EVALUATING ARCADIA/CAPELLA VS. OOSEM/SYSML FOR SYSTEM

ARCHITECTURE DEVELOPMENT

A Thesis
Submitted to the Faculty
of
Purdue University
by

Shashank P. Alai

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Science in Mechanical Engineering

August 2019
Purdue University

Indianapolis, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Hazim El-Mounayri, Chair

Department of Mechanical and Energy Engineering
Dr. Zina Ben Miled

Department of Electrical and Computer Engineering
Dr. Joerg Schreiber

Department of Mechanical and Energy Engineering
Dr. Xiaoping Du

Department of Mechanical and Energy Engineering

Approved by:
Dr. Sohel Anwar
Head of the Graduate Program

11

To my family.

111

v

ACKNOWLEDGMENTS

While researching in an area that has taken pace very recently, I realized the mag-
nitude of the challenges one faces while grasping the fundamentals. I was fortunate to
have a strong support of advisers from academia as well as industry. I would like to
express my deepest gratitude to my advisor, Dr. Hazim El-Mounayri for his continu-
ous motivation and guidance in exploring territories that had seldom been my strong
suits. I could not have imagined a better advisor and mentor for my Master’s thesis.
I would also like to thank my committee members Dr. Zina Ben Miled, Dr. Joerg
Schreiber and Dr. Xiaoping Du for their insightful comments and encouragements.
Also, thanks to my advisor and the Mechanical and Energy Engineering department
at IUPUT for supporting me financially. T would like to specially thank Ryan Wilkins
from Siemens PLM Software and Dr. Michael Pfenning from Aras Corporation for
being the coolest mentors and for engaging me into substantive conversations. I al-
ways benefited from their insightful references from industry on topics covering a
broad spectrum of domains. Many thanks to Tony Komar and Jason Wickers for
their insightful tutoring and many others from Siemens PLM Software (especially
Tim Kinman and Jerry Sarfati) for providing me with opportunities to gain insights
into topics that a graduate student could hardly expect. Thank you to Dr. Stephane
Bonnet from Thales Group and Stephane Lacrampe (Obeo) for taking time out of
their busy schedule to review the initial results of the study. I would also like to thank
Kai Pankrath from XPLM for his invaluable guidance in my initial days of research.
Thank you to my senior colleague Kalpak Kalvit for his help in developing architec-
tures. To my friends, especially Akshay, Ashwin, Nikhil, Shantanu, Niraj, Atish and
Vikhil, and to my lab colleagues, especially Hosein, Amey and Prasad, thanks for
being there in my crucial times and supporting me throughout my journey. Finally,

many thanks to my family for their continuous faith and support in me and my work.

TABLE OF CONTENTS

Page

LIST OF TABLES viii
LIST OF FIGURES ix
ABBREVIATIONS o e xii
ABSTRACT e XV
1 INTRODUCTION e 1
1.1 Background 4
1.1.1 Systems Engineering Lifecycle 4

1.1.2 Challenges in Implementing Model-Based Systems Engineering . 6

1.1.3 The Systems Modeling Language (SysML) 8

1.2 Motivationo 9
1.2.1 Industry 4.0 Challenges. 9
1.2.2 Drawbacks of the SysML Standard/Tooling Challenges 10
1.2.3 Benefits of Methodological Guidance Within Tools. 11

1.3 Literature Review 12
1.3.1 Existing Model-Based Systems Engineering Methodologies . . . 12
1.3.2 Methodology-Specific Implementations 15
1.3.3 Previous Comparison Studies 15

1.4 Literature Gap 16
1.5 Thesis Objectives 16
1.6 Thesis Assumptions 17
1.7 Thesis Organization 17
2 METHODOLOGY e e 19
2.1 Systems Engineering Technical Processes 20

2.2 Architecture Development Workflow 23

3

4

vi

Page
2.2.1 Operational Analysis 24
2.2.2 System Requirements Analysis. 25
2.2.3 Logical Architecture Definition 26
2.2.4 Physical Architecture Definition 26
2.3 The ARCADIA Method 27
2.3.1 Polarsys Capella™ 0. 29
2.4 Object-Oriented Systems Engineering Method (OOSEM) 29
2.4.1 No Magic Cameo Enterprise Architecture™ 31
2.5 Object-Process Methodology 31
CASE STUDY: DESCRIPTION 32
3.1 Adaptive Cruise Control Architecture 32
3.1.1 ACC Modeled Using Object-Process Methodology (OPM) . . . 35
3.2 Evaluation Criteria 42
3.2.1 Representation of a ‘Good’ Architecture 42
3.2.2 Key Process Deliverables 0. 44
3.2.3 Framework for the Evaluation of MBSE Methodologies for Prac-
titioners (FEMMP) [40] 45
CASE STUDY: IMPLEMENTATION 48
4.1 Modeling ACC Using OOSEM/SysML 48
4.1.1 Operational Analysis 51
4.1.2 System Requirement Analysis 55
4.1.3 Logical Architecture Definition 65
4.1.4 Physical Architecture Definition 68
4.2 Modeling ACC Using ARCADIA /Capella 75
4.2.1 Operational Analysis 78
4.2.2 System Requirements Analysis. 84
4.2.3 Logical Architecture Definition 91
4.2.4 Physical Architecture Definition 96

vii

Page

5 RESULTS AND DISCUSSION 100
5.1 Ewvaluation 100
5.1.1 Representativeness of a ‘Good’” Architecture 100

5.1.2 Key Process Deliverables 102

5.1.3 Evaluation of Methodologies 107

5.1.4 Generalization of Results 109

5.2 Key Highlights and Differences 110
5.3 System Architecture Modeling and the Digital Thread 115
5.4 MBSE Practitioner Survey 118

6 CONCLUSION AND FUTURE SCOPE 120
6.1 Conclusions 120
6.2 Future Work 122
6.2.1 Limitations 122

6.2.2 Short-term 122

6.2.3 Long-term 123

REFERENCES 124

Viil

LIST OF TABLES

Table Page
3.1 ACC ‘Stakeholder Needs’ 35
3.2 Architecture evaluation criteria 43
3.3 Architecture development phases - deliverable artifacts 45
3.4 FEMMP catalog [40] A7

4.1 ‘PMTE’ elements mapped to architecture development using
OOSEM/SysML 48

4.2 ‘PMTE’ elements mapped to architecture development using ARCADIA /Capella75
5.1 ARCADIA/Capella and OOSEM /SysML vs. OPM architecture

ASSESSINENt L. 101
5.2 Architecture deliverable artifacts after Operational Analysis 103
5.3 Architecture deliverable artifacts after System Requirements Analysis . . 104
5.4 Architecture deliverable artifacts after Logical Architecture Definition . . 105

5.5 Architecture deliverable artifacts after Physical Architecture Definition . 106

5.6 Overview of evaluation of candidate methodologies using FEMMP 108

LIST OF FIGURES

1X

Figure Page

1.1 SEBoK’s rendering of the system lifecycle processes defined by the
ISO/IEC/IEEE 15288 Standard [11]

1.2 “PMTE” elements and effects of ‘Technology’ and ‘People’ [14]
2.1 Research methodology chart,

2.2 System life cycle processes per ISO/TEC/IEEE 15288 characterized in pro-
cess [3] . ..

2.3 Generic architecture development workflow derived from ISO 15288 tech-
nical processes L

2.4 Different phases/layers of the ARCADIA method [43]
2.5 OOSEM activities and modeling artifacts [3]
3.1 ACC-equipped vehicle external relationships [46]
3.2 ACC control structure [48]
3.3 ‘Providing ACC’ modeled as a OPM process
3.4 Top-level OPM System Diagram
3.5 Object-Process Language for SD
3.6 Object-Process Diagram for SD1: ‘Providing ACC’ in-zoomed
3.7 Object-Process Language for SD1: ‘Providing ACC’ in-zoomed

3.8 Object-Process Diagram for SD1.1: ‘Calculating relative parameters’ in-
zoomed

3.9 Object-Process Language for SD1.1: ‘Calculating relative parameters’ in-
zoomed ...

3.10 Object-Process Diagram for SD1.2: ‘Maintaining distance’ in-zoomed . . .
3.11 Object-Process Language for SD1.2: ‘Maintaining distance’ in-zoomed . . .
3.12 FEMMP evaluation metrics [40]
4.1 SysML Diagram Taxonomy

Figure Page
4.2 ‘Specify and Design System’ activities in OOSEM 51
4.3 ‘Operational Domain’ bdd 53
4.4 SysML use case diagram (uc) for ACC System Use Cases 54
4.5 SysML requirement diagram (req) for ‘Stakeholder Requirements 55
4.6 SysML sequence diagram (sd) for ‘Turn ACC ON’ scenario 56
4.7 SysML activity diagram (act) scenario for ‘Provide ACC’ use case 58
4.8 ‘ACC Interface Definitions’ using bdd 59
4.9 ‘ACC System Context’ using tbd 61
4.10 ACC System Black Box Specification 62
4.11 SysML state machine diagram (stm) for ‘ACC System States’ 63
4.12 System requirements modeled in SysML requirement diagram (req) 64
4.13 SysML bdd for ‘ACC Logical Decomposition” 66
4.14 SysML activity diagram (act) for ‘calculate relative parameters’ function . 67
4.15 ‘ACC System Logical Architecture’ using SysML ibd 68
4.16 ‘ACC Logical Nodes” bdd 69
4.17 ‘ACC Node Logical Architecture’ using ibd 71
4.18 ‘ACC Node Physical’ bdd 72
4.19 ‘ACC Node Physical Architecture’ using SysML ibd 73
4.20 Architecture development pyramid: OOSEM/SysML 74
4.21 ARCADIA/Capella Diagram Taxonomy 7
4.22 ‘ACC System’ Operational Entities Breakdown [OED] diagram 79
4.23 Capella operational capability using Operational Capability Blank [OCB]
diagram 80
4.24 ‘Provide ACC’ operation modeled using Operational Activity Interaction
Blank [OAIB] o 81
4.25 ‘Vehicle Operational States’ using Mode State Machine [MSM] diagram . . 82
4.26 ‘Operational Architecture’ using ARCADIA Operational Architecture Blank
[OAB] diagram 83
4.27 ACC System Context 85

x1

Figure Page
4.28 Capella mission and system capabilities using Missions Capabilities Blank

diagram [MCB] 86
4.29 ‘Provide ACC’ functions modeled using System Data Flow Blank [SDFB]

diagramo 86
4.30 Operational to system level function decomposition 87
4.31 ‘ACC System Architecture’ using the System Architecture Blank [SAB]

diagramo 88
4.32 ‘Turn ACC ON’ exchange scenario using the Exchange Scenario [ES]

diagramo 89
4.33 ‘ACC System States’ using Mode State Machine [MSM] diagram 90
4.34 Functional allocation to logical components 92
4.35 Logical function decomposition 93
4.36 ‘ACC System Logical Architecture’ modeled in Logical Architecture Blank

[LAB] diagram 95
4.37 ‘Physical Architecture’ using ARCADIA Physical Architecture Blank [PAB]

diagramo 98
4.38 Architecture development pyramid: ARCADIA/Capella 99
5.1 Functional transitions in Capella 110
5.2 Function decomposition in SysML and ARCADIA /Capella 111
5.3 Satisfy Requirement Matriz in Cameo Enterprise Architecture 113
5.4 Capella functional chain and scenario 115
5.5 What model-based systems engineering method/methodology do you fol-

low in your projects? (can select multiple) 118
5.6 How well does your system architecture support the integration of behavior

with structure?o 119
5.7 How well does your system modeling activity support your functional anal-

ysis capability?o 119

MBSE
SysML
ARCADIA
OOSEM
ACC

SE
INCOSE
ADAS
NASA
DoD

ISO

IEC
[EEE
CAD
PMTE
OMG
V2

RFP
UML
IBM
PBSE
SYSMOD
VAMOS
FAS

xii

ABBREVIATIONS

Model-Based Systems Engineering

Systems Modeling Language

Architecture Analysis and Design Integrated Approach
Object-Oriented Systems Engineering Method
Adaptive Cruise Control

Systems Engineering

International Council on Systems Engineering
Advanced Driver Assistance Systems

National Aeronautics and Space Administration
Department of Defense

International Organization for Standardization
International Electrotechnical Commission

The Institute of Electrical and Electronics Engineers
Computer-Aided Design

Process, Methods, Tools, Environment

Object Management Group

Version 2

Request for Proposal

Unified Modeling Language

International Business Machines Corporation
Pattern-Based Systems Engineering

Systems Modeling Toolbox

Variant Modeling with SysML

Functional Architectures using SysML

STRATA
JPL
OPM
SoS
MDDM
TOGAF
DoDAF
NAF
NATO
FA

OPD

SD

OPL
FEMMP

Ul
req
API
bdd
uc
1bd
sd
act
stm
OED
OCB
OAIB
MSM
OAB

xiil

Strategic Layers

Jet Propulsion Laboratory
Object-Process Methodology

System of Systems

Model-Driven Development Methodology
The Open group Architecture Framework
Department of Defense Architecture Framework
NATO Architecture Frameowrk

The North Atlantic Treaty Organization
Functional Analysis

Object-Process Diagram

System Diagrams

Object-Process Language

Framework for the Evaluation of MBSE Methodologies for Prac-
titioners

User Interface

requirement diagram

Application Programming Interface

block definition diagram

use case diagram

internal block diagram

sequence diagram

activity diagram

state machine diagram

Operational Entity Breakdown
Operational Capability Blank
Operational Activity Interaction Blank
Mode State Machine

Operational Architecture Blank

SA
CSA
MCB
SDFB
SAB
LA
ES
LDFB
LAB
PA
PAB
PC
EPBS
REC
RPL
PLM
XML
XMI
RVTM

System Analysis

Contextual System Actors
Missions Capabilities Blank
System Data Flow Blank
System Architecture Blank
Logical Architecture

Exchange Scenario

Logical Data Flow Blank
Logical Architecture Blank
Physical Architecture

Physical Architecture Blank
Physical Component
End-Product Breakdown Structure
Replicable Element Collection
Replica

Product Lifecycle Management
eXtensible Markup Language
XML Metadata Interchange

Requirements Verification Traceability Matrix

X1v

XV

ABSTRACT

Alai, Shashank P. M.S.M.E., Purdue University, August 2019. Evaluating ARCA-
DIA /Capella vs. OOSEM/SysML for System Architecture Development. Major
Professor: Dr. Hazim El-Mounayri.

Systems Engineering is catching pace in many segments of product manufacturing
industries. Model-Based Systems Engineering (MBSE) is the formalized application
of modeling to perform systems engineering activities. In order to effectively utilize
the complete potential of MBSE, a methodology consisting of appropriate processes,
methods and tools is a key necessity. In the last decade, several MBSE projects have
been implemented in industries varying from aerospace and defense to automotive,
healthcare and transportation. The Systems Modeling Language (SysML) standard
has been a key enabler of these projects at many companies. Although SysML is
capable of providing a rich representation of any system through various viewpoints,
the journey towards adopting SysML to realize the true potential of MBSE has been
a challenge. Among all, one of the common roadblocks faced by systems engineers
across industries has been the software engineering-based nature of SysML which
leads to difficulties in grasping the modeling concepts for people that do not possess
a software engineering background. As a consequence, developing a system (or a sys-
tem of systems) architecture model using SysML has been a challenging task for many
engineers even after a decade of its inception and multiple successive iterations of the
language specification. Being a modeling language, SysML is method-agnostic, but its
associated limitations outweigh the advantages. ARCADIA (Architecture Analysis
and Design Integrated Approach) is a systems and software architecture engineering
method based on architecture-centric and model-based engineering activities. If ap-

plied properly, ARCADIA allows for a very effective way to model the architecture

XVvi

of multi-domain systems, and overcome many of the limitations faced in traditional
SysML implementation. This thesis evaluates the architecture development capa-
bilities of ARCADIA /Capella versus SysML following the Object-Oriented Systems
Engineering Method (OOSEM). The study focuses on the key equivalences and dif-
ferences between the two MBSE solutions from a model development perspective and
provides several criteria to evaluate their effectiveness for architecture development
using a conceptual case of Adaptive Cruise Control (ACC). The evaluation is based
on three perspectives namely, architecture quality, ability to support key process de-
liverables, and the overall methodology. Towards this end, an industry-wide survey of
MBSE practitioners and thought leaders was conducted to identify several concerns in
using models but also to validate the results of the study. The case study demonstrates
how the ARCADIA /Capella approach addresses several challenges that are currently
faced in SysML implementation. From a process point of view, ARCADIA /Capella
and SysML equally support the provision of the key deliverable artifacts required in
the systems engineering process. However, the candidate architectures developed us-
ing the two approaches show a considerable difference in various aspects such as the
mapping of the form to function, creating functional architectures, etc. The ARCA-
DIA /Capella approach allows to develop a ‘good’ system architecture representation
efficiently and intuitively. The study also provides answers to several useful criteria
pertaining to the overall candidate methodologies while serving as a practitioner’s

reference in selecting the most suitable approach.

1. INTRODUCTION

“For of all things that have several parts and where the totality of them
1s not like a heap, but the whole is something beyond the parts, there is
some cause of it, since even among bodies, in some cases contact is the
cause of their being one, in others stickiness, or some other attribute
of this sort. A definition, however, is an account that is one not by
being bound together, like the Iliad, but by being of one thing.”

Aristotle, Metaphysics

The fundamental underpinnings of systems engineering (SE) lie in the school of thought
of system thinking, which is quite simply, thinking about a question, circumstance, or
problem explicitly as a system. System thinking is not thinking systematically [1]. This
leads us to the fundamental question, what is a ‘system’? A system can be defined as a set of
entities that interact or are interrelated. There is a lot of wisdom in this definition which has
facilitated the development of a completely new mode of reasoning and eventually helping
many problem solvers within domains like philosophy, science, engineering, management
and even political science solve complex problems through a holistic, multi-disciplinary
perspective. System thinking has provided us with the idea of emergence, stressing that
“the system is a set of entities and their relationships, whose functionality is greater than
the sum of the individual entities” [1], that is, “the properties of the whole cannot be
solely explained by the principles of the constituent elements” [2]. The same idea can be
applied to engineered systems and hence the discipline, systems engineering. In classical
SE, every product that is being realized is considered as a system made up of various
elements linked together, intended to perform a certain required function as a whole that
is different than the functions of its individual elements. In such a system, the behavior
of the system is greatly influenced by the structural and functional relationships between
the system elements. Understanding the influence of a system’s structure on its behavior is

perhaps the greatest unsolved mystery in the systems domain.

Systems engineering is becoming more and more popular among industries like automo-
tive, transportation, medical devices, etc. The INCOSE SE Handbook defines SE as “an
interdisciplinary approach and means to enable the realization of successful systems” [3].
As mentioned in the handbook, “SE deals with designing and managing systems over their
lifecycle, starting from the system conceptualization phase till its disposal. It focuses on
defining customer needs and required functionality early in the development cycle, docu-
menting requirements, and then proceeding with design synthesis and system validation
while considering the complete problem: operations, cost and schedule, performance, train-
ing and support, test, manufacturing, and disposal. SE integrates all the disciplines and
specialty groups into a team effort forming a structured development process that proceeds
from concept to production to operation. SE considers both the business and the techni-
cal needs of all customers with the goal of providing a quality product that meets the user
needs” [3]. One of the primary artifacts that is expected at an early stage of this methodical
paradigm is an architecture of the system under development that describes its structural
and behavioral aspects in an integrated context. The INCOSE ‘Systems Engineering Vision
2025’ manual mentions system architecture as a crucial discipline for successful SE in the fu-
ture [4]. Until recently, SE was practiced with the help of physical documents to manage and
pass system information across stakeholders in various system lifecycle phases. Although
the document-based approach to SE could be successfully realized with proven benefits, it
had some fundamental limitations [5] [6]. Moreover, increasingly complex systems demand
a more formalized approach to carry out SE activities. Model-based approach is becoming
the industry standard in SE. Having roots in software engineering, the formalization of SE
is called model-based systems engineering (MBSE). MBSE provides means to design ar-
chitectures of complex systems of systems (hereafter inclusively referred to as ‘system(s)’)
using computerized models as opposed to physical documents. MBSE provides several ad-
vantages over traditional document-based SE such as end-to-end requirements traceability,
improved communication, increased ability to manage system complexity, etc. [3].

In this era of digitalization, manufacturing companies are witnessing a shift from document-
based SE to MBSE in order to catch up with the technological needs of Industry 4.0 [7],
thereby facing tremendous challenges in the transition. One of the major challenges is to

select the right set of processes, methods and tools required to implement a company’s

MBSE strategy. Specifically, selecting an appropriate architecture modeling tool is a huge
talking point among systems engineers within an organization and there seems to be a lack
of consensus within the MBSE community as well. An architecture tool is the most crucial
element of the MBSE toolchain as the system architecture significantly influences the de-
cision making in the downstream engineering and management processes. Currently, there
are various architecture modeling methodologies, frameworks and enabling tools/languages
available that satisfy the architecture modeling purposes. Unfortunately, very few of these
are efficient and semantically rich enough to provide a shared understanding among various
stakeholders. The Systems Modeling Language (SysML) applied with a particular method-
ology, and the ARCADIA method-integrated Capella tool are among the few widely used
architecture modeling solutions, each having its own advantages and limitations. SysML
is a tool-neutral, general purpose modeling language that supports the analysis, specifica-
tion, design, verification, and validation of complex systems [8]. Architecture Analysis &
Design Integrated Approach (ARCADIA) is an architecture engineering method, based on
architecture-centric and model-driven engineering activities [9]. Capella is a modeling soft-
ware that supports the ARCADIA method through an integrated process guidance [10].
A primary distinction between SysML and ARCADIA/Capella is that the former is a
method-agnostic language that provides syntax and semantics to model complex archi-
tectures, whereas, the latter is a combination of a SE method and a supporting tool that
together provide the required syntax and semantics, and the latter is actually inspired by the
SysML concepts to simplify, enhance and enrich the SysML metamodel thereby enhancing
a modeler’s experience. There is a strong need to evaluate the two architecture modeling
solutions using various criteria in order to provide a preliminary basis for an enterprise to
effectively transition to model-based architecting. This thesis will investigate the two solu-
tions and evaluate them on their ability to support system architecture development. The
study will be performed using a case study of an Adaptive Cruise Control (ACC) feature,
which is a part of the Advanced Driver Assistance Systems (ADAS). This chapter provides

the background, motivation, literature review, objectives and assumptions of this research.

1.1 Background

This section provides background on SE lifecycle, SysML, and the challenges in adopting
MBSE. The SE process is a holistic approach to engineering the system over its life cycle.
Hence it is crucial to set a premise by describing the system’s life cycle and its stages and

then focus on the important aspects of architecture development.

1.1.1 Systems Engineering Lifecycle

Systems engineering life cycle is a term used in SE to describe the process of the evolution
of a system through different phases, starting from its conception and ending with its
disposal. The INCOSE SE Handbook defines a life cycle as “the series of stages through
which something (a system or a manufactured product) passes.” “Every man-made system
has a life cycle. The life cycle of any system must encompass not only the development,
production, utilization and support stages but also provide early focus on the retirement
stage when the decommissioning and disposal of the system occurs” [3].

The primary purpose of SE is to manage the system at every stage of its life cycle.
Various lifecycle development models have been defined to provide a framework to ensure
that the system meets its desired goals throughout its life. The life cycle models differ
from industry to industry and product to product. Several life cycle models have been
defined by key players like The National Aeronautics and Space Administration (NASA),
the US Department of Defense (DoD) and others. These lifecycle models may differ in
terms of the processes and the methods involved in the different life cycle stages, however, a
generic life cycle model can be deduced such that it encompasses all the processes involved
in the different generic stages while satisfying the purposes of each of those stages. One
such generalization has been done by the ISO/IEC/IEEE 15288:2015 standard as shown in
Figure 1.1 [3].

It consists of mainly 6 stages: The Concept Stage deals with a wide range of creative
activities like the definition of the problem space that involves exploratory research ac-
tivities, identifying stakeholders’ needs and defining solution characteristics, exploring new
ideas and technologies, need refinement, exploring feasible concepts and viable solutions and

finally, concept selection. The Development Stage focuses on developing the system such

Life Cycle Stages

Exploratory

Investigate new opportunities
Explore technology readiness

Decision Evaluate pre-concept match with ALTERNATIVE
users’ needs DECISION
Gate
L, GATE
| Concept Identify stakeholders needs OUTCOMES
o Evaluate alternate concepts
Decision Recommend possible solutions * Proceed to
Gate next stage
! Development Develop detailed planning * Proceed but
Identify and manage risks open action
d business opportunities tems must
Decision an pp . be resolved
Gate Perform IV & V activities « Not ready:
N - repeat the
~ Production Produce systems previous
Decision Inspect and Test stage
Gate, .
_ - —— - * Terminate
l Utilization Operate system to satisfy users' needs ‘ the project
Decision

Provide sustained system capability |

Store, archive or dispose of system ‘

Figure 1.1.: SEBoK’s rendering of the system lifecycle processes defined by the
ISO/IEC/IEEE 15288 Standard [11]

that it meets the stakeholder requirements. A key purpose of this stage is to define system
requirements, create solution description, implement and integrate the initial systems and
verify and validate systems such that they can be produced. The Production Stage focuses
on the production and manufacturing of the systems along with their inspection and veri-
fication. The Utilization Stage occurs when the system is operated by the end user, where
main purpose is to deliver the services expected of the system by the end user. The Support
Stage occurs when the system is provided the required support for its continued operation.
Finally, The Retirement Stage occurs when the system is disintegrated and is retired from
its operations. Based on the type of the retirement desired, the system is either stored,
archived or disposed.

As the system proceeds through its lifecycle phases, it has to meet specific project de-
cision gates based on which, the system either moves on to the next phase with or without

action items, continues in its current stage, moves back or even results in project termina-

tion. The lifecycle models have been mapped to various graphical illustrations that describe
sequential flow of system’s lifecycle. The most widely accepted illustration is the SE ‘Vee’
model in which time and system maturity proceeds from left to the right across the V-shaped

workflow [3].

1.1.2 Challenges in Implementing Model-Based Systems Engineering

The ‘INCOSE SE Vision 2020’ document aptly defines MBSE as the formalized ap-
plication of modeling to support SE activities throughout the lifecycle phases [12]. For a
successful implementation of an MBSE approach, it is imperative that the modeling activ-
ities support the SE processes that occur in the lifecycle stages described in the previous
subsection. In order to achieve such implementation, a robust modeling methodology con-
sisting of various ‘processes’, ‘methods’ and ‘tools’ is essential such that it could support
SE in a model-based context. The usage of the abovementioned terminologies has not been
precise for a long time and these semantic discrepancies have implications on the enable-
ment of any technology in an engineering environment. A survey study showed that ‘term’
understanding among systems engineers in academia and industry is still very heteroge-
neous [13]. Although the study did not survey the usage of the abovementioned terms, it

is critical to define these terms beforehand to avoid ambiguity.

In [6], Estefan, J.A. uses the following definitions from [14] to distinguish these key

terminologies:

e “A Process (P) can be defined as a logical sequence of tasks performed to achieve a
particular objective. It defines ‘WHAT" is to be done, without specifying ‘HOW’
each task is performed” [6]. SE process can be seen as a process model that defines
the primary activities to be accomplished to implement SE. The ISO/IEC/IEEE

15288 standard provides one such process model of processes required for SE.

e “A Method (M) involves techniques for performing a particular task. It defines the
‘HOW’ of each task. At any given level, process tasks are performed using methods.
However, every method is also a process in itself which includes a sequence of tasks to

be performed for that particular method. In other words, the ‘HOW’ at one level of

abstraction can become the ‘WHAT" at the next lower level” [6]. For example, system
architecture development can be executed using a particular method that includes a

series of tasks like functional analysis, logical and physical architecture definition, etc.

e “A Tool (T) can be defined as an instrument that, when applied to a particular method,
can enhance the efficiency of the task, provided it is applied properly and by somebody
with proper skills and training. The purpose of a tool is to facilitate the accomplish-
ment of the ‘HOWSs™ [6]. The most common example of a tool is Computer Aided
Design (CAD). However, a tool need not necessarily be computer-supported and can

also be something like a theoretical problem-solving instrument.

A Methodology is a combination of processes, methods and tools that are applied to
a class of common problems. The supporting environment is also associated with these
definitions. An Environment (E) consists of the surroundings, the external objects, con-
ditions or factors that influence the actions of an object, individual person or group. The
environment enables the ‘WHAT’ and ‘HOW’ [6]. Several environmental factors such as
social, cultural, political or economic have significant implications on the adoption of any
technology. Similar challenges also apply for successful adoption of MBSE [15].

The PMTE diagram in Figure 1.2 shows the relationship between the process, methods,
tools and environment (‘PMTE’ elements) and the effects of technology and people on those
elements [14]. In any SE development project, the capabilities and limitations of technology
must be taken into consideration. Moreover, the knowledge, skills and abilities of the people
using the technology must be taken into consideration and employee enhancement initiatives
must be undertaken. This argument can also be extended to MBSE.

The main purpose of an MBSE environment is to be able to integrate the tools and
methods used on a project. Various environmental factors will impact the adoption of
new MBSE tools. In order to make a smooth transition to MBSE, management and tool
deployment cultural roadblocks should be overcome along with overcoming the existing
engineering challenges [16]. In [15], M.E. Sampson points out the management roadblocks
that usually hinder SE tool adoption. One of the main challenges is to get the organization
management and customer on board with a commitment to allow the systems engineers

to successfully use the tools along with proper tool support, maintenance and training.

PROCESS
(defines "WHAT")

supportad by l T SUpport

/

ABILITIES {KSAs)
mroOom™

\

METHODS
(define "HOW?")

Ty supportedbyl T

TOOLS

\ (enhance "WHAT” & “HOW")

su,uportedbyl T support

\

KNOWLEDGE, SKILLS &

<OOoOrozZzxTom4d
CAPABILITIES &
LIMITATIONS

N\

ENVIRONMENT
(enables/disables "WHAT & "HOW")

Figure 1.2.: “PMTE” elements and effects of ‘Technology’ and ‘People’ [14]

Also, timely application of the tools during the processes impacts hugely on its evaluation.
Not only the management roadblocks, but several cultural roadblocks can hamper the tool
adoption process. Systems engineers have a strong predisposition to“rolling their own”
tool [15]. This makes it even harder to convince the current SE practitioners to adopt a
model-based approach. Moreover, the ergonomics of using the tool contribute to the human
factors that can prevent MBSE adoption. Last but not the least, systems engineers show
a significant resistance to change in using new SE tools. A similar pattern can be assumed
for the MBSE tools. Especially in the case of SysML, where systems engineers have been
using it for several years now, it is going to be critical to make sure that the advantages of
newer tools outweigh the consequences that might result from moving away from a standard
like SysML. Respecting the fact that significant efforts have been taken to adopt SysML
on large scale projects, the effective means for a smoother transition to alternative tools, if

needed, should be carefully pondered upon.

1.1.3 The Systems Modeling Language (SysML)

SysML is an object-oriented, semi-formal, graphical language used to model architec-
tures of complex systems. SysML was introduced as a modeling language in the year 2006
by the Object Management Group (OMG) [8] as a formal specification and later published
as a standard by the International Organization of Standardization (ISO) [17]. The advent

of SysML sparked a revolution in the SE paradigm as the language could be used for repre-
senting the various aspects of a system architecture through various viewpoints within an
integrated model. SysML promised to fulfill the ‘T’ of the ‘PMTE’ elements by serving as
the metaphorical ‘Tool’, which when applied using an appropriate ‘Method(s)’ to support
a well-defined ‘Process’ model incorporated within a suitable ‘Environment’ could yield
potentially significant benefits to systems architecting [18]. SysML is able to describe the
following key aspects of systems, components, and other entities using nine different types
of diagrams [18] :

e Composition, interconnection, and classification of structure;

e Behavior based on functional flows, messages and states;

e Constraints on physical design and performance properties;

e Allocations between structure, behavior, and constraints; and

e Requirements traceability between the model elements.

The adoption of SysML as the standard system architecting tool was a significant leap
from document-based SE to MBSE [16]. After nearly 12 years of a multitude of large-scale
implementations across industries, several potential improvements have been identified by
experts and practitioners using SysML across the globe. These are stated as the require-
ments in the SysML V2 RFP submitted by the OMG to develop next-generation SysML [19].

A brief overview of the SysML language diagrams and concepts is provided in Chapter 4.

1.2 Motivation

The thesis work is hugely motivated by the challenges put forward by the fourth indus-
trial revolution (also termed as ‘Industry 4.0%), the current drawbacks of SysML standard

and the potential benefits of having a methodological guidance within modeling tools.

1.2.1 Industry 4.0 Challenges

The complexity of modern products is growing rapidly across industries. Managing

the complexity of these products has been a daunting task as companies strive to create

10

better products in an increasingly shorter time-to-market. Almost every new product is
an evolution of the previous versions with increasing numbers of disciplines involved [20].
The impact of new technology comes with a dramatic increase in safety concerns as we
move towards handling control over to intelligent machines. Such growing complexity cou-
pled with global competitiveness demands that cutting-edge development approaches be
incorporated within industries. SE has become necessary to manage complex systems over
their life cycles [21]. With the imminence of the so-called ‘Fourth Industrial Revolution’
or ‘Industry 4.0’, MBSE has been identified as a key enabler of engineering complex sys-
tems [7]. Although many industries have started to realize the benefits of MBSE, the tools
and techniques used for its implementation need to be evaluated and evolved quickly to

prevent another isolation among the development teams.

1.2.2 Drawbacks of the SysML Standard/Tooling Challenges

The SysML specification aims at providing a modeling solution to practicing systems
engineers to transition from document-based SE to MBSE. Although SysML has proven to
be effective in articulating system lifecycle data using models, it comes with some inherent
drawbacks that prevent from realizing the complete potential of systems architecting in
MBSE [16] [13] [22]. SysML being a semi-formal language, is an extension of the Unified
Modeling Language (UML) which is a general-purpose modeling language used for software
systems development. SysML is developed to support engineering of a broader range of
systems. However, being based on UML, it inherits many software engineering concepts that
make it unintuitive to engineers who do not possess a software engineering background [16].
Also, SysML does not allow a proper integration between the structural and behavioral
elements, as stated as one of the requirements in the SysML V2 RFP [19]. Moreover,
SysML does not provide modeling guidance or impose a particular method (fairly intuitive
templates and plug-ins are provided by some tool vendors) which tends to create ambiguity
in the modeling approach. A modeling environment must allow a system designer to invest
most of the time in designing systems rather than in learning complex tools and techniques

to model systems.

11

1.2.3 Benefits of Methodological Guidance Within Tools

Designing a SE method is in itself a challenge. Adopting an MBSE solution that caters to
the needs of a specific method is tricky especially when the solution is not developed keeping
in mind the particular method to be applied. Hence, one of the major challenges systems
engineers face during the modeling of system architectures is to properly follow a well-
structured modeling approach that enables precise modeling while ensuring the integrity of
the semantics. A modeling solution must be developed to provide a strong foundation to
the method that is meant to be implemented, which itself must be able to be customized to
specific needs. Moreover, the tool developed must provide guiding principles of the method
to enhance the modeler’s daily modeling tasks [23]. Providing a methodological guidance
allows a user to ensure that a correct approach is being followed that conforms to the
rules laid out by the method. Including a method-based approach provides several benefits,

mainly:

e Shorter Time-to-Model: Having a methodical guidance coupled with continuous
model checking abilities spares the modeler the time to think about the mod-
eling strategies and model accuracy. Also, such approach prevents the time and

cost investment that has to be done in defining new modeling methods.

e Model Consistency: A tool augmented with a guided method can significantly increase
the consistency of models. Following a consistent approach in modeling leads to
consistent representation of data thereby leading to a shared understanding among
stakeholders [24]. After all, to be able to effectively communicate is supposed to

be one of the major benefits of MBSE.

e Increased Reusability: One of the most unexplored territories within MBSE is the
concept of model reusability across projects. With increasingly vast number of
product configurations being offered in consumer product industries, managing
the design information of legacy products across projects can be facilitated by
model reuse [25]. Reusability among models can significantly help to share system

design data among models.

12

1.3 Literature Review

This section reviews the literature on the various existing MBSE methodologies, and
previous works concerning evaluation of model-based methods and techniques. The section

concludes by identifying the gap that this thesis will help to address.

1.3.1 Existing Model-Based Systems Engineering Methodologies

MBSE has caught significant pace in the last decade. Companies across various indus-
tries have started to realize the importance of incorporating a model-based approach to
modern product development. Currently, there are several examples of MBSE implemen-
tations across a wide spectrum of product manufacturing industries, each trying to adopt
either a standardized SE lifecycle model as that of the ISO/IEC/IEEE 15288:2015 standard
or develop a customized version of their own. Regardless, a significant element in influenc-
ing these MBSE implementations is the modeling methodology that is being followed to
implement the MBSE strategy. Several MBSE methodologies have been defined by vari-
ous tool vendors, companies and independent thought leaders alike. Some of the popular

methodologies are briefly reviewed in this subsection.

IBM Harmony for SE

IBM Harmony-SE was developed by I-Logix Inc. that eventually became IBM Corpo-
ration. IBM Harmony for SE is a subset of the IBM Harmony methodology for software
engineering [26]. Harmony for SE is a top-down approach to development that supports

modeling architectures through three top-level processes namely,

e Requirements Analysis
e System-level Functional Analysis

e Design Synthesis [26]

The methodology uses a service request-driven approach using SysML artifacts and

emphasizes on identifying and allocating a required functionality and state-based behavior

13

rather than detailing its functional behavior. The methodology was developed to be vendor-

neutral but the elements of the methodology are usually applied using by IBM Rhapsody.

Pattern-Based Systems Engineering (Systematica™ Methodology)

Pattern-Based Systems Engineering (PBSE), as described in [27], is an MBSE method-
ology that can address “ten times more complex systems with a ten fold reduction in the
modeling effort, using people from a ten times larger community than the “systems expert”
group, producing more consistent and complete models sooner”. PBSE promotes the use
of systematic patterns that could provide a “learning curve jump start” from the already
existing patterns and its users, rapidly utilizing its content, and improving the pattern with
the knowledge gained so as to assist future users of the pattern. Systematica™ Methodol-
ogy uses the S*Metamodel which is a relational /object information model that is used to
describe requirements, designs and other information in S*models such as verification, fail-
ure analysis, etc. An S*Pattern is a reusable, configurable S*Model of a family of systems
forming a pattern. PBSE provides a holistic and compact data model and a framework
for MBSE that is well-suited to address the challenges in designing cyber-physical systems.

PBSE can be implemented using any system modeling language or tool-set.

The Systems Modeling Toolbox (SYSMOD+)

Weilkiens’ Systems Modeling Toolbox (SYSMOD) [28] is a user-oriented approach for
requirements engineering and development of system architectures. SYSMOD methodology
is applied using SysML as the preferred language and can be used with any modeling tool.
SYSMOD follows a top-down development approach and comprises of three main artifacts:
(1) Methods, that dictate best-practices for creating a ‘product’, (2) Products, that are the
crucial artifacts for system development like requirements or architecture descriptions, and
(3) Roles, that are work descriptions of a person or an operator. In addition to SYSMOD,
Weilkiens also provides a method for Variant Modeling (VAMOS) and creating Functional
Architectures using SysML (FAS) that supplement SYSMOD but can be applied indepen-

dently to projects as well [29].

14

Vitech MBSE Methodology (STRATA)

The STRATA MBSE methodology was initially developed at Vitech Corp. by Long
et al [30]. STRATA is based on the underlying central principle of Strategic Layers. The
method is built around analyzing and solving systems design problems in layers of increas-
ing granularity. Beginning at the most abstract level, the problem statement is analyzed
and translated into functional behaviors that the system must perform to fulfill require-
ments. These behaviors are allocated to physical components that provide the means for
performance. The developed architecture is then tested to see that its performance answers
the requirements, providing end-to-end traceability. The STRATA methodology can be

implemented using a suite of tools developed by Vitech Corporation Inc.

NASA JPL State Analysis Methodology

State Analysis is a MBSE methodology developed by NASA Jet Propulsion Labora-
tory (JPL). By leveraging a state-based control architecture, JPL State Analysis aims to
produce requirements on system and software design as explicit models of system behav-
ior, and by defining a state-based architecture for the control system [31]. State Analysis
provides a unique framework to modeling systems in that (a) it is based on the principle
that control includes all aspects of system operation considering a clear distinction between
the control system and the system under control, (b) that models of the system under con-
trol must be explicitly identified and used to achieve consensus among systems engineers,
(c) understanding system states is the fundamental aspect to successful modeling and (d)
the behavior specification and behavior design of the system increases to resemble with
growing complexity. State Analysis provides a methodical, rigorous approach for the three
primary activities namely, state-based behavior modeling, state-based software design and
goal-directed operations engineering [6].

Chapter 3 of the thesis will discuss three other popular MBSE methodologies that
include the Object-Process Methodology (OPM) [32], and the two candidate methodologies
of this study.

15

1.3.2 Methodology-Specific Implementations

Over the past decade, several MBSE implementations have been done in industries
varying from aerospace and defense to automotive and healthcare. Carroll and Malins [33]
provide a detailed systematic literature review of various MBSE implementations and try to
identify how MBSE is justified. In their systematic literature review, they provide a number
of prerequisites for any enterprise to employ an MBSE approach, representing investments
by the enterprise in its staff and processes along with a commitment to employ an MBSE
approach in a well-defined manner. Various methodology specific implementations were
also reviewed for this study. Friedenthal et al. implemented the Object-Oriented Systems
Engineering Method (OOSEM) at Lockheed Martin to develop Next Gen Long Range Strike
for System of Systems (SoS) level architecture modeling using i-Logix Rhapsody tool [34]. In
their preliminary results, they were able to model the enterprise architecture and obtained
an executable architecture to support behavior analysis and simulation. The analysis and
simulation served as a means to allow the overall project to validate customer and mission
requirements and develop and demonstrate SoS architecture solutions. In another study,
Quoc and Cook (2012) [35] applied OOSEM for ground-based air missile defense system
and identified key research challenges to implementing MBSE i.e. model-based requirement
engineering, MBSE design and analysis, model integration and integrated tool environment
development. A similar implementation using ARCADIA was done at Thales Alenia Space
using the Capella tool by Calio et al. [36]. They concluded by outlining the benefits of a
functional analysis based approach using the Capella tool. The abovementioned studies on
MBSE implementations indicate the increasing application of model-based development to

real life systems.

1.3.3 Previous Comparison Studies

Along with this literature, previous literature based on comparison of MBSE methodolo-
gies was also reviewed. Estefan, J. A. (2008) [6] provides a comprehensive review of popular
MBSE methodologies which served as a good starting point to understand the specificities,
commonalities and differences between the various methods. Armstrong, J. R. (1993) [37]

compared classical SE used for functional analysis and provided several insights into parts of

16

SE methods realizing that the scope was limited to functional analysis. Garcia, R. A. [38]
performed an evaluation study of MBSE processes for integration into rapid acquisition
programs using a case study. In this study, a set of evaluation criteria was identified to
evaluate the processes. Grobshtein et. al. [39] did a one-to-one comparison of OPM and
SysML and provided similarities and differences in the two, along with potential develop-
ments in the alignment of both the approaches. Finally, Weilkiens et. al. [40] provide an
evaluation criteria to evaluate MBSE methodologies at large and provide the comparison

of SYSMOD and MDDM methodologies as a case study.

1.4 Literature Gap

There are mainly two gaps in the literature. Firstly, the literature provided several
reviews of MBSE methodologies. A comprehensive review is available for the popular
methodologies reviewed in Section 1.3. However, there is a lack of rigorous evaluation
studies that assesses the candidate methodologies based on any well-defined criteria. In
order to serve the needs of industry 4.0, industries must have a reference in order to choose
the right set of tools suitable to their environments. Hence, there is a need for a catalog of
evaluation criteria in order to clearly assess the different approaches at various granularity
levels. Secondly, ARCADIA /Capella and OOSEM /SysML are relatively new modeling ap-
proaches when compared to traditional SE implementations. There is no literature found on
a comparison between ARCADIA /Capella and OOSEM /SysML. This thesis will contribute

to both the literature gaps.

1.5 Thesis Objectives

The thesis aims to evaluate two system architecture modeling approaches, the analysis
of which could serve as a decision making template for system architects to decide on the
appropriate tool suitable for their system architecture definition/development activity. The
evaluation is carried using a conceptual case study of ACC. The system is modeled by im-
plementing two SE methodologies namely, OOSEM coupled with SysML and, ARCADIA

using the Capella™ tool. A general set of stakeholder needs are identified and fed into

17

the architecture modeling workflow. An initial concept architecture is modeled using the
Object-Process Methodology which then serves two purposes; a) providing a syntactic ref-
erence to modeling the candidate architectures, and b) serving as a baseline to evaluate the
quality of the candidate architectures. The system architectures are then evaluated based
on three perspectives, namely, the representativeness (quality) of architectures, metamodel

concepts supporting the process deliverables and the overall candidate methodologies.

1.6 Thesis Assumptions

The study is performed based on some assumptions that are necessary to be clarified
before the evaluation. Firstly, the study excludes the parameterization of the architecture
model. It is assumed that parametric simulation of architecture model is not a real need
of the industry as more specialized tools are available for such simulations. Also, AR-
CADIA /Capella do not provide parametric analysis because of its scope. Secondly, it is
assumed that the application domain of the example used does not affect the quality of the
evaluation. Thirdly, it is assumed that the complexity of the architecture does not have
a significant effect on the evaluation and the results obtained through this study could be

generalized to highly complex systems.

1.7 Thesis Organization

The thesis is organized into six chapters. Chapter 1 is the thesis introduction, including
background, motivation, literature review, thesis objectives and assumptions. The method-
ology used to accomplish the thesis objectives, along with the modeling methodologies are
explained in Chapter 2. Chapter 3 describes the conceptual model of the Adaptive Cruise
Control feature modeled using Object-Process Methodology which serves as the reference
architecture for modeling the system-of-interest using the two candidate methodologies in
Chapter 4. Chapter 5 includes the results of the evaluation of the ARCADIA /Capella and
OOSEM/SysML approaches. It also describes key highlights and differences between the

two architectures and discusses the significance of MBSE in the overall product lifecycle.

18

Finally, Chapter 6 concludes with the thesis summary and identifies future research areas

that can substantially augment the findings of this study.

19

2. METHODOLOGY

“I paint from the top down. From the sky, then the mountains, then
the hills, then the houses, then the cattle, and then the people.”

Grandma Moses

This chapter describes the methodological approach followed in this thesis. The evalu-

ation of the two modeling approaches is done using a 3-step methodology:

1. Deriving a generic workflow of system architecture development from a standard SE

process model

2. Generating a conceptual architecture of an example system-of-interest and identifica-

tion of the evaluation criteria

3. Modeling the architectures for the case study using the candidate methodologies and

evaluating the approaches against the predefined criteria

After implementing the case study and evaluation, a survey of MBSE practitioners
was conducted to understand the real needs of MBSE practitioners, the results of which
are used to support the thesis findings. The following sections in this chapter provide an
overview of standard SE processes mapped to a generic architecture development workflow
and a description of the SE methodologies used in the case study. The following chapter is
dedicated to introducing the reference architecture using the Object-Process Methodology
(OPM) along with detailing the evaluation criteria. Figure 2.1 shows a chart that depicts
the methodology followed for the thesis.

20

Define problem,

review literature

Derive a generic workflow for
System Architecture
Development from a standard
systems engineering process

del
@ mode !

Describe candidate
methods/OPM

Generate a conceptual
architecture of an example
system of interest using OPM ¢
and identify evaluation

L @ parameters

Represent bimodal
architecture using OPM,
Specify evaluation criteria

Model system architectures and
» evaluate the approaches using
the predefined criteria

MBSE Practitioner
Survey

Summarize results,
conclude

Figure 2.1.: Research methodology chart

2.1 Systems Engineering Technical Processes

The ISO/IEC/IEEE 15288 standard identifies four process groups to support SE. These
include the technical processes, technical management processes, agreement processes and
organizational project-enabling processes. The technical processes shown in Figure 2.2 are
used to engineer the system from defining requirements to its disposal by enabling systems
engineers to coordination between engineering specialists, other specialists, system stake-
holders, operators and manufacturing thereby addressing conformance with the expectations

and requirements of the society. [3]

Technical
processes

Technical
management
processes

Agreement
Processes

Business or mission
analysis process

Integration process

Project planning
process

Acquisition process

Stakeholder needs &
requirements
definition process

Verification process

Project assessment
and control process

Supply process

System N Decision
requirements Transition process management
definition process process

Architecture

Validation process

Risk management

Organizational
project-enabling
processes

Life cycle model
management
Process
Infrastructure
management
process
Portfolio
management
process
Human resource

21

management

definition process)
process

process

Configuration

Design definition Quality management

Operation process management
rocess = ~ags
P process process
R . 1 Nede

System analysis Maintenance lnfL)‘rnlallon Knowledge

process process management management

N - Process process

Implementation Disposal process Measurement

process sposalp - process

Quality assurance
process

Figure 2.2.: System life cycle processes per ISO/IEC/IEEE 15288 characterized in
process [3]

Among the 14 technical processes, the first four processes deal directly or indirectly with
the system architecture development activity. Arguably, the requirements definition pro-
cesses may or may not be considered a part of the system architecture development activity.
The requirements and use case analyses are not part of the system architect’s activities [29].
Requirements definition form a subset of the requirements engineering activities that are
concerned with discovering, developing, tracing, analyzing, qualifying, communicating and
managing requirements that help in defining the system at various levels of abstraction [41].
An important aspect of requirements engineering is the verification of system requirements
using traceability. In order to achieve this traceability in a model-based context, a require-
ment must be associated with the architecture artifacts that satisfy or verify the require-
ment. Furthermore, functional requirements drive the development of a system’s functional
architecture based on which a system’s technical architecture is developed. Performing re-
quirements definition and analysis in isolation from architecture development would lead
to unnecessary hindrance in the consistency of the process. Hence, it becomes logical to

include the requirements definition processes as a part of the overall architecture develop-

22

ment activity. A typical SE implementation begins with the project context, considering
the system and its environment so as to better assess the user needs along with identifying
potential threats to the system. In this stage, the system is considered as a black-box entity
which is the highest level of abstraction for the system, and its operational environment is
identified. This allows us to identify ‘What’ the user needs from the system to be developed
and then ‘What’ the system needs to accomplish to meet the user needs. The term ‘user’
can be extended to a ‘stakeholder’ and is favorably done so in majority of the projects.
The ‘What’ in the SE processes are characterized as the ‘problem space’. Successively, the
system is considered as a white-box and detailed into lower levels of abstraction to achieve
a final system architecture that can be used to develop further detailed design specification
and analyses. This comprises of the ‘How’ of the SE processes, characterized as the ‘solution
space’. The first four technical processes as described in the INCOSE SE Handbook are

briefly discussed below:

e Business or Mission Analysis process: The business or mission analysis pro-
cess deals with generating the business requirements specification. This is a
business, organizational or enterprise level process that begins with the busi-
ness vision, concept of operations and organizational and strategic goals and

objectives from which business/mission needs can be defined.

e Stakeholder Needs and Requirements Definition Process: This process is
concerned with eliciting the stakeholder needs that are usually abstract, high-
level needs. The requirements engineers then translate the stakeholder needs
into formal stakeholder requirements that are elicited in a stakeholder require-

ments specification document.

e System Requirements Definition Process: The stakeholder requirements de-
fine what the stakeholders of the system want to achieve from the system.
These requirements are translated into system requirements that state what
the system needs to achieve to satisfy stakeholder requirements. A system re-
quirements specification document is thus created in this phase that drives the

system architecture design activities.

23

e Architecture Definition Process: Based on the system requirements, the sys-
tem architecture is defined, starting from the system as a black-box entity down
to the desired level of detail and decomposition. A system architecture once
defined allows to specify the design specification to develop detailed design of
the various components, define system verification and validation plans at an

early stage, etc.

The most important goal of MBSE must be to support the development of the required
system architecture through the abovementioned 4 processes. This, by no means empha-
size that MBSE is constrained to these four processes. Although most of the architecture
modeling activity is applied in these phases, the developed system architecture shall be
able to facilitate in extracting information through various viewpoints concerned with the
downstream domain requirements. For instance, a verification engineer shall be able to
define system verification plans based on the operational and system scenarios defined in
the model, or a mechanical design engineer shall be able to design the CAD geometry of a
component based on the design information extracted from the model artifacts. The extent
to which this type of information can be extracted and the means to do so is an interesting

topic in itself that will be discussed briefly later in this thesis.

2.2 Architecture Development Workflow

As mentioned in the previous section, the main purpose of MBSE is to support SE
through modeling for the processes stated in the technical processes of the ISO/IEC/IEEE
15288:2015 standard. The initial processes from the technical process group of the standard
are referred to derive generic system architecture modeling workflow to facilitate consistent
and, at times, agile system modeling. This generic workflow complies with the ISO 15288
standard and has been created by analyzing the documentation in [3], [11] and [14]. The
definition of the term system architecture has been somewhat ambiguous across engineering
domains and is interpreted differently by engineers from those domains. For the context of
this thesis, we will consider the following definition of the terms: “Architecture is an abstract

description of the entities of a system and the relationship between those entities.” [1].

24

“System Architecture is the embodiment of concept, the allocation of physical /informational
function to the element of form, and the definition of relationships among the elements
and with the surrounding context.” [1]. System architecture may consist of a functional
architecture describing a view of its behavior, logical architecture or physical architecture
depending on the level of abstraction and the contextual elements. These terms are defined

in the following section.

4 most
abstract
Operational
Analysis
System Requirements
Analysis
Logical Architecture Definition
Physical Architecture Definition
least
y abstract

Figure 2.3.: Generic architecture development workflow derived from ISO 15288
technical processes

2.2.1 Operational Analysis

The operational analysis phase focuses on analyzing the stakeholder needs/concerns and
translating them into stakeholder requirements specification. Before eliciting stakeholder
requirements, the business or mission level needs are defined by the management that are
based on the business vision of the organization or an enterprise, the concept of operations
and organization strategic goals and objectives. Using these as a guidance, the stakeholder
needs are elicited, either using models or textual databases, and later translated into stake-
holder requirements that can be linked to the system model artifacts within a modeling

environment. Based on the stakeholder needs, high-level goals of the business or mission

25

are identified and are modeled with specific artifacts to create the most abstract formu-
lation of the requirements, called use cases, and in some contexts, capabilities The actors
and entities that interact with the system-of-interest are linked to the respective capability
thus identifying external beneficiaries of the system. An operational context is identified
along with various external actors and entities interacting with the system during its op-
eration. SE dictates that every system is meant to provide a primary, externally delivered
value-related function to its intended users. The function is later decomposed into internal
functions that the system must perform to achieve the primary functions. The functionality
of a system is the sum of its external and internal functions that the system provides or
consists of. The system functionality is described by its use case or capability in terms
of how it is used to achieve the goals of its various users or provide a specific capability.
The identification of a high-level system functionality is done in this phase. Operational
Needs Analysis is highly promoted by architecture frameworks such as TOGAF, DoDAF,
and NAF [42].

2.2.2 System Requirements Analysis

The stakeholder requirements are used to derive the system functional and non-functional
requirements. The system functional requirements are used to identify the internal functions
that the system needs to perform. A functional architecture is the description of the system
in functional terms independent of its technology. The functional architecture is meant to
show the functional interactions of the system components without identifying the actual
components. A system capability can be elaborated by a set of behavioral representations
such as functional flow block diagrams, data flow, and sequence of activities or the system’s
state-based behavior. There is no rule on what kinds of behavioral representations need
to be done for functional analysis and one may choose to model these in a certain way
based on a certain methodology being followed in the appropriate context. In this phase, it
is ensured that all the functional requirements are represented by the capabilities and the
functional requirements can be refined or new requirements can be defined if needed. At
times referred to as system functional analysis, this a key step in defining the functional

requirements. Functional analysis (FA) is one of the most important techniques in SE and

26

is a distinct phase in many SE methodologies. Although system level functional analysis
is an important phase, functional analysis should not be constrained to a system level and

therefore it is sometimes misleading to include FA as a distinct phase.

2.2.3 Logical Architecture Definition

The main output of the requirements analysis phase is to identify the functional ar-
chitecture of the system. The logical architecture definition phase is where the modeling
shifts from the ‘problem space’ to the ‘solution space’. “The logical architecture of a system
is composed of a set of related technical concepts and principles that support the logical
operation of the system” [11]. A logical architecture is an abstract representation of the
system components, independent of their technical solutions, in a way that every func-
tion of the system can be performed by a corresponding logical component. Logical-level
function decomposition (subsystem/component functions) can be the necessary next step
to identify sub-functions that must be performed to satisfy higher level functions. Based
on this decomposition, a system can be decomposed into its elements in a way that every
function or sub-function must be performed by a certain element (form), which might be a
subsystem or a component. The identified elements, called as logical elements, define the
system logical architecture that implements the system functional architecture. During the
course of defining the logical architecture, more logical functions can be identified leading
to creation of corresponding logical elements. Based on the logical architecture, various log-
ical component and interface requirements are developed and refined that must be properly

documented.

2.2.4 Physical Architecture Definition

The next phase deals with defining the system’s physical architecture. “A physical ar-
chitecture is an arrangement of physical elements (system elements and physical interfaces)
which provides the design solution for a product, service, or enterprise, and is intended
to satisfy logical architecture elements and system requirements” [11]. It is implementable

through technologies. The purpose of a physical architecture is to develop a technical so-

27

lution to the logical architecture. In this phase, the logical components are attributed to
physical system components that will actually perform the internal functions. A system
function can be performed by one logical component, but can be executed by one or many
physical components that are represented in the physical architecture. Based on the physical
architecture, component requirements are developed, refined and documented. In an archi-
tecture development process, alternative physical architectures can be synthesized using
various techniques to select the best possible solution that satisfies system requirements.
A good system modeling tool should be able to satisfy all the modeling needs that
might occur in the aforementioned phases. This is a very generic workflow and might vary
across industries and application domains, which is why a SE methodology must be domain-
agnostic that can be tailored to the specific needs of a project if required. This brings us to
a key distinction between ARCADIA and SysML. ARCADIA [9] is a modeling method that
also provides modeling concepts which, when applied with an authoring tool like Capella,
provides methodological guidance to systems engineers to design the architectures of their
systems. On the other hand, SysML is a modeling language that is independent of a model-
ing method and provides the required syntax and semantics to develop diagrammatic repre-
sentations of the system through modeling tools that implement SysML. From a modeler’s
perspective, ARCADIA /Capella is a Method First, Language Second approach whereas as
SysML is a Language First, Method Second approach. (However, ARCADIA provides core
modeling concepts that are unique to the method and thus the statement should not be
generalized for the overall methodology.) Various MBSE methodologies have been devel-
oped to provide guidance for modeling using SysML as discussed in Section 1.3.1. However,
being different in the methodological approach, most of these methodologies comply with

the fundamentals of the architecture development phases.

2.3 The ARCADIA Method

Architecture Analysis & Design Integrated Approach (ARCADIA) is a structured ar-
chitecture engineering method for defining and validating multi-domain systems, based on
architecture-centric and model-driven engineering activities [9]. ARCADIA is a method

based on functional analysis and focuses on developing the system by starting from needs

Need understanding

Solution architectural design

A: Operational activity
F: Function

C: Component

Operational Analysis
What the users of
the system need to
accomplish

Functional &

Non Functional Need
What the system has to
accomplish for the users

Logical Architecture
How the system will work
to fulfill expectations

Physical Architecture
How the system will be
developed and built

Figure 2.4.: Different phases/layers of the ARCADIA method [43]

28

analysis and solution development up to integrated verification and validation. ARCA-

DIA is very flexible and can be implemented using a top-down, bottom-up or a middle-out

development approach as desired. The key phases of the ARCADIA method are:

Customer Operational Needs Analysis, which defines the needs of the system users

to be accomplished,

System Needs Analysis, which defines what the system needs to accomplish for its

users,

Logical Architecture Design, which defines how the system will satisfy the system

needs, and,

Physical Architecture Design, which defines how the system will be built and de-

veloped.

29

These phases as implemented in the Capella modeling tool are discussed in detail during
the implementation in Chapter 4. The methodological guidance of ARCADIA is executed
using a number of diagrams with interlinked model elements that define the structure and
behavior of the system. In addition to a method, ARCADIA provides metamodel concepts

to support its methodical approach.

2.3.1 Polarsys Capella™

Capella is an open source software solution for MBSE which provides a process and
supporting tool for modeling multi-domain system architectures, in compliance with the
ARCADIA method [44]. It is a hybrid modeling tool that provides notations for the AR-
CADIA metamodel concepts (ARCADIA ML) and is highly inspired by SysML. Capella
is developed as an initiative of the Polarsys group, on of the several Eclipse Foundation
working groups [10]. Tt is essential to highlight that Capella is the only tool that supports
modeling using the ARCADIA method. Capella supports the ARCADIA method by provid-
ing seven characterized types of diagrams that are: data flow diagrams, scenario diagrams,
architecture diagrams, mode and state diagrams, breakdown diagrams, class diagrams and
capability diagrams. These diagrams are provided in all the ARCADIA perspectives with

specific distinctions between the diagram elements at each level.

2.4 Object-Oriented Systems Engineering Method (OOSEM)

Object-Oriented Systems Engineering Method is an MBSE method that integrates top-
down, object-oriented concepts with traditional SE methods for architecting multi-domain
systems that are flexible and extensible to accommodate developing technologies and re-
quirements. OOSEM supports the traditional SE activities and can enable integration with
object-oriented software development, hardware development, and verification and vali-
dation methods [3]. OOSEM supports the system development process by the following
activities:

e Stakeholder Needs Analysis, to specify the mission needs to reflect customer and

other stakeholder needs

Analyze

needs

stakeholder

+ Causal analysis
+ Mission use cases/scenarios
* Enterprise model

Optimize and
analyze
alternatives

¢ Trade studies

Manage
requirements
traceability

¢ Parametric diagrams

Analyze
system
requirements

» System use cases/scenarios
+ Elaborated context
» Requirements diagram

Define
logical
architecture

+ Logical scenarios
¢ Logical subsystems

* Requirements
traceability

Synthesize
candidate physical
architecture

30

Major SE
development
activities

» Logical decomposition

» Node diagram
« HW, SW, data arch
= System deployment

Commyon' Verify and « Test plans

subactivities . o
validate o Test cases
system « Test procedures

Figure 2.5.: OOSEM activities and modeling artifacts [3]

System Requirements Analysis, to analyze and specify the system requirements to

support the stakeholder requirements

Logical Architecture Definition, to decompose and partition the system into logical

elements

Synthesis of Candidate Physical Architectures, to describe the relationships among

the physical elements of the system

Optimizing and Evaluating Alternatives, to optimize the architecture alternatives

and enable trade-offs

Requirements Traceability Management, to ensure traceability between model ele-

ments throughout the other OOSEM activities

System Verification and Validation, to verify that the system design meets the re-

quirements and to validate that those requirements meet the stakeholder needs

These activities are aligned with a typical SE ‘Vee’ process and can be applied recursively

and iteratively at each level of the system hierarchy. A detailed implementation of these

activities is done in Chapter 4.

31

2.4.1 No Magic Cameo Enterprise Architecture™

Cameo Enterprise Architecture™ is an MBSE tool developed by No Magic Inc. Cameo
EA provides modeling support to SysML 1.4 specification [45]. Cameo Enterprise Architec-
ture is a specialized architecture modeling tool that provides support to SysML modeling
along with architecture frameworks such as Unified Architecture Framework (UAF), De-
partment of Defense Architecture Framework (DoDAF), etc. The tool implements the pure
SysML standard as specified by the OMG. Cameo Enterprise Architecture uses the SysML
extension mechanisms to provide domain-specific customization through third-party ven-

dors. It supports all the 9 SysML diagrams along with UML diagrams.

2.5 Object-Process Methodology

Object-Process Methodology (OPM) is a MBSE methodology invented by Dr. Dov
Dori at the Massachusetts Institute of Technology [32]. OPM is defined on the premise that
everything in the universe is ultimately either an object or a process. Hence, any system in
this universe can be conceptually represented in an object-process paradigm through various
types of relationships between the objects and the processes. “An object is thing that exists
or might exist physically or informatically. A process is a thing that transforms an object
by generating, consuming or affecting it. Objects and processes are collectively referred to
as things” [32]. OPM also considers the stateful nature of objects meaning that objects
possess various states and a process can transform an object from one state to another. In
OPM, a system can be modeled using a single type of diagram called the Object-Process
Diagram (OPD). The top-level OPD consists of the extreme primary process (function) that
the system needs to perform along with the object (form) that is the system itself which
can be further decomposed to lower levels using the lower-level OPDs. Some of the OPM

concepts are briefly discussed in the following chapter.

32

3. CASE STUDY: DESCRIPTION

“Use a picture. It’s worth a thousand words.”

Arthur Brisbane (1911)

This chapter introduces the example system for the study using OPM. The case study
used to compare the modeling approaches is an ACC feature. The purpose of the comparison
is to focus on the modeling artifacts that can be used to develop the system architecture
and other modeling capabilities in both the tools. A certain system architecture developed
by a ‘vehicle architect’ will differ significantly from the architecture developed by an ‘ACC
architect’, because of the system context being different in each case. This model has
been developed by considering an ACC system as the system-of-interest and the vehicle’s
actuating systems and other subsystems as the environmental actors that will interact with
the system. The accuracy and the logic of the system architecture is not of primary concern
in this study. The second section of this chapter describes the evaluation perspectives,

criteria and the metrics used for the study.

3.1 Adaptive Cruise Control Architecture

An ACC system is a type of a collision avoidance system developed for the enhancement
of driver and passenger safety features in modern automotive. Conventional cruise control
systems have been around for several decades and adaptive cruise control systems have
become the trend in past couple decades. ACC systems differ from the conventional cruise
control systems in that the conventional systems, when in operation, may include a control
function to minimize the gap between the actual speed of the vehicle and the desired speed
set by the driver whereas the adaptive cruise control adapts the conventional control to the
subject vehicle’s external environment by mitigating the effects of targets on such vehicle
that are within a particular distance of the vehicle and in the path of the vehicle [47].

The ACC system consists of sensors attached to the front of the vehicle, typically radar and

33

e—o—— clearance —
ACC Vehicle (time gap = clearance / vehicle speed) Target Vehicle

N -

J .

Forward Vehicle

Figure 3.1.: ACC-equipped vehicle external relationships [46]

camera vision, and more recently, lidar sensors, which are used to detect the target vehicles.
If a slow moving vehicle is detected in the vehicle’s path, the ACC system slows the vehicle
down and controls the clearance, or time gap, between the subject vehicle and target vehicle.
Figure 3.1 shows the relationships of an ACC feature with its external environment entities,

mainly the target vehicle and the forward vehicle.

Acceleration
¢ Velocity
4
Set Speed
. Follow Mode
Driver Set Headway Time .
(Distance Control)
Commands
Brake Apply/ J, Actuator
System Off Control
Select -
Desired .
Mode > —
Accelcration | Brake VemCIG
Distance Control
or
— 1 Throttle
Relative Velocity
Target Cruise Mode
Yaw Rat
Attributes / Relative Acceleration (Speed Contr 01) < e

Figure 3.2.: ACC control structure [48]

34

The ACC control structure is shown in Figure 3.2. It consists of two modes of operation,
namely, ‘speed control” and ‘distance control’. In the absence of a target, the ACC control
will provide the speed control based on the desired speed set by the driver. In the presence of
a target vehicle, the ACC-control will provide ‘distance control’ to adjust the subject vehicle
speed in order to maintain the desired gap behind the target vehicle. Once the desired speed
and the desired gap is specified by the driver, the ACC control will switch smoothly between
the two modes based upon the traffic situation. The front sensors provide the target vehicle
data to the controller which then sends actuation signals to the various actuation subsystems
of the vehicle to perform the necessary functions. A system architecture can be developed
for an ACC system considering the actuating systems as part of the system’s elements.

However, for the purposes of this study, only the ACC controller is modeled.

ACC Stakeholder Needs

Before starting the modeling process, a set of stakeholder needs were identified that
would serve as the basis for the modeling process. ACC stakeholder needs are shown in

Table 3.1.

Table 3.1.:

35

ACC ‘Stakeholder Needs’

Name

Description

Highway driving assistance

Enhance driving by providing automated driving
assistance while driving the vehicle on highways.

Turn ON/OFF

The user should be able to securely turn the sys-
tem ON/OFF while driving.

Speed control

The user must be able to maintain the speed of
the vehicle autonomously when a lead vehicle is
detected.

Distance control

The user must be able to maintain the speed of
the vehicle autonomously.

ON status

The system shall display ON status when the
feature is enabled by the driver.

Emergency deactivation

In the case of emergency, the user shall be able
to deactivate the feature by pressing the brake
pedal.

Emergency activation prevention

After emergency deactivation, the feature shall
not enable itself automatically unless indicated
by the driver.

3.1.1 ACC Modeled Using Object-Process Methodology (OPM)

‘The Function-as-a-Seed Principle’ is one of the basic principles of OPM which states

that “modeling a system starts by defining, naming, and depicting the function of the sys-

tem, which is also its top-level process”. The modeling process in OPM starts by identifying

the top-most function that the system performs which is the value that the system deliv-

ers to its beneficiaries, which, in our case would be, ‘Providing ACC’. The Object-Process

Diagram is called System Diagrams (SD) at all the levels of abstraction. The object and

the process represents the system’s form and function respectively [32]. OPM was chosen

as the reference architecture modeling method mainly for two reasons:

e “OPM is fundamentally simple, both to build complex system architecture and to

reason through the system” [32], and,

36

e “OPM allows a clear representation of the many important features of a system: its
topological connections; its decomposition into elements and sub-elements; the

interfaces among elements and the emergence of function from elements” [32].

Comparing the candidate architectures against the OPM architecture would provide a clear
context for the evaluation of architecture representativeness. This aspect is discussed later
in this section.

The modeling started by creating the primary function of the system using the OPD.

Figure 3.3 shows ‘Providing ACC’ modeled as the top-level process.

Providing ACC

Figure 3.3.: ‘Providing ACC’ modeled as a OPM process

After modeling the first process in OPM, various beneficiaries of the system were identi-
fied along with the objects required to support the process. This created the first mapping
of form and function in the architecture. One of the several advantages of using OPM is
that it is bimodal. It supports modeling of a system architecture through a graphical as
well as a textual model. Object-Process Language (OPL) is the textual modality of OPM
that complements its graphical representation through OPD [32]. An astonishing fact about
OPL is that it uses natural language to describe and create the model. Conversely, an OPM
model diagram automatically generates OPL sentences that are easily interpretable. Hence,
instead of describing the ACC architecture using descriptive text, the various OPM system
diagrams are complemented with the OPL sentences that were generated automatically.

However, before reading the OPDs and the OPL, following terms should be known:

e Objects are rectangular (green), processes are elliptical (blue)

37

e Rounded rectangles are states of the object
e Things can be environmental or systemic

e Things can be classified by their essence attribute as either physical or informatical

ACC System OPM Diagrams

Figure 3.4 describes the top-level System Diagram in OPM, named SD, that includes
the top-level function as the process, the object, and the environmental processes which
excite the main process, whereas Figure 3.5 describes the corresponding OPL generated

from the SD.

L s e s 1 - 2 a
v Sensing host speed X
~ 4

= o

R

ACC System

[

|

t

|

t

i

|

|

’ . . Bin !
1 Providing vehicle status i :
he. - ’0\: Vehicle System |
|

|

t

|

|

t

i

{

t

i

Providing ACC

-‘

b

‘ ;
\ Processing Inputs
’,

/ ¢
et J
I

; Desired inputs | e ~]
- femmmmm - - ! « Driving Vehicle
- . 5

’,Commlling ACC \‘1 e Fo---mmmoy
NS e e T P - i o 1
g - . ad ! ! Driver L e s | Drivers driving input !
T i | v Actuating ‘ e e e s :

s s s s . r 4

- L
s S

Figure 3.4.: Top-level OPM System Diagram

38

Driver is environmental and physical.
Driver handles Controlling ACC, Actuating, and Driving Vehicle.
ACC System is physical.
ACC System can be ON, OFF, or Standby.
ON is final.
OFF is initial.
ACC System triggers Providing ACC when it enters ON.
Vehicle System is environmental and physical.
Desired inputs is environmental.
Hostvehicle speed is environmental.
Drivers driving input is environmental.
Providing ACC requires ON ACC System.
Providing ACC consumes Desired inputs and Host vehicle speed.
Processing Inputs is environmental.
Processing Inputs requires Vehicle System.
Processing Inputs yields Desired inputs.
Driving Vehicle is environmental and physical.
Driving Vehicle requires Vehicle System.
Driving Vehicle affects Drivers driving input.
Actuating is environmental and physical.
Actuating consumes Drivers driving input.
Controlling ACC is environmental.
Controlling ACC changes ACC System from OFF to Standby and ACC System from OFF to ON.
Sensing host speed is environmental and physical.
Sensing host speed requires Vehicle System.
Sensing host speed yields Hostvehicle speed.
Providing vehicle status is environmental.
Providing vehicle status requires Vehicle System.

Figure 3.5.: Object-Process Language for SD

After the first OPD, the process and the objects are decomposed in the next system
diagram, also called as ‘in-zoomed’ diagram along with any other non-idealities identified.
Figure 3.6 shows the next level of abstraction of our system in the SD1 diagram along
with the corresponding OPL1 in Figure 3.7. Similarly, the system diagrams for lower level
of abstraction (sub processes) are shown in Figure 3.8 and Figure 3.10 along with their

corresponding OPLs in Figure 3.9 and Figure 3.11 respectively.

V '
:Hnst wvehicle speed :

Providing ACC

ACC System

Target vehicle kinematics

o,

o
Q| Locating targets
‘/ :

Brake signal

Sensor
Sensor fusion module
Controller
Image processor

¥

Maintaining spead

Supplemental power

Figure 3.6.: Object-Process Diagram for SD1: ‘Providing ACC’ in-zoomed

ACC System is physical.
ACC System can be OMN or OFF.
ON is final.
OFF is initial,
ACC System consists of Sensor, Sensor fusion module, Image processor, and Controller.
Sensoris physical,
Sensor fusion module is physical.
Image processor is physical.
Controller is physical.
ACC System triggers Providing ACC when it enters ON.
Desired inputs is environmental.
Desired inputs consists of Desired Speed and Desired Gap.
Desired Speed is environmental.
Desired Gap is environmental.
Hostvehicle speed is environmental.
Vehicle status is environmental.
Vehicle status consists of ACC speed status and ACC Distance status.
Providing vehicle status is environmental,
Providing vehicle status consumes ACC Distance status and ACC speed status.
Praviding vehicle status yields Vehicle status.
Providing ACC exhibits target vehicle kinematics, Relative parameters, Desired speed, ACC speed status, ACC Distance
status, Active braking, Brake signal, and Supplemental power.
Providing ACC consists of locating targets, Calculating relative parameters, Maintaining distance, and Maintaining speed.
Providing ACC requires ON ACC System.
Praviding ACC consumes Desired inputs and Hostvehicle speed.
Providing ACC zooms into locating targets, Calculating relative parameters, Maintaining distance, and Maintaining speed,
as well as Supplemental power, Brake signal, Active braking, ACC Distance status, ACC speed status, Desired speed,
Relative parameters, and target vehicle kinematics.
Brake signal is physical.
locating targets requires Sensor.
locating targets vields target vehicle kinematics.
Calculating relative parameters requires Controller, Image processor, and Sensor fusion module.
Calculating relative parameters consumes Host vehicle speed and target vehicle kinematics.
Calculating relative parameters yields Relative parameters.
Maintaining distance consumes Relative parameters, Desired Gap, and Desired Speed.
Maintaining distance yields Desired speed, Aclive braking, and ACC Distance status.
Maintaining speed consumes Desired speed.
Maintaining speed yields Supplemental power, Brake signal, and ACC speed status,

Figure 3.7.: Object-Process Language for SD1: ‘Providing ACC’ in-zoomed

target vehicle kinematics

ACC System

jgi=i=

i
7 S
D

Sensor fusion module :
Target vehicle position
‘ :

.
Calculating relative distance

Target vehicle speed

7| Relative distance
Relativa spaed

Host vehicle speed |

Relatwe parameters

40

Figure 3.8.: Object-Process Diagram for SD1.1: ‘Calculating relative parameters’

in-zoomed

ACC System is physical
ACC System can be ON or OFF,

OMN is final.

OFF is initial.
ACC System consists of Sensor fusion module, Image processor, and Contraller.

Sensor fusion module is physical.

Image processoris physical.

Controller is physical.
ACC System triggers Calculating relative parameters when it enters ON.
Hostvehicle speed is environmental.
Calculating relative parameters exhibits Processed camera data, Target vehicle position, Target vehicle speed,
Relative distance, and Relative speed.
Calculating relative parameters consists of Processing camera data, Fusing sensor data, Calculating relative
distance, and Calculating relative speed.
Calculating relative parameters requires ON ACC System, Controller, Image processor, and Sensor fusion
module.
Calculating relative parameters consumes Host vehicle speed and target vehicle kinematics
Calculating relative parameters yields Relative parameters.
Calculating relative parameters zooms into Processing camera data, Fusing sensor data, Calculating relative
distance, and Calculating relative speed, as well as Relative speed, Relative distance, Target vehicle speed,
Target vehicle position, and Processed camera data,

Relative speed is a Relative parameters.

Relative distance is a Relative parameters.

Processing camera data requires Image processor.

Processing camera data consumes target vehicle kinematics.

Processing camera data yields Processed camera data.

Fusing sensor data requires Sensor fusion medule,

Fusing sensor data consumes Processed camera data and target vehicle kinematics.

Fusing sensor data yields Target vehicle speed and Target vehicle position.

Calculating relative distance requires Controller.

Calculating relative distance consumes Target vehicle position

Calculating relative distance yields Relative distance,

Calculating relative speed requires Controller.

Calculating relative speed consumes Hostvehicle speed and Target vehicle speed,

Calculating relative speed yields Relative speed.

Figure 3.9.: Object-Process Language for SD1.1: ‘Calculating relative parameters’

in-zoomed

41

I ok I H ON J|—. -Relaﬁue speed
__________ I
Controller Desired Speed :

Active braking
| ACC Distance status

Adjust distance

1

Figure 3.10.: Object-Process Diagram for SD1.2: ‘Maintaining distance’ in-zoomed

ACC System is physical.
ACC System can be ON or OFF.
ON is final.
OFF is initial.
ACC System consists of Controller.
Controller is physical.
ACC System triggers Maintaining distance when it enters ON.
Desired inputs is environmental.
Desired Speed is environmental.
Desired Gap is environmental.
Hostvehicle speed is environmental.
Relative distance is a Relative parameters.
Relative speed is a Relative parameters.
Maintaining distance exhibits Computed distance.
Maintaining distance consists of Compute distance and Adjust distance.
Maintaining distance requires ON ACC System.
Maintaining distance consumes Relative distance, Desired Gap, Desired Speed, Desired inputs, and Hostvehicle speed.
Maintaining distance yields Desired speed, Active braking, and ACC Distance status.
Maintaining distance zooms into Compute distance and Adjust distance, as well as Computed distance.
Compute distance requires Controller.
Compute distance consumes Relative distance, Desired Gap, Desired Speed, and Relative speed.
Compute distance yields Computed distance.
Adjust distance consumes Computed distance.
Adjust distance yields Desired speed, Active braking, and ACC Distance status.

Figure 3.11.: Object-Process Language for SD1.2: ‘Maintaining distance’ in-zoomed

42

3.2 Evaluation Criteria

The evaluation of the two approaches is based on 3 parameters. This section describes
the evaluation parameters and the criteria partly developed for the study by referring to

several sources.

3.2.1 Representation of a ‘Good’ Architecture

The first step in evaluating architecture development approaches is to assess the qual-
ity of the developed architecture itself. Modern systems are more likely to be successful
if we are careful about identifying and making architecture decisions early in the life cy-
cle. Recalling the definition of architecture, “a system architecture is the embodiment of
concept, the allocation of physical/informational function to the elements of form, and the
definition of relationships among the elements and with the surrounding context” [1]. From
the abovementioned definition, it can be deduced that the most important characteristics
of a system architecture are: form, function, and internal and external elemental relation-
ships. It is of utmost importance to understand the synthesis of form and functions that
results in the architecture. The mapping between the form and function of a system is what
makes its architecture unique. For instance, two systems with exactly similar components
and a similar external function can possess entirely different architectures because of their
form-function mapping. Additionally, a system architecture should be able to manage the
complexity of the system. This complexity can be elaborated and understood by mecha-
nisms such as system decomposition and hierarchy, of both, form and function, as well as
the logical relationships between the elements and specific tools to reason through the sys-
tem. Crawley et al. [1] provide a set of questions to defining an architecture. It is therefore
logical to evaluate the architecture quality by trying to answer these questions. However,
an architecture must also be assessed on its ability to manage complexity. Hence, based on
the questions, a simplified and enriched questionnaire is created with 4 additional questions
to assess complexity management. Table 3.2 describes the questionnaire to defining a good

architecture.

43

Table 3.2.: Architecture evaluation criteria

Id Baseline Question

How well does the architecture support the mapping of the
SA-1 components (form) to the internal functions? How well does the
formal structure support the functional architecture?

SA-D How well does the system architecture support modeling non-

idealities?
SA-3 How well does the system architecture represent external and internal
. structural interfaces?
SAA How well does the system architecture represent external and internal

functional interfaces?

GAS Object Process | How well does the system architecture represent the sequential
2| Methodology | execution of activities?

System
SA-6 Diagram How well does the system architecture represent parallel threads or

strings of functions that execute as well?

How well does the system architecture represent the various layers of

SA-7 4
abstraction?
How well does the architecture represent decomposition of form and
SA-8 ;
function?
SA-9 How well does the architecture represent hierarchy and hierarchic
decomposition?
SA-10 How well are the elemental relationships represented in the

architecture?

Several qualitative metrics were defined to weigh the criteria. A simplified approach
was adopted to quantify the metrics wherein each metric is assigned a grade of 1 to 4,
4 being the highest. An overall evaluation of the questionnaire would allow us to grade
the architectures out of a score of 40 in total. The evaluation is based on the following

qualitative metrics:

e Better (4): The desired functionality is better than the OPM representation
e Comparable (3): The desired functionality is comparable to the OPM representation

e Supported (2): The desired functionality is supported but cannot be justified for the
quality when compared to the OPM representation

e Sub-par (1): The desired functionality is qualitatively deficient than the OPM represen-
tation

44

3.2.2 Key Process Deliverables

According to the INCOSE SE Handbook, the SE technical processes lead to generating
a formal set of requirements and system solutions to those requirements conforming to the
various constraints such as environmental, external interfaces, performance and design. [3].
In order to enable these interactions between the stakeholders in these processes, a well-
defined set of engineering artifacts must be defined to standardize the overall workflow. The
handbook provides a list of process inputs, activities and outputs to each of the SE processes
as stated in the ISO 15288 standard. A good SE implementation ensures that the processes
consume most of the inputs (sources of information), perform all the relevant activities and
generate the required process outputs (results) at every process. Similarly, in a model-based
context, a good implementation would mean that the system modeling activity provides the
required results during each phase of the modeling workflow defined in Section 2.2. These
results are often characterized as deliverables, defined as the quantifiable artifacts that
must be provided at the end of each phase. To evaluate the modeling approaches, a list
of key deliverables for each of the four phases in Section 2.2 is identified by reviewing the
resources [3] and [11] as well as consultation with industry personnel. The metamodel
concepts of the candidate tools are mapped against the deliverable artifacts to assess the
supportability of the tool in each phase of architecture modeling. The list of deliverable
artifacts expected out of each phase is shown in Table 3.3.

In each of the candidate modeling tools, the syntax provides a clear distinction between
the model elements and diagram elements. A diagram element is merely an instance of the
model element that is stored in the model repository. Hence, the scope of the deliverables

sufficiently includes the model elements and diagrams of the candidate tools.

45

Table 3.3.: Architecture development phases - deliverable artifacts

Modeling Phase Key Deliverable Artifact

Stakeholder Requirements Specification

Operational Analysis Requirements Justification Document (requirements traceability)

Input for Draft Verification and Validation Plans

Operational Concepts (OpsCon)

System Requirements Specification

System Function Definition

System Requirements Analysis System Requirements Justification Document (requirements traceability)

Context Diagram

External Interface Definition

Internal Behavior Definition

System Architecture Description

Logical Architecture Definition - - -
Subsystem Requirements Justification Document

Internal Interface Definition

Component Requirements Specification

Physical Behavior Description

Physical Architecture Definition Physical Architecture Description

Component Requirements Justification Document

Physical Interface Definition

3.2.3 Framework for the Evaluation of MBSE Methodologies for Practitioners
(FEMMP) [40]

The two aforementioned perspectives focused on the evaluation of the system architec-
tures and the supporting metamodel concepts. However, the system architecture devel-
opment process greatly influences the overall MBSE methodology. Inversely, the overall
MBSE methodology must be well-suited to incorporate the developed architectures into
the model-based paradigm. For a practical evaluation of the two architecture modeling ap-
proaches, it is essential to evaluate the methodologies at large. “A methodology is defined
as the combination of processes, tools and people” [3]. Weilkiens et al. [40] have developed
the FEMMP to support MBSE end users to evaluate various methodologies available and
identify the best possible solution meeting their specific needs. The FEMMP defines a cat-
alog of criteria against which the methodologies are assessed. They are grouped by areas
and allow the independent evaluation of the process, the quality of the model, its practical

implementation in a tool, and how well it can be applied to a standard case study. It is key

46

to distinguish the system model from the system architecture. A system model incorporates
a wealth of information that is beyond the scope of a system architecture. The FEMMP
assesses the quality of the model in general, whereas Section 3.2.2 aims to assess the quality
of the architecture in particular. The evaluation criteria of FEMMP has been grouped by
various aspects such as Essentials, Practicality, Efficiency, Usability /Experience, and Sup-
port. The criteria, indicating their scope (applicable to the whole methodology, process,
language, tool) are weighted on relevance between ‘1’ to ‘3’ with ‘3’ being the most relevant
to be focused on first.

After defining the criteria, the framework provides four major types of metrics to assess

the criteria as described in Figure 3.12:

* Yes/No Question: Includes a free text justification.
* Selection/List: Names the relevant items with explanations.
* Quantitative Assessment Scale:
— A - Fully Compliant: The methodology covers the item exhaustively and

addresses it well.

— B - Acceptable performance: Minor constraints or limitations apply, but they are
documented well.

— C - Limited Applicability: Major constraints or limitations apply that require
considerable extra effort, cumbersome workarounds or extensive customization.

— G - Generalization: Compliance claimed, but no conclusive information on the
practical application is provided.

— X - Not Addressed: The criterion is not addressed, not implicit and no reasons for
its omission are provided.

Figure 3.12.: FEMMP evaluation metrics [40]

The FEMMP catalog describing the criteria from all the groups is described in Table
3.4.

A-00-P
A-01-P
A-02-L

A-03-T

B-00-L

B-01-M

B-02-M
B-03-M
B-04-P
B-05-M
B-06-M

B-07-T

B-08-L

B-09-M
B-10-M

C-00-T

C-01-T

C-02-T

C-03-T

C-04-T

D-00-T

D-01-T

D-02-T

D-03-T

E-00-M

E-01-M

E-02-T

Area

Es ntia!s
Essentials
Essentials

Essentials

Practicality

Practicality

Practicality
Practicality
Practicality
Practicality
Practicality

Practicality

Practicality

Practicality
Practicality

Efficiency
Efficiency

Efficiency

Efficiency
Practicality
Experience

Experience

Experience
Experience
Help
Help

Help

Process
Process
Language

Tool

Language

Methodology

Methodology
Methodology
Process

Methodology
Methodology

Tool

Language

Methodology
Methodology

Tool
Tool

Tool

Tool
Tool
Tool

Tool

Tool
Tool
Methodology
Methodology

Tool

Table 3.4.: FEMMP catalog [40]

Title

ISO Standard
Framework
Philosophy

Precision

Language

Scalability

Scope
Tailoring
Consistency
Vanants

Complexity

Connectivity

Integration

Simulation
Redundancy

Perspectives
Checking

Reporting

Admin
Reuseablity
Navigation

Intuitition

View

ul
Documentation
Training

Support

What process steps of ISO 15288 are covered? List
What views from the reference framework are used?(MODAF, DODAF...) List
Are Model Elements clearly distinguished from Diagram Elemenis? YN
(separation of content from representation)

How precise does the fool implement process semantics and sequence? Scale

(Is the process well enforced, can "wildcard” elements be used e.g. an

"association relationship”, are constrained clearly communicated and

controlled, are "work arounds" allowed that reduce the model quality)

What Modelling Language is used? (If NOT SysML: How well does it define List
the real-world semantics of the engineering, are elements strictly typed, is

their meaning unambiguous, do they have a defined purpose efc.)

How well does the model scale? (suitable for large projects, "grows” with time Scale
without becoming cumbersome, does it require partitionaing e g_ in a tree)

Faor what engineering purpose is the methodology suited(innovation, improved List
products, refactoring, reverse engineering,..)?

How easy is it to tailor the methodology? (add, delete or change processes or Scale
process steps, object definitions or toggle tool features on and off)

Is the process self-contained? (are in-/outputs to all steps connected) Y/N
How well does the methodology support the vanant management? Scale
How often is the methodology "interrupted"? Scale
(by external processes and/or non-integrated tools)

How easily can the information be exchanged with other tools? Scale

(What standard API are provided by the tool, what API can be added, Is
import and export based on open protocols, is it guided, e.g. by a wizard,
can it be rolled—back, what the gquality control mechanism efc.)

How well can the model be infegrated with specialty engineering models? Scale
(CAD, PNID, Project Management, Document Mangement)

How well does the methodology provide for an integrated simulation? Scale
How well does the methodology prevent duplication? Scale
(of work, model elements, artefacts, communications and reports)

To what level is the creation of experis' perspectives automated? Scale
(can views be defined on the model or do they require manual re-work)

Does the tool support consistency checking of the model? (Automated Y/N

detection of wrong content and/or formats, flagging of , "loose ends” etc.)

How quickly are standard/custom reports, is design documentation created? Scale
(select templates or views, filter reports, re-use of seftings, define

aggregation, required level of experience, potential level of automation)

How well does the tool help to minimise work that isn't creating any value? Scale
(low admin, auto versioning and back-up)

Does the tool allow to reuse any type of Modelling Element across projects? Y/N
(sharing the same object with the same lifecylce in any project)

How easy is it to find the correct model element? (are elements links, users Scale
"guided" in the process, information well aggregated, need to "jump" screens)

How intuitive is the tool to work with? (compliance with UX conventions, Scale
standard tool reactions e.g. tool tips, double/right click, drag&drop, delete,
Keyboard shoricuts, spell check, familiar operations e.g. as MS-Office)

How easy is it to configure the UX dynamically? (define a matrix with sorting Scale
& filtering of columns and rows, store customised view, annotation, comment)

How readable is the UI? (Good use of screen estate and colour, zoom, can Scale
fonts and sizes be changed, 1s information well presented...)

How well is the methodology supported? (books, manuals, case studies, on- Scale
line help, community, websites, interactive support, user feedback efc.)

How well is fraining supported? (availability, consultants, coaches, e-fraining, Scale
background knowledge required)

How well is the tool supported? (vendor response times, 24/7 helpline etc.) Scale

47

48

4. CASE STUDY: IMPLEMENTATION

“Since all models are wrong, the scientist cannot obtain a ‘correct’ one
by excessive elaboration.”

George E.P. Box (1976)

This chapter describes the implementation of the Adaptive Cruise Control case study
using OOSEM/SysML and ARCADIA /Capella. Section 4.1 describes the SysML approach
to modeling using OOSEM. Section 4.2 discusses the ARCADIA /Capella approach to mod-
eling the case study. Both the approaches are unique in their own ways while serving a
similar purpose at the same time. The architecture development workflow developed in

Chapter 2 is used as a template to maintain consistency throughout this chapter.

4.1 Modeling ACC Using OOSEM /SysML

Table 4.1.: ‘PMTE’ elements mapped to architecture development using

OOSEM/SysML
Process ‘ISO/TIEC/IEEE 15288 Standard’ Process Model
(System Architecture Development)
Method OOSEM
Tool Cameo Enterprise Architecture
Environment University Research Infrastructure

Before starting the implementation, the following section will provide an overview of

the SysML diagram types.

49

SysML Diagram Taxonomy

Figure 4.1 shows the diagram taxonomy of SysML. SysML diagrams are characterized
into three types: structure diagram, behavior diagram, and requirement diagram. In total,

SysML provides 9 diagrams. Each of these diagrams are briefly described below:

bdd [Package] Diagram Taxonomy[SysML Diagram Taxonomy 1)

«block»
SysML Diagram

[[]

«blocks | «block» | «block»
Structure Diagram Requirement Diagram Behavior Diagram

[
«block»

Use Csse Diagram

1
«block»
Activity Diagram

I
«block»
Sequence Diagram

I
«block»
State Machine Diagram

1
«block»
Block Definition Diagram

[
«block»
Package Diagram

[
«block»
Internal Block Diagram

«block»
Parametric Diagram

Figure 4.1.: SysML Diagram Taxonomy

Structure

1. Block definition diagram (bdd): A block definition diagram is used to model the struc-
tural elements, called block and their composition and classification. These diagrams

are used to define the structure and behavior aspects.

2. Internal block diagram (ibd): An internal block diagram is used to model the internal

structure of the blocks which includes their properties, connections and the interfaces.

3. Parametric diagram (par): A parametric diagram is used to model the constraints on

the properties of the system and their relationships to support parametric analysis.

4. Package diagram (pkg): A package diagram is used to organize the system model

using elements called ‘packages’ that contain other model elements.

Requirements

5. Requirement diagram (req): A requirement diagram is used to model text-based re-

quirements and their relationships with other requirements and model elements.

50

Behavior

6. Use case diagram (uc): A use case diagram is used to model the functionality of a

system in terms of it is used by external actors to achieve a given set of goals.

7. Activity diagram (act): An activity diagram is used to model the system’s functional

interactions by specifying the order of execution of actions.

8. Sequence diagram (sd): A sequence diagram is used to model message-based behavior

of the system and its components.

9. State machine diagrams (stm): A state machine diagram is used to model the behavior

of an entity based on its state-based transitions triggered by events.

Implementing OOSEM

Before starting the system architecture design, an important part of any SysML method-
ology is to set up the model by establishing the modeling conventions and standards, and
organizing the model using the package structure in SysML [18]. The modeling project
needs to be organized in packages in order to achieve consistency in modeling, make the
model readable and to control the model baseline. Figure 4.2 is a high-level description of

the ‘OOSEM Specify and Design System’ process applied in this case study.

ol

(‘act [Activity] Specify and Design System[Specify and Design System])

set up model

I.

analyze
stakeholder
needs

manage analyze optimize and
requirements system evaluate
traceability requirements alternatives

|
define logical
architecture

|

\z

synthesize candidate
physical architectures

Figure 4.2.: ‘Specify and Design System’ activities in OOSEM

4.1.1 Operational Analysis

Modeling using SysML is widely thought of as a requirements-based approach to ar-
chitecting systems. Hence, a requirement is considered as a key artifact of the SysML
specification. SysML provides a dedicated diagram called requirement diagram (req) to
model requirements and their relationships. Some SysML tool vendors provide require-
ments importing options to import requirements from external requirements database tools
and spreadsheets. These requirements are transformed into requirement objects in SysML
and can be used in the desired diagram. It is important to note that SysML usability is

affected by the tool used by the user. Many tools from different vendors vary in the func-

52

tionality offered based on their own customization to the language, APIs, and not all of the
tools provide the requirements importing feature. While SysML tools are meant to serve
the purpose of modeling, many solutions end up being mere diagramming tools as opposed
to being modeling tools. The requirement object is a newly created artifact in SysML that
is not inherited from UML, and can be linked to other model elements in SysML such that
a traceability can be realized in the SysML model across diagrams. The main steps in the

operational analysis phase in OOSEM are:
— Define operational domain
— Define mission/system use cases

— Specify stakeholder requirements

Define Operational Domain

Based on the set of stakeholder needs, the operational domain for the system is identified
using a block definition diagram (bdd). The operational domain allows to establish the scope
for the to-be system. This diagram helps to define the system boundary to distinguish the
system-of-interest from the external systems and users. The diagram presents the hierarchy
of blocks with the ‘Operational Domain’ block as the top-level block. Figure 4.3 shows the
‘Operational Domain’ block diagram for ACC, where various operational actors that might

interact with the system throughout its life cycle are modeled as blocks.

93

bdd [Package] 2-Structure [Operational Domain])

«block» steering System
Steering System |1

«block» sensing System
Sensing System [

«block» braking System
Braking System |1

«block»
«block» pow ertrain System Vehicle System
Powertrain System |1

parts
adaptive Cruise Control : ACC System

Vehicle System

operations

«block» control braking(Active Braking, Brake Signal, input) |1
«systemof interest» control pow er delivery()
ACC System monitor driver inputs()
S provide vehicle status()

environment : Environment
regualtory Affairs : Regualtory Affairs
manufacturing : Manufacturing

service : Service Jpce System «block»
driver : Driver 1 Driver

operations references . .
locate targets() adaptive Cruise Control : ACC System Priver_Host_Vehicle
calculate relative parameters() 1

maintain distance() i a0 operations
maintain speed() rive vehicle()

t control ACC()
provide ACC() observe status()

«block» chassis System «block»
Chassis System |1 ing ing

references 1.
adaptive Cruise Control : ACC System

«block» control System
Control System | «block»

«block» Operational Domain
Service service

«block» information System references 1
Information System |1 adaptive Cruise Control : ACC System
stationary Object D
Stationary Object |0 y Affairs regualtory Affairs

references 1.
«block» highw ay adaptive Cruise Control : ACC System
Highway [

«external»
Environment environment
«block» | moving Object references 3
Moving Object [0..* adaptive Cruise Control : ACC System
«block»
Target Vehicle target Vehicle

parts. 1
Driver_Lead_Vehicle : Driver_Lead_Vehicle [1]

Figure 4.3.: ‘Operational Domain’ bdd

Define System Use Cases

A SysML operational level use case can be defined to identify the external actors that
are associated with the system. In our example of the ACC, we have defined the system use
cases for our system to refine the stakeholder needs. These use cases are described using
the use case diagram.

Figure 4.4 shows the ACC system use cases. In product development context, use cases
can be used to define the high-level capabilities provided by the system or a mission that
refine the stakeholder and system requirements. While performing operational analysis in

SysML, an operational context for a system is usually defined in SysML while considering

54

uc [Package] 3-Use Cases [Use Cases])

«block»
«system of interest»

ACC System

Provide Assistance
While Driving on
Highway

2 |

Driver Environment

Provide ACC Vehicle System

Figure 4.4.: SysML use case diagram (uc) for ACC System Use Cases

the ‘system-of-interest’ as a black-box entity such that a system boundary can be achieved

already.

Specify Stakeholder Requirements

The operational analysis phase results in the elicitation of stakeholder requirements
that are used to further derive system requirements. The system requirements which will
be derived in the next phase serve as the basis to modeling the white-box architecture of
the system. Figure 4.5 shows the requirement diagram that elicits the ACC stakeholder

requirements modeled in SysML that were translated from the stakeholder needs.

95

req [Package] 1-Requirements [Stakeholder Requirements])

requirements
Stakeholder

Requirements

arequirement»
Adaptive Cruise
Control

«requirement»
safety

«reguirement»
Display

1d = "SR1"
Text = "The user shall
be able to lawiully avail
the Adaptive Cruise
Control feature.”

Id="SR-2"

Text = "The user shall
be able to safely use
the system without any
potential threats "

Id="SR-2"

Text = "The user shall
be able to identify
whether the system is
in ON/OFF state
through the driver
console.”

«requirement>
CyberSecurity Design and
Reporting

arequirement»

EMIC

Id = "SR-4"
Text = "The system shall
incorporate established best
practices for cyber-physical
systems and shall report all
discovered cybersecurity

Id = "SR-5"

Text = "The system controller
unit shall withstand
Electro-Magnetic Interference
(EMI) test specified by IS0
11452-2 standard."

«requirement»
Cost

Id="5R-19"

Text = "The system
shall not cost more than
35 percent over the
total manufacturing cost
incurrea”

vulnerabilities to a central
database "

T incidents, exploits, threats and

[1

‘ «requirement» «requirement»

Speed Distance
Id="SR-1.2" Id="SR-1.3"
Text = "The user shall Text = "The user shall
be able to set and be able to set and
maintain the speed of maintain the distance of
the vehicle and the vehicle and
delegate autonomous delegate autonomous
control.” control.”

«requirement»
Control Interface

1d="SR-1.1"

Text = "The user shall

be able to turn the

system ON/OFF from

the steering console.”

arequirement» arequirement»
29 Mechanical Shock EPA Compliance
=l 1d="SRA.7"

Id="SR-16" Text = "The system
Text="The systems shall shall not directly cause
be resistant to mechanical
loads and vibrations that
oceur in driving
scenarios.”

«requirement»
Functional Safety

Compliance
Id="SR-1.8"
Text = "The system
shall satisfy the ISO
26262 standard
functional safety
requirements "

the fuel emissions of
the vehicle to rise
beyond permissible
limits as defined by the

Figure 4.5.: SysML requirement diagram (req) for ‘Stakeholder Requirements

4.1.2 System Requirement Analysis

The system requirements analysis phase is performed to analyze the system inputs
previously collected and move from a problem statement to an abstract solution [49]. This
phase deals with specifying the requirements for the system in terms of its behavior and
other externally observable characteristics. For this purpose, system scenarios are modeled
to define the system’s interaction with external actors using either activity diagrams or
sequence diagrams followed by a system context diagram modeled using an internal block
diagram of the operational domain to define the external interfaces of the system. System
requirements in terms of its functions, performance and interfaces are specified by identifying
the critical properties that will impact the measures of effectiveness. System states are

defined to specify the state-based behavior depending on the actions from all of the scenarios

[18]. The main steps in this phase include:
— Define mission/system scenarios
— Define system context using internal block diagram

— Specify system functional and interface requirements

Identify and define system level states

o6

Define Mission/System Scenarios

In this step, one or more scenarios are defined that describe the message-based interac-
tion of use cases to initiate the behavioral requirements specification. Figure 4.6 shows a

scenario description for ‘Turn ACC ON’ scenario using a SysML sequence diagram (sd).

sd [Interaction) Turm ACC ON[Turm ACC ON])

«block» =) «block»
: Vehicle System «system of interest»
T :ACC System
T

driver : Driver

H

«lockr ‘

1: ON Command !

2: ON Command

- -0

(1 3: Desired Speed

t
| 4: Desired Speed

5: erCmd

6: ACC Status_Speed

7: VehicleStatus

Figure 4.6.: SysML sequence diagram (sd) for ‘Turn ACC' ON’ scenario

Activity Scenarios

SysML activity diagram (act) is used to define flow-based behavior of the system using
actions and activities. Activity exchanges can be defined by two types: object flows that
enable passage of tokens between output and input pins action, and control flows that dictate
sequential execution of activities by providing additional constraints on those activities.
Figure 4.7 shows the activity swim lanes representing the actors (‘driver’, ‘subject vehicle’

and ‘target vehicle’) and the system and the functions performed by them are shown by

57

actions in the swim lanes. This is one way of linking the structure and behavior in SysML
(i.e. allocating the actions to the actors and the system in swim lanes). Alternatively,
system functions can also be represented using blocks that can have operations which can
be called by a call operation action or allocated actions that can be called by a call behavior
action. Once the system level actions are defined, functional analysis is done to identify
and define new actions and system actors if needed. Although not included as a part of
OOSEM, a functional tree diagram can be captured in SysML as a hierarchy of blocks in
bdd.

58

osBD 9STL)Y OPIA0L], I0] OLIRULDS (101) winibnip (17101700 TINSAS @) F omS1g

=]
ki

3aue)s

2IUBISIJ SNIBIS D0

bds snips uu«.ﬁr

paads sniels 0OV

paads ulpauew :
paads pansag

6is ayeig
paads passaq)

JEIGENETIEN

§ lewawaiddng

smels i

—_—

sioIysA spiroad : snyels

i sneys
sniels

BAlasqo

uonesaIRa/

[smes 00V

[

B3UBlSIp UlRIUIeW

Sauejsiq aaneRHlsads aanesl nm:mm%q

3IUEISIJ ANERY paads anelsy

—t
si@jawesed aAne|al 21€|NVED

uosad 291usp 19feads a1a1uap jebie

paads a|a1yap 16ie L

—1
uonisod a1a1yan 1ebie | 186181 83e30] ©

SEETRITENY _mm_Em

sonewauny 32IYaA T
E

bliesaa23y

paads
CILITETY
soy

paadg

313UB /A 150H ssuss:

PUBWIWOD 440
puewwos nd faanmap samod jonuea : | SnDIoL jonu
paags passapl
Buiyelg ol Bupiesg aapay
Melg v ayesg Aidd
Bupjeiq jonuod :
paads pandaq
paads paJisaa
paads pansafy paads passaq
des painsag d
eo palisaq des pausaa
quelwod 440 puewwod 445 PUBLIWOD 440
paadg plauaj, 150H PUBLLILIOD UD sindui JsAUp Joyuow : PUBLILIOD N PUBWIWOD NO

DOV [043U0D :

anbio] jonuod

12B1e1 2pinoad @ 12[0 2121uap 126ie) .
3po1yan 19BieL wayshs 0oy wajshs aoIyaa J3AlUa
«ajeao)er «ajean)er «ajean)er «ajeonyes

[T20v 3pinoid Toov spioid [umnav] joe

99

At this point, various data items that are exchanged between the functions are defined
using the SysML block definition diagram (bdd). The interface definitions are created to
define the data that will be exchanged through the functional interfaces in the activity
diagrams. Figure 4.8 shows the input-output definitions for the data that is exchanged
through the activity I/O pins. The data types are defined at every level of abstraction
throughout the system development as new interfaces are being defined and the model can
be organized accordingly. For this case, we used a single diagram to define the evolving
data types. SysML ‘signals’ were created to define the data exchanges modeled as ‘flow

properties’ to the interfaces (blocks).

bdd [Package] 6-Interface Definitions [VO Definitions] J

«interfaceBlock»

B enor i nterfaceBlocky R aeetico [p——
Braking Control IF ACCIF Image Processor IF
Qiias VostSpsed out brakeGmd : BrakeCommand out command : ACC Commands out : Processed Camera Data
out activeBraking : ActiveBraking —
«interfaceBlock» T T
Brake IF :
Tiow properties cnterfaceBlock» sf:f:fiﬁifnk}
out brake : ApplyBrake Engine Control Driver IF Cruise IF
flow properties out targetSpeed : Target Vehicle Speed
ERNSEI FSupplomentalow erCmd - out targetPosition : Target Vehicle Position
cinterfaceBlock»
Status IF

Accelerator IF interfaceBlock»

Target Sensing IF

out out : VehicleStatus

out accelerate :

out : Target Vehicle Data

«interfaceBlock»
Information System IF

«interfaceBlock»

Stored Entiy |
| Radar IF Camera IF

B e o T —— «nterfaceBlock»
out radarData : Raw Radar Data | |out cameraData : Raw Camera Data Information IF
«block»

‘ «signal | ‘ «signal ‘ ‘ «signaly | s «signal
L Target Vehicle Data JeliicleStatus
5 S
«signaby «signal»
Userlnstructions | | Target Vehicle Data asignab» Foan Eorah oo E oo

Target Vehicle Speed

Target Vehicle Position Vehicle Speed

[ACC Status_Speed ‘ACC Status_Distance

‘ «signal» [«signal» ‘ «signal» «signaly
servi i Raw Radar Data

«ignab T «signa>
RegulatoryRequirements % HostVehi
«ignab
«signab 3 - command
B u. rement «signab «ignab ™
anufacturingRequirements | | g oo command Raw Camera Data 5
Camera Data

«signal
ACC Commands

«signaly
OFF Command

«signab,
Desired Speed

«signab,
Desired Gap

Figure 4.8.: ‘ACC Interface Definitions’ using bdd

Define System Context

The ACC system context is shown in Figure 4.9 in an internal block diagram (ibd),
with the interfaces modeled using the SysML ’prozy port’. A key point to notice from this
level is that in SysML, the diagrams used to model the structure of the system are the

block definition diagram and the internal block diagram, at every level of abstraction. The

60

differentiation in the system architecture elements of various levels of abstractions is done
with the help of SysML extension mechanisms like custom ‘profiles’ and ‘stereotypes’. The
system actor ‘vehicle system’ can be particularly decomposed into its subsystems at this
stage itself, if not already defined in the operational domain, as the vehicle subsystems
would act as actors to the system too. The interface definitions for the ports are detailed
by defining the behavior of the ports or by typing the ports with interface blocks that
describe the exchange information between the ports. Critical performance requirements
and design constraints can be defined as value properties of the system or the flow items in

the interfaces.

61

pgr Suisn jxouon) walskg DOV, 6 oML

4 Buisuag 196.e]
[1] ao1yap yobuey : apdIyaA Jo6Ie)

[."1] waysAg Buisuag : wayshg Buisuss
i

4 Josuag paadg-~ : SNIEISIAUBA

“._ wie)sAS uonewou~ : 4| uonew.oul~ :
[1] waysAs uonewaoyu| : waysAg uoljewaojul

|ohuoQ auibug~ :

> [5] & vonewsopu

SMEISBOYRA

sjeIseooy
<

0uoQ auIbuT :
fonuog auibuz : || El

[1] woysAg ulesjaamod : Wa)sAg UIRILId MO

1
oy

6 X ‘Bunjeiganoy
l1oAuod bubielg :[| {41 10nuop Buneig-~ : 4l oYeig~:

[1] weysAg Buiyeig : waysAg Buiesq

el

41 Jal104u0D BsINO~ [2L

—]

[.] JuswuosAug : Juawuolirua

T
L4

4| Buisuag j1ebue]~ © mm_ Jelioueg sinig :

4l Jeng~:

[1] wayshs 0OV : wayshs ooe

[1L] woyshg Buiiaalg : woyshg Buliaays

[

2z

spug

< =K

HeigAddy

|A|_m| dl oveg :

AULLOD DOV

<] 4110mig:

[1] 19A11Q : 8191y ATISOH ™ 1aALIQ

[1L] wayshg ao1yaA : wayshg ajo1yan

ﬂ_ 1xejuc) WajsAs | uiewiog euoesado prooig] par

62

Specify Black-box System Requirements

The system requirements analysis phase in OOSEM results in the black-box specification
of the system. The specification of a black-box was expressed as a block with the following
features:

e The required functions that the system must perform with their inputs and out-

puts.
e The required external interfaces.

e The required items that the system must store such as data, energy, and mass,
modeled as reference properties. The OOSEM stereotype <<store>> was ap-

plied to these properties.

Figure 4.10 shows the ACC Black-Box Specification bdd for ACC. System requirements
were linked to the ‘ACC System’ block. The black-box specification also includes required
physical, performance and quality characteristics specified as value properties along with
parametric constraints to these value properties, and the required control to determine when
functions are performed [18]. These features are left unexplored as the goal of the study

does not include parametric evaluation of the architectures.

bdd [Package] Structure [ACC System Black Box Specification])

«block»
«system of interest»

ACC System

references
«store» : Sensor Data

operations
locate targets()
calculate relative parameters()
maintain distance()
maintain speed()

proxy ports
in : ~Target Sensing IF
in : Speed Sensor IF
out : Braking Control IF
out : Engine Control
in : ~Cruise Controller IF
out : Information System IF

Figure 4.10.: ACC System Black Box Specification

63

Define System States

The expected states are modeled using a state machine diagram (stm). A state ma-
chine diagram is used to specify control requirements such that the system transitions to
different states based on input events in the current state and the executes the specified ac-
tions. SysML mechanisms also allow these transitions to be reflected in activity diagrams|8].

Figure 4.11 shows the system states of ACC while in operation.

stm [State Machine] ACC System[ACC System])

!

ACCOFF |

ION Command OFF Command

ACC Stand-by J

Desired Speed Defired Gap w hen (Brake Applied)

ACC ON

entry / Provide ACC

w hen (Target Vehicle Absent)
\ ; N S

{ Speed Control Distance Control

do / maintain speed do / maintain distance

w hen (Target Vehicle Detected)

Figure 4.11.: SysML state machine diagram (stm) for ‘ACC System States’

Visualization of Requirements

The requirements after analysis were visualized using a requirement diagram (req). Var-
ious relationships between the requirements can be modeled among the requirements. Al-
ternatively, a tabular display of the requirements could be obtain using a requirement table

in Cameo. Figure 4.12 shows the system requirements obtained after requirements analysis.

64

(ba) wibvip Juawasinbas TNSAG Ul pa[opow sjuswalmbar WelsAg 'g1 f 2In3I]

SNIEIS 440/NO aul fejdsip
IS Wals As 3U L, = %8 1

1915N] JuaWnIsy|
3pIYaA AL} uo

L GL-HAS, =Pl

smegs Aejdsig
wjuawainbas

wlbayanlap

ke

APIYSA UY LIYUM SLWBISAS

Jusshs

. passaudap si [epad

8)EIq BU) USYM PBIENIE
10U [[eYs Washs ay 1, = X2l
JLELL-AS, =PI

uonuanalg
uoneady fouabiawg
Tuswainban

Iojelado ay) Aq 195 asueleap Aempeay
U3 LI J0 JE 3213 A PIEMIO) E D3eP
SI0SUBS BU})i 3pOW [011U0D ABMPEAH
U1 Ja)Ua JIEYS Walshs 3yl = %3]

L ELMAS. =PI

|
|
Al

ELEVERIES TS

. passaud s1 epad

SHEI] U} U3UM 3IENIIESD
IS Walshs U1, = %8 1
L1 1L-YAS. =PI

+BIBIS

440, 3U1 Buunp LWMs

440 sassaud Jojeledo

8Y} usym selS 440,

UL Ul 84 0} SNURUDD [EYS
walshs syl youms 440 au)
sassaud Jojesado sy} pue
alElS AQPUBIE, 40 NO, 3UlUI
51WAISAS 8U) UsUM PAIJESID
a0 [[eUs WaShs 8yl = 1¥5]
2Ll =Pl

J BB

NO, 8} BULND LaIsms NO
sassaud J0jesado ay) usym|
8IEIS NO, Ul 87 0} 8NUjU0D
I[eUS Walsfs auL yoyms
NO 3y} sessa.d Jojelado ay
uaym pajgesip Guiag woy
alels fgpUeIS, 3U3 Ul padejd
a0 [IEUS WAISAS 8U L. = 1%]
WL LdAS. =Pl

1041107 22uElSIq AEmpeay
wjuawalnba»

uoneaaeaq fouablawl
IETIEY | LETE

nduj 440 20V
RETIETTEN] EYE

ndu| NO 22V
wuawainbas

|
wjbayaruap® |
|
e

|
wbayanlap® |

JaPIyaA Bupes| au)

LUOIPUOD 440/NO SIUBISAS

BGulene pue [0.4uod

IIEUS Wals s 8y, = 148 |

10 SNiElS aU) fejdsip Bunsixa syl yIm oEUEUI
IlEus washs syj,. = 8]

B L-HAS, =P WS-8, =pl

Jun Jad (O£ UBL) 8104 1500
10U jjeys washs sy, = 8]
S L-AS, = Pl

LWoJ) BPIYBA 3] JO SIUBISID
8U1 UEUIEL O] 8108

aQ J|Bys walshs 8y, = 181
£1-d45. = Pl

W 13AUD aU}

£ pasisap SE SPIYaA 3U) O
paads au] UIBJUIEL 0] 3|08

80 |leys walshs sy, = 1%8 |
£ 1448, =P

«jbayasLapy |

e Al Al

v 1e 13sn au g
440/MO0 paLInl 8g o} s|qe
80 [[eus wasfs syl = e |
JLEAS, =Bl

smes EECTENT]
quawainba «quawainbass

1500
quawainbas

20uEsig pea
«quawanba

pasds jonuon

uawanbars

440/NQ weshs

quawanbass

faes

Jabusssed 0] ajesun s1 jey)
uonENys E 8jE8ID APRaIp
10U [eYS WIS AS SUL. = L
WLHAG, =P

PIEDUE)S

Z-ZG¥L1 0S4 paupads
1581 (1W3) 8oussaaiu|
NBUDE -01813 PUEISUIM
Ileys wajshs ayl, = xal
SMAS, =Pl

«PIERUEIS

Z9ZOZ OS5 UuM JUeldod
a0 |[eUs Waishs syl = 1x3]
5-ufs. =PI

Kizjes 1abuasseq
suawaanba.

souendwo? w3
«quaWaINba

aouendwor
Rajes [euonaung
AqUBWBINB2IH

«Yd3

3U) £q pauysp se s
ajgissiad puodaq asu

0] 8PIYE A B} JO SUISSILS
|8} 8y} 8SNED Ajaup

10U |[BYS WAJSAS By L, = oL
FHAS. =PI

soueydwod vd3
«uaWaNbaL

. 8SEQEIED [ENUSD
E 0] S3IIGEISUNA PUE
sjesuy} ‘spojdxe ‘sjusprRul
Aunoasiagq ko pasanasip
lle wodal ||EYS PUB SWIISAS
[e21sAyd Jaq £ 1o} Saonoesd
plepues ajelodiodul

IIEUs walshs ayl. = %3]
£Lufs. =p1

Buioday
pue ubisaq Aunaasiaghs
EIETET DEveY

Swswainbas foenbal
sy} Jad se 158 | 3ooys
[EDIUELDE || PUEIEIM

lleys walshs ayl, = a1

ZHS. =P

. pansap
SE 188N 81} 0] 8INjES),
00V aul apinaud Ainyme|
IIeys wajsis ayl, = 1xa |
JLdis. =l

1531 %90US [EAUEYIAN
fuawaanbak

1011u03 851013 3Andepy
«uawaINbaIH

l

JSlualuaanbay
walsis jonuod
a5InY amdepy, = x| |

sjuswainbay wayshs
uawaanbass

|
«jbayasuape |

3 sjuawalinbay waisAs]siuswannbay wa1sis [abeyied] bais

65

4.1.3 Logical Architecture Definition

The logical architecture definition phase in OOSEM includes decomposing the system
into abstract components called logical components using the structure diagrams. Logical
components perform the necessary function without providing technological solutions. Log-
ical scenarios are created using the sequence diagram (sd) to describe the logical components
interactions to realize each operation of the system block. The internal block diagrams de-
scribe the interconnection between the logical components. The logical components are then
decomposed further to sub-components and the parent component can again be specified

as a black box as described in the previous phase. The main steps of this phase are:

— Define logical decomposition
— Define logical component interactions using activities
— Decompose the activities to be performed

— Define logical interfaces between components

Define Logical Decomposition

In SysML, logical component identification is done in the block definition diagram (bdd)
before defining interfaces using the internal block diagram (ibd). Alternatively, new inter-
nal components can be added to the internal block diagrams. SysML bdd automatically
inherits the decomposition. In OOSEM, the system block has logical as well as physical
decomposition. Hence, a separate subclass of the system block was created for the logi-
cal and physical decomposition of the system. The ‘ACC Logical’ block was modeled as
a subclass of the ‘ACC System’ block such that it inherited all the features of the ‘ACC
System’ block. The ‘ACC Logical’ block was then decomposed into logical components
that are identified such that all the system functions can be performed. Figure 4.13 shows
the ACC logical decomposition where the system logical components are designated by the

stereotype <<logical>>.

66

bdd [Package] 1-Structure [ACC Logical Decomposition])
«block»
«system of interest»
ACC System
«block»
«system of interest»
ACC Logical
«block»
«block» «logical»
«logical» e ontrolier
Radar Sensor e
«block»
«logical»
Image Processor
«block»
«logical» «block»
Camera Sensor «logical»
Sensor Fusion

Figure 4.13.: SysML bdd for ‘ACC Logical Decomposition’

Define Logical Component Interactions

SysML does not provide an option to show component functional interactions using the
same structure diagram, unless the unconventional mapping of functions to blocks is done.
The ‘ACC Logical’ block inherits the operations of the ‘ACC System’ block. A separate
scenario using the activity diagram is created to show function allocation to the logical
components. Figure 4.14 shows the activity diagram of the logical component interactions
that realizes the ‘calculate relative parameters’ operation. The input and output flows of the

activity ‘calculate relative parameters’ match the pins to the same action from the ‘Provide

ACCQC’ scenario.

act [Activity] Calculate Relative Parameters - ACC Logical[Calculate Relative Parameters - ACC Logical])

«allocate»
«logical»

Controller

«allocate»
«logical»

Sensor Fusion

«allocate»
«logical»

Image Processor

Relative Dig}

out Relative Distance F

Vehiclg

in Vehicle Speed }—H

ance ([~

Speed

:calculate) Target Vel
relative L

distance |
Target Vehicle

:calculate) TargetV
relative speed e

Relative Spee|

Processed Came]

icle Position
ocessed Camer,

—L

abata (" :process

Data

Radar Data

Raw Camera Data

e

| cameradata |
\ y

in Raw Camera Data

|

in Raw Radar Data

ition " :sensorfusion) Raw
L‘ I

Target Vehicle Speed

hicle Speed

out Relative Speed

Figure 4.14.: SysML activity diagram (act) for ‘calculate relative parameters’

function

Define Logical Interfaces between Components

67

Finally, the system’s internal components can be displayed using an ibd to show the

interconnections. Figure 4.15 shows the interconnections of the components of the ‘ACC

Logical’ block that are typed by the logical components from the bdd. Similar to the system

black box level, system internal interfaces are defined leading to new interface requirements

specification. Information flows between SysML activity diagrams can be mapped to the

internal block diagrams. Interface management can become tricky while modeling hundreds

of interfaces for a particular system. After the logical architecture definition, each logical

component is specified similarly to the system requirements specification done at black box

level. Logical component state machines are created to define state-based behavior.

68

ibd [Block] ACC Logical [ACC Logical])

«logical»

«logical»
:Image Processor 9!

:Camera Sensor

~ : ~Cruise Controller IF : ~Camera IF

«logical» <] :CameralF :~Target Sensing IF | TargetVehicle Data

: Controller

: ~Cruise Controller IF
ACC Commands
: Speed Sensor IF
=

: Speed Sensor IF
HostSpeed

A : Braking Control IF

Raw Camera Data

: Image Processor IF

A : ~Target Sensing IF |<—|
Processed Camera Data

: Braking Control IF

«logical»
:Radar Sensor

BrakeCommand,

: ~mage Processor IF
ActiveBraking .

: ~Sensor Fusion IF

«logical» - ~Radar IF
: Engine Control :Sensor Fusion [

|
<—| : Engine Control <
& SupplementalPow erCmd = ¢ Target Vehicle Speed, - Raw Radar Data | :Radar IF f— -
Target Vehicle Positon |: Sensor Fusion IF Target Vehicle Data
)
: Information System IF

: ~Target Sensing IF

A : Information System IF
<

<
VehicleStatus

Figure 4.15.: ‘ACC System Logical Architecture’ using SysML ibd

4.1.4 Physical Architecture Definition

The physical architecture definition phase in SysML defines the system in terms of the
physical components with their relationships and their distribution across system nodes.
Again, the main objective of this phase is to obtain a physical architecture containing parts
or components that will satisfy the internal functions defined in the logical architecture
using technology-specific choices made for the components. The physical components of
the system may include hardware, software or firmware. The main steps of the physical

architecture definition phase are:
— Define partitioning criteria
— Define node logical architecture
— Define node physical architecture

— Allocate logical components to physical components

Define Partitioning Criteria

System partitioning is a fundamental aspect of system architecting. Distributed systems
require system architecture to be designed such that the components among subsystems,

nodes, and layers of the architecture are partitioned based on various criteria. This helps

69

to partition the functionality, persistent data and control among the logical and physical
components with an aim to maximize cohesion and minimize coupling thereby reducing
interface complexity [18]. The ACC system was partitioned such that the common func-
tionality were refactored into shared components. Several other partitioning criteria could
be considered while designing distributed systems primarily depending on the complexity

of the systems and the project requirements.

Define Node Logical Architecture

bdd [Package] 1-Structure [ACC Logical Nodes])

«block»
«system of interest»

ACC System

«block»
«system of interest»
ACC Node Logical

data Sensing global Processing
«block» «block»
—={ «node logical» «node logical»
Sensors Global Processing Module
camera Sensor. image Rrocessor,
«block» «block»
«logical» «logical»
Camera Sensor Image Processor
«block» sensor Fusion «block»
radar Sknsor «logical» > «logical»)
—|Radar Sensor Sensor Fusion
speed Sensor
p «block» «block»
«logical» «logical» controller
Speed Sensor Controller

Figure 4.16.: ‘ACC Logical Nodes’ bdd

A node represents the partitions of components and associated functionality. “In OOSE-
M, a logical node represents an aggregation of logical components at a particular location
and a physical node represents an aggregation of physical components at a particular lo-

cation” [18]. The ‘ACC Logical Nodes’ bdd shown in Figure 4.16 shows the ‘ACC Node

70

Logical’ block as another subclass of the ‘ACC System’ block and inherits all of its features.
The ‘ACC Node Logical’ block is decomposed into the ‘Sensors’ and ‘Global Processing
Module’ nodes based on the location of the sensing and the processing subsystems. The
logical nodes are stereotyped as <<node logical>> and are further decomposed into their
logical components. The speed sensor is not a part of the ACC system since the host vehicle
system already employs that to sense host vehicle speed. However, the speed sensor provides
the measured value to the ACC processor to calculate the necessary parameters. Therefore,
the speed sensor is linked to the ‘Sensors’ node using a SysML association relationship.
An activity diagram can be used to represent the activity interactions between com-
ponents at each node. Since the number of components is small, the interaction between
the components across nodes did not change significantly, and the activity scenarios were
therefore chosen not to be modeled. After the decomposition, the ‘ACC Node Logical’
components are connected with the components in the same nodes along with interfaces to

connect across nodes as shown in Figure 4.17.

71

pQr SuISn 0IN109IYDIY [RIIS0T OpON D)V, "LT'F oInsig

Ell

paadsisoH
»

sMeIselIIyaA
»

L

J0Suag paadg~ :

e

b |
r Jlosuag paadg: Josuag paads

4l Buisuag 38

4)|Buisuag job.e] ~ :

_I_J ejeq Jepey
: Josuag Jepey : J0suag Jepes [pne
61~ : r_L

»

4l Josuag paads :

i

mey

«|eaibop»

€49014% uoisny Josuag|:

udi $¥Pbsueg : uoisng Josues

uoiysod oIy A 10buel
‘poads 9jaIya A Job.e.

«|eolbop»
«{00|q»

4| Buisuag 1968

1

—ﬂ

4 Josseo0.d abew|~ :

EBjeq BJAWED POSSA00.d

4l 10SS900.d abew :

siosuag : Buisuag ejep
«eaibo| apou»
«{o0|q»

Jl woysAS uonewo : y

4l way$AS uonewou)|:

pw I8 mod|ejuaws|ddng
» =

Al

» —

A

|053u0Q BuIbLy : 7 jonuog euibug ¢y

puewwo)aye.g
‘Buyeiganoy

—

| A

—

»-
4 1ohyoD Buesg . 4 johuo) Bunelg :

LA
2 oLl 4l 48]|043u0) BSINID~ *
_nf . LJ £1eg p Vmo ey LJ 10Ss9204d abew]: 10ss920.d abewi ; SpuewWwo) D0V
JOSUag BI3WED : JOSUSS RIS WED > 4l BISWED~ | R 13]]043U09 : 13]|043U0D < .
«eoibopy 4| esewe) : rj A_o_o.o_n_vv «|eaiboy» . Flu
«00|g» «00|g» 4l J9||0uoY BSINID~ v

a|npo |y Buissadoud [eqol9 : Buissadsoud |eqolb
«|eo160] apou»
«00|q»

[Tiea6o7 apoN D0V 11e21601 3poN 00V Biooigl] par

72

Define Node Physical Architecture

Similar to the node logical architecture, the node physical architecture was obtained
and the logical components at each node were allocated to the physical component at each
node. The ‘ACC Node Physical’ bdd is shown in Figure 4.18. Since ‘ACC Node Physical’
is also a subclass of ACC System, it inherited all the properties of ACC System. The
system hardware and software components were identified and the logical components were

allocated to the physical components respectively.

bdd [Package] 1-Structure [ACC Node Physical Decomposition]J

wblocks
«system of interests

ACC System

[

wblocks
«wsystem of interests
ACC Node Physical

block wblocks
«nm;e phy;icaln By sicala
s Global Processing Module
[1]
wblocks wblocks
«hardwares ablocks asoftwares
Optical Camera «hardwares Image Processing Software
Sensor Fusion Module [f
wblocks
shardwares wblocks
2 block: I
Forward Sensing Radar «h;rdttsa?e» 4 «inﬂfuar;iﬂw
Camera Image Processor gesr i uaion are
wblocks
«hardwares
Vehicle Speed Sensor ablocks wblocks
shardwares — ssoftwares
ACC Controller Unit ACC Controller Software

Figure 4.18.: ‘ACC Node Physical’ bdd

73

Define Physical Interfaces between Components

The interfaces between the software and the hardware components of the system were
modeled using the ibd as shown in Figure 4.19. The software components were nested

within the hardware components to which they were allocated.

ibd [Block] ACC Node Physical [ACC Node Physical] J

ablocks
«node physicals
: Global Processing Module

ublocks
wnode physicals
sensors : Sensors

«blocks wblocks
«hardwarex shardwares
+ ACC Controller Unit : Camera Image Processor

,,,,,,,,,,,,,,,,,, ablocks b
F T | usﬂﬂwa.ren | R e ca : ~Target Sepsing IF
| :ACC Controller Software g e 2ing Software : Optical Camera
| ~Camera IF E} -
E_I p7 : ~Cruise Controller IF aw Camera Dat:

: ~Cruise Controller IF|

El

Image Processor IF] Camera F
i}

- ~Target Sensing FF

: Braking Control IF

El p4 : Braking Control IF Processed Camera Data

ablocks

| «hardwarex

|

|

|

|

|

|

|

|

|

|

|

|
= -4 {<] : sensor Fusion IF Bl — :Vehicle Speed Sensor

i <

————————— Target \fehicle Position Speed Sensor IF | HostSpeed

i Sensor Fusion Module pre——
* : Information System IF
= = :information System IF ~Image Processor IF Raw Radar Data CETLITE -
Rt ‘
| ! = : Forward Sensing Radar Target Sensing F
| «softwares Ei - |_|_1 Radar IF
| |l Sensor Fusion Software | : ~Radar F
[_I‘ Engine Control d] ~Sensor Fusion IF e - -————= |
=t *—| p5: Engine Control el
[Target Yehicle Spee: < ~Speed Sensor IF |

Figure 4.19.: ‘ACC Node Physical Architecture’ using SysML ibd

The ACC node physical architecture enables the integration of the hardware compo-
nents to the software components and to the operators of the system. The main outcome
of systems architecting is obtaining the physical architecture of the system that repre-
sents the technological choices to be made to integrate all the components based on the
functional interactions between them. At this point, the system architecture of the ACC
feature is complete. OOSEM recommends creating various views of the physical architec-
ture specialized for the software, hardware and data that would only include the applicable
components. These views demand additional partitioning based on implementation-specific
concerns. The requirements can be then specified and traced to the system requirements for
each physical component. For this study, the scope was limited to creating a concise syn-
thesized physical architecture view for comparison purposes. Figure 4.20 shows the System
Architecture Development Pyramid representing the SysML architecture diagrams created

at various levels of abstraction.

Content Diagram Model[Index |

* most

abstract

least
v abstract

Figure 4.20.:

Architecture development pyramid: OOSEM /SysML

74

4.2

75

Modeling ACC Using ARCADIA /Capella

Table 4.2.: ‘PMTE’ elements mapped to architecture development using
ARCADIA /Capella

Process ‘ISO/IEC/IEEE 15288 Standard’ Process Model
(System Architecture Development)
Method ARCADIA
Tool Polarsys Capella
Environment University Research Infrastructure

ARCADIA /Capella Diagram Taxonomy

This section provides an overview of the ARCADIA Capella diagram types. Figure

4.21 shows the diagram taxonomy of ARCADIA /Capella. ARCADIA modeling language

characterizes the diagrams into seven different types. Each diagram type includes diagrams

that are either named differently for the different ARCADIA levels or possess the same

name at all the levels. A brief explanation of all the diagram types is given below:

1. Data Flow diagrams: The data Flow diagrams are provided at all the levels (phases)

in ARCADIA. Data flow diagrams are used to represent the information dependency

network between functions.

. Architecture diagrams: The architecture diagrams are provided at all the levels in

ARCADIA. These diagrams are mainly show the allocation of functions to the com-

ponents.

. Scenario diagrams: The scenario diagrams describe the the sequential flow of mes-

sages passed between various elements (functions, components, states, etc.) repre-

sented through vertical lifelines.

Mode and State diagrams: The mode and state diagrams are used to model the mode
and state machines at various levels of abstractions. Modes or states can be modeled
for system and its components and are actually inspired by SysML state machine

diagram.

76

. Breakdown diagrams: The breakdown diagrams are provided at all ARCADIA levels.

They are used to represent functional and component hierarchies.

. Class diagrams: The class diagrams are used to model data structures at all levels
of ARCADIA. They are used to define various types of exchanges between the model

elements.

. Capability diagrams: The capability diagrams are used to define capabilities and their
relations with the actors and entities. Capability diagrams are mainly used during

operational and system analysis phases.

. Interface diagrams: The interface diagrams are define the internal and external con-

textual interfaces of the system and its components.

7

Awouoxe], weidel[e[pde)/ VIAVOHUY '1¢F o3I

[112] waishs
|ea1sAyd ayz uo
weuSeip aoepay)
|BUI2]XT [ENINAIUOD

(o]
juauodwo) wajshs

|e21807 ay3 uo
weiFelp soepaU|
[BUI)X] [BNIXIIUC)
[130] waisAs ayy uo
weiBelp soepau|
[BUI)XT [ENIXIIUC)
[102] wansAs ayy uo

weJgelp sadepajy]
pajieaq [enjxajuc)

sweiSeiq
ERL-TBEM]

[8ow] wesseip
Ayjiqede) so/pue
uoIssI|A] Wa1sAs

[80] weigep
qede)
|euonesado

swe.Seiq
Ajigede)

[8@D] wesBelp sse|y 14

swe.de|q ssed

[a84d]
weuSeip umopyeaig

|euciound (eaishyd

[aa41]
weuSeip umopyeaig
|euoiouny [eaifoq

[ag4s]
weiSelp umopyealg
|euooung waisAs

[agvol
wesSelp umopyealg
Ayanoy [euonesadg

[ag30]
weiJe|p umopyealg

Auug jeuonesadg

sweiSeiq
umopyealg

[SI] weudeip
O1IBUS3S 338193]

[s3] wesdeip
oueuads afueyoxy

[54] we.Beip
OLIBU3IS [EUOIIDUNY

[svo]
weuSelp oueusds
Anu3 [euonesadg

[svo]
weiSelp oueuass

Ajanoy euonesado

(s we.Seip
BUIYIBA 21815 IPOIN 14

sweiSeiq
21e1S pue apoIA|

swes8elq
oleUSIS

[84ad] wesBeip
ane)ydly [edishyd

[8v1] weieip
34nP31YaY [eaido]

[8vs] weidep
3UN1PANYDIY Wa)sAS

[avol
weiSelp 21Ny
|euonesadg

swedsseiq
a1njaaYaIy

[84Qd]
we.deip moy4 eleq
|euoijpuny [eaisAyd

[91a1]
we.deip moy4 eleq
|euoioung [eaidoq

[84as]
we.deip moy4 eleq
|euoIuUN WaisAg

[a1vo]
weJSelp uoijoesaiu|
Ananoy jeuonesado

swe.Seiq
mo[4 eleg

sweibeiq

ejladed/ VIQVOHY

78

4.2.1 Operational Analysis

One of the primary distinctions between the approaches of using ARCADIA and SysML
is that the ARCADIA method focuses on function-driven modeling as opposed to requirements-
driven modeling usually employed in SysML. Because of a function-driven modeling ap-
proach, ARCADIA focuses on modeling functions and their interfaces and linking functional
requirements to the functions. Capella metamodel allows the creation of requirement ele-
ments and link them to the artifacts in any Capella diagram. Alternatively, requirements can
be imported from an external requirements management database in ReqlF (Requirements
Interchange Format) standard or even PLM requirements through a modeling workbench

like System Modeling Workbench for Teamcenter™ [50].

ARCADIA Operational Analysis (OA)

Among the four levels (layers) of abstraction of the ARCADIA method, the first level
is Operational Analysis (OA). “Operational analysis is a means to capture what the sys-
tem users must achieve as part of their work or mission, and the associated conditions,
regardless of any solution — and particularly of systems that they will be able to use for
this purpose” [9]. The end user’s expectations, the context of their work, conditions and
constraints are often not expressed sufficiently by the stakeholder requirements. Thus,
operational analysis is performed before or in conjunction with system functional analy-
sis. ARCADIA Operational Analysis is different than the conventional operational analysis
done using other model-based and document-based approaches. ARCADIA OA allows the
system architect to model the required high-level operational capabilities of the mission and
perform a better operational needs analysis without even defining the system-of-interest in
the first place. This helps to really understand what the user wants and then decide what
the optimum system might be, to identify the challenges of the stakeholders and better
understand how the system can support them or provide solutions. Contrastingly, most of
the other architecture modeling methodologies related to SysML start with considering the
system as a black-box. ARCADIA, thus, provides an additional optional level of abstraction
that allows to find alternatives to defining what the system-of-interest might actually be.

This is an added benefit especially during new product development. Capella metamodel

79

also distinguishes between an operational capability and a system capability. One or more
system capabilities contribute to an operational capability, which are two different elements
in Capella. A similar differentiation is done for the structural and behavioral elements in
all levels in Capella. Finally, stakeholder requirements are defined and refined and linked to
the necessary model artifacts to ensure the traceability between the levels. The main steps

in this phase are:
— Define operational actors and entities
— Identify operational capabilities
— Describe operational activities and scenarios for capabilities
— Define operational modes and states

— Allocate activities to operational actors and entities

Define Operational Actors and Entities

The abovementioned steps do not mandate a specific order of activities to be done.
In fact, ARCADIA is quite flexible in terms of the modeling workflow. Over its lifecycle,
the system will interact with various actors and entities during its operation. Hence, all
the operational entities and actors that might interact with the system must be identified
to better understand the problems as well as identify system operational requirements.
The Operational Entity Breakdown [OED] diagram, that lists all the actors and entities

interacting with the ACC system, is shown in Figure 4.22.

408 Vehicle System Target Vehicle ‘ 40 Road Surface 43 Moving Object ¥ Stationary Object 08 Manufacturing Service ‘ "gg,f,',g’*
Target Vetide Driver Driver
@ speed Sensor "";;‘;;;',1‘" 8raking System @hgrent

Figure 4.22.: ‘ACC System’ Operational Entities Breakdown [OED] diagram

30

Identify Operational Capabilities

In Capella, operational level capabilities can be defined using the operational capability
model element. The operational entities are expected to provide an ability, termed as an
operational capability, that provides a service to fulfilling one or more system missions. An
operational level capability refines the operational needs and can be described by several
operational activities that are performed by an operational actor or an operational entity.
Operational level scenarios represent the sequence of flow of activities between the actors
and entities in a timely manner to describe a particular capability scenario. Figure 4.23
shows the Operational Capabilities Blank [OCB] diagram in Capella, which considers a

high-level capability such as ‘Provide assistance while driving on highway’.

% Driver Provide assistance while driving on highway

©9

T 5 Jensor Data
~__Driver Controls <

N Vehicle System

Environment ‘

Figure 4.23.: Capella operational capability using Operational Capability Blank
[OCB] diagram

Describe Operational Activities and Scenarios for Capabilities

An operational capability can be described by multiple behavioral scenarios. Operational
scenarios are used to define the activities and the sequence of their interactions to be
performed by each actor and entity during the scenario. Alternatively, a capability can be
described by an Operational Activity Interaction Blank [OAIB] diagram to represent the
activity interactions for a particular capability, without considering its allocation to the
actors and entities. Figure 4.24 shows the [OAIB] for the ‘Provide ACC’ capability, which

is included in the top-level capability.

81

-
@ Control Braking

e
e /
= /)

DﬂAye’ﬁkimg D8 Brgke Signal

>4 /
- e - o P . -

" Control ACC J " Maintain Distance, 04 Desired Speed,|) Maintain Speed D45 pplemented Power p Control Power Deliver
ACC Commands

D4l Relative Speed D8 ACK Status

elativp Distance

P r
|® Provide Vehicle Slamj DO Status ® Observe Status

Ia ™ ™\
@ Locate Targets

-

Figure 4.24.: ‘Provide ACC’ operation modeled using Operational Activity
Interaction Blank [OAIB]

Define Operational Modes and States

An operational entity or an operational actor can have various states and modes of
operation that can be described by a Mode State Machine [MSM diagram|. Figure 4.25
shows a [MSM] diagram for the ‘Vehicle System’ states. Capella provides distinct model
elements mode and state to model modes and states respectively, whereas in SysML, a state
or mode can be modeled using a state element only. “A mode is a behavior expected of
the system, a component or also an actor or operational entity, in some chosen conditions.”
[9], whereas, “state is a behavior undergone by the system, a component, an actor or an
operational entity, in some conditions imposed by the environment.” [9].

The Vehicle System acts as an actor to the ACC system, as it would consider the ‘actu-
ation’ and the ‘human-machine interface’ functions whereas the ‘sensing’ and the ‘decision-
making’ functions would be performed by the ACC system. However, this would be the
case when the system architect is confined to the role of an ACC architect. On the other
hand, a vehicle architect might be responsible to develop the system architecture for the

complete vehicle and its subsystems that are responsible for performing the ACC operation.

82

=] Maintenance

Failure Suspected / Maintenance Du;
o Failure / Mpaintenance Done

Turned ON %) Driving Traffic Lights Red Slidle

<) Parked

Initial @

Turned OFF) Traffic Lights Green

&

Fuel Pump Engaged
Fuel Pump Difengaged

-
<] Refueling 1

=

Figure 4.25.: ‘Vehicle Operational States’ using Mode State Machine [MSM] diagram

Allocate Activities to Operational Actors and Entities

One of the main outputs of the Operational Analysis phase is an Operational Architecture
Blank Diagram [OAB] that describes the operational architecture of the expected system.
In Figure 4.26, the driver, vehicle system and its entities and the environment that includes
the primary actors and entities that would interact with each other to achieve a desired
objective are modeled and their respective operational activities are defined and allocated.
An operational analysis serves the purpose of understanding the user needs from a user
perspective. User needs are converted into requirements that are verified by a team of
requirements engineers/systems engineers, specific targets are defined and new requirements
are identified during the analysis process. Previously documented requirements are updated
in the database. Likewise, newly identified requirements are created to proceed to the next

phase of requirements analysis.

83

woibvp [y O] Juv)g 943099104 Y [puonDLId() VI VY SUISn 2Injooyply reuolyerad(), *9g § o3I

ap, 18b1eL anug

Janug efpyap 1ebue) ¢

SjpREIRg/AeRENYRg ORISR

uofeso
32143
1261e|
apino.d

@

gjeq 10sUag

uomsod apiyas, 16

s1961e]
23e207

SIUBISI] SANEISY B

paads 3AlRRY Ba

o= [k,

apIyA 1262 g

apIyaA 13681

uol

uane»o spiyap, 18612l gg

2307 1200 Buinop gg

syabue]

123[q0 Bunon @

OTNES

uone

1o 1walno Aeuonespg

" 21007 ®

9plraid
Aeuonels

1UBWUOIAUT 55

aad
wenrow®
lejuiey
paads pasisaQgq Iosuas paadsm
Jamog paiuw|ddns gg
|elibis|axeid ga
190 J8mod UGNEIaRI3(/UONEIRIIY 8o 32Y3N Mg @
|o11uo) ®
washs UIRIaMOd i |UTEIjI3M0 OF Jamog [00U05 gg
Baueysig
ueiey]
Buresg o
BuiyeIg IAPY gy "l jonuod TS
wanshs buesg m
smeis
sniels
SMENS D0V ea SNJEIS 32143/ &g w_.r_wmn_O@
apinosd ©
waysds uonewop|
ﬁ 1B HER VS YEDT] DV [0U0) @
walshs 3PIYaAEs SPUBWIWIC) IO B0 T

84

4.2.2 System Requirements Analysis

As described previously, the system requirements analysis phase deals with analyzing

and refining the system requirements.

ARCADIA System Analysis (SA)

The purpose of system needs analysis is “to define the contribution expected of the
system to users’ needs, as they are described in the previous operational analysis phase
and/or in the form of requirements expressed by the client” [9]. The SA phase aims at
defining ‘What’ the system must accomplish to meet the user needs. The system is in-
troduced as a black-box in this phase. After the OA, the better understood user needs
help to identify the system-of-interest. System needs analysis is the next lower level of ab-
straction/perspective that helps to identify system context, behavior, black-box structure

to define external system interfaces and their interactions. The main steps in SA are:
— Identify system context
— Define system capabilities and refine behavior using functions
— Allocate functions to system and actors
— Define system level operating modes or states

— Define system scenarios and update requirements

Identify System Context

At this point, a system context diagram can be created to understand the system bound-
ary and the external actors interacting with the system. This provides the basic informa-
tion needed to determine the services requested from the system when embedded in its
environment (system capabilities) without providing the technical details of these services.
Identifying various system actors can lead to very fruitful discussions between the different
stakeholders of the system. Figure 4.27 shows a Contextual System Actors [CSA] diagram

that represents the system operational context.

85

Braking System Vehicle System .
Target Vehicle

Moving Object

Target Vehicle Driver

Road Surface

K o
Speed Sensor §7] ACC System \%
V wﬁu

Driver

Highway

Powertrain Systém Instrument Cluster

Stationany Object : .
Statignary Object

Figure 4.27.: ACC System Context

Define System Capabilities and Functions

Figure 4.28 shows the system capabilities for the ACC system. The system mission ‘Pro-
vide Assistance While Driving on Highway’ (realizing the operational capability) exploits
the system capability of ‘Provide ACC’. In Capella, the system capability is elaborated by a
system data-flow diagram that describes the system functions and their exchanges required
to provide the capability.

On identifying system capabilities, system-level function data-flow can be described for
these system capabilities. Capella provides various model accelerators that support the
modeler to reduce the modeling time by providing automated transition of model elements.
One such accelerator is the operational activity to system function transition. Because of
such transition, a capability can be defined by an existing set of functions with data-flows
that have inherited the relations from the operational activities and their interactions. Ex-
change items of different types can be easily allocated to functional exchanges and function
ports by creating exchange items and data types in the Capella Class diagrams. Also, the

operational actors and entities can be transitioned into system actor elements. At this point,

36

Driver

Maintain Distance

Provide Assistance While Driving on Hi rovide ACC o

Maintain Speed

Figure 4.28.: Capella mission and system capabilities using Missions Capabilities
Blank diagram [MCB]

a system function (realizing the operational activity) can be decomposed and allocated to

the newly created system and its actors. If required, new actors can be identified based on

the system function decomposition.

® Monitor Driver Inputs

®Control ACC
Set Desired |
ot BaDesired Gap
Gap g1 e
; ‘oon o e
& ;E::“Ed ™4 Desired Speed
’ J ooDesired Speed [esired Gap
© Turn ACC OFF . = T T
SLaAco) ©Maintain Distance
PAOFF Command
o8 Relative Distance
©TumACCON] 40N Command
) o4 Dasired Speed

b Ralative Speed
S

PUACC Status Distance |
| gProvide vehicle 3—————F
b

® Observe Status
®

RS g & “Parameters

8 Status

peSet fpead

® Drive Vehicle

®Control Braking,| o4
Apply Brake | N

; o
® Apply mauq 8 @Maintain Speed
e &
40N Command

o8 OFF|Command

Control Power - .
| — & ¢ Cantrol Pawer

|_®Contr.. g—
o Supplemantal Power ¢

, 09 Acceleration/DeceletatiRelivery
\® Accelerate/D_7 4

. o
SOACC Status_Speed

5 |
Calculate Relative

o Sense Host Vehicle |
Speed

—_—
saVehic|e Speed

®Locate Targets

PaTarget Vehicle Kinematics g, Provide Target
& Vehicle Kinematics

o

M]«rgﬂ Vehicle Velgcity

[

wj Target Vehicle Position
[

Figure 4.29.: ‘Provide ACC’ functions modeled using System Data Flow Blank

[SDFB] diagram

87

Figure 4.29 shows the global functions required to perform the ‘Provide ACC’ capability.
The system level-functions are categorized as actor functions (blue) that are to be performed
by the external actors and system functions (green). In the System Data Flow Blank [SDFB]
diagram, system functions have to be decomposed because of their partial allocation to the
system. For instance, in Figure 4.30 (a), the operational activity ‘Control ACC’ performed
by the operational actor ‘Driver’ interacts with the ‘Maintain Distance’ activity performed
by the ‘Vehicle System’. However, in system analysis phase, an ACC system is introduced,
which will inherit the ‘Maintain Distance’ function. Ideally, there will be no interaction
between the ‘Driver’ and the ‘ACC System’ as the as the driver-vehicle interface will take
the driver inputs and send command to the ACC System. Hence, in Figure 4.30 (b), the
‘Control ACC’ function will be decomposed into two functions namely, ‘Control ACC’ and
‘Monitor Driver Inputs’, both realizing the same operational activity (Control ACC). The
outputs from the ‘Control ACC’ function will now be moved from ‘Maintain Distance’ to
‘Monitor Driver Inputs’ which is now allocated to the ‘Steering Control’” actor, and outputs
from ‘Monitor Driver Inputs’ will flow to ‘Maintain Distance’. Also, the ‘Control ACC’
function is decomposed into several leaf functions with ports allocated directly to the leaf

functions. The reason is discussed in detail later in the results.

@ Monitor Driver Inputs

_®Control ACC
_ Set Desired e
Gap -

- J

> et Desired)
Speed

049 Desired Speed
g 04 Desired ¢

@ Control ACC

P4 Desired Speed

- N = s 10
DAACC control [@Tum ACC OFF ©Maintain Distance

PaOFF Command |

PdRelative
b
[©TumACCON] p4ON Command
p |
veDesired Speed

L 3

(a) Operational Activity Interaction (b) System Function Interaction

Figure 4.30.: Operational to system level function decomposition

88

Allocate Functions to System and Actors

Once all the system level functions are identified, these functions are allocated to the
system and to the external actors to generate a diagram view of the system architecture
with allocated functions. A system architect might prefer modeling the system-level states
and functional scenarios to better understand system behavior before creating the System
Architecture Blank [SAB] diagram. Figure 4.31 shows the System Architecture Blank [SAB]

diagram for the ACC system.

£ ehicle System

B et chiar i Steering Controls E Powertrain System : i Speed Sensing EﬂEra_knr-g System :
Provide | @ Movitor Diiver Inputs ‘ @ Control Power Delivery | sense Hosj ® Control Braking |
,,,,E‘E,E'FI?[FTEE s i YLD | Mehicle Spe mllj" | \...n....&.. =2k
2 I = | o] T
[BHACC Status_Distance B Active Brak(ng | |
B Oriver-Steentg | | B4 ACC-Powertrain[SysTem DS peed Sehsing A
BC Drtver M ais .n_, &r .w r;g 1 : W ¥ a|..pd.‘,:||su 9-ALG CC-Bralling S{sterp
® & BAACC Stitus|Gpepd | | PP Desired-Gap-w @ &
3 Driver CIhCC System e Host Speed R
L I o Steerfng Byst 2
® Observe Status
13 Poer,
WTargl‘ Serjsing IR
@ Locate Targets &
DHON Comtnahd| | [PBACCC o
o - i
P4 Desirefi Speed)| Maintain | Target Vehicly Data
— P
o Distance L
BEOFF Command 08 Target
d
DARglat
P4 Desited Gap 2= -
® Control ACC i | . e S ’ee_m_ Calculate Relative S B8 Brakp Signal Provide
| (AN Commi Parameters Target
& B Driver-Powertrain Sy stem)| B8 Sef Speed Vehicle
1ol o L
i 5 D W}"—ﬂ) “ Location
PSI0EF Commags
T £ _ Maintain
[
B4 Apply Brake — Speed
D Acceleration/Deceleration
® Drive Vehicle!
Contral Power to Powertrain
é B4 Driver-Braking System

Figure 4.31.: ‘ACC System Architecture’ using the System Architecture Blank [SAB]
diagram

In the Capella System Architecture Blank [SAB] diagram, system functions can be allo-
cated to system actors and the system through the diagram palette. Functional exchanges
occur automatically after the allocation of functions to the actors. Capella provides fea-
tures to generate simplified and contextual views of the diagram as well as diagram cloning
features. Functions can be hidden to obtain a ‘components only’ view of the architecture
for simplicity. Also, if desired, the leaf functions can be hidden to represent only the parent

functions like the ‘Control ACC’ parent function shown in the [SAB]. Capella also provides

39

an ability to create functional chains by grouping a list of functions to represent a set path
in the global data-flow, which will be discussed later in the paper. The system architecture
diagram is considered one of the main deliverables of the SA phase as it provides com-
plete information of the system including it’s functions, external actors and their required

functions for the operation.

Define System Scenarios

Figure 4.32 shows the ‘Turn ACC ON’ scenario showing exchanges between the sys-
tem and the actors. A scenario can call upon “sub scenarios” that are defined in different
diagrams using a reference inserted between successive exchanges along the time axis. In-

termediate modes and states can be shown in these diagrams as well.

Vehicle
. Driver ‘ T e ‘ 4. ACC System
Control ACC
N Command
Monitor
Driver Inputs

—
ON Command J
LOoP +
Maintain
Speed
Supplemental Power

ontrol Power
Delivery

ACC Status_Speed

Provide
Vehicle Status

= Status

| observe
Status

Figure 4.32.: ‘Turn ACC ON’ exchange scenario using the Ezchange Scenario [ES]
diagram

90

Define System Level Operating Modes or States

r Initial 1
)

S)ACC OFF

4 OFF Command
| ON Command
»

£ ACC Stand-by

S—

Desired Speed, Dgsired Gap
(WHEN) Bfake Applied

S)1ACC On]

@ Initial 3

(WHEN) Target Vehicle Absent

=) Maintain Speed <) Maintain Distance

[do / Maintain Speed

do /Maintain Distance

) |
| (WHEN) Target Vehicle Detected T ‘

Figure 4.33.: ‘ACC System States’ using Mode State Machine [MSM] diagram

Similar to operational states, the expected behavior of the system can be modeled using
a modes and states machine diagram, particularly if the system is supposed to react to
external input events. ARCADIA proposes two concepts: state and mode. The usage
of these elements is a methodological choice in the context of the MBSE implementation.
Figure 4.33 shows various states exhibited by the ACC system. Establishing system states

is an iterative process and is often coupled with scenarios to describe complex system

scenarios.

91

4.2.3 Logical Architecture Definition

The logical architecture definition phase aims to capture the main architectural drivers
of the solution, identifying the high-level constituents and their expected functionality,
providing a vision of how the system works, without diving too much into the technical

details.

ARCADIA Logical Architecture (LA)

ARCADIA Logical Architecture Design phase allows to find ‘How’ the system will per-
form its functions defined in the SA phase. LA phase includes important activities such as
defining the factors that impact the architecture and analysis viewpoints, defining the prin-
ciples underlying the system behavior, building component-based architecture alternatives
and selecting the best architecture among the candidates [5]. The main steps of this phase
are:

— Identifying logical components
— Logical function decomposition
— Defining logical components scenarios and states

— Allocate logical functions to components

Identifying Logical Components

The logical components for the system are identified based on the functions allocated
to the system. The approach towards obtaining a final logical architecture can be taken in

various ways like:
1. Refining the system functions into solution functions and then grouping these func-
tions into components such that automatic traceability is maintained

2. Defining a solutions-oriented breakdown of logical functions based on which manual

traceability is created between system and logical functions

3. Allocating system functions to logical components and then refining the functions

down to solution functions

92

The system functions identified in the System Data-Flow Blank [SDFB] diagram must
be allocated to various logical components that would satisfy the realization of logical
functions from system functions along with realization of the functional exchanges. The
transitions are accelerators that are developed to ease the modeler’s tasks. However, the
modeler always has the option to create manual traceability and rely on model validation to
check the completeness of the traceability. Similar to system functional analysis, the logical
functional analysis deals with identifying various logical level functions of the system using
Logical Data Flow Blank [LDFB] diagram. A logical architecture is defined based on the
logical functions and then the functional allocation is done. For example, in Figure 4.34, the
‘Maintain Distance’ and ‘Maintain Speed’ functions are allocated to the system component
‘ACC Controller’ and the function ‘Locate Targets’ is allocated to ‘Sensor’. In this way, all

the system logical functions are allocated to all identified logical components.

T o
@J] l facc controtier &

U Sensor

D= OFF Jommand _[(j

F) Mointain Distance

~ Locate
Targets

D=l Relative Distapce

Speed :\
D Relat

<
=1 @ Calculate Relat

@ calculate Relativ

Sneedip /

@ Maintain Speed

(a) ACC Controller (b) Sensor

Figure 4.34.: Functional allocation to logical components

93

Logical Function Decomposition

Once, the logical functions are identified, functional decomposition can be done to iden-
tify internal component functions. The functional decomposition usually leads to multiple
sub-functions that can be performed. For instance, the function ‘Locate Targets’ can be
broken down to two functions namely, ‘Locate Camera Objects’ and ‘Locate Radar Objects’
as multiple sensors can be used to locate targets. Based on this, two new logical compo-
nents can be identified namely, ‘Camera’ and ‘Radar’. Figure 4.35 shows the functional

decomposition done in Capella.

{7} Locate Targets

() Sense Camera Objects

{0 Sense Radar Objects
&

Figure 4.35.: Logical function decomposition

Identify Logical Component Scenarios and States

Based on the system scenarios, logical scenarios can be modeled to show the sequential
exchanges between functions and logical components. Again, the three types of scenarios
mainly functional, exchange and interface, can be modeled in the logical level. The purpose
of the scenarios was to mainly refine the scenarios created in the SA perspective and un-
derstand the behavior. The system states and modes mainly remain unchanged, however,
the functional allocation to the states and modes and the conditions of transition are of key

interest.

94

Allocate Logical Functions to Components

Capella logical architecture provides a diagram view to show functional allocations to
components using the Logical Architecture Blank [LAB]. Moreover, the allocation features
can be executed using simple drag-and-drop command. The exchanges between functions
can be easily allocated to the component exchanges that define the interfaces. The allows to
display the functional exchanges and component exchanges simultaneously in the same dia-
gram, the allocation between function and component ports, etc. enabling the justification
of component interfaces based on functional content. Also, simplified and contextual view of
components and functions are shown using various diagrams in Capella. Figure 4.36 shows
the Logical Architecture Blank [LAB] diagram for ACC modeled in Capella showing the
logical components with allocated logical functions. Some of the elements are hidden using
the Capella features to only highlight the logical architecture components of the system.
Generating simplified views of contextual elements from the architecture is an important
aspect of architecture development. Capella provides the feature to generate contextual
elements using a number of diagrams. However, because of lower level of complexity of the
system architecture of this study, only a single architecture view of the logical architecture

is shown.

95

wolbvp [V 7] JuD)g 9439991104} 02160 UL PA[OPOUL DINIONIYDIY [BIIS0T WISAG DV, '9¢'F 231

£ dO a aepey mey

Jepey @

FRF T

5] BJBLLET ME

diipiawes

ueyen ®

i T - T,

uolsny H 2
abepin ... 4
. L a5 i 1
& did = 2 R

r._.fn i
| H
.ni_ﬂ. . '
UBs, : - Hl-
v
\
m__.__&oogk_i U
abew O
\
H
H
X
oyt o8

___:_r___mjmi&mﬂuuqc_

WwimsAs Bune I8

§
|

FEEETID — EY Lk
Im».ﬁm__r.r&u&m;_ |

SINCiu | JaAsE] JOLIUG a6

_ CSPTOEN G ok §
Ui a

96

4.2.4 Physical Architecture Definition

The purpose of the physical architecture definition phase is to develop an architec-
ture consisting of technology-dependent physical components or parts required to fulfill the

functions of the logical components.

ARCADIA Physical Architecture (PA)

The modeling flow followed in the PA phase is again arbitrary, similar to OA, SA and
LA. Similar to the LA phase, the physical components of the system are identified based
on the logical functions allocated to the system components. Capella notation provides
the concepts of physical components by using two elements: behavior components, which
perform the functions devolved to the system, and hosting (node) physical components,
which host the behavioral components and provide them with the necessary resources to
function. A behavior or a node component can be a hardware or a software. The node
components are linked using a physical link, to specify communication means between two
components to support behavioral exchanges. The main steps of this phase, not necessarily

in the same order, are:
— Define node physical components to support behavior components
— Allocate the behavior physical components to node components

— Allocate the behavior components to node components and define physical in-
terfaces
— Allocate physical/create functions to behavior components and identify sub-

functions if necessary

Node Physical Components (Node PC) Definition

The focus of this step is to define the node PCs to define multiple solutions reflecting
the structuring principles. Node PCs are created in the Physical Architecture Blank [PAB]
diagram. Node PCs are connected by physical links that provide the medium for channeling

exchanges between the behavioral components (e.g. a cabled network or a satellite link).

97

Component exchanges are then allocated to the respective physical links between the com-
ponents. As a result, the functional exchanges that are allocated to the components are

thereby reflected in the physical exchanges.

Behavior Physical Components (Behavior PC) Allocation

Capella transitions automatically realize behavior PCs from the logical components. The
behavior PCs are defined on the basis of logical components. Behavior PCs can be identified
in a way analogous to that implemented for finding the logical components. A Node PC
might contain one or more behavior PC, however, by default, a behavior component can
only be allocated to one node component. The user can disable this preference. This is
useful, for example, when the user wants to model several deployments in the same model.
Before finalizing the behavior, allocation of dynamic behavior using scenarios, states and
modes, etc. is done with a possibility of refining requirements and their allocation to the
components involved. The component exchanges between the behavior components are

defined or realized from SA and functional exchanges are allocated to them.

Physical Functions Allocation

Finally, physical functions were allocated to the behavior components. Architecture
evaluation can be done in ARCADIA by adding constraints to model elements and per-
forming specialty viewpoints analysis. This concept is beyond the scope of this thesis.
Figure 4.37 shows the ACC physical architecture diagram where a behavior component
for ‘ACC Controller’ is shown with functional, component and physical exchanges hidden.
‘ACC Controller Unit’ node component consists of ‘ACC Controller Software’ behavior

component that implements three physical functions.

98

wlbvrp [qV] qunlg 2angoaporyy orsliyd YIAYOYY SUIS 2mIoepupry [eatsAyd, LeF omsi]

AANPOI UoIsN3 JOSURS [T}

5

i

L
:.&EH
3.BMYOS YOISN4-2IEMYOS di g

Jossanold abeuw) =1}

Jossad0id LYRQ R

PIoid pg

Py e

9 oy |

&0

99

ARCADIA End-Product Breakdown Structure (EPBS)

ARCADIA provides an additional layer of EPBS that helps to define “What is expected
out of the provider of each component”. This level is much lower than the OA, SA, LA and
PA, in terms of the modeling activities, concepts and diagrams as the focus to detail the
product breakdown structure. This phase was beyond the scope of the study. Figure 4.38
shows the System Architecture Development Pyramid representing the ARCADIA /Capella

architecture diagrams created at the various levels of abstraction.

4 most

abstract

F Comman
I <& Physical Architesture

Physical Architecture Definition
o el least

¢ abstract

) Physical Data Flow Blank
A [POFE] Speed Sensing

Figure 4.38.: Architecture development pyramid: ARCADIA /Capella

100

5. RESULTS AND DISCUSSION

The study examined how the architecture development activity can be executed through
a top-down development approach using OOSEM/SysML and ARCADIA /Capella. Based
on the evaluation criteria described in Chapter 3, the assessment of the two approaches was
done to benchmark the two methods and the corresponding tools supporting the methods,
and the overall methodology at large. The following sections focus on summarizing the
evaluation. The second section highlights the key equivalences and differences between
the two approaches. The third section provides the analysis of a recent survey of MBSE
practitioners and thought leaders from various industries which was conducted as a part
of this research. Finally, the closing part of this chapter focuses on key observations and
propose a vision for system digitalization by achieving a digital thread across the complete

system lifecycle.

5.1 Evaluation
5.1.1 Representativeness of a ‘Good’ Architecture

Obtaining a ‘good’ architecture representation is the quintessential outcome of architec-
ture development. The developed system architectures obtained after the case study were
assessed against a baseline achieved by the OPM-based system architecture developed in
Chapter 3. Based on the subjective analysis, ARCADIA /Capella enables better architec-
ture quality as compared to SysML as evident by the total score in Table 5.1, which gives

an overview of the architecture evaluation.

101

123 LE | oF [e10L,
" pautgep " pautgap {2IMI)TYOTR W)SAS) uT pajussardar —
2q ued sdiysuone[ar jo sadA) qe1eass ‘1aneqg 2q ued sdmysuonedr Jo sadA) Te10Ads ‘roneg sdrysuonie[ol [RJUSWATS Y oIk [[oM MOH
3 U2101]J0 $52] “e1qereduro, c SAS UET) 12)12q “oqereduro SEDNEDAmNOS I PUE At -
4 JuetoLy 121 D E (IAGAS TR ENRA I 8 Ju9sa1dar 2IMOATYOIL WAISAS A} S0P [[oM MOH 6°VS
erede) VIV OIV JusweSeueur {uoTouNy pue WY Jo uonsodwosdp "
£ uety) JATIOATIR $S3] ‘a1qereduro) ¥ Q0BLINUT 10)J2q I 2U0p uonIsodwoadp ‘1aneg Ju2sa1dar 2IMOATYOIL WAISAS A} S0P [[oM MOH 8VSs
D T . WH.MMNMM " s)doou0d [apourelow (UOTIOBIISQR JO SIOART SNOLIBA A1) —_—
i mm..ﬁuﬁoa T »QSSm o U22M12q UOTRUNSIP IdIedd sopraoid ‘raneg Juasa1dar 2IMOATYOIL WIAISAS A} S0P [[oM MOH
speamny) [erered speary) Alelrs
¢ : ¥ h 21n02x2 Jet) suonouny Jjo surns Jo speamy joqered | 9-yS
juosarder 0} sMoTA pajedIpep ‘elqereduwro) orrered juesardor o) SmOIA pajedpep ‘raneg Eémw_ﬂ T e g
wa)sAs
3 . . ASojopotepy {SUOTIOUN]T JO UOTINDIX2 [eniuenbas) g
¥ | suomouny usamidq mofj-Tonuod sepraoxd yeneg | T surerd Teuonouny sepraoxd ‘paproddng e N T i i e S-VS
“TONRIOU patedTpap SWIsh pauryap aq ued "TONRIOU PAJEIIPap FuIsn pautzop w40 [SPOBTIUI [RUOTIOUN] [RULIDIUT PUL [RUIAIXS
¥ | e1ep paSueyoxy sopou 1jewered Ayanoe Suisn | | oq ued swar oSueyoxg siod [euonouny Suisn CEIORFISIE TEHOHAURL | il VS
i i : e Ju2s21dar 2IMOAYOIL WIAISAS A} S0P [[oM MOH
POTOpO oq WL SAVBJIUI Jeuonduny ‘Idleg POepow 2q WEd SIIBJIAWI [euonduny ‘raneg
2jed1pep SUISn PauIjep 2q ULd °s: oMowwmm QUITAP 2q UEd SWA)T n%wmwwowwmmuﬁawwv MMMM eaie i el bl pel st -
LA Bl ot i S LA " 1 e el Ju2sa1dar 2IMOAYOIL WAISAS A} S0P [[oM MOH evs
pojuesaIdor 9q UBD SQORJIAUI [EULIO] ‘IaNeg pojuesarder oq Ued SOORIINUT [eULIO} ‘IdNeg
SIONNSUOD SJONISU0D {sen1eapr-uou Surjopowr .
¥ rermmonns Suisn pafepowr oq Ued ‘Iaeg ¥ [eryonns Suisn pafepowr oq Ued ‘raueg poddns 2Id2ATYOTR WRSAS &) S0P T[oM MOH Vs
A ({2IM92)1yoTe Teuondung 2y 1oddns
w0y detw 0} papasu PuUNOILNIoN i Sc H uonouny pue o] surddew 1oL 1019 e e e Sl il SR C b it -
4 o 4 o wmwo »w%— d %Ev_._m Hku/: %MHM%MW r Houny p J o ! ! [euraiur o) 0) (woj) sjuauodwoos 21 Jjo swmddew 1-vs
a1 3 S8Rl e RHERY S o woddns oImooNaIe AP S0P M MOH
TINSAS/INASOO eRde)/ VIAVOAV Julpasey uonsanQ PI
JUoUWISSOSs®

ompIpIe WO A TINSAS/INHSOO Put e[pde)/VIAVOUY 1°¢ dlqel,

102

5.1.2 Key Process Deliverables

In addition to the architecture quality, it is essential for the model to provide the key
deliverables expected from the model during the development phases to facilitate further
development of the architecture. The developed architectures were assessed against the
deliverable checklist developed in Chapter 3 and artifacts from both the tools were identified
that would in some way enable provision of the deliverables. Both the solutions provide
more or less similar metamodel concepts to support architecture development deliverables
artifacts. Tables 5.2-5.5 show the list of deliverables and model artifacts that support in
providing those deliverables. This is not an exhaustive list and is not intended to cover all
the deliverables required in the system engineering process. However, based on a consensus
among the reviewed sources, [3] and [11], the list can be considered as sufficient to evaluate

the usefulness of the system architecture data in provision of the deliverables.

103

weIserp aouanbas

wreIserp AJanoe TOT)BINOSSY Juerg UI'T JUSTISATOAU] «
ureIserp yoorg Anriqede)) Teuonjeradp . Amug [euonerd) .
uonIuryep §201q 10)0Y YUkl 2NN 100y [euonerad (wopsdQ)
weIseIp ased asn ase) asn Teuonerdp . Anqede) reuonersdgy . sydeouo)) Teuonerado
ssaooxd Jeuoneradg .
Yue[g UOT)oRISUT
juawannbayy Ananoy voneradp .
qurg AJriop SUBTY SIIYITY
weIserp juswainnbar QU WIMS Teuonerdgy .
a1qe] symauranmbay uonoy juaay jdasoy oLIRTIa0g TS\ UOTJROTUNUITNOD) «

XITR]N
sjuawarmbay AJrIep

TUOTIOY JoTART2q [[BD)
Mo Jonuo)

Amud reuoyered) .
urey) [euonoun .

UOTORINU] AJIATIOY «
I0)oy [euonjerad() .

syuatarmbar

JIop[OTaYels pUe TOTSSIU

a1} Jo SurpuejsIapun
ar soueqUY -

rasodang

sydaouod
Teuonerado autfep o] —

weIderp aouanbas MO[q 393[q0 OLIRUROY Amuqg [euonerad) . sued uorjepijea pue sIapjoyaye)s
weIserp AJianoe Ananoy Aanoy reuoyeredg . Ananoy [euonerad) . uoTBIJLIdA JJeIp 107 ynduy SSOJIO® 35 Y] 2JepI[eA —
I3SMOIE JNUBWRS sjuatmarnmbar 19p[oyae)s
XITRIN umopyearg J0 195 JU33SISU0D
sjuataInbay paat(q A1anoy feuoneredp . € OJUT Spodu ajerdaju] —
XL uerd Spaau 1ot}
UONRIOTTV TIASAS Lmiqede) euonessdo . juesaidar A[9)eIndoe o —
XINe[N Juetmarmbay Yueg UonoRIA)u]
Uty TINSAS Jury pulxyg Ananoy reuoneredo . (Kiqeasen SRPIOHIRIS e o
XINRN AJT[IqeaoRI], NUIT 2ATIRQ Jueld 2INJINYITY Jurjuewarnnbay . sjuatraninbal) Juatunoog amp {2 AjnuspLog, —
syuetannbayy Juswannbayy Teuoneradg . Juewarnbay . uoTjeoTInsn[syuewmaImbay o
a1qe] symauranmbay uoneoryroadg
weIgerp juswainbar juawannbay V/IN juowarnbay . sjuawannbay 1ap[oyayels sisA[eny [euonerddQ
adodg wreaseiq 3doog yuoudyyg adoog wreasei(q adodg Juomd[g
o)/ TINSAS e[pde)/ VIAVOUV Jqe.dAlPRA aseyd

SIsATeuy [euorjerad() Iojje S10RJILIR S[RIOAIOP 2ININYDIIY :'g'G 9[qe],

104

Krodord molg

werserp Aanoe ¥001q / J00[q 2deJIIu] Kradorg
weIserp yoorq (et 10199UU0)) weISerq sser) SSBID
weISerp onIuIap yoo1q Kradoxd yreg weIserq aoefIoul 28ueyoxy jusuodwo)
S[QE], JLIAUAD) WOISn) od [RUINXT [BNIXITOD 1od 1usuoduo)) SIUAWNOO(T SIBJIN] BUINXT
weIBeI(se0RTIANUL
MO[, UoTjeTIOJuy paqiele(TenxaIuo) .
10)09UU0)) weIser 1010y 28ueyoxy jusuodwo)
UOTIRIOOSSY WSS [BNIXATOD) 1od 1usuoduwo))
weISeTp Joo[q [euIAUT Kradoxd 1reg weIser aoefI1ul I0JOY WR)SAS
weISerp UONIUIIAP Jo01q syoorg [RUINXT [ENIXITOD waskg wreIder(1xuo)
I3SMOI ONULWAS »
querg
XINRIN saniqede) WISAS
sjuatennbay paateq umopyearg
XIIBIN TOTJRIOTV TINSAS Jeuonounj WSS o
XA Juatmannbay yuerg
aurgey TINSAS JuIg pudxg AIMONTYITY WASAS »
XIIRIN NUIT 2ALIR yuerg T Juswrannbayy (Liiqeaoer) sjmewannbar) Judurnooq
Anriqeadel] syudwannbay Juswannbay MO[Lo WAISAS » Juowannbayg uoneannsn[syudwaInbay waysLg
yuerg

MOT] TONUo))

AININYITY ;Sﬁmkmm .

‘Tasn
1) Jo speau Teuonerado a1
)99I JBI1]) UOTINJOS B JO MATA
[eTUTOR) & 0JuT san[iqedes
PAITSap JO MAIA PAJUSLIO-Tasn
‘IOPIOTaE)S 2T} WLIOJSURI], —

:3sodang

sjuawannbal
waJsAs Jo 108 Alenb-y3m

0[] 19200 $590014 [EUOTIOUN o
pomay ‘uonerado TMOpYRAIg [RUOTOUN] oI sjustanInbal Jop[oyeye:s
weISerp UOTIUITAp §00[q yoorg weiserq 28ueTox7 Teuonoun (SIM22)ITaIY TeOnouN]) PHETOISSIIT IRISUEN.OT. =
weIgerp AJIAnoe UOTROV/ANATIOY AO[J-BJe(WAISAS « uorunf Wa)sKg U] UOTOUN] WAJSAS
HEJNIREI(iTo)
31qe], sjuewannbay
wesserp juatrannbar Jwewannbayy V/N Juawennbay uoneatj1oadg syuowarnbay] wosAg | sisATeuy s)uawalmbay waisAg
adoog weader(q adoog yuduwr[g adoog weagei(q adoog yuaurd[g
odwre)/ TINSAS e[RPde)/ VIAVIAV EICLACRN GlU aseyq

SISATRUY SHIUOWRIMDoY WO)SAG 199Je SJORJI)IR S[(RIDAI[OP SINIIPIY :"¢'C 9[qR],

105

Kyredoid morg
weIserp AAnoe . ¥00[q / JO0[q 22BIINUL Aadorg .
wreIserp Joo[q [euIANUl . 10102UT0) werser(sser) SSEID .«
weIserp UOTIIUIAp Y0Tq » Krodoxd yeg weIserq 2oeJIur ofueroxd juouodwo) .
$A[QET, JLIAUAD) WOISN) » 110d [eUINU] [BXAUOD) « Mod jueuodwo) . uondrIosa(] 29BJIIUT [eUIU]
XIIRIN
sjuewmannbay poateq -
XIIEIN UOTIEOOTY TINSAS 10SMOIg ONURTINS «
XINeN Judwennbay yuerg
Uiz TINSAS Jury puixg AIMIATYITY TITF0T
XIIRIN JuIT AR yuerg ur Juewannbay .« SJUAWNOOCT
Anqiqeadel] syuewannboy . Juowarnbay MOT] BRI Tea150T . owannbay . uonedNSHY SjudwRNNbY waysAsqng
UOTIRZI[RIAUAD) 28ueyoxa revonouUNg .
uonrsodwo)) S20BJIAUT 2BueqoXd [BITFOT
XIIBIN UOTIBIOTY UOTIBIOOSSY eUINU] [BIXAUOD) « uoroung [ea150T .
weIserp Joo[q [euINUl Airadoxd jeg Juerg J0JOV [BITB0T . (2130211 [BIT307])
weISerp uontuIiop Yo01q . yoorg AIMIATYITY TATF0T o juonodwo)) [eI150T . uondrIosa(2INOAOTY WIsAS

SOITEU00S dBUBYOXT

xmme Louspuadeq AMO[] Tonue) umopyedIq
XIIEIN UOTIBIOTY A0[1122[90 uonaung [eA1507 . OLIBUOS
werderp eouanbas . B yuerg urey) revonoung o
weISeIp JUMOLT 2)81S » POMRIN ‘uonerddo AIMIATYOTY TIT50T soBueyoxg [eo150T .
weIserp uontuIop Yoo1q . yoorg yuerg OPOIN puUE 8IS .
weSerp Aanoe . UonIV/ANANDY MOT] LR Teo150T . uoroung [ea150T . uondiosa(JotaLyRg [euIu]
21qe) sywawannbar .«
weIserp juewannbar . Juawa1nbayy V/N wewannbay . | womesyroads symowannbay wasAsqng

syuatuanmbax
a1} AJsTjes prnom jer)

TIA)SAS T} JO SIMOI)ToTR
[eI)NAU-UONN]OS B UT)QO 0 —

:asodang

sjuowrannbar

ways£s Jo Jes Aienb-ysg
ojur sjuawaInbaI 1eproaNels
pUR TOISSTUT)LISULT) O —

:s9An3[qQ

uonuyaQ
2IN)INIYIIY [LdS0]

adoog weager(q

adoog yuauwd[yg

adoog weager(q

adoog yududy

odwe))/ TINSAS

epde)/ VIAVO IV

SI[qRIAI(I/SICINIY

aseqq

UOTHTUTO(] 9INJIIYIIY [LIIS0T I99Je SIORJILIR S[(RIDAI[DP SINJIYDIY G 9[RBT,

106

Aadorg
AKzadord morg . T [801SAYJ
wreserp Ajanoe J001q / Y001q 20eJI2U] . a8ueroxd Jusuodwo)
weIserp yoo1q [euIoul 10123UTOD) « wersel sser) . 1104 TeorsAyg
weIserp UonTuIIap Jooiq Aradord yreg . weIser(298Iy uod uorjoung
J1qe], OLIAUID) WOISN) wog . TetINU] [RMXAUOD) « 104 Jusuodwo) saoeyII] TRITSAY
XINeN IOSMOI ONUEWIS «
sjuatrennbay paateq yuerg
XLIBIN TOTJRIOTTY TINSAS QINIAIYOTY [eIISAYJ »
XINeN umopyearg
Juawannbayy dulpay TINSAS NUIT puUAXg uonaung 1ed1sAyg .
XINeN NUIT 2ATIT yuerg yurg Juswannbay
Anniqeasel] syuswannbay juowannbay . MO[] eIe(T Teo1sAyd . Juewannbey uonednsHy sjudwennbay jusuoduwo)
28ueroxa rewonaung
UOTJRZI[RIOUAD) o 28ueroxa yusuodwo)
uonsodwo) . werser(2oeIauy uonauny [edIsAyJ
XIIEJA UOTIRIO][Y UOTIRIOSSY o TetIU] [RMXAUOD) o Juanedwo)) Jo1ARyeg
weIserp yoo[q [euIur AKradord reg . yuerq euodwo)
weISerp UonNIuIzep J201q yoorg . QINIAYOTY TeO1SAYJ » apoN TeotsAud uondLIdSa(T 2IMONYIIY TeITSAYJ
SoLIBUR0G d5ueoxy .
SUTYIBI
SOPOJN PUE S218)S «
XIEIN Aduapuade MO[1102[q0 yuerg
XIIEJA UOTIEIO][Y MO[T [OTUO) » QINIAIYOTY [eIISAYJ » OLIBU0S
werderp oousnbas ESTAIN umopyearg urey) reuonduny
weISerp SUTYILW 2)e)s pomeN ‘uonerdadg . uonaung 1ed1sAyg . aBueyoxq reuonoung
weISerp UonIuIzep y201q yoorg . yuerg OPOIN pue QL1
weIseIp AJIATIOR UOTOV/ANIATIOY Mo ere 1eorsAyd . uonoung [eo1sAYJ uondrasa(q Jo1aeyag [edTsAYJ
21qe) syuatrannbar
werserp juatwarmbar juswannbay . V/IN Juwannbay uoneorjroads sjuatannbay jueuodwo))

JoTART[Rq
pue a1m309)1701€ Jo sajdioutid
Surrmonns aurgep o, —

:asodang

syueuodwoo [ear5or

A1} Jo suonouny o) [IyIng o}

pamnmnbar syred 1o symeuodurod

1eo1sAyd juspuadap

-KSojounaa) Jo Sunsisuod
armoryore ue dojoasp o) —

HETVIRET(1To)

uonmugaq
2INIINIYIIY [EASAYJ

adoog weaderq

adoog jusudg

adoog weaser(q

adodg yuowarg

odwe))/ TINSAS

e[pde)/ VIAVIAV

JqeIdAIP

Ssado.ad

UOTHTUTO(] 9INJIYITY [BIISATJ I0}Je SI0RJIIIR S[RISAT[OP 9ININIYIIY 'G'G d[(R],

107

5.1.3 Evaluation of Methodologies

Finally, the evaluation of overall methodologies is done using the FEMMP catalog. Table
5.6 shows an overview of the methodology evaluation. Some of the criteria of the framework
were left unaddressed either because of the limited scope of the study or unavailability of

necessary resources and expertise.

108

Table 5.6.: Overview of evaluation of candidate methodologies using FEMMP

A-00-P

A-0L-P

A-02-L

A-03-L

B-00-L

B-01-M

B-02-M

B-03-M

B-04-P

B-05-M

B-06-M

B-07-T

B-08-L

B-09-M

B-10-M

C-00-T

C-01-T

C-02-T
C-03-T
C-04-T

D-00-T

D-01-T

D-02-T

D-03-T

E-00-M

E-01-M

E-02-M

e

ISO Standard

Framework

Philosophy

Precision

Language

Scalability

Scope

Tailoring

Consistency

Variants

Complexity

Connectivity

Integration

Simulation

Redundancy

Perspectives

Checking

Reporting

Admin

Reusability

Navigation

Intuition

View

Documentation

Training

Support

ARCADIA/Capella

Technical processes: stakeholder needs and requirements definition,
architecture and design definition

Not evaluated

The Capella model elements are clearly separated from their diagram
representation

The Capella tool has been purpose built to support the ARCADIA
method. The language has strongly defined semantics and the tool has
built-in methodological guidance that prevents any workarounds.
Domain-specific customization and additional viewpoints analysis can
be done using Capella Studio.

The ARCADIA Modeling Language is supplemented with additional
Capella concepts. The language is defined by the concepts used in the
methodology. Standard language elements are provided comprising
diagrams and elements, custom controls to display more complicated
information

It can be used for small and extremely large cyber-physical system.
Open-source plugins allow to manage subsystem models
independently by maintaining model integrity which eases the task of
managing complex systems.

Innovation, re-engineering, reverse engineering. Engineer new
products/parts er new versions.

It provides method as a fixed process with optional order of activities
to be performed in each phase of abstraction.

Process is self-contained. Different levels have well-defined semantics
for items associated with the process. I/O are connected.

Provides guidelines for basing the approach to building a product line.
Variant Management can be executed using third-party i i

Technical processes: business or mission analysis, stakeholder needs and
requirements definition, architecture and design definition

Not evaluated

The SysML model elements are clearly separated from their diagram
representation

The tool supports the SysML standard and methodology specific language
extensions are available. Tool supports SysML specifications up to
wversion 1.4. The tool also supports UML. OOSEM method semantics are
not built-in but can be added using a UML profile.

The methodology was developed to be used with SysML. However, the
methodology can be mapped with other languages.

It can be used to model small and extremely large cyber-physical systems.
Subsystems can be managed using the concept of model libraries.

Innovation, improvement, reverse engineering, trade-studies. Engineer
new products/parts or new versions.

It provides method as a customizable profile and not a fixed process.

For all work products, it is described how they will be used in the next
process. Multi-level abstraction modeling is confusing. /O are connected.

Variants and product lines are not included in the method. Variant

Capability not evaluated.

Model is the central artifact. The tools interfaces can be developed by
open APIs provided to integrate external integrations.

Not evaluated

Capella promises to support integration with specialty engineering.
But noe large-scale implementation has been done yet.

Not evaluated

Redundancy is effectively managed. Capella provides concepts of
REC and RPL to reuse model elements. Duplication is not possible.
Diagrams can be cloned.

Capella provides a variety of diagrams to provide different
perspectives. There is clear distinction between the diagrams of
different levels of abstraction. Simplified views can be generated by a
variety of filters to generate automated views.

Capella provides checking through model validation. A large number
of validation rules can be chosen to validate model. Model checking is
not continuous and requires click command.

Not evaluated
Not evaluated
Concepts of REC and RPL.

Navigation between perspectives is easy. Semantic browser shows
realization traceability without the need to open a separate dialog.
Diagram viewer provides list of diagrams created in each perspective
using the Diagram Viewer.

Methodological guidance is user-intuitive. Instance-driven modeling
eases the learning curve. Automated transitions help automate the
creation of realizing elements in the next level of abstraction. The tool
provides standard user interactions. Keyboard shorteuts, spell check,
etc. comply with the standard conventions.

Various relational matrices can be generated automatically. Diagram
provides various filter to generate various types of simplified views.

‘Workbench has easily dockable windows. Multiple projects (models)
can be viewed simultaneously. Diagram elements are differentiated
using colors to ease model readability. Multitude of options to
customize fonts and sizes, etc.

Two specialized books are available that explain the tool and the
method in great detail. Help documentation within the tool is articulate
to some extent.

Not evaluated

Tool runs on Windows OS, Mac OS, Linux. Active online forum
responds to the questions relatively quickly.

1t can be d using third-party integrations. Capability
not evaluated.

Model is the central artifact. Several interchange formats are available to
integrate other tools.

Not evaluated

SysML supports user-defined extensions. Placeholders for other
engineering models could be added to develop various types of
integrations with specialty engineering models.

Not evaluated
Duplication can be done but should not be done. Element can be shown in

many diagrams and customized views can be developed for various
stakeholders.

SysML supports the notion of generated views. The tools supports
creating automatic layouts of the diagrams in various styles.

Continuous model checking is done and notifications are provided by the
tool for inconsistencies. Constraints for validation can be developed using
Object Constraint Language.

Not evaluated
Not evaluated
Provides Model Library concept.

Model browser provides navigation though model structure. Diagrams are
organized by types in the diagram tree and structure provides element-
only navigation too.

The tool provides standard user interactions. Browser-based model
publishing is possible. Keyboard shortcuts, spell check, etc. comply with
the standard conventions. Overall method intuitiveness is less favorable

Several types of matrices can be created and dynamically edited.
Elements can be customized with numerous options.

The UI has features to open dockable windows. Multiple models cannot
be opened in the same instance. Navigation speed appears to be faster.

There are various books available for SysML concepts in general
However, fewer books describe OOSEM.

Not evaluated

Cameo runs on Windows OS, Mac OS, Unix. Active online forum responds
to the questions relatively quickly.

109

5.1.4 Generalization of Results

The study showed a thorough evaluation of the two candidate methodologies based on
several critical parameters. The methodology followed in this study is not exclusive and can
be applied to any candidate MBSE methodologies using a suitable case study. Although
the study was carried out while considering the domain of the example system of interest
as inconsequential to the results of the study, a more specialized example could be used
to evaluate the methods, tools and processes that are designed for specific domains and
application. For instance, a methodology employing SysML customized to support the SE
development of an internal combustion engine could possibly yield different results when
compared with ARCADIA /Capella as opposed to the results of this study. However, the
criteria developed for the study try to serve a domain-agnostic approach to evaluating the

candidate methodologies.

110

5.2 Key Highlights and Differences

This section describes some of the most notable highlights and differences between the

candidate approaches.

Automated Transitions Between Perspectives in Capella

@ Mmaintain Distance S5 Mbnta Dieaney i el Tetmcn (PR
T @ g
o8 2 © S
g} ¢ o
= o
%) o
TRACEABILITY. o e]
L @ A [+ &
i - et
&} .
MActive Braking I
vl G
(a) operational (b) system (c) logical (d) physical
activity function function function

Figure 5.1.: Functional transitions in Capella

Capella provides its capabilities using four different modeling perspectives with different
objectives to guide end-users. One of the main features of Capella that makes it more
user-friendly is the automated transitions between elements of different perspectives. For
instance, an operational activity can be transitioned as a system function in the SA which
can then be realized as a logical function in LA and subsequently as a physical function
in PA. This creates automatic realization links between these components thereby creating
automatic traceability between various levels of abstraction. Elements such as capabilities,
components, actors and entities, or states, exchange items and data types, etc. can also be
transitioned. Figure 5.1 shows the transitions applied to the ‘Maintain Distance’ operational

activity up to the physical function.

Function Decomposition

Function decomposition is one of the main differences between ARCADIA /Capella and

SysML. Although Capella and SysML are meant to support various systems modeling tech-

111

niques, it is a general consensus among MBSE practitioners that SysML constructs do not
allow efficient functional analysis. As mentioned in Chapter, functions can be modeled as
actions/activities using SysML activity diagrams, or as a hierarchy of blocks with data-flow
being represented using internal block diagrams or activity diagrams. Functions are mod-
eled in Capella using functions only. Function decomposition is fundamentally different in
Capella and SysML. In Capella, leaf functions could be shown as a containment in their
owning function in the same view whereas in SysML, activity decomposition is done using
a separate activity diagram such that leaf functions between two levels can only communi-
cate through ports delegated through their owning blocks. For example, in Figure 5.2 (a),
the function ‘Maintain Distance’ is decomposed into two leaf functions in a separate activ-
ity diagram, with data-flows managed through the delegated ports, whereas Figure 5.2 (b)
shows the function decomposition done in Capella. Capella only allows functional data-flows

through leaf functions.

‘ Jl‘ucw

lo ap (Rolatve Speed [Relative Distance i s e e)
A Soaeq : maintain distance
—
ﬁ‘ :::::::::
[]
Acc =
......
ing 14 e
el X, Qarpue
S=rTS "
= \—\I ke Sigi i
Desied Speed
(a) Functional decomposition in SysML
® Maintain Distance ‘ ®Maintain Distance

u @ Compute G —
o= ompute Gap
4 _ .

B2 omputed Distance

atus ®AdJust Distance
eed
-
(hve Brakin: et peed

(b) Functicnal decomposition in Capella

Figure 5.2.: Function decomposition in SysML and ARCADIA /Capella

112

Integrated Behavioral and Structural Representation

The integration of system structure and behavior is perhaps the most crucial challenge
of SE. Understanding the effect of structure on the behavior has perplexed system designers
since the advent of system science. A system architecture must be able to provide success-
ful integration of the structure and behavior. As observed, ARCADIA /Capella and SysML
both provide the capability to integrate the system’s structure and behavior. Capella al-
lows the functional allocation to components by simply dragging the function elements to
the components in the Architecture Blank diagrams. Along with functional allocations,
the functional interactions need to be mapped to the component interactions to achieve
completeness of the architecture. Capella allows to allocate functional interactions to the
component interactions in an intuitive way. Also, functional breakdown diagram can be
created to represent functional hierarchy using the same functional elements and hence the
data exchange is already mapped to the structure. In SysML, functions can be allocated
to the structure using SysML activity diagram (act) as shown in Figure 4.7. A functional
hierarchy cannot be shown using activity diagrams in SysML and an alternative approach
is required that involves using system blocks to represent functions and the data-flow is
represented using an internal block diagram, which means, a manual mapping of functional
exchanges to component exchanges must be done. Throughout the modeling process, it was
observed that ARCADIA/ Capella supports tighter and easier integration of structure and
behavior as compared to SysML applied with OOSEM thereby support functional analysis.
A more specialized approach to functional analysis could be followed using SysML methods

designed for modeling functional architectures.

Requirements Traceability

Requirements traceability is one of the most important aspects of MBSE to performing
verification and validation activities and is usually initiated at the architecture development
phases. ARCADIA /Capella and SysML both provide capabilities for requirement traceabil-
ity. In SysML provides requirements diagram for requirements modeling. The requirements
can be linked to various model elements for traceability management. Cameo Systems

Modeler provides various types of matrices that help create relationships between the re-

113

quirements and other model objects that satisfy/verify the requirements. It also provides
derived requirements matrices that allow to create relationships between various types of
requirements. On the other hand, Capella allows to create custom requirement links with
its model elements. However, no capability similar to the requirement traceability matrices
was observed in the Capella tool. Figure 5.3 shows the Satisfy Requirements Matriz cre-
ated in Cameo Enterprise Architect™. A requirement traceability matrix eases the task of
traceability management and is also identified as an important artifact by the INCOSE SE

Handbook for verification activities [3].

Legend = ;
7 Satisfy E =] EI System Requirements
= H . H =
7 21
= =~ = H
1] H o [H H
& .: a © 8
z S5 5 8
w U :
u z = u o @
L] = a =
~5si8T8s 24 .
— g LL
g El= 5 E2 2 |32EE B
5= 5 2 ¥ (S5 58 ilsi|E
E QO D o @& E @ \ o= e i
f 3 u & E B & z £E B O S oa g
s245-£8 C“8EREEEE
E i B R R |E| & 5 = 5 E A A
g = 2 e IR A
R I A 0l 0N O IO B I B
G EF A A& AR A R R R R
Bl ACC ON 11 2|1 5|1 11 2 1 1 i 2
B4 Provide ACC) A A
.| :calculate relative parameters i e
...[_) rcontrol ACC 4 A Fav
.. :control braking 2 A e
.| :contral power delivery 3 A
.| :locate targets i A
-.[_) :maintain distance i A
-.I_) :maintain speed i .
. :manitor driver inputs 2 A A
.| :provide target vehide kinematics i A
-.[_) :provide vehidle status 2 A A
.| :gense host vehide speed

5.3.: Satisfy Requirement Matriz in Cameo Enterprise Architecture

E
09
=
]
@

114

Instance-Driven Modeling vs. Type-Driven Modeling

One of the main differences between Capella and SysML modeling is the nature of
instance-driven modeling in Capella as opposed to type-driven modeling in SysML. SysML
internal block diagrams used the concept of part property to model the internal parts and
interfaces of the system. However, these parts have to be typed by the block definitions
created in the block definition diagram. The blocks that define the component are the ‘types’
and the parts that instantiate the type are its ‘instance’ or ‘usage’. Capella follows instance-
based modeling where every part created is a new instance of the component. If a part has
to be reused, which is an important aspect in modeling, Capella provides the concepts of
Replicable Element Collection (REC) and Replicas (RPL). For example, consider a system
that has two camera components with different pixel ratings. The SysML approach to
model this would be to create a block in SysML and type the parts in the internal block
diagram by the ‘Camera’ block. The Capella approach to model this would be to create
two Camera components in the first place, and Capella creates the parts automatically
which are hidden from the user. In case a model element or a group of elements need to
be reused, an REC can be created which can be instantiated as an RPL in a given context.
The concept of types and instances in SysML becomes too complex when typing different
elements like functions, ports, etc. This has been an identified issue in SysML and is one

of the requirements of the SysML V2 RFP [19].

Sequential Execution of Functions

Capella provides an ability to create functional chains by grouping a list of functions
to represent a set path in the global data-flow. Functional chains are particularly used for
contextual representation of the expected behavior of the system, and therefore for initi-
ating verification and validation plans. Functional chains can be represented in the data
flow diagram as well as architectures in all the perspectives. A similar feature not dis-
cussed in the OA section is the concept of operational process that describes a series of
contextual activities and interactions that contribute to providing an operational capabil-
ity. A functional chain can also be described using a functional scenario diagram to show

the sequential interactions between functions using lifelines. Figure 5.4 (a) shows a func-

115

tional chain (highlighted in blue) and Figure 5.4 (b) shows functional scenario diagram for
functional exchanges performed for the ‘Turn ACC ON’ process. In SysML, the concept
of control-flow between activities is provided. A control-flow is more refined approach to
defining sequential execution of functions (actions). A control-flow is modeled in SysML
using control tokens that can control the sequencing of actions in SysML activity diagrams.
Control-flow between actions of activities is irrelevant for functional architecture and is only

needed in requirements analysis [51]. Control-flow modeling was however not the focus of

the study.
1 Observe Monitor Maintain Provide
 Control AcC . stats P priver Inputs ’ B peed }-?‘Veh\de Status

I
I ON Command

" = ‘
: ON Command
|
| ACC Status_Speed
|
|

h | Status
|
‘ I
f—
(a) Functional chain in system data-flow (Turn ACC ON) (b) Functional exchange scenario (Turn ACC ON)

Figure 5.4.: Capella functional chain and scenario

5.3 System Architecture Modeling and the Digital Thread

The thesis investigated the modeling approaches that are followed using two popular
MBSE solutions to develop a system architecture model along with key highlights and
differences. Authoring an architecture, however, is merely the first step. In order to weave
the digital fabric, MBSE must be managed in the context of Product Lifecycle Management
(PLM) such that a digital trace of the product data (digital thread) can be created right from
the beginning of the development process. The following text highlights the importance of

managing MBSE in the PLM context, thereby identifying promising areas of future research.

116

Requirements Management

Multi-domain requirement traceability is at the heart of MBSE. The digital thread
is the only means to achieve this traceability to ensure that the 'right’ product is being
delivered to the end user. Capturing the stakeholder and system requirements should not
be constrained by the modeling environment. Requirements can and should be allowed to
be authored in specialized tools since the goal of MBSE is not to take over the specialized
tools but to provide them with a collaboration framework to utilize their specialties to the
fullest. Stakeholder requirements must be captured in a PLM database or external databases
that have the ability to export the requirements in the Requirements Interchange Format
(ReqlF) standard. These requirements can be easily linked to the model artifacts within

an architecture tool like Capella or a SysML tool, thereby ensuring continuous verification.

Enterprise Model Management

A system architecture should not be restricted to be developed by a single user. Multi-
user collaboration should be a key facet of any architecture tool. It would be quite ironic for
a SE tool to restrict collaborative development of architectures. It must be possible to share
system models across teams through a multi-domain data orchestration platform like a PLM
platform. System models must be shared across the product lifecycle for continuous big-
picture collaboration and decision making. With more complex products, and decentralized
product development, it is critical to have enterprise management of the architecture models.
Moreover, model reusability is enhanced when sharing of models as reusable assets across

the enterprise is done.

Change and Configuration Management

Because of an integrated architecture, product change can be easily managed to the
highest level of product description. The impact of change can be assessed right up to the
customer requirements and the system functions. For instance, the end product breakdown
structure from Capella can be used to manage product variability through PLM configu-

rations. Several SysML tool vendors also provide the capability to model variants using

117

SysML architectures. Product configurations can also be controlled using a configuration
management platform to ensure the impact of new and evolving product features on the

requirements, product definitions and manufacturing processes.

Model Interoperability

Finally, changing the architecture tool of choice is imminent with increasing availability
of architecture modeling tool options. In that case, legacy systems that are already modeled
using either of the two tools must be interoperable so as to allow customers to smoothly
migrate their data. Model-to-model transformations are a key enabler of MBSE interop-
erability and several implementations have already been done. Several data-interchange
standards exist, however the XML Metadata Interchange (XMI) standard seems to be the
most promising one. The ARCADIA language is highly inspired by SysML and the concepts
mapping between ARCADIA /Capella and SysML can be done. Current studies are being
carried out to develop a unidirectional bridge from Capella to SysML using model trans-
formation [52]. However, a bidirectional transformation between the two solutions could be

an interesting avenue for research in the short term.

118

5.4 MBSE Practitioner Survey

After the comparison study, a survey was conducted among industry professionals who
are currently MBSE practitioners or thought leaders. The survey aimed at understanding
the needs of SE practitioners in using models to perform SE activities. So far, 39 responders
from various industries have responded to the survey. 52.94 percent of the responders chose
architecture definition as their primary area of expertise. The survey was intended to
find general demands and preferences of system architects. Some of the questions of the
survey directly relate to a certain criterion of evaluation for architecture development in
this study. For instance, when asked about which MBSE method do the responders follow,
OOSEM took the top spot while ARCADIA and IBM Harmony-SE were tied for second.
OOSEM was also the most popular method among the SysML user subset of the responders.
Figure 5.5 shows the chart with the preferences for MBSE methodologies of choice among

practitioners. This helps justify the need to select these two methods for the evaluation.

19.15% 10.15%
10,64%
6,38%
31.01%
G.38%
6.38%

. Object-Oriented Systems Engineering Method {(OOSEM)
[~rchitecture Analysis and Design Integrated Approach (ARCADIA)
. IBM Rational Harmony for Systems Enginesring (Harmony-SE)

[1514 Rational Unified Process for Systemsa Enginesring (RUP SE) B systems Modeling Toolbax (SYSMOD)

Vitech MBSE Mathodology (STRATA) [Objsct-Process Methodology (opmy [Other (Please specify)

Figure 5.5.: What model-based systems engineering method /methodology do you
follow in your projects? (can select multiple)

119

Along with the popular methodologies, the responders were asked about how well their
architectures could represent integrated structure and behavior of the system and rate be-
tween 1-5, 5 being the most satisfactory. The average rating was 3.37 (Figure 5.6). Similarly,
when asked about their tool’s supportability to functional analysis, the average score was
3.63 (Figure 5.7). Both of these ratings point to a significant deficiency in the architecture
effectiveness. Moreover, 60 percent of the responders said they don’t use SysML parametric
diagram for simulation, which strengthens our reasoning to exclude parametric diagram for
comparison. When asked about a standard process, 55.88 percent of the responders follow

the ISO 15288 standard for SE.

Figure 5.6.: How well does your system architecture support the integration of
behavior with structure?

Figure 5.7.: How well does your system modeling activity support your functional
analysis capability?

120

6. CONCLUSION AND FUTURE SCOPE

6.1 Conclusions

The thesis investigated the architecture development approaches for the ARCADIA
method using the Capella tool versus SysML with OOSEM using Cameo Enterprise Ar-
chitect. The modeling approach was presented to support the four phases of architecture
development; operational analysis, system requirements analysis, logical architecture defini-
tion and physical architecture definition that would comply with the architecture develop-
ment processes as defined by the ISO/IEC/IEEE 15288:2015 standard. A multi-perspective
evaluation was implemented to compare the two MBSE methodologies, which included ar-
chitecture quality, ability to support key processes deliverables, and the overall methodology.

Capella provides promising features through the ARCADIA method-integrated model-
ing workflow. SysML does not impose any specific method to modeling and is meant to
support various methods by providing the syntax and the semantics. However, a method-
agnostic approach often leads to ambiguity among modelers and practitioners as evident in
the need to customizing the language concepts while adapting the language to support a
particular method.

ARCADIA is a functional analysis-based method which is focused on defining and jus-
tifying the architecture. Functional analysis has been one of the most important techniques
used in SE and it is imperative for any MBSE solution to support it. SysML on the other
hand, provides capabilities for functional analysis but with lacking semantics because of its
UML inheritance. Most notably, in SysML, functions have to be modeled using activities
or blocks which is semantically confusing and ineffective.

SysML currently lacks in its ability to provide constructs that support a tight integration
of a system’s structural and behavioral aspects. ARCADIA /Capella include features that
effectively address this challenge.

From a usability perspective, Capella stands out because of several user intuitive features

like the automated transitions, functional chains and the model checking capabilities. The

121

efficiency in modeling was also an important consideration in the evaluation. SysML relies
on type-based modeling, whereas Capella provides instance- based modeling which simplifies
the task of creating redundant parts within models. One of the greater challenges in system
architecting is scalability management. Although the example used in the system was a
simple feature model with easily manageable number of components, it was observed that
both approaches could support modeling of extremely large system architectures. Moreover,
both software tools provide assistance to modeling complex architectures through various
external plugins and third-party integration.

Currently, Capella does not provide the ability to generate requirement traceability
matrices. Cameo Enterprise Architect, a standard SysML tool for System modeling, pro-
vides the capability for generating Requirements Verification Traceability Matrix (RVTM)
for requirements verification. RVTM has become a convenient tool for SE practitioners to
manage verification and validation activities. On the other hand requirement traceability is
supported in Capella alternatively by the ‘semantic browser’ tab. Both tools provide con-
siderable features for dependency matrices, another important consideration in MBSE tool
choices. In addition, unlike SysML, Capella does not support control-flow between functions
which is also an important consideration in behavior modeling. ARCADIA /Capella does
not incorporate parametric analysis like SysML either. However, Capella provides an ability
for constraint modeling and customized specialty viewpoints creation through open-sourced
plugins.

In summary, it must be realized that the scope of ARCADIA /Capella is centered on
engineering and architecture definition activities, not architecture exploration, whereas,
the scope of SysML extends beyond architecture definition. Capella is a relatively newer
approach to modeling system architectures. It was found that Capella addresses several
challenges that were previously identified by SysML practitioners in traditional SysML
implementation. ARCADIA /Capella complements standard SysML. An optimum way to
move forward is to achieve an alignment between the two approaches for a harmonized

industrial adoption of model-based architecting.

122

6.2 Future Work

In addition to the evaluation, we also identified few limitations and challenges.

6.2.1 Limitations

One of the main limitations is the nature of the comparison. As described previously,
ARCADIA /Capella is a combination of a method and a tool whereas SysML is a method-
agnostic language which makes it impossible to perform a one-to-one comparison. Secondly,
OOSEM does not explicitly include functional analysis. OOSEM is usually applied together
with a specialized functional analysis method, which was not incorporated in this study.
On the other hand, functional analysis is a key facet of ARCADIA/Capella. Thus, this
study does not cover complete functional analysis capabilities of both approaches. Section
5.3 highlighted the importance of MBSE in the context of PLM. The following subsections

describe future prospects of augmenting this research study in the short and long term.

6.2.2 Short-term

1. Ewaluating Functional Analysis: The study did not explicitly evaluate functional anal-
ysis capabilities in both approaches. OOSEM does not explicitly support functional
analysis as mentioned in the limitations of the study. A more focused evaluation must

complement OOSEM with specialized functional analysis methods.

2. Alternate Case Study: Although the ACC feature illustrates a multi-domain system,
the results of the study can be augmented using an example from a more specialized
application domain because of the possibility of yielding different results on changing

the application domain.

3. Multi-Use Case Modeling: The architecture models were developed for a single feature
of ADAS, primarily the ‘Provide ACC’ use case. Additional features must be modeled
to identify the effect of modeling duplicate/redundant functions and components on

the architecture integrity.

123

4. 1:1 Comparison: The Capella ecosystem provides the necessary aspects to systems
architecting i.e. a method, a modeling language and a supporting tool. In order
to perform a one-to-one comparison, SysML must be complemented with additional
capabilities provided by a tool like Cameo Enterprise Architect along with a method
like OOSEM to match the features of Capella. Although, some features of the Cameo
tool were exploited for the comparison, a more focused study could demonstrate

several added benefits of using a specialized tool.

6.2.3 Long-term

1. Multi-Domain Architecture Integration: MBSE is a framework, not a discipline. Suc-
cessful MBSE requires that models from various domains must be integrated to per-
form integrated model-based engineering. A significant addition to the MBSE liter-
ature is identifying the potential of the two candidate architectures of this study for
integration with downstream domain-specific architectures. For instance, previous
works have shown the ability of SysML models to integrate with simulation tools like
Simulink and Modelica. Similar work around the Capella architectures could provide

interesting results.

2. System Architecting in PLM Context: PLM is the lifecycle management collaboration
platform used by many product manufacturing companies. MBSE and PLM align on
various aspects. Yet these are seen as two different approaches to product develop-
ment. Next-generation PLM must incorporate a model-based approach. Looking at
the prospects, a detailed research study must be performed to identify the common-
alities between the candidate metamodels and a generic PLM metamodel to identify

MBSE-PLM architecture alignment possibilities.

REFERENCES

1]

[12]

[13]

[14]

124

REFERENCES

E. Crawley, B. Cameron, and D. Selva, System architecture: strategy and product
development for complex systems. Prentice Hall Press, 2015.

A. Kossiakoff, W. N. Sweet et al., Systems engineering: Principles and practices. Wiley
Online Library, 2003.

T. M. Shortell, INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities. John Wiley & Sons, 2015.

A. INCOSE, “A world in motion: systems engineering vision 2025,” in International
Council on Systems Engineering, 2014.

M. Adedjouma, T. Thomas, C. Mraidha, S. Gerard, and G. Zeller, “From document-
based to model-based system and software engineering.” Models, 2016.

J. A. Estefan et al., “Survey of model-based systems engineering (mbse) methodolo-
gies,” Incose MBSE Focus Group, vol. 25, no. 8, pp. 1-12, 2007.

A. Wortmann, B. Combemale, and O. Barais, “A systematic mapping study on mod-
eling for industry 4.0,” in 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS). IEEE, 2017, pp. 281-291.

Object Management Group (OMG), “OMG Systems Modeling Language
(OMG SysML) Specification V1.4,” OMG Document Number formal/15-06-03
(https://www.omg.org/spec/SysML/1.4/About-SysML/), 2015.

J.-L. Voirin, Model-based System and Architecture FEngineering with the Arcadia
Method. Elsevier, 2017.

“Open source solution for model-based systems engineering,” https://www.polarsys.
org/capella/, accessed: 2019-04-09.

A. Pyster, D. Olwell, N. Hutchison, S. Enck, J. Anthony, D. Henry, and A. Squires,
“Guide to the systems engineering body of knowledge (sebok) version 1.0,” Hoboken,
NJ: The Trustees of the Stevens Institute of Technology, vol. 852, 2012.

T. INCOSE, “Systems engineering vision 2020,” INCOSE, San Diego, CA, accessed
Jan, vol. 26, p. 2019, 2007.

A. Albers and C. Zingel, “Challenges of model-based systems engineering: A study
towards unified term understanding and the state of usage of sysml,” in Smart Product
Engineering. Springer, 2013, pp. 83-92.

J. N. Martin, Systems engineering guidebook: A process for developing systems and
products. CRC press, 1996, vol. 10.

[15]

[16]

[17]

[18]

[19]

[21]

[22]

125

M. Sampson, “Guiding principals for systems engineering tool deployment,” in IN-
COSE International Symposium, vol. 11, no. 1. Wiley Online Library, 2001, pp.
308-315.

M. Bone and R. Cloutier, “The current state of model based systems engineering:
Results from the omg™ sysml request for information 2009,” in Proceedings of the Sth
conference on systems engineering research, 2010.

“Information technology — Object management group systems modeling language
(OMG SysML),” International Organization for Standardization, Geneva, CH, Stan-
dard, Mar. 2017.

S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems
modeling language. Morgan Kaufmann, 2014.

Object Management Group (OMG), “Systems modeling language (sysml)
v2 r1fp,” OMG Document Number ad/17-12-02 (https://www.omg.org/cgi-
bin/doc.cgi?ad/2017-12-2), Dec. 2017, version 1.

“Systems-driven product development-managing the development of complex automo-
tive products through a systems-driven process,” Siemens PLM Software, Tech. Rep.,
2011.

D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2, February
2006. [Online]. Available: http://www.truststc.org/pubs/30.html

S. Bonnet, J.-L. Voirin, D. Exertier, and V. Normand, “Not (strictly) relying on sysml
for mbse: Language, tooling and development perspectives: The arcadia/capella ratio-
nale,” in 2016 Annual IEEE Systems Conference (SysCon). IEEE, 2016, pp. 1-6.

M. Rashid, M. W. Anwar, and A. M. Khan, “Toward the tools selection in model based
system engineering for embedded systems—a systematic literature review,” Journal of
Systems and Software, vol. 106, pp. 150-163, 2015.

A. Reichwein and C. Paredis, “Overview of architecture frameworks and modeling
languages for model-based systems engineering,” in Proc. ASME, 2011, pp. 1-9.

D. Cook and W. D. Schindel, “Utilizing mbse patterns to accelerate system verifica-
tion,” Imsight, vol. 20, no. 1, pp. 32-41, 2017.

H.-P. Hoffmann, “Systems engineering best practices with the rational solution for
systems and software engineering,” IBM Software Group, vol. 4, no. 2, 2011.

T. Peterson and W. D. Schindel, “Model-based system patterns for automated ground
vehicle platforms,” in INCOSE international symposium, vol. 25, no. 1. Wiley Online
Library, 2015, pp. 388-403.

T. Weilkiens, SYSMOD-The Systems Modeling Toolboz-Pragmatic MBSE with SysML.
Lulu. com, 2016.

T. Weilkiens, J. G. Lamm, S. Roth, and M. Walker, Model-based system architecture.
John Wiley & Sons, 2015.

D. Long and Z. Scott, A primer for model-based systems engineering. Lulu. com,

2011.

31]

[38]

[39]

[47]

126

M. D. Ingham, R. D. Rasmussen, M. B. Bennett, and A. C. Moncada, “Engineering
complex embedded systems with state analysis and the mission data system,” Journal
of Aerospace Computing, Information, and Communication, vol. 2, no. 12, pp. 507-536,
2005.

D. Dori and E. F. Crawley, Model-based systems engineering with OPM and SysML.
Springer, 2016.

E. Carroll and R. Malins, “Systematic literature review: How is model-based systems
engineering justified,” Sandia National Laboratories, 2016.

S. Friedenthal, A. Meilich, and L. Izumi, “Object-oriented systems engineering method
(oosem) applied to joint force projection (jfp), a lockheed martin integrating concept
(Imic),” in Proc 17th Int Symp INCOSE, 2007.

Q. Do and S. Cook, “10.5. 1 an mbse case study and research challenges,” in INCOSE
International Symposium, vol. 22, no. 1. Wiley Online Library, 2012, pp. 1531-1543.

E. Calio, F. Di Giorgio, and M. Pasquinelli, “Deploying model-based systems engineer-
ing in thales alenia space italia.” in CIISE, 2016, pp. 112-118.

J. R. Armstrong, “Systems engineering methods compared,” INCOSE International
Symposium, vol. 3, mno. 1, pp. 181-187, 1993. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/j.2334-5837.1993.tb01576.x

R. A. Garcia, “Evaluation of model based systems engineering processes for integration
into rapid acquisition programs,” Naval Postgraduate School Monterey United States,
Tech. Rep., 2016.

Y. Grobshtein, V. Perelman, E. Safra, and D. Dori, “Systems modeling languages:
Opm versus sysml,” in 2007 International Conference on Systems Engineering and
Modeling. TEEE, 2007, pp. 102-109.

T. Weilkiens, A. Scheithauer, M. Di Maio, and N. Klusmann, “Evaluating and com-
paring mbse methodologies for practitioners,” in 2016 IEEE International Symposium
on Systems Engineering (ISSE). IEEE, 2016, pp. 1-8.

J. Dick, E. Hull, and K. Jackson, Requirements engineering. Springer, 2017.

J.-L. Voirin, “Modelling languages for functional analysis put to the test of real life,”
in Complex Systems Design € Management. Springer, 2013, pp. 139-150.

“Arcadia method at a glance!” https://www.polarsys.org/capella/arcadia.html.

P. Roques, Systems Architecture Modeling with the Arcadia Method: A Practical Guide
to Capella. Elsevier, 2017.

“Cameo enterprise architecture software,” https://www.nomagic.com/products/
cameo-enterprise-architecture, accessed: 2019-04-09.

“Adpative cruise control system overview,” 5th Meeting of the U.S. Software
System Safety Working Group, Available at http://sunnyday.mit.edu/safety-
club/workshop5/Adaptivecruisecontrolsysoverview.pdf (April12th -
14th2005@Q Anaheim, CaliforniaU S A).

1. Masaki, “Adaptive motor vehicle cruise control,” Jan. 22 1991, uS Patent 4,987,357.

[48]

[49]

[50]

127

G. R. Widmann, M. K. Daniels, L. Hamilton, L. Humm, B. Riley, J. K. Schiffmann,
D. E. Schnelker, and W. H. Wishon, “Comparison of lidar-based and radar-based
adaptive cruise control systems,” SAE Technical Paper, Tech. Rep., 2000.

E. Andrianarison and J.-D. Piques, “Sysml for embedded automotive systems: a prac-
tical approach,” in Conference on Embedded Real Time Software and Systems. IEEE,
2010.

“System modeling workbench for teamcenter,” https://www.obeo.fr/images/products/
misc/Siemens-PLM-System-Modeling-Workbench-for-Teamcenter-fs-5244-A8.pdf, ac-
cessed: 2019-06-09.

J. G. Lamm and T. Weilkiens, “Functional architectures in sysml,” Proceedings of the
Tag des Systems Engineering (TdSE’10). Munich, Germany, 2010.

N. Badache and P. Roques, “Capella to sysml bridge: A tooled-up methodology for
mbse interoperability,” in 9th FEuropean Congress on Embedded Real Time Software
and Systems (ERTS 2018), 2018.

