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ABSTRACT

Prabu, Avinash. M.S.E.C.E., Purdue University, August 2019. Crash Prediction and
Collision Avoidance using Hidden Markov Model. Major Professor: Lingxi Li.

Automotive technology has grown from strength to strength in the recent years.

The main focus of research in the near past and the immediate future are autonomous

vehicles. Autonomous vehicles range from level 1 to level 5, depending on the percent-

age of machine intervention while driving. To make a smooth transition from human

driving and machine intervention, the prediction of human driving behavior is critical.

This thesis is a subset of driving behavior prediction. The objective of this thesis is to

predict the possibility of crash and implement an appropriate active safety system to

prevent the same. The prediction of crash requires data of transition between lanes,

and speed ranges. This is achieved through a variation of hidden Markov model.

With the crash prediction and analysis of the Markov models, the required ADAS

system is activated. The above concept is divided into sections and an algorithm was

developed. The algorithm is then scripted into MATLAB for simulation. The results

of the simulation is recorded and analyzed to prove the idea.
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1. INTRODUCTION

The number of cars have been increasing exponentially every year. This implies the

need for Advanced Driver Assisted Systems more than ever. It is the partial duty

of the manufacturers to ensure that the occupants of the vehicle are safe and at the

same time comply with the safety and driving regulations of the road.

Advanced Driver assisted systems are human-machine interface, that increase car

and road safety. These systems help in reducing the human error and thereby reducing

the probability of a crash. ADAS systems can be classified into active and passive

systems. A passive system alerts the driver when there is a possibility of a dangerous

situation. An example of a passive systems is the lane departure warning alert. On

the other hand, active systems take the required action when a dangerous situation is

met. Steering assist with land departure warning system is an example of an Active

safety system. Adaptive cruise control, automatic emergency braking, parking assist,

blind spot etc. are some examples of ADAS.

In recent times, driving behavior and driver characteristics have been used in

automotive controls to assist the active safety systems. Study of driving behavior has

been one of the main focus of research in the automotive industry. Some researchers

have also used driving behavior profile as a composite measure of the risk of casualty

crash. Studies have shown that driving behavior has been a contributing factor in 90

percent of road crashes. As a result of which, there is a definite benefit in monitoring

the driving behavior and integrating it into active safety systems.

This thesis is focused on using Markov Model to predict the driving behavior and

predicting the probability of occurrence of a collision thereby taking action to prevent

the same. Markov Model is a stochastic process, which is used to determine the future

states of a randomly changing systems. The future states depend only on the current

state of the chain.
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1.1 Literature Review

The authors in [1] suggest a method for assessing the safety of planned trajectories

in autonomous vehicles. The future position of the trajectory is computed based on

dynamic models. The dynamics of the participants on the road is considered for

prediction of driving behavior. The proposed algorithm uses the dynamics of the

vehicle and the dynamics of the participating vehicles on the road. In this paper, the

author expects that the vehicle is instrumented sensors that perceive the environment

such that the geometry of surrounding, position of obstacles and the dynamics of road

sections are all available. The probability distribution of trajectory in accordance with

the other vehicles on the road is calculated, thereby reaching a prediction framework

for safety assessment in different traffic situations.

A wide range of research has been carried out to identify the driving intentions of

a driver. In [2] the author uses an artificial neural network approach to predict the

maneuvering intentions of a driver to improve the active safety features of the car.

The researchers establish a Hidden Markov Model, which acts as a Bayesian network

with two concurrent stochastic process. The states in the Markov model is used to

describe the transfer of driving intentions. The stochastic process is used to describe

the maneuvering behaviors of the driver. The ANN is then used to learn the driving

conditions and the rules. The ANN and HMM work together to make the prediction

of driving behavior accurate.

In [3] the Markov Models are used in estimation of traffic density in multi-lane

roadways, taking lane change into account. Even though this paper focuses on dif-

ferent goals, it is useful to extract information on the lane change criteria, which is

discussed. The authors use each lane as a state in the Markov Chain, which is a very

efficient suggestion. The only drawback in this model is that the authors assume that

a vehicle has a certain probability to stay in the same lane. This will lead to errors

in calculating the probability and thereby affecting the prediction results.
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Markov Models have also found their significance in learning of driving conditions

such as vehicle speed, surrounding traffic speed, road geometry etc. In [4] the author

mainly concentrates on energy efficiency in HEVs and Adaptive cruise control by

capturing the driving conditions using Markov Models. The author uses real-time

comparison of Markov Chains using Kullback-Liebler (KL) divergence. These are

used to characterize each segment of the road with unique characteristics. An on-

board learning technique has been used to update the Markov Chains. In addition,

it is considered that the Markov Chain representing the road characteristics and the

one learned on-board are convergent.

In [5], a connected cruise control model is achieved using a probabilistic model.

The instrumented vehicle receives information about vehicles in front through wireless

V2V communication. The car following dynamics of the preceding vehicle is then

modeled using Markov chains. The connected cruise controller is achieved using a

Markov decision making process. For the car following, the author uses an optimal

velocity model, in which the optimal speed function not only depends on the headway

of the each car but also the headway of the preceding vehicle. It also provides a non-

complex mathematical form and a good physical intuition. The desired velocity is

then calculated using non-linear range policy function. It is assumed that in an

array of n vehicles, the tail vehicle is equipped with the CCC and receives motion

information from the others. The human car following model and the CCC are

considered in the linear region in discrete time to consider sampling and zero-order

hold in digital controllers. The sampled dynamics of the vehicles are then written as

a Markov chain. It is then used to formulate the optimization objective accordingly.

Optimized feedback gains are used to design the discretized linear CCC. Simulations

were carried out for various scenarios and the outcome showed a robust design. The

drawback with this design is that, the lane change has not been considered, which is

essential when calculating the number of headway vehicles.

In another research carried out by Ehsan Moradi-Pari and his team [6], model

based communication has been used for V2V communication, based on small (brak-
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ing, accelerating etc.) and large (free following, turning etc.) scale modeling of the

vehicle dynamics. These are coupled into a Markov Chain and investigated for im-

plementing Cooperative Adaptive Cruise Control. The Markov Chain is used for

achieving Cruise control goals using a predictive method. The vehicles use DSRC

radio for communication, which transmits the vehicles’ speed, position and heading

direction over a wireless broadcast link to all the neighboring cars. The movement

model is transmitted over the DSRC and the receiving vehicle uses this model to

develop a situational awareness model. With this information, a stochastic hybrid

model is created with a set of discrete and continuous states. It is modeled in such

a way that the each state uses ARX or pice-wise polynomial to track the designated

functions and create the mathematical model. The authors consider a system model

of n vehicles to implement the CACC and that all the vehicles are equipped with

DSRC radio and the sensors capable of calculating the relative speed, distance and

velocity from neighboring vehicles in its lane. The stochastic model is then devel-

oped from the discrete time state space model of the CACC. The algorithm uses a

stochastic model predictive optimization approach to evaluate the optimal speed of

the vehicle. Again, the lane change factor has been neglected in this paper.

The real time problem in automated cars is that they act reactively to the cars

they follow. It leads to uncomfortable and sometimes unsafe situations (like stop

and go scenarios). The authors in [7] use probabilistic anticipation of motion of

the preceding vehicle and control the motion of the ego vehicle as a solution to the

above problem. A Markov Chain predictor on the preceding vehicle behavior with an

optimized MPC is used for optimizing the motion of the ego vehicle. This system is

also coupled with motion predictor based on historical traffic data at different location

and time for accuracy purposes. The kinematics of the vehicle motion is modeled

with a first order lag between acceleration command and actual vehicle acceleration.

A state space model is created and then an MPC is designed on the state space

representation. Sparse data from probe vehicles are used to predict the travel times

between segments of the road. Historical data is used to train the Markov Model to
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predict the future position of the preceding vehicle. Combining the predictors helped

in improving the accuracy of prediction. Expectation-Maximization algorithm is used

to relocate the segment travel time so that the likelihood function is maximized. The

predictors are combined using Gaussian Mixture Model. The analysis shows that

the two predictors work well at different speeds, giving the systems a wide range of

operating points.

1.2 Thesis Contributions

This thesis discusses prediction of crash using hidden Markov model and preven-

tion of the same through the existing active safety systems. The main contributions

of the thesis are itemized below,

• Designed the first layer of Markov chain for lane change calculation.

• Designed the second layer of Markov chain for speed change evaluation.

• Created an algorithm for prediction of crash using the above two layers of

Markov chain.

• Designed a methodology to decide the appropriate active safety system, de-

pending on the crash probability.

• Developed a Simulink model to simulate adaptive cruise control model.

• Created and simulated various scenarios to prove the concept.

1.3 Thesis Organization

This thesis consists of five chapters. The first chapter is an introduction to the

thesis concept. This chapter consists of literature reviews from various journals,

discussing current trends and inspirations in automotive safety. The second chapter

explains the particulars of Markov chains and the mathematics involved in it. The
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different classifications of Markov chains are also discussed in this chapter. Chapter

2 also discusses a few examples pertaining to Markov chains. Chapter 3 discusses

hidden Markov model and the modifications made into the model to suit the concept

in this thesis. This chapter also discusses the implementation of hidden Markov

model in active safety. The two layers of the Markov model and the calculation of

the probabilities are also explained. The algorithm implemented in this thesis is also

discussed in this chapter. Chapter 4 consists of the simulation and results of various

scenarios created to prove the concept of thesis. The conclusion and possible future

scope of the concept are discussed in Chapter 5.
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2. MARKOV CHAINS

Markov chains are a part of probability theory, which was first proposed by and

named after the Russian Mathematician, Andrey Markov in 1907. Markov chains

satisfy the Markov property. A process satisfies the Markov property if the future

states depend only on the current state and not on the past states, predominantly

known as the memoryless property. Markov chain is a discrete random process in a

stochastic model. It is an array of random events where the state dependency is only

between adjacent events, like in a chain, and thus the name Markov Chains. While the

states in a Markov Chain can be continuous, the time parameter is always a discrete

index set. Markov Chains find their application in statistical evaluation models and

control theory. A few examples are agnostic and prognostic evaluation of plants, cruise

control in cars, betting, weather prediction, queues in airport, population growths and

exchange rate predictions [8].

2.1 Description of a Markov Chain

Discrete time Markov chain events happen at discrete time instants, that is, the

state transitions happen at integer time intervals. Consider the time instants as

0, 1, 2.....k, .... and the stochastic sequence as {X1, X2, ....}. The stochastic sequence

is characterized by the Markov property:

P [Xk+1 = xk+1|Xk = xk, Xk−1 = xk−1, .....X0 = x0] = P [Xk+1 = xk+1|Xk = xk]

(2.1)

The current state is xk and the next future state is xk+1. It is evident from Equa-

tion 2.1 that the future state is only dependent on the current state and independent

on the past states.
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2.1.1 Model Specifications of a Markov Chain

Unlike other discrete time event models or stochastic times automaton, the Markov

chains consider only the total probability of making a transition from one state to

another. Let us consider x and x′ to be the states and the total probability to go

from x to x′ be p(x′, x). The transition probabilities depend on the time instant at

which it occurs. So the representation of the probability is,

pk(x′, x) = P [Xk+1 = x′|Xk = x] (2.2)

To represent a Markov Chain, we require the following,

1. State Space χ.

2. Initial state probability vector p0(x) = P [X0 = x], ∀x ∈ χ.

3. Probability of transition p(x′, x) where x′ is the next state and x is the present

state.

The state space χ is countable, so it is mapped to a set of countable integers

(non-negative)

χ = {0, 1, 2....}

2.1.2 States, Transition Matrix and Initial Probability Distribution

Let us consider the states to be {S1, S2, S3, ...., Sk}. The chain starts in one of

the states and traverses through the other states one by one. Each movement or

transition is called a step.



9

State Transition Matrix

Let Si be the current state and Sj be the next state. The state transition proba-

bility is modified as follows,

pij(k) = P [Xk+1 = Sj|Xk = Si] (2.3)

where Si, Sj ∈ χ and k = 0, 1, 2, .... It can be observed that the total probability at

any state Si is 1. ∑
allj

pij = 1 (2.4)

The process can stay in the same state i in the next step, which is denoted by pii.

The transition probabilities in a model are conveniently represented in matrix

form. Let P be the state transition matrix and pij be the transition probabilities.

P = [pij] i, j = 0, 1, 2, .... (2.5)

Since the summation of all the probabilities that go out from any state is 1, the

sum of all the elements in ith row of P matrix is 1, where i = 0, 1, 2, .... It is to be

noted that P = [pij(1)] in Equation 2.5.

Theorem 2.1.1 Let P be the state transition matrix of a Markov Chain. The ijth

entry of P
(n)
ij of matrix P n gives the probability that the chain starts at state Si and

ends at state Sj after n states.

Initial probability distribution

One of the main attributes of a Markov Chain is determining the probabilities of

the chain being at a particular state at a specific time instant. These are called state

probabilities and are defined as follows,

πj(k) ≡ P [Xk = j] (2.6)

So, the state probability vector is defined as,

π(k) = [π0(k), π1(k), ...] (2.7)
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The probability of the chain starting at a particular state is specified by the initial

probability vector. It is defined as follows,

π(0) = [π0(0), π1(0), ...] (2.8)

The initial probability vector provides the probability distribution of the initial

state. A probability vector with k components is a row vector whose entries are non-

negative values and also sum to 1. The ith entry of π(0) (1 ≤ i ≤ k) represents the

probability that the chain starts in state Si.

Theorem 2.1.2 If P is the state transition matrix and π(0) is the initial probability

vector, the probability that the chain is in state Si after n steps is the ith entry of the

vector,

π(n) = π(0)P n (2.9)

Random walk example: Setting up a Markov Chain

Assuming we have a gentleman walking around four street corners, c1, c2, c3 and

c4, in a random manner. At t=0, he start his walk at c1. At t=1, he flips a fair coin

and moves either to c2 or c4, depending on the result of the coin toss. He continues

to do this at every corner. Assuming that he does not move diagonally and that he

moves clockwise is heads comes up and moves counter-clockwise if tails comes up, as

shown in Figure 2.1

Assuming that the gentleman starts at c1, we have,

P (X0 = 1) = 1

In the next step, he will move to c2 or c4 with equal probability. Which leads to,

P (X1 = 2) = 1/2

P (X1 = 4) = 1/2
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Fig. 2.1.: Random Walk of a Gentleman

At step n, the probability that the chain will go to any adjacent corners at step

n+ 1 is 1/2. This leads us to the state transition matrix P , which is,

P =


0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0


It can be noted that the matrix satisfies the below two conditions,

• Pij ≥ 0 for all i, j = {1, 2, 3, 4}

•
∑4

j=1 Pi,j = 1 for all i = {1, 2, 3, 4}

The above equations mean that the conditional probabilities are non-negative and

sum up to 1.

In the above example, the gentleman starts at state c1. So the initial probability

distribution is,

π(0) = {1, 0, 0, 0}

All the basic elements of a Markov Chain systems are obtained. With this in-

formation, we will be able to picture the Markov Chain using a transition graph. A
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Fig. 2.2.: Transition Graph of Random Walk

transition graph has nodes, representing the states, and arrows which represent the

transitions from one node to another. The transition probabilities are denoted above

the arrows. Figure 2.2 shows the transition graph of the above example.

Example: Analysis of Markov Chain

Considering a Markov chain with 3 states, {S1, S2, S3}. Assuming the chain does

not stay in state S2 for two consecutive steps, and the next step will be S1 or S2 in

an equally likely manner. S1 and S2 have 50% probability to be in the same state at

the next step and a 25% probability to move to S3 in the next step. The chain for

the model described above is depicted in Figure 2.3

The transition probabilities can be represented in matrix form as shown below,

P =


0.5 0.25 0.25

0.5 0 0.5

0.25 0.25 0.5


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Fig. 2.3.: Transition Graph for a Markov Chain with Three States

Let us consider the problem of determining the probability of the chain being in

a particular state two steps from now, given the current state. For instance, if the

chain is in state S1 now, what is the probability that the chain is at state S2, two

steps from now?

There are two ways to answer this problem. One way is to analyze the transition

graph and sum up all the probabilities of possible events. Here, in this example, there

are three such possibilities.

1. S1→ S1→ S3

2. S1→ S2→ S3

3. S1→ S3→ S3

The total probability of this transition is,

P
(2)
13 = P11P13 + P12P23 + P13P33 = (0.5)(0.25) + (0.25)(0.5) + (0.25)(0.5) = 0.375
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The second way is by solving through the state transition matrix. This is explained

by theorem 2.1.1. The first row, third element of matrix P 2 will give us the total

probability of the required sequence.

P 2 =


0.4375 0.1875 0.375

0.375 0.25 0.375

0.375 0.1875 0.4375


P13 = 0.375 is the total probability that the chain will start in state S1 and end

at state S3 in two steps.

Given the initial probability vector π(0) and the state transition matrix P , we will

be able to study the long term behavior of the given system. In the example above,

let us assume there is equal chance of the chain starting at all the states. This helps

in evaluating the initial probability vector, which is,

π(0) = {1/3, 1/3, 1/3}

From theorem 2.1.2, we can evaluate the probability of being at each state at step

n. For example, if we need the probability of reaching the states at the third state,

the calculation is as follows.

π(3) = π(0) ∗ P 3 =
[
1/3 1/3 1/3

]
0.4063 0.2031 0.3906

0.4063 0.1875 0.4063

0.3906 0.2031 0.4063


=

[
0.4010 0.1979 0.4010

]
The probability of the chain reaching state S1, S2 and S3 is 0.401, 0.1979 and

0.4010 respectively.

2.2 Types of Markov Chains

Markov chains are classified into different types depending on the characteristic

of their states. Three main types of Markov Chains are discussed in this section.
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2.2.1 Absorbing Markov Chains

Definition 2.2.1 A state i of a Markov Chain is said to be absorbing if it is impos-

sible leave this state.

This means that state i is absorbing, if and only if,

pii = 1 (2.10)

pij = 0 for i 6= j (2.11)

A Markov chain is absorbing only if at least one of its state is absorbing and it is

possible to reach an absorbing state from every state, not necessarily in one step.

Definition 2.2.2 In an absorbing Markov chain, the states which are not absorbing

are called transient states.

Example of an Absorbing Markov Chain: Cat’s random walk

Fig. 2.4.: Cat’s Random Walk

A cat walks along a street with four blocks (3 corners: 1, 2 and 3) and two fish

markets at either ends (0 and 4) as shown in Figure 2.4. The cat follows a particular

probability at each corner of the street. At corners 1, 2 and 3, it walks to the left or

the right with equal probability. When it reaches either of the two fish markets, it

stays there. The Markov Chain has five states {0, 1, 2, 3, 4}. The Markov chain is

depicted in Figure 2.5

It is clear from the model that states 0 and 4 are absorbing. It is impossible to

leave these states. States 1, 2 and 3 are transient states. The Chain is an absorbing

Markov chain because it is possible to reach an absorbing state from every state.
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Fig. 2.5.: Markov Chain of a Cat’s Random Walk

Given an absorbing Markov chain with k states, with a absorbing states and t

transient states, the canonical form of the state transition matrix is obtained by

rearranging the matrix such that the transient states form the first t rows and columns

and the next a rows and columns are occupied by the absorbing states. The state

transition matrix takes the following form,

P =

Q R

0 I

where Q ∈ Rt×t, R ∈ Rt×r, I ∈ Ir×r (2.12)

Now P is represented in canonical form and is an upper triangular matrix.

Theorem 2.2.1 In an absorbing Markov Chain, the probability of ending up in an

absorbing state is 1 i.e when n→∞, Qn →∞

Definition 2.2.3 For an absorbing Markov Chain, the fundamental matrix is given

by N = (I −Q)−1

The fundamental matrix helps in obtaining the expected number of times the

chain visits a particular state. It also helps in obtaining the expected time to reach

an absorbed state. This is explained in a better way with the help of the following

theorems.

Theorem 2.2.2 The ijth entry of the fundamental matrix, N, gives the expected

number of times the chain visits the transient state j if it starts at state i

Theorem 2.2.3 If a Markov chain starts in state i, and t is a column vector such

that,

t = NC = (I −Q)−1C (2.13)
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where C is a column vector with all entries 1, the ith entry of t, i.e. t(i), is the

expected number of steps before the chain is absorbed, given that the chain starts in

state i.

2.2.2 Ergodic and Regular Markov Chains

Definition 2.2.4 An Ergodic markov chain in one in which it is possible to go from

every state to all the other states, not necessarily in one step.

Definition 2.2.5 A regular Markov chain is one in which for some power of the state

transition matrix, it has only positive elements.

It can be inferred from the above definitions that not all ergodic Markov chains

are regular but all regular Markov Chains are ergodic. So regular Markov Chains are

a subset of ergodic Markov chains.

There are two important theorems that needs to be addressed, which can be

observed in regular Markov chains.

Theorem 2.2.4 In a regular Markov chain with a state transition matrix, P , as

n → ∞, P n approaches a limiting matrix W , which has all rows as the same vector

w. The vector w is a probability vector with all elements, strictly positive.

lim
n→∞

P n = W (2.14)

Theorem 2.2.5 If P is the state transition matrix of a regular Markov chain such

that,

lim
n→∞

P n = W

and the limiting matrix, W has all its rows as the probability vector , w, then we have,

wP = w (2.15)

and any vector v that satisfies, vP = v is a constant multiple of w.
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This means that the limiting probability vector is unique. The limiting probability

vector, w, can be calculated using the following two equations.

1. wP = w.

2.
∑k

1 w = 1 where k is the total number of states.

By solving the above two equations for the unknown variables, w can be obtained.

If we start a Markov chain with arbitrary initial probabilities, after n steps, n→∞,

the probability of ending at state j is w(i), which is the ith entry of w.

Theorems 2.2.4 and 2.2.5 hold good for ergodic Markov chains too. Since regular

Markov chains are a subset of the ergodic Markov chains, all the properties of ergodic

Markov chain also hold good for regular Markov chains.

The following two quantities can be obtained from an ergodic Markov chain.

1. The mean time to return to a state.

2. The mean time to go from one state to another.

It is to be noted that the mean time gives only the approximate time that a chain

will take to reach a state. These two quantities prove to be very efficient in analyzing

a model’s behavior.

Mean Recurrence Time

Assuming the chain starts at state Si, the expected number of steps to return

back to state Si, for the first time is called the mean recurrence time for state Si. The

mean recurrence time is denoted by ri.

Theorem 2.2.6 For an ergodic Markov chain, the mean recurrence time for state Si

is given by,

ri = 1/wi (2.16)

where, wi is the ith component of the limiting probability vector, w.
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Consider the example below with four states. Assuming the limiting probability

vector is,

w =
[
1/12 1/4 1/3 1/3

]
Then, the mean recurrence vector becomes,

r =
[
12 4 3 3

]
For state 1, it takes an average of 12 steps to return back to state 1. The mean

recurrence matrix, D, is the matrix with its diagonal entries as ri and all the other

entries as 0.

Fundamental Matrix of an Ergodic Markov Chain

Let P be the state transition matrix of an ergodic Markov chain. Let W be the

limiting matrix and I be the identity matrix. The fundamental matrix is then given

by,

Z = (I − P +W )−1 (2.17)

It can also be proven that the matrix (I − P +W ) has an inverse.

Let x be a column vector such that,

(I − P +W )x = 0

Pre-multiplying the above equation with w,

(wI − wP + wW )x = 0 (2.18)

We know that, wP = w and wW = w. So 2.18 becomes,

wx = 0

Since w is a limiting probability vector with all its elements strictly positive, we

can conclude that x = 0. This implies, (I − P + W ) has an inverse and thus, the

fundamental matrix of an ergodic markov chain is,

Z = (I − P +W )−1



20

Mean First Passage Matrix

Definition 2.2.6 If an ergodic Markov chain starts in state Si, the expected number

of steps to reach state Sj, for the first time is defined as the mean first passage time

from Si to Sj.

The mean first passage matrix is denoted by M , with all its diagonal entries as 0

and it’s non-diagonal entries as mij. mij is the mean first passage time from state i

to j.

Theorem 2.2.7 The mean first passage matrix, M, for an ergodic Markov chain is

obtained from the fundamental matrix, Z = (I−P+W )−1 and the limiting probability

vector w.

mij =
(Zjj − Zij)

wj

(2.19)

As defined earlier, the diagonal entries of M are 0 and the non-diagonal entries

are the mean first recurrence times, mij.

Example

We can use the second example presented in 2.1.2 with three states. Recall that

the state transition matrix is given by,

P =


0.5 0.25 0.25

0.5 0 0.5

0.25 0.25 0.5


Let the limiting probability vector w be, w =

[
w1 w2 w3

]
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We have to solve for wP = w and
∑
wi = 1. This will give us the following

equations,

0.5w1 + 0.5w2 + 0.25w3 = w1 (2.20)

0.25w1 + 0.25w3 = w2 (2.21)

0.25w1 + 0.5w2 + 0.5w3 = w3 (2.22)

w1 + w2 + w3 = 1 (2.23)

Solving the above equations, we obtain,

w1 = 0.4

w2 = 0.2

w3 = 0.4

Now we can form the limiting matrix, which is given by,

W =


0.4 0.2 0.4

0.4 0.2 0.4

0.4 0.2 0.4



I − P +W =


1 0 0

0 1 0

0 0 1

−


0.5 0.25 0.25

0.5 0 0.5

0.25 0.25 0.5

 +


0.4 0.2 0.4

0.4 0.2 0.4

0.4 0.2 0.4



I − P +W =


0.9 −0.05 0.15

−0.1 1.2 −0.1

0.15 −0.05 0.9



Z = (I − P +W )−1 =


86/75 1/25 −14/75

2/25 21/25 2/25

−14/25 1/25 86/75


The mean first passage time for the above system is given by,

mij =
(Zjj − Zij)

wj
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So,

m12 =
(Z22 − Z12)

w2

=
21/25− 1/25

1/5
= 4

m13 =
10

3

m21 =
8

3

m23 =
8

3

m31 =
10

3

m32 = 4

The mean first passage matrix is given by,

M =


0 4 10/3

8/3 0 8/3

10/3 4 0


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3. HIDDEN MARKOV MODEL IMPLEMENTATION IN

ACTIVE SAFETY

In Chapter 2, the formation and analysis of a Markov model was discussed. An

extension to Markov chains is a complex stochastic process, known as the hidden

Markov model (HMM). Hidden Markov model is a statistical model, in which the

system to be designed follows the Markov property, or otherwise the memoryless

property. In Markov chain, the state is directly visible to the observer, whereas in

Hidden Markov Model, the states are not directly visible but the observation sequence,

or output, can be observed. The output of the model is directly dependent on the

states and thus a pattern for sequence of states can be observed. This is otherwise

called as the pattern theory. The term hidden refers to the unknown states in the

model. In most practical applications, the states are usually known. The model is

still called a hidden Markov process, even if the states are known [9].

3.1 Implementation and Analysis of HMM

A coin toss experiment model is presented to grasp the understanding of a HMM.

Assuming that a coin (or multiple coin) toss experiment is being performed with a

barrier such that only the result (Heads or Tails) of the experiment is known to the

observer. The process of the experiment is also unknown, that is information about

which coin produces a corresponding result is unknown. Given the result of the above

experiment, the first step is determining the observed and the hidden states. It is

clear that the hidden states are the number of coins and the observation sequence

consists of heads or tails. In this experiment heads will be denoted by H and tails

will be denoted by T . To model the Markov model, the best choice is to assume the

number of states [10].
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Let us assume that only one coin is tossed. This makes it an observable Markov

chain with only one state. It becomes a degenerate hidden Markov model. Here each

state will correspond to the result of the experiment, that is H or T. This model is

depicted in Figure 3.1. The observation sequence of the model is observed in Figure

3.1.

Fig. 3.1.: 1-coin Model

Table 3.1.: Observation Sequence of 1-coin Model

Observation H H T T H T H H T T H

Sequence 1 1 2 2 1 2 1 1 2 2 1

Now, let us assume two coins are tossed. Here, there are two states in the model.

The states are determined by the probability distribution of H and T and the transi-

tion between the states are given by a state transition matrix. This model is depicted

in Figure 3.2. The observation sequence is given in Table 3.2. This example gives an

idea of how HMMs are modeled. Here, the two coins are denoted by S1 and S2 and

the observation is given by H or T. In Table 3.2, the second row gives the sequence

of the coin used in the experiment.
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Fig. 3.2.: 2-coin Model

Table 3.2.: Observation Sequence of 2-coin Model

Observation H H T T H T H H T T H

Sequence 2 1 1 2 2 2 1 2 2 1 2

From the observation sequence, the state transition matrix can be evaluated. The

state transition matrix is given by,

P =

 P11 1− P11

1− P22 P22


A three coin assumption will give us a better picture for identifying the elements

of HMM. This is depicted in Figure 3.3 and its corresponding observation sequence

is given in Table 3.3.

Table 3.3.: Observation Sequence of 3-coin Model

Observation H H T T H T H H T T H

Sequence 3 1 2 3 3 1 1 2 3 1 3

The transition of the states can be modeled from the probability of the observed

sequence, given in Table 3.4.

With the above example, the elements of HMM can be defined easily.
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Fig. 3.3.: 3-coin Model

Table 3.4.: Observation Probabilities of 3-coin Model

S1 S2 S3

P(H) P1 P2 P3

P(T) 1-P1 1-P2 1-P3

3.1.1 Elements of HMM

In order to model a hidden Markov model, it is required to define certain param-

eters, discussed below.

1. N → the number of states. Even though the states are hidden, in most practical

applications, there are relations between observed sequence and the number of

states. In some cases the number of states are completely known.

2. M → the number of observations in a state.
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3. P = pij → the state transition matrix.

4. Bi → observation sequence probability at state Si, where i = 1, 2, 3....N .

5. π → the initial probability vector.

GivenN,M,P,B and π, the HMM can be modeled. The steps are briefly explained

below:

1. Initial state is chosen according to the initial probability vector, π.

2. set step time, t=1.

3. The the initial observation is chosen according to the observation probability,

Bi, in the chosen initial state.

4. The chain is transitioned to a new state depending on the state transition

matrix.

5. increment t, go to step 3.

As mentioned earlier, in practical applications, the states are known and with all

the elements of HMM, modeling and simulation of a HMM can be achieved.

3.1.2 HMM Explained Through a Simple Coin Toss Example

Problem statement: Two biased coins are tossed at random. There are only

two observations, H or T. The initial probability vector is also given. The elements

are given as follows.

N = 2,M → H,T

P =

0.6 0.4

0.4 0.6


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Observation Probability:

S1 S2

P(H) 0.3 0.7

P(T) 0.7 0.3

π =
[
0.5 0.5

]
Solution: All the required quantities for modeling a HMM are given. The Markov

chain for the hidden states are summarized in Figure 3.4.

Fig. 3.4.: HMM Model

Let the required observation sequence be Q = HTHT , observed from S1S2S2S1.

Let λ be all the possible state transitions.

λ→ S1S1S1S1, S1S1S1S2, S1S1S2S1, S1S1S2S2

S1S2S1S1, S1S2S1S2, S1S2S2S1, S1S2S2S2

S2S1S1S1, S2S1S1S2, S2S1S2S1, S2S1S2S2

S2S2S1S1, S2S2S1S2, S2S2S2S1, S2S2S2S2

b1(H) = 0.3, b1(T ) = 0.7

b2(H) = 0.7. b2(T ) = 0.3

Probability of Q from S1S2S2S1 is,

P [HTHT, 1221] = b1(H)b2(T )b2(H)b1(T ) = (0.3)(0.3)(0.7)(0.7) = 0.0441

Probability of S1S2S2S1 happening is,

P [1221, λ] = π1P12P22P21 = (0.5)(0.4)(0.6)(0.4) = 0.0048
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Probability of the sequence, Q = HTHT , happening from S1S2S2S1 is,

P [HTHT, 1221.λ] = P [HTHT, 1221]P [1221, λ] = 0.0021

Through this we can find the probability of an observation sequence happening

through a particular event.

3.2 Design of Active Safety System

Hidden Markov model can be used to design a predictive algorithm to enhance

active safety in cars. Prediction of driving behavior [11] has been one of the main

areas of research in active safety systems. The idea here is to design a model that

can predict the driving behavior of a particular vehicle and thereby, predicting it’s

location at a particular time. This will help in predicting crash between vehicles

by establishing an algorithm that can compare the HMMs of the vehicles, through

proper Vehicle-to-Vehicle communication. This information can be used to trigger

the appropriate active safety system. The two main active systems used in this thesis

are adaptive cruise control and lane departure system. A brief description of these

systems are presented at the end of the chapter. There are some basic assumption to

design the HMM. These assumptions are explained below:

• All vehicles are equipped with active safety elements. Preferably level 3 au-

tonomous vehicles.

• All vehicles have capabilities of communicating with each other.

• Vehicle dynamics data can be observed and used (Lane number and speed).

• Historical data of vehicle dynamics are also available.

3.2.1 Markov Chain - Model Specification

In this model two layers of Markov Chains are used to develop the prediction

flow. The usage of Hidden Markov model in this thesis, slightly deviates from the
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Table 3.5.: First Layer

States

Lane 1

Lane 2

Lane 3

Lane 4

Lane 5

Lane 6

Table 3.6.: Second Layer

Observed States Symbol

0-10 m/s a

10-20 m/s b

20-30 m/s c

30-40 m/s d

40-50 m/s e

50-60 m/s f

conventional hidden Markov models. Here, all the states are known and the state

transition matrices of both the layers can be computed with the available historical

data.

The first layer of the Markov chain (states) is for lane change. The initial as-

sumption here is that, there are six lanes on each side of the road. Depending on

the number of lanes, the number of rows in a state transition matrix changes. The

dimension of the state transition matrix depends on the number of lanes. The second

layer of Markov chain (Observed states) consists of speed ranges. The historical data

of speed dynamics has been divided into six speed ranges. The state transition matrix

will consist of six rows and six columns. The speed probabilities are calculated for

each lane to increase the efficiency of crash prediction.

The states of both the layers of the HMM are listed in Tables 3.5 and 3.6. The

lanes are numbered from one to six from left to right of the road correspondingly.

The speed dynamics are converted to m/s for flexibility. The speed variable has been

divided into six states with 10 m/s range. It can also be seen that end value of an

observed state is the same as the start of a next state. This is to provide durability

in the design. The end values are sorted depending on the sequence of the previous

speed data. Each observation state is related to a symbol. Table 3.7 shows how each

observation probability is classified into lanes. The initial probability vector depends
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Table 3.7.: Observation Probabilities for Each Lane

1 2 3 4 5 6

b1(a) b2(a) b3(a) b4(a) b5(a) b6(a)

b1(b) b2(b) b3(b) b4(b) b5(b) b6(b)

b1(c) b2(c) b3(c) b4(c) b5(c) b6(c)

b1(d) b2(d) b3(d) b4(d) b5(d) b6(d)

b1(e) b2(e) b3(e) b4(e) b5(e) b6(e)

b1(f) b2(f) b3(f) b4(f) b5(f) b6(f)

on the current lane of the vehicle. The elements of the modeled HMM are summarized

below,

• Number of hidden states, N = 6. This denoted the number of lanes.

• Number of observations in a state, M = 6. This denotes the speed change range.

• State transition matrix, P = pij. Here i and j represent the lane number.

i, j = {1, 2, 3, 4, 5, 6}.

• Observation probability, b. This is summarized in Table 3.7.

The state transition matrices for lane change and speed change are summarized

in Equations 3.1 and 3.2 respectively.

P =



p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66


(3.1)



32

S =



saa sab sac sad sae saf

sba sbb sbc sbd sbe sbf

sca scb scc scd sce scf

sda sdb sdc sdd sde sdf

sea seb sec sed see sef

sfa sfb sfc sfd sfe sff


(3.2)

3.2.2 Model Design

The road is assumed to have six lanes. Each lane is associated with a state in the

first layer of Markov chain. The road layout considered is illustrated in Figure 3.5.

Fig. 3.5.: Road Layout

The Markov chain for lane change is depicted in Figure 3.6. L1, L2, L3, L4, L5

and L6 are states discussed above. Practically examining the model, it is found to be

an ergodic Markov chain. It is possible to go from every state to all the other states

(not necessarily in one step). It means that overtime, a car can traverse to every lane

on the road at least at one point of time.



33

Fig. 3.6.: Lane Change Markov Chain

Figure 3.7 depicts the second layer of the model, speed change Markov chain.

The observed states are a, b, c, d, e and f which correspond to the speed ranges.

Just like the lane change chain, this is also an ergodic Markov chain. In practical

applications, these chains are regular. At some power of the state transition matrix,

all the elements of the matrix are strictly positive.

Fig. 3.7.: Speed Change Markov Chain

3.2.3 Description of Variables and Formulae Used

There are five main important elements used in the design of the model. These

are listed below,

• P → State transition matrix for lane change.

• S → State transition matrix for speed change.

• π → Initial probability vector for lanes.

• B → Observation probability for each state.
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• W → Limiting matrix.

• Z → Fundamental matrix.

• M → Mean first passage matrix.

Lane Change State Transition Matrix, P

The state transition matrix is obtained from historical lane data of a vehicle. An

example of historical data is depicted in Figure 3.8. The formula used for calculating

Fig. 3.8.: Lane Change Data

each element of the state transition matrix is discussed in Equation 3.4.

Probability from i to j =
No. of rows with current lane =i, and next lane =j

No. of rows with current lane =i
(3.3)

pij =

∑n
k=1 η(Xk = i|Xk+1 = j)

η(Xk = i)
(3.4)

P = {pij} (3.5)

Where, i, j = {1, 2, 3, 4, 5, 6}
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i→ current lane, j → next lane

η → number of occurrences

n→ total number of data rows

Speed Change State Transition Matrix, S

The speed change data is also obtained from historical data as shown in Figure 3.8.

The formula for calculating the speed change probabilities varies slightly from lane

change probabilities, since it considers a range of data. The formula for calculating

the same is given in Equation 3.7.

Probability speed range (l to m) to (m to n)=

No. of rows with current speed in range (l to m), and next speed in range (m to n)

No. of rows with range (l to m)

(3.6)

s(l−m)−(m−n) =

∑n
k=1 η(l < Yk < m|m < Yk+1 < n)

η(l < Yk < m)
(3.7)

S = {s(l−m)−(m−n)} (3.8)

Where,

(l to m), (m to n) = {a, b, c, d, e}

η → number of occurrences

n→ total number of data rows

Speed Probabilities for Each Lane, B

It is important to note the probabilities of speed range for each lane. This helps in

analyzing if a driver has been at the approximately same speed range at a particular

lane for the required period of time. The equations concerning B are discussed below.
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Probability of range (l to m) at lane i =
No. of rows with speed range(l to m)

No. of rows with lane =i
(3.9)

B(l−m) =

∑n
k=1 η(l < Yk < m|Xk = i)

η(Xk = i)
(3.10)

Where,

i = {1, 2, 3, 4, 5, 6}

(l to m) = {a, b, c, d, e}

η → number of occurrences

n→ total number of data rows

Limiting Matrix (W), Fundamental Matrix (Z) and Mean First Passage

Matrix (M)

The mean first passage matrix finds its use in determining which active safety

system needs to be triggered. This concept will be explained in the upcoming sections.

To find the Mean first passage matrix, we need the limiting matrix and fundamental

matrix. The formula for W, Z and M are shown in Equations 3.11, 3.13 and 3.16.

wP = w (3.11)

6∑
1

wi = 1, i = {1, 2, 3, 4, 5, 6} (3.12)

Z = (I − P +W )−1 (3.13)

mij =
Zjj − Zij

wj

, i, j = {1, 2, 3, 4, 5, 6}, i 6= j (3.14)

mij = 0, i = j (3.15)

M = mij (3.16)
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Probability of Position at Time=t

The probability of the vehicle being at a particular lane can be found using the

initial probability vector and the state transition matrix. The formula for the same

is given in Equation 3.17.

πt = π0P
t (3.17)

πt has six elements, each of which gives the lane probability at time t.

3.3 Crash Prediction and Avoidance

The prediction of crash has three parts, each of which has been explained using

flow charts in the upcoming subsection. The first part is determining the time at

which the cars will be at the same y-coordinate. The second section of the flow is to

determine if the two cars will be at the same x-coordinate at the previously calculated

time and evaluate the crash probability. The third part is to trigger the appropriate

active safety system to prevent the crash.

3.3.1 Flow-1 - Calculation for Probable Time of Crash

The state transition matrix for lanes of the vehicles are computed using Matlab.

The Matlab code was developed using Equation 3.4. It is assumed that car 1 is in

front and car 2 is following car 1 (in the same lane or in any of the other lanes). P1

and P2 denote the state transition matrix of car 1 and car 2 respectively. Then the

lane number of both the cars are identified using lane detection system. Let the lane

number of car 1 be i and lane number of car 2 be j. This is used to determine the

initial probability vector of both the vehicles.

The next step is to determine the current speed of both the vehicles (V1 and

V2). This data can be obtained from the speed sensor in the vehicles. The speed is

obtained in m/s to provide flexibility in calculation. The relative velocity (v) of car
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2 is calculated with respect to car 1, since car 2 is following car 1. The formula for

calculating relative velocity is given in Equation 3.18.

V = V 2− V 1 (3.18)

Fig. 3.9.: Probable Time of Crash
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If the relative velocity of car 2 with respect to car 1 is less than 0, it means that

the speed of car 2 is less than the speed of car 1. So, car 2 will not be able to catch

up to car 1 in the next few steps. So the program terminates and starts from the

beginning. If the relative velocity is positive, there is a chance that both the cars will

be in the same y-coordinate at some point of time. To determine the time that car 2

will take to reach car 1, the distance between the cars is required. A lidar is used to

determine the y-distance between the cars. The technique used is summarized below.

Lidar Operation

Light detection and ranging (Lidar) is range measurement device which uses pulsed

laser to determine the distance between the two vehicles. Lidar has a 360 degree

visibility with extremely accurate distance measurement. Once the lidar sends a

pulse of laser, it determines the time it takes for the light to return back to the

sensor. This concept is illustrated in Figure 3.10. The diagonal distance between the

cars are determined by the lidar. The formula embedded in the device is presented in

Equation 3.19. The equation to calculate the y-distance (d) is explained in Equation

3.20.

Hyp =
(Ltime)(c)

2
(3.19)

Ltime is the time elapsed by the lidar to return back.

d =
√
Hyp2 + LW 2 (3.20)

Probable Time of Crash

The probable time,t is calculated using the formula in Equation 3.21.

t = d/V (3.21)
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Fig. 3.10.: Lidar Principle

Now that the probable time of the crash has been calculated. To verify that the

cars will maintain the same speed, the state transition matrix for speed change is

calculated. If the probability of speed change is higher than 0.5, then the loop goes

back to determining the current speed. Otherwise, the flow goes into the next step.

3.3.2 Flow 2 - Calculation of Probable Crash Probability

The state transition matrix of both the cars are calculated at time t (P1t and

P1t). Then the probability vector is determined to know the probabilities of the

vehicles at different lanes at time t. The probability vector is calculated using the

initial probability vector π10 and π20. The calculation is summarized in Equations

4.3 and 4.4.

π1t = (π10)(P1t), Car 1 (3.22)

π2t = (π20)(P2t), Car 2 (3.23)
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Fig. 3.11.: Probable Crash Probability

The jth element of π1t and ith element of π2t give the lane probability of car 1

being at lane j and the lane probability of car 2 being at lane i. Simultaneously,

the probability of each car staying at the same lane is also calculated. The crash

probabilities are then compared and then the highest probability is chosen as the

probable crash probability.
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3.3.3 Flow 3 - Determining the Appropriate Active Safety System

Fig. 3.12.: Flow 3

After the two probable crash probabilities are calculated, the next step is to de-

termine which car has the higher probability to change its lane. The two probabilities

are compared and the highest probability is chosen. If the chosen probability is lesser
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than 30%, then the program terminates and starts from the beginning. Else, the

mean first passage matrix is calculated. The mean first passage matrix helps in de-

termining whether the car changes the lane before time t. If the (i, j)th element of

the mean first passage matrix is greater than t, then the car changes the lane before

time, t. This will lead to a rear end crash. So, adaptive cruise control is on for the

following car. If the (i, j)th element of the mean first passage matrix is less than t,

the chance of sideways collision at the blind spot is possible. So the lane departure

warning and steering assist is activated for both the cars. The flow is depicted in

Figure 3.12.

3.4 Adaptive Cruise Control

Adaptive cruise control is an active safety system which controls the speed of the

vehicle depending on the dynamics of the vehicle in front. It can be viewed as an

add-on to the cruise control system. The ego vehicle is usually equipped with a front

facing radar or a Lidar, which calculates the distance and the relative velocity from

the lead vehicle. With the safe distance required, relative velocity and the actual

distance, the time needed for the ego vehicle to decelerate to the lead vehicle’s speed

can be calculated. This is used to adjust the speed of the ego vehicle [12].

Fig. 3.13.: Distance Calculation
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The ACC module communicates with various electronic control units to control

the speed of the vehicle. The engine control module controls the engine throttle by

obtaining information from the ACC module. The brake control module decelerates

the vehicle by using electronic enhancements in brakes (example: ABS brake system).

The instrument cluster acts as a mediator, which receives information from the cruise

switches and sends the information to the ACC and engine control module.

Fig. 3.14.: Adaptive Cruise Control

3.5 Lane Keep Assist

Lane keep assist is an active safety mechanism, which controls the lateral position

of the vehicle in a particular lane. The lane keep assist module receives its data from

cameras. The lane keep assist module calculates the lateral distance from the left

and the right boundaries from the lanes, depending on the image received from the
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cameras. If the car moves closer to the either of the boundaries, the car is steered

accordingly, using the steering assist. The lane keep assist system first alerts the

driver about possible lane departure. If no action is taken, then the steering is actively

controlled to keep the vehicle in the same lane. The required torque for controlling

the steering motor is calculated depending on the extent of departure [13], [14].

Fig. 3.15.: Lane Keep Assist

The vehicle dynamics considered are longitudinal velocity, lateral velocity, yaw

rate and heading angle. The state observer determined are, steering torque, steering

wheel angle, lateral vehicle movement relative to lane boundaries and road configu-

rations (road slope and curvature).
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4. SIMULATION AND RESULTS

The simulation of the whole system was carried out on MATLAB/SIMULINK, using

the algorithm discussed in Chapter 3. The database used for simulation was obtained

from U.S. Department of Transportations (USDOT) Intelligent Transportation Sys-

tems (ITS) [15]. The database of two cars were obtained and simulated into different

scenarios to prove the validation of the system designed. The cars were chosen in such

a way that the longitude and the latitude of the whole run matches approximately,

which means that both the cars are on the same road. The database was filtered out

to obtain the car ID, speed, run ID, Lane and time. The data was limited to five

days of historical data to prove the concept. The filtered data was then imported to

MATLAB and simulated to obtain the required result. Figures 4.1 and 4.2 illustrate

the actual data and the data used for simulation.

Fig. 4.1.: Data Obtained from USDOT
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Fig. 4.2.: Filtered Data Used for Simulation

4.1 Description of Data Obtained

The vehicles were instrumented with a high precision GPS, two video cameras,

two radars and an OBD port reader. Figure 4.3 gives an illustration of the devices

and sensors used in data collection.

Fig. 4.3.: Instrumented Vehicle

The real-time kinematic (RTK) GPS was used, which provides an accuracy of

4cm when at least four satellites were visible. The RTK GPS device was installed
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with a precision inertial measurement unit, which measured the rate of acceleration

and rotation with great accuracy. A time-step of 50ms was record the position of

the vehicle. However, for the purpose of simulation, the data obtained was filtered to

each second, keeping in mind the reaction time of the driver. The obtained data was

from three different drivers through a period of seven days each. The cameras were

used to detect the lane IDs. Radar 1, is a mid-range radar, which extends its distance

measurement to up to 100m, while the long range radar extends up to 174m.

4.2 Simulation

Matlab’s control toolbox and econometric toolbox have been used to simulate

the Markov chains for simulating the crash prediction probabilities. Matlab’s MPC

toolbox was used to simulate the adaptive cruise control part of the system. The

econometric toolbox helps in modeling and analysis of Markov chain with the help of

random walks, keeping in mind the Markov property. The structure of the state tran-

sition matrix helps in determining the evolutionary trajectory graph of the specified

Markov chain. The model predictive control toolbox helps in designing a controller

by adjusting the dynamics of the plant designed. In this thesis, the MPC toolbox

helps in designing the required ACC system, which controls the car’s acceleration,

depending on the lead car. The plant to be controlled here is the ego vehicle’s motion,

which is described in state space format.

Three different scenarios were identified and the required modifications were done

on speed and the distance between the cars for the purpose of simulation. In all

the three scenarios, the state transition matrix at the start time is the same, since

it depends only on the historical data. Since the exact distance between the two

cars is not available with the data obtained, the relative distance is assumed to be

a non-negative value. Another limitation in regards to the relative distance is, it is

always set below 100m.
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4.2.1 Determination of State Transition Matrix

The lane data and speed data were first converted from table columns to a column

matrix to simplify the processing of data. The formation of the lane change and speed

change matrices are illustrated through flow charts represented below.

Lane Change State transition matrix

Fig. 4.4.: Lane Change State Transition Matrix Flow

The lane data is stored as a column vector, glane. The total length of the vec-

tor(n) and index of the matrix(x,y) are obtained from the main program. The total
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Fig. 4.5.: Probability(Lane Change)

number of occurrences of current lane(x) is calculated. Then the total number of

times the next lane(y) appears after x is also calculated. This is stored in the appro-
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priate position of the lane change state transition matrix, P. The lane number exactly

corresponds to the index of the matrix. So, no mapping is required while scripting

the algorithm.

Fig. 4.6.: State Transition Matrix of Car 1

Fig. 4.7.: State Transition Matrix of Car 2

Figures 4.6 and 4.7 depict the result of state transition matrices of car1 and car2

at time 0. It can be observed that each row the state transition matrix equals 1,

which proves that the state transition matrix is a right stochastic matrix. The state

transition matrix also gives us an idea of how often a driver changes lane.
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Fig. 4.8.: State Transition graph of Car 1

Fig. 4.9.: State Transition Graph of Car 2
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Fig. 4.10.: Speed Change State Transition Matrix Flow

Speed Change State Transition Matrix

The speed change matrix evaluation follows the same algorithm as the lane change

matrix as shown in Figure 4.10. Here, the matrix index is not equal to the speed
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ranges used. This requires mapping of each row/column number to the extremes of

each speed range. The formula for mapping the speed range is explained in Equation

4.1.

x = (i− 1) ∗ 10 (4.1)

x denotes the lower extreme of the speed range and i denoted the index in the

matrix. Table 4.1 below gives us the mapping of matrix index to speed range extrem-

ities. For example, S(3,4) will give us the speed change probability from 20− 30m/s

to 30 − 40m/s. The mapping of these speed ranges, is the only difference between

the speed change and lane change state transition matrices.

Table 4.1.: Speed Range Mapping

i Speed range Extremities

1 0 m/s

2 10 m/s

3 20 m/s

4 30 m/s

5 40 m/s

6 50 m/s

The results of the simulation are provided in Figure 4.11 and 4.12. It can be

observed that in both the matrices, the sum of each row approximately equals 1,

proving the stochastic behavior of the matrices. Combining both the matrices (P

and S), the driving behavior and the intent of the driver at a particular situation can

be determined. From the lane change probabilities of Car 1, it can be seen that the

driver does not change lanes that often when the car is at lane 1 to 5. The driver

changes his lane more often when he is at lane 6. While looking at the speed change
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matrix of car 1, it can be noted that the driver does not change speeds that often.

So, it can be concluded that the driver of car 1 is a safe driver but has tendency to

immediately change the lane when the car is at lane 6.

Fig. 4.11.: Speed Change State Transition Matrix of Car 1

Fig. 4.12.: Speed Change State Transition Matrix of Car 2

Mean First Passage Matrix

As discussed earlier, the mean first passage matrix requires the fundamental ma-

trix and the limiting matrix. The fundamental matrix is calculated directly from the

formula given in Equation 3.13. The limiting matrix is solved using the Equation

3.11. To solve the system of equations, Matlab’s ODE solver was used to obtain

the limiting matrix, W. With these two matrices, the mean first passage matrix was

obtained for the cars.
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Fig. 4.13.: W, Z and M for Car 1

Fig. 4.14.: W, Z and M for Car 2

4.2.2 Adaptive Cruise Control Simulation

The Matlab’s MPC toolbox provides a Simulink block that uses model predictive

control approach to determine the acceleration or deceleration required for the ego
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vehicle to maintain a safe distance from the target vehicle. There are two main

objective to the ACC block used which are explained below:

1. if the relative distance is greater than the safe distance, the ego vehicle travels

in the driver set speed.

2. if the relative distance is less than the safe distance, the control goal is to reduce

the speed of the ego vehicle so that the distance between the cars is maintained

at a safe distance.

The acceleration of the Lead vehicle follows a sine wave, to approximate the

realistic driving conditions. The adaptive cruise control system block generates an

acceleration output, which is induced into the ego vehicle, thereby modifying the

speed of the ego vehicle. The plant model of the ego vehicle and the lead vehicle is

given in Equation 4.2 [16].

G =
1

s(0.5s+ 1)
(4.2)

The inputs to the ACC system block are,

• Speed of ego vehicle.

• Relative distance between ego vehicle and lead vehicle(radar).

• Relative velocity between ego vehicle and lead vehicle(radar).

Figure 4.15 is the screenshot of the Simulink file used for simulating ACC in

different scenarios. The design of plant for the cars is given in Figure 4.16.

4.3 Scenarios and Simulation Result

As explained earlier, three different scenarios have been developed and simulated

to prove the concept of HMM in active safety systems. The scenarios differ from each

other on the basis of speed of the vehicles, relative distance between them and the
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Fig. 4.16.: Plant Design for Cars

lane at which they are traveling in. The objective of the scenarios is to see how the

system reacts to safe and unsafe conditions. Every scenario has some assumptions,

which will be discussed in the following sections.

4.3.1 Scenario 1: Unsafe Operation with ACC

The assumptions of the scenario are as follows:

1. There are six lanes on one side of the road.

2. Car 1 is at lane 6, traveling in front of car 2 at 30 m/s with a constant accel-

eration of 0.6 m/s2.

3. Car 2 is at lane 5, traveling at 40m/s.

4. The relative distance between the cars is 40m.

Here, car 1 is the lead car and car 2 is the ego car. The initial probability vector

of car 1 and car 2 is given in Equations 4.3 and 4.4.

π1 =
[
0 0 0 0 0 1

]
(4.3)
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π2 =
[
0 0 0 0 1 0

]
(4.4)

The results of the simulation are illustrated in Figures 4.17-4.20.

Fig. 4.17.: Lane probabilities of Car 1 at probable time of crash

Fig. 4.18.: Lane Probabilities of Car 2 at Probable Time of Crash

Fig. 4.19.: Crash Probability at Probable Time of Crash
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Fig. 4.20.: Simulation of ACC

With the relative distance and the relative velocity obtained from the radar, the

probable time of crash was calculated. The state transition matrix of the two cars at

this time was calculated. Using the initial probability matrix, the probability of lanes

of the cars at probable time of crash was also calculated. From the matrices obtained

from the Matlab program, it is clear that Car 1 and car 2 have a higher probability

to be at lane 5 at the probable time of crash. Multiplying these probabilities will

give us the crash probability at the probable time of crash, which is 0.768 or 76.8%.

Comparing the probable time of crash with (6,5)th element of the mean first passage

time matrix, it is possible that car 1 changes it’s lane much earlier than the time of

crash. So this indicates that ACC for car 2 has to be turned on to prevent rear end

crash.
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4.3.2 Scenario 2: Unsafe Operation with Lane Departure and Steering

Assist

The assumptions of the scenario are as follows:

1. There are six lanes on one side of the road.

2. Car 1 is at lane 6, traveling at 50 m/s with a constant acceleration of 0.6 m/s2.

3. Car 2 is at lane 5, traveling in front of car 1 at 40m/s.

4. The relative distance between the cars is 9m.

This scenario could be one in which car 1 is entering the highway at lane 6, since

ACC would have come into effect if car 1 had stayed in the highway much before

the relative distance became 9m. Car 2, on the other hand, is traveling at 40 m/s in

front of car 1. The initial probability vector stays the same for both the vehicles as

in scenario 1. The results of the simulation are illustrated in Figures 4.21-4.23.

Fig. 4.21.: Lane Probabilities of Car 1 at Probable Time of Crash

After calculating the state transition matrices of the cars at the probable time of

crash, the probability of the cars being at a each lane is calculated. It can be seen

from the results that there is a high probability that the cars will be at lane 5 at the

same time. Since the reaction time (relative time for car 1 to catch up to car 2) is
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Fig. 4.22.: Lane Probabilities of Car 2 at Probable Time of Crash

Fig. 4.23.: Crash Probability at Probable Time of Crash

very low, the adaptive cruise control will cause discomfort while reducing the speed

of car 1. As a result, the time of crash is compared with the mean first passage time

of car 1 from lane 6 to lane 5 and if it is lesser, then lane departure warning and

steering assist are on for car 1, which will restrict car 1 to go from lane 6 to lane5

and thus, avoiding the crash.

4.3.3 Scenario 3: Safe Operation

The assumptions of the scenario are as follows:

1. There are six lanes on one side of the road.

2. Car 1 is at lane 1, traveling in front of car 2 at 50 m/s.

3. Car 2 is at lane 2, traveling at 60m/s.

4. The relative distance between the cars is 30m.
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The results of the simulation are illustrated in Figures 4.24-4.26.

Fig. 4.24.: Lane Probabilities of Car 1 at Probable Time of Crash

Fig. 4.25.: Lane Probabilities of Car 2 at Probable Time of Crash

Fig. 4.26.: Crash Probability at Probable Time of Crash

In this scenario, the cars are in adjacent lanes traveling 30m apart from each

other. The state transition matrices of the cars are evaluated and the probability of
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positions of the cars are evaluated at the probable time of crash. From the results, it

is seen that the probability that the cars will change lane or be at the same lane is

very negligible. So the cars will continue to operate without any intervention of the

active safety systems.
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5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

The idea of this thesis was to develop an algorithm to predict crash probabilities

and take action depending on the dynamics of the vehicle. The thesis is divided

into five chapters. The first chapter gives a brief explanation on the existing ADAS

technology and the impact it has created. It also explains the need for prediction of

driving behavior and how it will help in improving active safety systems. This chapter

also gives a brief description of Markov chains and its use in prediction algorithms.

A number of papers were cited and reviewed, which served as inspirations for this

thesis.

The second chapter deals with explaining the characteristics and the mathematics

involved in Markov chains. This chapter describes the elements of a Markov chains

and the model specification, which include the states, state transition matrix and the

probability distribution. The classification of Markov chains and the characteristics

of the types of Markov chains are discussed in detail. The elements for analyzing a

Markov chain has been discussed and the derivation of the same was also done. The

concepts were also explained through a simple example.

Chapter 3 focuses on hidden Markov model and the implementation of the same

in active safety. A variant of the same was also derived and explained to suit the goal

of the thesis. The elements of the HMM used in this this thesis was also explained,

keeping in mind the road design. The active safety system was designed and an

algorithm to predict crash was also developed. The description and derivation of the

formulae used was also discussed. A brief introduction of adaptive cruise control and

lane keep assist systems were also done.
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Simulation of the system and the algorithm explained in Chapter 3 was described

in Chapter 4. The results of the same was also illustrated. Chapter 4 also explains

the minimum system requirement needed to implement the system. This chapter

gives a brief description of the toolboxes used in Matlab to program and simulate

the algorithm. A few sections of this chapter emphasizes on the flow which helps in

obtaining the various state transition matrices. Three scenarios were created to test

the system and the results of the same were illustrated.

The final chapter provides the summary and future work of this thesis.

5.2 Future Work

The probable future work of this project are itemized below,

• The mechanical dynamics of the vehicle (mass, center of mass) can be considered

while designing the movement of the vehicle.

• The efficiency of braking and the time required to accelerate/decelerate from

one speed to another can be an extension to this thesis.

• Addressing the change in number of lanes from one highway to another can be

considered and the necessary changes to the state transition matrices can be

implemented.

• Improving the efficiency of the system in urban traffic conditions by having a

separate state transition matrix for different condition can also be implemented.

• The Markov model can be updated during vehicle operation to improve the

efficiency of prediction.

• The same system can be extended to level 5 autonomous vehicles.
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