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ABSTRACT

Sahu, Abhijit M.Sc., Purdue University, August 2019. Quantification of Uncertainty
in the Magnetic Characteristic of Steel and Permanent Magnets and their Effect on
the Performance of a Permanent Magnet Synchronous Machine. Major Professors:
Dionysios Aliprantis, Ilias Bilionis.

The numerical calculation of the electromagnetic fields within electric machines is

sensitive to the magnetic characteristics of steel. However, the properties of steel are

uncertain due to fluctuations in alloy composition, possible contamination, and other

manufacturing process variations including punching. Previous attempts to quantify

magnetic uncertainty due to punching are based on parametric analytical models of

B-H curves, where the uncertainty is reflected by model parameters. In this work, we

set forth a data-driven approach for quantifying the uncertainty due to punching in

B-H curves. In addition to the magnetic characteristics of steel lamination, the rema-

nent flux density (Br) exhibited by the permanent magnets in a permanent magnet

synchronous machine (PMSM) is also uncertain due to unpredictable variations in

the manufacturing process. Previous studies consider the impact of uncertainties in

B-H curves and Br of the permanent magnets on the average torque, cogging torque,

torque ripple and losses of a PMSM. However, studies pertaining to the impact of

these uncertainties on the combined machine/drive system of a PMSM is scarce in

the literature. Hence, the objective of this work is to study the effect of B-H and Br

uncertainties on the performance of a PMSM using a validated finite element simula-

tor. Our approach is as follows. First, we use principal component analysis to build

a reduced-order stochastic model of B-H curves from a synthetic dataset containing

B-H curves affected by punching. Second, we model the the uncertainty in Br and

other uncertainties in B-H characteristics e.g., due to unknown state of the material

composition and unavailability of accurate data in deep saturation region. Third, to
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overcome the computational limitations of the finite element simulator, we replace

it with surrogate models based on Gaussian process regression. Fourth, we perform

propagation studies to assess the effect of B-H and Br uncertainties on the average

torque, torque ripple and the PMSM machine/drive system using the constructed

surrogate models.
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1. INTRODUCTION

1.1 Background

The electromagnetic fields that permeate electric machines are sensitive to the

magnetic characteristics of the ferromagnetic materials employed in their construc-

tion. A robust design of an electric machine hinges on accurate numerical calculations

of these fields at all operating points. Such analysis requires information regarding

the nonlinear B-H function(s) of the material(s) used, which is typically reflected

by a nominal curve provided in a datasheet. However, the actual B-H curve may

deviate from the nominal due to difference in grain size [1] and presence of impurities

in the material [2, 3], operating conditions such as temperature and frequency [4–6],

and various manufacturing processes that can alter the micro-structure of the mate-

rial [7–13]. Furthermore, the limited availability of accurate B-H curve data in the

deep saturation region [14] introduces additional epistemic uncertainty. Quantify-

ing the effect of these uncertainties on the performance of an electric machine is a

challenging problem.

The primary cause of behavioral uncertainty in the B-H curve of a steel lamination

is the manufacturing process it undergoes [15]. In particular, punching has the most

noticeable influence [7, 16–18]. Previous studies have shown that the plastic stress

introduced during punching deteriorate the magnetic characteristics of steel near the

cut edge [13]. The effect of various punching parameters including the sharpness of the

punch and die, and the cutting speed and clearance has been described in [10–12,19].

These studies, whose main purpose was to deduce the physical mechanisms responsi-

ble for the degradation, have been conducted in controlled environments. In practice,

mass production of steel laminations cannot be precisely controlled, due to unforeseen

variations in the manufacturing process that are not known in advance. Thus, the
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unpredictable variation of these punching parameters leads to the uncertainty in B-H

curves.

Furthermore, behavioral uncertainty in a B-H curve is also governed by the the

material composition of its corresponding steel lamination. Depending on the type

of annealing process the lamination undergoes, the grain size of silicon in it may

vary [1]. As a result, its B-H curve characteristic varies [20]. Besides, steel contains

impurities in the form of compounds such as Nitrogen, Sulphur, Carbon, etc.. The

amount of these impurities in a steel lamination also dictate the variation in its B-H

curve characteristic [3].

An additional source of magnetic uncertainty is the limited availability of B-H

curve data in the deep saturation region. The maximum value of B-H data point of a

material published by the manufacturers is generally well below the value that corre-

sponds to its saturation magnetization. In literature, various methods have been pro-

posed to extrapolate the B-H curves beyond their last recorded data points [21–23].

However, it is unlikely that the extrapolated magnetization characteristic matches

with the actual physical curve [14]. One would assume that the problem could be over-

come by obtaining experimental measurements at high saturation levels. Nonethe-

less, such measurements using Epstein frames (used by manufacturers), are prone

to measurement errors [14]. Thus, modeling this epistemic uncertainty is important

especially to quantify the variation in the performance of the machines operating in

deep saturation region [14].

Previous attempts to quantify magnetic uncertainty are based on parametric mod-

els of the B-H curves [24,25] where the uncertainty is reflected by model parameters.

These attempts do not incorporate local variations due to punching as well. Thus,

our goal in this project is to overcome the short-comings of the previous attempts and

propose methodologies to quantify the behavioral and epistemic uncertainty in the

experimental data set of B-H curves and as an illustrative case study, we propagate

this uncertainty to the torque response of a permanent magnet synchronous machine

(PMSM).
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In an extended work of this study, we consider an additional uncertainty, the

uncertainty of remanent flux density (Br) of permanent magnets in the PMSM. The

variation in Br occurs due to the variability in magnetization of PMs during the

manufacturing process [26], from misuse of the machine [27] and the deterioration of

Br with time [27]. In a PMSM, Br has a significant influence on the electromagnetic

behavior of the machine. Therefore, the impact of its corresponding uncertainty on

the performance of the machine is considered in this extended work. A detailed

account of the objectives of this thesis is provided below.

1.2 Objective of the thesis

The first objective of this work is to propose a methodology for constructing a

stochastic model that can quantify the uncertainty due to punching using a dataset

of B-H curves. This dataset encodes the uncertainty introduced due to the uncertain

state of the punching tool. We use principal component analysis (PCA) to reduce

the dimensionality of uncertainty of this dataset. Furthermore, we also model the

uncertainty in B-H curves due to the unknown material composition of steel and the

limited availability of accurate data in deep saturation region.

The second objective is to analyze the effect of the modeled uncertainties on the

output torque of a PMSM. To achieve this objective, a finite element (FE) simulator

is designed. Additional layers are added in the stator and rotor of the PMSM model in

the FE simulator representing the regions that show local degradation in the magnetic

characteristics of steel. These regions reflect the uncertainty in B-H curves due to

punching tool variation. The material uncertainty is reflected in the B-H curves

of the remaining regions of the stator and rotor. Furthermore, we also incorporate

the epistemic uncertainty in deep saturation region of all the B-H curves from the

dataset (reflecting punching and material uncertainty in the machine). The brute

force method to propagate these uncertainties is to run a large number of simulations

using the FE simulator on samples of B-H curves and obtain relevant statistics.
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However, evaluation using a FE simulator is computationally expensive. Instead, we

train a surrogate model by running few of these expensive simulations on samples

from the entire input space and use the trained surrogate to quantify the effect of

B-H curve uncertainty on the output torque of a PMSM.

Surrogate models have gained eminence in various engineering applications. But,

only recently they have gained popularity in the electric machines community. Quan-

tification and propagation of uncertainty in an electric machine due to manufacturing

processes using surrogate models is presented in [25]. In [28], the authors study the

effect of uncertainty in rotor eccentricity on the air gap field using polynomial chaos

expansion (PCE) and [29] describes the methodology to quantify the uncertainty

in the magnetic field of magnets using PCE. As dimensionality of the problem in-

creases, the number of simulations required to train these non-intrusive polynomial

chaos models grows. Thus, in this study, we use Gaussian process (GP) regression

to build the surrogate model. GP regression is a powerful Bayesian technique that

combines the prior assumptions about the output with input-output observations us-

ing Bayes rule to form a posterior GP that complies with the prior assumptions and

the observations simultaneously. The posterior GP can be used to make point-wise

prediction for any new input sample and these predictions can be made accurate by

training the GP regression surrogate with adequate number of simulations. Addi-

tionally, GP regression provides information about the epistemic uncertainty due to

limited data availability as well. Depending on this information, the training data

can be strategically sampled.

The observed quantity of interest in this study is the output torque of a PMSM.

Torque waveform computed from a magneto-static FE simulator is a vector contain-

ing magnitudes of torque corresponding to distinct rotor positions of the PMSM.

Generally, the torque vector has significantly high output dimension. In this high

dimensional space, the surrogate is inefficient in predicting the torque as high num-

ber of scalar functions (equal to the number of dimensions) are required to learn the

torque response. Physics based models contain inherent few dominant modes which
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have the most influence on the output [30]. By predicting only these modes, it is

possible to predict the output with significant accuracy. In this study, we use PCA

to identify these dominant modes contributing to the output torque and learn them

using GP regression to build the surrogate. Finally, our aim is to assess the effect of

B-H curve uncertainty on the output torque profile of the PMSM using the surrogate

model.

We extend this work further by considering the effect of uncertainty in the rema-

nent flux density (Br) of the permanent magnets. We study the combined impact of

uncertainties in B-H curve and Br on the PMSM machine/drive system. Our goal is

to assess the effect of all the modeled uncertainties on the maximum average torque

vs speed characteristics of the machine, minimum DC-link voltage required for the

motor/drive system and the current limit of the machine operating under maximum

torque per ampere (MTPA) condition.

1.3 Organization

The organization of the thesis is as follows. Chapter 2 provides an insight into

the FE simulator design of a PMSM with degraded zones. In the final section of this

chapter, we validate the in house code with the commercial software, ANSYS Maxwell

2D. Chapter 3 explains in detail the concept of PCA and its use in dimensionality

reduction. Chapter 4 provides the methodology to incorporate the uncertainty in

B-H curves due to punching defect, unpredictability in material composition and the

limited availability of accurate data of saturation magnetization, and the uncertainty

in remanent flux density of permanent magnets. Chapter 5 provides the methodology

of constructing surrogate models using GP regression. This chapter also gives details

related to the methodology used for constructing a surrogate model using GP regres-

sion that learns the principal components of the output torque. In the final section of

this chapter, we construct surrogate models that learn the average torque and average

flux-linkages of the machine. Chapter 6 discusses two case studies for propagating
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the modeled uncertainties in B-H curves to the average torque and torque ripple

profiles of the PMSM. In chapter 7, we propagate the combined effect of B-H uncer-

tainties and uncertainty in remanent flux density of permanent magnets to PMSM

machine/drive system. Finally, chapter 8 provides the conclusion of the conducted

studies in this research.
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2. FINITE ELEMENT SIMULATOR

This chapter begins by describing the drawbacks of a linear lumped parameter model

based on analytical machine equations. The second section of this chapter intro-

duces the underlying concept of designing a two-dimensional (2-D) finite element

(FE) simulator and calculating the quasi-magnetostatic field of a permanent magnet

synchronous machine (PMSM) made of steel following non-linear magnetic charac-

teristics. Additionally, we modify the FE mesh in this section to incorporate the

degraded zones caused by the punching tool during manufacturing process. In the

final section, we validate the finite element simulator against the results from the

commercial software, ANSYS Maxwell 2D.

2.1 Drawbacks in analysis using a linear lumped parameter model

In this research, we consider the interior PMSM of the 2004 Toyota Prius, which

has been documented in detail in [31]. The dimensions of the stator slot, teeth and

back-iron are illustrated in Fig. 2.1 and the rotor and permanent magnet dimensions

are illustrated in Fig. 2.2. The parameters are provided in Table 2.1. This is a 8-pole

motor, rated for 400 Nm and 50 kW, at 1500 rpm. In this study, we consider a no-load

system where the 3-phase currents, ia, ib and ic, excite the machine for operation.

Here the currents are given by
ia

ib

ic

 = Ipk


cos (θe + φc)

cos
(
θe + φc − 2π

3

)
cos
(
θe + φc + 2π

3

)
 (2.1)

where Ipk is the peak magnitude of current, φc is the current angle and θe is the rotor

electrical angular position, given by

θe = ωet, (2.2)
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where t is the time (in s), and ωe is the rotor angular speed (in rad/s).

For simplicity of analysis, in a linear lumped parameter model, we consider only

the linear relationship between the parameters. Although these equations make the

analysis simpler, they fail to capture the dynamics of the machine accurately. To an-

alyze the machine, the q-d transformed currents in rotor reference frame are used [32].

The transformation is given by


irqs

irds

ir0s

 =


cos θe cos

(
θe − 2∗π

3

)
cos
(
θe + 2∗π

3

)
cos θe cos

(
θe − 2∗π

3

)
cos
(
θe + 2∗π

3

)
1
2

1
2

1
2



ia

ib

ic

 , (2.3)

where iqs, ids and i0s are the q-axis, d-axis and the zero-sequence currents respectively.

However, since we are dealing with balanced sinusoidal currents, the zero-sequence

current is absent [32]. Thus, using these transformations, the state of the machine

can be defined by the q- and d- axes voltages.

vrqs = rsi
r
qs + ωeλ

r
ds +

dλrqs
dt

, (2.4)

vrds = rsi
r
ds + ωeλ

r
qs +

dλrds
dt

, (2.5)

where rs is the resistance of single phase winding,

λrqs = Lqi
r
qs (2.6)

and

λrds = Ldi
r
ds + λ

′r
m (2.7)

where Lq is the q-axis inductance, Ld is the d-axis inductance and λ
′r
m is the flux

linkage due to the permanent magnets. In a linear model, Lq and Ld are assumed to

be constant. Subsequently, the torque, T , of the machine is given by [32]

T =

(
3

2

)(
P

2

)(
λrdsi

r
qs − λrqsirds

)
. (2.8)

There are a number of problems with the linear lumped parameter model. The

approximation of the model assuming a linear behavior of the magnetic material is
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one of them. This approximation provides a linear relationship between the applied

currents (irqs, i
r
ds) and the flux linkages (λrqs, λ

r
ds) as observed in Eqns. (2.6) and

(2.7). However in reality, the behavior of the magnetic material is dictated by non-

linear B-H curve affecting the relationship between the currents and flux linkages

(as we will see later in this chapter). Furthermore, as Lq and Ld are assumed to be

constants, the harmonics due to the stator teeth and slots of the machine are not

captured by the lumped parameter model. Thereby, the torque given by Eq. (2.8)

fails to capture these harmonics. In this study, we intend to quantify the effect of

B-H curve uncertainty on the torque profile of a PMSM. Thus, it is important for

us to model the behavior of the machine accurately so that its sensitivity to the

considered uncertainties can be precisely quantified. Considering the disadvantages

of the linear lumped parameter model, we use the FE analysis approach to obtain

the torque waveform of the PMSM. The details on the design of a FE simulator are

provided in the following sections. For simplicity of notation, henceforward, we refer

to irqs as Iq and irds as Id.

2.2 Development of 2-D FE simulator

The torque produced by a PMSM is a result of interaction between the magnetic

fields produced by the rotor magnets and stator currents. The interaction of these

electromagnetic fields is analyzed using a 2-D FE solver. This analysis is simplified

by making following assumptions. The currents are considered to flow only in the

axial direction (z- axis) and the displacement current in Ampere’s law is ignored [33].

Additionally, the dynamics of the machine are assumed to be fast enough to ignore

the transients. Such FE solver is called a magnetostatic solver. In a magnetostatic

solver, the magnetic field is obtained by solving a non-linear Poisson’s equation. The

following equations form the basis for deriving Poisson’s equation:

∇× ~H = ~Je (2.9)
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20.1 mm

                             3.15  mm

7.6 mm

8.8 mm

33.5 mm

 1.93 mm

1.02 mm

D5.64 mm

Fig. 2.1.: PMSM stator dimensions

∇ · ~B = 0 (2.10)

~B = µ ~H (2.11)

~B =∇× ~A (2.12)

where ~H is the magnetic field intensity, ~B is the magnetic flux density, ~A is magnetic

vector potential (MVP), ~Je is the equivalent current density which is a vector sum of

current density due to the currents in the stator and perceived current density due
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4 mm

18.9 mm

6.5 mm

2 mm

1.5 mm

3.02 mm

2.1 mm

1.55 mm

1.42 mm

7.7 mm

145.0°

Fig. 2.2.: PMSM rotor and permanent magnet dimensions

to the magnets in the rotor, and µ is the absolute permeability of the region under

consideration. From Eq. (2.9), Eq. (2.11) and Eq. (2.12), we get

∇×
(
∇× ~A

)
= µ~Je. (2.13)

In 2-D, Eq. (2.13) reduces to

∂2A

∂x2
+
∂2A

∂y2
= −µ~Je, (2.14)

where A and Je are functions of x and y and correspond to the z− components of

the MVP and equivalent current density respectively.

Eq. (2.14) is the non-linear Poisson’s equation which is equal to the Euler-

Lagrange equation for an energy related functional, F , defined in a 2-D domain of

interest, D. In magnetostatic problems, F is defined as

F =

∫ ∫ ∫
D

m(A)dxdy −
∫ ∫ ∫

D

AJdxdy − νm
∫ ∫ ∫

~Br · (
∂A

∂y
âx −

∂A

∂x
ây)

(2.15)
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Table 2.1.: Dimensions and parameters of the PMSM

Parameter Value

Stator outer diameter (mm) 269

Stator inner diameter (mm) 161.93

Stator stack length (mm) 8.35

Rotor outer diameter (mm) 160.47

Air gap (mm) 0.73025

Slot depth (mm) 33.5

Slot opening (mm) 1.93

Magnet residual flux density (T) 1.23

Total number of slots ( ) 48

Stator turns per coil ( ) 9

Parallel circuits per phase ( ) 0

Relative permeability of the magnet() 1.12

where νm is the absolute reluctivity of the magnet, âx is the unit vector in x- direction,

ây is the unit vector in the y- direction, and m(A) is the energy density of the system

given by

m(A) =
1

2

∫ B2

0

ν(b2)db2 = m(B2), (2.16)

where ν is the reciprocal of µ and ~Br is the residual magnetic flux density of the

magnet defined as

~Br = µo(Mxâx +Myây). (2.17)

The function A(x, y) that minimizes F must satisfy Eq. (2.14). Hence, instead of

finding a solution to Eq. (2.14), we solve for A(x, y) that minimizes F . To achieve

this, D is discretized into triangular elements assuming that the current density within
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each element remains constant and the variation of A inside the element is linear w.r.t.

x and y. Thus, inside each element, A(x, y) is given by

A(x, y) = a+ bx+ cy. (2.18)

Consider a triangle element with nodes (x1, y1), (x2, y2) and (x3, y3). The MVP’s at

these nodes is given by

A1(x1, y1) = a+ bx1 + cy1, (2.19)

A2(x2, y2) = a+ bx2 + cy2, (2.20)

A3(x3, y3) = a+ bx3 + cy3. (2.21)

Solving Eq. (2.19), Eq. (2.20) and Eq. (2.21), we get

a =
1

24
[(x2y3 − x3y2)A1 + (x3y1 − x1y3)A2 + (x1y2 − x2y1)A3], (2.22)

b =
1

24
[(y2 − y3)A1 + (y3 − y1)A2 + (y1 − y2)A3], (2.23)

c =
1

24
[(x3 − x2)A1 + (x1 − x3)A2 + (x2 − x1)A3]. (2.24)

where 4 is the area of the triangle element given by:

4 =
1

2
[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)]. (2.25)

Substituting Eq. (2.19), Eq. (2.20) and Eq. (2.21) into Eq. (2.18), we get

A =
3∑
i=1

αiAi. (2.26)

where for i = 1, 2, 3,

αi(x, y) =
1

24
[pi + qix+ riy], (2.27)

p1 = x2y3 − x3y2, (2.28)

p2 = x3y1 − x1y3, (2.29)

p3 = x1y2 − x2y1, (2.30)

q1 = y2 − y3, (2.31)
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q2 = y3 − y1, (2.32)

q3 = y1 − y2, (2.33)

r1 = x3 − x2, (2.34)

r2 = x1 − x2, (2.35)

r3 = x2 − x1. (2.36)

αi(x, y) are called basis functions which possess the property

αi(xj, yj) = 1, if i = j,

= 0, if i 6= j.
(2.37)

Substituting Eq. (2.37) in Eq. (2.26), we get

A =
3∑
i=1

Aiαi(x, y). (2.38)

Taking into account the discretization of the domain and linear interpolation inside

the triangle elements, the functional, F , can be approximated as Fapx given by

Fapx =
K∑
k=1

∫ ∫
4k

m(B2)dxdy −
K∑
k=1

∫ ∫
4k

AJdxdy

−
K∑
k=1

νkµ0

∫ ∫
4k

(Mx
∂A

∂y
−My

∂A

∂x
)dxdy.

(2.39)

In each triangle element, k, the functional takes the form, F k
apx, given by:

F k
apx =

∫ ∫
4k

m(B2)dxdy −
∫ ∫

4k

AJdxdy − νkµ0

∫ ∫
4k

(Mx
∂A

∂y
−My

∂A

∂x
)dxdy

= m(B2)4k − Jk4k

3
(A1 + A2 + A3)−

νkν0
2

3∑
i=1

Ai(M
k
x r

k
i −Mk

y q
k
i ).

(2.40)

In Eq. (2.40), the first term is a function of B2 which is dependent on A (Eq. (2.12)).

Thus, find Fapx in terms of A, B2 needs to be calculated as a function of A. Thus,

B2 is given by

B2 = (
∂A

∂x
)2 + (

∂A

∂y
)2 = |∇A|2

=
3∑
i=1

3∑
j=1

AkiA
k
j (∇αi · ∇αj).

(2.41)
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A normalized element stiffness matrix, Sk is defined such that,

skij = 4k(∇αi · ∇αj), (2.42)

where skij is the element of Sk corresponding to its ith row and jth column. Substituting

Eq. (2.42) in Eq. (2.41), we get

B2 =
AkTSkAk

4k
. (2.43)

The solution to Eq. (2.40) can be obtained by solving a simple linear equation

when νk is constant or independent of B2 which is possible if the material used in the

stator and rotor of the machine exhibits linear magnetic characteristics. However, in

practice, the material is non-linear in nature. Thus, an additional iterative algorithm

is used to reach to the solution of A numerically that minimizes Eq. (2.40). The next

subsection discusses more about the implementation of this algorithm.

Integration of the non-linear material

The absolute permeability, µ, in Eq. (2.11), for a material, varies depending

on the magnetic field intensity, ~H. At low excitation, µ increases with increase in

| ~H| whereas at high excitation µ decreases with increase in | ~H| until it reaches µ0,

the absolute permeability of free space. Due to the presence of this non-linearity in

the magnetic property of the material, a solution of A that minimizes F cannot be

obtained analytically. Therefore, a numerical technique based on Newton-Raphson

algorithm is implemented in this study to find the solution of A.

By Fermat’s theorem, the partial derivative of F w.r.t A, is given by

∂F

∂A atA=Am

= 0 = g(Am), (2.44)

where Am is a vector of nodal values of A that minimizes Fapx, and g = ∂F
∂A

. By

expanding Eq. (2.44) using Taylor’s series at Am and neglecting higher order terms,

we get

g(A) = g(Am) +
∂2F

∂A2
(A− Am). (2.45)
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Solving further, the iterative formula of Newton-Raphson is obtained which is given

by

At+1 = At −H−1g(At), (2.46)

where At is the value of A at tth iteration of Newton-Raphson and H = ∂2F
∂A2 . Substi-

tuting Eq. 2.40 in Eq. (2.44), we get

∂F k

∂Aki
=

∂

∂Aki
mk(B2)4k − Jk4k

3
− Iki

= 4k dm
k

dB2

∂B2

∂Ai
− Jk4k

3
− Iki

(2.47)

where Iki is considered as the equivalent nodal current due to the permanent magnets

in the rotor and is given by

Iki =
νkµ0

2
(Mk

x r
k
i −Mk

y q
k
i ). (2.48)

Solving Eq. (2.16), we get

dmk

dB2
=

1

2
ν(B2). (2.49)

Thus, using Eq. (2.49), Eq. (2.47) can be reduced to

∂F k

∂Akni

= ν(B2)(SkAk)i −
Jk4k

3
− Iki . (2.50)

Similarly following necessary substitutions, ∂F
k

∂Ak
i ∂A

k
j

can be expanded to get the hessian

matrix, H. Hk, the sub-matrix of H for each element is given by:

Hk(Ak) =
∂2F k

∂Aki ∂A
k
j

= ν(B2)sij −
2

4k

dν(B2)

dB2
(SkAk)i(S

kAk)j (2.51)

Substituting Eq. (2.47) and Eq. (2.51) in Eq. (2.46), the MVP at each node is

evaluated iteratively till the stopping criteria is met. The stopping criteria is defined

as:
||g(Am)||2
||I||2

≤ 10−6 (2.52)

where I is the vector of nodal currents of the discretized elements.

After the solution of MVP at each node is obtained, the electromagnetic torque

waveform is calculated using three different algorithms. The three algorithms corre-

spond to the Maxwell stress tensor (MST) [34], the virtual distortion of triangles [35]

(VDM), and the Arkkio’s [36] (Arkkios) method.
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Fig. 2.3.: Discretized domain of a nominal Interior permanent magnet synchronous

machine in 2-D

Incorporation of the degraded zones

The process of punching introduces plastic deformation in the region near the cut

edge of the lamination, thereby deteriorating its magnetic characteristics locally [37].

This region is henceforward referred to as a degraded zone. To model this effect,

we introduce a number of degraded zones in the FE mesh, as shown in Fig. 2.4. In

the stator, we assume the presence of two degraded zones, as if they are caused by

two separate punching tools with potentially different effect; the first is at the outer
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boundary, whereas the second is at the inner boundary and follows the shape of the

stator teeth and slots. In the rotor, we assume 10 degraded zones; 2 zones at the outer

and inner boundaries of the rotor, and 8 zones surrounding the magnet pockets. We

assume that the outer and inner boundaries of the rotor are shaped by two different

punching tools, whereas the 8 magnet pockets are punched by the same punching

tool.

Zones are represented by 1-mm thick layers in the FE mesh [13]. The material

in each degraded zone is assigned an uncertain B-H curve characteristic dictated by

the uncertain state of its corresponding punching tool. For instance, although there

are 8 geometrically separate degraded zones surrounding the magnet pockets, they all

share a single B-H curve characteristic. The magnetization uncertainty corresponds

to the combined effect of cutting speed, cutting clearance, wearing and sharpness of

the punch and die of the punching tool. Henceforward, the combined effect of these

parameters on the punching tool is referred to as the state of the punching tool.

2.3 Validation of the FE simulator

In the in-house FE code, we calculate the torque waveform using three different

algorithms. It can be observed in Fig. 2.5 that the torque waveform computed using

all of these methods produce identical results with no significant error. Henceforward,

we use the Arkkio’s method to compute the torque waveform for all the conducted

studies.

We validate the in-house FE code against the results from the commercial soft-

ware ANSYS Maxwell 2D. The torque waveform as a function of the mechanical rotor

position, θrm and the operating points, defined by the magnitude of peak current, Ipk,

and the current angle, φc, is obtained from ANSYS Maxwell 2D using the Magneto-

static solution mode. We use the Optimetrics option to feed the input parameters,

θrm, Ipk and φc, as discrete values to ANSYS Maxwell 2D and evaluate the torque

waveform at these values. We consider 32 equally spaced mechanical rotor positions
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Fig. 2.4.: Illustration of degraded zones in the FE mesh of the PMSM under study.

Degraded layers correspond to (a) Stator outer edge, (b) Stator teeth and slots, (c)

Rotor outer edge, (d) Rotor magnet pockets and (e) Rotor inner edge
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Table 2.2.: Operating points for validation study

Operating point Currents (A)

1 Iq = 10.000 A, Id = 0.000 A

2 Iq = 9.469 A, Id = −3.214 A

3 Iq = 7.934 A, Id = −6.088 A

4 Iq = 5.556 A, Id = −8.315 A

5 Iq = 2.588 A, Id = −9.659 A

6 Iq = 70.000 A, Id = 0.000 A

7 Iq = 66.285 A, Id = −22.501 A

8 Iq = 55.535 A, Id = −42.613 A

9 Iq = 38.890 A, Id = −58.203 A

10 Iq = 18.117 A, Id = −67.615 A

11 Iq = 130.000 A, Id = 0.000 A

12 Iq = 123.101 A, Id = −41.787 A

13 Iq = 103.136 A, Id = −79.139 A

14 Iq = 72.224 A, Id = −108.091 A

15 Iq = 33.646 A, Id = −125.570 A

16 Iq = 190.000 A, Id = 0.000 A

17 Iq = 179.917 A, Id = −61.073 A

18 Iq = 150.737 A, Id = −115.665 A

19 Iq = 105.558 A, Id = −157.979 A

20 Iq = 49.176 A, Id = −183.526 A

21 Iq = 250.000 A, Id = 0.000 A

22 Iq = 236.733 A, Id = −80.360 A

23 Iq = 198.338 A, Id = −152.190 A

24 Iq = 138.893 A, Id = −207.867 A

25 Iq = 64.705 A, Id = −241.481 A
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Fig. 2.5.: Computation of torque using MST, VDM and Arkkios method at 25

operating points
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Fig. 2.6.: Validation of the FE simulator at 25 different operating points
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Fig. 2.7.: Histogram of L2-norm error between the torque waveforms from ANSYS

Maxwell 2D and in-house FE code
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Fig. 2.8.: Relative L2-norm error between the torque waveforms from ANSYS

Maxwell 2D and in-house FE code in Iq-Id plane
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Table 2.3.: Relative L2-norm error between the torque waveforms obtained from

ANSYS Maxwell 2D and in-house FE code

Operating point relative L2-norm error(%)

1 1.6612

2 1.5919

3 1.7320

4 2.1940

5 4.0541

6 1.0626

7 0.7553

8 0.4500

9 0.6137

10 0.8749

11 0.9628

12 0.6906

13 0.4521

14 0.3600

15 0.7242

16 0.8104

17 0.5126

18 0.3567

19 0.2476

20 0.5183

21 0.7099

22 0.3849

23 0.2652

24 0.2918

25 0.3914
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Table 2.4.: Torque error obtained using ANSYS Maxwell 2D and in-house FE code

Operating point Torque error(Nm)

1 0.0312

2 0.0304

3 0.0294

4 0.0272

5 0.0241

6 0.1451

7 0.1338

8 0.0857

9 0.0970

10 0.0709

11 0.2278

12 0.2231

13 0.1680

14 0.1248

15 0.1380

16 0.2584

17 0.2272

18 0.1869

19 0.1277

20 0.1575

21 0.2734

22 0.2078

23 0.1716

24 0.1913

25 0.1599
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Fig. 2.9.: Torque error between the torque waveforms from ANSYS Maxwell 2D

and in-house FE code in Iq-Id plane

within 0 and 15 degrees where the magnitude of torque is computed. The range of

0-15 degrees is strategiclly chosen as the torque waveform for a symmetric 3 phase

machine repeats itself after every 60 electrical degrees (15 mechanical degrees for a

8 pole machine as the PMSM considered in the study). For each of the considered

rotor position, ANSYS Maxwell 2D implements an adaptive meshing technique to

reduce the local error associated with the energy of the system such that between two

consecutive passes, it would not exceed 0.01%. The relative L2-norm error between

the torque waveforms evaluated using ANSYS Maxwell 2D, tam, and the in-house FE

code, tih, is given by

relative L2-norm error =
‖tam − tih‖2
‖tih‖2

. (2.53)

The torque waveform is computed at 25 different operating points. Ipk and φc are

considered at 5 equally spaced points between 10 A and 250 A, and 0 degree and 75

degrees respectively. The operating points are reported in the form of Iq and Id in

Table 2.2. It can be observed in Fig. 2.7 that the errors of 12 of the validation points

are below 0.5% and 7 of them are below 1%. The error is also illustrated in the Iq-Id
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plane in Fig. 2.8 and reported in Table 2.3. It can be seen that the 5 outliers (error

> 1.25%) correspond to the low current region. Figs. 2.13, 2.14, 2.15, 2.16 and 2.17

illustrate the different torque waveforms with their relative L2-norm errors. We also

consider another error criteria called the torque error between the two codes where

the torque error, et, is given by

et =
‖tam − tih‖2

Nr

, (2.54)

where Nr corresponds to the number of discrete rotor positions where the magnitude

of torque is computed. Fig. 2.9 shows the torque error for the 25 operating points and

Table 2.4 reports them. It can be observed that although the relative L2-norm error

was high near the low current region, the torque error is high near the high current

region. However, the maximum torque error is approximately around 0.25 Nm which

is acceptable.

The purpose of this study is to consider the effect of B-H uncertainties on our

quantities of interests (QoIs) where the QoIs are given by the average torque, the

sixth and twelfth harmonic components of torque. Thus, it is important that the

QoIs are accurately evaluated by the in-house FE code. Hence, we also calculate the

difference between the QoIs obtained from ANSYS Maxwell 2D and the in-house FE

code in our study. The magnitude of average torque at any operating point is given

by

tavg =
1

Nr

Nr∑
n=1

t(n)c (2.55)

where t
(n)
c is the n-th value of the torque waveform, tc, obtained using the in-house

FE code/ANSYS Maxwell 2D. The sixth and the twelfth harmonic components of

torque are given by the discrete-fourier transform (DFT) of tc. The evaluation of

DFT is computationally intensive. Instead, we use the Fast-fourier transform (FFT)

which is computationally inexpensive. To obtain the FFT, we use the numpy package
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of python. Fundamentally, the DFT decomposes tc such that its each component, Tk

is given by

Tk =
Nr−1∑
n=0

t(n)c

˙
exp

{
i2πkn

Nr

}
. (2.56)

In this interpretation, each component, Tk is a complex number that encodes both

amplitude and phase of a complex sinusoidal component, exp{i2πkn}, of t
(n)
c . The

sinusoid’s frequency is k cycles per Nr samples. It’s amplitude is given by

|Tk|/Nr =
√

Re(Tk)2 + Im(Tk)2/Nr (2.57)

Since, we work with just one period of the torque waveform, the absolute value of

the second component, |T1|/Nr corresponds to the magnitude of sixth harmonic com-

ponent of the torque waveform and the absolute value of third component, |T2|/Nr,

corresponds to the magnitude of twelfth harmonic component of the torque wave-

form. We obtain the difference between the magnitudes of the QoIs from ANSYS

Maxwell 2D and the in-house FE code. We plot these differences in the Iq − Id plane

(see Figs. 2.10, 2.11 and 2.12)and their values are reported in Tables 2.5, 2.7 and 2.6

respectively.

ANSYS Maxwell 2D implements a quadratic interpolation of the magnetic vector

potential where as in the in-house FE code, we implement a bilinear interpolation

of MVP (see Eq.(2.18)). Thus, the elements of the stiffness matrix corresponding

to ANSYS Maxwell 2D and the in-house FE code will be different which results in

different values of MVPs. Consequently, the torque calculated from the two sources

will be different as well. However, if the triangular elements are sufficiently small, the

deviation is expected to be small. The mesh used by ANSYS Maxwell 2D is different

from the mesh of in-house FE code which is yet another factor contributing to the

error. Considering these sources of error, the discrepancy between the quantities

evaluated from in-house FE code and ANSYS Maxwell 2D is acceptable.

In addition to validating the torque waveforms obtained from the in-house FE

code at 25 operating points, we also study the change in the QoIs with the change

in B-H curve of steel from both the solvers. We prepare the study by perturbing the
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B-H curve such that it has a slope greater than the nominal B-H curve. To obtain the

perturbed curve, we decrease the H-values of the nominal curve by 30% at same B-

values (as the nominal curve) and extrapolate the generated curve with a slope of µ0.

ANSYS Maxwell 2D uses a straight line extrapolation algorithm [22] to extrapolate

the B-H curve using the last two data points from the provided curve where as in the

in-house FE code, we extrapolate the B-H curve with a slope of µ0 beyond the last

available data point. Thus, the extrapolation of the nominal and perturbed curve is

necessary to ensure that the extrapolated B-H curve of ANSYS Maxwell 2D matches

that of in-house FE code. To this end, we introduce an additional H-value in the

deep saturation region, i.e. He = 1.8e5 A/m, after the last data point of the nominal

and perturbed curve. At He = 1.8e5 A/m, the B-value is given by

Be = (He −Hl)µ0 +Bl, (2.58)

where Hl and Bl correspond to be the last H- and B-values of the B-H data respec-

tively. The value, He, is arbitrarily chosen and its choice doesn’t affect the study since

we assume that after the last data point, {Hl, Bl}, the slope of the B-H curve is µ0.

Thereafter, we construct a shape-preserving polynomial cubic Hermite interpolating

polynomials (PCHIP) function with the B-H data points, given by B(H) and using

this function, we sample 50 B-values at 50 equally spaced H-values in the log-scale.

The PCHIP is constructed to ensure that the slope of the curve is smooth till the

last extrapolated data point which is essential in the iterative solution of the MVP

(refer to Section 2.2 for details). The data points of the 2 B-H curves are provided

in Tables 2.8 and 2.9 and illustrated in Fig. 2.18.

The torque waveforms corresponding to these B-H curves were obtained from

the in-house FE code and ANSYS Maxwell 2D separately. They can be observed

in Figs. 2.19, 2.20, 2.21, 2.22 and 2.23. We also compute the difference of QoIs cor-

responding to these B-H curves using the 2 solvers. Fig. 2.24 shows the difference

between the average torque computed from the in-house FE code and ANSYS Maxwell

2D. The scatter plots reveal that the difference of average torque obtained from the 2

solvers is approximately the same. Small discrepancies can be observed in the values
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Fig. 2.10.: Difference in the average torque from ANSYS Maxwell 2D and in-house

FE code in Iq-Id plane

reported in Table 2.10. These discrepancies are acceptable considering the reasoning

(pertaining to the basis functions of MVP and the mesh of the solvers) provided ear-

lier in this section. A similar phenomena is observed for the difference between the

sixth and twelfth harmonic components of the torque waveforms at the nominal and

perturbed B-H curves as illustrated in Figs. 2.25 and 2.26 and their corresponding

reported values in Table 2.11 and 2.12. In conclusion, it can be said that the in-house

FE code is validated against results from ANSYS Maxwell 2D.
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Table 2.5.: Difference in the average torque obtained using ANSYS Maxwell 2D and

in-house FE code

Operating point Difference (Nm)

1 0.1228

2 0.1252

3 0.1229

4 0.1121

5 0.0928

6 −0.3852

7 −0.4144

8 −0.0897

9 0.4714

10 0.2892

11 −0.9699

12 −0.9562

13 −0.5879

14 0.4608

15 0.5422

16 −1.1677

17 −0.9722

18 −0.7306

19 −0.0239

20 0.5434

21 −1.2680

22 −0.8810

23 −0.6385

24 −0.5887

25 0.5807



31

0 50 100 150 200 250
Iq (A)

0

50

100

150

200

250

I d
 (A

)

   1   2   3   4   5
   6

   7
   8

   9   10

   11

   12

   13

   14
   15

   16

   17

   18

   19
   20

   21

   22

   23

   24

   25

0.1

0.0

0.1

0.2

0.3

Di
ffe

re
nc

e 
in

 si
xt

h 
ha

rm
on

ic 
 c

om
po

ne
nt

 o
f t

or
qu

e 
(N

m
)

Fig. 2.11.: Difference in sixth harmonic component of torque from ANSYS Maxwell

2D and in-house FE code in Iq-Id plane
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Fig. 2.12.: Difference in twelfth harmonic component of torque ANSYS Maxwell 2D

and in-house FE code in Iq-Id plane
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Table 2.6.: Difference in the sixth harmonic component of torque obtained using

ANSYS Maxwell 2D and in-house FE code

Operating point Difference (Nm)

1 −0.0151

2 −0.0144

3 −0.0127

4 −0.0111

5 −0.0079

6 −0.1805

7 −0.1266

8 −0.0684

9 0.0062

10 −0.0131

11 −0.0008

12 0.0689

13 −0.0939

14 −0.0552

15 0.0339

16 0.2344

17 0.3751

18 0.2492

19 0.0197

20 0.0590

21 0.2755

22 0.3893

23 0.3179

24 0.2112

25 0.0641
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Fig. 2.13.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3,

(d) 4, (e) 5, (f) 6
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Fig. 2.14.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,

(d) 10, (e) 11, (f) 12
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Fig. 2.15.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c)

15, (d) 16, (e) 17, (f) 18
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Fig. 2.16.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

21, (d) 22, (e) 23, (f) 24
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Fig. 2.17.: Torque waveform corresponding to operating point 25
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Fig. 2.18.: B-H curves for comparing the sensitivities of in-house FE code and

ANSYS Maxwell 2D
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Table 2.9.: B-H data points of the perturbed curve

H (A/m) B (T)

9.0178 3910.5781 0.0416 1.6364

11.0409 4787.9063 0.0587 1.6792

13.5179 5862.0608 0.0961 1.7227

16.5506 7177.1992 0.1637 1.7707

20.2637 8787.3855 0.2638 1.8176

24.8098 10758.8130 0.3751 1.8617

30.3759 13172.5252 0.4868 1.9031

37.1906 16127.7475 0.5988 1.9371

45.5342 19745.9665 0.7106 1.9655

55.7497 24175.9236 0.8133 1.9852

68.2570 29599.7302 0.9082 2.0025

83.5703 36240.3540 0.9944 2.0233

102.3191 44370.7848 1.0706 2.0449

125.2741 54325.2570 1.1329 2.0700

153.3791 66512.9895 1.1873 2.0989

187.7893 81435.0087 1.2312 2.1245

229.9193 99704.7448 1.2710 2.1486

281.5011 122073.2494 1.3084 2.1737

344.6552 149460.0708 1.3411 2.2024

421.9777 180000 1.3695 2.2399

516.6473 1.3929

632.5558 1.4136

774.4681 1.4332

948.2180 1.4521

1160.9483 1.4704

1421.4041 1.4892

1740.2925 1.5111

2130.7227 1.5358

2608.7449 1.5628

3194.0101 1.5966
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Fig. 2.19.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3,

(d) 4, (e) 5, (f) 6
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Fig. 2.20.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,

(d) 10, (e) 11, (f) 12



41

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

200

210

220

230

240

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(a)

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

180

190

200

210

220

230

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(b)

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

95

100

105

110

115

120

125

130

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(c)

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

165

170

175

180

185

190

195

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(d)

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

230

240

250

260

270

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(e)

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

270

280

290

300

310

320

330

340

M
ot

or
 to

rq
ue

 (N
m

)

Ansys nominal
Ansys perturbed
In-house code 
 nominal
In-house code 
 perturbed

(f)

Fig. 2.21.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c)

15, (d) 16, (e) 17, (f) 18
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Fig. 2.22.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

21, (d) 22, (e) 23, (f) 24
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Fig. 2.23.: Torque waveform corresponding to operating point 25
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Fig. 2.24.: Difference in the average torque from the in-house FE code and ANSYS

Maxwell 2D for the nominal and perturbed B-H curves
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Fig. 2.25.: Difference in the sixth harmonic component of torque from the in-house

FE code and ANSYS Maxwell 2D for nominal and perturbed B-H curves
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Fig. 2.26.: Difference in the twelfth harmonic component of torque from the

in-house FE code and ANSYS Maxwell 2D for nominal and perturbed B-H curves
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Table 2.7.: Difference in the twelfth harmonic component of torque obtained using

ANSYS Maxwell 2D and in-house FE code

Operating point Difference (Nm)

1 −0.0228

2 0.0030

3 0.0194

4 0.0294

5 0.0306

6 −0.2868

7 −0.1326

8 0.0463

9 0.1284

10 0.1572

11 −0.3355

12 −0.1877

13 0.0088

14 0.2197

15 0.3069

16 −0.3142

17 −0.2274

18 −0.0071

19 0.2958

20 0.3855

21 −0.2592

22 −0.2002

23 0.0448

24 0.3240

25 0.3343
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Table 2.8.: B-H data points of the nominal curve

H (A/m) B (T)

26.2817 7455.7184 0.0889 1.6266

31.7260 9000.1696 0.1475 1.6658

38.2980 10864.5537 0.2327 1.7063

46.2314 13115.1448 0.3375 1.7487

55.8082 15831.9456 0.4409 1.7939

67.3689 19111.5313 0.5438 1.8358

81.3244 23070.4828 0.6471 1.8765

98.1707 27849.5307 0.7507 1.9131

118.5068 33618.5579 0.8424 1.9434

143.0554 40582.6384 0.9294 1.9687

172.6893 48989.3273 1.0073 1.9866

208.4619 59137.4609 1.0770 2.0024

251.6448 71387.7793 1.1341 2.0212

303.7730 86175.7497 1.1849 2.0417

366.6995 104027.0465 1.2265 2.0642

442.6613 125576.2374 1.2634 2.0914

534.3585 151589.3408 1.2992 2.1242

645.0508 180000 1.3309 2.1638

778.6730 1.3588

939.9750 1.3824

1134.6908 1.4026

1369.7418 1.4215

1653.4837 1.4393

1996.0026 1.4568

2409.4743 1.4738

2908.5967 1.4916

3511.1122 1.5121

4238.4386 1.5351

5116.4307 1.5600

6176.2988 1.5904
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Table 2.10.: Difference in the average torque from in-house FE code and ANSYS

Maxwell 2D for the nominal and perturbed B-H curves

Operating point
Difference (Nm) Difference (Nm)

(In-house code) (Ansys)

1 −0.1095 −0.1069

2 −0.0858 −0.0842

3 −0.0559 −0.0539

4 −0.0279 −0.0256

5 −0.0087 −0.0060

6 0.8089 0.6579

7 2.3365 2.0966

8 2.4744 2.2281

9 1.8028 1.6992

10 0.8332 0.8083

11 2.9282 2.4309

12 7.2609 6.6760

13 9.5509 9.2058

14 7.7270 7.5216

15 3.7278 3.6306

16 2.2545 1.7449

17 8.3806 7.7624

18 14.5674 14.0029

19 15.3174 14.9812

20 8.1948 7.9872

21 1.7610 1.2760

22 8.2175 7.7189

23 16.5483 16.1229

24 22.3896 22.1657

25 13.3731 13.1337
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Table 2.11.: Difference in the sixth harmonic component of torque from in-house FE

code and ANSYS Maxwell 2D for the nominal and perturbed B-H curves

Operating point
Difference (Nm) Difference (Nm)

(In-house code) (Ansys)

1 −0.0005 0.0007

2 0.0006 0.0005

3 0.0024 0.0023

4 0.0043 0.0045

5 0.0059 0.0060

6 0.1464 0.1552

7 0.1431 0.1491

8 0.0779 0.0789

9 0.0169 0.0165

10 0.0316 0.0323

11 −0.2990 −0.2767

12 −0.1675 −0.1607

13 0.1988 0.1889

14 0.2692 0.2673

15 0.1757 0.1936

16 −0.6822 −0.6630

17 −0.7834 −0.7757

18 −0.7195 −0.6943

19 0.1960 0.1961

20 0.4989 0.5030

21 −0.0622 −0.0776

22 0.1659 0.1723

23 −0.0595 −0.1294

24 −0.4862 −0.4911

25 0.6123 0.6110
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Table 2.12.: Difference in the twelfth harmonic component of torque from in-house

FE code and ANSYS Maxwell 2D for the nominal and perturbed B-H curves

Operating point
Difference (Nm) Difference (Nm)

(In-house code) (Ansys)

1 0.0048 −0.0036

2 0.0097 0.0105

3 0.0145 0.0155

4 0.0151 0.0162

5 0.0090 0.0100

6 0.3737 0.4358

7 0.3255 0.3849

8 0.3412 0.3846

9 0.3181 0.3276

10 0.1490 0.1318

11 −0.1659 −0.0465

12 −0.3839 −0.2938

13 −0.5679 −0.5365

14 −0.3651 −0.3881

15 −0.2571 −0.2356

16 −0.1804 0.0219

17 −0.9327 −0.8285

18 −0.8139 −0.7731

19 −1.0324 −1.0695

20 −0.7989 −0.8047

21 −0.6880 −0.5728

22 −2.1165 −2.1379

23 −0.7811 −0.7772

24 −1.1333 −1.1792

25 −1.1529 −1.1670
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3. DIMENSIONALITY REDUCTION

In the first section of this chapter, various dimensionality reduction techniques are

reviewed. Thereafter, in Section 3.2, the methodology to reduce the dimensionality of

a dataset using principal component analysis is provided. This section illustrates the

procedure to project a dataset into a low-dimensional space and its reconstruction

into the original high-dimensional space.

3.1 A brief review

Data analysis of a high dimensional dataset has been a difficult problem in the field

of statistics and machine learning as it is difficult to visualize and extract variables

of interest in a high-dimensional space. Additionally, predictive modeling in a high-

dimensional space is computationally expensive and is encountered by the problem

of curse of dimensionality. Thus, it is desirable to reduce the dimensionality of the

dataset before performing analysis or constructing a predictive model.

Dimensionality reduction can be achieved in two different ways. One of the ways

is retaining the most important variables of the dataset and ignoring the rest. The

short-coming of this method is that there is no universal technique to distinguish

the important variables from the unimportant ones. Additionally, depending on the

quantity of interest, the important variables change. The second way is to identify

and project the data set into the underlying low-dimensional space by exploiting the

correlation between the elements of the high-dimensional dataset. The later technique

referred to as the projection technique maintains the original structure of the data set

removing the existing redundancy. Thus, it is a popular technique for dimensionality

reduction. However, it must be noted that this technique fails to achieve its objective

when the correlation between the elements of the high-dimensional dataset is minimal.
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Consider a data set, D with dimensionality M . Projection techniques project D

to a M ′ (M � M ′) dimensional space while retaining the geometry of the original

dataset to the possible extent. Traditional linear projection techniques like Princi-

pal component analysis (PCA) and factor analysis are used to project the dataset

into a low-dimensional sub-space using linear a projection matrix. In both the meth-

ods, the variables in the low-dimensional space are a linear combination of the high-

dimensional variables. PCA is the more elegant technique of the two because it is

simple to implement.

In the recent decade, a number of non-linear dimensionality reduction techniques

have been developed to tackle non-linear datasets with high dimension. [38] performs

a comparative study of the newly developed non-linear dimensionality reduction tech-

niques and traditional PCA. It shows that although non-linear techniques have shown

promise in identifying complex manifolds in artificial non-linear datasets, they have

failed to show appreciable performance while dealing with real world datasets. At the

same time, PCA has been successful in dealing with real world datasets for a long

time now. Considering the success of PCA and the simplicity in its implementation,

PCA has been used for dimensionality reduction in this study.

3.2 Dimensionality reduction using principal component analysis

Principal component analysis (PCA) is a method of projection of a dataset com-

prising of a large number of correlated elements into a lower dimensional space, re-

sulting in uncorrelated elements such that the variance of the projected data is max-

imized. Any observation of any variable in a dataset is referred to as an element of

the dataset.

In the low-dimensional space, the variables are called Principal components (PCs)

and the elements are called PC scores. PCA follows the mapping of the elements in

the high dimensional space to the PC scores using a linear transformation matrix, φ.

φ is such that its rows are orthogonal to each other [39] which facilitates the removal
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of correlation between the PCs in the low-dimensional space. Also, the variance in

the low-dimensional space is distributed in such a way that it is concentrated mostly

in first few PCs [39]. Hence, keeping these few PCs and ignoring the rest, it is possible

to reconstruct the original data set with appreciable accuracy. This phenomena is

called dimensionality reduction and has been used extensively in this study. A brief

discussion on the methodology of projection and reconstruction using PCA is provided

below.

Consider a data set D ∈ RV XN with V variables and N observations. Let the

centered matrix, C, be obtained by after subtracting the mean of each row of D from

the element of its corresponding row. The row-wise mean of D is given by µ.

3.2.1 Projection

The idea behind PCA is to project the variables of high-dimensional space on such

basis vectors such that the variance of the projected variables is maximized. Let φ1

be such a row vector that projects C into a space such that the variance of φ1C is

maximized, where φ1C represents the projected variable or PC. The variance of φ1C

is given by,

var(φ1C) = E[φ1CCTφT
1 ]

= φ1E[CCT ]φT
1

= φ1QφT
1

(3.1)

where Q is the covariance of C. The maximization of Eq. (3.4) needs to be done

to obtain φ1. However, the maximization would not be finite for unconstrained

φ1. Thus, a normalization constraint must be used to overcome this issue. By

the geometric definition of PCA, φ1 corresponds to a basis axis in low-dimensional

space. Therefore, it is assumed that φ1 is a unit vector, as a result, satisfying the

constraint φ1φ
T
1 = 1. It should be noted that this normalization constraint is applied

by the definition of PCA. Other kind of constraint leads to more difficult optimization

problem and the resultant projected variables are not PCs.
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To maximize φ1QφT
1 subjected to φ1φ

T
1 = 1, we use a Lagrange multiplier tech-

nique to formulate the objective function. The equation to be maximized is given

by

φ1QφT
1 − λ1(φ1φ

T
1 − 1) (3.2)

where λ1 is the Lagrange multiplier. Differentiating Eq. (3.2) with respect to φ1, we

get

QφT
1 = λ1φ

T
1

(3.3)

Eq. (3.3) represents an eigen value problem where λ1 is the eigen value of Q and φT
1

is its corresponding eigen vector. From Eqs. (3.1) and (3.3), we get

var(φ1C) = φ1QφT
1 = λ1. (3.4)

λ1 has to be the largest eigen value of Q to maximize Eq. (3.4). Since, Q, the

covariance matrix, is positive semi-definite or positive-definite, λ1 is unique. Similarly,

the second basis vector φ2 is obtained by constrained maximization of φ2QφT
2 by

enforcing an additional constraint of orthogonality between the two basis vectors.

This constraint is given by

φ2φ
T
1 = 0. (3.5)

The equation to be maximized is formulated as

φ2QφT
2 − λ2(φ2φ

T
2 − 1)− σφ2φ

T
1 . (3.6)

Differentiating Eq. (3.6) with respect to φ2, we get

QφT
2 − λ2φT

2 − σφT
1 = 0. (3.7)

Premultiplying Eq. (3.7) with φ1, we obtain

φ1QφT
2 − φ1λ2φ

T
2 − φ1σφ

T
1 = 0. (3.8)

Since the first and second terms on the left hand-side are zero, using Eq. (3.5), we

get

σ = 0. (3.9)
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Substituting Eq. (3.9) in Eq. (3.8) a similar eigen value problem is reached which is

given by

QφT
2 = λ2φ

T
2 . (3.10)

Here λ2 corresponds to the second largest eigen value of Q. By induction, it can be

shown that the the variance of following PCs and their respective PC bases correspond

to the remaining eigen values and their corresponding eigen vectors. Thus, the linear

transformation matrix φ corresponds to the transpose of the matrix containing the

eigen vectors of Q.

Considering there exists an intrinsic low-dimensional space, most of the variance

of the original dataset is concentrated on the first few PCs. Thus, the dimensionality

can be reduced by keeping these few PCs which capture the amount of variance that

meets an intended criteria, for instance to retain 98% of variance of the total data.

In general, more is the retained variance through the PCs, less is the projection

error [39].

3.2.2 Reconstruction

Let the retained PC bases be φ′ ∈ RV ′XV with the corresponding PC scores, Z′

∈ RV ′XN . The reconstruction of each column of the reduced order matrix, D′, in the

high dimensional space is given by

D
′(i) = µ +

V ′∑
k=1

√
λkz

(i)
k φk. (3.11)

where z
(i)
k is the scaled projection of D(i) − µ on the eigen vector φk.

Dimensionality reduction is a crucial part of this study. We have implemented

PCA’s capacity of dimensionality reduction in two different applications. Firstly, to

construct a reduced order stochastic model of B-H curves. Here, the reduced variables

in the low-dimensional space are used as random variables to sample points which

are subsequently used to obtain B-H curves in the high-dimensional space. Secondly,

PCA is used to reduce the output dimensionality of the torque profile so that few
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variables have to be learned by the surrogate. Furthermore, by just predicting these

few variables, torque can be predicted by the surrogate with appreciable accuracy.
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4. MODELING OF UNCERTAINTY IN B-H CURVES

AND REMANENT FLUX DENSITY OF PERMANENT

MAGNETS

The first section of this chapter describes in detail the methodology used to build a

reduced-order stochastic model of a dataset of B-H curves that quantifies its uncer-

tainty due to punching. Principal component analysis (PCA) is used to accomplish

this objective. In the subsequent section, a modeling technique is proposed to in-

corporate the uncertainty in B-H curves due to the unknown state of the material

composition of steel. In the third section, we model the epistemic uncertainty due to

unavailability of accurate B-H data in deep saturation region. The final section of

this chapter discusses extended work where we model the uncertainty in the rema-

nent flux density of the permanent magnets of the permanent magnet synchronous

machine (PMSM).

4.1 Data-driven modeling of uncertainty due to punching in B-H curves

In this section, we propose a data-driven approach to model the effect of punching

uncertainty on B-H curves. The data collection procedure plays a consequential role

in ensuring the accuracy of the proposed model. For appreciable accuracy, each B-H

curve must reflect a unique state of the punching tool. The idea is to collect samples

such that the distribution of the B-H curves in the dataset reflects the distribution of

the underlying uncertainty in the state of the punching tool. Thus, the curves must

be obtained by measuring steel samples cut by such punching tools that represent

unique states with respect to each other.

Consider a dataset of N B-H curve samples collected by employing the above

procedure. Let the dataset be given by D =
{(

b(i),h(i)
)}N

i=1
where each curve consists
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of V data points. The B-values are fixed for all samples, i.e., b(i) = b. Our goal is to

construct a reduced-order stochastic model of the processes that generated the B-H

curves in D.

We start by populating a V ×N matrix H =
(
h(1), . . . ,h(N)

)
using these samples.

The columns of H are correlated, so we expect H to be well-described by a low-

dimensional manifold embedded in a V -dimensional space [40]. Principal component

analysis (PCA) finds the best, in the sense of minimizing the squared reconstruction

error, affine linear approximation of this low-dimensional manifold [41].

PCA is based on decomposition of the symmetric, positive-definite covariance

matrix given by

Ch =
1

N − 1

N∑
i=1

(
h(i) − µh

) (
h(i) − µh

)T
, (4.1)

where µh ∈ RV is the row-wise mean of H. Each sample h(i) can be expressed as

h(i) = µh +
V∑
k=1

√
λh,k z

(i)
h,k φh,k , (4.2)

where λh,k is the k-th largest eigenvalue of Ch, and φh,k, the corresponding eigen-

vector. The scalar z
(i)
h,k is known as the i-th principal component (PC) score of the

k-th PC, zh,k =
(
z
(1)
h,k, . . . , z

(N)
h,k

)
. The eigenvalue, λh,k, also represents the amount of

variance of the original dataset captured by the k-th PC. Dimensionality reduction

is achieved by keeping the first few PCs that capture sufficient variance and ignoring

the rest [41]. These few PCs form the foundation of our reduced order stochastic

model.

We demonstrate our methodology using a synthetic dataset. As shown in [10],

the B-H curve is most affected near the ”knee-point” due to punching, extent of

which depends on the state of punching tool. Sharp, high-speed punch with low

cutting clearance causes the least degradation of the B-H curve where as a blunt,

low-speed punch with high-clearance causes the most degradation. Thus, we design

a function that incorporates such degradation. We call it the degradation function.

The synthetic dataset of degraded curves is generated by perturbing the H-values
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of a nominal B-H curve, {hn,bn} using the degradation function. This function is

inspired by the probability density function of a log-normal distribution and is given

by,

d(hdg, B) =
hdg

(Bmax −B + εm)ρdg
√

2π
exp

(
−(ln(Bmax −B + εm)− µdg)

2

2ρ2dg

)
+ εB.

(4.3)

where εB = 0.04, εm = 1e− 7, ρdg = 0.8, µdg = 0. Bmax corresponds to the maximum

B-value in the dataset of the nominal B-H curve. hdg is a sample from Hdg, where

Hdg is given by

Hdg ∼ U(0.3, 3) (4.4)

The degradation function can be visualized in Fig. 4.1 for hdg = 1. To confer with

the used practice of B-H curve plotting, the y-axis corresponds to the independent

variable, B, in this case. The constants in the functions are manually calibrated

for the data available to the author. However, the behavior of the function itself is

independent of the dataset. Thus, depending on the availability of the data to any

other user, the function can be calibrated to obtain the synthetic dataset.

The procedure to generate a degraded curve is as follows. First, we obtain a

sample from Hdg (Eq. (4.4)), hdg. Second, at bn, we substitute hdg in Eq. (4.3) to

obtain a vector, d(hdg,bn). Third, the degraded curve, hg, is obtained by plugging

d(hdg,bn) in the formula,

hg = hn + d(hdg,bn)ḣn. (4.5)

In this study we use the nominal B-H curve corresponding to 36F155 (M-19 )

where the number of data points, V = 41. By sampling N = 50 values from Hdg

and following the procedure stated earlier, we obtain 50 synthetic curves as shown

in Fig. 4.2. Depending on the uncertain state of the punching tool, the B-H curves

in Fig. 4.2 exhibit different characteristics. The values corresponding to these B-H

curves can be found in the Appendix A.

We assemble the H-values corresponding to these 50 samples to form H ∈ R41×50.

Thereafter, we perform PCA of H. The variance represented by the first three PCs
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Fig. 4.1.: Illustration of the degradation function for hdg = 1

can be observed in Fig. 4.3, and their corresponding eigenvectors can be observed in

Fig. 4.4. In our case, the first PC, zh,1, captures more than 99.9% of the variance

from the original dataset (see Fig. 4.3). Thus, we retain the first PC and ignore the

rest. In an experimental dataset, it is likely that two or more PCs may be necessary.

The PC scores, z
(i)
h,1’s, can be interpreted as samples from a distribution Zh. Thus,

B-H curves reflecting punching uncertainty can be reconstructed by drawing samples

from Zh, and mapping them to the high-dimensional space. Here one must say, how

can we sample from Zh if the distribution of Zh is unknown. We use kernel density

estimation with Gaussian kernels to estimate the density of Zh (see Fig. 4.5). Thus,

our model for the B-H curve for any sample, zh from Zh, is:

hr(zh) = µh +
√
λh,1zhφh,1. (4.6)
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Table 4.1.: Random variables defining uncertainty in the state of the punching tool

of different degraded zones

Variable Degraded zone

Zhst Stator teeth and slots

Zhso Outer edge of the stator

Zhro Outer edge of the rotor

Zhri Inner edge of the rotor

Zhrm Rotor magnet pockets

We now come to the problem of defining the uncertain state of the 5 punching tools

described in Section 2.2. The states of these tools are defined by five different variables

listed in Table 4.1. Since we have established that Zh represents the uncertain state of

a punching tool, these variables follow the characteristic of Zh. Here, it is imperative

to state that these variables are independent of each other. Thus, although the B-H

curve uncertainty reflected by their corresponding reconstructed samples would be

similar, the individual samples would not be the same.

4.2 Modeling of uncertainty in B-H curves due to unknown material

composition

The uncertainty in the B-H curve characteristics of steel due to the unknown state

of its material composition (material uncertainty) is reflected through a model in this

section. This uncertainty is expected to be small since the material composition of

a commercially manufactured non-oriented silicon steel is tightly regulated [3]. Our

approach for modeling the material uncertainty is as follows. First, we obtain the data

of the nominal B-H curve, {hn,bn}, corresponding to the steel lamination which has

not undergone the process of punching. The nominal data, in our study, corresponds

to the B-H curve of 36F155 (M-19 ). We model material uncertainty considering a
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uniform distribution about the B-values of the nominal curve such that the maximum

deviation about these B-values is defined as a function of hn, given by

bdv =
1√
hn

+ boin (4.7)

where bo = 0.01 T and in ∈ RN×1 is a vector whose each element is equal to unity.

The first term on the right hand side represents an element-wise operation. The

offset bo is used to account for the fact that the uncertainty at high flux region is not

negligible [3]. Second, we define a uniform random variable, U, where U is given by

U ∼ U(−1, 1). (4.8)

Third, for any sample, u, drawn from U, the B-H curve representing material uncer-

tainty is given by

bm(u) = bn + ubdv. (4.9)

As each curve obtained using Eq. (4.9) has equal probability of reflecting the actual

B-H characteristics of the material, uniform distribution can satisfactorily model the

effect of material uncertainty in B-H curves. Thus, our model reflects the unknown

state of the material composition and its effect on the B-H characteristics. Fig. 4.9

shows 20 curves reflecting material uncertainty.

4.3 Modeling of the epistemic uncertainty in the saturation value of mag-

netic flux density

In this section, we model the uncertainty associated with B-H curves in deep

saturation region. For the purpose of modeling, instead of working with B-H curves

we work with M-H curves, where M is given by

M = B − µ0H. (4.10)

The slope of the M-H curves in deep saturation region is close to zero. This property

is used later in this section.
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We incorporate the uncertainty in saturation flux density on all the B-H curves

reflecting punching and material uncertainty. To do so, for each B-H curve, we obtain

the corresponding M-H curve using Eq. (4.10). We assume that the curve saturates

at Hsat = 1e5 A/m because the corresponding M -value, Msat, for 36F155 (M19 ) is

within 1% of the actual value of saturation magnetization at Hsat [42]. To account

for the epistemic uncertainty in Msat, we define a random variable, S, given by

S ∼ N
(
µsat, σ

2
sat

)
, (4.11)

where we assume that µsat = 2 T and σsat = 0.02 T. The distribution can be observed

in Fig. 4.6. Our methodology is independent of these assumptions. Thus, given the

actual measurements are available, the proposed methodology can be applied without

reservation. The use of normal distribution to model the uncertainty is based on our

assumption that the value of Msat is likely to be near the mean value, µsat.

We extrapolate each M-H curve till saturation implementing the following pro-

cedure. First, we obtain a sample, s, from S for each M-H curve. The sample, s,

represents the value of Msat for the corresponding curve. Second, we append {Hsat, s}

to the existing values of H and M of the M-H curve. Third, we interpolate the H, M

data points using a shape preserving piecewise cubic Hermite polynomial (PCHIP)

function, given by M (H), such that the slope at the last data point is zero. Fourth,

we sample 50 discrete equally spaced values of H, he, extending till Hsat. Fifth, at

he, we obtain the corresponding M values, M (he) to obtain M-H data points till

saturation. Finally, we transform the M-H data points to obtain the B-H curve till

saturation using Eq. (4.10).

At the conclusion of this section, we can completely define the uncertainty in B-H

curves using 7 random variables, namely, Zhst, Zhso, Zhro, Zhrm, Zhri, U and S.
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Fig. 4.6.: Illustration of epistemic uncertainty in saturation flux density

4.4 Modeling of uncertainty in remanent flux density of permanent mag-

nets (Extended work)

The modeling of uncertainty in remanent flux density (Br) of the permanent

magnets is an extended work of this thesis. The variability in Br can be local or

global. The local variation corresponds to the condition where the variation of Br of

one magnet of the PMSM is different from the other where as the global variation

corresponds to the condition where the variation of Br of all the magnets is the same.

In this study, we consider the global variation of Br and model it with a normal

distribution such that the nominal value of Br is equal to the mean value of the

distribution and its standard deviation is equal to 1% of the mean value [26]. Thus,

the random variable reflecting uncertainty in Br is given by,

Br ∼ N (µBr, σ
2
Br) (4.12)

where µBr = 1.23 T, the nominal value of Br of the magnet used in 2004 model of

Toyota Prius traction motor [43] and σBr = 0.0123 T.
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5. CONSTRUCTION OF SURROGATE MODELS

This chapter provides the methodology used for constructing surrogate models using

Gaussian process (GP) regression). Section 5.1 gives a concise description of the prin-

ciples of GP regression. Subsequently, in Section 5.2, the methodology of constructing

a surrogate model using GP regression that learns the principal components of the

output torque from a permanent magnet synchronous machine (PMSM) spanning

the entire operating range is given as well as a detailed procedure for validation of

the proposed surrogate model that predicts the torque waveform is illustrated. The

last section gives a detailed overview of the development of surrogate models for pre-

dicting average torque and average flux linkages of the PMSM which is part of the

extended work.

5.1 Overview of Gaussian process regression

Gaussian process (GP) is a stochastic process defined as a collection of random

variables any finite number of which has a multivariate normal distribution. It can be

referred to as an extension of multivariate random Gaussian variables into infinite di-

mensions. Using Bayes rule, GP combines the prior knowledge about a model/system

with the observations that results in an updated state of knowledge about the system

known as the posterior GP. The posterior GP complies with the prior information

and the observations simultaneously. This phenomena is used in regression to build

an inexpensive surrogate model of a detailed expensive model.

Let us consider a data set, D = {Y,X}, where Y is the output, potentially noisy,

observation,

Y = {y(1), ..., y(N)}, (5.1)
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at inputs X given by

X = {x(1), ...,x(N)}. (5.2)

A GP describes a probability measure on a space of functions. This measure

encodes our prior beliefs regarding the output of a computationally expensive model

whose surrogate is being built. Using Bayes rule, GP regression combines this prior

beliefs with the input-output observations (evaluated using the expensive model) to

obtain the posterior GP. The posterior GP is referred to as a Bayesian surrogate.

For making point wise prediction on any input, the median of the posterior GP is

used. One can also derive predictive error bars about the output that corresponds

to the epistemic uncertainty (induced by the limited availability of the input-output

observations) with the help of the variance predicted by the posterior GP. For learning

a response surface and making prediction using GP, a three step procedure is followed:

1. Modeling the prior state of knowledge about the response surface.

2. A model describing the measurement process

3. A depiction of the posterior state of knowledge

5.1.1 Prior state of knowledge

The prior state of knowledge is modeled by taking into account the trends of the

response of the computationally expensive numerical model whose surrogate is being

constructed. The trends of the output observation such as continuity, differentiability,

etc. correspond to the prior state of knowledge. Such prior state of knowledge about

the function of interest, f(·), is described by assigning a GP prior. Formally, f(·) is

said to be a GP with mean function µ(·;θ) and covariance function k(·, ·;θ). Thus,

f(·) is defined as

f(·)|θ ∼ GP(f(·)|µ(·;θ), k(·;θ)), (5.3)
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where θ represents the hyper-parameters of the model. The mean and covariance

functions along with their hyper-parameters reflect our prior knowledge and beliefs

about the response. Thus, we also define a prior over the hyper-parameters given by

θ ∼ p(θ). (5.4)

Without any prior knowledge about the behavior of the response/output, the

mean function is assumed to be zero [30]. The covariance function, also called the

covariance kernel, is the most crucial part of GP. It measures the similarity between

two input points in the parameter space. Throughout the present study, the squared

exponential (SE) kernel (with automatic relevance determination (ARD)) is used,

which is given by

kk(x,x
′) = σ2

f,nexp(−
1

2
(x− x′)TL−1(x− x′)). (5.5)

For any input set X, using Eq. (5.3), the prior is defined for the GP model on the

output observations, Y,

f = {f(x(1)), ..., f(x(N))}. (5.6)

The prior distribution of f is given by

f |θ ∼ N (f |µ,K), (5.7)

where N (·|µ,K) is the PDF of a multivariate normal random variable with mean

vector, µ and covariance matrix K. µ is given by

µ = µ(X;θ) =


µ(x(1);θ)

...

µ(x(N);θ)

 (5.8)

and K ∈ RNXN is the covariance matrix given by

K(X,X;θ) =


k(x(1),x(1);θ) . . . k(x(1),x(N);θ)

...
. . .

...

k(x(N),x(1);θ) . . . k(x(N),x(N);θ))

 . (5.9)
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5.1.2 Measurement process

The measurement process is required to quantify and model any measurement

error associated with the observations, Y. The simplest way to model this measure-

ment error is to consider identical independently distributed gaussian noise about

each observation. For simplicity we assume that the gaussian noise has zero mean

and variance of σ2. That is given by

y(i)|f(x(i)), σ ∼ N (y(i)|f(x(i)), σ2), (5.10)

where σ is another hyper-parameter on which a prior is defined as

σ ∼ p(σ). (5.11)

Assuming independence of the outputs, we can obtain the likelihood by applying

the sum rule of probability and some standard integrals which is given by

Y|X,θ, σ ∼ N (Y|µ,K + σ2IN). (5.12)

5.1.3 Posterior of the Gaussian Process

With the help of Bayes rule the prior state of knowledge (Eq. (5.3)) is combined

with the likelihood of the observations (Eq. (5.12)), to give the posterior distribu-

tion/posterior GP,

f(·)|X, f(X),θ, σ ∼ GP(f(·)|µ̃(·), k̃(·, ·)), (5.13)

where µ̃(·) is the posterior mean given by

µ̃(x(∗)) = µ̃(x(∗);θ)

= K(x(∗),X)(K(X,X) + σ2IT )−1f(X),
(5.14)

and the posterior covariance, k̃(x(∗),x(∗)′), is given by

k̃(x(∗),x(∗)′) = k̃(x(∗),x(∗)′ ;θ, σ)

= K(x(∗),x(∗)′)

−K(X,X)(K(x(∗),X) + σ2IT )−1K(X,x(∗)).

(5.15)
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For obtaining the distribution of the best hyper-parameters, the posterior distri-

bution of the hyper-parameters is obtained by combining Eq. (5.4) and Eq. (5.11)

with the likelihood. The posterior distribution of the hyper-parameters is given by

p(θ, σ|X,Y) ∝ p(Y|X,θ, σ)p(θ)p(σ). (5.16)

5.1.4 Obtaining the hyper-parameters

In general, the analytic solution to Eq. (5.16) is intractable. Thus, ideally applying

sampling techniques like Markov chain Monte Carlo (MCMC), the range of best fit

hyper-parameters is obtained. However, this method is computationally intensive.

Instead, we obtain a single best fit hyper-parameter that maximizes the likelihood

of the observations. To avoid numerical issues, the logarithm of the likelihood (Eq.

(5.12)) is used.

log(p(Y|X,θ, σ)) = −1

2
(Y − µ)T (K + σ2IN)−1(Y − µ)

− 1

2
log|K + σ2IN |−

N

2
log2π

(5.17)

Differentiating Eq. (5.17) partially w.r.t. any parameter φ, where φ = σ or θi, we

get
∂

∂φ
(log(p(Y|X,θ, σ))) =

1

2
tr[{(K + σ2IN)−1(Y − µ)

((K + σ2IN)−1(Y − µ))T

− (K + σ2IN)−1}∂(K + σ2IN)

∂φ
.

(5.18)

The point estimate of the hyper-parameters is called the maximum likelihood esti-

mate (MLE). MLE is a simpler approach to obtain the best hyper-parameters with

significant accuracy. Thus, we use MLE to estimate the hyper-parameters in this

study. We solve Eq. (5.18) using the BFGS optimization algorithm.
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5.2 Development of the surrogate model for predicting the torque wave-

form of PMSM

Iq

Id

Ipk

φc

Fig. 5.1.: Diagram showing Ipk and φc in rotor reference frame

Table 5.1.: Distribution of input parameters

Parameter
Type of

Range Statistics
distribution

Ipk (A) Uniform [0, 250] Mean = 125

Φc (deg) Uniform [0, 90] Mean = 45

Zhst Uniform [−1.368, 1.971] Mean = 0.3015

Zhso Uniform [−1.368, 1.971] Mean = 0.3015

Zhro Uniform [−1.368, 1.971] Mean = 0.3015

Zhri Uniform [−1.368, 1.971] Mean = 0.3015

Zhrm Uniform [−1.368, 1.971] Mean = 0.3015

U Uniform [−0.1, 0.1] Mean = 0

Mean = 2,
S Gaussian [−∞, ∞]

Var = 0.02

Given a nominal geometry of a PMSM, our goal is to study the effect of B-H

uncertainties on its torque profile in the entire operating range of the machine. To
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this end, the FE simulator is parameterized by the operating points and the uncertain

B-H curves. Furthermore, the operating points in the entire range can be obtained

by varying Ipk, the amplitude of the current and Φc, the current angle (see Fig. 5.1)

uniformly whereas in Section 4.1, we have shown that the B-H uncertainties can be

completely defined by 7 different parameters. Thus, these parameters constitute a

9-D parameter space shown in Table 5.1.

To overcome the computational cost of the evaluations from the FE simulator, we

develop an inexpensive surrogate model with the parameters of the FE simulator as

input. We train the surrogate with input-output observations such that the inputs

correspond to the samples from a normalized input space and the outputs correspond

to the torque waveforms evaluated using the FE simulator at the mapped values of

these normalized input samples. Using Latin hypercube sampling algorithm (LHS),

we draw normalized input samples from a 9-D space, Ω ∈ [0, 1]9 for training the

surrogate. Let x(n) ∈ R9 be one of the input samples. To obtain the mapped inputs,

the values in x(n) are mapped to the distributions stated in Table 5.1. The mapping

of any value, x, from a normalized input sample, x(n), to an uniform distribution is

given by

xm = lb + (ub − lb) ∗ x, (5.19)

where xm is the mapped input, lb and ub are the lower and upper bounds of the

concerned uniform distribution respectively. Thus, using Eq. (5.19), we map the first

8 values of x(n) to the distributions in the first 8 rows of Table 5.1 to obtain the

samples ipk, φc, zhst, zhso, zhro, zhri, zhrm and u. Using Eq. (4.6), we obtain the B-H

curves corresponding to the degraded zones in Table 4.1 from zhst, zhso, zhro, zhri and

zhrm respectively. The sample, u, is used to obtain the B-H curve reflecting material

uncertainty using Eq. (4.9). The final value in x(n) is mapped to s by taking its

inverse transformation with respect to S. Thereafter, the obtained B-H curves are

extrapolated till saturation using the sample, {Hsat, s} and following the procedure

stated in Section 4.3. These extrapolated B-H curves along with the samples, ipk and
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φc are used to run the FE simulator to obtain the torque waveform corresponding to

the input x(n).

Given a total of N training samples are obtained, the entire training input data set

is given by X =
(
x(1), . . . ,x(N)

)
∈ R9×N . In practice, for a separate validation set, we

predict the torque waveform using the trained surrogate and compare the prediction

against the actual torque waveform from the FE simulator. N is iteratively increased

till the decided error criteria between the predicted torque waveform and the actual

torque waveform is within a satisfactory tolerance. The methodology to train the

surrogate is described in detail in the following sections.

5.2.1 Dimensionality reduction of the torque waveform

The output torque waveform, t(n) ∈ RM , at any input point, is a function of rotor

positions. The output dimension, M , depends on the resolution of the discretization

of air gap in the FE simulator. In practice, the resolution is kept high to reduce

numerical errors, resulting in high output dimensionality. Taking advantage of PCA,

we seek to reduce this dimensionality. Let the total output torque matrix obtained

at the training input set be T =
(
t(1), . . . , t(N)

)
∈ RM×N . Performing PCA on the

covariance matrix of T, Qt, we can decompose each column of T, t(i), as:

t(i) = µt +
M∑
m=1

√
λt,mz

(i)
t,mφt,m, (5.20)

where λt,m is the m-th largest eigenvalue of Qt, φt,m the corresponding eigenvector,

z
(i)
t,m is the i-th PC score of the m-th PC, zt,m =

(
z
(1)
t,m, . . . , z

(N)
t,m

)
and µt is the row-wise

mean of T.

We keep the first L = M ′ (M �M ′) significant PCs and ignore the rest. These L

PCs are learned by scalar Gaussian process (GP) functions to build the surrogate that

predicts the torque waveform. We shall show the methodology to chose the number

of significant PCs in the subsequent section.
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5.2.2 Multi-output Gaussian process regression

For constructing the surrogate, each PC, zt,m, is learned by a scalar GP function,

fm. The PC score of zt,m is defined as

z
(n)
t,m = fm(x(n)) + ε(n). (5.21)

where ε(n) is a standard Gaussian distributed noise used to capture the numerical

error in the FE simulator. For notational simplicity, we drop the implicit m subscript

from all the following derivations. The prior assumption for f is modeled by a GP

prior given by

f (·) |θ ∼ GP (f (·) |0, k (·, ·;θ)) , (5.22)

where k(·, ·;θ) is the covariance function and θ represents all the hyper-parameters

of the model. We use the squared exponential function as the covariance function of

the GP which is defined as

k (x,x′;θ) = σ2
fexp

(
−1

2

9∑
i=1

(
xi − x′i
di

)2
)
, (5.23)

where di’s, the length scales corresponding to each input dimension and σ2
f , the signal

variance of the covariance function constitute the hyper-parameters, θ.

The GP prior is modeled as a multivariate normal distribution of f(·) at X, given

by

f (X) |X,θ ∼ N (0,K) , (5.24)

where K ∈ RN×N is the covariance matrix such that each of its element K(i,j) is given

by

K(i,j) = k
(
x(i),x(j);θ

)
. (5.25)

We acquire the PC scores, y, at the input data points, X, by performing PCA on the

covraiance matrix of the output torque obtained from the FE simulator. Additionally,

we model the numerical errors in the FE simulator, ε, assuming that it is distributed

normally about y with a variance, σ2. By using properties of Gaussian integrals and

the sum rule of probability theory the Gaussian likelihood on y at X is given by

y (X) |X,θ, σ ∼ N
(
0,K + σ2IN

)
, (5.26)
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where IN ∈ RN×N is an identity matrix. Note that σ is one more hyperparameter.

Using Bayes rule, the prior state of knowledge given by Eq. (5.22) is combined

with the likelihood given by Eq. (5.26), to yield the posterior GP,

f (·) |X,y,θ, σ ∼ GP
(
f (·) |µ̃ (·;θ) , k̃ (·, ·;θ, σ)

)
, (5.27)

where µ̃ (·;θ) is the posterior mean and k̃ (·, ·;θ, σ) is the posterior covariance function.

In practice, we work with the predictive probability density at a single input point,

x(∗), given by,

f
(
x(∗)) |x(∗),θ, σ ∼ N

(
µ̃
(
x(∗);θ

)
, k̃
(
x(∗),x(∗);θ, σ

))
, (5.28)

where the predictive mean is given by

µ̃
(
x(∗);θ

)
= kT

(
K + σ2IN

)−1
y (5.29)

and the predictive covariance is given by

k̃
(
x(∗),x(∗);θ, σ

)
= k

(
x(∗),x(∗);θ, σ

)
− kT

(
K + σ2IN

)−1
k.

(5.30)

The vector k is obtained by evaluating the covariance function at x(∗) and the input

training points X. Thus, k is given by

k =
(
k
(
x(∗),x(1);θ

)
, . . . , k

(
x(∗),x(N);θ

))
. (5.31)

The hyperparameters are obtained by maximizing the likelihood given in Eq.

(5.26) following the procedure stated in [30]. Thus, for any input set x(∗), using Eq.

(5.27), the surrogate model predicts the PC score of the m-th PC. One of the major

advantages of GP based surrogate model is that not only they predict the mean at

x(∗), µ̃(x(∗);θ), they also predict the predictive error bars which capture the epistemic

uncertainty due to limited training data set. Based on the epistemic uncertainty, the

training sets can be sampled strategically.
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5.2.3 Validation of the surrogate model

The accuracy of the trained surrogate model is tested on a separate set of inputs

called the validation set. Let the validation input set be Xv =
(
x
(1)
v , . . . ,x

(P )
v

)
∈

R9×P containing P samples from the parameter space obtained using LHS. At these

inputs, let Ztv =
(
z
(1)
tv , . . . , z

(P )
tv

)
∈ RL×P be the predictive mean of the truncated

PC scores from the surrogate model, where for each input, x(p), the corresponding

predicted PC scores for L PCs are given by z
(p)
tv =

(
z
(p)
tv,1, . . . , z

(p)
tv,L

)
. Performing

inverse PCA on Ztv, the predicted torque matrix, Tv ∈ RM×P is obtained where each

column of Tv, t
(i)
v , is given by

t(i)v = µt +
L∑

m=1

√
λt,mz

(i)
tv,mφt,m, (5.32)

where µt, λt,m and φt,m are obtained in Eq. (5.20).

Additionally, the output torque is independently calculated from the FE simulator

at these P validation inputs. Let the torque matrix obtained from the FE simulator

be called the actual torque matrix, Ta ∈ RM×P . The error criteria used in this study

to evaluate the convergence is the relative L2 norm of the error between the predicted

torque matrix and the actual torque matrix, where the relative L2 norm of the error

is given by

relative L2-norm error =
||Tv −Ta||2
||Tv||2

. (5.33)

The training samples, N , are increased iteratively until the relative L2-norm of the

error is within a desired tolerance.

5.2.4 Assessment of the Surrogate Model

In this section, we define the procedure of conducting the assessment of the sur-

rogate model that is used to carry out the propagation study. The response from the

FE simulator used in our study corresponds to a M = 32 dimensional vector of torque

waveform as a function of rotor position. However, while training the surrogate, we

reduce the output dimension from M = 32 to M = 8 by performing PCA. We train
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the surrogate with N = 550 input points and validate it with an additional P = 100

points. The convergence of the relative L2-norm error (see Eq. (5.33)) for the 8 PCs

can be observed in Fig. 5.2. It can be observed that with further increase in number

of training points the relative L2-norm error doesn’t go down significantly. Thus, the

error is said to have converged. We choose the number of significant PCs based on

the amount of variance captured by them. By keeping 8 PCs, we can capture more

than 99.9995% variance (see Fig. 5.3) from the original data set. Thus, 8 PCs are

kept. We also observe the eigenvectors of the retained PCs in Fig. 5.4.

Additionally, we conduct reconstruction studies with 8 PCs to quantify the error

due to the approximation caused by the dimensionality reduction using PCA. The

reconstruction study is conducted as follows. First we obtain a test set containing

the output torque waveforms from the FE simulator at a test input set. The torque

waveforms from the validation set, Tv, is considered as the test set in our study.

Thereafter, Tv is projected into the low-dimensional space by using Eq. (5.20). In

this low-dimensional space, first 8 PCs are retained and rest are ignored. Now, the

reconstruction is performed by projecting the PCs back into the high-dimensional

space using Eq. (5.32). Let this reconstructed matrix be given by T̂v. The absolute
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L2-norm error between Tv and T̂v is computed where the absolute L2-norm error is

given by

absolute L2-norm error =
∥∥∥Tv − T̂v

∥∥∥
2
. (5.34)

Fig. 5.5a shows the histogram of the absolute L2-norm error. It can be observed

that the maximum error is approximately close to 3 N-m and from the Fig. 5.5b we

can infer that it occurs near the high torque region and doesn’t introduce significant

inaccuracy in the surrogate model.

Sensitivity study corresponding to punching uncertainty

Next, we perform a validation study of the trained surrogate model to analyze its

sensitivity towards B-H curves in the degraded zones of the PMSM. Here, the idea

is to observe how the QoIs change when B-H curves in the degraded regions change

using both the FE simulator and the surrogate model (a study similar to the one

performed in Chapter 2). This study is performed at the 25 operating points reported

in Table 2.2. Two B-H curves, the least degraded one and the most degraded one,

are selected for all the regions affected by punching (see Fig. 5.6). Additionally, all

the degraded zones are assumed to follow a single B-H characteristic. For the region

reflecting material uncertainty, the B-H curve corresponding to the mean value of

U (variable reflecting material uncertainty) from Table 5.1 is selected. All the B-H

curves are extrapolated to the saturation value that corresponds to the mean value

of S (variable reflecting uncertainty in saturation flux density).

The B-H curves and the operating points act as inputs to the FE simulator for

obtaining 50 torque waveforms; 1 waveform corresponding to each degraded B-H

curve at each operating point. Similarly, the predicted torque waveforms from the

surrogate model are also evaluated at the normalized inputs corresponding to the

B-H curves and the operating points. The percentage change in the QoIs at all of

these 25 operating points for both the degraded B-H curves is separately visualized
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for the FE simulator and the surrogate model where the percentage change is given

by

Qc =
Qm −Ql

Qm

100, (5.35)

where Qc is the change of QoI in percentage, Qm is the QoI corresponding to the

most degraded curve and Ql is the QoI corresponding to the least degraded curve.

Thereafter, we compare the change of QoIs obtained from the FE simulator and the

surrogate model. Figs. 5.7, 5.8, 5.9, 5.10 show the torque waveforms corresponding to

this study. Fig. 5.12 shows the scatter plot representing the change in average torque

and its corresponding values are reported in Table 5.2. There is an appreciable match

between the differences computed using the FE simulator and the surrogate model.

Fig. 5.13 and the values from the Table 2.7 show that the change in the sixth harmonic

component of torque from the FE simulator and the surrogate model do not show

significant agreement. A similar phenomena is observed in the difference of twelfth

harmonic component of torque as well (see Fig. 5.14 and the values reported in Table

5.4). Thus, although the surrogate predicts the sensitivity of average torque due

to the uncertainty in punching accurately, it fails to predict the sensitivity of sixth

and twelfth harmonic components of torque. The failure of the surrogate model in

predicting the sixth and twelfth harmonic components of torque can be because of the

approximation of the model by dimensionality reduction using PCA. If the change

in any QoI is smaller than the approximation error, the surrogate won’t be able to

predict the change with adequate accuracy.
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Fig. 5.7.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d)

4, (e) 5, (f) 6
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Fig. 5.8.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,

(d) 10, (e) 11, (f) 12
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Fig. 5.9.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15,

(d) 16, (e) 17, (f) 18
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Fig. 5.10.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

21, (d) 22, (e) 23, (f) 24
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Fig. 5.11.: Torque waveform corresponding to operating point 25
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Fig. 5.12.: Difference between the average torque corresponding to the most

degraded curve and least degraded curve obtained from (i) FE simulator (ii)

surrogate model
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Table 5.2.: Difference between the average torque corresponding to the most

degraded curve and the least degraded curve

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 −0.0063 −0.0206

2 −0.0090 −0.0505

3 −0.0096 −0.0798

4 −0.0079 −0.0515

5 −0.0041 −0.0311

6 −0.2722 −0.2766

7 −0.4267 −0.4649

8 −0.3855 −0.4070

9 −0.2489 −0.2443

10 −0.1159 −0.1239

11 −0.6863 −0.6755

12 −1.1569 −1.1707

13 −1.3265 −1.3645

14 −0.8506 −0.9292

15 −0.3327 −0.3085

16 −0.8139 −0.8041

17 −1.4815 −1.5519

18 −2.0381 −2.1226

19 −1.6888 −1.7310

20 −0.6485 −0.5556

21 −0.7586 −0.6403

22 −1.4525 −1.4200

23 −2.3088 −2.2841

24 −2.5067 −2.5381

25 −1.0255 −1.0898
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Fig. 5.13.: Difference between the sixth harmonic component of torque

corresponding to the most degraded curve and least degraded curve obtained from

(i) FE simulator (ii) surrogate model
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Fig. 5.14.: Difference between the twelfth harmonic component of torque

corresponding to the most degraded curve and least degraded curve obtained from

(i) FE simulator (ii) surrogate model
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Table 5.3.: Difference between the sixth harmonic component of torque

corresponding to the most degraded curve and the least degraded curve

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 0.0028 0.0410

2 0.0023 0.0233

3 0.0017 0.0004

4 0.0012 0.0202

5 0.0013 0.0019

6 −0.0001 −0.0192

7 0.0011 0.0080

8 0.0009 −0.0151

9 −0.0176 −0.0372

10 0.0043 0.0073

11 0.0831 0.0717

12 0.0140 0.0229

13 0.0745 0.1004

14 0.0093 0.0076

15 −0.0098 −0.0175

16 0.1304 0.0931

17 −0.1635 −0.1724

18 −0.1446 −0.1591

19 0.1544 0.2062

20 −0.0182 −0.0309

21 0.1460 0.0442

22 −0.0885 −0.1040

23 −0.2198 −0.2469

24 −0.0088 0.0442

25 0.0434 0.0332
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Table 5.4.: Difference between the twelfth harmonic component of torque

corresponding to the most degraded curve and least degraded curve

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 −0.3749 −0.6691

2 0.2087 −3.9079

3 0.7303 3.2374

4 0.8154 3.8314

5 0.5645 −0.0961

6 −0.9966 −0.3923

7 −1.0678 −0.9392

8 −0.8578 0.5685

9 1.6287 2.3091

10 0.5424 0.6741

11 0.7308 0.0407

12 −0.1889 −0.1778

13 −0.4590 0.1680

14 0.0075 0.8853

15 1.2114 1.1353

16 −0.1624 −0.1763

17 −0.3749 −0.2447

18 −0.1777 −0.2095

19 −0.5304 0.0746

20 0.5698 0.8148

21 −0.6137 −0.1168

22 −0.6197 −0.2337

23 −0.4515 −0.0923

24 −0.3718 −0.2088

25 −0.0369 0.0665
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Sensitivity study corresponding to the material uncertainty

We also perform a similar sensitivity study as in the previous section considering

only the variation of the B-H curves reflecting material uncertainty. We prepare

the study by obtaining two B-H curves by sampling two values from U, B-H1 and

B-H2. For the regions reflecting punching uncertainty, the B-H curve corresponding

to the mean value of the variables in Table 4.1 is selected. All the B-H curves are

extrapolated to the saturation value that corresponds to the mean value of S (variable

reflecting uncertainty in saturation flux density). Using these two B-H curves, we

observe the percentage difference of QoIs obtained separately from the FE simulator

and the surrogate model. The waveforms corresponding to this study are shown in

Figs. 5.15, 5.16, 5.17 and 5.18. The corresponding differences of QoIs can be observed

in Figs. 5.20, 5.21 and 5.22. The values of these differences are reported in Tables

5.5, 5.6 and 5.7. Since the values in the tables show a significant agreement, it can

be claimed that the surrogate is able to predict the changes of QoIs with sufficient

accuracy.
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Fig. 5.15.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3,

(d) 4, (e) 5, (f) 6
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Fig. 5.16.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,

(d) 10, (e) 11, (f) 12
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Fig. 5.17.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c)

15, (d) 16, (e) 17, (f) 18
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Fig. 5.18.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

21, (d) 22, (e) 23, (f) 24
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Fig. 5.19.: Torque waveform corresponding to operating point 25
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Fig. 5.20.: Difference between the average torque corresponding to B-H1 and B-H2

obtained from (i) FE simulator (ii) surrogate model
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Fig. 5.21.: Difference between the sixth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate

model

Sensitivity study corresponding to the uncertainty in saturation flux den-

sity

We conduct a sensitivity study considering the variation of saturation flux den-

sity of the B-H curves as well (as in the previous section). We prepare the study

by obtaining two B-H curves for all the regions of the machine (regions reflecting

punching uncertainty and material uncertainty) by sampling two values from S, B-H1

and B-H2. At these two B-H curves we observe the percentage difference of QoIs

obtained separately from the FE simulator and the surrogate model. The waveforms

corresponding to this study are shown in Figs. 5.23, 5.24, 5.25 and 5.26. The corre-

sponding differences of QoIs can be observed in Figs. 5.28, 5.29 and 5.30. The values

of these differences are reported in Tables 5.8, 5.9 and 5.10. Since the values in the
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Table 5.5.: Difference between the average torque corresponding to B-H1 and B-H2

obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 −0.0203 0.427

2 −0.0058 0.0047

3 −0.0281 0.0460

4 −0.0187 0.0396

5 −0.0086 0.0023

6 −0.3973 0.4741

7 −0.2815 0.2905

8 −0.0690 0.1620

9 −0.0942 −0.0840

10 −0.0573 −0.0597

11 −0.4583 0.4409

12 −0.1823 0.2039

13 −0.0313 −0.0104

14 −0.5510 −0.6337

15 −0.4962 −0.4958

16 −0.0723 −0.1533

17 −0.7788 −0.8098

18 −0.8921 −0.8651

19 −1.0609 −1.2376

20 −1.1276 −1.1622

21 −0.8692 −0.6839

22 −2.2383 −2.4845

23 −2.5030 −2.5740

24 −1.9386 −1.8455

25 −1.8239 −1.7101
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Table 5.6.: Difference between the sixth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 0.0128 0.0210

2 −0.0023 −0.0233

3 −0.0017 −0.0004

4 0.0012 0.0202

5 0.0013 0.0019

6 −0.0001 −0.0192

7 −0.0011 −0.0080

8 −0.0009 −0.0151

9 −0.0176 −0.0372

10 −0.0043 −0.0073

11 −1.0831 −1.0717

12 −2.0140 −2.0229

13 −0.0745 −0.1004

14 0.0093 0.0076

15 0.0098 0.0175

16 −4.1304 −3.9321

17 1.1635 1.1724

18 0.1446 0.1591

19 −1.1544 −1.2062

20 −0.0182 −0.0309

21 −1.1460 −1.0442

22 0.0885 0.1040

23 1.198 1.469

24 −2.0088 2.0442

25 −0.0434 −0.0332
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Table 5.7.: Difference between the twelfth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 −0.0049 0.0162

2 −0.0038 −0.0202

3 −4.1015 −4.2093

4 0.0012 −0.0049

5 0.0028 0.0023

6 −0.0138 −0.0321

7 0.0237 0.0202

8 0.0479 0.0467

9 0.0332 0.0528

10 0.0168 0.0236

11 0.0338 0.0219

12 0.0610 0.0442

13 0.1009 0.1115

14 0.1306 0.1210

15 0.0486 0.0495

16 −0.0599 −0.0722

17 −0.0817 −0.0812

18 −0.0112 −0.0243

19 0.0984 0.0956

20 0.0151 0.0292

21 −1.2646 −1.3666

22 −0.3560 −0.3083

23 −0.6520 −0.8486

24 0.0258 0.0268

25 −0.0093 −0.0493
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Fig. 5.22.: Difference between the twelfth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate

model

tables show a significant agreement, it can be claimed that the surrogate is able to

predict the changes of QoIs with sufficient accuracy.
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Fig. 5.23.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3,

(d) 4, (e) 5, (f) 6
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Fig. 5.24.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,

(d) 10, (e) 11, (f) 12
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Fig. 5.25.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c)

15, (d) 16, (e) 17, (f) 18
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Fig. 5.26.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

21, (d) 22, (e) 23, (f) 24



107

0 2 4 6 8 10 12 14
Mechanical rotor position (Degree)

3.25

3.50

3.75

4.00

4.25

4.50

4.75

M
ot

or
 to

rq
ue

 (N
m

)

FE Simulator, BH 1
FE Simulator, BH 2
Surrogate, BH 1
Surrogate, BH 2

Fig. 5.27.: Torque waveform corresponding to operating point 25
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Fig. 5.28.: Difference between the average torque corresponding to B-H1 and B-H2

obtained from (i) FE simulator (ii) surrogate model
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Fig. 5.29.: Difference between the sixth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate

model

5.3 Development of surrogate models for predicting average torque and

average flux linkages of the PMSM

This section is a part of the extended work. Our goal in the extended work is to

study the effect of uncertainty in B-H curves and remanent flux density of permanent

magnets on performance of the machine/drive system. For performing this study, we

assume that all the degraded zones follow the same B-H characteristics dictated by

Zh. Physically, it means that the punching tool corresponding to each cutting edge of

the stator and rotor reflects the same state. Thus, we parameterize the FE simulator

by the operating points and the uncertain parameters, given by Zh, U, S and Br. The

operating points in the defined range can be obtained by varying Ipk, the amplitude of

the current and Φc, the current angle (see Fig. 5.1) uniformly. Thus, these parameters

constitute a 6-D parameter space reported in Table 5.11.



109

Table 5.8.: Difference between the average torque corresponding to B-H1 and B-H2

obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 0.0406 0.0427

2 0.0358 0.0047

3 0.0281 0.0460

4 0.0187 0.0396

5 0.0086 0.0023

6 0.3973 0.4741

7 0.2815 0.2905

8 0.0690 0.1620

9 −0.0942 −0.0840

10 −0.0573 −0.0597

11 0.4583 0.4409

12 0.1823 0.2039

13 −0.0313 −0.0104

14 −0.5510 −0.6337

15 −0.4962 −0.4958

16 −0.0723 −0.1533

17 −0.7788 −0.8098

18 −0.8921 −0.8651

19 −1.0609 −1.2376

20 −1.1276 −1.1622

21 −0.8692 −0.6839

22 −2.2383 −2.4845

23 −2.5030 −2.5740

24 −1.9386 −1.8455

25 −1.8239 −1.7101
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Table 5.9.: Difference between the sixth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 0.0028 0.0410

2 0.0023 0.0233

3 0.0017 0.0004

4 0.0012 0.0202

5 0.0013 0.0019

6 −0.0001 −0.0192

7 0.0011 0.0080

8 0.0009 −0.0151

9 −0.0176 −0.0372

10 0.0043 0.0073

11 0.0831 0.0717

12 0.0140 0.0229

13 0.0745 0.1004

14 0.0093 0.0076

15 −0.0098 −0.0175

16 0.1304 0.0931

17 −0.1635 −0.1724

18 −0.1446 −0.1591

19 0.1544 0.2062

20 −0.0182 −0.0309

21 0.1460 0.0442

22 −0.0885 −0.1040

23 −0.2198 −0.2469

24 −0.0088 0.0442

25 0.0434 0.0332
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Table 5.10.: Difference between the twelfth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate model

Operating point
Difference (%) Difference (%)

(FE simulator) (Surrogate)

1 −0.0049 0.0162

2 −0.0038 −0.0202

3 −0.0015 −0.0093

4 0.0012 −0.0049

5 0.0028 0.0023

6 −0.0138 −0.0321

7 0.0237 0.0202

8 0.0479 0.0467

9 0.0332 0.0528

10 0.0168 0.0236

11 0.0338 0.0219

12 0.0610 0.0442

13 0.1009 0.1115

14 0.1306 0.1210

15 0.0486 0.0495

16 −0.0599 −0.0722

17 −0.0817 −0.0812

18 −0.0112 −0.0243

19 0.0984 0.0956

20 0.0151 0.0292

21 −0.1646 −0.0666

22 −0.1560 −0.1083

23 −0.0650 −0.0887

24 0.0458 0.0468

25 −0.0093 −0.0493
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Fig. 5.30.: Difference between the twelfth harmonic component of torque

corresponding to B-H1 and B-H2 obtained from (i) FE simulator (ii) surrogate

model

The study of the performance of the machine/drive system hinges on the evalu-

ation of average torque, T̄ , and the minimum DC-link voltage, Vmin, of the inverter

required to drive the machine. The minimum DC-link voltage, Vmin, is given by

Vmin =
√
V 2
qs + V 2

qs

√
3 (5.36)

where

Vqs = rsIq + ωrΛds, (5.37)

Vds = rsId − ωrΛqs, (5.38)

where rs is the resistance of each phase of the stator winding in PMSM, ωr is the rotor

speed, Iq, Id are the q- and d- axes stator currents respectively and Λqs, Λds are the q-

and d- axes average flux linkages referred to the stator respectively. The evaluation

of Vmin requires the calculation of Λqs and Λds from the FE simulator. Hence, T̄ ,

Λqs and Λds of the machine are our quantities of interest (QoIs) that we have to

evaluate using the FE simulator under the considered uncertainties. Note that the



113

QoIs of the extended work is different from the original work. However, evaluations

using FE simulator is computationally expensive. Thus, we develop 3 inexpensive

surrogate models that evaluate our QoIs, T̄ , Λqs and Λds with the parameters of the

FE simulator as the input. To obtain the average values of torque and flux linkages

from their corresponding waveforms, Simpson’s rule is employed.

The procedure of obtaining input-output observations for constructing the surro-

gate models for the QoIs is identical to the procedure followed in Section 5. Given a

total of N training samples are obtained, the entire training input data set is given

by X =
(
x(1), . . . ,x(N)

)
∈ R6×N . In practice, for a separate validation set, we predict

the QoIs using the trained surrogates and compare the prediction against the actual

QoIs obtained from the FE simulator. N is iteratively increased till the decided error

criteria between the QoIs is within a satisfactory tolerance.

We construct the surrogate models for the QoIs using Gaussian process (GP)

regression. Each QoI is learned by a scalar GP function, f . The procedure of con-

struction of the surrogate model for each QoI is the same as that of the procedure

used to construct the surrogate model that predicts an individual PC in the previous

section. Thus, interested readers are requested to refer to Section 5 for details on the

construction of the model.

5.3.1 Validation of the surrogate model

The accuracy of the trained surrogate model is tested on a separate set of inputs

called the validation set. Let the validation input set be Xv =
(
x
(1)
v , . . . ,x

(P )
v

)
∈

R6×P that contains P samples from the parameter space obtained using LHS. At

these inputs points, let qv =
(
q
(1)
v , . . . , q

(P )
v

)
∈ RP be the predictive mean of QoIs

from the surrogate model at Xv.

Additionally, the QoIs are independently calculated from the FE simulator at

these P validation inputs. Let the QoIs obtained from the FE simulator be called the

actual QoIs, qa ∈ RP . The error criteria used in this study to evaluate the convergence
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of the model is the relative L2 norm of the error between the actual QoIs and the

predicted QoIs, where the relative L2 norm of the error is given by

relative L2-norm error =
||qv − qa||2
||qv||2

. (5.39)

The training samples, N , are increased iteratively until the convergence is reached.

Table 5.11.: Input parameters for the surrogate models

Parameter Lower bound Upper bound Mean

Ipk (A) 0 300 150

Φc (deg) 0 90 45

Zh () -2.1624 2.772 0.3052

U() -1 1 0

S (T) 1.94 2.06 2

Br (T) 1.1931 1.26691 1.23

5.3.2 Assessment of the Surrogate Model

In this section, we assess the 3 surrogate models used to predict T̄ , Λqs and Λds.

Each surrogate is trained with N = 600 input points and validated with an additional

P = 150 points. It should be noted that the training and validation points for all the

3 surrogate models are the same. Initially, we start with N = 50 training points and

iteratively increase it till the convergence of the relative L2-norm error is reached.

We evaluate the relative L2-norm error with increasing training points to observe its

convergence for each surrogate model. The convergence of the relative L2-norm error

for each surrogate is illustrated in Fig. 5.31. It can be observed that after 450 training

points, with further increase in number of training points the relative L2-norm error

doesn’t go down significantly i.e. the change in relative L2-norm is less than 10−2.
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Thus, the error is said to have converged. Additionally, we also illustrate the error

between the actual QoIs from the FE simulator and predicted QoIs from the 3 trained

surrogate models (with 600 training points) at the validation points in Fig. 5.32. It

can be observed the error is negligible especially at the operating region of the PMSM

i.e. at high torque and current regions.
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Fig. 5.31.: Convergence of the relative L2-norm error of the surrogate models

corresponding to (a) T̄ , (b) Λqs and (c) Λds
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Fig. 5.32.: Error in prediction by the trained surrogate models corresponding to (a)

T̄ , (b) Λqs and (c) Λds at the validation points
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6. PROPAGATION OF UNCERTAINTY IN B-H CURVES

TO THE TORQUE PROFILE OF THE PMSM

In this chapter, we consider two case studies where we assess the effect of B-H un-

certainties on the average torque and torque ripple profiles (the quantities of interest

(QoIs)) of the permanent magnet synchronous machine (PMSM). The first section of

this chapter illustrates case study 1 where we consider the effect of variation of all

the parameters representing B-H uncertainties on the QoIs and Section 6.2 illustrates

case study 2 we consider the effect of wearing of punching tool on the QoIs.

6.1 Case study 1

The evaluation of the trained surrogate is computationally inexpensive. Hence,

the torque response can be evaluated at hundreds of random samples from the input

space. We consider two operating points; operating point, A, given by Ipk = 250

A, φc = 45 deg (Iq = 176.77 A, Id = −176.77 A) and operating point, B, given

by Ipk = 150, φc = 60 deg (Iq = 75 A, Id = −129.903 A). At these points, we

want to observe the effect of parametric and epistemic uncertainty on the QoIs. To

this end, we consider the B-H uncertainties through 1000 random samples from the

7-D space defined by the distributions in rows 3 − 9 in Table 5.1. Thereafter, we

obtain 1000 evaluations of the torque response from the surrogate at these 1000

input samples for both the operating points. These 1000 evaluations give rise to

1000 probability density functions (PDFs) of the mean torque, sixth and twelfth

harmonic components of torque. From these PDFs, we obtain the mean and 95%

error bars. These error bars arise due to the limited amount of training data used

in training the surrogate. The Figs. 6.1 and 6.4 show the variation of the average

torque with the variation of the input parameters. Similarly, the uncertainty in
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Fig. 6.1.: Illustration of PDF of average torque with variation of input parameters

for operating point A

input parameters is also propagated to the sixth and twelfth harmonic components

of torque as illustrated in Figs. 6.2, 6.3, 6.5 and 6.6 respectively. The two operating

points under consideration belong to two different torque regions, namely, high (> 300

Nm) and medium (> 150 Nm and < 300 Nm) torque regions. The propagation study

shows the influence of input parameters at these regions.

6.2 Case Study 2

In another instance, we consider the effect of gradual wearing of the punching tool

on the torque profile of the PMSM. Additionally, we also assume that the punching

tools responsible for all the degraded zones are in the same state. Thus, all the

degraded zones follow the same B-H characteristic. To perform the analysis, we

consider another operating point, C, with Ipk = 75 A and φc = 60 deg (Iq = 37.5 A,

Id = −64.951 A). At this point, we fix the value of the last two rows of distribution in

Table 5.1 to their mean value and vary the distribution from rows 3− 7 linearly from
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Fig. 6.2.: Illustration of PDF of sixth harmonic component of torque with variation

of parameters for operating point A
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Fig. 6.3.: Illustration of PDF of twelfth harmonic component of torque with

variation of input parameters for operating point A
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Fig. 6.4.: Illustration of PDF of average torque with variation of input parameters

for operating point B
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Fig. 6.5.: Illustration of PDF of sixth harmonic component of torque with variation

of parameters for operating point B
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Fig. 6.6.: Illustration of PDF of twelfth harmonic component of torque with

variation of input parameters for operating point B
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Fig. 6.7.: Illustration of torque waveform with the gradual wearing of punching tool

their lower bound to the upper bound. To do so, we sample 1000 points that vary

linearly in this space and obtain the predictive mean values of the torque waveform

from the surrogate. The variation in the waveform with the variation of the state of

the punching tool can be visualized in Fig. 6.7. The histogram of the average torque

can be observed in Figs. 6.8. It can be seen that the effect of punching has minimal

effect on the torque profile of the machine. Since we have established in Section 5.2.3

that the sensitivity of sixth and twelfth harmonic components of torque cannot be

predicted adequately by the surrogate model, we do not perform the study concerning

the sensitivity of these QoIs to punching uncertainty.

Furthermore, we perform a similar study in an entire operating range by varying

Ipk from 0 to 250 A and φc from 0 to 75 degrees. The mean and standard deviation

of the average torque can be observed in Figs. 6.9 and 6.10. Fig. 6.10 confirms that

the effect of punching is minimal in the considered operating range as well. Since,

an interior PMSM is designed to operate in the flux-weakening region, it can be

conveniently claimed that punching has minimal effect on the torque waveform of a

interior PMSM from the results shown in Fig. 6.10.
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Fig. 6.8.: Illustration of average torque with the gradual wearing of punching tool
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Fig. 6.9.: Illustration of mean of average torque with the gradual wearing of

punching tool in an operating range
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Fig. 6.10.: Illustration of standard deviation of average torque with the gradual

wearing of punching tool in an operating range
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7. PROPAGATION OF UNCERTAINTY IN B-H CURVES

AND REMANENT FLUX DENSITY OF PERMANENT

MAGNETS TO THE PMSM DRIVE SYSTEM

In this chapter, we assess the combined effect of uncertainty in B-H curves and

remanent magnetic flux density (Br) of permanent magnets on the maximum average

torque (max(T̄ )) vs rotor mechanical speed (ωrm) characteristics of the permanent

magnet synchronous machine (PMSM), minimum DC-link voltage required for the

machine/drive system and the current limit of the PMSM operating under maximum

torque per ampere (MTPA) condition.

7.1 Case Study 1

Initially, we evaluate the max(T̄ ) vs ωrm characteristics of the PMSM operating

under no uncertainty in B-H curves and Br. We obtain these characteristics by

solving an optimization problem at discrete points in the speed range, ωrm ∈ [0, 6000

rpm] . The problem is defined as follows,

Objective function: maximize T̄ (Ipk, φc)

Subject to:

1. Vmin(Ipk, φc,Λqs(Ipk, φc),Λds(Ipk, φc)) ≤ Vdc,

2. Ipk ≤ Imax

where Vdc = 500 V is the DC-link voltage and Imax = 250 A is the current limit of

the windings in the PMSM.

We use a non-linear optimization method, constrained optimization by linear ap-

proximation (COBYLA) [44], to solve the problem. This method uses the surrogate

model of T̄ to obtain the max(T̄ ) and the surrogate models corresponding to Λqs and
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Fig. 7.1.: Impact of uncertainty in B-H curves and Br on the max(T̄ ) vs ωrm

characteristics

Λds to evaluate Vmin. To remove the effect of uncertainty in B-H curves and Br, we

set the uncertain parameters (rows 3-6 in Table 5.1) of the surrogate models to their

mean values. Thereafter, we prepare a look-up table of Ipk and φc at discrete ωrm’s

by solving the optimization problem. The values of the look-up table are reported in

Tables 7.1 and 7.2.

Our goal is to observe the uncertainty in the nominal max(T̄ ) vs ωrm characteristics

of the machine due to the uncertainty in B-H curves and Br. Thus, at each operating

point in the prepared look-up table, we evaluate the average torque from the surrogate

at 1000 random samples from the original distribution of the parameters from rows

3-6 mentioned in Table 5.1, i.e. the parameters reflecting uncertainty in B-H curves

and Br. The max(T̄ ) vs ωrm curve under the impact of considered uncertainties can be

observed in Fig. 7.1. The 95% error bar corresponds to the 95% of the total variation

caused due to the influence of uncertainties in B-H curves and Br about the nominal

characteristics.
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Table 7.1.: Look-up table of max(T̄ ) vs ωrm characteristics of PMSM

Mechanical rotor speed (rpm) Amplitude of current (A) Current angle (degree)

0.0000 250.0000 47.5700

122.4490 250.0000 47.5700

244.8980 250.0000 47.5700

367.3469 250.0000 47.5700

489.7959 250.0000 47.5700

612.2449 250.0000 47.5700

734.6939 250.0000 47.5700

857.1429 250.0000 47.5700

979.5918 250.0000 47.5700

1102.0408 250.0000 47.5700

1224.4898 250.0000 47.5700

1346.9388 250.0000 47.5700

1469.3878 250.0000 47.5700

1591.8367 250.0000 47.5701

1714.2857 250.0000 50.8713

1836.7347 250.0000 58.2778

1959.1837 250.0000 62.9381

2081.6327 250.0000 66.2818

2204.0816 250.0000 68.8989

2326.5306 241.0405 70.0448

2448.9796 232.1874 70.9050

2571.4286 224.4625 71.6639

2693.8776 217.6144 72.3386

2816.3265 211.4580 72.9413

2938.7755 205.8735 73.4832
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Table 7.2.: Look-up table of max(T̄ ) vs ωrm characteristics of PMSM (contd.)

Mechanical rotor speed (rpm) Amplitude of current (A) Current angle (degree)

3061.2245 200.7831 73.9742

3183.6735 196.1444 74.4248

3306.1224 191.9171 74.8426

3428.5714 188.0651 75.2336

3551.0204 184.5475 75.6016

3673.4694 181.3265 75.9495

3795.9184 178.3638 76.2788

3918.3673 175.6282 76.5911

4040.8163 173.0917 76.8875

4163.2653 170.7317 77.1693

4285.7143 168.5289 77.4373

4408.1633 166.4688 77.6928

4530.6122 164.5359 77.9364

4653.0612 162.7216 78.1694

4775.5102 161.0153 78.3923

4897.9592 159.4096 78.6061

5020.4082 157.8966 78.8114

5142.8571 156.4712 79.0089

5265.3061 155.1258 79.1992

5387.7551 153.8560 79.3827

5510.2041 152.6572 79.5600

5632.6531 151.5237 79.7313

5755.1020 150.4531 79.8972

5877.5510 149.4398 80.0579

6000.0000 148.4804 80.2137
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Consequently, due to the variation of the max(T̄ ) vs ωrm characteristics, there is

variation of the minimum DC-link voltage, Vmin, required to sustain the demanded

torque of the machine. This deviation can be observed in Fig. 7.2. The maximum

deviation of Vmin is at ωrm = 6000 rpm. Thus, we observe the probability density

function (PDF) of the variation of Vmin at ωrm = 6000 rpm in Fig. 7.3. It can be

inferred from Fig. 7.3 that to be able to sustain the required torque, the Vdc must be

at least greater than 520 V (4% greater than the nominal value).

0 1000 2000 3000 4000 5000 6000
Speed (rpm)

100

200

300

400

500

V
m

in
 (V

)

Nominal Vmin

95% error bar

Fig. 7.2.: Impact of uncertainty in B-H curves and Br on Vmin vs ωrm characteristics

7.2 Case Study 2

In the previous study, it can be observed that at low speeds, the PMSM operates

under current limited region where the torque capability of the nominal machine,

i.e. the PMSM operating under no uncertainty, is limited by Imax. In this zone, the

PMSM is operating under MTPA condition. Considering the nominal machine, it

can be observed in Fig. 7.1 that the Ipk required to sustain the max(T̄ ) would be

more than Imax. We intend to observe the PDF of the variation of Ipk of the nominal
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Fig. 7.3.: PDF of Vmin at ωrm = 6000 rpm due to uncertainty in B-H curves and Br

on Vmin

machine in this region. To this end, we evaluate the MTPA curve of the machine

using the surrogate of T̄ at discrete points varying Ipk ∈ [0, 300 A] (see Fig. 7.4). It

can be observed that at low torque/current region, the surrogate fails to adequately

predict the average torque as established in Section 5.3.1. We use a shape-preserving

piecewise cubic Hermite polynomial (PCHIP) function to interpolate the values of Ipk

as a function of max(T̄ ), Ipk(max(T̄ )). Using this function, we obtain the variation

of Ipk with the variation of max(T̄ ) under the influence of uncertainty in B-H curves

and Br. The PDF of this variation is shown in Fig. 7.5. It can be observed that Ipk

overshoots Imax by more than 5 A.
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Fig. 7.4.: Illustration of MTPA operation of the PMSM in the entire operating range
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Fig. 7.5.: PDF of Ipk due to uncertainty in B-H curves and Br operating under

MTPA condition
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8. CONCLUSION

In this study, our attempt was to quantify the effect of uncertainty in the B-H curves

due to the state of the punching tool, unpredictability of the material composition

and the uncertainty in the value of saturation magnetization on the torque profile of

a permanent magnet synchronous motor (PMSM). We extended the work further to

consider the combined effect of uncertainty in B-H curves and remanent flux density

of permanent magnets on the PMSM machine/drive system.

The model for quantifying the uncertainty in B-H curves of steel due to punching

was built using principal component analysis (PCA). Using a synthetic data set of B-H

curves, it was shown that by applying PCA on the data set, the number of uncertain

dimensions was reduced from 41 to 1. Additionally, using this 1 uncertain input in

the low-dimensional space, samples of B-H curves could be generated for training the

surrogate model cheaply. Furthermore, while conducting the propagation study, it was

computationally efficient to deal with 1 uncertain input in the low-dimensional space

instead of 41 in the high-dimensional space. We considered the material uncertainty

and the epistemic uncertainty in the saturation flux density of the B-H curve as well.

To this end, we modeled the uncertainties in these quantities using random variables

based on our knowledge from literature.

The mesh in the finite element (FE) simulator was modified to incorporate the

degraded zones reflecting the local plastic deformation due to punching. All the

elements in the zone were assumed to have a certain magnetic characteristic (dictated

by the degraded B-H curves) depending on the sample obtained from the reduced

order stochastic model. In Chapter 5, an inexpensive surrogate model using Gaussian

process (GP) regression was built to conduct the propagation study. Again, PCA was

used to reduce the dimensionality of the output from the FE simulator reducing the

number of GP functions required to learn and predict the output. The dimensionality
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of the output was reduced from 32 in the high-dimensional space to 8 in the low-

dimensional space. Thus, only 8 scalar GP functions were used to learn the 8 principal

components in the low-dimensional space. Using these GP functions, a prediction

accuracy of 99% was achieved for 92% of the samples from the validation set. However,

at low-torque region (average torque < 50 Nm), the surrogate fails to predict the

output with significant accuracy (maximum relative L2-norm error > 5%).

Using the trained surrogate, certain statistics were evaluated about the torque

response of the machine. We conducted a parametric uncertainty study where it was

found that the limited number of training points used in training of the surrogate

has an impact on the surrogate evaluation providing an uncertain statistics about the

average torque, the sixth and twelfth harmonic components of the torque. Addition-

ally, in the second case study, we found that the uncertainty due to punching on B-H

curves has negligible impact on the output torque of the PMSM.

We extended this work further to consider the combined impact of uncertain-

ties in B-H curves and remanent flux density of permanent magnets on the PMSM

machine/drive system. To this end, we built 3 surrogate models for average torque

and q- and d- axes flux linkages of the machine using GP regression. Finally, using

the surrogate models, we conducted a propagation study observing the effect of the

considered uncertainties on the maximum average torque (max(T̄ )) vs speed (ωrm)

characteristics of the PMSM, the minimum DC-link voltage (Vmin) required to drive

the machine and the current limit of the PMSM operating under maximum torque

per ampere (MTPA) condition. It was found that the considered uncertainties have

greater effect on max(T̄ ) vs ωrm characteristics of the PMSM in the MTPA region

than in the Voltage limited region. Additionally, it was found that the Vmin required

to drive the machine under uncertainty has to be atleast 4% greater than its nominal

value and the current rating of the phase windings must be at least 2% greater than

their nominal value to be able to operate under the considered uncertainties.

The future scope of this work would be to consider the impact of uncertainties

due to variations in geometry of the machine on the output torque of the PMSM.
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Furthermore, it would be interesting to observe the effects of B-H curve uncertainties

on the core loss of the machine. The training of the surrogate models in this study

was done by sampling input points from the entire parameter space. However, this

method of sampling training points can be improved by strategic sampling using the

information of epistemic uncertainty provided by the model. Additionally, the length

scale of each input parameter from the covariance function (Eq. (5.25)) that provides

the sensitivity of the each input dimension to the response is another variable that can

be used for strategic sampling. Using an acquisition function that depends on these

variables, strategic sampling can be done in the input parameter space. By employing

this technique, the number of samples required to train the surrogate would reduce,

improving the prediction at low torque region at the same time.
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A. APPENDIX

The data for the synthetic B-H is provided here. The vector of B values, b, is same

for all the curves. The vector of H values for the curves are represented as columns

of H matrix mentioned in Section 4.1.

Table A.1.: Table of B values of synthetically generated data

b

0.0416 0.6241 1.2065

0.0832 0.6657 1.2481

0.1248 0.7073 1.2897

0.1664 0.7489 1.3313

0.2080 0.7905 1.3729

0.2496 0.8321 1.4140

0.2912 0.8737 1.4542

0.3328 0.9153 1.4936

0.3744 0.9569 1.5335

0.4160 0.9985 1.5736

0.4576 1.0401 1.6139

0.4992 1.0817 1.6538

0.5409 1.1233 1.6934

0.5825 1.1649
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Table A.2.: Table of H values of synthetically generated data

h(1) h(2) h(3)

26.5302 666.1948 21.7077 476.8970 28.6060 747.6765

38.3408 774.9766 31.0894 567.7889 41.4621 864.1589

45.4029 892.9599 36.4757 673.8647 49.2455 987.2677

52.0498 1047.6323 41.4198 819.9388 56.6254 1145.6411

58.3107 1279.2378 45.9534 1045.2204 63.6298 1379.9688

64.4285 1699.7925 50.2749 1455.8066 70.5208 1804.8143

71.0394 2370.8106 54.8802 2126.7851 77.9951 2475.8495

78.2768 3363.5671 59.8617 3138.8251 86.2034 3460.3055

86.6422 4505.5536 65.5877 4323.6852 95.7049 4583.8375

95.6479 5880.6249 71.6713 5722.1750 105.9684 5948.8284

105.4933 7285.2091 78.2520 7115.8279 117.2191 7358.1180

116.8408 8865.0238 85.8063 8661.6379 130.1994 8952.5696

128.9929 10653.2414 93.8053 10408.8416 144.1391 10758.4414

142.2119 102.4362 159.3331

157.3568 112.3092 176.7472

173.4059 122.6890 195.2366

190.6790 133.8146 215.1558

210.1184 146.3607 237.5623

232.6636 160.9942 263.5132

257.3212 177.0555 291.8709

284.8009 195.0916 323.4156

314.0539 214.4717 356.9183

346.5500 236.3287 393.9940

383.4672 261.6450 435.9046

423.5610 289.8297 481.1246

469.1894 322.8652 532.1734

525.2690 364.7034 594.3832

588.8726 414.1770 664.0689
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h(4) h(5) h(6)

28.6060 747.6765 22.4091 504.4305 20.8604 443.6395

41.4621 864.1589 32.1441 597.9245 29.8154 531.3884

49.2455 987.2677 37.7742 705.7322 34.9073 635.3722

56.6254 1145.6411 42.9660 853.0570 39.5523 779.9356

63.6298 1379.9688 47.7508 1079.2584 43.7824 1004.1062

70.5208 1804.8143 52.3335 1491.2945 47.7882 1412.9411

77.9951 2475.8495 57.2306 2162.2788 52.0412 2083.9126

86.2034 3460.3055 62.5402 3171.5139 56.6264 3099.3405

95.7049 4583.8375 68.6501 4350.1381 61.8887 4291.7330

105.9684 5948.8284 75.1587 5745.2217 67.4589 5694.3372

117.2191 7358.1180 82.2143 7140.4645 73.4661 7086.0696

130.1994 8952.5696 90.3202 8691.2205 80.3538 8625.9054

144.1391 10758.4414 98.9234 10444.3898 87.6233 10365.9034

159.3331 108.2216 95.4481

176.7472 118.8614 104.3949

195.2366 130.0658 113.7786

215.1558 142.0856 123.8242

237.5623 155.6343 135.1592

263.5132 171.4185 148.4027

291.8709 188.7302 162.9537

323.4156 208.1399 179.3307

356.9183 228.9560 196.9762

393.9940 252.3605 216.9641

435.9046 279.3641 240.2422

481.1246 309.2810 266.3347

532.1734 344.1482 297.1577

594.3832 388.0578 336.4939

664.0689 439.5866 383.4850
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h(7) h(8) h(9)

20.8604 443.6395 19.3772 385.4185 27.7004 712.1265

29.8154 531.3884 27.5852 467.6652 40.1003 825.2491

34.9073 635.3722 32.1617 567.9866 47.5690 946.1217

39.5523 779.9356 36.2829 709.9056 54.6291 1102.8804

43.7824 1004.1062 39.9817 932.1312 61.3091 1336.0204

47.7882 1412.9411 43.4351 1337.9001 67.8628 1758.9938

52.0412 2083.9126 47.0712 2008.8594 74.9604 2430.0216

56.6264 3099.3405 50.9626 3030.2182 82.7451 3418.0990

61.8887 4291.7330 55.4132 4235.7971 91.7509 4549.6826

67.4589 5694.3372 60.0846 5645.6039 101.4656 5919.0716

73.4661 7086.0696 65.0877 7033.9742 112.1032 7326.3082

80.3538 8625.9054 70.8088 8563.3515 124.3711 8914.3738

87.6233 10365.9034 76.8009 10290.7351 137.5309 10712.5431

95.4481 83.2145 151.8632

104.3949 90.5399 168.2873

113.7786 98.1800 185.7120

123.8242 106.3348 204.4767

135.1592 115.5497 225.5887

148.4027 126.3598 250.0537

162.9537 138.2670 276.7971

179.3307 151.7395 306.5682

196.9762 166.3484 338.2167

216.9641 183.0641 373.2944

240.2422 202.7742 413.0264

266.3347 225.2039 456.0099

297.1577 252.1539 504.6938

336.4939 287.1099 564.2290

383.4850 329.7551 631.2612
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h(10) h(11) h(12)

27.7004 712.1265 23.6546 553.3196 28.5697 746.2492

40.1003 825.2491 34.0169 651.4340 41.4074 862.5966

47.5690 946.1217 40.0798 762.3171 49.1782 985.6157

54.6291 1102.8804 45.7113 911.8624 56.5452 1143.9242

61.3091 1336.0204 50.9423 1139.6971 63.5367 1378.2042

67.8628 1758.9938 55.9889 1554.3078 70.4141 1802.9746

74.9604 2430.0216 61.4040 2225.3023 77.8732 2474.0095

82.7451 3418.0990 67.2962 3229.5572 86.0646 3458.6109

91.7509 4549.6826 74.0878 4397.1085 95.5461 4582.4661

101.4656 5919.0716 81.3510 5786.1439 105.7877 5947.6337

112.1032 7326.3082 89.2498 7184.2099 117.0137 7356.8408

124.3711 8914.3738 98.3354 8743.7482 129.9654 8951.0360

137.5309 10712.5431 108.0111 10507.5099 143.8738 10756.5985

151.8632 118.4943 159.0332

168.2873 130.4957 176.4075

185.7120 143.1643 194.8542

204.4767 156.7717 214.7270

225.5887 172.1007 237.0816

250.0537 189.9283 262.9728

276.7971 209.4601 291.2657

306.5682 231.3088 322.7392

338.2167 254.6747 356.1674

373.2944 280.8269 393.1628

413.0264 310.8266 434.9860

456.0099 343.8193 480.1162

504.6938 381.9387 531.0701

564.2290 429.5264 593.1725

631.2612 484.7045 662.7517



144

h(13) h(14) h(15)

28.5697 746.2492 25.1148 610.6350 24.7978 598.1945

41.4074 862.5966 36.2125 714.1661 35.7359 700.5498

49.1782 985.6157 42.7827 828.6544 42.1960 814.2557

56.5452 1143.9242 48.9298 980.8032 48.2313 965.8393

63.5367 1378.2042 54.6838 1210.5526 53.8717 1195.1732

70.4141 1802.9746 60.2743 1628.1815 59.3442 1612.1469

77.8732 2474.0095 66.2966 2299.1880 65.2347 2283.1508

86.0646 3458.6109 72.8719 3297.6043 71.6617 3282.8344

95.5461 4582.4661 80.4626 4452.1744 79.0789 4440.2222

105.7877 5947.6337 88.6107 5834.1192 87.0349 5823.7059

117.0137 7356.8408 97.4979 7235.4950 95.7076 7224.3634

129.9654 8951.0360 107.7320 8805.3291 105.6925 8791.9627

143.8738 10756.5985 118.6652 10581.5089 116.3527 10565.4472

159.0332 130.5376 127.9235

176.4075 144.1352 141.1747

194.8542 158.5203 155.1872

214.7270 173.9890 170.2519

237.0816 191.4052 187.2151

262.9728 211.6283 206.9182

291.2657 233.7628 228.4878

322.7392 258.4709 252.5752

356.1674 284.8260 278.2816

393.1628 314.1996 306.9559

434.9860 347.7118 339.7057

480.1162 384.3103 375.5216

531.0701 426.2425 416.6262

593.1725 478.1423 467.5900

662.7517 537.5986 526.1178



145

h(16) h(17) h(18)

24.7978 598.1945 23.3389 540.9286 21.1204 453.8467

35.7359 700.5498 33.5423 637.8720 30.2064 542.5603

42.1960 814.2557 39.4954 747.9756 35.3887 647.1861

48.2313 965.8393 45.0155 896.9581 40.1255 792.2132

53.8717 1195.1732 50.1334 1124.3788 44.4487 1016.7248

59.3442 1612.1469 55.0625 1538.3370 48.5514 1426.0972

65.2347 2283.1508 60.3462 2209.3289 52.9125 2097.0708

71.6617 3282.8344 66.0908 3214.8460 57.6194 3111.4589

79.0789 4440.2222 72.7096 4385.2038 63.0240 4301.5397

87.0349 5823.7059 79.7816 5775.7721 68.7517 5702.8811

95.7076 7224.3634 87.4666 7173.1226 74.9350 7095.2029

105.6925 8791.9627 96.3040 8730.4350 82.0273 8636.8723

116.3527 10565.4472 105.7078 10491.5120 89.5207 10379.0818

127.9235 115.8907 97.5928

141.1747 127.5470 106.8239

155.1872 139.8445 116.5134

170.2519 153.0495 126.8904

187.2151 167.9273 138.5971

206.9182 185.2370 152.2672

228.4878 204.2061 167.2818

252.5752 225.4366 184.1680

278.2816 248.1562 202.3459

306.9559 273.6120 222.9074

339.7057 302.8524 246.8110

375.5216 335.0655 273.5457

416.6262 372.3606 305.0478

467.5900 419.0162 345.1519

526.1178 473.2693 392.9048



146

h(19) h(20) h(21)

21.1204 453.8467 20.9101 445.5892 29.3123 775.4000

30.2064 542.5603 29.8901 533.5223 42.5241 894.5023

35.3887 647.1861 34.9993 637.6287 50.5529 1019.3551

40.1255 792.2132 39.6618 782.2808 58.1822 1178.9877

44.4487 1016.7248 43.9096 1006.5165 65.4396 1414.2415

48.5514 1426.0972 47.9340 1415.4540 72.5937 1840.5470

52.9125 2097.0708 52.2076 2086.4259 80.3616 2511.5880

57.6194 3111.4589 56.8161 3101.6552 88.9004 3493.2198

63.0240 4301.5397 62.1056 4293.6062 98.7884 4610.4728

68.7517 5702.8811 67.7058 5695.9691 109.4799 5972.0340

74.9350 7095.2029 73.7466 7087.8141 121.2087 7382.9245

82.0273 8636.8723 80.6735 8628.0002 134.7445 8982.3562

89.5207 10379.0818 87.9857 10368.4206 149.2925 10794.2347

97.5928 95.8577 165.1584

106.8239 104.8589 183.3446

116.5134 114.3010 202.6643

126.8904 124.4099 223.4838

138.5971 135.8159 246.8999

152.2672 149.1408 274.0094

167.2818 163.7804 303.6262

184.1680 180.2547 336.5539

202.3459 198.0019 371.5025

222.9074 218.0993 410.1363

246.8110 241.4969 453.7460

273.5457 267.7120 500.7101

305.0478 298.6648 553.6032

345.1519 338.1477 617.8987

392.9048 385.2842 689.6538



147

h(22) h(23) h(24)

29.3123 775.4000 19.6318 395.4134 28.4684 742.2750

42.5241 894.5023 27.9680 478.6046 41.2552 858.2469

50.5529 1019.3551 32.6330 579.5548 48.9908 981.0159

58.1822 1178.9877 36.8442 721.9277 56.3220 1139.1440

65.4396 1414.2415 40.6342 944.4872 63.2772 1373.2912

72.5937 1840.5470 44.1824 1350.7824 70.1169 1797.8523

80.3616 2511.5880 47.9244 2021.7439 77.5340 2468.8863

88.9004 3493.2198 51.9350 3042.0845 85.6780 3453.8926

98.7884 4610.4728 56.5248 4245.3997 95.1041 4578.6479

109.4799 5972.0340 61.3505 5653.9700 105.2843 5944.3071

121.2087 7382.9245 66.5260 7042.9175 116.4418 7353.2847

134.7445 8982.3562 72.4474 8574.0902 129.3138 8946.7660

149.2925 10794.2347 78.6588 10303.6394 143.1350 10751.4675

165.1584 85.3147 158.1981

183.3446 92.9184 175.4618

202.6643 100.8578 193.7894

223.4838 109.3373 213.5332

246.8999 118.9161 235.7430

274.0094 130.1439 261.4681

303.6262 142.5050 289.5806

336.5539 156.4761 320.8558

371.5025 171.6063 354.0767

410.1363 188.8837 390.8488

453.7460 209.2064 432.4285

500.7101 232.2649 477.3086

553.6032 259.8797 527.9981

617.8987 295.5877 589.8015

689.6538 338.9790 659.0841



148

h(25) h(26) h(27)

28.4684 742.2750 26.1947 653.0255 24.6855 593.7841

41.2552 858.2469 37.8363 760.5627 35.5670 695.7227

48.9908 981.0159 44.7818 877.7176 41.9881 809.1511

56.3220 1139.1440 51.3103 1031.7918 47.9836 960.5344

63.2772 1373.2912 57.4510 1262.9574 53.5838 1189.7209

70.1169 1797.8523 63.4438 1682.8186 59.0144 1606.4624

77.5340 2468.8863 69.9153 2353.8340 64.8582 2277.4654

85.6780 3453.8926 76.9957 3347.9320 71.2326 3277.5982

95.1041 4578.6479 85.1774 4492.9012 78.5884 4435.9849

105.2843 5944.3071 93.9799 5869.6017 86.4763 5820.0143

116.4418 7353.2847 103.5982 7273.4254 95.0729 7220.4170

129.3138 8946.7660 114.6818 8850.8744 104.9694 8787.2241

143.1350 10751.4675 126.5449 10636.2387 115.5329 10559.7530

158.1981 139.4448 126.9968

175.4618 154.2229 140.1251

193.7894 169.8776 154.0056

213.5332 186.7230 168.9271

235.7430 205.6828 185.7296

261.4681 227.6776 205.2485

289.5806 251.7372 226.6178

320.8558 278.5599 250.4851

354.0767 307.1260 275.9615

390.8488 338.8820 304.3879

432.4285 374.9921 336.8675

477.3086 414.2574 372.4058

527.9981 459.0097 413.2171

589.8015 514.0986 463.8491

659.0841 576.7192 522.0476



149

h(28) h(29) h(30)

24.6855 593.7841 29.8066 794.8007 26.3887 660.6421

35.5670 695.7227 43.2673 915.7366 38.1281 768.8991

41.9881 809.1511 51.4679 1041.8097 45.1410 886.5331

47.9836 960.5344 59.2716 1202.3236 51.7380 1040.9533

53.5838 1189.7209 66.7061 1438.2255 57.9483 1272.3733

59.0144 1606.4624 74.0442 1865.5526 64.0133 1692.6356

64.8582 2277.4654 82.0178 2536.5977 70.5654 2363.6526

71.2326 3277.5982 90.7877 3516.2532 77.7366 3356.9747

78.5884 4435.9849 100.9462 4629.1121 86.0246 4500.2189

86.4763 5820.0143 111.9372 5988.2732 94.9446 5875.9771

95.0729 7220.4170 124.0006 7400.2840 104.6942 7280.2407

104.9694 8787.2241 137.9252 9003.2008 115.9305 8859.0578

115.5329 10559.7530 152.8988 10819.2827 127.9607 10646.0724

126.9968 169.2349 141.0452

140.1251 187.9614 156.0354

154.0056 207.8622 171.9182

168.9271 229.3117 189.0110

185.7296 253.4343 208.2481

205.2485 281.3547 230.5613

226.6178 311.8524 254.9667

250.4851 345.7480 282.1695

275.9615 381.7084 311.1328

304.3879 421.4327 343.3169

336.8675 466.2313 379.8938

372.4058 514.4159 419.6383

413.2171 568.5996 464.8972

463.8491 634.3547 520.5591

522.0476 707.5580 583.7482



150

h(31) h(32) h(33)

26.3887 660.6421 26.7533 674.9518 27.1308 689.7700

38.1281 768.8991 38.6762 784.5612 39.2439 800.7798

45.1410 886.5331 45.8159 903.0954 46.5147 920.2461

51.7380 1040.9533 52.5415 1058.1655 53.3736 1075.9893

57.9483 1272.3733 58.8824 1290.0636 59.8497 1308.3824

64.0133 1692.6356 65.0833 1711.0794 66.1912 1730.1786

70.5654 2363.6526 71.7870 2382.0994 73.0519 2401.2016

77.7366 3356.9747 79.1287 3373.9638 80.5702 3391.5565

86.0246 4500.2189 87.6162 4513.9670 89.2643 4528.2036

94.9446 5875.9771 96.7571 5887.9549 98.6340 5900.3583

104.6942 7280.2407 106.7535 7293.0448 108.8859 7306.3039

115.9305 8859.0578 118.2765 8874.4325 120.7059 8890.3535

127.9607 10646.0724 130.6207 10664.5475 133.3752 10683.6790

141.0452 144.0520 147.1656

156.0354 159.4408 162.9671

171.9182 175.7521 179.7222

189.0110 193.3096 197.7609

208.2481 213.0678 218.0588

230.5613 235.9791 241.5894

254.9667 261.0343 267.3175

282.1695 288.9510 295.9734

311.1328 318.6606 326.4559

343.3169 351.6489 360.2770

379.8938 389.1028 398.6390

419.6383 429.7475 440.2159

464.8972 475.9584 487.4126

520.5591 532.6969 545.2659

583.7482 596.9541 610.6292



151

h(34) h(35) h(36)

27.1308 689.7700 23.9366 564.3877 21.3315 462.1326

39.2439 800.7798 34.4409 663.5481 30.5238 551.6292

46.5147 920.2461 40.6017 775.1273 35.7795 656.7763

53.3736 1075.9893 46.3328 925.1754 40.5908 802.1798

59.8497 1308.3824 51.6648 1153.3799 44.9896 1026.9681

66.1912 1730.1786 56.8165 1568.5733 49.1710 1436.7768

73.0519 2401.2016 62.3488 2239.5702 53.6199 2107.7522

80.5702 3391.5565 68.3729 3242.6976 58.4255 3121.2962

89.2643 4528.2036 75.3188 4407.7422 63.9456 4309.5004

98.6340 5900.3583 82.7529 5795.4083 69.8012 5709.8167

108.8859 7306.3039 90.8426 7194.1135 76.1273 7102.6170

120.7059 8890.3535 100.1500 8755.6399 83.3857 8645.7748

133.3752 10683.6790 110.0685 10521.7997 91.0609 10389.7796

147.1656 120.8200 99.3339

162.9671 133.1296 108.7957

179.7222 146.1296 118.7333

197.7609 160.0965 129.3795

218.0588 175.8286 141.3879

241.5894 194.1188 155.4043

267.3175 214.1531 170.7951

295.9734 236.5540 188.0947

326.4559 260.4971 206.7047

360.2770 287.2714 227.7319

398.6390 317.9494 252.1434

440.2159 351.6384 279.3993

487.4126 390.4941 311.4526

545.2659 438.9145 352.1801

610.6292 494.9188 400.5515



152

h(37) h(38) h(39)

21.3315 462.1326 27.8925 719.6698 29.7770 793.6407

30.5238 551.6292 40.3892 833.5054 43.2228 914.4669

35.7795 656.7763 47.9247 954.8525 51.4132 1040.4671

40.5908 802.1798 55.0527 1111.9538 59.2065 1200.9283

44.9896 1026.9681 61.8016 1345.3458 66.6304 1436.7914

49.1710 1436.7768 68.4268 1768.7165 73.9575 1864.0575

53.6199 2107.7522 75.6043 2439.7458 81.9188 2535.1023

58.4255 3121.2962 83.4789 3427.0548 90.6749 3514.8760

63.9456 4309.5004 92.5899 4556.9300 100.8172 4627.9976

69.8012 5709.8167 102.4211 5925.3857 111.7903 5987.3023

76.1273 7102.6170 113.1887 7333.0579 123.8336 7399.2461

83.3857 8645.7748 125.6078 8922.4786 137.7350 9001.9545

91.0609 10389.7796 138.9331 10722.2823 152.6831 10817.7850

99.3339 153.4482 168.9912

108.7957 170.0824 187.6854

118.7333 187.7330 207.5514

129.3795 206.7427 228.9632

141.3879 228.1294 253.0436

155.4043 252.9096 280.9155

170.7951 279.9956 311.3606

188.0947 310.1431 345.1983

206.7047 342.1850 381.0982

227.7319 377.6867 420.7572

252.1434 417.8810 465.4847

279.3993 461.3390 513.5964

311.4526 510.5247 567.7030

352.1801 570.6275 633.3708

400.5515 638.2226 706.4874



153

h(40) h(41) h(42)

29.7770 793.6407 20.3611 424.0393 22.7924 519.4746

43.2228 914.4669 29.0646 509.9358 32.7204 614.3904

51.4132 1040.4671 33.9830 612.6866 38.4837 723.1444

59.2065 1200.9283 38.4516 756.3598 43.8108 871.1525

66.6304 1436.7914 42.5029 979.8756 48.7329 1097.8565

73.9575 1864.0575 46.3227 1387.6783 53.4584 1510.6848

81.9188 2535.1023 50.3680 2058.6457 58.5148 2181.6722

90.6749 3514.8760 54.7197 3076.0703 64.0037 3189.3749

100.8172 4627.9976 59.7087 4272.9021 70.3234 4364.5918

111.7903 5987.3023 64.9763 5677.9310 77.0642 5757.8142

123.8336 7399.2461 70.6455 7068.5315 84.3793 7153.9258

137.7350 9001.9545 77.1405 8604.8464 92.7867 8707.3843

152.6831 10817.7850 83.9799 10340.5978 101.7199 10463.8130

168.9912 91.3296 111.3827

187.6854 99.7306 122.4415

207.5514 108.5273 134.0965

228.9632 117.9364 146.6048

253.0436 128.5576 160.7013

280.9155 140.9819 177.1143

311.3606 154.6429 195.1092

345.1983 170.0421 215.2694

381.0982 186.6653 236.8701

420.7572 205.5515 261.1201

465.4847 227.6285 289.0457

513.5964 252.4879 319.9091

567.7030 282.0071 355.7770

633.3708 319.8687 400.8185

706.4874 365.3967 453.4702



154

h(43) h(44) h(45)

22.7924 519.4746 20.7673 439.9831 28.2648 734.2825

32.7204 614.3904 29.6754 527.3864 40.9490 849.4990

38.4837 723.1444 34.7349 631.1402 48.6139 971.7653

43.8108 871.1525 39.3470 775.5376 55.8732 1129.5303

48.7329 1097.8565 43.5437 999.5860 62.7555 1363.4105

53.4584 1510.6848 47.5149 1408.2283 69.5194 1787.5507

58.5148 2181.6722 51.7291 2079.1990 76.8517 2458.5831

64.0037 3189.3749 56.2707 3094.9994 84.9004 3444.4035

70.3234 4364.5918 61.4820 4288.2201 94.2151 4570.9691

77.0642 5757.8142 66.9957 5691.2766 104.2719 5937.6171

84.3793 7153.9258 72.9399 7082.7979 115.2916 7346.1331

92.7867 8707.3843 79.7544 8621.9768 128.0035 8938.1787

101.7199 10463.8130 86.9436 10361.1826 141.6493 10741.1484

111.3827 94.6798 156.5187

122.4415 103.5248 173.5598

134.0965 112.7990 191.6481

146.6048 122.7258 211.1323

160.7013 133.9277 233.0511

177.1143 147.0183 258.4421

195.1092 161.4033 286.1916

215.2694 177.5979 317.0681

236.8701 195.0527 349.8722

261.1201 214.8350 386.1951

289.0457 237.8891 427.2849

319.9091 263.7516 471.6622

355.7770 294.3314 521.8200

400.8185 333.3925 583.0221

453.4702 380.1106 651.7081



155

h(46) h(47) h(48)

28.2648 734.2825 29.5172 783.4433 24.1518 572.8341

40.9490 849.4990 42.8322 903.3058 34.7644 672.7928

48.6139 971.7653 50.9323 1028.6645 41.0001 784.9033

55.8732 1129.5303 58.6338 1188.6626 46.8072 935.3351

62.7555 1363.4105 65.9647 1424.1851 52.2162 1163.8217

69.5194 1787.5507 73.1951 1850.9141 57.4480 1579.4600

76.8517 2458.5831 81.0483 2521.9568 63.0698 2250.4586

84.9004 3444.4035 89.6829 3502.7693 69.1946 3252.7255

94.2151 4570.9691 99.6830 4618.2005 76.2582 4415.8572

104.2719 5937.6171 110.4987 5978.7667 83.8228 5802.4783

115.2916 7346.1331 122.3662 7390.1216 92.0581 7201.6713

128.0035 8938.1787 136.0632 8990.9982 101.5347 8764.7150

141.6493 10741.1484 150.7876 10804.6193 111.6386 10532.7048

156.5187 166.8485 122.5948

173.5598 185.2587 135.1396

191.6481 204.8193 148.3926

211.1323 225.9000 162.6338

233.0511 249.6090 178.6734

258.4421 277.0547 197.3166

286.1916 307.0367 217.7346

317.0681 340.3657 240.5568

349.8722 375.7338 264.9405

386.1951 414.8197 292.1895

427.2849 458.9222 323.3851

471.6622 506.3924 357.6055

521.8200 559.8206 397.0231

583.0221 624.7212 446.0790

651.7081 697.0767 502.7137



156

h(49) h(50)

24.1518 572.8341 25.4420 623.4814

34.7644 672.7928 36.7046 728.2265

41.0001 784.9033 43.3886 843.5229

46.8072 935.3351 49.6512 996.2552

52.2162 1163.8217 55.5224 1226.4338

57.4480 1579.4600 61.2349 1644.7392

63.0698 2250.4586 67.3932 2315.7484

69.1946 3252.7255 74.1216 3312.8560

76.2582 4415.8572 81.8914 4464.5166

83.8228 5802.4783 90.2378 5844.8721

92.0581 7201.6713 99.3465 7246.9897

101.5347 8764.7150 109.8381 8819.1315

111.6386 10532.7048 121.0531 10598.0947

122.5948 133.2369

135.1396 147.1922

148.3926 161.9621

162.6338 177.8480

178.6734 195.7320

197.3166 216.4920

217.7346 239.2099

240.5568 264.5588

264.9405 291.5840

292.1895 321.6795

323.3851 355.9791

357.6055 393.3857

397.0231 436.1726

446.0790 489.0388

502.7137 549.4540


