0.7389 0.5485 0.7877 0.6748 0.7044 - 0.5519 0.8079 0.8065 0.8186 0.8759±.0034

Caltech36

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7824 0.8023 0.7859 0.5243 0.8480 0.7233 0.8701 0.8748 0.8527 0.8523 0.9219±.0121

50% 0.7949 0.8079 0.8080 0.5953 0.8552 0.7712 0.8697 0.8866 0.8843 0.8691 0.9285±.0134

70% 0.8217 0.8112 0.8131 0.6445 0.8712 0.8220 0.8786 0.8929 0.9008 0.8977 0.9456±.0139

Reed98

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7662 0.7195 0.7682 0.6472 0.8055 0.6325 0.8333 0.8460 0.8285 0.7515 0.8788±.0105

50% 0.7774 0.7195 0.7805 0.7123 0.8275 0.7012 0.8413 0.8519 0.8433 0.7772 0.8916±.0176

70% 0.7927 0.7446 0.7925 0.7695 0.8321 0.7682 0.8590 0.8636 0.8660 0.7925 0.9033±.0146

7.4.2 Quantitative Results

Node Classification.

For fair comparison between network embedding methods, I purposely choose

a linear classifier to control the impact of complicated learning approaches on the

classification performance. Specifically, I treat the node representations learned by

different approaches as features, and train a logistic regression classifier for multi-class

/ binary classification. In each dataset, p% ∈ {30%, 50%, 70%} of nodes are randomly

selected as training set and the rest as test set. I use the widely used metric Macro-

F1 [180] for classification assessment. Each method is executed 10 times and the

average value is reported. For Neural-Brane, I also report standard deviation. For

better visual comparison, I highlight the best Macro-F1 score of each training ratio

(p) with bold font.

Table 7.2 shows results for node classification, where each column is an embed-

ding method and rows represent different train splits (p). As I observe from Table 7.2,

153

performance of the last four (PTE-KL, TADW, AANE, G2G) baseline methods are

highly competitive among each others. But, the proposed Neural-Brane consistently

outperforms all these and other baseline methods under all training ratios. More-

over, the overall performance improvement that the Neural-Brane delivers over the

second best method is significant. For example, in Citeseer dataset, when training

ratio p ranges from 30% to 70%, Neural-Brane outperforms the G2G by 8.8%, 8.6%,

8.4% in terms of Macro-F1, respectively. Furthermore, the improvement over G2G

is statistically significant (paired t-test with p-value � 0.01). The relatively good

performance of the proposed Neural-Brane across various training ratios is due to

the fact that the proposed neural Bayesian personalized ranking framework is able

to generate high-quality latent features by capturing crucial ordering information be-

tween nodes and incorporating nodal attributes and network topology into network

embedding. Furthermore, BPR is shown to be better suited than other loss functions,

such as point-wise square loss in TADW and K-L divergence based objective in LINE

and PTE-KL, for placing similar nodes in the embedding space for the downstream

node classification task.

Among the competing methods, topology-oriented network embedding approaches

such as LINE and DeepWalk perform fairly poor on all datasets. This is mainly

because the network structure is rather sparse and only contains limited information.

On the other hand, TADW is much better than DeepWalk due to the fact that

textual contents contain richer signals compared to the network structure. When

concatenating the embedding vectors from DeepWalk and NNMF, the classification

performance is relatively improved compared to a single DeepWalk. However, the

naive combination between DeepWalk and NNMF is far from optimal, compared to

the proposed Neural-Brane. Note that, GraphSAGE for Arnetminer dataset is not

able to complete after 2 days on contemporary server having 64 cores with 2.3 GHz

and 132 GB memory.

154

−40 −20 0 20 40

−40

−20

0

20

40 Student
Faculty

(a) Representation of TADW
for Caltech36

−40 −30 −20 −10 0 10 20 30

−40

−30

−20

−10

0

10

20

30

Student
Faculty

(b) Representation of AANE
for Caltech36

−40 −30 −20 −10 0 10 20 30
−60

−40

−20

0

20

40 Student
Faculty

(c) Representation of
Neural-Brane for Caltech36

−40 −20 0 20 40 60

−20

−10

0

10

20

30

40
Student
Faculty

(d) Representation of
TADW for Reed98

−40 −20 0 20 40

−40

−20

0

20

40

Student
Faculty

(e) Representation of AANE
for Reed98

−40 −20 0 20 40 60
−40

−30

−20

−10

0

10

20

30
Student
Faculty

(f) Representation of Neural-
Brane for Reed98

Fig. 7.3.: The visualization comparison among various embedding methodologies for
Caltech36 and Reed98 datasets

Visualization and Node Clustering.

The primary goal of graph embedding approaches is to put similar nodes closer in

their corresponding latent space, hence a desirable embedding method should gener-

ate clusters of similar nodes in the embedding space. Visualization for large number

of classes in two dimensional space is impractical. Instead, in Figure 7.3, we plot 2D

representation of learned vector representations for Caltech36 and Reed98 datasets.

Note that both of these datasets contain only 2 classes and hence provide interpretable

visualization. Specifically, I plot embedding representations of Neural-Brane along

with two best competing methods, namely TADW and AANE. These figures clearly

demonstrate that Neural-Brane provides better discrimination of classes through clus-

tering in the latent space compared to both TADW and AANE.

155

DeepWalk LINE
Node2VecNNMF

DeepWalk+

 NNMFGraphSAGE
PTE-KL

TADW AANE G2G
Neural-Brane0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Purity NMI

(a) CiteSeer Dataset

DeepWalk LINE
Node2Vec NNMF

DeepWalk+

 NNMF PTE-KL
TADW AANE G2G

Neural-Brane0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Purity NMI

(b) Arnetminer Dataset

Fig. 7.4.: The performance of node clustering

For the other two larger datasets (CiteSeer and Arnetminer), I use k-means clus-

tering approach to the learned vector representations of nodes and utilize both Purity

and Normalized Mutual Information (NMI) [180] to assess the quality of clustering

results. Furthermore, I match the ground-truth number of clusters as input for run-

ning k-means, execute the clustering process 10 times to alleviate the sensitivity of

centroid initialization, and report the average results.

The clustering results for both CiteSeer and Arnetminer datasets are depicted in

Figure 7.4. As we can see, the proposed Neural-Brane consistently achieves the best

clustering results in contrast to all competing baselines. For example, in Citeseer

dataset, the proposed Neural-Brane achieves 0.3524 NMI. However, the best com-

peting method PTE-KL only obtains 0.2653 NMI, indicating more than 32.8% gains.

Similarly, for Arnetminer dataset, Neural-Brane obtains 34.5% improvements over

the best competing approach DeepWalk in terms of NMI. The possible explanation

for higher performance of Neural-Brane could be due to the fact that the proposed

Bayesian ranking formulation directly optimizes the pairwise distance between similar

and dissimilar nodes, thus making their corresponding vectors cluster-aware in the

embedded space.

156

50 100 150 200 250 300
Embedding dimension (d)

0.6

0.7

0.8

0.9

1.0

1.1

M
ac
ro
-F
1

Citeseer
Arnetminer

Caltech36
Reed98

(a) The effect of embedding dimension for
node classification

0 5 10 15 20 25 30
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

ob
je
ct
iv
e
fu
nc

tio
n
va

lu
e
(e
q.
 9
) Citeseer

Arnetminer
Caltech36
Reed98

(b) Convergence analysis of the ranking ob-
jective function shown in Equation 7.9

Fig. 7.5.: Analysis of the embedding dimension and convergence

7.4.3 Analysis of Parameter Sensitivity and Algorithm Convergence

I conduct experiments to demonstrate how the embedding dimension affects the

node classification task using the proposed Neural-Brane. Specifically, I vary the

number of embedding dimension parameter d as {50, 100, 150, 200, 250, 300} and set

the training ratio p = 70%. I report the Macro-F1 results on all four datasets, which

is shown in Figure 7.5a. As we observe, as the embedding dimension d increases, the

classification performance in terms of Macro-F1 first increases and then tends to sta-

bilize. The possible explanation could be that when the embedding dimension is too

small, the embedding representation capability is not sufficient. However, when the

embedding dimension becomes sufficiently large, it captures all necessary information

from the data, leading to the stable classification performance. Furthermore, I inves-

tigate the convergence trend of Neural-Brane. As shown in Figure 7.5b, Neural-Brane

converges approximately within 10 epochs and achieves promising convergence results

in terms of the objective function value on all four datasets.

157

Citeseer Arnetminer Caltech36 Reed98
Datasets

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
ac

ro
-F

1

Sum-Pooling at embedding layer
Max-Pooling at embedding layer

(a) The pooling strategy comparison for the
task of node classification

5 x 10
5

10 x 10
5

15 x 10
5

20 x 10
5

25 x 10
5

30 x 10
5

Triples

0.83

0.84

0.85

0.86

0.87

M
ac

ro
-F
1

200

300

400

500

600

700

Em
be

dd
in
g
ge

ne
ra
tio

n
tim

e
(s
ec

)

(b) Effect of # triples used for training on
performance and time (Arnetminer dataset)

Fig. 7.6.: Study effects of pooling strategy and # training triples

7.4.4 Effect of Pooling Strategy and Number of Training Triples

I investigate the effect of the pooling strategy in the embedding layer for the

task of node classification. For the comparison, I consider to take the sum rather

than max pooling and hold the rest of neural architecture and hyper-parameter set-

tings constant. I report the Macro-F1 results on all four datasets with training ratio

p = 70%, which is shown in Figure 7.6a. As we observe, max pooling consistently

outperforms the alternative sum pooling strategy for the task of node classification

across all datasets. The possible explanation is due to the fact that the max-pooling

operation returns the strongest signal for each embedding dimension, which alleviates

noisy signals. On the other hand, the sum pooling operation considers accumulated

signals from each input embedding dimension, which leads to inaccurate information

aggregation.

Finally, to verify the efficiency of the Neural-Brane, I study how embedding gen-

eration time and node classification performance varies with count of training triples.

For that, I use Arnetminer dataset and plot macro-F1 results and embedding gen-

eration time over different counts of training triples in Figure 7.6b. I can see that

for half a million triples the Neural-Brane doesn’t render the optimal result as the

158

25K 50K 75K 100K
Nodes

25

30

35

40

45

50

55

Em
be

dd
in
g
ge

ne
ra
tio

n
tim

e
(m

in
s)

(a) Results for scalability
study

Citeseer Arnetminer Caltech36 Reed98
Datasets

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
ac

ro
-F

1

Hinge Loss
Log Loss
BPR Loss

(b) Results of performance
using different loss functions

Citeseer Arnetminer Caltech36 Reed98
Datasets

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
ac

ro
-F

1

Node & Attribute Separate Embedding
Neural-Brane

(c) Combined and indepen-
dent learning of attribute and
neighborhood embedding.

Fig. 7.7.: Scalability Study and importance of BPR loss and other layers of the
Neural-Brane.

method is not converged. However, it converges with 1.5 million triples and con-

sistently provides very good performance (high Macro-F1) for higher triple counts.

Notice that, for this biggest dataset (Arnetminer), Neural-Brane takes around 6 min-

utes (< 400 seconds) to sample the 1.5 million triples and train with those triples.

This observation also proves that Neural-Brane is highly scalable because of its linear

time complexity (Section 7.3.5).

7.4.5 Scalability study

To check the scalability of the proposed Neural-Brane, I conducted experiment to

check run-times of various large synthetic networks. To generate these synthetic net-

works, I use popular Barabási-Albert preferential attachment model [16]. I generate

low density random binary vector of size 500 as a synthetic attributes for each node.

For this experiment, I vary size of the networks such that they have nodes in range

of 25000 to 100000 with 25000 increment. The running time of these networks are

depicted in Figure 7.7a, which shows a linear increase in run-time with the increase

in size of the network. The empirical linear increase in run-time with respect to the

size of the network is consistent with this model complexity analysis in Section 7.3.5.

159

7.4.6 Effectiveness of BPR loss and contribution of other Neural-Brane

layers

As I discussed before, the ranking BPR loss as an objective function highly con-

tributes towards the remarkable performance of the proposed Neural-Brane. To sup-

port this claim, I conduct comparison experiment where, I replace the objective func-

tion of the Neural-Brane with traditional Hinge loss and Cross-entropy (Log) loss.

For fair comparison, I run the modified models with the same set of parameters dis-

cussed in Section 7.4.1. The performance of the modified methods and proposed

Neural-Brane is shown in Figure 7.7b, where I can see that Neural-Brane with BPR

loss always outperforms both Log loss and Hinge loss based methods.

Though, BPR loss helps in performance improvement of the Neural-Brane, I need

to check the importance of embedding and hidden layers which are responsible for

information fusion of topology and attributes. For this experiment, I feed attribute

vector (vattrb for node b) directly to the output layer to learn attribute embedding

(P). Similarly, I feed neighborhood vector (vnbrb for node b) to output layer to learn

neighborhood based embedding (P′). I concatenate these vectors for each node as

a final node representation vectors, I call this method as Node & attribute separate

embedding. I compare the classification performance of this embedding method with

proposed Neural-Brane and results are shown in Figure 7.7c. This comparison result

shows that the embedding and hidden layers of the proposed method contributes

towards improvement of the performance. Hence, From these results, I can conclude

that both BPR loss as an objective function and advanced approach of information

fusion using embedding and hidden layers, jointly produce superior performance for

the proposed Neural-Brane.

7.5 Chapter Summary

I present a novel neural Bayesian personalized ranking formulation for attributed

network embedding, which I call Neural-Brane. Specifically, Neural-Brane combines

160

a designed neural network model and a novel Bayesian ranking objective to learn in-

formative vector representations that jointly incorporate network topology and nodal

attributions. Experimental results on the node classification and clustering tasks over

four real-world datasets demonstrate the effectiveness of the proposed Neural-Brane

over 10 baseline methods.

161

8. INDEX FOR SHORTEST DISTANCE QUERY IN A

DIRECTED NETWORK

8.1 Introduction

AS discussed in the Introduction chapter, finding shortest distance between two

nodes in a directed graph is one of the most useful operations in graph analysis. While

there are various traditional methods to solve the shortest path distance problem, the

classical algorithms deem inefficient for providing real-time answers for a huge graphs.

So, there is a growing interest for the discovery of more efficient methods for solving

this task.

Various approaches are considered for obtaining an efficient distance query method

for large graphs. One of them is to exploit topological properties of real-life networks

that adhere to some specific characteristics. For instance, many researchers exploit

the spatial and planar properties of road networks [119, 121, 123] to obtain efficient

solutions for distance queries in road networks. However, for a general network from

any other domain, such methods perform poorly [134]. The second approach is to

perform pre-processing on the host graph and build an index data structure which

can be used at runtime to answer the distance query between an arbitrary pair of

nodes more efficiently. Several indexing ideas are used, but two are the most common,

landmark-based indexing [127,129,130,135] and 2-hop-cover indexing [181]. Methods

adopting the former idea identify a set of landmark nodes and pre-compute all-single

source shortest paths from these landmark nodes. During query time, distances be-

tween a pair of arbitrary nodes are answered from their distances to their respective

closest landmark nodes. Most of these methods deliver an approximation of shortest

path distance except a method presented in [135]. Methods adopting the two-hop

cover indexing generally find the exact solution for a distance query [25, 132, 182].

162

These methods store a collection of hops (paths starting from that node), such that

the shortest path between a pair of arbitrary vertices can be obtained from the inter-

section of the hops of those vertices.

A related work to the shortest path problem is the reachability problem. Given

a directed graph G(V,E), and a pair of vertices u and v, the reachability problem

answers whether a path exists from u to v. This problem can be solved in O(|V |+|E|)

time using graph traversal, where V is the set of vertices and E is the set of edges.

However, using a reachability index, a better runtime can be obtained in practice.

All the existing solutions [183,184] of the reachability problem solve it for a directed

acyclic graph (DAG). This is due to the fact that any directed graph can be converted

to a DAG such that a DAG node is a strongly connected component (SCC) of the

original graph; since any nodes in an SCC is reachable to each other, the reachability

solution in the DAG easily answers a reachability query in the original graph. The

indexing idea that we propose in this work also exploits the SCC, but unlike existing

works we solve the distance query problem instead of reachability.

In this work, we propose TopCom 1, an indexing based method for obtaining exact

solution of a distance query in an arbitrary directed graph. In principle, TopCom

uses a 2-hop-cover solution, but its indexing is different from other existing indexing

methods. Specifically, the basic indexing scheme of TopCom is designed for a DAG

and it is inspired from the indexing solution of the reachability queries proposed

in [185]. Due to its design, TopCom exhibits a very attractive performance for a DAG

or general graph in which SCCs are relatively small. However, we also extend the

basic indexing scheme so that it also solves the distance query for an arbitrary directed

graph. We show experiment results that validate TopCom’s superior performance over

IS-Label [25] and TreeMap [26] which are two of the fastest known indexing based

shortest path methods in the recent years. Following other recent works, we also

compare our method with bi-directional Dijkstra, which is a well-accepted baseline

method for distance query solutions in a directed graph. Note that, this journal

1TopCom stands for Topological Compression which is the fundamental operation that is used to
create the index data structure of this method.

163

Edge distance

(d, h′) 2
(e, k) 2
(e, l) 2
(f, l) 2
(f,m) 2
(g, l) 2
(g,m) 2
(k, p) 2
(l, p) 2
(l, q) 2

Fig. 8.1.: Pre-processing of DAG before Compression: (a) Original DAG G and (b)
Modified DAG Gm. The dummy edges data structure (DummyEdges) associated
with this modified DAG is shown to the right.

article is an extended version of a published conference article [186]; the conference

article works for DAG only, but this work solves distance query indexing for arbitrary

directed graphs.

8.2 Method

In this section, we discuss the shortest distance indexing of TopCom for a DAG.

In subsequent section, we will show how this can be adapted for a general directed

graph.

8.2.1 Topological compression

The main idea of TopCom is based on topological compression of DAG, which is

performed during the index building step. During the compression, additional dis-

tance information is preserved in a data structure which TopCom uses for answering

164

a distance query efficiently. For the sake of simplicity, in subsequent discussion we

assume that the given graph is unweighted for which the weight of each edge is 1

and the distance between two vertices is the minimum hop count between them. We

will discuss the necessary adaptations that are needed for a weighted graph in the

subsection 8.2.3.

Topological Level: Given a DAG G, we use VG and EG to represent set of vertices

and edges of G, respectively. The topological level of any vertex v ∈ VG, defined as

topo(v), is 1 if v has no incoming edge, otherwise it is at least one higher than the

topological level of any of v’s parents. Mathematically,

topo(v) =

max

(u,v)∈EG
topo(u) + 1, if v has incoming edges

1, otherwise

For a vertex v, if topo(v) is even, we call v an even-topology vertex, otherwise

v is an odd-topology vertex. An edge, e = (u, v) ∈ EG, is a single-level edge if

topo(v)− topo(u) = 1, otherwise it is a multi-level edge. For a DAG G, its topological

level is the largest value of topo(v) over the vertices in G, i.e.:

topo(G) = max
v∈VG

topo(v)

Example: Consider the DAG G in Figure 8.1(a). Topological level of vertices, a, b,

and c is 1, as the vertices have no incoming edge. The topological level of vertex l

is 4, as one of the predecessor node of l is i, which has a topological level value of 3.

Topo(G) is equal to 7, because 7 is the largest topological level value for one of the

vertices in G. �

Topological compression of a DAG is performed iteratively, such that the com-

pressed output of one iteration is the input of subsequent iteration. For an input DAG

G, one iteration of topological compression removes all odd-topology vertices from G

165

along with the edges that are incident to the removed vertices. All single-level edges

are thus removed, as one of the adjacent vertices of these edges is an odd-topology

vertex. A multi-level edge is also removed if at least one of the endpoints of the

edge is an odd-topology vertex. As a result of this compression, the topological level

of G reduces by half. For the purpose of shortest distance index building, starting

from G = G0, we apply this compression process iteratively to generate a sequence of

DAGs G1, G2, · · · , Gt such that the topological level number of each successive DAG

is half of that of the previous DAG, and the topological level number of the final

DAG in this sequence is 1; i.e., topo(Gi+1) = btopo(Gi)/2c, and topo(Gt) = 1, where

t = blog2 topo(G)c.

Example: Consider the same DAG G = G0 in Figure 8.1(a). Its topological compres-

sion in the first iteration, G1 is shown in Figure 8.2(a), and in the second iteration, G2

is shown in Figure 8.2(c). G2 is the last compression state of G0, as topological level

of G2 is 1. Note that, in G1, all odd-topology vertices of G0, such as, a, b, c, h, i, j,

etc. are removed. All single-level edges of G0, such as, (e, i), (k, n), (p, s), etc. are re-

moved. Multi-level edges, such as, (b, l) and (m, s) are also removed. However, there

are newly added vertices in G1, such as b′, h′, r1, and s1, along with newly added

edges, such as, (b′, l) and (e, r1). More discussion about these additional vertices and

edges are given in the following paragraphs. �

Each iteration of topological compression of a DAG causes loss of information

regarding the connectivity among the vertices; for correctly answering distance queries

TopCom needs to preserve the connectivity information as the input DAG is being

compressed. The preservation process gives rise to additional vertices and edges in

G1, which we have seen in the above example. The connectivity preservation process

is discussed in detail below.

The most common information loss is caused by the removal of single-level edges.

However, such edges are also easily recoverable from the lastly compressed graph in

which the edges were present before their removal. So, TopCom does not perform

166

any action for explicit preservation of single-level edges. To preserve the information

that is lost due to the removal of multi-level edges, TopCom inserts additional even-

topology vertices, together with additional edges between the even-topology vertices

to prepare the DAG for the compression. The insertion of additional vertices and

edges for preserving the information of a removed DAG multi-level edge e = (u, v)

is discussed below along with an example given in Figure 8.1. In this figure, the

topological levels are mentioned in rectangular boxes. On the left side we show the

original graph, and on the right side we show the modified graph which preserves

information that is lost due to compression.

There are four possible cases for an edges (u, v) that is being removed due to

topological compression.

Case 1: (topo(u) is odd and topo(v) is even). Compression removes the vertex u,

so we add a fictitious vertex u′ such that topo(u′) = topo(u) + 1. Then we re-

move the multi-level edge (u, v) and replace it with with two edges (u, u′) and (u′, v).

Since topological level number of both u′ and v are even, the topological compression

does not delete the edge (u′, v). For example, consider the multi-level edge (b, l) in

figure 8.1(a), topo(b) = 1 (odd), and topo(l) = 4 (even). In the modified graph Fig-

ure 8.1(b) this edge is replaced by two edges (b, b′) and (b′, l), where b′ is the fictitious

node.

Case 2: (topo(u) is even and topo(v) is odd). This case is symmetric to Case 1 as

compression removes v instead of u. We use a similar approach like Case 1 to handle

this case. We create v1, a copy of the vertex v such that topo(v1) = topo(v)− 1 and

replace the multi-level edge (u, v) with two edges (u, v1) and (v1, v). To distinguish

the vertices added in these two cases, the newly added vertex is called fictitious for

Case 1, and it is called copied for Case 2. The justification of such naming will be

clarified in latter part of the text. Example of Case 2 in Figure 8.1(a) is edge (m, s),

where topo(m) = 4 (even) and topo(s) = 7 (odd). In modified graph, we add copied

167

node s1 and replace the original edge with two edges shown in Figure 8.1(b).

Case 3: (topo(u) is odd and topo(v) is odd). In this case we use the combination

of above two methods and add two new vertices u′ and v1. We set topological level

numbering of new vertices as mentioned above. Also we replace multi level edge

(u, v) with three different edges (u, u′) , (u′, v1), and (v1, v). Multi level edge (h, r) in

Figure 8.1(a) is an example of this case. As shown in Figure 8.1(b), we add two new

vertices h′ and r1 and three new edges, (h, h′), (h′, r1), and (r1, r) after deleting the

original edge (h, r). Note that, if topo(u) = topo(v) − 2, topo(u′) = topo(v1). In this

case, we treat it as Case 1 by adding only u′ (but not v1) and following the Case 1.

It generates a single-level edge (u′, v), which we do not need to handle explicitly.

Case 4: (topo(u) is even and topo(v) is even). This is the easiest case as both u and

v are not removed by the compression process and we do not make any change in the

graph. Also note that the changes in the above three cases convert those cases into

this Case 4. For example, applying Case 1 for edge (b, l) in Figure 8.1 creates new

multi-edge (b′, l) which is an occurrence of Case 4. Similarly Case 2 creates the Case

4 multi-edge (m, s1).

Dummy edges data structure: We described earlier, we do not need to handle

single-level edges separately. However if two continuous single-level edges are re-

moved, we still need to maintain the logical connection between the even-topology

vertices. For example, in Figure 8.1(a) edges (e, i), (i, k), and (i, l) are single-level

edges which will be deleted after the first compression iteration because topo(i) = 3.

Now, information of logical (indirect) connection between e to k and l needs to be

maintained, because all three vertices will exist after the compression. To handle

this, we add new dummy edges (e, k) and (e, l); dummy edges are shown as dotted

lines in Figure 8.1(b). Note that, for any dummy edge (u, v), topo(v) − topo(u) = 2

in the current DAG and the edges for which the node-topology difference is higher

168

Fig. 8.2.: (a) 1-Compressed Graph G1, (b) Modified 1-compressed Graph G1
m, (c)

2-Compressed Graph G2

than 2 are handled by the above 4 multi-level edge cases. For same start and end

nodes, if there are multiple dummy edges, TopCom considers edge with the smallest

distance. To find the dummy edges, we scan through all odd-topology vertices and

find their single-level incoming and outgoing edges. We store all these dummy edges

along with the corresponding distance value in a list called DummyEdges as shown in

Figure 8.1, which we use during the index generation step. For example dummy edge

(d, h′) has a distance 2 in the Figure 8.1, then [(d, h′), 2] is stored in DummyEdges.

At each compression iteration, we first obtain a modified graph, with fictitious

vertices, copied vertices, and dummy edges and then apply compression to obtain the

compressed graph of the subsequent iteration. The fictitious vertices, copied vertices,

and dummy edges of the modified graph in earlier iteration become regular vertices

and edges of the compressed graph in subsequent iteration. The above modification

and compression proceeds iteratively until we reach t-compressed graph, Gt, for which

the topological level number is 1. We use Gm to denote the modified uncompressed

169

Algorithm 7: Outgoing Index value Generation

Input: G∗m (set of modified graphs), DummyEdges (set of dummy edges and
corresponding distance)

Output: Iout∗ (set of out going indexes for all nodes)

1: for all Gcurrm ∈ {Gtopo(G)
m , ..., G1

m, Gm} do
2: O = {u ∈ VGcurrm

|topo(u) = odd number}
3: for all v ∈ O do
4: org v = GetOriginal(v)
5: for all (v, w) ∈ EGcurrm

do
6: org w = GetOriginal(w)
7: if org v == org w then
8: Continue
9: if (v, w) == Dummy Edge then

10: distance = GetDummyDistance(DummyEdges, v, w)
11: if w == fictitious vertex then
12: distance = distance - 1
13: RecursiveInsert(Ioutorg v, org w, distance, out)

graph, G1
m to denote the modified 1-compressed graph, G2

m to denote the modified 2-

compressed graph and so on. For example, Figure 8.2(a) shows G1 which is obtained

by compressing the modified graph Gm in Figure 8.1(b). Figure 8.2(b) shows G1
m, the

modified 1-compressed graph, and Figure 8.2(c) shows G2, the 2-compressed graph.

We refer the set of all modified compressed graphs as G∗m, i.e. { Gt
m, ..., G

2
m, G

1
m }.

8.2.2 Index generation

TopCom’s index data structure is represented as a table of key-value pairs. For

each key, (vertex) v of the input graph, the value contains two lists: (i) outgoing

index value Ioutv , which stores shortest distances from v to a set of vertices reachable

from v; and (ii) incoming index value I inv , which stores shortest distances between v

and a set of vertices that can reach v. Both the lists contain a collection of tuples,

〈vertex id, distance〉, where vertex id is the id of a vertex other than v, and distance

is the corresponding shortest path distance between v and that vertex.

At the beginning of the indexing step, for each vertex v, TopCom initializes Ioutv

and I inv with an empty set. It generates index from Gt
m and repeats the process in

170

reverse order of graph compression i.e. from graph Gt
m to Gm. In i’th iteration of

index building, it uses Gt−i
m and inserts a set of tuples in Ioutv and I inv , only if v is an

odd-topology vertex in Gt−i
m . Thus, during the first iteration, for every odd-topology

vertex v of Gt−1
m , for an incoming edge (u, v) TopCom first checks whether (u, v) is

in DummyEdges data structure, if so, it inserts 〈u, d〉 in I inv , where the distance d

value is obtained from the DummyEdges data structure. Otherwise, it inserts 〈u, 1〉

in I inv . Similarly, for an outgoing edge (v, w) TopCom inserts 〈w, d〉 in Ioutv , if (v, w) is

in DummyEdges, otherwise it inserts 〈w, 1〉 in Ioutv . TopCom also inserts (Line 16 in

Algorithm 7) elements of I inu and Ioutw into I inv and Ioutv , respectively, using recursive

calls.

Algorithm 7 shows the pseudo-code of the index generation procedure for outgoing

index values only. An identical piece of code can be used for generating incoming

index values also, but for that we need to exchange the roles of fictitious and copied

vertex, and change the Iout∗ with I in∗ in Line 5-21 (more discussion on this is forth-

coming).

As shown in Line 2 of Algorithm 7, TopCom first collects all odd-topology ver-

tices in variable O and builds out-indexes for each of these vertices using outgoing

edges from these vertices (the edge (v, w) in Line 5 of Algorithm 7). Note that,

vertices v and w in Gcurr
m can be fictitious or copied vertex; TopCom uses the subrou-

tine GetOriginal() which returns original vertex corresponding to any fictitious or

copied vertex, if necessary (Line 4 and 6). Using the data structure DummyEdges

(discussed in section 8.2.1), it first checks whether the edge (v, w) is a dummy edge

(Line 10); if so, it obtains the actual distance from the data structure. In case the

end-vertex w is a fictitious vertex, TopCom decrements the distance value by 1 (Line

14), because for each fictitious vertex, an extra edge with distance 1 is added from

the original vertex to the fictitious vertex which has increased the distance value by

one. For instance, in the graph in Figure 8.1, the actual distance from a to h is 2,

but the fictitious vertex h′ records the distance to be 3, which should be corrected.

On the other hand, if w is a copied vertex, TopCom does not make this subtraction,

171

Table 8.1.: Intermediate index generated from the DAG in Figure 8.2(b)

key Out Index value key In Index value

b {〈l, 1〉} p {〈k, 2〉, 〈l, 2〉}
d {〈h, 1〉} q {〈m, 1〉, 〈l, 2〉}
e {〈k, 2〉, 〈l, 2〉} r {〈h, 1〉, 〈e, 1〉}
f {〈l, 2〉, 〈m, 2〉} s {〈m, 1〉}
g {〈l, 2〉, 〈m, 2〉}

because when a copied vertex is used as destination instead of the original vertex, the

distance between the source vertex and the copied vertex correctly reflects the actual

distance. For an example, in the same graph, the distance between e and r is 1; when

we use the copied vertex r1 instead of r, distance between e and r1 is recorded as

1, which is the correct distance between e and r; so no distance correction is needed

during the out index building when the destination vertex is a copied vertex. This is

the reason why we make a distinction between the fictitious vertices and the copied

vertices.

Finallly note that, after generating indexes for each vertex there may be multiple

entries for some vertices; from these multiple entries we need to get the smallest value

(entry) and remove others. For building incoming index values, TopCom subtracts

1 for a copied vertex, but does not subtract 1 for a fictitious vertex, as the roles of

start and end vertices flip for the incoming index values. Below, we give a complete

index building example using the vertex a of the graph in Figure 8.1.

Example: We want to find the outgoing index (value) for vertex a (key) of the graph

G in Figure 8.1(a). topo(G) = 2, so we start building index using the graph G1
m, which

is shown in Figure 8.2(b). In the first iteration, TopCom builds Ioutd = {〈h, 1〉}; the

distance value of 1 comes as follows: TopCom uses distance of dummy edge (d, h′)

that is 2 (Figure 8.1-II) and then it replaces the fictitious vertex h′ with h and obtains

a distance of 1 by subtracting 1 from 2 (Line 14). It also inserts the following entries

under the key e; i.e., Ioute = {〈k, 2〉, 〈l, 2〉}. The resulting indexes after this iteration

172

Table 8.2.: Index for the DAG in Figure 8.1

key Out Index value In Index value

a {〈d, 1〉, 〈e, 1〉, 〈h, 2〉, 〈k, 3〉, 〈l, 3〉} ∅
b {〈l, 1〉, 〈f, 1〉, 〈m, 3〉} ∅
c {〈f, 1〉, 〈g, 1〉, 〈l, 3〉, 〈m, 3〉} ∅
d {〈h, 1〉} ∅
e {〈k, 2〉, 〈l, 2〉} ∅
f {〈l, 2〉, 〈m, 2〉} ∅
g {〈l, 2〉, 〈m, 2〉} ∅
h ∅ {〈d, 1〉}
i {〈k, 1〉, 〈l, 1〉} {〈e, 1〉}
j {〈l, 1〉, 〈m, 1〉} {〈f, 1〉, 〈g, 1〉}
n {〈p, 1〉} {〈k, 1〉}
o {〈p, 1〉} {〈l, 1〉}
p ∅ {〈k, 2〉, 〈l, 2〉}
q ∅ {〈m, 1〉, 〈l, 2〉}
r ∅ {〈h, 1〉, 〈e, 1), 〈p, 1〉, 〈k, 3〉, 〈l, 3〉}
s ∅ {〈m, 1〉, 〈p, 1〉, 〈k, 3〉, 〈l, 3〉, 〈q, 1〉}

is presented in Table 8.1; incoming index values for keys b, d, e, f, g are empty (not

presented in the table) and similarly outgoing index values for keys p, q, r, s are empty.

For next iteration considering Gm, TopCom inserts 〈d, 1〉 in Iouta ; using recursive calls

of algorithm 8 (Line 11), this function also inserts 〈h, 2〉 in Iouta , recursion stops at h

because Iouth is empty (Line 6). Similarly, 〈e, 1〉 and 〈k, 3〉, 〈l, 3〉 are inserted in Iouta

recursively from Ioute . At the end of the algorithm 7 we remove duplicate entries from

indexes. For example, incoming index for key s has two entries for vertex m, 〈m, 1〉

and 〈m, 2〉, one corresponding to edge (m, s1) in G1
m and the other is a recursive result

from q to s in Gm. TopCom considers 〈m, 1〉 and discards the other entry from I ins .

For the graph in Figure 8.1(a), corresponding indexes are presented in Table 8.2.

8.2.3 Index for weighted graph

For weighted graph, TopCom makes some minor changes in the above algorithm.

First, distance values are stored both in the indexes and in the DummyEdge data

173

Algorithm 8: RecursiveInsert(Iiov , a, distance, in or out)

1: if in or out == in then
2: Iioa = Iina
3: else
4: Iioa = Iouta

5: if Iioa == ∅ then
6: add tuple(Iiov , a, distance)
7: else
8: add tuple(Iiov , a, distance)
9: for all (x, dist) ∈ Iioa do

10: RecursiveInsert(Iiov , x, distance + dist, in or out)

structure. Many of these distances are implicitly 1 for unweighted graph, which is

not true for weighted graph, so, for the latter TopCom stores the distance explicitly.

Also, it ensures that the distance value between fictitious (or copied) vertices and an

original vertex is one, so that the Algorithm 7 works as it is.

8.2.4 Query processing

For query processing, TopCom uses the distance indexes that is built during the

indexing stage. For a given distance query from u to v, i.e. to compute δ(u, v), Top-

Com intersects outgoing index value of key u i.e. Ioutu and incoming index value of

key v i.e. I inv and finds common vertex id in Ioutu and I inv , along with the distance

values. To cover the cases, when v is in the outgoing index value of u, or u is in the

incoming index value of v, the tuples 〈u, 0〉 and 〈v, 0〉 are also added in Ioutu and I inv

respectively and then the intersection set of the indexes is found. If the intersection

set size is 0, there is no path from u to v and hence the distance is infinity. Otherwise,

the distance is simply the sum of the distances from u to vertex id and vertex id to

v. If multiple paths exist, we take the one that has the smallest distance value.

Example: We want to find δ(a, s) in Figure 8.1. From table 8.2, Iouta ∩ I ins = {k, l}.

Now, we need to sum up the corresponding distance values, that gives {〈k, 6〉, 〈l, 6〉}.

174

Now we need to find smallest distance value; in this case both the values are same,

hence we can provide any one as a result.

8.2.5 Theoretical proofs for correctness

In this section, we prove the correctness of TopCom, through the claim that Top-

Com’s index is based on 2-hop covers of the shortest distance in a graph and method

described in Section 8.2.4 gives correct shortest distance value. For shortest path,

such a cover is a collection S of shortest paths such that for every two vertices u

and v, there is a shortest path from u to v that is a concatenation of atmost two

paths from S. [181]. That is, shortest path from u to v is stored in S or there is an

intermediate node x such that shortest paths from u to x and from x to v are stored

in S. For TopCom’s index also, the shortest distance from any node u to node v is

the 2-hop cover such that the index itself has shortest distance value from u to v or

there is an intermediate node x which would be present in both Ioutu and I inv .

Example: In DAG G in Figure 8.1(a) to find distance from a to s, we need to check

the outgoing index value for vertex a and the incoming index value for vertex s in

Table 8.2. This gives us two possible shortest paths passing through intermediate

node k or l, because distance in both cases is same. Thus, there can be multiple

shortest paths however, atmost one intermediate node in the index.

In the Theorem 8.2.1, we try to identify the topological layer of an intermediate

node x. We identify a unique topological level for each pair of u and v, which tells

there is atmost one intermediate node in a shortest path from u to v because in DAG

there cannot be a directed edge within topological layer. We begin with the following

lemmas, which will be useful for constructing the proof of the theorem.

Lemma 1 In Gm, if a node u is at topological level 2i, it will be at topological level

1 in Gi.

175

Fig. 8.3.: Shortest path from u to v passing through x

Proof TopCom compression method removes all odd-topology nodes and carries

over nodes from the even topological levels to the next compression iteration. Thus

any node from an even topological level 2x in some compressed graph will be at

topological level x in the compressed graph of next iteration. Say, the node u is at

topological level 2i in Gm, then it will be at topology level 2i−1 in G1. Since 2i−1 is

also even, no fictitious or copied vertex will be added for u, and in G1
m, it will remain

at 2i−1 level. In the next compression iteration, u will simply be moved to 2i−2 level

in G2 and so on. Hence, it will be at level 2i−i = 20 = 1 level in Gi graph.

Example In the graph Gm shown in Figure 8.1(b), the node d is at topological level

2 and the node k is at topological level 4. In G1 shown in Figure 8.2(a) the node

d is at topological level 1; similarly, in G2 shown in Figure 8.2(c), the node k is at

topological level 1.

Lemma 2 In TopCom’s index, for all keys, the values contain vertices, which are

only from even topological level in the modified DAG Gm.

Proof As per Line 2 of Algorithm 7, TopCom’s index keys are nodes from only an

odd topological level, and the values of index are built using the incident edges of

those key nodes. In the modified graph Gm, all the edges from/to an odd topology

vertex connects with an even topology vertex, through the use of fictitious/copied

176

nodes (if needed). Hence, if any node in DAG Gm is at an odd topological level, it

cannot be included as an index value. Additionally when we compress Gi
m to get

Gi+1, we only include nodes from even topological levels, hence nodes from odd levels

will never be included as a value for index building at compressed levels also.

Example: See the completely built index of the graph G in Figure 8.1(a) as shown in

Table 8.2. The nodes that appear as values are {d, e, b′(b), f, g, h′(h), k, l,m, r1(r), p, q,

s1(s)}. All of these are from the even topology nodes in Gm as shown in Figure 8.1(b).

Theorem 8.2.1 For finding shortest distance from u to v, assume that u has topo-

logical level number Lu and v has topological level number Lv in Gm. We define

n = argmax
i

(Lu ≤ 2i ≤ Lv) (8.1)

Now, if there is a shortest path from u to v, for each shortest path, exclusively,

one of the following is true.

Case 1: No intermediate node x i.e. Ioutu includes v or I inv includes u.

Case 2: There is an intermediate node x, and

topo(x) = 2n + C

for some constant offset C.

Proof We prove this theorem using mathematical induction on n.

Base case: n = 1. If there is a direct edge from u to v then case 1 is true

because if Lu = 2 then I inv includes u or if Lv = 2 then Ioutu includes v. If there is an

intermediate node x then Lu = 1 and Lv = 3, hence topo(x) = 2 that shows case 2 is

177

true. From Lemma 2 both Ioutu and I inv include the node x if there is a path from u

to v. In this case constant offset C would be zero.

Induction hypothesis: Here we assume that for n = d given theorem is true.

Induction step: We want to prove, for n = d+ 1 given theorem is true.

If there is no intermediate node x then case 1 is true. Hence, we discuss the only

scenario where there is an intermediate node x and we want to show that x is in both

Ioutu and I inv . We sub-divide the proof for zero and non-zero values of constant offset C.

Constant offset C is zero:

If there are 2d+1 levels, then compression step would be conducted at least one

more time than 2d levels. From Lemma 1 at the d’th step of compression, nodes at

topological level 2d in graph Gm are at 1st topological level in Gd and nodes from

topological level 2d+1 would be at 2nd topological level.

Hence, TopCom will build index for keys (nodes) from topological level 2d in graph

Gm, and those index values include nodes from topological level 2d+1. As our method

recursively includes already built index values, the nodes from topological level 2d+1

would be recursively included to corresponding outgoing index values for keys at lower

compression levels. Hence, if topo(x) = 2d+1 then it is present in outgoing index value

of u.

The similar argument works for incoming index of v.

Constant offset C is non-zero:

If we cannot find n that satisfies equation 8.1 then constant offset C is non-zero.

In this case offset can be calculated as :

C = 2nlow

where, nlow = argmax
i

(2i < Lu)
(8.2)

178

Now, we define modified topological level number of u is Lmu , where Lmu = Lu−C

and similarly modified topological level number of v is Lmv = Lv−C. We use Lmu and

Lmv in equation 8.1 to get n

n = argmax
i

(Lmu ≤ 2i ≤ Lmv)

Now, with topo(x) = 2n + C, argument works similarly as zero offset.

Example of non-zero offset C : In Figure 8.1(b), we want to know the shortest

distance from n to r where corresponding topological levels are Ln = 5 and Lr = 7

respectively. For this, we can not find any n that satisfies the equation 8.1. From

equation 8.2, we can calculate nlow = 2, using which modified topological levels

Lmn = 1(5 − 22) and Lmr = 3 can be obtained. From Lmn and Lmr we get m = 1.

Now, 21 + 22 = 6 is the topological level of intermediate node p, which is present

in both Ioutn and I inr (Table 8.2). If we look carefully Lmn and Lmr is a base case in

the mathematical induction proof of Theorem 8.2.1, and Ln(5), Lr(7) with offset C

behave exactly the same as the base case.

Note: If there is no node from topological level 2n in the shortest path from u to

v, then there must be one multilevel edge which skips that level. For a node incident

to that multilevel edge, at some step of the compression, we need to prepare ficti-

tious/copied node. That new fictitious/copied node works as a node from topological

level 2n and will be included in both Ioutu and I inv . Thus, theorem works fine for this

case.

For example, as depicted in Figure 8.1(b), shortest path from a to r doesn’t pass

through any node from topological level 4(22) in Gm, but it has a multilevel edge

(e, r1). In G2
m (Figure 8.2(b)), this edge causes a fictitious node e′ at topological level

2 which is (logically) topological level 4 in Gm. The resulting index in Table 8.2 shows

179

(a) (1)Example for Distance within Middle DAG node
of Gd and (2)Example of multiple dummy edges in
modified Gd

(b) Example of merging multiple
dummy DAG edges

Fig. 8.4.: Dummy edge handling

that, the node e′(e) is included as a value in the incoming index of r (I inr) and also

included in Iouta .

8.3 Indexing for general directed graph

Any directed graph G can be converted to a Directed Acyclic Graph (DAG) Gd,

by considering each strongly connected component (SCC) of G as a node of Gd.

Thus in DAG, the edges within a SCC are collapsed within the corresponding node.

However, if an edge in G connects two vertices from two distinct SCCs, in Gd those

SCCs are connected by a DAG edge. To build the shortest path index for a general

directed graph, TopCom first uses Tarjan’s algorithm [187] to convert G to a DAG

Gd by finding all SCCs of G. It also maintains a necessary data structure that keeps

the mapping from a DAG node to a set of graph vertices, and vice-versa. We call

this a parent-child mapping, i.e., a DAG node is the parent of graph vertices which

are part of the corresponding SCC. A DAG edge connects two vertices, one from a

distinct SCC. We call such vertices terminal vertices. A single DAG edge between a

180

pair of SCCs may encapsulate multiple paths (one edge or multiple edges) of Graph G

such that the end vertices of these paths are terminal vertices in those pair of SCCs.

TopCom’s DAG edge data structure contains a set of tuples, each representing one of

these paths. A tuple has three elements: node-id of start terminal vertex, node-id of

end terminal vertex, and the distance between these two vertices in G. For example

consider Figure 8.4a(1), a DAG edge (a, b) stores {(3, 5, 1), (4, 7, 1), (3, 7, 2), (4, 5, 3)},

first two tuples represent a single-edge path, but the last two represent multi-edge

paths. 3, 4 are terminal vertices of DAG node a, and 5,7 are terminal vertices of DAG

node b. For each tuple, the third field stores the shortest distance between the pair of

terminal vertices in the first two fields of that tuple. To compute distance between an

arbitrary pair of vertices within an SCC, TopCom also pre-computes all-pair shortest

paths among all graph nodes belonging to a single SCC and store them in shortest

path index. In real-life directed networks, the size of SCCs are generally not very

large, so storing all-pair distances within a SCC in the shortest path index is feasible.

8.3.1 Distance for dummy edges:

For an unweighted DAG two consecutive edges yield a distance value of 2, but for

DAG which is a compressed representation of a general unweighted directed graph,

two consecutive DAG edges may constitute an arbitrary distance value. This is due

to the fact that the shortest path may visit a large number of vertices which are

part of the start, middle, and end SCC. For an example, see Figure 8.4a(1); in this

figure, the rectangles “even1”, “odd” and “even2” are the topological level numbers;

a, b and c are the DAG nodes (ellipses), and nodes with numeric ids are nodes of G.

Two consecutive DAG edges are (a, b) and (b, c) connecting SCCs a, b and SCCs b, c,

respectively. The shortest distance between a and c depends on the terminal nodes

of a and c that are being used. If terminal node of a is 3 and terminal node of c

is 13, the distance is 5, following the path 3 → 4 → 7 → 10 → 12 → 13. In this

path, besides the distance 2 over the DAG edges, there are three within-SCC edges,

181

one in each of SCCs. Thus, the total distance for a dummy edge is the sum of (i)

distance from a terminal vertex of staring SCC to a terminal vertex in the middle

SCC, (ii) distance between a pair of terminal vertices in the middle SCC, and (iii)

distance from a terminal node in the middle SCC to a terminal node in the end SCC.

To account for this, TopCom computes the dummy edge distance by considering all

possible combination of terminal nodes in each SCCs.

Example: Say, TopCom wants to find dummy DAG edge a to c which would be

set of tuple {(3, 12, ∗), (3, 13, ∗), (4, 12, ∗), (4, 13, ∗)}, (all sources to all destinations)

where ∗ represents the shortest distance values that it needs to find. To find the

distance from node 3 to 13, it finds the distance for all combinations of terminal

nodes in the middle SCCs and takes the minimum. From starting SCC to middle

SCC (δ(3, 5) = 1 and δ(3, 7) = 2), within middle SCC (δ(5, 9) = 4, δ(5, 10) = 3,

δ(7, 9) = 2 and δ(7, 10) = 1) and finally from middle SCC to end SCC (δ(9, 13) = 1,

δ(10, 13) = 2). In this example, δ(3, 7) + δ(7, 10) + δ(10, 13) gives the minimum value

5 which generates the tuple (3, 13, 5). Distance for all other tuples are also calculated

similarly.

Multiple dummy edges: Another issue is, there could be multiple dummy edges

having same starting and ending DAG nodes as shown in Figures 8.4a(2). If the

original graph itself is a DAG, TopCom considers the dummy edge with the lowest

distance. But for converted DAG Gd applying this solution is more complex, because

distance within middle SCC can be different for different SCCs. For this, we need to

merge all possible tuples of all dummy edges, and recalculate the distances by taking

the minimum distance from the merged set of tuples.

Example in Figure 8.4b we extend the example of Figure 8.4a(1) with one more DAG

node d, which also connects node a to node c. Dummy edge through the middle node

d is {(3, 11, 2), (4, 11, 4), (3, 12, 3), (4, 12, 5), (3, 13, 4), (4, 13, 6)}, and through the mid-

dle node b is {(3, 11, 6), (4, 11, 5), (3, 12, 4), (4, 12, 3), (3, 13, 5), (4, 13, 4)}. For dummy

182

edge (a, c), we combine both the sets of tuples and obtain the smallest distance. Thus

the final representation of dummy edge (a, c) is the following: {(3, 11, 2), (4, 11, 4),

(3, 12, 3), (4, 12, 3), (3, 13, 4), (4, 13, 4)}.

8.3.2 Modification in index and query processing

TopCom Index for general graph stores the bidirectional mapping between the

DAG nodes and the vertices of the input graph. For every DAG edge (and also for

DAG dummy edges), it stores the set of tuple based representation that we have

discussed in the above subsection. It also stores all pair distance between each of

the vertices within an SCC. Above all, it prepares and stores the 2-hop cover DAG

indexes for the DAG representation of the input graph using the methodologies that

we discussed in Section 8.2.

For query processing, given a query (u, v), TopCom first identifies the correspond-

ing SSE nodes in the DAG using the bidirectional map. Say, these SSEs are su and

sv, respectively. If su = sv, TopCom simply uses the within SSE all-pair index and

return the distance between u and v. Otherwise, it first finds the set of out-terminal

SSE nodes of su (say, X), and in-terminal SSE nodes of sv (say, Y). Then it uses

the 2-hop cover indexing for finding the shortest path distance between each pair of

nodes—one from X, and the other from Y . It also considers within SCC distances in

three SCCs:

Starting DAG node: Distance from starting node of the query to start terminal

node of the DAG node. For example consider figure 8.4a(1), where query is δ(1, 14).

Now all outgoing edges from DAG a are from nodes 3 and 4, hence we need to get

distances from 1 to 3 and 4 i.e. δ(1, 3) = 1 and δ(1, 4) = 2.

Middle DAG node: If there is a middle node (from the 2-hop cover index) then

distance from incoming edge terminal node to outgoing edge terminal node within

middle DAG node needs to be calculated. In our example suppose b is middle node,

then we need distance from 5 to 9 and 10, i.e. δ(5, 9) = 4, δ(5, 10) = 3 and similar

183

for node 7.

Ending DAG node: Distance from end terminal node to ending node of the query

within the DAG node.:w That means in our example distance from 12 and 13 to 14

i.e. δ(12, 14) = 2 and δ(13, 14) = 1.

Here again our task is to get minimum distance among all, and we use the similar

strategy as section 8.3.1, which is to minimize the summation of above three distances

along with edge distances.

As we can see, TopCom’s principle indexing process works with DAG and it

performs well on real world datasets (Table 8.5). One reason is, real world complex

graph becomes less complex when converted as DAG. For example, average degrees of

DAG, ADDAG (Table 8.3) are always smaller than AD, mostly an order of magnitude

smaller. However because of DAG, we also need to handle a challenging task, i.e.

maintaining distance information within SCC for each DAG node. To keep this

information, most common ways are to maintain distance matrix or to keep set of

edges and calculate distance at run time. Both of these methods have their own pros

and cons; keeping distance matrix is the fastest access method but the size of SCC

leads to space limitation i.e. we need space for O(n2) elements and for huge SCC

this may be a notable problem. On the other hand keeping set of edges is a memory

efficient way, however all distance finding algorithms are polynomial time in terms of

|V | and |E|; and for huge SCC, finding distance between nodes at run time would

be much slower. This represents a well known phenomenon in Computer Science

called space-time trade-off. Here for our task, time gets priority over space, hence we

selected first method, where we are maintaining distance matrix for each DAG node.

For large SCC, this may take high memory, however we observed that our index is

still not very large for contemporary machine.

184

8.3.3 Correctness revisited

In this Section 8.3, we explain how to adopt the proposed indexing method for

a general directed graph. For that, first we convert a general directed graph into

DAG and then build index on the DAG. We describe the methods to maintain the

information at both steps.

We should be able to calculate shortest distance from one node to any other node

within the same DAG node. When we convert a general directed graph to DAG, we

maintain this information by creating appropriate data structures during conversion

(Section 8.3).

The index generation method for DAG is further divided into two steps: 1) Topo-

logical Compression and 2) Index Generation. We need to maintain information only

during the first step, because the index generation step only builds index from the

graphs generated in the topological compression (first) step. The topological com-

pression step is described in Section 8.2.1, where DAG is compressed iteratively by

removing all odd-topology vertices and incident vertices. This compression process

maintains loss of information using dummy edges, to keep the correct information we

explicitly handle distance information for dummy edges as explained in Section 8.3.1.

Lastly, as the structure of a converted DAG is different, we need to handle the

queries a little differently. We have explained the modification of query processing in

Section 8.3.2. Hence, all the required logical modifications are handled and TopCom

maintains correctness for general directed graph.

8.4 Experimental evaluation

We compare performance of TopCom with two of the recent methods (IS-Label

and TreeMap) for answering distance query. We also compare TopCom with baseline

method Bidirectional Dijkstra’s algorithm, which is one of the fastest online methods

for single source shortest distance queries. For both IS-Label and TreeMap, codes

are provided by their authors. For these experiments we use a machine with Intel 2.4

185

GHz processor, 8 GB RAM and Ubuntu 14.04 LTS OS. In [26] the author has claimed

that TreeMap works for weighted directed graphs, however we are provided with the

code of unweighted version for TreeMap, hence all comparisons with TreeMap are for

unweighted graphs. Additionally as Y. Xiang mentioned in the paper, TreeMap needs

huge memory if tree width is above threshold (1000). The only dataset we are able

to run using above machine is WikiVote. Hence for comparison with TreeMap, we

used machine with AMD 2.3 GHz processor, 132 GB RAM and Red Hat Enterprise

Server Release 6.6 OS. We also perform comparison to IS-Lable using same machine

for two datasets (Email Eu and Epinion). Using synthetic graphs of different sizes

and degrees, we show that TreeMap is not scalable for higher degree graphs. To

generate these synthetic graphs we use python package networkx (procedure name,

Fast gnp random graph()).

8.4.1 Datasets

Table 8.3.: Real world datasets and basic information

Name | V | | E | AD MD | VDAG | | EDAG | ADDAG MDDAG Largest SCC

Email Eu 265,214 420,045 1.58 7,636 231,000 223,004 0.97 168,815 34,203
Epinion 49,289 487,183 9.88 2,631 16,264 16,497 1.01 15,789 32,417
Gnutella09 8,114 26,013 3.21 102 5,491 6,495 1.18 5,147 2,624
Gnutella31 62,586 147,892 2.36 95 48,438 55,349 1.14 43,928 14,149
WikiVote 7,116 103,689 14.57 1,167 5,817 19,540 3.36 4869 1,300

Here for our experiments, we used seven real world datasets (Table 8.3) from

different domains to show wide applicability of TopCom . |V | and |E| are the number

of vertices and the number of edges respectively. Similarly |VDAG| and |EDAG| are the

number of vertices and the edges in the DAG of the corresponding graph. AD and

ADDAG are average degree values for the graph and its DAG counterpart, respectively.

MD and MDDAG are maximum degrees i.e. maximum in or out degree in the graph

and its DAG, respectively. Largest SCC is a size of the biggest DAG node which

encapsulate the maximum number of input graph nodes.

186

We collected all datasets from SNAP (Stanford Network Analysis Project) web

page3 except Epinion trust network dataset, which we collected from [188]. Email Eu

is a snapshot of an email network generated by European Research Institute. Epinion

dataset is a trust network generated from social network users, it represents which

user trusts whom. Gnutella is a peer-to-peer file sharing network where Gnutella09

is a snapshot of the network on 9th August 2002 and Gnutella31 is a snapshot of the

same network on 31st August 2002. WikiV ote is a network generated from Wikipedia

admin voting history data.

Note: All these datasets are unweighted, however we assign random positive

weights to each edge of every datasets and use same set of random weights for all the

experiments.

8.4.2 Results and Discussion

AS per expectation for DAG TopCom outperforms IS-Label method for all datasets

depicted in figure 8.5a. Results are average query time over 10 times execution in

micro-second (µs), where each method calculated 10K random queries in every execu-

tion. For more detailed comparison, if we look at table 8.4, we can see that for datasets

Epinion,Gnutella09 and Gnutella31 TopCom outperforms IS-Label and TreeMap by

an order of magnitude. For other datasets also TopCom performs 2-3 times better

than both of the competing methods. If we look at the Bi-Dijkstra results, TopCom

performs multiple orders of magnitude better for all datasets.

In figure 8.5b results for general graphs are plotted, which clearly demonstrate

superiority of TopCom over IS-Label for general graph. Here also we used Average

Query time over 10 times execution with each run calculating 10K random queries.

As shown in the Table 8.5, TopCom outperforms IS-Label for all the datasets. For

Gnutella31 dataset TopCom performs an order of magnitude better than IS-Label

and surprisingly IS-Label performs really poor on Epinion dataset such that TopCom

3http://snap.stanford.edu/data/index.html
4Unweighted Graph results

187

Table 8.4.: Average Query Time for DAG (µs)

Name TopCom IS-Label Bi-Djk TreeMap 4

Email Eu 0.1059 0.3865 1657.46 0.2674
Epinion 0.0360 0.2388 14.83 0.1722
Gnutella09 0.0345 0.3292 7.27 0.115
Gnutella31 0.0752 0.2095 50.74 0.254
WikiVote 0.1551 0.3494 43.11 0.2131

outperforms IS-Label by two orders of magnitude. For Guntella09 TopCom performs

almost 7 times better and for remaining datasets TopCom performs almost two times

better than IS-Label. Here once again TopCom is multiple orders of magnitude faster

than Bi-Dijkstra for all datasets.

Table 8.5.: Average Query Time for General Graph (µs)

Name TopCom IS-Label Bi-Djk TreeMap 4 TopCom 5

Email Eu 12.4708 21.98527 1482.41 0.8102 10.45136
Epinion 34.6582 2114.02 3570.8667 5.727 33.1907
Gnutella09 1.3405 8.0429 110.6521 1.6255 1.29084
Gnutella31 2.46202 13.9999 299.423 5.804 2.44672
WikiVote 18.3593 23.72954 183.4193 8.371 19.06744

Table 8.5 shows result of TreeMap and TopCom comparisons on unweighed graph.

It is clear that TopCom is competitively better for Gnutella09 and Gnutella31

datasets, but TreeMap performs an order of magnitude better for other three datasets.

However, when we run the TreeMap for building index it took hours to build the in-

dex for some datasets, for example average index building time for Epinion dataset is

more than 9 hours, while Gnutella31 takes more than 26 hours. We believe one of the

reasons is a bigger graph with higher average degree. To find out the actual cause, we

generated synthetic graphs of different sizes (10000-25000) and degrees (0.5-5) and

tried to build indexes using TreeMap. In figure 8.6a the index building time is shown

5Unweighted Graph: Avg. over 5 times execution for 10K queries

188

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Em
ailE

uAll

Epin
io

n

G
nute

ll0
9

G
nute

ll3
1

W
ik

iV
ote

Q
u

e
r
y

-t
im

e
(m

ic
r
o

-s
e
c
)

TopCom

Is-Label

(a) For DAG (µs)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Em
ailE

uAll

Epin
io

n

G
nute

ll0
9

G
nute

ll3
1

W
ik

iV
ote

Q
u

e
r
y

-t
im

e
(m

il
li

-s
e
c
)

TopCom

Is-Label

(b) For General Graph (ms)

Fig. 8.5.: Average Query time comparison

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

0.5 1 2 3 4 5

C
o

n
st

r
u

c
ti

o
n

-t
im

e
(s

e
c
)

Average Degree

10K

15K

20K

25K

(a) TreeMap Results on Synthetic Graphs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.5 1 2 3 4 5

C
o

n
st

r
u

c
ti

o
n

-t
im

e
(s

e
c
)

Average Degree

10K

15K

20K

25K

(b) TopCom Results on Synthetic Graphs

Fig. 8.6.: Index Building time for Synthetic graphs

in seconds, after degree 1 all graphs started taking higher time and for bigger graphs

the slope of the curve is very large. We compare construction time of TopCom for

the same set of synthetic graphs shown in figure 8.6b, and as shown TopCom hardly

takes few seconds for index construction. Highest time taken by TopCom is 44 sec

for 25K nodes graph with average degree 5, which is almost thousand times faster

compared to TreeMap. Hence, it shows that it is difficult for TreeMap to scale for

large graphs with higher degree, as many real world graphs generally has higher tree

width with larger graphs [189].

189

8.5 Chapter Summary

In this work we proposed TopCom : a unique indexing method to answer distance

query for directed real-world graphs. This method uses topological ordering property

of DAG and describes a novel method for distance preserving compression of DAG.

We compared TopCom with IS-Label and found the our method performs better

than IS-Label for both weighted DAG and weighted general graph. We strongly

believe our method should perform similar or better for unweighed graphs, because

we store distance information in label irrespective of weighted/unweighted edges. We

do not compare TopCom with other recent methods such as HCL [132] and state-

of-art 2-Hop [181], because Fu et al. have compared IS-Label with HCL and proved

superiority of IS-Label in [25]. We also compare TopCom with the recent TreeMap

method, which performs better for some datasets, however, we show that this method

is not scalable for huge graphs with higher degree. We plan to study further to build

index for dynamic large graphs that can answer exact distance query in an acceptable

time.

190

9. CONCLUSION AND FUTURE WORKS

In this thesis, I address a challenging open problem of time prediction in a net-

work. Particularly, I solve two different problems in directed (RLTP) and undirected

networks (TCTP). Additionally, I propose efficient graphlet counting algorithm and

novel embedding methods to assist innovative framework to solve TCTP problem.

First in Chapter 3, I design and carefully study an interesting problem of reciprocal

link time prediction (RLTP) in a directed network. To solve it accurately, I study

various datasets to understand relation between reciprocal links and different social

theories and based on this study, I find suitable topological features. Then I transform

the problem into survival analysis framework such that RLTP can be efficiently solved

using various survival models. Through experiments I show that survival models out-

performs traditional regression models in solving the RLTP problem.

Next in Chapter 4, I design a triangle completion time prediction (TCTP) problem

in an undirected network and to solve this TCTP accurately I propose a novel frame-

work that uses graphlet and node embedding based features. For this framework, in

Chapter 5, I design a highly efficient and parallel algorithm that counts edge-centric

local graphlet upto size-5. After that in Chapters 6 and 7, I develop unique attributed

network embedding approaches to incorporate these graphlet information in represen-

tation vectors. Lastly, through experiments I demonstrate that proposed framework

is highly accurate in solving the TCTP problem and it out-performs all traditional

topological, graphlet and embedding feature based approaches.

The time prediction is highly challenging network analysis problem and this thesis

is the first step towards solving this tough problem. Hence, it has wide range of options

available to tackle this problem. In Chapter 3, we provided initial social study with

topological features, however further study on the replying pattern and corresponding

timing patterns can lead to more sophisticated features to solve the RLTP problem.

191

Also, we solve the problem using survival models, but other popular event prediction

models such as Point process or agent based reinforcement learning can solve the

RLTP problem. In Chapter 4, we designed an efficient framework based on supervised

embedding methods, a further study on the relation of link creation time and social

theories can be explored to find temporal and social features. Similar to the RLTP

problem this problem can also be solved using more sophisticated regression models.

Additionally, both the RLTP and TCTP are restricted time prediction problem in a

network, the more general time prediction problem is to predict link creation time of

a random node in a network. For this, first next logical step would be to solve the

time prediction for larger units of networks such as 4-size graphlet structures.

REFERENCES

192

REFERENCES

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in
large social networks: Membership, growth, and evolution,” in ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’06, 2006, pp.
44–54.

[2] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densification
and shrinking diameters,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[3] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,” ACM
Comput. Surv., vol. 47, no. 1, pp. 10:1–10:36, May 2014.

[4] B. Dumba, G. Golnari, and Z.-L. Zhang, Analysis of a Reciprocal Network
Using Google+: Structural Properties and Evolution. Springer International
Publishing, 2016, pp. 14–26.

[5] K. R. Harrison, M. Ventresca, and B. M. Ombuki-Berman, “A meta-analysis
of centrality measures for comparing and generating complex network models,”
Journal of computational science, vol. 17, pp. 205–215, 2016.

[6] M. Golosovsky, “Mechanisms of complex network growth: Synthesis of the pref-
erential attachment and fitness models,” Phys. Rev. E, vol. 97, p. 062310, Jun
2018.

[7] N. Attar and S. Aliakbary, “Automatic generation of adaptive network mod-
els based on similarity to the desired complex network,” arXiv preprint
arXiv:1810.01921, 2018.

[8] M. Bell, S. Perera, M. Piraveenan, M. Bliemer, T. Latty, and C. Reid, “Network
growth models: A behavioural basis for attachment proportional to fitness,”
Scientific reports, vol. 7, p. 42431, 2017.

[9] M. A. Hasan and M. J. Zaki, A Survey of Link Prediction in Social Networks.
Springer US, 2011, pp. 243–275.

[10] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for social net-
works,” in International Conference on Information and Knowledge Manage-
ment, ser. CIKM ’03, 2003, pp. 556–559.

[11] V. Mart́ınez, F. Berzal, and J.-C. Cubero, “A survey of link prediction in com-
plex networks,” ACM Computing Surveys (CSUR), vol. 49, no. 4, pp. 69:1–
69:33, Dec. 2016.

[12] M. Li, H. Zou, S. Guan, X. Gong, K. Li, Z. Di, and C.-H. Lai, “A coevolving
model based on preferential triadic closure for social media networks,” Scientific
reports, vol. 3, p. 2512, 2013.

193

[13] H. Huang, J. Tang, L. Liu, J. Luo, and X. Fu, “Triadic closure pattern analysis
and prediction in social networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 27, no. 12, pp. 3374–3389, 2015.

[14] G. Bianconi, R. K. Darst, J. Iacovacci, and S. Fortunato, “Triadic closure as a
basic generating mechanism of communities in complex networks,” Phys. Rev.
E, vol. 90, p. 042806, Oct 2014.

[15] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,”
nature, vol. 393, no. 6684, p. 440, 1998.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,”
science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] P. Holme and B. J. Kim, “Growing scale-free networks with tunable clustering,”
Physical review E, vol. 65, no. 2, p. 026107, 2002.

[18] R. L. Trivers, “The evolution of reciprocal altruism,” Quarterly Review of Bi-
ology, vol. 46, pp. 33–57, 1971.

[19] S. Leider, M. M. Mobius, T. Rosenblat, and Q.-A. Do, “How much is a friend
worth? directed altruism and enforced reciprocity in social networks,” revi-
sion of NBER Working Paper 13135, Cambridge, Mass., National Bureau of
Economics Research., 2007.

[20] T. Antal, P. Krapivsky, and S. Redner, “Social balance on networks: The dy-
namics of friendship and enmity,” Physica D: Nonlinear Phenomena, vol. 224,
pp. 130 – 136, 2006.

[21] D. Easley, J. Kleinberg et al., “Networks, crowds, and markets: Reasoning
about a highly connected world,” Significance, vol. 9, pp. 43–44, 2012.

[22] T. Lou, J. Tang, J. Hopcroft, Z. Fang, and X. Ding, “Learning to predict reci-
procity and triadic closure in social networks,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 7, no. 2, pp. 5:1–5:25, Aug. 2013.

[23] E. Estrada and F. Arrigo, “Predicting triadic closure in networks using commu-
nicability distance functions,” SIAM Journal on Applied Mathematics, vol. 75,
no. 4, pp. 1725–1744, 2015.

[24] J. Hopcroft, T. Lou, and J. Tang, “Who will follow you back?: Reciprocal
relationship prediction,” in ACM on Conference on Information and Knowledge
Management, ser. CIKM ’11, 2011, pp. 1137–1146.

[25] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong, “Is-label: An independent-
set based labeling scheme for point-to-point distance querying,” The VLDB
Endowment, vol. 6, pp. 457–468, April 2013.

[26] Y. Xiang, “Answering exact distance queries on real-world graphs with bounded
performance guarantees,” The VLDB Journal, vol. 23, no. 5, pp. 677–695, Oct.
2014.

[27] V. S. Dave, M. Al Hasan, and C. K. Reddy, “How fast will you get a response?
predicting interval time for reciprocal link creation.” in AAAI International
Conference on Web and Social Media (ICWSM), 2017, pp. 508–511.

194

[28] V. S. Dave, M. A. Hasan, B. Zhang, and C. K. Reddy, “Predicting interval time
for reciprocal link creation using survival analysis,” Social Network Analysis and
Mining, vol. 8, no. 1, p. 16, Mar 2018.

[29] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Microscopic evolution
of social networks,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08, 2008, pp.
462–470.

[30] Y. Dong, J. Tang, S. Wu, J. Tian, N. V. Chawla, J. Rao, and H. Cao, “Link
prediction and recommendation across heterogeneous social networks,” in Pro-
ceedings of the 2012 IEEE 12th International Conference on Data Mining, ser.
ICDM ’12, 2012, pp. 181–190.

[31] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ser. KDD ’16, 2016, pp. 855–864.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ser. KDD ’14, 2014, pp.
701–710.

[33] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15, 2015, pp. 1067–1077.

[34] M. Rahman, M. A. Bhuiyan, and M. A. Hasan, “Graft: An efficient graphlet
counting method for large graph analysis,” IEEE Transactions on Knowledge
and Data Engineering, vol. 26, no. 10, pp. 2466–2478, Oct 2014.

[35] W. Hayes, K. Sun, and N. Pržulj, “Graphlet-based measures are suitable for
biological network comparison,” Bioinformatics, vol. 29, no. 4, p. 483, 2013.

[36] N. Pržulj, “Biological network comparison using graphlet degree distribution,”
Bioinformatics, vol. 23, no. 2, p. e177, 2007.

[37] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies: Mapping
the empirical and extremal geography of large graph collections,” in Proceedings
of the 22Nd International Conference on World Wide Web, 2013, pp. 1307–
1318.

[38] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in Proceedings of the 2015 IEEE International
Conference on Data Mining (ICDM), ser. ICDM ’15, 2015, pp. 1–10.

[39] D. Marcus and Y. Shavitt, “Rage - a rapid graphlet enumerator for large net-
works,” Comput. Netw., vol. 56, no. 2, pp. 810–819, Feb. 2012.

[40] V. S. Dave, N. K. Ahmed, and M. A. Hasan, “E-clog: Counting edge-centric lo-
cal graphlets,” in 2017 IEEE International Conference on Big Data (Big Data),
Dec 2017, pp. 586–595.

[41] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin deepwalk: Discrimina-
tive learning of network representation,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2016, pp. 3889–3895.

195

[42] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community preserving
network embedding,” in AAAI Conference on Artificial Intelligence, 2017.

[43] V. S. Dave, B. Zhang, M. A. Hasan, K. A. Jadda, and M. Korayem, “A combined
representation learning approach for better job and skill recommendation,” in
ACM on Conference on Information and Knowledge Management, ser. CIKM
’18, 2018.

[44] B. Zhang and M. Al Hasan, “Name disambiguation in anonymized graphs using
network embedding,” in ACM on Conference on Information and Knowledge
Management, 2017, pp. 1239–1248.

[45] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, ser. KDD ’16, 2016, pp. 1225–1234.

[46] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of closeness centrality for large-
scale social networks,” in Frontiers in Algorithmics, ser. Lecture Notes in Com-
puter Science, 2008, vol. 5059, pp. 186–195.

[47] A. Erdem Sariyuce, K. Kaya, E. Saule, and U. Catalyurek, “Incremental al-
gorithms for network management and analysis based on closeness centrality,”
ArXiv e-prints, march 2013.

[48] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence
through a social network,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’03, 2003, pp.
137–146.

[49] M. Kargar and A. An, “Keyword search in graphs: Finding r-cliques,” The
VLDB Endowment, vol. 4, no. 10, pp. 681–692, Jul. 2011.

[50] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis, “Searching the wikipedia
with contextual information,” in ACM on Conference on Information and
Knowledge Management, ser. CIKM ’08, 2008, pp. 1351–1352.

[51] M. Fang, J. Yin, X. Zhu, and C. Zhang, “Trgraph: Cross-network transfer
learning via common signature subgraphs,” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 9, pp. 2536–2549, 2015.

[52] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network representation
learning with rich text information,” in Proceedings of the 24th International
Conference on Artificial Intelligence, ser. IJCAI’15, 2015, pp. 2111–2117.

[53] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,” in
Proceedings of the SIAM International Conference on Data Mining, 2017, pp.
633–641.

[54] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network repre-
sentation,” in Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, ser. IJCAI’16, 2016, pp. 1895–1901.

[55] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, 2015, pp. 891–900.

196

[56] A. Bojchevski and S. Gnnemann, “Deep gaussian embedding of graphs: Unsu-
pervised inductive learning via ranking,” in International Conference on Learn-
ing Representations (ICLR), 2018.

[57] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning - Volume 48, ser.
ICML’16, 2016, pp. 40–48.

[58] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” in Advances in Neural Information Processing Systems (NIPS)
30, 2017, pp. 1024–1034.

[59] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network
embedding for learning in a dynamic environment,” in ACM on Conference on
Information and Knowledge Management, ser. CIKM ’17, 2017, pp. 387–396.

[60] B. Vinzamuri and C. K. Reddy, “Cox regression with correlation based regu-
larization for electronic health records,” in IEEE International Conference on
Data Mining (ICDM), 2013, pp. 757–766.

[61] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for survival analysis: A
survey,” ACM Computing Surveys, 2017.

[62] D. R. Cox, “Regression models and life-tables,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 34, no. 2, pp. 187–220, 1972.

[63] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete obser-
vations,” Journal of the American Statistical Association, vol. 53, no. 282, pp.
457–481, 1958.

[64] S. Bhagat, G. Cormode, and S. Muthukrishnan, Node Classification in Social
Networks. Boston, MA: Springer US, 2011, pp. 115–148.

[65] C. Aggarwal, G. He, and P. Zhao, “Edge classification in networks,” in 2016
IEEE 32nd International Conference on Data Engineering (ICDE), 2016, pp.
1038–1049.

[66] S. Fortunato and D. Hric, “Community detection in networks: A user guide,”
Physics Reports, vol. 659, pp. 1 – 44, 2016, community detection in networks:
A user guide.

[67] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using su-
pervised learning,” in In Proceedings of SDM 06 workshop on Link Analysis,
Counterterrorism and Security, 2006.

[68] S. Bhagat, G. Cormode, and I. Rozenbaum, “Applying link-based classifica-
tion to label blogs,” in International Workshop on Social Network Mining and
Analysis. Springer, 2007, pp. 97–117.

[69] A. Azran, “The rendezvous algorithm: Multiclass semi-supervised learning with
markov random walks,” in Proceedings of the 24th international conference on
Machine learning. ACM, 2007, pp. 49–56.

197

[70] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and neg-
ative links in online social networks,” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW ’10, 2010, pp. 641–650.

[71] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,” in Ma-
chine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 437–452.

[72] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-
ommender systa survey of link prediction in complex networksems,” Computer,
no. 8, pp. 30–37, 2009.

[73] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph represen-
tations.” in AAAI, 2016, pp. 1145–1152.

[74] Z. Liaghat, A. H. Rasekh, and A. Mahdavi, “Application of data mining meth-
ods for link prediction in social networks,” Social Network Analysis and Mining,
vol. 3, no. 2, pp. 143–150, Jun 2013.

[75] Z. Wang, C. Chen, and W. Li, “Predictive network representation learning for
link prediction,” in Proceedings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, ser. SIGIR ’17,
2017, pp. 969–972.

[76] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han, “Co-author rela-
tionship prediction in heterogeneous bibliographic networks,” in International
Conference on Advances in Social Networks Analysis and Mining, July 2011,
pp. 121–128.

[77] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: A web-scale approach to probabilis-
tic knowledge fusion,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’14, 2014, pp.
601–610.

[78] B. Zhang, S. Choudhury, M. A. Hasan, X. Ning, K. Agarwal, S. Purohit, and
P. G. P. Cabrera, “Trust from the past: Bayesian personalized ranking based
link prediction in knowledge graphs,” in SDM Workshop on Mining Networks
and Graphs (MNG 2016), 2016.

[79] D. Song and D. A. Meyer, “Link sign prediction and ranking in signed directed
social networks,” Social Network Analysis and Mining, vol. 5, no. 1, p. 52, Sep
2015.

[80] P. Symeonidis and N. Mantas, “Spectral clustering for link prediction in social
networks with positive and negative links,” Social Network Analysis and Mining,
vol. 3, no. 4, pp. 1433–1447, Dec 2013.

[81] I. Esslimani, A. Brun, and A. Boyer, “Densifying a behavioral recommender
system by social networks link prediction methods,” Social Network Analysis
and Mining, vol. 1, no. 3, pp. 159–172, Jul 2011.

[82] N. Z. Gong and W. Xu, “Reciprocal versus parasocial relationships in online
social networks,” Social Network Analysis and Mining, vol. 4, no. 1, pp. 1–14,
2014.

198

[83] J. Cheng, D. M. Romero, B. Meeder, and J. Kleinberg, “Predicting reciprocity
in social networks,” in Privacy, Security, Risk and Trust (PASSAT) and 2011
IEEE Third Inernational Conference on Social Computing (SocialCom), 2011
IEEE Third International Conference on, 2011, pp. 49–56.

[84] X. Feng, J. Zhao, Z. Fang, and K. Xu, “Time-aware reciprocity predic-
tion in trust network,” in Advances in Social Networks Analysis and Mining
(ASONAM), 2014, pp. 234–237.

[85] K. Zhao, X. Wang, M. Yu, and B. Gao, “User recommendations in reciprocal
and bipartite social networks–an online dating case study,” IEEE Intelligent
Systems, vol. 29, no. 2, pp. 27–35, Mar 2014.

[86] P. Xia, B. Liu, Y. Sun, and C. Chen, “Reciprocal recommendation system for
online dating,” in IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ser. ASONAM ’15. ACM, 2015, pp. 234–241.

[87] P. Xia, S. Zhai, B. Liu, Y. Sun, and C. Chen, “Design of reciprocal recommen-
dation systems for online dating,” Social Network Analysis and Mining, vol. 6,
no. 1, p. 32, Jun 2016.

[88] K. Tu, B. Ribeiro, D. Jensen, D. Towsley, B. Liu, H. Jiang, and X. Wang,
“Online dating recommendations: Matching markets and learning preferences,”
in Proceedings of the 23rd International Conference on World Wide Web, ser.
WWW ’14 Companion. ACM, 2014, pp. 787–792.

[89] X. Zang, T. Yamasaki, K. Aizawa, T. Nakamoto, E. Kuwabara, S. Egami, and
Y. Fuchida, “You will succeed or not? matching prediction in a marriage con-
sulting service,” in 2017 IEEE Third International Conference on Multimedia
Big Data (BigMM), April 2017, pp. 109–116.

[90] S. Lagraa and H. Seba, “An efficient exact algorithm for triangle listing in large
graphs,” Data Mining and Knowledge Discovery, vol. 30, no. 5, pp. 1350–1369,
2016.

[91] M. K. Rasel, E. Elena, and Y.-K. Lee, “Summarized bit batch-based triangle
listing in massive graphs,” Information Sciences, vol. 441, pp. 1 – 17, 2018.

[92] K. Shin, J. Kim, B. Hooi, and C. Faloutsos, “Think before you discard: Accurate
triangle counting in graph streams with deletions,” in Machine Learning and
Knowledge Discovery in Databases. Cham: Springer International Publishing,
2019, pp. 141–157.

[93] M. Al Hasan and V. S. Dave, “Triangle counting in large networks: a review,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2017.

[94] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao, “Measurement-
calibrated graph models for social network experiments,” in ACM International
World Wide Web Conference, 2010, pp. 861–870.

[95] D. Romero and J. Kleinberg, “The directed closure process in hybrid social-
information networks, with an analysis of link formation on twitter,” Interna-
tional AAAI Conference on Web and Social Media, 2010.

199

[96] H. Huang, J. Tang, S. Wu, L. Liu, and X. fu, “Mining triadic closure patterns in
social networks,” in Proceedings of the 23rd International Conference on World
Wide Web, ser. WWW ’14 Companion. ACM, 2014, pp. 499–504.

[97] H. Huang, Y. Dong, J. Tang, H. Yang, N. V. Chawla, and X. Fu, “Will triadic
closure strengthen ties in social networks?” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 12, no. 3, p. 30, 2018.

[98] M. Zignani, S. Gaito, G. P. Rossi, X. Zhao, H. Zheng, and B. Y. Zhao, “Link
and triadic closure delay: Temporal metrics for social network dynamics,” in
Eighth International AAAI Conference on Weblogs and Social Media, 2014.

[99] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla, “When will it happen?:
Relationship prediction in heterogeneous information networks,” in ACM In-
ternational Conference on Web Search and Data Mining, ser. WSDM, 2012, pp.
663–672.

[100] M. Li, Y. Jia, Y. Wang, Z. Zhao, and X. Cheng, “Predicting links and their
building time: A path-based approach,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp.
4228–4229.

[101] T. Hocevar and J. Demsar, “A combinatorial approach to graphlet counting,”
Bioinformatics, vol. 30, no. 4, p. 559, 2014.

[102] S. Wernicke and F. Rasche, “Fanmod: A tool for fast network motif detection,”
Bioinformatics, vol. 22, no. 9, pp. 1152–1153, May 2006.

[103] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW ’15, 2015, pp. 495–
505.

[104] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis, “Dis-
tributed estimation of graph 4-profiles,” in Proceedings of the 25th International
Conference on World Wide Web, ser. WWW ’16, 2016, pp. 483–493.

[105] X. Chen, Y. Li, P. Wang, and J. C. S. Lui, “A general framework for estimating
graphlet statistics via random walk,” The VLDB Endowment, vol. 10, no. 3,
pp. 253–264, Nov. 2016.

[106] Y. Lim and U. Kang, “Mascot: Memory-efficient and accurate sampling for
counting local triangles in graph streams,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15, 2015, pp. 685–694.

[107] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal, “TriÈst: Counting local
and global triangles in fully-dynamic streams with fixed memory size,” in Pro-
ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16, 2016, pp. 825–834.

[108] C. Seshadhri, A. Pinar, and T. G. Kolda, “Triadic measures on graphs: The
power of wedge sampling,” in Proceedings of the 2013 SIAM International Con-
ference on Data Mining. SIAM, 2013, pp. 10–18.

200

[109] N. K. Ahmed, T. Willke, and R. A. Rossi, “Exact and estimation of local edge-
centric graphlet counts,” in Proceedings of the 5th International Workshop on
Big Data, Streams and Heterogeneous Source Mining (KDD BigMine), 2016,
pp. 1–10.

[110] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang, “Hetero-
geneous network embedding via deep architectures,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’15, 2015, pp. 119–128.

[111] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and applications,” IEEE Data Eng. Bull., vol. 40, no. 3, pp. 52–74,
2017.

[112] A. Garćıa-Durán and M. Niepert, “Learning graph representations with em-
bedding propagation,” in Advances in neural information processing systems
(NIPS), 2017, pp. 5125–5136.

[113] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-
scale heterogeneous text networks,” in Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ser. KDD ’15,
2015, pp. 1165–1174.

[114] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “User profile preserving social network
embedding,” in Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, 2017, pp. 3378–3384.

[115] P.-Y. Chen, S. Choudhury, and A. O. Hero, “Multi-centrality graph spectral
decompositions and their application to cyber intrusion detection,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2016, pp. 4553–4557.

[116] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[117] U. Zwick, “Exact and approximate distances in graphs a survey,” in Algo-
rithms ESA 2001, ser. Lecture Notes in Computer Science, F. auf der Heide,
Ed. Springer Berlin Heidelberg, 2001, vol. 2161, pp. 33–48.

[118] C. Sommer, “Shortest-path queries in static networks,” ACM Computing Sur-
veys (CSUR), vol. 46, no. 4, pp. 45:1–45:31, Mar. 2014.

[119] D. Yan, J. Cheng, W. Ng, and S. Liu, “Finding distance-preserving subgraphs
in large road networks,” in Data Engineering, ICDE ’13. Proceedings of the
International Conference on, 2013, pp. 625–636.

[120] M. Rice and V. J. Tsotras, “Graph indexing of road networks for shortest path
queries with label restrictions,” The VLDB Endowmen, vol. 4, no. 2, pp. 69–80,
Nov. 2010.

[121] Y. Tao, C. Sheng, and J. Pei, “On k-skip shortest paths,” in ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’11, 2011, pp.
421–432.

201

[122] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest path and
distance queries on road networks: Towards bridging theory and practice,” in
Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, ser. SIGMOD ’13, 2013, pp. 857–868.

[123] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A hub-based
labeling algorithm for shortest paths in road networks,” in International Con-
ference on Experimental Algorithms, ser. SEA’11, 2011, pp. 230–241.

[124] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction hierarchies:
Faster and simpler hierarchical routing in road networks,” in Proceedings of
the 7th International Conference on Experimental Algorithms, ser. WEA’08.
Springer-Verlag, 2008, pp. 319–333.

[125] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest path
queries,” in Algorithms ESA 2005, ser. Lecture Notes in Computer Science,
G. Brodal and S. Leonardi, Eds. Springer Berlin Heidelberg, 2005, vol. 3669,
pp. 568–579.

[126] S. Jung and S. Pramanik, “An efficient path computation model for hierarchi-
cally structured topographical road maps,” IEEE Transactions on Knowledge
and Data Engineering, vol. 14, no. 5, pp. 1029–1046, Sep. 2002.

[127] K. Tretyakov, A. Armas-Cervantes, L. Garćıa-Bañuelos, J. Vilo, and M. Du-
mas, “Fast fully dynamic landmark-based estimation of shortest path distances
in very large graphs,” in ACM on Conference on Information and Knowledge
Management, ser. CIKM ’11, 2011, pp. 1785–1794.

[128] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum, “Fast and accurate
estimation of shortest paths in large graphs,” in ACM on Conference on Infor-
mation and Knowledge Management, ser. CIKM ’10. ACM, 2010, pp. 499–508.

[129] M. Qiao, H. Cheng, L. Chang, and J. Yu, “Approximate shortest distance
computing: A query-dependent local landmark scheme,” IEEE Transactions,
Knowledge and Data Engineering, vol. 26, no. 1, pp. 55–68, Jan 2014.

[130] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path dis-
tance estimation in large networks,” in ACM on Conference on Information
and Knowledge Management, ser. CIKM ’09, 2009, pp. 867–876.

[131] A. D. Zhu, X. Xiao, S. Wang, and W. Lin, “Efficient single-source shortest path
and distance queries on large graphs,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’13, 2013, pp. 998–1006.

[132] R. Jin, N. Ruan, Y. Xiang, and V. Lee, “A highway-centric labeling approach
for answering distance queries on large sparse graphs,” in ACM SIGMOD In-
ternational Conference on Management of Data, ser. SIGMOD ’12, 2012, pp.
445–456.

[133] J. Cheng and J. X. Yu, “On-line exact shortest distance query processing,” in
Proceedings of the 12th International Conference on Extending Database Tech-
nology: Advances in Database Technology, ser. EDBT ’09. ACM, 2009, pp.
481–492.

202

[134] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierarchical hub
labelings for shortest paths,” in Annual European Conference on Algorithms,
ser. ESA’12, 2012, pp. 24–35.

[135] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance queries
on large networks by pruned landmark labeling,” in ACM SIGMOD Interna-
tional Conference on Management of Data, ser. SIGMOD ’13, 2013, pp. 349–
360.

[136] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang, “Relational approach
for shortest path discovery over large graphs,” The VLDB Endowment, vol. 5,
no. 4, pp. 358–369, Dec. 2011.

[137] F. Wei, “Tedi: Efficient shortest path query answering on graphs,” in Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’10. ACM, 2010, pp. 99–110.

[138] J. Cheng, Y. Ke, S. Chu, and C. Cheng, “Efficient processing of distance queries
in large graphs: A vertex cover approach,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD ’12.
ACM, 2012, pp. 457–468.

[139] S. Anand, R. Chandramouli, K. P. Subbalakshmi, and M. Venkataraman, “Al-
truism in social networks: good guys do finish first,” Social Network Analysis
and Mining, vol. 3, no. 2, pp. 167–177, Jun 2013.

[140] J. Valverde-Rebaza and A. de Andrade Lopes, “Exploiting behaviors of commu-
nities of twitter users for link prediction,” Social Network Analysis and Mining,
vol. 3, no. 4, pp. 1063–1074, Dec 2013.

[141] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and
P. Raghavan, “On compressing social networks,” in ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ser. KDD ’09, 2009,
pp. 219–228.

[142] Y.-X. Zhu, X.-G. Zhang, G.-Q. Sun, M. Tang, T. Zhou, and Z.-K. Zhang,
“Influence of reciprocal links in social networks,” PloS one, vol. 9, no. 7, 2014.

[143] V. Zlatić and H. Štefančić, “Influence of reciprocal edges on degree distribution
and degree correlations,” Physical Review E, vol. 80, no. 1, 2009.

[144] M. R. Kuhnt and O. A. Brust, “Low reciprocity rates in acquaintance networks
of young adults: fact or artifact?” Social Network Analysis and Mining, vol. 4,
no. 1, p. 167, Feb 2014.

[145] H. Akaike, Information Theory and an Extension of the Maximum Likelihood
Principle. New York, NY: Springer New York, 1998, pp. 199–213.

[146] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics,
vol. 6, no. 2, pp. 461–464, 03 1978.

[147] S. Adalı and J. Golbeck, “Predicting personality with social behavior: a com-
parative study,” Social Network Analysis and Mining, vol. 4, no. 1, p. 159, Feb
2014.

203

[148] T. Tuna, E. Akbas, A. Aksoy, M. A. Canbaz, U. Karabiyik, B. Gonen, and
R. Aygun, “User characterization for online social networks,” Social Network
Analysis and Mining, vol. 6, no. 1, p. 104, Nov 2016.

[149] M. Shahriari, O. A. Sichani, J. Gharibshah, and M. Jalili, “Sign prediction
in social networks based on users reputation and optimism,” Social Network
Analysis and Mining, vol. 6, no. 1, p. 91, Oct 2016.

[150] M. Roshanaei and S. Mishra, “Studying the attributes of users in twitter con-
sidering their emotional states,” Social Network Analysis and Mining, vol. 5,
no. 1, p. 34, Jul 2015.

[151] P. Bogdanov, M. Busch, J. Moehlis, A. K. Singh, and B. K. Szymanski, “Model-
ing individual topic-specific behavior and influence backbone networks in social
media,” Social Network Analysis and Mining, vol. 4, no. 1, p. 204, Jun 2014.

[152] P. Devineni, D. Koutra, M. Faloutsos, and C. Faloutsos, “Facebook wall posts:
a model of user behaviors,” Social Network Analysis and Mining, vol. 7, no. 1,
p. 6, Feb 2017.

[153] P. Xia, B. Ribeiro, C. Chen, B. Liu, and D. Towsley, “A study of user behavior
on an online dating site,” in 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2013), Aug 2013,
pp. 243–247.

[154] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301–320,
2005.

[155] Z. Wang and C. Wang, “Buckley-james boosting for survival analysis with high-
dimensional biomarker data,” Statistical Applications in Genetics and Molecular
Biology, vol. 9, no. 1, 2010.

[156] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of
the internet topology,” in ACM SIGCOMM computer communication review,
vol. 29, no. 4. ACM, 1999, pp. 251–262.

[157] A. P. C. S. Nurcan Durak, Tamara G Kolda, “A scalable null model for directed
graphs matching all degree distributions: In, out, and reciprocal,” in IEEE
Workshop on Network Science, 2013, pp. 23–30.

[158] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Mute: Majority
under-sampling technique,” in International Conference on Information, Com-
munications and Signal Processing (ICICS). IEEE, 2011, pp. 1–4.

[159] Y. Yang and H. Zou, “A cocktail algorithm for solving the elastic net penalized
cox regression in high dimensions,” Statatistics and Its Interface, vol. 6, no. 2,
pp. 167–173, 2013.

[160] V. S. Dave and M. A. Hasan, TopCom: Index for Shortest Distance Query in
Directed Graph. Springer International Publishing, 2015, pp. 471–480.

[161] ——, “Topcom: Index for shortest distance query in directed graph,” CoRR,
vol. abs/1602.01537, 2016. [Online]. Available: http://arxiv.org/abs/1602.
01537

204

[162] M. J. Pencina and R. B. D’Agostino, “Overall-c as a measure of discrimination
in survival analysis: model specific population value and confidence interval
estimation,” Statistics in Medicine, vol. 23, no. 13, pp. 2109–2123, 2004.

[163] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2121–2159, 2011.

[164] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-order prox-
imity preserved network embedding,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’18, 2018, pp. 2778–2786.

[165] A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse: Versatile graph
embeddings from similarity measures,” in Proceedings of the 2018 World Wide
Web Conference, ser. WWW ’18, 2018, pp. 539–548.

[166] L. Zhang, R. Hong, Y. Gao, R. Ji, Q. Dai, and X. Li, “Image categorization by
learning a propagated graphlet path,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 27, no. 3, pp. 674–685, March 2016.

[167] H. Kashima, H. Saigo, M. Hattori, and K. Tsuda, “Graph kernels for chemoin-
formatics,” Chemoinformatics and adv. machine learning perspectives: complex
computational methods and collaborative techniques, p. 1, 2010.

[168] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga, “Arabesque: A system for distributed graph pattern mining,”
in Proceedings of the 25th ACM Symposium on Operating Systems Principles
(SOSP), Oct 2015.

[169] M. Bhuiyan, M. Rahman, M. Rahman, and M. A. Hasan, “GUISE: uniform
sampling of graphlets for large graph analysis,” in 12th IEEE International
Conference on Data Mining, Brussels, Belgium, 2012, pp. 91–100.

[170] V. Vacic, L. M. Iakoucheva, S. Lonardi, and P. Radivojac, “Graphlet kernels
for prediction of functional residues in protein structures,” Journal of Compu-
tational Biology, vol. 17, no. 1, pp. 55–72, 2010.

[171] A. R. Nabhan and K. Shaalan, “Keyword identification using text graphlet
patterns,” in International Conference on Applications of Natural Language to
Information Systems. Springer, 2016, pp. 152–161.

[172] L. Hermansson, T. Kerola, F. Johansson, V. Jethava, and D. Dubhashi, “Entity
disambiguation in anonymized graphs using graph kernels,” in International
Conference on Information & Knowledge Management, ser. CIKM ’13, 2013,
pp. 1037–1046.

[173] N. K. Ahmed, T. Willke, and R. A. Rossi, “Estimation of local subgraph
counts,” in Proceedings of the IEEE International Conference on Big Data
(IEEE Big Data), 2016, pp. 1–10.

[174] A. Pinar, C. Seshadhri, and V. Vaidyanathan, “Escape: Efficiently counting
all 5-vertex subgraphs,” in Proceedings of the 24th International Conference on
World Wide Web, ser. WWW ’17, 2017.

205

[175] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Conference on Un-
certainty in Artificial Intelligence, ser. UAI ’09, 2009, pp. 452–461.

[176] F. Javed, Q. Luo, M. McNair, F. Jacob, M. Zhao, and T. S. Kang, “Carotene:
A job title classification system for the online recruitment domain,” in 2015
IEEE First International Conference on Big Data Computing Service and Ap-
plications, March 2015, pp. 286–293.

[177] W. Zhou, Y. Zhu, F. Javed, M. Rahman, J. Balaji, and M. McNair, “Quanti-
fying skill relevance to job titles,” in 2016 IEEE International Conference on
Big Data (Big Data), 2016, pp. 1532–1541.

[178] X. Huang, J. Li, and X. Hu, “Label informed attributed network embedding,”
in ACM International Conference on Web Search and Data Mining, 2017, pp.
731–739.

[179] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook net-
works,” Physica A: Statistical Mechanics and its Applications, vol. 391, no. 16,
pp. 4165 – 4180, 2012.

[180] M. J. Zaki and W. M. Jr, Data Mining and Analysis: Fundamental Concepts
and Algorithms. Cambridge University Press, 2014.

[181] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance
queries via 2-hop labels,” in Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ser. SODA ’02, 2002, pp. 937–946.

[182] M. Jiang, A. W.-C. Fu, R. C.-W. Wong, and Y. Xu, “Hop doubling label in-
dexing for point-to-point distance querying on scale-free networks,” The VLDB
Endowment, vol. 7, no. 12, pp. 1203–1214, Aug. 2014.

[183] H. Yildirim, V. Chaoji, and M. Zaki, “Grail: a scalable index for reachability
queries in very large graphs,” The VLDB Journal, vol. 21, no. 4, pp. 509–534,
2012.

[184] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, “Reachability queries on large
dynamic graphs: A total order approach,” in ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’14, 2014, pp. 1323–1334.

[185] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu, “Tf-label: A topological-folding
labeling scheme for reachability querying in a large graph,” in ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13, 2013, pp.
193–204.

[186] V. Dave and M. Hasan, “Topcom: Index for shortest distance query in directed
graph,” in Database and Expert Systems Applications, ser. Lecture Notes in
Computer Science. Springer International Publishing, 2015, vol. 9261, pp.
471–480.

[187] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM Journal on
Computing, 1972.

[188] P. Massa and P. Avesani, “Trust-aware bootstrapping of recommender sys-
tems,” in ECAI Workshop on Recommender Systems, 2006, pp. 29–33.

206

[189] Y. Gao, “Treewidth of erdsrnyi random graphs, random intersection graphs,
and scale-free random graphs,” Discrete Applied Mathematics, vol. 160, no. 45,
pp. 566 – 578, 2012.

VITA

207

VITA

Vachik S. Dave

Education.

• Bachelor of Engineering (B.E.) Computer Engineering

Dharmsinh Desai University, India 2005-2009

• Master of Technology (M.Tech.) Computer and Information Science

National Institute of Technology - Hamirpur (NIT-H), India 2009-2011

Thesis Title: Neural Networks based Model for Software Effort Estimation.

• Doctor of Philosophy (Ph.D.) Computer and Information Science

Purdue University, USA 2013 - Present

Thesis Title: Solving time prediction problems using graphlets and embedding

based local features.

Academic employment and internships.

• Graduate Teaching Assistant Jan, 2013 - Present

Courses: Data Mining, Data Structures, Theory of Computation & Analysis of

Algorithms

• R&D Data Science, Intern @ CareerBuilder, Atlanta, GA Summer, 2016

Project title: company name normalization (SIGKDD-2017).

• Data Science, Intern @ Conversant Media, Chicago, IL Summer, 2017

Identifier team: To identify set of attributes as an individual person from knowl-

edge graph.

208

Academic Award: Best Teaching Assistant in Computer Science Department,

Purdue School of Science.

Publications

Conference papers.

1. Vachik S. Dave, and Mohammad Al Hasan. “Triangle Completion Time Predic-

tion using Time-conserving Embedding” The European conference on Machine

Learning and Principles of Knowledge Discovery in Databases (ECML-PKDD),

Sept-2019.

2. Vachik S. Dave, Baichuan Zhang, Mohammad Al Hasan, Khalifeh AlJadda and

Mohammed Korayem. “A combined representation learning approach for better

job and skill recommendation” ACM Conference on Information and Knowledge

Management (CIKM), Oct-2018.

3. Vachik S. Dave, Nesreen Ahmed and Mohammad Al Hasan. “E-CLoG: Count-

ing Edge-Centric Local Graphlets” IEEE International Conference on Big Data

(IEEE BigData), 2017.

4. Qiaoling Liu, Faizan Javed, Vachik S. Dave and Ankita Joshi. “Supporting Em-

ployer Name Normalization at both Entity and Cluster Level” ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD),

Aug-2017.

5. Vachik S. Dave and Mohammad Al Hasan. “How Fast Will You Get a Response?

Predicting Interval Time for Reciprocal Link Creation” AAAI International Con-

ference on Web and Social Media (ICWSM), May-2017.

6. Vachik S. Dave and Mohammad Al Hasan. “TopCom: Index for Shortest Dis-

tance Query in Directed Graph” Database and Expert Systems Applications

(DEXA), Sept-2015.

7. Vachik S. Dave and Kamlesh Dutta. “Neural Network based Software Effort

Estimation Evaluation criterion MMRE” International Conference on Computer

Communication Technology (ICCCT), September 2011.

209

8. Vachik S. Dave and Kamlesh Dutta. “Application of Feed-Forward Neural Net-

work in estimation of Software Effort”, International Symposium on Devices

MEMS, Intelligent Systems and Communication (ISDMISC), Jan 2011.

Journal papers.

1. Vachik S. Dave, Baichuan Zhang, Pin-Yu Chen and Mohammad Al Hasan.

“Neural-Brane: Neural Baysian Personalized Ranking for Attributed Network

Embedding” Data Science and Engineering a Springer Open Journal, June-2019.

2. Kamlesh Dutta, Varun Gupta and Vachik S. Dave. “Analysis and comparison

of Neural Network models for software development effort estimation” Journal

of Cases on Information Technology (JCIT), Volume 21, Issue 2, April-2019.

3. Vachik S. Dave and Mohammad Al Hasan. “Predicting Interval Time for Re-

ciprocal Link Creation” Social Network Analysis and Mining, March-2018.

4. Mohammad Al Hasan and Vachik S. Dave. “Triangle counting in large net-

works: a review” Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, Oct-2017.

5. Baichuan Zhang, Noman Mohammed, Vachik S. Dave, and Mohammad Al

Hasan. “Feature Selection for Classification under Anonymity Constraint” Trans-

actions on Data Privacy (TDP), Volume 10, Issue 1, April-2017.

6. Vachik S. Dave and Kamlesh Dutta. “Neural network based models for software

effort estimation: a review” Artificial Intelligence Review, Springer Publication,

May-2014.

7. Vachik S. Dave and Kamlesh Dutta. “Comparison of Regression model, Feed-

forward Neural Network and Radial Basis Neural Network for Software Develop-

ment Effort Estimation” ACM SIGSOFT Software Engineering Notes, September-

2011.

