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The land ecosystems in northern high latitudes (>45° N) occupy 22% of the global surface 

and store more than 1600 Pg soil organic carbon. Warming in this region has been documented 

during the past decades. Warming-induced changes in regional carbon dynamics are expected to 

loom large in the global carbon cycle and exert large feedbacks to the global climate system. 

Numerous Earth System Models have been widely used to quantify the response of terrestrial 

ecosystem carbon dynamics to climatic changes. However, predictions of terrestrial ecosystem 

carbon responses to increasing levels of atmospheric carbon dioxide (CO2) and climate change is 

still uncertain due to model limitations. The limitations include relatively low levels of 

representation of ecosystem processes that determine the exchanges of water, energy, and carbon 

between land ecosystems and the atmosphere and omitting some key biogeochemical mechanisms. 

To improve model realism and provide a better projection of the Arctic carbon dynamics, this 

dissertation developed three new versions of a process-based biogeochemistry models that involve 

more fundamental processes of terrestrial ecosystems. First, microbial dynamics and enzyme 

kinetics that catalyze soil carbon decomposition have been incorporated into the extant terrestrial 

ecosystem model TEM to remedy the inadequate representation of soil decomposition process. 

Furthermore, a vital microbial life-history trait, microbial dormancy, has been implemented into 

previous microbial-based model to consider the impacts of microbial dormancy in modeling. 
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Additionally, the role of moss in the Arctic terrestrial ecosystem carbon quantification was also 

demonstrated by incorporating moss and higher plant interactions in modelling.
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CHAPTER 1. INTRODUCTION 

 

1.1 Research Background 

Northern high-latitude ecosystems occupy a large proportion (22%) of the terrestrial 

surface and contain over 40% of the global soil organic carbon (SOC), which is more than 1600 

Pg C (Allison et al., 2008; Jobbágy & Jackson, 2000; Kasischke, 2000; Tarnocai et al., 2009; 

McGuire & Hobbie, 1997). The total carbon in soils and plants in this region accounts for about 

30% of global terrestrial carbon (Hugelius et al., 2014; Schuur et al., 2008). On the other hand, 

global warming has been pronounced since the middle of the 19th century (Jones and Mogberg 

2003), especially at high latitudes (McGuire et al., 2009; Treseder et al., 2016). Previous studies 

showed that the increase of surface air temperature in this region is 1.5 to 4.5 times the global 

mean (Holland and Bitz, 2003; Serreze and Francis, 2006), and warming in this region is expected 

to continue through the 21st century (Serreze et al., 2000, Overland et al., 2004). This warming 

may induce environmental responses such as acceleration in soil carbon loss (Mack et al., 2004), 

a decrease in permafrost stability (Jorgenson et al., 2001) and snow cover duration (Stone et al., 

2002, Euskirchen et al., 2009), which will further alter the carbon cycling in terrestrial arctic 

ecosystems (Chapin et al., 2005, Beringer et al., 2005). Given the large pool of carbon in northern 

high latitudes, warming-induced changes in carbon cycle of the Arctic are expected to exert large 

feedbacks on the global climate system (McGuire et al., 2009; Davidson and Janssens, 2006; 

Christensen and Christensen, 2007; Oechel et al., 2000; Bond-Lamberty & Thomson, 2010). Thus, 

explicit investigation of carbon-climate feedback in this region is essential (Wieder et al., 2013; 

Bond-Lamberty & Thomson, 2010). This dissertation therefore particularly focuses on exploring 
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regional carbon budgets in the Arctic terrestrial ecosystems in last and this century using a process-

based biogeochemistry modeling approach.  

Currently, numerous state-of-the-art process-based Earth System Models such as 

Terrestrial Ecosystem Model (TEM; Hayes et al., 2014; Raich and Schlesinger, 1992; McGuire et 

al., 1992; Zhuang et al., 2010, 2013), Biome-BGC (Running and Coughlan, 1988; Bond-Lamberty 

et al., 2005), CENTURY (Parton et al., 1994), and the Biosphere Energy Transfer Hydrology 

scheme (BETHY) (Knorr, 2000) have been employed to project future climate and carbon cycle 

feedbacks (Todd-Brown et al., 2011; Treseder et al., 2016). These models were built on consensus 

scientific representations of processes such as photosynthesis, respiration, nutrient and water 

cycling, and soil decomposition (Bond-Lamberty et al., 2005; Zhuang et al., 2003). Estimates from 

documented studies using those models indicate the region functioned as a sink of atmospheric 

CO2 in recent decades (Schimel, 2013; McGuire et al., 2012). Globally, the terrestrial ecosystem 

was estimated as a carbon sink of 1.4 PgC yr-1 in the 1990s (Schimel et al., 2001), while the Arctic 

region was indicated on average of a CO2 sink about 0.5 Pg C yr-1 in the same time period 

(McGuire et al., 2000), which accounts for roughly 36% of global carbon budget. In the late 20th 

century, the net uptake of CO2 by the Arctic terrestrial ecosystems was estimated in the range of 

0.3 to 0.6 Pg C yr-1 (McGuire et al., 2000). However, the carbon dynamics response to climate 

change is still with a high uncertainty (Friedlingstein et al., 2006; Todd-Brown et al., 2013).  

The uncertainty from process-based models depends in part on the components and 

processes that are built into the models (Zhuang et al. 2006; Turetsky et al., 2012; Oreskes et al., 

1994). Low levels of representation of ecosystem processes that determine the exchanges of water, 

energy, and carbon between land ecosystems and the atmosphere (Wieder et al., 2013), and 

ignorance of some key biogeochemical mechanisms and ecological components (Schmidt et al., 
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2011; Conant et al., 2011; Treseder et al., 2011) may induce biases in carbon budget quantification 

(Wieder et al., 2013; Todd-Brown et al., 2011, 2013). Firstly, in modeling soil decomposition, 

many contemporary models treated soil decomposition as a first-order Q10 relationship decay 

process, i.e., CO2 respiration is directly proportional to soil organic carbon pool size (Todd-Brown 

et al., 2011; van’t Hoff, 1898). However, recent empirical studies have shown that soil 

decomposition actually depends on the activity of biological communities dominated by microbes 

(Allison and Martiny, 2008; Schimel and Weintraub, 2003). Microbes control soil respiration by 

degrading complex organic matter and converting to CO2 (Sinsabaugh, 1994; Todd-Brown et al., 

2013). Thus, such first-order implementation of soil respiration is inconsistent with current 

understanding of decomposition mechanisms (Todd-Brown et al., 2013). The significant role of 

microbial community in soil carbon decomposition indicates the need for an explicit representation 

of microbial physiology and enzymatic activity on heterotrophic respiration (Schimel and 

Weintraub, 2003). Moreover, recent process-based models which explicitly incorporated the 

microbial dynamics and enzyme kinetics have produced notably different results and better 

reproduce field and satellite observations (Treseder et al., 2011; Wieder et al., 2013; Allison et al., 

2010; Lawrence et al., 2009).  

Although microbial ecology has been explicitly incorporated into some existing process-

based models to remedy the inadequate representation of soil decomposition process (Zha & 

Zhuang, 2018; Allison et al., 2010; German et al., 2012), some vital common evolutionary traits 

such as microbial dormancy and community shifts are still rarely represented in these models 

(Graham et al., 2014, 2016; Wang et al., 2015; Kaiser et al., 2014). Dormancy is a prominent 

feature for microorganisms to cope with periodical environmental stresses in soil systems (Harder 

& Dijkhuizen, 1983; Wang et al., 2014), especially in arctic terrestrial ecosystems due to nitrogen-
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limitation (Stolpovsky et al., 2011; Thullner et al., 2005). When environmental conditions limit 

growth and reproduction, microbes switch to the dormant state, which is a reversible state of low 

metabolic activity, until conditions improve to allow replication (Stolpovsky et al., 2011; Lennon 

& Jones, 2011; Wang et al., 2014). Previous studies have recognized that more than 50% of number 

of microbes are in dormant state at any given time in natural soils (Blagodatsky et al., 2011; 

Stolpovsky et al., 2011). Nevertheless, soil decomposition and nutrient cycling mainly depend on 

the active fraction of microbial communities, not the whole microbes (Blagodatskaya et al., 2013, 

2014; Wang et al., 2014, 2015). Thus, neglecting microbial dormancy will lead to incorrect 

estimates of “active” microbial biomass and further bias the quantification of ecosystem carbon 

budget (Wang et al., 2015; Hagerty et al., 2014; He et al., 2015). It is important to represent 

microbial dormancy in Earth System Models to improve model realism and adequately quantify 

the carbon dynamics in northern high latitudes. 

In addition, important components such as moss are also ignored in most existing models 

(Treseder et al., 2011; Bond-Lamberty et al., 2005). Mosses are ubiquitous in northern ecosystems, 

benefiting from their functional traits related to water, nutrient, and thermal tolerances through 

physiological responses (Turetsky et al., 2010, 2012; Oechel &Van Cleve, 1986; Jagerbrand et al., 

2009). The activities of moss can influence several ecosystem processes such as soil decomposition, 

net primary productivity (NPP) and peat accumulation (Turetsky et al., 2012; Euskirchen et al., 

2009; Nilsson & Wardle, 2005). First of all, unlike higher plants, mosses are productive with 

carbon assimilation even during low temperature, water content and irradiance (Kallio & Heinonen, 

1975; Harley et al., 1989). It is gradually recognized that mosses can contribute comparable NPP 

to vascular plants as high as 350 g m-2 yr-1 in some arctic regions (Turetsky et al., 2010; Pakarinen 

& Vitt 1973). Besides, moss can compete with vascular plants for available nutrients because of 
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their rapid nutrient acquisition and slow nutrient loss, which can cause negative effects on vascular 

plant productivity (Oechel &Van Cleve, 1986; Gornall et al., 2007, 2011; Turetsky et al., 2010, 

2012). Moreover, moss cover can prevent absorbed solar heat from being conducted down into the 

soil, and tends to decrease soil temperature in summer (Pedersen et al. 1999; Oechel &Van Cleve, 

1986). It can also form an environment with water logging or low oxygen supply, which will exert 

effects on soil moisture (Skre & Oechel, 1979; Cornelissen et al., 2007). The effects of moss on 

soil thermal and hydrologic dynamics will further influence heterotrophic respiration (RH) 

(Beringer et al. 2001, Zhuang et al. 2001). Including moss as a keystone plant functional type in 

ecosystem models is essential for improving model prediction of carbon dynamics (Zhuang et al., 

2006; Bond-Lamberty et al., 2005, 2007; Frolking et al., 1996, 2010).  

 

1.2 Research Questions 

This dissertation addresses the following questions by developing and applying several 

new biogeochemistry models: 

1) Can modification of the soil respiration process modeling schemes by considering more detailed 

microbial dynamics improve carbon budget quantification at both site-level and regional scales?  

2) How do the long-term carbon dynamics in northern high latitudes estimated using microbial- 

based model differ from that estimated using a traditional model that is based on the first-order 

decay process? 

3) What are differences in Arctic carbon budget during last and this century predicted by models 

with and without microbial dormancy? 

4) What is the role of moss in the Arctic carbon quantification during last and this century?  
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The three new models that advance an extant process-based biogeochemistry model by 

modifying the soil respiration process and incorporating important microbial traits (microbial 

dormancy) and components (moss) were first developed.  A series of model evaluation, model 

parameterization, and uncertainty analysis were conducted.   

 

1.3 Outline of Dissertation 

This dissertation consists of three main chapters and each corresponds to a study that 

addresses one or two of the research questions listed above. In Chapter 2, a second-order soil 

decomposition module that considers microbial dynamics and enzyme kinetics was explicitly 

incorporated into a highly aggregated, large-scale terrestrial ecosystem model (TEM) to improve 

projections of Arctic carbon dynamics. The new microbial-based model (MIC-TEM), as well as 

traditional Q10-based model (TEM) were applied to the northern high-latitude region for the 20th 

and 21st centuries. In Chapter 3, an important microbial trait, microbial dormancy, was further 

implemented into previous microbial-based model to involve the dormant-active microbial 

physiology. Contrasting model performance with and without representation of microbial 

dormancy in Arctic region highlights the effects of microbial dormancy on Arctic carbon dynamics. 

In Chapter 4, moss, one ubiquitous community in northern ecosystems, was included in traditional 

terrestrial ecosystem model (TEM) to explore the role of moss in arctic carbon budget. The verified 

new model, which can support both activities of higher plants and mosses, was compared with 

TEM to examine the influence of moss on both historical and future Arctic carbon budget. Finally, 

Chapter 5 summarized the major findings from previous chapters and answered the five main 

questions raised in Section 1.2. A survey of a dozen recently published microbial models was 

conducted to examine the current state of microbial modeling and mechanisms that are commonly 
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under-represented in the majority of models. Future research directions for both modeling and 

experimental community were discussed. 
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CHAPTER 2. MICROBIAL DECOMPOSITION PROCESSES AND 

VULNERABLE ARCTIC SOIL ORGANIC CARBON IN THE 21ST 

CENTURY1 

 

2.1 Abstract 

Various levels of representations of biogeochemical processes in current biogeochemistry 

models contribute to a large uncertainty in carbon budget quantification. Here, we present an 

uncertainty analysis with a process-based biogeochemistry model, the Terrestrial Ecosystem 

Model (TEM) that was incorporated with detailed microbial mechanisms. Ensemble regional 

simulations with the new model (MIC-TEM) estimated the carbon budget of the Arctic ecosystems 

is 76.0±114.8 Pg C during the 20th century, -3.1±61.7 Pg C under the RCP 2.6 scenario and 94.7±46 

Pg C under the RCP 8.5 scenario during the 21st century.  Positive values indicate the regional 

carbon sink while negative values are source to the atmosphere.  Compared to the estimates using 

a simpler soil decomposition algorithm in TEM, the new model estimated that the Arctic terrestrial 

ecosystems stored 12 Pg less carbon over the 20th century, 19 Pg C and 30 Pg C less under the RCP 

8.5 and RCP 2.6 scenarios, respectively, during the 21st century.  When soil carbon within depths 

30 cm, 100 cm and 300 cm was considered as initial carbon in the 21st century simulations, the 

region was estimated to accumulate 65.4, 88.6, and 109.8 Pg C, respectively, under the RCP 8.5 

scenario. In contrast, under the RCP 2.6 scenario, the region lost 0.7, 2.2, and 3 Pg C, respectively, 

to the atmosphere.  We conclude that the future regional carbon budget evaluation largely depends 

on whether or not the adequate microbial activities are represented in earth system models and the 

sizes of soil carbon considered in model simulations.  

1Zha, J. and Zhuang, Q.: Microbial decomposition processes and vulnerable arctic soil organic carbon 

in the 21st century, Biogeosciences, 15, 5621-5634, https://doi.org/10.5194/bg-15-5621-2018, 2018. 
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2.2 Introduction 

Northern high-latitude soils and permafrost contain more than 1,600 Pg carbon (Tarnocai 

et al., 2009). Climate over this region has warmed in recent decades (Serreze and Francis, 2006) 

and the increase is 1.5 to 4.5 times the global mean (Holland and Bitz, 2003).  Warming-induced 

changes in carbon cycling are expected to exert large feedbacks to the global climate system 

(Davidson and Janssens, 2006; Christensen and Christensen, 2007; Oechel et al., 2000). 

Warming is expected to accelerate soil C loss by increasing soil respiration, but increasing 

nutrient mineralization, thereby stimulating plant net primary production (NPP) (Mack et al., 2004). 

Thus, the variation of climate may switch the role of the Arctic system between a C sink and a 

source if soil C loss overtakes NPP (Davidson et al., 2000; Jobbágy and Jackson, 2000). Process-

based biogeochemical models such as TEM (Hayes et al., 2014; Raich and Schlesinger, 1992; 

McGuire et al., 1992; Zhuang et al., 2001, 2002, 2003, 2010, 2013), Biome-BGC (Running and 

Coughlan, 1988), CASA (Potter et al., 1993), CENTURY (Parton et al., 1994) and Biosphere 

Energy Transfer Hydrology scheme (BETHY) (Knorr, 2000) have been widely used to quantify 

the response of carbon dynamics to climatic changes (Todd-Brown et al., 2012).  An ensemble of 

process-based model simulations suggests that arctic ecosystems acted as a sink of atmospheric 

CO2 in recent decades (McGuire et al., 2012; Schimel et al., 2013).  However, the response of this 

sink to increasing levels of atmospheric CO2 and climate change is still uncertain (Todd-Brown et 

al., 2013).  The IPCC 5th report also shows that land carbon storage is the largest source of 

uncertainty in the global carbon budget quantification (Ciais et al., 2013).  

Much of the uncertainty is also due to the relatively lower levels of representation of 

ecosystem processes that determine the exchanges of water, energy and C between land 

ecosystems and the atmosphere (Wieder et al., 2013), and ignorance of some key biogeochemical 
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mechanisms (Schmidt et al., 2011). For example, heterotrophic respiration (RH) is the primary loss 

pathway for soil organic carbon (Hanson et al., 2000; Bond-Lamberty and Thomson, 2010), and 

it generally increases with increasing temperature (Davidson and Janssens, 2006) and moisture 

levels in well-drained soils (Cook and Orchard, 2008). Moreover, this process is closely related to 

soil nitrogen mineralization that determines soil N availability and affects gross primary 

production (Hao et al., 2015). To date, most models treated soil decomposition as a first-order 

decay process, i.e., CO2 respiration is directly proportional to soil organic carbon. However, it is 

not clear if these models are robust under changing environmental conditions (Lawrence et al., 

2011; Schimel and Weintraub, 2003; Barichivich et al., 2013) since they often ignored the effects 

of changes in biomass and composition of decomposers, while recent empirical studies have shown 

that microbial abundance and community play a significant role in soil carbon decomposition 

(Allison and Martiny, 2008). The control that microbial activity and enzymatic kinetics imposed 

on soil respiration suggests the need for explicit representation of microbial physiology, enzymatic 

activity, in addition to the direct effects of soil temperature and soil moisture on heterotrophic 

respiration (Schimel and Weintraub, 2003). Recent mechanistically-based models explicitly 

incorporated with the microbial dynamics and enzyme kinetics that catalyze soil C decomposition 

have produced notably different results and a closer match to contemporary observations (Wieder 

et al., 2013; Allison et al., 2010) indicating the need for incorporating these microbial mechanisms 

into large-scale earth system models to quantify carbon dynamics under future climatic conditions 

((Wieder et al., 2013; Allison et al., 2010).  

This study advanced a microbe-based biogeochemistry model (MIC-TEM) based on an 

extant Terrestrial Ecosystem Model (TEM) (Raich and Schlesinger, 1992; McGuire et al., 1992; 

Zhuang et al., 2001, 2002, 2003, 2010, 2013; Hao et al., 2015). In MIC-TEM, the heterotrophic 
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respiration is not only a function of soil temperature, soil organic matter (SOM) and soil moisture, 

but also considers the effects of dynamics of microbial biomass and enzyme kinetics (Allison et 

al., 2010). The verified MIC-TEM was used to quantify the regional carbon dynamics in northern 

high latitudes (north 45 °N) during the 20th and 21st centuries.  

 

2.3 Methods  

2.3.1 Overview 

Below we first briefly describe how we advanced the MIC-TEM by modifying the soil 

respiration process in TEM (Zhuang et al., 2003) to better represent carbon dynamics in terrestrial 

ecosystems. Second, we describe how we parameterized and verified the new model using 

observed net ecosystem exchange data at representative sites and how simulated net primary 

productivity (NPP) was evaluated with Moderate Resolution Imaging Spectroradiometer (MODIS) 

data to demonstrate the reliability of new model at regional scales. Third, we present how we 

applied the model to the northern high latitudes for the 20th and 21st centuries. Finally, we introduce 

how we conducted the sensitivity analysis on initial soil carbon input, using gridded observation-

based soil carbon data of three soil depths during the 21st century.   

 

2.3.2 Model description 

TEM is a highly aggregated large-scale biogeochemical model that estimates the dynamics 

of carbon and nitrogen fluxes and pool sizes of plants and soils using spatially-explicit information 

on climate, elevation, soils and vegetation (McGuire et al., 1992; Zhuang et al., 2003, 2010; Melillo 

et al., 1993). To explicitly consider the effects of microbial dynamics and enzyme kinetics on 

large-scale carbon dynamics of northern terrestrial ecosystems, we developed MIC-TEM by 
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coupling version 5.0 of TEM (Zhuang et al., 2003, 2010) with a microbial-enzyme module (Hao 

et al., 2015; Allison et al., 2010). Our modification of the TEM improved the representation of 

the heterotrophic respiration (RH) from a first-order structure to a more detailed structure (Figure 

2.1). 

In TEM, heterotrophic respiration RH is calculated as a function of soil organic carbon 

(SOC), temperature sensitivity of heterotrophic soil respiration (Q10), soil moisture (f (MOIST)), 

and the gram-specific decomposition constant Kd: 

                                             RH = Kd ∗ SOC ∗ Q10

temp

10 ∗ f(MOIST)                         (1)      

Where temp is soil temperature at top 20 cm (units: ℃). CO2 production from SOC pool is directly 

proportional to the pool size, and the activity of decomposers only depends on the built-in 

relationships with soil temperature and moisture (Todd-Brown et al., 2012). Therefore, the 

changes in microbial community composition or adaption of microbial physiology to new 

conditions were not represented in TEM. However, current studies indicate that soil C 

decomposition depends on the activity of biological communities dominated by microbes (Schimel 

and Weintraub, 2003), implying that the biomass and composition of the decomposer community 

can’t be ignored (Todd-Brown et al., 2012). 

We thus revised the first-order soil C structure in TEM to a second-order structure 

considering microbial dynamics and enzyme kinetics according to Allison et al. (2010). In MIC-

TEM, heterotrophic respiration (RH) is calculated as: 

                      RH = ASSIM ∗ (1 − CUE)                                           (2) 

Where ASSIM and CUE represent microbial assimilation and carbon use efficiency, respectively.  

ASSIM is modeled with a Michaelis-Menten function: 

ASSIM = Vmaxuptake ∗ MIC ∗
DOC

Kmuptake+DOC
                     (3) 
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Where DOC is dissolved organic carbon and Vmaxuptake is the maximum velocity of the reaction 

and calculated using the Arrhenius equation:   

Vmaxuptake = Vmaxuptake0
∗ e

−
Eauptake

R∗(temp+273)                     (4) 

Where Vmaxuptake0
  is the pre-exponential coefficient, Eauptake is the activation energy for the 

reaction (Jmol-1), R is the gas constant (8.314 Jmol-1K-1), and temp is the temperature in Celsius 

under the reaction occurs. Here we used soil temperature at top 20 cm. 

Besides, Kmuptake is calculated as a linear function of temperature: 

𝐾𝑚𝑢𝑝𝑡𝑎𝑘𝑒 = 𝐾𝑚𝑢𝑝𝑡𝑎𝑘𝑒𝑠𝑙𝑜𝑝𝑒
∗ 𝑡𝑒𝑚𝑝 + 𝐾𝑚𝑢𝑝𝑡𝑎𝑘𝑒0

        (5) 

Microbial biomass MIC is modeled as: 

dMIC

dt
= ASSIM ∗ CUE − DEATH − EPROD                      (6) 

Where microbial biomass death (DEATH) and enzyme production (EPROD) are modeled as 

proportional to microbial biomass with rate constants rdeath and rEnzProd: 

                                   DEATH = rdeath ∗ MIC                                     (7) 

                                  EPROD = rEnzProd ∗ MIC                                  (8)  

Where rdeath and rEnzProd are the rate constants of microbial death and enzyme production, 

respectively.  

DOC is part of soil organic carbon:  

dDOC

dt
= DEATH ∗ (1 − MICtoSOC) + DECAY + ELOSS − ASSIM        (9) 

Where MICtoSOC is carbon input ratio as dead microbial biomass to SOC, representing the 

fraction of microbial death that flows into SOC, and is set as a constant value according to Allison 

et al. (2010).  SOC dynamics are modeled: 

  dSOC

dt
= Litterfall + DEATH ∗ MICtoSOC − DECAY                (10) 
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Where Litterfall is estimated as a function of vegetation carbon (Zhuang et al., 2010). The 

enzymatic decay of SOC is calculated as: 

DECAY = Vmax ∗ ENZ ∗
SOC

𝐾𝑚+SOC
                                        (11) 

Where Vmax is the maximum velocity of the reaction and calculated using the Arrhenius equation: 

𝑉𝑚𝑎𝑥 = Vmax0 ∗ e
−

𝐸𝑎

R∗(temp+273)                               (12) 

 The parameters Km and carbon use efficiency (CUE) are temperature sensitive, and calculated as 

a linear function of temperature between 0 and 50°C: 

𝐾𝑚 = Km𝑠𝑙𝑜𝑝𝑒 ∗ temp + Km0                               (13) 

CUE = CUEslope ∗ temp + CUE0                            (14) 

Where CUEslope and CUE0 are parameters for calculating CUE, and Kmslope and Km0 are 

parameters for calculating Km. The values of CUEslope, CUE0 , Kmslope, and Km0 were derived 

from Allison et al. (2010).  

ELOSS is also a first-order process, representing the loss of enzyme: 

ELOSS = renzloss ∗ ENZ                                    (15) 

Where renzloss is the rate constant of enzyme loss.  Enzyme pool (ENZ) is modeled: 

dENZ

dt
= EPROD − ELOSS                              (16) 

Heterotrophic respiration (RH) is an indispensable component of soil respiration (Bond-

Lamberty and Thomson, 2010), and closely coupled with soil nitrogen (N) mineralization that 

determines soil N availability, affecting gross primary production (GPP). 
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Figure 2.1. Schematic diagram of MIC-TEM. The green dashed circle is the previous structure 

used in TEM 5.0 (Zhuang et al., 2003), without considering the effects of detailed microbial 

dynamics. The previous heterotrophic respiration is proportional to SOC (green dashed arrow). 

In MIC-TEM, new heterotrophic respiration considers the effects of microbial dynamics and 

enzyme kinetics. In addition, three new carbon pools (DOC, MIC, and ENZ) and five carbon 

fluxes (decomposition of SOC, microbial assimilation and death, enzyme production and loss) 

are considered (Allison et al., 2010).
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2.3.3 Model parameterization and validation 

The variables and parameters of these microbial dynamics and their impacts on soil C 

decomposition were detailed in Allison et al. (2010) (Table 2.1). Here we parameterized MIC-

TEM for representative ecosystem types in northern high latitudes based on monthly net ecosystem 

production (NEP, gCm-2 mon-1) measurements from AmeriFlux network (Davidson et al., 2000) 

(Table 2.2). The results for model parameterization were presented in Figure 2.2. Another set of 

level 4 gap-filled NEP data was used for model validation at site level (Table 2.3). The site-level 

monthly climate data of air temperature (°C), precipitation (mm) and cloudiness (%) were used to 

drive the model. Gridded MODIS NPP data from 2001 to 2010 were used to evaluate regional 

NPP simulations. The MODIS NPP data was developed by the MOD17 MODIS project. The 

product name is Net Primary Production Yearly L4 Global 1 km. The critical parameter used in 

MOD17 algorithm is conversion efficiency parameter Ɛ. More information about the MODIS NPP 

product can be found at https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_M_PSN.  

In TEM, NPP is calculated as: 

                      NPP = GPP − RA                                     (17) 

Where GPP is gross primary production, and RA is autotrophic respiration.  GPP is defined as: 

GPP = Cmax ∗ f(PAR) ∗ f(phenology) ∗ f(foliage) ∗ f(T) ∗ f(CO2) ∗ f(NA) ∗ f(FT)   (18) 

Where Cmax is the maximum rate of carbon assimilation, PAR is photosynthetically active radiation, 

and f(phenology) represents the effects of leaf area (Raich and Schlesinger, 1992). The function 

f(foliage) represents the ratio of canopy leaf biomass relative to maximum leaf biomass (Zhuang 

et al., 2002). T is monthly air temperature, and f(CO2) represents the effects of elevated 

atmospheric CO2 (McGuire et al., 1997; Pan et al.,1998). The function f(NA) models the limiting 

effects of plant nitrogen status on GPP (McGuire et al., 1992; Pan et al., 1998). The function f (FT) 

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD17A2_M_PSN
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represents the effects of freeze-thaw (Zhuang et al., 2003). For detailed GPP and RA calculations, 

see Zhuang et al. (2003).  

The parameterization was conducted with a global optimization algorithm SCE-UA 

(Shuffled complex evolution) (Duan et al., 1994) to minimize the difference between the monthly 

simulated and measured NEE at these sites (Fig. S2). The cost function of the minimization is: 

Obj = ∑ (NEPobs,i − NEPsim,i)
2k

i=1                                        (19) 

Where NEPobs,i and NEPsim,i are the observed and simulated NEP, respectively. k is the number of 

data pairs for comparison. Other parameters used in MIC-TEM were default values from TEM 5.0 

(Zhuang et al., 2003, 2010). The optimized parameters were used for model validation and regional 

extrapolations.  
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Table 2.1. Parameters associated with more detailed microbial dynamics in MIC-TEM. 

Process Parameter Units Initial 

Value 

Description Parameter 

range 

Reference 

 𝑉𝑚𝑎𝑥𝑢𝑝𝑡𝑎𝑘𝑒0
 mg DOC cm-

3 (mg 

biomass cm-

3)-1 h-1 

9.97e6 Maximum 

microbial uptake 

rate 

 

[1.0e4, 

1.0e8] 

Hao et al.  

(2015) 

 𝐸𝑎𝑢𝑝𝑡𝑎𝑘𝑒 kJ mol-1 47 Activation 

energy 

- Allison et 

al. (2010) 

Assimilation 𝐾𝑚𝑢𝑝𝑡𝑎𝑘𝑒𝑠𝑙𝑜𝑝𝑒
 mg cm-3 

degree-1 
0.01 Temperature 

regulator of MM 

for DOC uptake 

by microbes 

- Allison et 

al. (2010) 

 𝐾𝑚𝑢𝑝𝑡𝑎𝑘𝑒0
 mg cm-3 0.1 Temperature 

regulator of MM 

for DOC uptake 

by microbes 

- Allison et 

al.  (2010) 

 

CO2 

production 

𝐶𝑈𝐸𝑠𝑙𝑜𝑝𝑒 degree-1 -0.016 Temperature 

regulator of 

carbon use 

efficiency 

- Allison et 

al. (2010) 

 𝐶𝑈𝐸0 - 0.63 Temperature 

regulator of 

carbon use 

efficiency 

- Allison et 

al. (2010) 

 𝑉𝑚𝑎𝑥0 mg SOC cm-3 

(mg Enz cm-

3)-1 h-1 

9.17e7 Maximum rate of 

converting SOC 

to soluble C 

 

[1.0e5, 

1.0e8] 

Hao et al. 

(2015) 

Decay Ea kJ mol-1 47 Activation 

energy 
- Allison et 

al. (2010) 
 𝐾𝑚𝑠𝑙𝑜𝑝𝑒 mg cm-3 

degree-1 
5 Temperature 

regulator of MM 

for enzymatic 

decay 

- Allison et 

al. (2010) 

 𝐾𝑚0 mg cm-3 500 Temperature 

regulator of MM 

for enzymatic 

decay 

- Allison et 

al. (2010) 

 𝑟𝑑𝑒𝑎𝑡ℎ          s-1 0.02 Microbial death 

fraction 
- Allison et 

al. (2010) 
 

MIC turnover 

 

    MICtoSOC           

        

50 

Partition 

coefficient for 

dead microbial 

biomass between 

the SOC and 

DOC pool 

- Allison et 

al. (2010) 

 

ENZ turnover 
𝑟𝐸𝑛𝑧𝑃𝑟𝑜𝑑          s-1 5.0e-4 Enzyme 

production 

fraction 

- Allison et 

al. (2010) 

 𝑟𝐸𝑛𝑧𝐿𝑜𝑠𝑠          s-1 0.1 Enzyme loss 

fraction 
- Allison et 

al. (2010) 
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Table 2.2. Site description and measured data used to calibrate MIC-TEM. 

 

 

 

 

 

Site 

Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Univ. of 

Mich. 

Biological 

Station 

84.71W 

45.56 N 

 

234 

Temperate 

deciduous 

forest 

Located within a protected forest 

owned by the University of 

Michigan. Mean annual 

temperature is 5.83̊ C with mean 

annual precipitation of 803mm 

01/2005-

12/2006 

Gough et 

al. (2013) 

       

Howland 

Forest 

(main 

tower) 

68.74W 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, 

minimal disturbance. 

01/2004-

12/2004 

Davidson 

et al. 

(2006) 

       

UCI-1964 

burn site 

98.38W 

55.91N 

260 Boreal 

forest 

Located in a continental boreal 

forest, dominated by black 

spruce trees, within the BOREAS 

northern study area in central 

Manitoba, Canada. 

01/2004-

10/2005 

Goulden 

et al. 

(2006) 

 

       

KUOM 

Turfgrass 

Field 

93.19W 

45.0N 

301 Grassland A low-maintenance lawn 

consisting of cool-season 

turfgrasses. 

01/2006-

12/2008 

Hiller et 

al. (2011) 

       

Atqasuk 157.41W 

70.47N 

15 Wet 

tundra 

100 km south of Barrow, Alaska. 

Variety of moist-wet coastal 

sedge tundra, and moist-tussock 

tundra surfaces in the more well-

drained upland. 

01/2005-

12/2006 

Oechel et 

al. (2014) 

 

       

Ivotuk 155.75W 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is 

located at the foothill of the 

Brooks Range and is classified as 

tussock sedge, dwarf-shrub, moss 

tundra. 

01/2004-

12/2004 

McEwing 

et al. 

(2015) 
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Table 2.3. Site description and measured data used to validate MIC-TEM 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Bartlett 

Experimental 

Forest 

71.29W/ 

44.06N 

272 Temperate 

deciduous 

forest 

Located within the White 

Mountains National Forest in 

north-central New Hampshire, 

USA, with mean annual 

temperature of 5.61 °C and 

mean annual precipitation of 

1246mm. 

01/2005- 

12/2006 

Jenkins et 

al. 

(2007); 

Richardson 

et al. 

(2007) 

 

       

Howland 

Forest (main 

tower) 

68.74W/ 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, 

minimal disturbance. 

01/2003- 

12/2003 

Davidson 

et al. 

(2006) 

       

UCI-1964 

burn site 

98.38W/ 

55.91N 

260 Boreal 

forest 

Located in a continental boreal 

forest, dominated by black 

spruce trees, within the 

BOREAS northern study area 

in central Manitoba, Canada. 

01/2002- 

12/2003 

Goulden et 

al. (2006) 

 

 

       

Brookings 96.84W/ 

44.35N 

510        

Grassland 

Located in a private pasture, 

belonging to the Northern 

Great Plains Rangelands, the 

grassland is representative of 

many in the north central 

United States, with seasonal 

winter conditions and a wet 

growing season. 

01/2005- 

12/2006 

Gilmanov 

et al. 

(2005) 

       

Atqasuk 157.41W/ 

70.47N 

15 Wet 

tundra 

100 km south of Barrow, 

Alaska. Variety of moist-wet 

coastal sedge tundra, and 

moist-tussock tundra surfaces 

in the more well-drained 

upland. 

01/2003- 

12/2004 

Oechel et 

al. (2014) 

 

       

Ivotuk 155.75W/ 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is 

located at the foothill of the 

Brooks Range and is classified 

as tussock sedge, dwarf-shrub, 

moss tundra. 

01/2005- 

12/2005 

McEwing 

et al. 

(2015) 
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Figure 2.2. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 

tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 

coniferous forest), (d) Univ. of Mich. Biological Station (Temperate deciduous forest), (e) KUOM 

Turfgrass Field (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different. 
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2.3.4 Regional simulations 

Two sets of regional simulations for the 20th century using MIC-TEM and TEM at a spatial 

resolutions of 0.5° latitude × 0.5° longitude were conducted.  Gridded forcing data of monthly air 

temperature, precipitation, and cloudiness were used, along with other ancillary inputs including 

historical atmospheric CO2 concentrations, soil texture, elevation, and potential natural vegetation. 

Climatic inputs vary over time and space, whereas soil texture, elevation, and land cover data are 

assumed to remain unchanged throughout the 20th century, which only vary spatially. The transient 

climate data during the 20th century was organized from the Climatic Research Unit (CRU TS3.1) 

from the University of East Anglia (Harris et al., 2014). The spatially-explicit data include potential 

natural vegetation (Melillo et al., 1993), soil texture (Zhuang et al., 2003) and elevation (Zhuang 

et al., 2015).   

Similarly, two sets of simulations were conducted driven with two contrasting climate 

change scenarios (RCP 2.6 and RCP 8.5) over the 21st century. The future climate change scenarios 

were derived from the HadGEM2-ES model, which is a member of CMIP5 project (https://esgf-

node.llnl.gov/search/cmip5/). The future atmospheric CO2 concentrations and climate forcing 

from each of the two climate change scenarios were used. The simulated NPP, RH and NEP by 

both models (TEM 5.0 and MIC-TEM) were analyzed. The positive NEP represents a CO2 sink 

from the atmosphere to terrestrial ecosystems, while a negative value represents a source of CO2 

from terrestrial ecosystems to the atmosphere. 

Besides, in order to test the parameter uncertainty in our model, we conducted the regional 

simulations with 50 sets of parameters for both historical and future studies. The 50 sets of 

parameters were obtained according to the method in Tang and Zhuang (2008). The upper and 

lower bounds of the regional estimations were generated based on these simulations. 
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2.3.5 Sensitivity to initial soil carbon input 

Future carbon dynamics can be affected by varying initial soil carbon amount. In the 

standard simulation of TEM, the initial soil carbon amount for transient simulations was obtained 

from equilibrium and spin-up periods directly for each grid cell in the region.  To test the sensitivity 

to the initial soil carbon amount in transient simulations for the 21st century, we used empirical 

soil organic carbon data extracted from the Northern Circumpolar Soil Carbon Database (NCSCD) 

(Tarnocai et al., 2009), as the initial soil carbon amount.  The 0.5° × 0.5° soil carbon data products 

for three different depths of 30cm, 100cm and 300cm were used. The sensitivity test was conducted 

for transient simulations under the RCP 2.6 and RCP 8.5 scenarios.  To avoid the instability of C-

N ratio caused by replacing the initial soil carbon pool with observed data at the beginning of 

transient period, initial soil nitrogen values were also generated based on the soil carbon data and 

corresponding C-N ratio map for transient simulations (Zhuang et al., 2003; Raich and Schlesinger, 

1992).  

 

2.4 Results 

2.4.1 Model verification at site and regional levels 

With the optimized parameters, MIC-TEM reproduces the carbon dynamics well for alpine 

tundra, boreal forest, temperate coniferous forest, temperate deciduous forest, grasslands and wet 

tundra with R2   ranging from 0.70 for Ivotuk to 0.94 for Bartlett Experimental Forest (Figure 2.3, 

Table 2.4). In general, model performs better for forest ecosystems than for tundra ecosystems. 

The temporal NPP from 2001 to 2010 simulated by MIC-TEM and TEM were compared with 

MODIS NPP data (Figure 2.4). Pearson correlation coefficients are 0.84 (MIC-TEM and MODIS) 

and 0.66 (TEM and MODIS). NPP simulated by MIC-TEM showed higher spatial correlation 
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coefficients with MODIS data than TEM (Figure 2.5). By considering more detailed microbial 

activities, the heterotrophic respiration is more adequately simulated using the MIC-TEM. The 

simulated differences in soil decomposition result in different levels of soil available nitrogen, 

which influences the nitrogen uptake by plants, the rate of photosynthesis and NPP. The spatial 

correlation coefficient between NPP simulated by MIC-TEM and MODIS is close to 1 in most 

study areas, suggesting the reliability of MIC-TEM at the regional scale. 

 

 

 

 

 

 



25 

 

 

2
5

 

2
5

 

 

Figure 2.3. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk (alpine 

tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) (temperate 

coniferous forest), (d) Bartlett Experimental Forest (Temperate deciduous forest), (e) Brookings 

(Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different. 



26 

 

 

2
6

 

2
6

 

 

 

 

 

  Table 2.4. Comparison statistics between MIC-TEM and TEM in model validation 

Site Name 
Vegetation 

type 
Model 

Intercept 

(gC m-2 mon-

1) 

Slope 
R-

square 

Adjusted 

R-square 
p-value 

Ivotuk 
Alpine 

tundra 

MIC-TEM 0.85 0.83 0.70 0.67 <0.001 

TEM 5.0 0.04 0.85 0.54 0.5 0.006 

        

UCI-1964 burn 

site 

Boreal 

forest 

MIC-TEM 0.18 1.03 0.912 0.9080 <0.001 

TEM 5.0 -2.8 1.29 0.746 0.735 <0.001 

        

Howland 

Forest (main 

tower) 

Temperate 

coniferous 

forest 

MIC-TEM 7.29 0.72 0.85 0.83 <0.001 

TEM 5.0 -8.18 1.1 0.82 0.804 <0.001 

        

Bartlett 

Experimental 

Forest 

Temperate 

deciduous 

forest 

MIC-TEM -6.05 0.91 0.944 0.941 <0.001 

TEM 5.0 -13.6 1.03 0.84 0.83 <0.001 

        

Brookings Grassland 
MIC-TEM 3.05 0.71 0.84 0.83 <0.001 

TEM 5.0 -3.63 0.74 0.6 0.58 <0.001 

        

Atqasuk 
Wet 

tundra 

MIC-TEM 7.22 1.85 0.71 0.70 <0.001 

TEM 5.0 6.64 1.15 0.42 0.39 <0.001 
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Figure 2.4. Comparison between regional NPP (PgC yr-1 simulated by MIC-TEM (red dashed line), 

TEM 5.0 (blue dashed line), and MODIS data (black solid line).
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(a)  

 

(b)  

 

Figure 2.5. Comparisons between MODIS NPP as baseline and simulated NPP: (a) (MIC-TEM-

MODIS)/ MODIS*100% (b) (TEM 5.0-MODIS)/ MODIS*100%. Positive values are 

overestimates and negative values are underestimates. 
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2.4.2 Regional carbon dynamics during the 20th century 

The equifinality of the parameters in MIC-TEM was considered in our ensemble regional 

simulations to measure the parameter uncertainty (Tang and Zhuang, 2008). Here and below, the 

ensemble means and the inter-simulation standard deviations are shown for uncertainty measure, 

unless specified as others. These ensemble simulations indicated that the northern high latitudes 

act from a carbon source of 38.9 Pg C to a carbon sink of 190.8 Pg C by different ensemble 

members, with the mean of 64.2±21.4 Pg at the end of 20th century while the simulation with the 

optimized parameters estimates a regional carbon sink of 77.6 Pg with the interannual standard 

deviation of 0.21 Pg C yr-1 during the 20th century (Figure 2.6). Simulated regional NEP with 

optimized parameters using TEM and MIC-TEM showed an increasing trend throughout the 20th 

century except a slight decrease during the 1960s (Figure 2.7). The Spatial distributions of NEP 

simulated by MIC-TEM for different periods in the 20th century also show the increasing trend 

(Figure 2.8). Positive values of NEP represent sinks of CO2 into terrestrial ecosystems, while 

negative values represent sources of CO2 to the atmosphere. From 1900 onwards, both models 

estimated a regional carbon sink during the 20th century. With optimized parameters, TEM 

estimated higher NPP and RH at 0.6 PgC yr-1 and 0.3 PgC yr-1 than MIC-TEM, respectively, at the 

end of the 20th century (Figure 2.7). The MIC-TEM estimated a carbon sink increase from 0.64 to 

0.83 PgCyr-1 during the century while the estimated increase by TEM was much higher (0.28 

PgCyr-1) (Figure 2.7). At the end of the century, MIC-TEM estimated NEP reached 1.0 PgCyr-1 in 

comparison with TEM estimates of 0.3 PgCyr-1. TEM estimated NPP and RH are 0.5 Pg Cy r-1 and 

0.3 Pg C yr-1 higher, respectively. As a result, TEM estimated that the region accumulated 11.4 Pg 

more carbon than MIC-TEM. Boreal forests are a major carbon sink at 0.55 and 0.63 Pg C yr-1 

estimated by MIC-TEM and TEM, respectively. Alpine tundra contributes the least sink. Overall, 
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TEM overestimated the sink by 12.5% in comparison to MIC-TEM for forest ecosystems and 16.7% 

for grasslands. For wet tundra and alpine tundra, TEM overestimated about 20% and 33% in 

comparison with MIC-TEM, respectively (Table 2.5).  
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Figure 2.6. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 

(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM with ensemble 

of parameters. 
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Figure 2.7. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 

(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM and TEM, 

respectively. 



33 

 

 

3
3

 

3
3

 

 

Figure 2.8. Spatial distribution of NEP simulated by MIC-TEM for the periods: (a) 1900-1930, (b) 

1931-1960, (c) 1961-1990, and (d) 1991-2000. Positive values of NEP represent sinks of CO2 into 

terrestrial ecosystems, while negative values represent sources of CO2 to the atmosphere. 
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Table 2.5. Partitioning of average annual net ecosystem production (as Pg C per year) for six 

vegetation types during the 20th century 

 

 
 MIC-TEM (PgC yr-1) TEM 5.0 (PgC y-1) 

   

Alpine tundra 0.03 0.04 

   

Boreal forest 0.39 0.45 

   

Conifer forest 0.09 0.09 

   

Deciduous forest 0.16 0.18 

   

Grassland 0.06 0.07 

   

Wet tundra 0.05 0.06 

Total  0.78 0.89 
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2.4.3 Regional carbon dynamics during the 21st century 

Simulated regional annual NPP and RH increases under the RCP 8.5 scenario with both 

models (Figure 2.9). With optimized parameters, MIC-TEM estimated NPP increases from 9.2 in 

the 2000s to 13.2 PgCyr-1 in the 2090s, while TEM-predicted NPP is 2.0 Pg C yr-1 higher in the 

2000s and 0.3 Pg C yr-1 higher in the 2090s (Figure 2.9). Similarly, TEM also overestimated RH 

by 1.7 Pg C yr-1 in the 2000s and 0.25 Pg C yr-1 higher in the 2090s, respectively (Figure 2.9). As 

a result, the regional sink increases from 0.53 Pg C yr-1 in the 2000s, 1.4 Pg C yr-1 in the 2070s, 

then decreases to 1.1 Pg C yr-1 in the 2090s estimated by MIC-TEM (Figure 2.9). Given the 

uncertainty in parameters, MIC-TEM predicted the region acts as a carbon sink ranging from 48.7 

to 140.7 Pg, with the mean of 71.7±26.6 Pg at the end of 21st century, while the simulation with 

optimized parameters estimates a regional carbon source of 79.5 Pg with the interannual standard 

deviation of 0.37 Pg C yr-1 during the 21st century (Figure 2.9). TEM predicted a similar trend for 

NEP, which overestimated the carbon sink with magnitude of 19.2 Pg compared with the 

simulation by MIC-TEM with optimized parameters. Under the RCP 2.6 scenario (Figure 2.9), the 

increase of NPP and RH is smaller from 2000 to 2100 compared to the simulation under the RCP 

8.5. MIC-TEM predicted that NPP increases from 9.1 to 10.9 Pg C yr-1, TEM estimated 1.6 Pg C 

yr-1 higher at the beginning and 0.9 Pg C yr-1 higher in the end of the 21st century (Figure 2.9). 

Consequently, MIC-TEM predicted NEP fluctuates between sinks and sources during the century, 

with a neutral before 2070, and a source between -0.2 - -0.3 Pg C yr-1 after the 2070s.  As a result, 

the region acts as a carbon source of 1.6 Pg C with the interannual standard deviation of 0.24 Pg 

C yr-1   estimated with MIC-TEM and a sink of 27.6 Pg C with the interannual standard deviation 

of 0.2 Pg C yr-1 estimated with TEM during the century (Figure 2.9). When considering the 

uncertainty source of parameters, MIC-TEM predicted the region acts from a carbon source of 
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64.8 Pg C to a carbon sink of 58.6 Pg C during the century with the mean of -3.3±20.3 Pg at the 

end of 21st century (Figure 2.9).  
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Figure 2.9. Predicted changes in carbon fluxes: (i) NPP, (ii) RH, and (iii) NEP for all land areas 

north of 45 °N in response to transient climate change under (a) RCP 8.5 scenario and (b) RCP 

2.6 scenario with MIC-TEM and TEM 5.0, respectively. The decadal running mean is applied. 

The grey area represents the upper and lower bounds of simulations. 
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2.4.4 Model sensitivity to initial soil carbon 

Under the RCP 2.6, without replacing the initial soil carbon with inventory-based estimates 

(Tarnocai et al., 2009) in model simulations, TEM estimated that the regional soil organic carbon 

(SOC) is 604.2 Pg C and accumulates 12.1 Pg C during the 21st century. When using estimated 

soil carbon (Tarnocai et al., 2009), within depths of 30cm, 100cm and 300cm as initial pools in 

simulations, TEM predicted that regional SOC is 429.5, 689.3 and 1003.4 Pg C in 2000, and 

increases by 9.9, 16.0 and 22.8 Pg C at the end of the 21st century, and the regional cumulative 

carbon sink is 20.4, 34.0, and 48.1 Pg C, respectively during the century. In contrast, using the 

same inventory-based SOC estimates, MIC-TEM projected that the region acts from a cumulative 

carbon sink to a source at 0.7, 2.2, and 3.0 Pg C, respectively. Under the RCP 8.5, both models 

predicted that the region acts as a carbon sink, regardless of the magnitudes of initial soil carbon 

pools used, with TEM projected sink of 71.7, 120, and 155.6 Pg C and a much smaller cumulative 

sink of 65.4, 88.6, and 109.8 Pg C estimated with MIC-TEM, respectively (Table 2.6).  
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Table 2.6. Increasing of SOC, vegetation carbon (VGC), soil organic nitrogen (SON), vegetation 

nitrogen (VGN) from 1900 to 2000, and total carbon storage during the 21st century predicted by 

two models with observed soil carbon data of three different depths under (a) RCP 2.6 and (b) 

RCP 8.5. 

(a) 

Model Units: Pg 
Without 

(control) 
30cm 100cm 300cm 

 

 

TEM 5.0 

SOC/SON in 

2000 
604.2/27.0 429.5/19.0 689.3/31.6 1003.4/46.2 

 Increase of 

SOC during the 

21st century 

12.1 9.9 16.0 22.8 

VGC/VGN in 

2000 
318.3/1.48 238.4/1.05 394.2/1.80 556.7/2.53 

Increase of 

VGC during the 

21st century 

             15.5 10.5 18.0 25.3 

Increase of total 

carbon storage 

during the 21st 

century 

27.6 20.4 34.0 48.1 

 

 

 

MIC-TEM 

SOC/SON in 

2000 
591.5/26.8 420.3/18.6 686.0/31.2 990.7/45.3 

Increase of SOC 

during the 21st 

century 

-2.0 -1.2 -2.4 -2.9 

VGC/VGN in 

2000 
309.7/1.42 230.1/1.02 374.4/1.71 548.6/2.45 

Increase of 

VGC during the 

21st century 

0.4 0.5 0.2 -0.1 

Increase of total 

carbon storage 

during the 21st 

century 

-1.6 -0.7 -2.2 -3.0 
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(b) 

Model Units: Pg 
Without 

(control) 
30cm 100cm 300cm 

TEM 5.0 

SOC/SON in 2000 610.2 /27.9 431.9/19.1 693.8/31.8 1007.1/46.4 

Increase of SOC during the 

21st century 
44.2 33.0 56.5 74.6 

VGC/VGN in 2000 324.9/1.50 242.1/1.07 399.6/1.83 570.2/2.57 

Increase of VGC during the 

21st century 
54.5 38.7 63.5 81.0 

Increase of total carbon 

storage during the 21st century 
98.7 71.7 120.0 155.6 

 

 

MIC-

TEM 

SOC/SON in 2000 596.0/27.1 424.6/18.8 689.1/31.5 995.5/46.1 

Increase of SOC during the 

21st century 
33.3 27.4 36.9 42.9 

VGC/VGN in 2000 316.0/1.44 233.5/1.02 380.0/1.72 568.3/2.56 

Increase of VGC during the 

21st century 
46.2 37.0 51.7 56.9 

     

Increase of total carbon 

storage during the 21st century 
79.5 65.4 88.6 109.8 
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2.5. Discussion 

During the last few decades, a greening accompanying warming and rising atmospheric 

CO2 in the northern high latitudes (>45° N) has been documented (McGuire et al., 1995; McGuire 

and Hobbie, 1997; Chapin and Starfield, 1997; Stow et al., 2004; Callaghan et al., 2005; Tape et 

al., 2006). The large stocks of carbon contained in the region (Tarnocai et al., 2009) are particularly 

vulnerable to climate change (Schuur et al., 2008; McGuire et al., 2009). To date, the degree to 

which the ecosystems may serve as a source or a sink of C in the future are still uncertain (McGuire 

et al., 2009; Wieder et al., 2013). Therefore, accurate models are essential for predicting carbon–

climate feedbacks in the future (Todd-Brown et al., 2013). Our regional simulations indicate the 

region is currently a carbon sink, which is consistent with many previous studies (White et al., 

2000; Houghton et al., 2007), and this sink will grow under the RCP 8.5 scenario, but shift to a 

carbon source under the RCP 2.6 scenario by 2100.  MIC-TEM shows a higher correlation between 

NPP and soil temperature (R=0.91) than TEM (R=0.82), suggesting that MIC-TEM is more 

sensitive to environmental changes (Table S4). 

Our regional estimates of carbon fluxes by MIC-TEM are within the uncertainty range 

from other existing studies.  For instance, Zhuang et al. (2003) estimated the region as a sink of 

0.9 Pg C yr-1 in extratropical ecosystems for the 1990s, which is similar to our estimation of 0.83 

Pg C yr-1 by MIC-TEM. White et al. (2000) estimated that, during the 1990s, regional NEP above 

50 °N region is 0.46 Pg C yr-1 while Qian et al. (2010) estimated that NEP increased from 0 to 0.3 

Pg C yr-1 for the high-latitude region above 60 °N during last century, and reached 0.25 Pg C yr-1 

during the 1990s. White et al. (2000) predicted that, from 1850 to 2100, the region accumulated 

134 Pg C in terrestrial ecosystems, in comparison with our estimates of 77.6 Pg C with MIC-TEM 

and 89 Pg C with TEM.  Our projection of a weakening sink during the second half of the 21st 
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century is consistent with previous model studies (Schaphoff et al., 2013). Our predicted trend of 

NEP is very similar to the finding of White et al. (2000), indicating that NEP increases from 0.46 

Pg C yr-1 in the 2000s and reaches 1.5 Pg C yr-1 in the 2070s, then decreases to 0.6 Pg C yr-1 in the 

2090s.  

The MIC-TEM simulated NEP generally agrees with the observations. However, model 

simulations still deviate from the observed data, especially for tundra ecosystems. The deviation 

may be due to the uncertainty or errors in the observed data, which do not well constrain the model 

parameters. Uncertain driving data such as temperature and precipitation are also a source of 

uncertainty for transient simulations.  In addition, we assumed that vegetation will not change 

during the transient simulation. However, over the past few decades in the northern high latitudes, 

temperature increases have led to vegetation changes (Hansen et al., 2006), including latitudinal 

treeline advance (Lloyd et al., 2005) and increasing shrub density (Sturm et al., 2001). Vegetation 

can shift from one type to another because of competition for light, N and water (White et al., 

2000). For example, needleleaved trees tend to replace tundra gradually in response to warming. 

In some areas, forests even moved several hundreds of kilometers within 100 years (Gear and 

Huntley, 1991). The vegetation changes will affect carbon cycling in these ecosystems. In addition, 

we have not yet considered the effects of management of agriculture lands (Cole et al., 1997), but 

Zhuang et al. (2003) showed that the changes in agricultural land use in northern high latitudes 

have been small.   

The largest limitation to this study is that we have not explicitly considered the fire effects. 

Warming in the northern high latitudes could favor fire in its frequency, intensity, seasonality and 

extent (Kasischke and Turetsky, 2006; Johnstone and Kasischke, 2005; Soja et al., 2007; 

Randerson et al., 2006; Bond-Lamberty et al., 2007). Fire has profound effects on northern forest 
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ecosystems, altering the N cycle and water and energy exchanges between the atmosphere and 

ecosystems. Increase in wildfires will destroy most of above-ground biomass and consume organic 

soils, resulting in less carbon uptake by vegetation (Harden et al., 2000), leading to a net release 

of carbon in a short term. However, a suite of biophysical mechanisms of ecosystems including 

post-fire increase in the surface albedo and rates of biomass accumulation may in turn, exert a 

negative feedback to climate warming (Amiro et al., 2006; Goetz et al., 2007), further influence 

the carbon exchanges between ecosystems and the atmosphere. 

Moreover, carbon uptake in land ecosystems depends on new plant growth, which connects 

tightly with the availability of nutrients such as mineral nitrogen. Recent studies have shown that 

when soil nitrogen is in short supply, most terrestrial plants would form symbiosis relationships 

with fungi; hyphae provides nitrogen to plants, in return, plants provide sugar to fungi (Hobbie and 

Hobbie, 2008, 2006; Schimel and Hättenschwiler, 2007). This symbiosis relationship has not been 

considered in our current modeling, which may lead to a large uncertainty in our quantification of 

carbon and nitrogen dynamics.  

Shift in microbial community structure was not considered in our model, which could 

affect the temperature sensitivity of heterotrophic respiration (Stone et al., 2012). Michaelis-

Menten constant (Km) could also adapt to climate warming, and it may increase more significantly 

with increasing temperature in cold-adapted enzymes than in warm-adapted enzymes (German et 

al., 2012; Somero et al., 2004; Dong and Somero, 2009). Carbon use efficiency (CUE) is also a 

controversial parameter in our model. Empirical studies in soils suggest that microbial CUE 

declines by at least 0.009 ºC-1 (Steinweg et al., 2008), while other studies find that CUE is invariant 

with temperature (López-Urrutia and Morán, 2007). Another key microbial trait lacking in our 

modeling is microbial dormancy (He et al., 2015). Dormancy is a common, bet-hedging strategy 
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used by microorganisms when environmental conditions limit their growth and reproduction 

(Lennon and Jones, 2011). Microorganisms in dormancy are not able to drive biogeochemical 

processes such as soil CO2 production, and therefore, only active microorganisms should be 

involved in utilizing substrates in soils (Blagodatskaya and Kuzyakov, 2013). Many studies have 

indicated that soil respiration responses to environmental conditions are more closely associated 

with the active portion of microbial biomass than total microbial biomass (Hagerty et al., 2014; 

Schimel and Schaeffer, 2012; Steinweg et al., 2013). Thus, the ignorance of microbial dormancy 

could fail to distinguish microbes with different physiological states, introducing uncertainties to 

our carbon estimation.  

 

2.6. Conclusions 

This study used a more detailed microbial biogeochemistry model to investigate the carbon 

dynamics in the region for the past and this century. Regional simulations using MIC-TEM 

indicated that, over the 20th century, the region is a sink of 77.6 Pg C. This sink could reach to 79.5 

Pg C under the RCP 8.5 scenario or shift to a carbon source of 1.6 Pg under the RCP 2.6 scenario 

during the 21st century. On the other hand, traditional TEM overestimated the carbon sink under 

the RCP 8.5 scenario with magnitude of 19.2 Pg than MIC-TEM, and predicted this region acting 

as a carbon sink with magnitude of 27.6 Pg under the RCP 2.6 scenario during the 21st century. 

Using recent soil carbon stock data as initial soil carbon in model simulations, the region was 

estimated to shift from a carbon sink to a source, with total carbon release at 0.7- 3 Pg by 2100 

depending on initial soil carbon pools at different soil depths under the RCP 2.6 scenario. In 

contrast, the region acts as a carbon sink at 55.4 - 99.8 Pg in the 21st century under the RCP 8.5 

scenario. Without considering more detailed microbial processes, models estimated that the region 
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acts as a carbon sink under both scenarios.  Under the RCP 2.6 scenario, the cumulative sink ranges 

from 9.9 to 22.8 Pg C.  Under the RCP 8.5 scenario, the cumulative sink is even larger at 71.7 - 

155.6 Pg C.  This study indicated that more detailed microbial physiology-based biogeochemistry 

models estimate carbon dynamics very differently from using a relatively simple microbial 

decomposition-based model.  The comparison with satellite products or other estimates for the 20th 

century suggests that the more detailed microbial decomposition shall be considered to adequately 

quantify C dynamics in northern high latitudes.  
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CHAPTER 3. MICROBIAL DORMANCY AND ITS IMPACTS ON 

ARCTIC TERRESTRIAL ECOSYSTEM CARBON BUDGET2 

 

3.1. Abstract 

A large amount of soil carbon in the Arctic terrestrial ecosystems could be emitted as 

greenhouse gases in a warming future. However, lacking detailed microbial processes such as 

microbial dormancy in current biogeochemistry models might have biased the quantification of 

the regional carbon dynamics. Here the effect of microbial dormancy was incorporated into a 

biogeochemistry model to improve the quantification for the last and this century. Compared with 

the previous model without considering the microbial dormancy, the new model estimated the 

regional soils stored 75.9 Pg more C in the terrestrial ecosystems during the last century, and will 

store 50.4 Pg and 125.2 Pg more C under the RCP 8.5 and RCP 2.6 scenarios, respectively, in this 

century. This study highlights the importance of the representation of microbial dormancy in earth 

system models to adequately quantify the carbon dynamics in the Arctic.  

 

3.2. Introduction 

The land ecosystems in northern high latitudes (>45° N) occupy 22% of the global 

surface and store over 40% of the global soil organic carbon (SOC) (McGuire & Hobbie, 1997; 

Melillo et al., 1993; Tarnocai et al., 2009; Hugelius et al., 2014). During the past decades, a 

greening accompanying a warming in the region has been documented (Zhou et al., 2001; Lloyd 

et al., 2002; Stow et al., 2004; Callaghan et al., 2005; Tape et al., 2006). The regional carbon 

dynamics are expected to loom large in the global carbon cycle and exert large feedbacks to the 

global climate system (McGuire et al., 2009; Davidson & Janssens, 2006; Bond-Lamberty & 

Thomson, 2010). 

2Zha, J. and Zhuang, Q.: Microbial dormancy and its impacts on Arctic terrestrial ecosystem carbon 

budget, Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-72, in review, 2019.  
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To date, numerous ecosystem models have been developed to project the feedbacks 

between terrestrial ecosystem carbon cycling and climate (Raich et al., 1991; Zhuang et al., 2001, 

2002, 2015; Parton et al., 1993; Knorr et al., 2005; Running & Coughlan, 1988), but they can bias 

their quantifications due to missing detailed microbial mechanisms in these models (Schmidt et 

al., 2011; Todd-Brown et al., 2013; Conant et al., 2011; Treseder et al., 2011). Microorganisms 

play a central role in decomposition of litter and soil organic carbon, which further governs the 

global carbon cycling and climate change (Xu et al., 2014; Treseder et al., 2011; Wang et al., 2015). 

An emerging field of research has begun to incorporate microbial ecology into existing process-

based models to remedy the inadequate representation of soil decomposition process (Zha & 

Zhuang, 2018; Schimel & Weintraub, 2003; Allison et al., 2010; German et al., 2012). These 

microbial-based models tend to better reproduce field and satellite observations than traditional 

ones that treat soil decomposition as a first-order decay process without considering microbial 

activities (Treseder et al., 2011; Wieder et al., 2013; Todd-Brown et al., 2011; Lawrence et al., 

2009; Moorhead et al., 2006). However, some vital microbial traits such as microbial dormancy 

and community shifts are still rarely explicitly considered in large-scale ecosystem models, and 

this may introduce notable uncertainties (Graham et al., 2014, 2016; Wang et al., 2015; Bouskill 

et al., 2012; Kaiser et al., 2014).  

Dormancy is broadly recognized as a strategy for microorganisms to cope with periodical 

environmental stresses (Harder & Dijkhuizen, 1983). When environmental conditions are 

unfavorable for growth, microbes switch to a dormant state, which is a reversible state of low to 

zero metabolic activity (Stolpovsky et al., 2011; Lennon & Jones, 2011). In this state, 

biogeochemical processes such as soil decomposition are slow (Blagodatskaya et al., 2013).  At 

any given time, there is only a fraction of number of microbes, likely below 50% of live microbes, 
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in natural soils (Wang et al., 2015; Stolpovsky et al., 2011). Soil decomposition and nutrient 

cycling mainly depend on these active microbes because only active ones can consume organic 

matter and replicate themselves (Wang et al., 2015; Blagodatskaya et al., 2014).  To date, most 

existing biogeochemistry models used total microbial biomass as indicator of microbial activities, 

rather than the active portion of microbial biomass, which could bias the estimates of soil 

decomposition and ecosystem carbon budget (Hagerty et al., 2014; He et al., 2015). Especially, 

the Arctic terrestrial ecosystems are nitrogen-limited, neglecting microbial dormancy will lead to 

incorrect estimates of nitrogen availability through soil decomposition, failing to capture nitrogen 

feedbacks to carbon dynamics (Wang et al., 2015; Stolpovsky et al., 2011; Thullner et al., 2005). 

Thus, incorporating dormancy effects will improve model realism and provide a better projection 

of the Arctic carbon dynamics.  

This study incorporated the effects of microbial dormancy trait into an extant process-based 

biogeochemistry model (MIC-TEM) (Zha & Zhuang, 2018; He et al., 2015). The dormant and 

active microbial physiology has been considered explicitly in the new version of model (MIC-

TEM-dormancy).  The revised model was parameterized, validated, and then applied to evaluate 

the carbon dynamics during the last and this centuries in the Arctic terrestrial ecosystems (north 

45 °N above).  

 

3.3. Methods  

3.3.1. Overview 

First, we describe how we developed the new model (MIC-TEM-dormancy) by 

incorporating the microbial dormancy trait into an existing microbial-based biogeochemistry 

model (MIC-TEM). Second, parameterization and validation of MIC-TEM-dormancy using 
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observed net ecosystem exchange data, and heterotrophic respiration data at representative sites 

have been shown. Third, we applied the model to northern high latitudes (above 45 °N) for the 20th 

and 21st centuries, to demonstrate the dormancy effects.  

 

3.3.2 Model Description 

A non-dormancy version of biogeochemistry model (MIC-TEM) has been developed by 

incorporating a microbial module (Allison et al., 2010) into an extant large-scale biogeochemical 

model (TEM) to explicitly (Zhuang et al., 2001, 2002, 2003) consider the effects of microbial 

dynamics and enzyme kinetics on carbon dynamics (Zha & Zhuang, 2018). Here we further 

advanced the MIC-TEM by incorporating algorithms that describe the effects of microbial 

dormancy dynamics based on He et al. (2015). Different from He et al. (2015), in which 

microbial module was driven with existing data of carbon stocks and fluxes, our study 

incorporated the microbial module into an extant MIC-TEM that simulates carbon data 

dynamically. This coupling enables us to extrapolate our model to whole northern high-latitudes 

region, rather than only for temperate forest region in He et al. (2015).  In our new model (MIC-

TEM-dormancy), microbial biomass pool was divided into two fractions, including the dormant 

and active microbial biomass pools. The two microbial biomass pools and the reversible 

transition between them have been considered explicitly in the new model, which was ignored in 

MIC-TEM (Figure 3.1).  

In previous MIC-TEM, heterotrophic respiration (RH) is calculated as: 

RH=ASSIM*(1-CUE)                                            (1) 

Where ASSIM and CUE represent microbial assimilation and carbon use efficiency, 

respectively.  For detailed carbon dynamics in MIC-TEM, see Zha & Zhuang (2018).  
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Here we revised MIC-TEM by incorporating microbial dormancy dynamics according to He et 

al. (2015). In the new model (MIC-TEM-dormancy), the soil heterotrophic respiration RH is 

comprised of three parts: the maintenance respiration from the active and dormant 

microorganisms and the CO2 production through the process of microbial assimilation (He et al., 

2015):  

RH = mRQ
10mic

temp−15

10 Ba + βmRQ
10mic

temp−15

10 Bd + CO2                                (2) 

where the first two terms are maintenance respiration from the active and dormant 

microorganisms, respectively. The last term is the CO2 produced during the process of microbial 

assimilation.  

For first two terms, Ba and Bd represents the active and dormant microbial biomass pool, 

respectively. The parameter mR denotes the specific maintenance rate at active state (h-1), and  

is the ratio of dormant maintenance rate to active maintenance rate. Thus, mR denotes the 

maximum specific maintenance rate at dormant state. Temperature sensitivity was expressed as 

the Q10 function (Q10

temp−15

10 ), where temp is soil temperature at top 20 cm (units: ℃).  

For the third term, the CO2 produced through microbial assimilation is calculated as in He et al. 

(2015) and Allison et al. (2010): 

                                           CO2=ASSIM*(1-Yg)                                          (3) 

Where ASSIM represents the variable of microbial assimilation and the parameter Yg represents 

carbon use efficiency.  Microbial assimilation (ASSIM) is calculated as in He et al. (2015): 

                                   ASSIM =
1

Yg
 
Φ

α
 mR Q10enz

temp−15

10   Ba (
CNsoil

CNmic
)0.6                                    (4) 
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Here parameter  is called the maintenance weight (h-1), CNsoil and CNmic denotes the C:N ratio 

of soil and that of microbial biomass to consider substrate quality. Besides, Φ is called substrate 

saturation level and defined as in He et al. (2015) and Wang et al. (2014): 

                                             Φ =
S

Ks+S
                                                      (5) 

Where Ks is the half saturation constant for substrate uptake as indicated by the Michaelis–

Menten kinetic, and S is soluble C substrates that are directly accessible for microbial 

assimilation (Wang et al., 2014). Here we quantified concentration of soluble C substrates that 

are directly accessible for microbial assimilation by using conceptual framework from Davidson 

et al. (2012): 

S = Soluble C ∗ Dliq ∗ θ3                                        (6) 

The term ‘Soluble C’ denotes the state variable of soluble carbon pool. Dliq is the 

diffusion coefficient of the substrate in the liquid phase, and is formulated as Dliq = 1/(1-

BD/PD)3. BD is the bulk density and PD is the soil particle density. θ is the volumetric soil 

moisture. 

Different from MIC-TEM, the transitions between active and dormant microbial biomass 

are included in MIC-TEM-dormancy. We used Ba→d and Bd→a denotes the transition from the 

active to dormant microbe and from the dormant to active microbe, respectively (He et al., 2015; 

Wang et al., 2014): 

Ba→d = (1 − Φ)mRQ
10mic

temp−15

10 Ba                          (7) 

     Bd→a= ΦmRQ
10mic

temp−15

10 Bd                               (8) 

Dormancy rate is affected by substrate availability (Ba, Bd), soil temperature (temp) and soil 

moisture (θ in Φ). 
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The active microbial biomass (Ba) is modeled as (He et al., 2015; Wang et al., 2014):  

dBa

dt
= ASSIM ∗ Yg − mRQ

10mic

temp−15

10 Ba − Ba→d + Bd→a − DEATH − EPROD                (9) 

Where DEATH and EPROD denotes microbial biomass death and enzyme production, which are 

modeled as proportional to active microbial biomass with constant rates rdeath and rEnzProd (Allison 

et al., 2010): 

                                   DEATH = rdeath ∗ Ba                                                                    (10) 

                                  EPROD = rEnzProd ∗ Ba                                                                 (11) 

Where rdeath and rEnzProd are the rate constants of microbial death and enzyme production, 

respectively.  

The dormant microbial biomass (Bd) is modeled as (He et al., 2015; Wang et al., 2014):  

                                        
dBd

dt
= −βmRQ

10mic

temp−15

10 Bd + Ba→d − Bd→a                                       (12) 

The Soluble C pool is modeled as (He et al., 2015; Allison et al., 2010):  

d Soluble C

dt
= DECAY − ASSIM + ELOSS + DEATH        (13) 

Where DECAY represents the enzymatic decay of soil organic carbon (SOC), and ELOSS 

represents the loss of enzyme.  

DECAY is regulated by enzyme biomass (ENZ), soil organic carbon (SOC), soil temperature, 

and substrate quality (He et al., 2015): 

DECAY = Vmax ∗ Q10enz

temp−15

10 ∗ ENZ ∗
SOC

Kmuptake+SOC
∗ (120 − CNsoil )           (14) 

Where Vmax is the maximum SOC decay rate, Kmuptake is half saturation constant for enzymatic 

decay. 

ELOSS is modeled as a first-order process (Allison et al., 2010) to represent enzyme turnover: 

                                ELOSS = renzloss ∗ ENZ                                    (15) 
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Where renzloss is the rate constant of enzyme loss.   

The soil organic carbon pool (SOC) is modeled as: 

  dSOC

dt
= Litterfall − DECAY                (16) 

Where Litterfall is estimated as a function of vegetation carbon (Zhuang et al., 2010).  

Last, enzyme pool (ENZ) is modeled as:  

dENZ

dt
=EPROD-ELOSS                       (17) 

With the modification of microbial carbon dynamics by considering microbial life-history trait, 

soil decomposition is changed since it is controlled by microbes. When microbial dormancy is 

considered, the number of active microbes that participate in soil decomposition is different. The 

changes in soil decomposition directly influence the amount of soil respiration, and further 

influence soil nitrogen (N) mineralization that determines soil N availability for plants, affecting 

gross primary production (GPP). Since both GPP and soil respiration (RH) can be affected by 

microbial dormancy, net ecosystem production (NEP) will also be affected. 

 



54 

 

 

5
4

 

5
4

 

 

Figure 3.1. Framework of the dormancy model: microbial biomass is split into two parts, active 

microbial biomass and dormant microbial biomass (shown in the green dashed circle). 

Maintenance respiration from these two parts, and the CO2 production through microbial 

assimilation contributes to heterotrophic respiration. The model was revised based on Zha & 

Zhuang (2018). 
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3.3.3 Model parameterization and validation 

The detailed description of parameters that are related to microbial dormancy can be found 

in He et al. (2015) (Table 3.1). Here we calibrated the MIC-TEM-dormancy at six representative 

sites with gap-filled monthly net ecosystem productivity (NEP, gCm-2mon-1) data in northern high 

latitudes (Table 3.2). Site-level climatic data and soil texture data were organized for driving model. 

All sites information can be found on AmeriFlux network (Davidson et al., 2000). The results for 

model parameterization were presented in Figure 3.2. We conducted the parameterization using a 

global optimization algorithm known as SCE-UA (Shuffled complex evolution) method (Duan et 

al., 1994). An ensemble of 50 independent sets of parameters were performed based on prior ranges 

from literature (Table 3.1) to minimize the difference between the monthly simulated and measured 

NEP at the chosen sites. The cost function of the minimization is: 

Obj = ∑ (NEPobs,i − NEPsim,i)
2k

i=1                                        (17) 

Where NEPobs,i and NEPsim,i are the observed and simulated NEP, respectively. k is the number of 

data pairs for comparison. Except for the parameters of microbial dormancy, other parameters are 

derived directly from MIC-TEM (Zha & Zhuang, 2018). The optimized parameters were used for 

model validation and regional simulations.  

For model validation, we chose another six sites that containing monthly NEP data from 

AmeriFlux network (Table 3.3). Moreover, we also conducted site-level validations with monthly 

soil respiration data from AmeriFlux network and Fluxnet dataset. The site information was 

provided in Table 3.4. For these sites, we assumed 50% of soil respiration was heterotrophic 

respiration (RH) for forest (Hanson et al., 2000), 60% and 70% of that was RH for grassland (Wang 

et al., 2009) and tundra (Billings et al., 1977). Because there is a limited amount of measured data 



56 

 

 

5
6

 

5
6

 

of heterotrophic respiration, we could not conduct a regional validation for all pixels in northern 

high latitudes.  Instead, we extracted 61 sites providing data of average annual heterotrophic 

respiration from ORNL global Soil Respiration Dataset 

(https://daac.ornl.gov/SOILS/guides/SRDB_V4.html, Bond-Lamberty et al., 2018) for model 

validation. The site-level observed average annual RH was used to compare with simulated annual 

RH by MIC-TEM-dormancy and MIC-TEM.  The new model (MIC-TEM-dormancy) was run at 

monthly time step to keep consistent with the time step of MIC-TEM.  Although microbial 

dynamics occur at fine temporal scales (Tang & Riley, 2014), we can still quantify the cumulative 

impacts of microbial dynamics on carbon and nitrogen cycling at monthly time by not changing 

the model structure. 

https://daac.ornl.gov/SOILS/guides/SRDB_V4.html
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Table 3.1. Parameters associated with detailed microbial dormancy in MIC-TEM-dormancy 

parameter unit description 
Parameter 

range  
references 

mR h-1 Specific maintenance rate at active state 
[0.001, 

0.08] 

Wang et al. 

(2014) 
     

Q10mic - 

Temperature effects on microbial metabolic 

activity (rate change per 10 °C increase in 

temperature). Based on 0.65 eV activation 

energy for soils 

[1.5, 3.5] 
He et al. 

(2015) 

     

Q10enz - 

Temperature effects on enzyme activity (rate 

change per 10 °C increase in temperature). 

Based on 6% rate increase per degree Celsius 

1.79 
He et al. 

(2015) 

     

𝜶 - 
the ratio of mR to the sum of maximum specific 

growth rate 
[0.01, 0.5] 

 Wang et al. 

(2014) 
     

β - 
Ratio of dormant microbial maintenance rate to 

mR 

[0.0005, 

0.005] 

Wang et al. 

(2014) 
     

Yg - carbon use efficiency [0.3, 0.7] 
He et al. 

(2015) 
     

Ks 
mgC cm-

2 

Half-saturation constant for directly accessible 

substrate 
[0.01, 10] 

Wang et al. 

(2014) 
     

Kmuptake 
mgC cm-

2 

Half-saturation constant for enzymatic 

decay of SOC 
[200, 1000] 

He et al. 

(2015) 

rdeath h-1 Potential rate of microbial death [2e-4, 2e-3] 
Allison et al. 

(2010) 
     

rEnzProd h-1 Enzyme production rate of microbe [1e-4, 8e-4] 
He et al. 

(2015) 
     

renzloss h-1 Enzyme loss rate 
[0.0005, 

0.002] 

Allison et al. 

(2010) 
     

Vmax 
mgC cm-

2 h-1 
Maximum SOC decay rate [1e-4, 5e-3] 

He et al. 

(2015) 
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Table 3.2. Site description and measured NEP data used to calibrate MIC-TEM-dormancy 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Univ. of 

Mich. 

Biological 

Station 

84.71W 

45.56 N 

 

234 

Temperate 

deciduous 

forest 

Located within a protected forest owned 

by the University of Michigan. Mean 

annual temperature is 5.83̊ C with mean 

annual precipitation of 803mm 

01/2005-

12/2006 
Gough et al. 

(2013) 

       

Howland 

Forest (main 

tower) 

68.74W 

45.20N 

60 Temperate 

coniferous   

forest 

Closed coniferous forest, minimal 

disturbance. 

01/2004-

12/2004 

Davidson et al. 

(2006) 

       

UCI-1964 

burn site 

98.38W 

55.91N 

260 Boreal 

forest 

Located in a continental boreal forest, 

dominated by black spruce trees, within 

the BOREAS northern study area in 

central Manitoba, Canada. 

01/2004-

10/2005 

Goulden et al. 

(2006) 

 

       

KUOM 

Turfgrass 

Field 

93.19W 

45.0N 

301 Grassland A low-maintenance lawn consisting of 

cool-season turfgrasses. 

01/2006-

12/2008 

Hiller et al. 

(2011) 

       

Atqasuk 157.41W 

70.47N 

  15 Wet tundra 100 km south of Barrow, Alaska. Variety 

of moist-wet coastal sedge tundra, and 

moist-tussock tundra surfaces in the more 

well-drained upland. 

01/2005-

12/2006 

Oechel et al. 

(2014); 

 

       

Ivotuk 155.75W 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is located at 

the foothill of the Brooks Range and is 

classified as tussock sedge, dwarf-shrub, 

moss tundra. 

01/2004-

12/2004 

McEwing et al. 

(2015) 
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Table 3.3. Site description and measured NEP data used to validate MIC-TEM-dormancy 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Bartlett 

Experimental 

Forest 

71.29W/ 

44.06N 

272 Temperate 

deciduous 

forest 

Located within the White Mountains 

National Forest in north-central New 

Hampshire, USA, with mean annual 

temperature of 5.61 °C and mean 

annual precipitation of 1246mm. 

01/2005- 

12/2006 

Jenkins et al. 

(2007); 

Richardson et 

al. (2007); 

 

Howland 

Forest (main 

tower) 

68.74W/ 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, minimal 

disturbance. 

01/2003- 

12/2003 

Davidson et al. 

(2006) 

UCI-1964 

burn site 

98.38W/ 

55.91N 

260 Boreal 

forest 

Located in a continental boreal forest, 

dominated by black spruce trees, within 

the BOREAS northern study area in 

central Manitoba, Canada. 

01/2002- 

12/2003 

Goulden et al. 

(2006) 

 

 

Brookings 96.84W/ 

44.35N 

510 Grassland Located in a private pasture, belonging 

to the Northern Great Plains 

Rangelands, the grassland is 

representative of many in the north 

central United States, with seasonal 

winter conditions and a wet growing 

season. 

01/2005- 

12/2006 

Gilmanov et al. 

(2005) 

Atqasuk        

157.41W/ 

70.47N 

15 Wet 

tundra 

100 km south of Barrow, Alaska. 

Variety of moist-wet coastal sedge 

tundra, and moist-tussock tundra 

surfaces in the more well-drained 

upland. 

01/2003- 

12/2004 

Oechel et al. 

(2014); 

 

Ivotuk        

155.75W/ 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is located 

at the foothill of the Brooks Range and 

is classified as tussock sedge, dwarf-

shrub, moss tundra. 

01/2005- 

12/2005 

McEwing et al. 

(2015) 
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Table 3.4. Site description and measured RH data used to validate MIC-TEM-dormancy model  

Site  

 

Location 

(Longitude (degrees) 

/Latitude (degrees)) 

Elevation 

(m) 

Vegetation type Data range Citations 

US-EML 149.25W/ 

63.88N 

700 Alpine tundra 01/2009- 

12/2013 

Belshe et al. (2012) 

 

      

CA-SJ2 104.65W/ 

53.95N 

      580 Boreal forest 01/2004- 

12/2008 

Coursolle et al. (2006) 

      

US-Ho2 68.75W/ 

45.21N 

91 Temperate coniferous 

forest 

01/2000- 

12/2004 

Davidson et al. (2006) 

 

 

      

US-UMB 84.71W/ 

45.56N 

 234 Temperate deciduous 

forest 

01/2005- 

12/2006 
Gough et al. (2013) 

      

US-Ro4          93.07W/ 

 44.68N 

274 Grasslands 01/2016- 

12/2017 

Griffis et al. (2011) 

 

      

RU-Che          161.34E/ 

  68.61N 

  6 Wet tundra 01/2002- 

12/2005 

Merbold et al. (2009) 
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Figure 3.2. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk 

(alpine tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) 

(temperate coniferous forest), (d) Univ. of Mich. Biological Station (Temperate deciduous 

forest), (e) KUOM Turfgrass Field (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are 

different. Error bars represent standard errors among daily measure data in one month. 
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3.3.4 Spatial extrapolation 

For historical simulations during the 20th century, two sets of regional simulations using 

MIC-TEM-dormancy and MIC-TEM at a spatial resolution of 0.5° latitude × 0.5° longitude were 

conducted. Our model simulation contains two parts: spin-up and transient simulation. A typical 

spin-up was conducted to get the model to a steady state for each spatial location, which will be 

used as initial conditions for transient simulations (McGuire et al., 1992). During spin-up 

procedure, cyclic forcing data was used to force the model run, and repeated continuously until 

dynamic equilibrium was achieved at which the modeled state variables show a cyclic pattern or 

become constant.  Specifically, this study used the monthly historical climate data from 1900 to 

1940 to repeatedly drive the model for the spin-up. Before spin-up procedure, the model was 

initialized with default built-in carbon stocks (Raich et al., 1991). During transient simulations, 

the calibrated ecosystem-specific parameters were used for regional simulations. The previous 

dynamic equilibrium was used as initial value for transient simulation. The historical climatic 

forcing data, including the monthly air temperature, precipitation, cloudiness, and atmospheric 

CO2 concentrations, were organized from the Climatic Research Unit (CRU TS3.1) from the 

University of East Anglia (Harris et al., 2014). Gridded data of soil texture (Zhuang et al., 2003), 

elevation (Zhuang et al., 2015), and potential natural vegetation (Melillo et al., 1993) from 

literatures were also used. In our model, we assumed that soil texture, elevation, and potential 

natural vegetation data only vary spatially, not vary over time (Zhuang et al., 2015).  

In addition, regional simulations over the 21st century were conducted under two 

Intergovernmental Panel on Climate Change (IPCC) climate scenarios (RCP 2.6 and RCP 8.5). 

The future climatic forcing data under these two climate change scenarios were derived from the 

HadGEM2-ESmodel, which is a member of CMIP5project213 (https://esgf-

https://esgf-node.llnl.gov/search/cmip5/
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node.llnl.gov/search/cmip5/). Then the regional estimations were obtained by summing up the 

gridded outputs for our study region. The positive simulated NEP represents a CO2 sink from the 

atmosphere to terrestrial ecosystems, while a negative value represents a source of CO2 from 

terrestrial ecosystems to the atmosphere. 

 

3.4 Results 

3.4.1 Inversed Model Parameters and model validation 

Using SCE-UA ensemble method, 50 independent sets of parameters were converged to 

minimize the objective function. Then the optimized parameters are calculated as the mean of these 

50 sets of inversed parameters. The boxplot of parameter posterior distributions reflects different 

ecosystem properties at these sites (Figure 3.3). For instance, carbon use efficiency (CUE) was 

much higher in tundra types than in forests, meaning microorganisms in environment with higher 

energy limitation tend to enhance the efficiency of energy transportation. Besides, alpha, the 

maintenance weight, was also much higher in tundra types than in forests. The opposite can be 

seen from parameter beta, the ratio of dormant maintenance rate to specific maintenance rate for 

active biomass. Other microbial related parameters did not differentiate much among different 

vegetation types.  

After parameterization, the MIC-TEM-dormancy was validated with monthly NEP data 

for six representative ecosystems, and the comparisons between monthly observed NEP and 

simulated NEP were presented in Figure 3.4. With the optimized parameters, the dormancy-

based model was used to reproduce NEP to compare with the measured NEP (Table 3.5). The 

statistical analysis shows that R2   ranges from 0.67 for Atqasuk to 0.93 for Bartlett Experimental 

Forest (Table 3.5). Generally, our new model performs better for forest ecosystems than for 

https://esgf-node.llnl.gov/search/cmip5/
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tundra ecosystems. Compared with MIC-TEM, which is no dormancy-based, dormancy model 

performs better for alpine tundra, temperate coniferous forest, and grassland. For other sites, two 

models show similar performance (Table 3.5). Another set of sites with monthly soil respiration 

data were selected to conduct model validation. The comparisons between monthly observed RH 

and simulated RH from two contrasting models were conducted (Figure 3.5). MIC-TEM-

dormancy has higher R2 and lower RMSE (Table 3.6).  Sixty-one sites with average annual RH in 

northern high-latitude region were used to further evaluate the new model performance. The 

dormancy model has lower intercept and slope with R2 of 0.45, while R2 of MIC-TEM is 0.3 

(Figure 3.6). These analyses indicate that new model is more realistic in representing 

heterotrophic respiration (RH) by considering microbial dormancy. This difference further affects 

soil available nitrogen dynamics, influencing nitrogen uptake by plants, the rate of 

photosynthesis and NPP.  
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Figure 3.3. Boxplot of parameter posterior distribution that are obtained after ensemble inverse 

modeling for MIC-TEM-dormancy all six sites: US-Ivo: Ivotuk (alpine tundra), CA-NS3: UCI-

1964 burn site (boreal forest), US-Ho1: Howland Forest (temperate coniferous forest), US-UMB: 

Univ. of Mich. Biological Station (temperate deciduous forest), US-KUT: KUOM Turfgrass 

Field (grassland), US-Atq: Atqasuk (wet tundra). 
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Figure 3.4. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk 

(alpine tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) 

(temperate coniferous forest), (d) Bartlett Experimental Forest (Temperate deciduous forest), (e) 

Brookings (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different.  
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Figure 3.5. Comparison between observed and simulated RH (gC m-2mon-1) at: (a) US-EML 

(alpine tundra), (b) CA-SJ2 (boreal forest), (c) US-Ho2 (temperate coniferous forest), (d) US-

UMB (Temperate deciduous forest), (e) US-Ro4 (Grassland), and (f) RU-Che (Wet tundra). 

Note: scales are different.  
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Figure 3.6. Linear regression between simulated and observed annual RH (gC m-2yr-1) for: (a) 

MIC-TEM-dormancy, and (b) MIC-TEM.  



69 

 

 

6
9

 

6
9

 

 
 

 

 

 

 

 

 

 

Table 3.5. Model validation statistics for Dormancy model and MIC-TEM at six sites with NEP 

data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Name 
    Vegetation 

type 

Models Intercept Slope R-square Adjusted R-

square 

p-value 

Ivotuk 
    Alpine 

tundra 

MIC-TEM 0.85 0.83 0.70 0.67 <0.001 

Dormancy -0.51 1.09 0.75 0.73 <0.001 

        

UCI-1964 burn 

site 
    Boreal forest 

MIC-TEM 0.18 1.03 0.912 0.9080 <0.001 

Dormancy -0.21 0.96 0.90 0.894 <0.001 

        

Howland Forest 

(main tower) 

Temperate 

coniferous 

forest 

MIC-TEM 7.29 0.72 0.85 0.83 <0.001 

Dormancy 0.27 1.05 0.89 0.88 <0.001 

        

Bartlett 

Experimental 

Forest 

Temperate 

deciduous 

forest 

MIC-TEM -6.05 0.91 0.944 0.941 <0.001 

Dormancy -2.34 1.13 0.93 0.924 <0.001 

        

Brookings       Grassland 
MIC-TEM 3.05 0.71 0.84 0.83 <0.001 

Dormancy 0.17 0.95 0.90 0.898 <0.001 

        

Atqasuk      Wet tundra 
MIC-TEM 7.22 1.85 0.71 0.70 <0.001 

Dormancy 0.19 0.82 0.67 0.66 <0.001 
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Table 3.6. Model validation statistics for Dormancy model and MIC-TEM at six sites with RH 

data 

 

 

 

 

Site ID Vegetation type Models Intercept Slope R-

square 

Adjusted R-

square 

RMSE p-value 

US-EML Alpine tundra MIC-TEM 2.90 0.91 0.79 0.78 3.55 <0.001 

Dormancy 1.81 0.74 0.87 0.85 2.69 <0.001 

         

CA-SJ2 Boreal forest MIC-TEM 7.59 1.12 0.84 0.83 9.8 <0.001 

Dormancy 2.6 0.74 0.86 0.85 3.97 <0.001 

         

US-Ho2 Temperate 

coniferous forest 

MIC-TEM 4.07 0.89 0.86 0.84 12.39 <0.001 

Dormancy 6.59 0.71 0.91 0.89 11.83 <0.001 

         

US-

UMB 

Temperate 

deciduous forest 

MIC-TEM -4.73 1.32 0.81 0.8 20.05 <0.001 

Dormancy 13.6 0.67 0.85 0.84 12.94 <0.001 

         

US-Ro4 Grassland MIC-TEM 9.34 0.87 0.81 0.79 11.25 <0.001 

Dormancy 4.81 0.65 0.86 0.84 9.21 <0.001 

         

RU-Che Wet tundra MIC-TEM 2.5 0.67 0.72 0.71 6.24 <0.001 

Dormancy 1.96 0.77 0.81 0.79 5.95 <0.001 
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3.4.2 Regional carbon dynamics during the 20th century 

Regional extrapolation with both models estimated a regional carbon sink but with 

different magnitudes (Figure 3.7c). Here positive values of NEP represent sinks of CO2 into 

terrestrial ecosystems, while negative values represent sources of CO2 to the atmosphere. With 

optimized parameters, MIC-TEM estimated a regional carbon sink of 77.6 Pg with the interannual 

standard deviation of 0.21 Pg C yr-1 during the 20th century. However, MIC-TEM-dormancy nearly 

doubles the sink at 153.5 Pg with the interannual standard deviation of 0.12 Pg C yr-1 during the 

last century, which estimates 75.9 Pg more carbon sink than MIC-TEM does but with less 

interannual variation (Figure 3.7c). At the end of the century, MIC-TEM estimated that NEP 

reaches 1.0 Pg C yr-1 in comparison with MIC-TEM-dormancy estimates of 1.5 Pg C yr-1 (Figure 

3.7c). Both models simulated similar trends for regional NPP, RH and NEP (Figure 3.7). Generally, 

they show an increasing trend in the 20th century except a slight decrease during the 1960s (Figure 

3.7). Meanwhile, with optimized parameters, MIC-TEM-dormancy estimated NPP and RH at 7.94 

Pg C yr-1 and 6.4 Pg C yr-1, which are 5.8% and 16.3% less than the estimations from MIC-TEM, 

respectively (Figures 3.7a and 3.7b). This pronounced difference of NEP between two models 

comes from the disparity between the simulated NPP and RH with them. Without considering 

dormancy, MIC-TEM estimates more active microbial biomass since it assumes the whole 

microbial biomass pool will participate in soil decomposition. The fact is only active part of 

microbial biomass can work for soil decomposition, meaning MIC-TEM overestimates RH. On the 

other hand, Overestimation of RH can induce higher nitrogen uptake by plants, which will 

accelerate rate of photosynthesis and further enhance NPP projection. Although MIC-TEM 

estimates higher NPP and RH than MIC-TEM-dormancy does, NEP estimated from MIC-TEM is 

actually lower.  
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The average annual seasonal patterns of NPP, RH and NEP during the 1990s were also 

organized from regional simulations with two models (Figure 3.8). Temporally, both two models 

projected higher NPP and RH in summer than in winter (Figures 3.8a and 3.8b) due to higher soil 

temperature and moisture (McGuire et al., 1992). MIC-TEM produced less RH in winter but 

higher RH in summer than MIC-TEM-dormancy (Figure 3.8b), which indicates that without 

dormancy, model tends to estimate lower soil respiration compared to dormancy model due to 

ignorance of dormant respiration in winter but estimate higher soil respiration due to higher 

estimation of active biomass in summer. In the meantime, seasonal cycle of NPP with MIC-

TEM-dormancy shows a relative flattening pattern compared with MIC-TEM, which is similar to 

seasonal cycle of RH (Figure 3.8a). This is because higher RH can cause higher NPP due to the 

reasons we have mentioned above. Though RH and NPP show the similar seasonal patterns, NEP 

can still show different pattern since it’s the difference between NPP and RH. Here seasonal 

cycles of NEP with models are close to each other (Figure 3.8c), but dormancy model projected 

slightly higher NEP in summer. Besides, setting the RH projection from MIC-TEM as baseline, 

MIC-TEM-dormancy averagely projected 33% less RH in summer (May to September), and 30% 

more in winter (other months). This suggested that relative difference of RH between two models 

in summer was higher than in winter.  
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Figure 3.7. Simulated annual net primary production (NPP, top panel), heterotrophic respiration 

(RH, center panel) and net ecosystem production (NEP, bottom panel) during the 20th century by 

dormancy model and MIC-TEM, respectively. 
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Figure 3.8. Annual seasonal pattern of simulated (a) net primary production (NPP, top panel), (b) 

heterotrophic respiration (RH, center panel) and (c) net ecosystem production (NEP, bottom 

panel) during the 1990s from dormancy model and MIC-TEM. 
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3.4.3 Regional carbon dynamics during the 21st century 

Under the RCP 8.5 scenario, both models estimated the region acts as a carbon sink 

(Figure 3.9). The MIC-TEM-dormancy predicted that the sink is 129.9 Pg with the interannual 

standard deviation of 0.13 Pg C yr-1, whereas MIC-TEM estimates the sink is 79.5 Pg with the 

interannual standard deviation of 0.37 Pg C yr-1 during the 21st century (Figure 3.9). Thus, MIC-

TEM-dormancy estimates an increase of 50.4 Pg regional carbon sequestration relative to MIC-

TEM but with less interannual variation (Figure 3.9). Both models predict similar temporal 

trends for NEP, namely increasing from the 2000s and then decreasing from the 2070s onward 

(Figure 3.9). MIC-TEM-dormancy predicts that carbon sink reaches 1.36 Pg C yr-1 in the 2090s, 

which is 0.26 Pg C yr-1 more than projection of MIC-TEM. Moreover, MIC-TEM-dormancy 

estimated NPP and RH at 10.2 Pg C yr-1 and 8.9 Pg C yr-1, which are 1.3 Pg C yr-1 and 1.8 Pg C 

yr-1 less than the estimations from MIC-TEM, respectively (Figure 3.9). Under the RCP 2.6 

scenario, the cumulative NEP from two models diverged by 125.2 Pg C by 2100. The trajectory 

of inter-annual NEP estimated with the two models also diverged. The MIC-TEM predicted the 

region fluctuates between carbon sinks and sources, and totally acts as a carbon source of 1.6 Pg 

C with the interannual standard deviation of 0.24 Pg C yr-1 during the 21st century. In contrast, 

MIC-TEM-dormancy projected the region acts as a carbon sink of 123.6 Pg C with the 

interannual standard deviation of 0.1 Pg C yr-1 (Figure 3.9). MIC-TEM-dormancy estimates NPP 

and RH at 9.9 Pg C yr-1 and 8.7 Pg C yr-1, which are 0.5 Pg C yr-1 and 1.7 Pg C yr-1 less than the 

estimations from MIC-TEM, respectively (Figure 3.9). 

The average annual seasonal patterns of NPP, RH and NEP during the 2990s by two 

models were also presented (Figure 3.10). MIC-TEM-dormancy estimated higher RH in winter, 

but lower RH in summer under both future scenarios (Figure 3.10). Similar seasonal cycle pattern 
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appears for NPP projection. The combined flattening patterns of NPP and RH result in different 

patterns for NEP. Under the RCP 2.6 scenario, MIC-TEM-dormancy predicts higher NEP from 

June to October, but similar NEP in other months to MIC-TEM (Figure 3.10). Under the RCP 8.5 

scenario, MIC-TEM-dormancy predicts higher NEP from June to September, but much lower 

NEP in other months than MIC-TEM (Figure 3.10). 

 

 

 

 

 

 

 

 



77 

 

 

7
7

 

7
7

 

 

Figure 3.9. Predicted changes in carbon fluxes: (i) NPP, (ii) RH, and (iii) NEP for all land areas 

north of 45 °N in response to transient climate change under the RCP 8.5 scenario (left panel) 

and RCP 2.6 scenario (right panel) with dormancy model and MIC-TEM, respectively. The 

decadal running mean is applied.  
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(a) 

 

(b)  

 

Figure 3.10. Annual seasonal pattern of simulated net primary production (NPP, top panel), 

heterotrophic respiration (RH, center panel) and net ecosystem production (NEP, bottom panel) 

during the 2090s from dormancy model and MIC-TEM under: (a) RCP 2.6 scenario (top panel) 

and (b) RCP 8.5 scenario (bottom panel). 
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3.5. Discussion 

Soils are the largest carbon repository in the terrestrial biosphere and hold 2.5 times more 

carbon than the atmosphere (Frey et al., 2013; Schlesinger & Andrews, 2000). Especially, a 

significant portion of soil organic carbon currently stored in northern high latitudes region 

(Tarnocai et al., 2009). Besides, climate over this region has warmed in recent decades (Serreze & 

Francis, 2006) and the changing climate is expected to alter the carbon cycle through influencing 

the activities of microorganisms in controlling soil decomposition (Manzoni et al., 2012; Melillo 

et al., 2011). Therefore, explicit consideration of microbial traits and functions in large-scale 

biogeochemistry models is necessary for better quantification of carbon-climate feedbacks 

(Thullner et al., 2005; Wang et al., 2015).  Our regional simulations with two contrasting models 

(MIC-TEM, MIC-TEM-dormancy) indicate the region was a carbon sink in past decades, which 

is consistent with results from other process-based models (White et al., 2000; Houghton et al., 

2007; McGuire et al., 2009; Schimel, 2013). However, the magnitudes of this sink are quite 

different in two models. Moreover, MIC-TEM-dormancy predicts the sink will decrease under 

both RCP 8.5 and RCP 2.6 scenarios during the 21st century, while MIC-TEM projects that the 

sink will increase under the RCP 8.5 but change to carbon source under the RCP 2.6 scenario. The 

large difference in two models suggests the importance of incorporating microbial dormancy 

effects.   

The large bias between dormancy and non-dormancy models mainly comes from two 

parts.  First, most important microbial activities such as soil organic carbon decomposition and 

nutrient cycling largely depend on the active fraction of microbial communities, not total 

microbial biomass (Wang et al., 2014; Blagodatsky et al., 2000). However, only a small part 

(about 0.1-2%, seldom exceed 5%) of the total soil microbial biomass is recognized to be active 

under natural conditions (Blagodatsky et al., 2011; Werf & Verstraete, 1987). Thus, dormancy 
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could be a prominent feature in soil systems (Wang et al., 2014). Without considering dormancy, 

the “effective” microbial biomass for soil decomposition could be overestimated, resulting in 

overestimation of heterotrophic respiration (He et al., 2015). Our regional estimate of RH is 6.4 

Pg C yr-1 during the 20th century by MIC-TEM-dormancy, while 7.7 Pg C yr-1 by MIC-TEM. No 

dormancy model simulated 20.3% higher respiration than dormancy model. For future 

simulations, MIC-TEM-dormancy predicted 8.7 Pg C yr-1 and 9.0 Pg C yr-1 of RH under RCP 2.6 

and RCP 8.5 scenarios during the 21st century, respectively. Nevertheless, no dormancy model 

simulated 19.5% and 21.2% higher respiration than dormancy model under RCP 2.6 and RCP 8.5 

scenarios, respectively. He et al. (2015) predicted total soil RH of all temperate forests (25°N-

50°N) from the dormancy model amounted to 7.28 Pg C yr-1 and 8.83 Pg C yr-1 from a no-

dormancy model, which is 21.3% higher than the dormancy model. Although their study region 

and simulation period are different from our study, the results can still be comparable.  Both 

studies indicated that the magnitude of RH and proportion from no-dormancy model are higher 

than dormancy models. Second, high soil respiration stimulates N mineralization in soils 

(Zhuang et al., 2001, 2002), making more nutrients for photosynthesis of plants (Raich et al., 

1991; McGuire et al., 1995). Therefore, NPP will be higher due to the N enrichment from higher 

RH. However, how NEP will change is still unclear. Our regional estimate of NEP during the 20th 

century by MIC-TEM-dormancy is 1.54 Pg C yr-1, and is 0.78 Pg C yr-1 by MIC-TEM. Schimel 

et al. (2001) reported that a range of estimates of the northern extratropical NEP is from 0.6 to 

2.3 PgC yr-1 in the 1980s. In comparison with our estimates of 1.61 Pg C yr-1 with MIC-TEM-

dormancy and 0.84 Pg C yr-1 with MIC-TEM, our regional estimates of NEP are in reasonable 

range. Moreover, our predicted trend of NEP is very similar to the finding of White et al. (2000), 

indicating that NEP increases from the 2000s to the 2070s, and then decreases in the 2090s. 
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Moreover, future simulations under two contrasting climate scenarios (RCP 2.6 and RCP 8.5) 

exhibit a large difference of 81.1 Pg C of cumulative NEP during the 21st century by MIC-TEM, 

but only 6.3 Pg C of that by MIC-TEM-dormancy. This difference indicates microbes provide a 

resistant response to climate change due to dormancy to some extent (Treseder et al., 2011).  

Although our dormancy model can project reasonable carbon fluxes and indicate the 

importance of incorporating microbial dormancy when compared with no dormancy model 

(MIC-TEM; Zha & Zhuang et al., 2018), there are some other microbial traits have not yet been 

considered in our model. For instance, one vital common evolutionary trait of microbe is the 

community shift (Wang et al., 2015) with changing environment, including warming, N 

fertilization and precipitation (Treseder et al., 2011; Frey et al., 2013; Allison et al., 2009; Evans 

& Wallenstein, 2011). Community shift will influence microbial physiology, temperature 

sensitivity and growth rates (Classen et al., 2015), which will further affect the rate of soil 

decomposition and other carbon dynamics (Treseder et al., 2011; Schimel & Schaeffer, 2012; 

Todd-Brown et al., 2011). Moreover, microbial acclimation is another important trait to affect 

soil decomposition. Recent studies have found the capacity of the microbial community to 

maintain the warming-induced elevated respiration could decrease over time because of 

acclimation (Melillo et al. 1993; Todd-Brown et al., 2011). This mechanism of adaption to a new 

temperature regime shall be factored into future soil decomposition analysis. Besides, microbial 

community composition was ignored in our model. We didn’t separate among functional 

microbial groups, but gather microbes into one “box”. However, microbial community 

composition could influence ecosystem functioning, and their variance in responses to 

environmental conditions could alter the prediction of the rates of decomposition of organic 

material (Balser et al. 2002; Fierer et al. 2007). Especially, some narrowly-distributed functions 
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can be more sensitive to microbial community composition, and these might benefit most from 

explicit consideration of distinguishing functional groups in ecosystem models (McGuire & 

Treseder, 2010; Schimel 1995). Thus, functional dissimilarity in microbial communities can be 

considered in next step for model development (Strickland et al., 2009; Moorhead et al., 2006).  

Except for above model limitations, additional uncertainties may come from inadequate 

model parameterization and model assumptions. For example, a critical microbial parameter, 

carbon use efficiency (CUE), is a primary control to soil CO2 efflux. Higher CUE indicates more 

microbial growth and more carbon uptake by plants, while lower CUE indicates higher soil 

decomposition (Manzoni et al., 2012). Theoretical and empirical studies have suggested that 

CUE depends on both temperature and substrate quality (Frey et al., 2013) and decreases as 

temperature increases and nutrient availability decreases (Manzoni et al., 2012).  Our study 

considered the CUE sensitivity to temperature, but not nutrient availability. On the other hand, 

some model assumptions can also cause uncertainties. For example, we assumed that vegetation 

will not change during the transient simulation. However, over the past few decades in northern 

high latitudes, temperature increases have led to vegetation shift from one type to another 

(Hansen et al., 2006; White et al., 2000). The vegetation changes will affect carbon cycling in 

these ecosystems.  

3.6. Conclusions 

This study incorporated microbial dormancy into a detailed microbial-based soil 

decomposition biogeochemistry model to examine the fate of large Arctic soil carbon under 

changing climate conditions. Regional simulations using MIC-TEM-dormancy indicated that, 

over the 20th century, the region is a carbon sink of 153.5 Pg. This sink could decrease to 129.9 

Pg under the RCP 8.5 scenario or 123.6 Pg under the RCP 2.6 scenario during the 21st century. 
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Whether considering microbial dormancy or not can cause large differences in soil 

decomposition estimation between two models. Meanwhile, due to available nitrogen affected by 

soil decomposition, net primary production is consequently influenced in these two centuries. 

The combined changes in soil decomposition and net primary production led to large differences 

in carbon budget estimation between two models. Compared with MIC-TEM, MIC-TEM-

dormancy projected 75.9 Pg more C stored in the terrestrial ecosystems over the last century, 

50.4 Pg and 125.2 Pg more C under the RCP 8.5 and RCP 2.6 scenarios, respectively. This study 

highlights the importance of the representation of microbial dormancy in earth system models in 

order to adequately quantify the carbon dynamics in northern high latitudes. 
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CHAPTER 4. MODELING THE ROLE OF MOSS IN TERRESTRIAL 

ECOSYSTEM CARBON DYNAMICS IN NORTHERN HIGH-LATITUDES3 

 

4.1 Abstract 

In addition to higher plants, mosses are ubiquitous in northern terrestrial ecosystems, 

which play an important role in regional carbon, water and energy cycling. Traditional models 

without considering moss may bias the quantification of the regional carbon dynamics. Here we 

incorporated moss into a process-based biogeochemistry model, the Terrestrial Ecosystem Model 

(TEM 5.0), as a plant functional type to develop a new model (TEM_Moss).  The new TEM 

explicitly modeled the interactions between higher plants and mosses and their competition for 

energy, water, and nutrient. Compared to the estimates using TEM 5.0, the new model estimated 

that the regional terrestrial soils stored 132.7 Pg more C during the last century, and will store 

157.5 Pg and 179.1 Pg more C under the RCP 8.5 and RCP 2.6 scenarios, respectively, in this 

century. Ensemble regional simulations for the 21st century with TEM_Moss predicted that the 

region will accumulate 161.1±142.1 Pg C under the RCP 2.6 scenario, and 186.7±166.1 Pg C 

under the RCP 8.5 scenario over the century. Our study highlights the necessity of coupling moss 

into Earth System Models to adequately quantify terrestrial carbon-climate feedbacks in the 

Arctic.  

 

4.2 Introduction 

Northern High latitude ecosystems occupy up to 30% of global terrestrial carbon (C) in 

soils and plants (Allison and Treseder, 2008; Jobbágy and Jackson, 2000; Kasischke, 2000; 

Tarnocai et al., 2009; Hugelius et al., 2014), and contain about 1024 Pg soil organic carbon 

(Treseder et al., 2016; Schuur et al., 2008). This large amount of carbon is potentially responsive 

3Zha, J. and Zhuang, Q (2019), Modeling the role of moss in terrestrial ecosystem carbon dynamics 

in northern high-latitudes (Submitted to Journal of Advances in Modeling Earth Systems).  
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to ongoing global warming (McGuire et al., 1995; Melillo et al., 1993; McGuire and Hobbie, 

1997), which is especially pronounced at high latitudes (Treseder et al., 2016; IPCC, 2014). 

Thus, explicit investigation of carbon-climate feedback is important (Wieder et al., 2013; Bond-

Lamberty and Thomson, 2010). 

Ecosystem models are important tools for understanding the role of boreal ecosystems in 

climate warming (Bond-Lamberty et al., 2005; Chadburn et al., 2017; Zhuang et al., 2002; 

Treseder et al., 2016). Process-based biogeochemical models such as TEM (Hayes et al., 2014; 

Raich et al., 1991; Melillo et al., 1993; McGuire et al., 1992; Zhuang et al., 2001, 2002, 2010, 

2013), Biome-BGC (Running and Coughlan, 1988; Bond-Lamberty et al., 2007), and Biosphere 

Energy Transfer Hydrology scheme (BETHY) (Knorr, 2000) are increasingly employed to 

simulate current and future carbon dynamics. Those models estimate carbon dynamics by 

simulating processes such as photosynthesis, respiration, nutrient and water cycling, and soil 

decomposition (Bond-Lamberty et al., 2005; Zhuang et al., 2015). The results from these models 

are influenced by components and processes that are built into the model (Turetsky et al., 2012; 

Oreskes et al., 1994). However, whether boreal forests act as a carbon sink or source haven’t 

reached consensus yet due to model uncertainties and limitations (Cahoon et al., 2012; Hayes et 

al., 2011; Todd-Brown et al., 2013).  

One limitation in many models is that they only concern higher plants for simplification, 

but ignore some important components such as understory processes, although they play crucial 

roles in biogeochemical cycles (Zhuang et al., 2002; Treseder et al., 2012; Bond-Lamberty et al., 

2005). For instance, mosses are ubiquitous in northern ecosystems, and show a pattern of 

increasing abundance with increasing latitude (Turetsky et al., 2012; Jägerbrand et al., 2006). 

Their functional traits, including tolerance to drought and a broad response of net assimilation 
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rates to temperature, allow them to persist in high-latitude regions (Kallio and Heinonen, 1975; 

Harley et al., 1989). The activities of moss that related to water, nutrient, and energy may 

influence several ecosystem processes such as permafrost formation and thaw, peat 

accumulation, soil decomposition and net primary productivity (NPP) (Turetsky et al., 2012; 

Nilsson and Wardle, 2005). Mosses can have positive or negative interactions with vascular 

plants (Skre and Oechel, 1979; Turetsky et al., 2010). On the one hand, mosses compete with 

vascular plants for available nutrients, which can cause negative effects on vascular plant 

productivity (Skre and Oechel, 1979; Gornall et al., 2011; Turetsky et al., 2012). Besides, a thick 

moss cover can form an environment with water logging or low oxygen supply, which is 

common in high-latitude regions (Skre and Oechel, 1979; Cornelissen et al., 2007). The moss 

cover prevents absorbed solar heat from being conducted down into the soil, and tends to 

decrease soil temperature in summer. Therefore, soil decomposition rates can be affected since it 

is mediated by soil temperature, which will further influence growth of vascular plants (Gornall 

et al., 2007). On the other hand, some species of mosses can serve as an important source of 

nitrogen because of their ability of facilitating biological nitrogen fixation and low nitrogen-use 

efficiency (Basilier, 1979; DeLuca et al., 2007; Markham, 2009; Kip et al., 2011). Thus, mosses 

can also exert positive effects on plant growth due to their regulation on nitrogen availability for 

vascular plants (Hobbie et al., 2000; Gornall et al., 2007). It is gradually recognized that mosses 

can have comparable influences on high-latitude ecosystems to vascular plants, due to their large 

density and essential function in plant competition, soil climate, and carbon and nutrient cycling 

(Longton, 1988; Lindo and Gonzalez, 2010; Okland, 1995; Pharo and Zartman, 2007). They can 

on average contribute 20% of aboveground NPP in boreal forests (Turetsky et al., 2010), and 

their annual NPP may reach as high as 350 g m-2 in some regions in the Arctic (Pakarinen and 
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Vitt 1973), even exceed that of vascular plants (Oechel and Collins, 1976; Clarke et al., 1971). 

Thus, ignorance of mosses, the keystone species of boreal ecosystems, can pose large biases in 

model predictions and limit the utility of models. To date, a number of ecosystem models have 

included moss activities to explore the response of moss to disturbance (Bond-Lamberty et al., 

2007; Euskirchen et al., 2009; Frolking et al., 2010), or improve model prediction of carbon 

dynamics (Bond-Lamberty et al., 2005).  

This study developed a new version of Terrestrial Ecosystem Model (Raich et al., 1991; 

McGuire et al., 1992; Zhuang et al., 2001, 2002, 2010, 2013, 2015), hereafter referred to as 

TEM-Moss, by explicitly considering moss impacts on terrestrial ecosystem carbon dynamics.   

The interactions and competition of water, energy and nutrient between higher plants and mosses 

are explicitly modeled. The verified TEM-Moss and previous TEM were compared against the 

observed data of ecosystem carbon, soil temperature and moisture dynamics. Both models were 

then used to analyze the regional carbon dynamics in northern high latitudes (north of 45 N) 

during the 20th and 21st centuries. 

 

4.3 Methods 

4.3.1 Overview 

First, we briefly describe how we developed the TEM_Moss by modifying the previous 

TEM 5.0 to consider their interactions between higher plants and mosses. Second, 

parameterization and validation of TEM_Moss using measured gap-filled carbon flux data and 

meteorological data at representative sites is presented. Third, we present how we have applied 

both models (TEM_Moss and TEM 5.0) to the northern high latitudes (above 45 °N) to quantify 

regional carbon dynamics for the 20th and 21st centuries.  
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4.3.2 Model description 

TEM is a process-based, large-scale biogeochemical model that uses monthly climatic 

data and spatially explicit vegetation and soil information to simulate the dynamics of carbon and 

nitrogen fluxes and pool sizes of plants and soils (Raich et al., 1991; McGuire et al., 1992; 

Zhuang et al., 2010, 2015). However, in previous versions of TEM, only processes of higher 

plants have been included. Here we developed a TEM_Moss model by modifying model 

structure and incorporating activities of moss into extant TEM 5.0 (Zhuang et al., 2003). Based 

on the structure of TEM 5.0, we added carbon and nitrogen pools and fluxes to simulate 

activities of moss including photosynthesis, respiration, litterfall and nutrient and water cycling 

(Figure 4.1). Thus, internal data structure of TEM_Moss include processes of both higher plants 

and mosses (Figure 4.1).  

In TEM_Moss, moss photosynthesis (GPPm)  is described as a maximum rate, reduced by 

influence of photosynthetically active radiation, mean air temperature, mean atmospheric carbon 

dioxide concentrations, moss moisture, and indirectly, nitrogen availability (Frolking et al., 1996; 

Launiainen et al., 2015; Zhuang et al., 2002). For each time step, GPPm is calculated as: 

GPPm = Cmax ∗ 𝑓(PAR) ∗ 𝑓(T) ∗ 𝑓(wm) ∗ 𝑓([CO2]) ∗ 𝑓(NA)    (1) 

Where Cmax denotes the maximum rate of carbon assimilation by moss (units: gC m-2mon-1),  

𝑓(PAR) is a scalar function that depends on monthly photosynthetically active radiation (PAR), 

which is calculated as (Frolking et al., 1996; Launiainen et al., 2015; Kulmala et al., 2011):                                         

𝑓(PAR) =
PAR

b+PAR
                                           (2) 

And b (units: µmol m−2 s−1) is the half saturation constant for PAR use by moss as indicated by 

the Michaelis–Menten kinetic.  
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The temperature effect on moss photosynthesis is modeled as a multiplier (Frolking et al., 

1996; Raich et al., 1991): 

𝑓(T) =
(T−Tmin)∗(T−Tmax)

(T−Tmin)∗(T−Tmax)−(T−Topt)
2                (3) 

Where T is the monthly mean air temperature (units: ℃), and Tmin, Tmax, and Topt are parameters 

(units: ℃) that limit f (T) to a range of zero to one.  

The moisture effect is also modeled as a multiplier (Frolking et al., 1996; Raich et al., 

1991): 

                               𝑓(wm) =
(wm−wmin)∗(wm−wmax)

(wm−wmin)∗(wm−wmax)−(wm−wopt)
2         (4) 

Where wm is moss moisture (units: mm), and wmin, wmax, and wopt are related parameters (units: 

mm) that limit f (wm) to a range of zero to one.  

f ([CO2]) is also a scalar function that depends on monthly mean atmospheric carbon 

dioxide concentration (Zhuang et al., 2002; Raich et al., 1991): 

𝑓([CO2]) =
[CO2]

km+[CO2]
         (5) 

Where [CO2] (units: µL/L) represents monthly mean atmospheric carbon dioxide concentration, 

the km (units: µL/L) is the internal CO2 concentration at which moss C assimilation proceeds at 

one-half its maximum rate.  

The function f (NA) models the limiting effects of plant nitrogen status on GPP (McGuire 

et al., 1992; Zhuang et al., 2002), which is a unitless multiplier.  

Meanwhile, in TEM_Moss, we defined the moss respiration rate (Rm) as a function of 

moss respiration rate at 10 ℃, moss respiration temperature sensitivity which was expressed as a 

Q10 function, and moss moisture (Launiainen et al., 2015; Frolking et al., 1996): 

Rm = R10,m ∗ Q10,m

Tm−10

10 ∗ 𝑓∗(wm)           (6) 
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Where R10,m (units: gC m-2mon-1) represents the moss respiration rate at 10 ℃, the parameter  

Q10,m is moss respiration temperature sensitivity, Tm is moss temperature (℃) and wm is moss 

moisture (mm). 

The function 𝑓∗(wm ) denotes the moisture effect on moss respiration. Here we used 

𝑓∗(wm ) to distinguish with the function 𝑓(wm), which is moisture effect on moss 

photosynthesis as mentioned earlier. 𝑓∗(wm ) is defined as (Frolking et al., 1996; Zhuang et al, 

2002): 

𝑓∗(wm) = 1 −
(wm−wmin−wopt,r)2

(wm−wmin)∗wopt,r+wopt,r
2           (7) 

Where wopt,r (units: mm) denotes the optimal water content for moss respiration.  

Besides, the carbon in litter production from mosses to soil (LC,m) is modeled as 

proportional to moss carbon biomass with a constant ratio (Zhuang et al., 2002):  

LC,m = cfallm ∗ MOSSC                (8) 

Where MOSSC denotes the moss carbon biomass, and cfallm is the corresponding constant 

proportion.  

Thus, moss carbon pool (MOSSC) can be modeled as: 

dMOSSC

dt
= GPPm − Rm − LC,m                       (9) 

On the other hand, nitrogen uptake by moss (Nuptakem) is modelled as a function of available 

soil nitrogen, moss moisture, and mean air temperature, and the relative amount of energy 

allocated to N versus C uptake (Zhuang et al., 2002; Raich et al., 1991): 

Nuptakem = Nmax ∗
Ks∗Nav

kn+Ks∗Nav
∗ e0.0693T ∗ (1 − Am)          (10) 

Where Nmax is the maximum rate of nitrogen uptake by mosses (units: gC m-2mon-1), and Nav 

(units: g m-2) represents available soil nitrogen, which is treated as a state variable in our model. 
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kn(units: g m-2) is the concentration of available soil nitrogen at which nitrogen uptake proceeds 

at one-half its maximum rate. T is the monthly mean air temperature (℃), and Am is a unitless 

parameter ranging from 0 to 1, which represents relative allocation of effort to carbon vs. 

nitrogen uptake. Ks is a parameter accounting for relative differences in the conductance of the 

soil to N diffusion, which can be calculated through moss moisture (Zhuang et al., 2002; Raich et 

al., 1991): 

Ks = 0.9 ∗ (
wm

wf
)

3

+ 0.1                    (11) 

Where wf  (units: mm) denotes the moss field capacity.  

The nitrogen in litter production from mosses to soil (LN,m) is modeled as proportional to 

moss nitrogen biomass with a constant ratio (Zhuang et al., 2002):  

LN,m = nfallm ∗ MOSSN                (12) 

Where nfallm is the constant proportion to moss nitrogen biomass (MOSSN).  

Thus, moss nitrogen pool (MOSSN) can be modeled as: 

dMOSSN

dt
= Nuptakem − LN,m                       (13) 

At the same time, total carbon and nitrogen in litterfall, and total nitrogen uptake from 

soil available nitrogen are changed due to incorporation of mosses: 

LitterfallC = LC,v + LC,m          (14) 

                                                 LitterfallN = LN,v + LN,m          (15) 

Nuptake = Nuptakev + Nuptakem  (16) 

Where  LC,v and LN,v are carbon and nitrogen in litter production from higher plants to soil, and 

Nuptakev is nitrogen uptake by higher plants (Raich et al., 1991; Melillo et al., 1993; Zhuang et 

al., 2003). 
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Except for above equations, other governing equations in TEM 5.0 have not been 

changed. More equations of TEM 5.0 have been documented in previous studies (Raich et al., 

1991; McGuire et al., 1992; Zhuang et al., 2003; Zha & Zhuang, 2018).  

In TEM 5.0, a soil thermal module (STM) simulates soil thermal dynamics considering 

the effects of moss thickness, soil moisture, and snowpack (Zhuang et al., 2001, 2002). In STM, 

soil profile was treated as a three soil-layer system: (1) a moss plus fibric soil organic layer, (2) a 

humic organic soil layer, and (3) a mineral soil layer, and temperature for each layer can be 

output from STM (Zhuang et al., 2001, 2002, 2003). Temperature in moss layer is estimated with 

STM.   

A water balance module (WBM) was also incorporated into TEM 5.0 to simulate soil 

hydrologic dynamics (Vörösmarty et al., 1989; Zhuang et al., 2001). The WBM receives 

information on precipitation, air temperature, potential evapotranspiration, vegetation, soils and 

elevation to predict soil moisture evapotranspiration and runoff (Vörösmarty et al., 1989). The 

whole soil was treated as a single profile in WBM (Vörösmarty et al., 1989; Zhuang et al., 2001). 

To simulate moss moisture, we added a moss layer on the soil profile by modifying the WBM 

(Figure 4.2). Similar to soil moisture, moss moisture is also treated as a state variable in the 

revised WBM, which is modeled as: 

dwm

dt
= snowfall + rainfall − percolation − moss evapotranspiration        (17) 

Where the term “percolation” denotes the percolation from moss, which is the sum of rainfall 

percolation and snowmelt percolation from moss. We assume that there is no runoff from moss 

layer.  

Accompanied by the above equation, changes in soil water (SM) is modified as: 

dSM

dt
= percolation − rain excess − snow excess − plant evapotranspiration          (18) 
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Calculations for these water fluxes regarding higher plants were not changed. More details about 

an earlier version of WBM were described in Vörösmarty et al. (1989) and Zhuang et al. (2001). 
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Figure 4.1. Schematic diagram of TEM_Moss: Green dashed arrows are new carbon and 

nitrogen fluxes, representing moss production, moss respiration and litterfall of moss. Black 

arrows were in TEM 5.0 (Zhuang et al., 2013). 
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Figure 4.2. The revised Water Balance Model: Green dashed circle represents the hydrology 

dynamics for moss (Vorosmarty et al., 1989).  
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4.3.3 Model parameterization and validation 

The newly introduced parameters that are associated with moss activities were documented 

in Table 4.1. We parameterized the TEM_Moss for six representative ecosystem types in northern 

high latitudes with gap-filled monthly net ecosystem productivity (NEP, gCm-2mon-1) data from 

the AmeriFlux network (Davidson et al., 2000). The information of six sites that we chose to 

calibrate the TEM_Moss was compiled in Table 4.2. The parameterization was conducted using a 

global optimization algorithm known as SCE-UA (Shuffled complex evolution) method, which 

aims to minimize the difference between model simulations and measurements (Duan et al., 1994). 

In our calibration, the cost function of the minimization is: 

                            Obj = ∑ (NEPobs,i − NEPsim,i)
2k

i=1                                        (19) 

Where NEPobs,i and NEPsim,i are the measured and simulated NEP, respectively. k is the number 

of data pairs for comparison. Fifty independent sets of parameters were converged to minimize the 

objective function, and finally the optimized parameters were derived as the mean of these 50 sets 

of inversed parameters. We presented the boxplot of parameter posterior distributions at sites 

chosen for calibration (Figure 4.4). At the same time, the results of model parameterization were 

shown in Figure 4.3. Besides these parameters related to moss, all other parameters use their 

default values in TEM 5.0 (Zhuang et al., 2010, 2015). These optimized parameters were used for 

model validation and extrapolation.  

We verified the TEM_Moss simulated NEP, soil moisture and soil temperature. First, we 

conducted site-level simulations at six sites that contain level-4 gap-filled monthly NEP data from 

the AmeriFlux network (Table 4.3). Site-level monthly gap-filled soil moisture and soil 

temperature data were organized from the ORNL DAAC Dataset (https://daac.ornl.gov/) to make 

comparison with model simulations (Table 4.4 and Table 4.5). Local climate data including 

https://daac.ornl.gov/
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monthly air temperature (℃), precipitation (mm), and cloudiness (%) were obtained to drive these 

model simulations.   
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Figure 4.3. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk 

(alpine tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) 

(temperate coniferous forest), (d) Univ. of Mich. Biological Station (Temperate deciduous 

forest), (e) KUOM Turfgrass Field (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are 

different. Error bars represent standard errors among daily measure data in one month. 
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Figure 4.4. Boxplot of parameter posterior distribution that are obtained after ensemble inverse 

modeling for TEM_Moss all six sites: US-Ivo: Ivotuk (alpine tundra), CA-NS3: UCI-1964 burn 

site (boreal forest), US-Ho1: Howland Forest (temperate coniferous forest), US-UMB: Univ. of 

Mich. Biological Station (temperate deciduous forest), US-KUT: KUOM Turfgrass Field 

(grassland), US-Atq: Atqasuk (wet tundra). 
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Table 4.1. Parameters associated with moss activities in TEM_Moss 

 

 

 

 

    

 

 

Parameters Units descriptions Parameter 

range 

(value) 

references 

Cmax gC m−2 

mon−1 

maximum rate of C assimilation [50,500] Launiainen et al. (2015); Williams 

& Flanagan (1998) b µmol 

m−2 s−1 

Light half-saturation level [5, 150] Launiainen et al. (2015); Raich et 

al. (1991) 
Tmin ℃ minimum temperature [-10, 10] Frolking et al. (1996); Raich et al. 

(1991) 
Tmax ℃ maximum temperature  [30, 80] Frolking et al. (1996); Raich et al. 

(1991) 
Topt ℃ optimal temperature [15, 30] Frolking et al. (1996); Raich et al. 

(1991) 
wmin mm minimum water content for moss 

photosynthesis 

[0.5, 15] Frolking et al. (1996); Launiainen et 

al. (2015) 
wmax mm maximum water content for moss 

photosynthesis 

[150, 380] Frolking et al. (1996); Launiainen et 

al. (2015) 
wopt mm optimal water content for moss 

photosynthesis 

[10, 150] Frolking et al. (1996); Zhuang et al. 

(2002)  
km µL/L CO2 concentration half-saturation 

level 

[50, 500] Zhuang et al. (2002); Raich et al. 

(1991) 
R10, m gC m−2 

mon−1 

moss respiration rate at 10 ℃ [0,40] Frolking et al. (1996); Launiainen et 

al. (2015)  
Q10, m _ moss respiration temperature 

sensitivity 

[1.5, 2.5] Frolking et al. (1996); Launiainen et 

al. (2015) 
wopt, r mm optimal water content for moss 

respiration 

[10, 150] Frolking et al., 1996; Zhuang et al. 

(2002) 
cfallm g-1g-1 

mon-1 

constant proportion for carbon 

litterfall from moss 

[0.001, 

0.01] 

Zhuang et al. (2002); Raich et al. 

(1991) 
Nmax gN m−2 

mon−1 

maximum rate of N uptake by 

mosses 

[0.1,5] Zhuang et al. (2002); Raich et al. 

(1991) 
kn g m-2 Half-saturation constant for N 

uptake by moss 

1.0 Zhuang et al. (2002); Raich et al. 

(1991) 
Am - relative allocation of effort to C vs. 

N uptake 

[0,1] Raich et al. (1991) 

wf mm moss field capacity [10, 80] Frolking et al. (1996); Raich et al. 

(1991) 
nfallm g-1g-1 

mon-1 

constant proportion for nitrogen 

litterfall from moss 

[0.001, 

0.01] 

Zhuang et al. (2002); Raich et al. 

(1991) 
Dm mm Moss thickness [0, 100] Zhuang et al. (2002) 
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 Table 4.2. Site description and measured NEP data used to calibrate TEM_Moss 

 

 

 

 

 

 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Univ. of 

Mich. 

Biological 

Station 

84.71W 

45.56 N 

 

234 

Temperate 

deciduous 

forest 

Located within a protected forest owned 

by the University of Michigan. Mean 

annual temperature is 5.83̊ C with mean 

annual precipitation of 803mm 

01/2005-

12/2006 
Gough et al. 

(2013) 

       

Howland 

Forest (main 

tower) 

68.74W 

45.20N 

60 Temperate 

coniferous   

forest 

Closed coniferous forest, minimal 

disturbance. 

01/2004-

12/2004 

Davidson et al. 

(2006) 

       

UCI-1964 

burn site 

98.38W 

55.91N 

260 Boreal 

forest 

Located in a continental boreal forest, 

dominated by black spruce trees, within 

the BOREAS northern study area in 

central Manitoba, Canada. 

01/2004-

10/2005 

Goulden et al. 

(2006) 

 

       

KUOM 

Turfgrass 

Field 

93.19W 

45.0N 

301 Grassland A low-maintenance lawn consisting of 

cool-season turfgrasses. 

01/2006-

12/2008 

Hiller et al. 

(2011) 

       

Atqasuk 157.41W 

70.47N 

  15 Wet tundra 100 km south of Barrow, Alaska. Variety 

of moist-wet coastal sedge tundra, and 

moist-tussock tundra surfaces in the more 

well-drained upland. 

01/2005-

12/2006 

Oechel et al. 

(2014); 

 

       

Ivotuk 155.75W 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is located at 

the foothill of the Brooks Range and is 

classified as tussock sedge, dwarf-shrub, 

moss tundra. 

01/2004-

12/2004 

McEwing et al. 

(2015) 
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Table 4.3. Site description and measured NEP data used to validate TEM_Moss 

Site Name 

 

Location 

(Longitude 

(degrees) 

/Latitude 

(degrees)) 

Elevation 

(m) 

Vegetation 

type 

Description Data 

range 

Citations 

Bartlett 

Experimental 

Forest 

71.29W/ 

44.06N 

272 Temperate 

deciduous 

forest 

Located within the White Mountains 

National Forest in north-central New 

Hampshire, USA, with mean annual 

temperature of 5.61 °C and mean annual 

precipitation of 1246mm. 

01/2005- 

12/2006 

Jenkins et al. 

(2007); 

Richardson et 

al. (2007); 

 

       

Howland 

Forest (main 

tower) 

68.74W/ 

45.20N 

60 Temperate 

coniferous 

forest 

Closed coniferous forest, minimal 

disturbance. 

01/2003- 

12/2003 

Davidson et al. 

(2006) 

       

UCI-1964 

burn site 

98.38W/ 

55.91N 

260 Boreal 

forest 

Located in a continental boreal forest, 

dominated by black spruce trees, within the 

BOREAS northern study area in central 

Manitoba, Canada. 

01/2002- 

12/2003 

Goulden et al. 

(2006) 

 

 

       

Brookings 96.84W/ 

44.35N 

510 Grassland Located in a private pasture, belonging to 

the Northern Great Plains Rangelands, the 

grassland is representative of many in the 

north central United States, with seasonal 

winter conditions and a wet growing 

season. 

01/2005- 

12/2006 

Gilmanov et al. 

(2005) 

       

Atqasuk 157.41W/ 

70.47N 

15 Wet 

tundra 

100 km south of Barrow, Alaska. Variety 

of moist-wet coastal sedge tundra, and 

moist-tussock tundra surfaces in the more 

well-drained upland. 

01/2003- 

12/2004 

Oechel et al. 

(2014); 

 

       

Ivotuk 155.75W/ 

68.49N 

568 Alpine 

tundra 

300 km south of Barrow and is located at 

the foothill of the Brooks Range and is 

classified as tussock sedge, dwarf-shrub, 

moss tundra. 

01/2005- 

12/2005 

McEwing et al. 

(2015) 
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Table 4.4. Site descriptions and measured volumetric soil moisture data used to validate 

TEM_Moss 

 

 

 

 

 

 

 

 

 

Site  

 

Location 

(Longitude (degrees) 

/Latitude (degrees)) 

Elevation 

(m) 

Vegetation type Data range Citations 

US-Ivo 155.75W/ 

68.49N 

579 Alpine tundra 01/2015- 

12/2016 

Oechel & Kalhori (2018)  

      

BOREAS 

NSA-OBS 

98.48W/ 

55.88N 

      259 Boreal forest 07/1995- 

06/1997 

Stangel & Kelly (1999) 

      

NL-Loo 5.74E/ 

52.17N 

25 Temperate coniferous 

forest 

05/1997- 

12/1998 

Falge et al. (2005) 

 

 

      

DK-Sor 11.64E/ 

55.49N 

 40 Temperate deciduous 

forest 

01/1997- 

12/1999 

Falge et al. (2005)  

      

US-Bkg 96.84W/ 

44.35N 

510 Grasslands 01/2005- 

12/2006 

Gilmanov et al. (2005) 

      

US-Atq          157.41W/ 

  70.47N 

  25 Wet tundra 01/2015- 

12/2016 

Oechel & Kalhori (2018) 
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Table 4.5. Site description and measured soil temperature at 5cm depth data used to validate 

TEM_Moss 

 

Site  

 

Location 

(Longitude (degrees) 

/Latitude (degrees)) 

Elevation 

(m) 

Vegetation type Data range Citations 

US-Ivo 155.75W/ 

68.49N 

579 Alpine tundra 01/2015- 

12/2016 

Oechel & Kalhori (2018)  

      

BOREAS 

NSA-OBS 

98.48W/ 

55.88N 

      259 Boreal forest 01/1995- 

12/1998 

Stangel & Kelly (1999) 

      

US-Ho1 68.74W/ 

45.2N 

60 Temperate coniferous 

forest 

01/1996- 

12/1997 

Falge et al. (2005) 

 

 

      

BE-Vie 6.0E/ 

50.3N 

 493 Temperate deciduous 

forest 

01/1997- 

12/1998 

Falge et al. (2005)  

      

US-Bkg 96.84W/ 

44.35N 

510 Grasslands 01/2005- 

12/2006 

Gilmanov et al. (2005) 

      

US-Atq          157.41W/ 

  70.47N 

  25 Wet tundra 01/2015- 

12/2016 

Oechel & Kalhori (2018) 
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4.3.4 Regional Extrapolation 

Both TEM_Moss and TEM 5.0 were applied to northern high latitudes (above 45 °N) for 

historical (20th century) and future (21st century) quantifications on carbon dynamics. The 

difference of carbon dynamics simulated by these two models mostly comes from the effects of 

moss. For historical simulations, climatic forcing data (monthly air temperature, precipitation, and 

cloudiness) and atmospheric CO2 concentrations during the 20th century, were collected from the 

Climatic Research Unit (CRU TS3.1) from the University of East Anglia (Harris et al., 2014). 

Other ancillary inputs including gridded soil texture (Zhuang et al., 2003), elevation (Zhuang et 

al., 2015), and potential natural vegetation (Melillo et al., 1993) were also organized. For future 

simulations, two contrasting Intergovernmental Panel on Climate Change (IPCC) climate 

scenarios (RCP 2.6 and RCP 8.5) were used to drive our simulations. The future climate forcing 

data and atmospheric CO2 concentrations during the 21st century under these two climate change 

scenarios were derived from the HadGEM2-ESmodel, which is a member of CMIP5project213 

(https://esgf-node.llnl.gov/search/cmip5/, January 2017).  

Simulations were conducted at a spatial resolution of 0.5° latitude × 0.5° longitude (Zhuang 

et al., 2001, 2002). A typical spin-up was run to reach an equilibrium for each pixel, and the values 

of state variables at equilibrium were treated as initial values for transient simulations (McGuire 

et al., 1992). We chose the first 30 years in the whole 100-year climatic forcing data to spin-up the 

models when conducting historical and future simulations. For each of the simulations, net primary 

production (NPP), heterotrophic respiration (RH), and net ecosystem production (NEP) were 

analyzed. We denoted that a positive NEP represents a CO2 sink from the atmosphere to terrestrial 

ecosystems, while a negative value represents a source of CO2 from terrestrial ecosystems to the 

atmosphere. 

https://esgf-node.llnl.gov/search/cmip5/
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4.4 Results 

4.4.1 Model Validation 

TEM_moss was able to reproduce the monthly NEP and performed better than TEM 5.0 

at chosen sites, with larger R-square values and smaller RMSE (Figure 4.5, Table 4.6). R-square 

for TEM_Moss reached 0.94 at Bartlett Experimental Forest site and 0.72 at Ivotuk site (Table 

4.6). R-square values for TEM 5.0 showed a similar pattern, reaching 0.91 and with minimum 

value of 0.43 at Bartlett Experimental Forest and Ivotuk sites, respectively (Table 4.6). Except 

for Ivotuk site, R-squares for TEM_Moss are all higher than 0.8 at the chosen sites, while most 

R-squares for TEM 5.0 are from 0.62 to 0.75 (Table 4.6). On the other hand, RMSE for 

TEM_Moss is lower than that for TEM 5.0 at each site (Table 4.6).  

We presented the comparisons between measured and simulated volumetric soil moisture 

(VSM) from TEM_Moss and TEM 5.0 (Figure 4.6). Statistical analysis shows that TEM_Moss 

reproduces the soil moisture well with R-squares ranging from 0.51 at US-Bkg to 0.87 at US-Atq 

(Table 4.7). R-squares for TEM_Moss are substantially higher than that for TEM 5.0 at most 

chosen sites, except for US-Atq (Table 4.7). RMSE for TEM_Moss is lower than that for TEM 

5.0 at each site (Table 4.7). Similarly, comparisons between measured and simulated soil 

temperature at 5 cm depth (ST_5) from TEM_Moss and TEM 5.0 indicated that TEM_Moss can 

reproduce the soil temperature with R-squares ranging from 0.81 at US-Ho1 to 0.91 at US-Bkg, 

while TEM 5.0 reproduces the soil temperature with R-squares ranging from 0.69 at BE-Vie to 

0.89 at US-Bkg (Figure 4.7; Table 4.8). Although R-squares for both models are relatively high 

and RMSE for them are relatively low, TEM_Moss still shows higher R-squares and lower 

RMSE than TEM 5.0 (Table 4.8).  
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Figure 4.5. Comparison between observed and simulated NEP (gC m-2mon-1) at: (a) Ivotuk 

(alpine tundra), (b) UCI-1964 burn site (boreal forest), (c) Howland Forest (main tower) 

(temperate coniferous forest), (d) Bartlett Experimental Forest (Temperate deciduous forest), (e) 

Brookings (Grassland), and (f) Atqasuk (Wet tundra). Note: scales are different.  
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Figure 4.6. Comparison between observed and simulated volumetric soil moisture (VSM, %/%) 

at: (a) US-Ivo (alpine tundra), (b) BOREAS NSA-OBS (boreal forest), (c) NL-Loo (temperate 

coniferous forest), (d) DK-Sor (Temperate deciduous forest), (e) US-Bkg (Grassland), and (f) 

US-Atq (Wet tundra). Note: scales are different.  
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Figure 4.7. Comparison between observed and simulated soil temperature at 5cm depth (℃) at: 

(a) US-Ivo (alpine tundra), (b) BOREAS NSA-OBS (boreal forest), (c) US-Ho1 (temperate 

coniferous forest), (d) BE-Vie (Temperate deciduous forest), (e) US-Bkg (Grassland), and (f) 

US-Atq (Wet tundra). Note: scales are different. 
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Table 4.6. Model validation statistics for TEM_Moss and TEM 5.0 at six sites with NEP data 

 

 

 

 

 

 

 

 

Site Name Vegetation type Models Intercept Slope 
R-

square 

Adjusted 

R-square 
RMSE 

p-

value 

Ivotuk Alpine tundra 
TEM_Moss 0.46 0.61 0.72 0.70 3.57 <0.001 

TEM 5.0 -0.22 0.75 0.43 0.41 5.88 0.02 

UCI-1964 burn 

site 
Boreal forest 

TEM_Moss -0.13 1.01 0.91 0.90 8.33 <0.001 

TEM 5.0 -2.45 1.29 0.75 0.74 20.1 <0.001 

Howland Forest 

(main tower) 

Temperate 

coniferous forest 

TEM_Moss -1.28 1.05 0.83 0.81 19.69 <0.001 

TEM 5.0 -2.22 0.97 0.62 0.61 31.23 0.002 

Bartlett 

Experimental 

Forest 

Temperate 

deciduous forest 

TEM_Moss -0.49 1.03 0.94 0.94 19.06 <0.001 

TEM 5.0 -2.49 1.04 0.91 0.89 23 <0.001 

Brookings Grassland 
TEM_Moss 0.36 1.02 0.85 0.84 8.95 <0.001 

TEM 5.0 2.58 0.75 0.62 0.6 13.07 <0.001 

Atqasuk Wet tundra 
TEM_Moss -0.36 0.97 0.84 0.83 5.13 <0.001 

TEM 5.0 1.99 0.75 0.75 0.74 6.56 <0.001 
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Table 4.7. Model validation statistics for TEM_Moss and TEM 5.0 at six sites with volumetric 

soil moisture data 

 

 

 

 

 

 

 

 

 

Site ID Vegetation type Models Intercept Slope 
R-

square 

Adjusted 

R-square 
RMSE 

p-

value 

 

US-Ivo 
Alpine tundra 

TEM_Moss 8.56 0.34 0.74 0.72 20.8 <0.001 

TEM 5.0 10.67 0.29 0.64 0.62 21.76 <0.001 

         

BOREAS 

NSA-

OBS 

Boreal forest 

TEM_Moss 10.71 0.51 0.52 0.51 11.1 <0.001 

TEM 5.0 16.47 0.43 0.32 0.31 11.96 <0.001 

         

 

NL-Loo 

Temperate 

coniferous 

forest 

TEM_Moss 0.47 0.82 0.83 0.81 4.0 <0.001 

TEM 5.0 3.75 0.72 0.49 0.48 4.5 <0.001 

         

DK-Sor 

Temperate 

deciduous 

forest 

TEM_Moss 1.39 0.86 0.67 0.65 3.65 <0.001 

TEM 5.0 10.41 0.54 0.4 0.39 4.06 <0.001 

         

US-Bkg 

 
Grassland 

TEM_Moss 5.64 0.8 0.51 0.49 6.05 <0.001 

TEM 5.0 22.24 0.41 0.21 0.2 7.34 0.027 

         

US-Atq Wet tundra 
TEM_Moss 7.76 0.77 0.87 0.85 7.38 <0.001 

TEM 5.0 6.74 0.68 0.85 0.84 7.63 <0.001 
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Table 4.8. Model validation statistics for TEM_Moss and TEM 5.0 at six sites with soil 

temperature at 5cm depth data 

 

Site ID 
Vegetation 

type 
Models Intercept Slope 

R-

square 

Adjusted 

R-square 
RMSE 

p-

value 

US-Ivo Alpine tundra 
TEM_Moss -0.34 1.16 0.83 0.82 2.54 <0.001 

TEM 5.0 0.54 1.36 0.75 0.73 3.94 <0.001 

         

BOREAS 

NSA-

OBS 

Boreal forest 
TEM_Moss -0.05 0.91 0.9 0.88 2.24 <0.001 

TEM 5.0 0.27 0.81 0.84 0.82 2.9 <0.001 

         

US-Ho1 

Temperate 

coniferous 

forest 

TEM_Moss 0.7 0.95 0.81 0.79 2.93 <0.001 

TEM 5.0 -0.06 0.99 0.77 0.76 3.41 <0.001 

         

BE-Vie 

Temperate 

deciduous 

forest 

TEM_Moss 0.57 0.92 0.83 0.81 1.82 <0.001 

TEM 5.0 1.88 0.85 0.69 0.68 2.56 <0.001 

         

US-Bkg 

 
Grassland 

TEM_Moss 0.17 0.87 0.91 0.89 2.87 <0.001 

TEM 5.0 -0.01 0.91 0.89 0.87 3.04 <0.001 

         

US-Atq Wet tundra 
TEM_Moss 1.36 0.86 0.84 0.82 3.63 <0.001 

TEM 5.0 4.33 0.99 0.75 0.74 6.17 <0.001 
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4.4.2 Regional carbon dynamics during the 20th century 

Both TEM-Moss and TEM 5.0 were used to simulate northern high-latitude regional 

carbon balance during the 20th century (Figure 4.8). Higher NEP was correlated with the 

combination of relatively higher NPP and lower heterotrophic respiration (RH). TEM-Moss 

indicated that the northern high latitudes acted as a carbon sink of 221.9 Pg with an inter-annual 

standard deviation of 0.31 PgC yr-1 during the 20th century, which is 132.7 Pg larger than 89.2 Pg 

simulated by TEM 5.0 (Figure 4.8). The simulated NEP by TEM-Moss ranges from 1.38 PgC yr-

1 to 3.05 PgC yr-1, while the range by TEM 5.0 was from 0.11 PgC yr-1 to 1.75 PgC yr-1 (Figure 

4.8). The patterns of the simulated NEP from two models were similar, both showing a general 

increasing trend throughout the 20th century (Figure 4.8). By 2000, the TEM-Moss simulation 

indicated that the northern high-latitude region stored 3.05 PgC yr-1, which is more than twice as 

the storage estimated by TEM 5.0 (1.33 PgC yr-1, Figure 4.8). Both models indicated that carbon 

uptake by the northern ecosystems during the second half of the 20th century was higher than the 

first half for most part of the region, and only a small portion of the region lost carbon in last 

century (Figure 4.9). 

Simulated total NPP by TEM-Moss was 9.6 PgC yr-1, ranging from 8.52 PgC yr-1 to 10.65 

PgC yr-1 in the 20th century, with 1.69 PgC yr-1 of moss NPP and 7.93 PgC yr-1 of higher plant NPP 

(Figure 4.8, Table 4.9). Moss NPP ranges from 1.23 PgC yr-1 to 2.14 PgC yr-1 and the ratio of moss 

NPP to higher plant NPP is 0.21 (Figure 4.8). TEM 5.0 estimated 0.8 PgC yr-1 lower total NPP 

than TEM-Moss, but 0.87 PgC yr-1 higher NPP for higher plants (Figure 4.8, Table 4.9). On the 

other hand, average heterotrophic respiration in the 20th century was 7.38 PgC yr-1 and all years 

were within about 5% of this value (Figure 4.8, Table 4.9). TEM 5.0 projected 0.53 PgC yr-1 higher 
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RH than TEM-Moss (7.91 PgC yr-1, Figure 4.8). Overall, TEM-Moss predicted higher total NPP 

but lower RH, which jointly caused a pronounced difference in NEP between two models.  

Both models estimated that soil organic carbon and vegetation carbon were accumulating 

continuously in the 20th century (Figure 4.10). TEM-Moss indicated that regional SOC and VEGC 

accumulated 96.3 PgC and 115.2 PgC, respectively, and the carbon uptake by moss was 10.4 Pg 

in the period (Figure 4.10, Table 4.10). As simulated by TEM-Moss, 43.4%, 51.9% and 4.7% of 

total carbon uptake in the region was assimilated to soils, higher plants and mosses, respectively 

(Table 4.10). TEM 5.0 simulated that SOC increased by 31.7 Pg at the end of the 20th century, 

which is 64.6 PgC less than the value estimated by TEM-Moss (Table 4.10). TEM 5.0 estimated 

57.7 PgC in plants less than the value estimated by TEM-Moss (57.5 PgC, Table 4.10). 35.5% and 

64.5% of total carbon was as SOC and VEGC, respectively. 
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Figure 4.8. Simulated annual net primary production (NPP, a), heterotrophic respiration (RH, b), 

and net ecosystem production (NEP, c) during the 20th century by TEM_Moss and TEM 5.0. 
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Figure 4.9. Spatial distribution of NEP simulated by TEM_Moss for the periods (a) 1900–1950, 

(b) 1951–2000, and by TEM 5.0 for the periods (c) 1900–1950, (d) 1951–2000. Positive values of 

NEP represent sinks of CO2 into terrestrial ecosystems, while negative values represent sources of 

CO2 to the atmosphere. 
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Figure 4.10. Simulated annual soil organic carbon (SOC, a), vegetation carbon (VEGC, b), and 

moss carbon (MOSSC, c) during the 20th century by TEM_Moss and TEM 5.0
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Table 4.9. Average annual NPP, RH and NEP (as Pg C per year) during the 20th century 

estimated by two models. 

 

 

 

 

 

 

 

 

 

 

 

Average annual carbon fluxes (PgC 

yr-1) 
TEM_Moss 

TEM 

5.0 
Difference 

Moss NPP/ 

Higher plant 

NPP 

NPP 

Moss NPP 1.69 - - 21.3% 

Higher plant 

NPP 
7.93 8.8 - 

 

Total NPP 9.6 8.8 0.8  

   

RH 7.38 7.91 -0.53  

   

NEP 2.22 0.89 1.33  
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Table 4.10. Increasing of SOC, vegetation carbon (VGC), and moss carbon (MOSSC) from 1900 

to 2000, and total carbon storage during the 20th century predicted by two models. 

 

 

 

 

 

 

 

 

 

 

Models Carbon pools 
Carbon pool amounts in 

1900/2000 (units: Pg) 

Changes in carbon pools during 

the 20th century (units: Pg) 

TEM-Moss 

SOC 587.1/683.4 96.3 

VEGC 297.5/412.7 115.2 

MOSSC 19.6/30 10.4 

Total 904.2/1126.1 221.9 

TEM 5.0 

SOC 583.2/614.9 31.7 

VEGC 291.1/348.6 57.5 

Total 874.3/963.5 89.2 
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4.4.3 Regional carbon dynamics during the 21st century 

Under the RCP 2.6 scenario, TEM-Moss simulated NEP of 2.07 PgC yr-1 with the range 

from 0.41 PgC yr-1 to 3.2 PgC yr-1, and the inter-annual standard deviation of 0.59 PgC yr-1 during 

the 21st century (Figure 4.11 (a)). The regional sink shows a decreasing pattern in the 2000s and 

then generally increases over the remaining years of the 21st century (Figure 4.11 (a)). For 

comparison, TEM 5.0 predicted that the average NEP of 0.28 PgC yr-1 with the range from -1.48 

PgC yr-1 to 1.69 PgC yr-1 during the 21st century (Figure 4.11 (a), Table 4.11 (b)). Thus, TEM 5.0 

projected 179.1 PgC stored in northern ecosystems is less than the estimation from TEM-Moss in 

the 21st century (Table 4.11 (b)). Besides, TEM 5.0 simulated that the regional NEP showed a 

decreasing trend and the region fluctuates between sinks and sources during the century (Figure 

4.11 (a)). The spatial patterns from two models also showed differences. TEM-Moss indicated that 

the region accumulates carbon over this century, while TEM 5.0 simulated that some regions 

changed from a carbon sink to a source in the second half of the century (Figure 4.12 (a)). 

Simulated regional NPP by TEM-Moss ranges from 11.2 to 13.7 PgC yr-1 with a mean of 12.98 

PgC yr-1 in this century, while average NPP predicted by TEM 5.0 is 1.46 PgC yr-1 lower than that 

value (11.52 PgC yr-1 (Figure 4.11(a), Table 4.11(b)). TEM-Moss simulated NPP has 3.74 PgC yr-

1 from moss and 9.24 PgC yr-1 from higher plants, which account for 28.8% and 71.2% of total 

NPP, respectively (Figure 4.11(a), Table 4.11(b)). Meanwhile, TEM-Moss estimated that RH is 

10.91 PgC yr-1, while TEM 5.0 predicted it as 0.33 PgC yr-1, which is higher (Figure 4.11(a), Table 

4.11(b)). Both models projected that soil organic carbon and vegetation carbon accumulate in this 

century but with different magnitudes (Figure 4.13 (a)). TEM-Moss predicted that regional SOC 

and VEGC accumulated 84.7 PgC and 112.6 PgC, respectively, during the 21st century, while TEM 

5.0 predicted that a smaller increase with 12.1 and 15.5 PgC in SOC and VEGC, respectively 
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(Figure 4.13 (a), Table 4.12 (a)). Besides, TEM-Moss also predicted an increasing of 9.4 PgC in 

MOSSC, accounting for 4.5% of the total carbon uptake in this region (Table 4.12(a)).  

Under the RCP 8.5 scenario, TEM-Moss simulated annual NPP of 13.84 PgC yr-1 with a 

range from 11.09 to 16.94 PgC yr-1, which is 1.31 PgC yr-1 higher than the projection from TEM 

5.0 (Figure 4.11 (b)).  Total NPP estimated by TEM-Moss has 3.84 PgC yr-1 from moss and 10 

PgC yr-1 from higher plants (Figure 4.11(b), Table 4.11(a)). Annual RH was 11.28 PgC yr-1 

estimated by TEM-Moss and 11.54 PgC yr-1 by TEM 5.0, respectively (Figure 4.11(b), Table 

4.11(a)). Consequently, TEM-Moss projected NEP was 2.56 PgC yr-1 with the inter-annual 

standard deviation of 0.93 PgC yr-1 in this century (Figure 4.11 (b)). NEP ranges from 0.67 PgC 

yr-1 to 4.78 PgC yr-1 estimated with TEM-Moss, while from -1.69 PgC yr-1 to 2.65 PgC yr-1 with a 

mean of 0.99 PgC yr-1 was estimated by TEM 5.0 (Figure 4.11 (b)). TEM-Moss predicted more 

carbon uptake of 157.5 Pg than TEM 5.0 during the 21st century. Both models predicted that NEP 

showed an increasing trend during the 21st century (Figure 4.11 (b)). Moreover, similar spatial 

patterns of carbon sinks and sources appeared in the projections from two models (Figure 4.12 (b)). 

Soil organic carbon and vegetation carbon shows an increasing trend from both models (Figure 

4.13 (b)). Regional SOC and VEGC increased by 92.5 PgC and 153.6 PgC, respectively by the 

end of the 21st century predicted by TEM-Moss. In contrast, the increase of 44.2 PgC and 54.5 

PgC of SOC and VEGC, respectively, was predicted by TEM 5.0 (Figure 4.13 (b), Table 4.12 (b)). 

TEM-Moss predicted an increase of 10.1 PgC in MOSSC (Table 4.12(b)). 
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Figure 4.11. Predicted changes in carbon fluxes: annual net primary production (NPP, (a, d)), 

heterotrophic respiration (RH, (b, e)), and net ecosystem production (NEP, (c, f)) during the 21st 

century under RCP 2.6 scenario (a, b, c, upper panel) and RCP 8.5 scenario (d, e, f, bottom panel) 

by TEM_Moss and TEM 5.0. 
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Figure 4.12. Spatial distribution of NEP simulated for the periods (a) 2000–2050, (b) 2051–2099 

by TEM_Moss, and by TEM 5.0 (c, d) during the 21st century under RCP 2.6 scenario (upper panel) 

and RCP 8.5 scenario (bottom panel). Positive values of NEP represent sinks of CO2 into terrestrial 

ecosystems, while negative values represent sources of CO2 to the atmosphere. 
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Figure 4.13. Simulated annual soil organic carbon (SOC, a), vegetation carbon (VEGC, b), and 

moss carbon (MOSSC, c) during the 21st century by TEM_Moss and TEM 5.0 under RCP 2.6 

scenario (upper panel) and RCP 8.5 scenario (bottom panel). 
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Table 4.11. Average annual NPP, RH and NEP (as Pg C per year) during the 21st century 

estimated by two models under (a) RCP 8.5 scenario and (b) RCP 2.6 scenario. 

(a) 

 

(b) 

 

 

 

 

 

 

 

Average annual carbon fluxes (PgC 

yr-1) 
TEM_Moss 

TEM 

5.0 
Difference 

Moss NPP/ 

Higher plant 

NPP 

NPP 

Moss NPP 3.84 - - 38.4% 

Higher plant 

NPP 
10 12.53 - 

 

Total NPP 13.84 12.53 1.31  

   

RH 11.28 11.54 -0.21  

   

NEP 2.56 0.99 1.57  

Average annual carbon fluxes (PgC 

yr-1) 
TEM_Moss 

TEM 

5.0 
Difference 

Moss NPP/ 

Higher plant 

NPP 

NPP 

Moss NPP 3.74 - - 40.5% 

Higher plant 

NPP 
9.24 11.52 - 

 

Total NPP 12.98 11.52 1.46  

   

RH 10.91 11.24 -0.33  

   

NEP 2.07 0.28 1.79  



126 

 

 

1
2

6
 

1
2

6
 

 

 

 

 

 

 

Table 4.12. Increasing of SOC, vegetation carbon (VGC), and moss carbon (MOSSC) from 1900 

to 2000, and total carbon storage during the 21st century predicted by two models under (a) RCP 

2.6 scenario and (b) RCP 8.5 scenario. 

(a) 

  

 

(b) 

 

 

 

Models Carbon pools 

Carbon pool amounts 

in 2000/2099 (units: 

Pg) 

Changes in carbon pools 

during the 21st century 

(units: Pg) 

TEM-Moss 

SOC 608.1/692.8 84.7 

VEGC 320.2/432.8 112.6 

MOSSC 26.2/35.6 9.4 

Total 954.5/1161.2 206.7 

TEM 5.0 

SOC 604.4/616.5 12.1 

VEGC 318.2/333.7 15.5 

Total 922.6/950.2 27.6 

Models Carbon pools 
Carbon pool amounts in 

2000/2099 (units: Pg) 

Changes in carbon pools during 

the 21st century (units: Pg) 

TEM-Moss 

SOC 615.9/708.4 92.5 

VEGC 327.8/481.4 153.6 

MOSSC 28.1/38.2 10.1 

Total 971.8/1228.0 256.2 

TEM 5.0 

SOC 610.2/654.4 44.2 

VEGC 324.9/379.4 54.5 

Total 935.1/1033.8 98.7 
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4.5 Discussion 

4.5.1 The role of moss in the regional carbon dynamics 

Global warming has been pronounced in recent decades, particularly at high latitudes 

(IPCC, 2014; Tape et al., 2006; Stow et al., 2004). An enormous amount of soil organic carbon 

stored in northern high-latitude regions (Tarnocai et al., 2009; Schuur et al., 2008) is expected to 

affect a broad spectrum of ecological and human systems, and cause rapid changes in the Earth 

system when undergoing substantial climate change (Serreze and Francis 2006; Davidson and 

Janssens, 2006; McGuire et al., 2009). Improving projections for carbon budget of high latitude 

terrestrial ecosystems is essential for understanding global carbon–climate feedbacks (Melillo et 

al., 2011; Todd-Brown et al., 2013). 

Our simulations suggest that mosses play an important role in the regional carbon dynamics, 

which is consistent with previous studies (McGuire et al., 2009; Turetsky et al., 2012). First of all, 

mosses are productive with carbon assimilation even during low temperature, water content and 

irradiance (Kallio and Heinonen, 1975; Harley et al., 1989). For example, mosses can tolerate 

drought through physiological responses, such as by suspending metabolism and by withstanding 

cell dessication (Turetsky et al., 2012; Oechel and Van Cleve, 1986). The key functional traits 

related to water, nutrient, and thermal tolerances of mosses enable them to fit in harsh northern 

conditions (Shetler et al., 2008; Turetsky et al., 2012). Thus, with incorporation of moss into our 

models, NPP estimation in our model is improved.  Mosses also act as a powerful competitor with 

vascular plants for nutrient uptake. Their rapid nutrient acquisition and slow nutrient loss through 

slow decomposition may constrain concentrations of plant-available nitrogen (Hobbie et al., 2000; 

Turetsky et al., 2010; Oechel and Van Cleve, 1986; Gornall et al., 2007), which will further 

decrease NPP of higher plant. Our model results suggested that the NPP of higher plants 
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considering moss is indeed lower than previous NPP estimates without considering moss, but the 

total NPP is larger than before. We estimated that mosses contribute 17.6% of NPP in the 20th 

century, and 28.8% and 27.6% in the 21st century under the RCP 2.6 and RCP 8.5 scenarios, 

respectively. This is comparable with the results reported by Turetsky et al. (2010), which 

suggested an average contribution of 20% of aboveground NPP from moss in boreal forests. 

Frolking et al. (1996) even reported a contribution of 38.4% to total NPP by moss at a boreal forest 

site. Moreover, mosses can also influence heterotrophic respiration (RH) through their effects on 

soil thermal and hydrologic dynamics (Zhuang et al., 2001). With the layer of moss, soil 

temperature tends to decrease but soil moisture tends to increase (Oechel and Van Cleve, 1986), 

which will further decrease soil respiration in summer. This supports our results that TEM_Moss 

simulated RH is lower than that by TEM 5.0. With a combination of higher NPP and lower RH, 

NEP predicted by TEM_Moss is larger than that by TEM 5.0. The two contrasting regional 

simulations by TEM-Moss and TEM 5.0 indicated the region is currently a carbon sink, which is 

consistent with previous studies (White et al., 2000; McGuire et al., 2009; Schimel et al., 2001). 

Our study estimated that regional NEP during the 20th century is 2.2 Pg C yr-1 by TEM_Moss and 

0.89 Pg C yr-1 by TEM 5.0, respectively. In the 1990s, the regional sink is projected to be 2.7 and 

1.1 Pg C yr-1 by TEM_Moss and TEM 5.0 respectively. Compared with other existing studies, our 

regional estimates of NEP are within the reasonable range from other existing studies. McGuire et 

al. (2009) estimated a land sink of 0.3–0.6 Pg C yr-1 for the pan-arctic region for the 1990s, which 

is closer to our estimation by TEM 5.0 but less than the projection by TEM_Moss. The top-down 

atmospheric analyses indicate that the sink of pan-arctic region is between 0 and 0.8 Pg C yr-1 in 

the 1990s (Menon et al. 2007). Besides, Schimel et al. (2001) reported an estimation of the northern 

extratropical NEP is from 0.6 to 2.3 PgC yr-1 in the late 20th century, which is comparable to our 
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estimates. Our simulations also confirmed that mosses and higher plants respond to climate change 

similarly in terms of their productivity (Turetsky et al. 2010).  

4.5.2 Model Uncertainty and limitations  

There are a number of uncertainty sources in our model simulations.  First, the errors in the 

observed data will influence our parameterization results, which will bias our regional estimates 

of carbon dynamics.  Second, climatic driving data are also a source of uncertainty for historical 

and future simulations.  Third, model assumptions will also induce additional uncertainties. For 

instance, we assumed that vegetation distribution will remain unchanged during the transient 

simulation. However, vegetation will change in response to warming climate and disturbances 

such as fire and insect outbreaks in the region (Hansen et al., 2006), which will affect carbon 

budget. Missing potential responses to disturbances in our model shall introduce additional 

uncertainties (Soja et al. 2007; Kasischke and Turetsky, 2006).  

We conducted ensemble regional simulations with 50 sets of parameters to quantify model 

uncertainty due to uncertain parameters. The 50 sets of parameters were obtained using the method 

in Tang and Zhuang (2008). The ensemble means and the inter-simulation standard deviations are 

used to measure the model uncertainty (Figure 4.14). TEM_Moss predicted that the regional 

cumulative carbon ranges from a carbon loss of 266 Pg C to a carbon sink of 567.3 Pg C by 

different ensemble members, with a mean of 161.1±142.1 Pg during the 21st century under the 

RCP 2.6 scenario. Under the RCP 8.5 scenario, TEM_Moss predicted that the region acts from a 

carbon source of 79.1 Pg C to a carbon sink of 625.9 Pg C, with a mean of 186.7±166.1 Pg during 

the 21st century (Figure 4.14). 

This study took an important step to incorporate moss into an extant ecosystem model that 

has not explicitly consider the role of moss and its interactions with higher plants. Our model 
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simulations showed that mosses have strong influences on regional ecosystem carbon cycling, by 

affecting the soil thermal, nitrogen availability, and water conditions of terrestrial ecosystems.  

However, there are still limitations in our model. First, we did not differentiate various kinds of 

mosses because they have their own functional traits.  The structural and physiological traits of 

mosses will differ largely in different moss groups, such as feather moss versus Sphagnum 

(Turetsky et al., 2010). In addition, we lack spatially explicit information of moss distribution in 

the region, which will lead to a large regional uncertainty of carbon quantification.  Another 

limitation is that some important physiological traits of moss have not been modeled. For example, 

moss abundance may change following shifts in vascular species composition due to shading or 

burial by vascular litter (Turetsky et al., 2010; Cornelissen et al., 2007). Furthermore, disturbance 

such as wildfires can also influence moss activities.  
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(a) 

 

(b) 

 

Figure 4.14. 5-year moving average plots for carbon fluxes under the (a) RCP 2.6 scenario and (b) 

RCP 8.5 scenario. The blue area represents the upper and lower bounds of simulations.
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4.6 Conclusions 

This study explicitly incorporated moss into an extant process-based terrestrial ecosystem 

model to investigate the carbon dynamics in the Arctic for the past and this century. Historical 

regional simulations with TEM_Moss indicated that the region is a carbon sink of 221.9 PgC over 

the 20th century, and this sink may decrease to 206.7 PgC under the RCP 2.6 scenario or increase 

to 256.2 PgC under the RCP 8.5 scenario during the 21st century. Compared with an earlier version 

of TEM that has not explicitly modeled moss, TEM_Moss projected that the region stored 132.7 

Pg more C over the last century, 179.1 Pg and 157.5 Pg more C under the RCP 2.6 and RCP 8.5 

scenarios, respectively. This study demonstrated that moss activities have large effects on 

ecosystem soil thermal, water, and carbon dynamics through their interactions with higher plants. 

This study highlights the importance of considering the moss dynamics in Earth System Models 

to adequately quantify the carbon–climate feedbacks in the Arctic.  
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

 

Climate over northern high latitudes regions (> 45 N) has been warming with elevated 

atmospheric CO2 in recent decades. The large amount of carbon stored in this region is particularly 

vulnerable to climate change. To better understand the carbon–climate feedbacks, more accurate 

models that are incorporated with the new knowledge of microbe and plant sciences are needed. 

This dissertation research seeks to improve the Arctic carbon budget quantification by refining 

model representation and investigates the interactions between northern high-latitude ecosystems 

and climate change. Through inter-comparisons among models, the importance of representation 

of detailed microbial physiology and the moss dynamics in Earth System Models were highlighted. 

A series of model developments, model calibration and verification with in-situ observations and 

remote sensing data, and model simulations and uncertainty analysis have been conducted to fulfill 

the research tasks. In this chapter, I first summarized main findings of this dissertation research 

corresponding to research questions raised in Chapter 1. Second, I will discuss limitations in 

current models and provided suggestions and directions for future earth system modeling to 

enhance our understanding to interactions of climate change and ecosystems. 

5.1 Summary and Conclusions 

1) Chapter 2 evaluates the necessity of replacing the traditional Q10-based soil 

decomposition processes with detailed microbial-based soil decay process, and investigates the 

carbon dynamics in northern high-latitude regions for the past and this century by applying these 

two contrasting models. Although both models can reproduce the observed net ecosystem 

production (NEP) from field studies reasonably well, the model with more detailed microbial 

mechanisms tends to perform better than traditional model at site level. Meanwhile, microbial 
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models also show better results on net primary production (NPP) estimation than traditional model 

at regional level. Contrasting regional simulations with two models differ in last and this century. 

Specifically, microbial model indicated the region is a carbon sink in the 20th century, and this sink 

will increase in the 21st century under the RCP 8.5 scenario but shift to a carbon source under the 

RCP 2.6 scenario. Whereas traditional model estimated the region always acts as a carbon sink 

with larger magnitude during the 20th century and the 21st century under both scenarios.  

2) Chapter 3 quantified impacts of microbial dormancy on Arctic terrestrial ecosystem 

carbon budget by comparing microbial-based model with and without dormancy trait consideration, 

and examined the fate of large Arctic soil carbon under changing climate conditions during the 

20th and 21st century. The dormancy model produced a better match with field observed net 

ecosystem production (NEP) and heterotrophic respiration (RH) in comparison with the no-

dormancy model. The long-term trajectories of Arctic carbon dynamics also differ in two models. 

The regional modeling results by the dormancy model indicated the region is a carbon sink in the 

20th century, and this sink could decrease under both RCP 8.5 and RCP 2.6 scenarios during the 

21st century. While the carbon sink estimated by no-dormancy model during the 20th and 21st 

century is much less compared to the dormancy model. Whether considering microbial dormancy 

or not can cause large differences in carbon budget estimation between two models, which 

highlights the critical role of microbial dormancy in high latitudes. 

3) In Chapter 2 and Chapter 3 studies, the microbial-based model (MIC-TEM) predicted 

less carbon accumulation than traditional terrestrial ecosystem model (TEM 5.0) in last and this 

century, while the dormancy version (MIC-TEM-dormancy) projected much more carbon 

accumulation than MIC-TEM. Considering the collective effects of microbial physiology and 
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microbial dormancy, the MIC-TEM-dormancy also predicted large magnitude of carbon sink than 

TEM 5.0 in last and this century.  

4) Chapter 4 assessed the role of moss dynamics in Arctic carbon–climate feedbacks by 

explicitly incorporating moss into an extant process-based terrestrial ecosystem model to 

investigate the carbon dynamics in the Arctic for the past and this century. In the new model, moss 

was treated as a plant functional type to adequately model the interactions between higher plants 

and mosses and their competition for energy, water, and nutrient. With considering the activities 

of moss, the new model simulations better match observed net ecosystem production (NEP), soil 

moisture and soil temperature data than previous model without moss. We applied two models to 

project historical and future carbon budgets in the Arctic. Both models estimated that this region 

acted as a carbon sink in the 20th century, and this sink will increase in the 21st century under the 

RCP 8.5 scenario but decrease under the RCP 2.6 scenario. However, compared to the traditional 

model without moss, the new model estimated a much higher carbon accumulation in the region 

during last and this century. Thus, this study highlights the necessity of coupling moss into Earth 

System Models to adequately quantify carbon dynamics in the Arctic.  

5.2 Limitations and Future Research Directions  

In this dissertation research, although results presented here are promising and encouraging, 

it is inevitable that some generic limitations still exist in current models. Main limitations may 

include insufficient model representations, simplified model structures, inadequate understanding 

on parameters, and limited data availability. Thus, more efforts are needed to make up these 

deficiencies in the future. In this section, I will discuss some existing limitations and point out 

several future research directions. 
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 In Chapter 2 and Chapter 3, microbial activities including microbial-based soil 

decomposition and microbial dormancy were explicitly considered in my models. However, some 

other important microbial traits are still missing. For example, shift in microbial community 

structure, which is a vital common evolutionary trait of microbe, was not considered. Many 

documents have demonstrated that microbial community could shift with changing environment, 

including warming, precipitation and N fertilization (Treseder et al., 2011; Frey et al., 2013; 

Allison et al., 2009; Evans & Wallenstein, 2011). This shift will affect microbial physiology, 

growth rates, and its temperature sensitivity of heterotrophic respiration (Classen et al., 2015; 

Stone et al., 2012), which will further influence the soil decomposition and carbon dynamics 

(Treseder et al., 2011; Schimel & Schaeffer, 2012; Todd-Brown et al., 2011). Besides, mechanisms 

such as microbial acclimation have not yet been included in my models. Their adaption to 

temperature regime could decrease the warming-induced elevated respiration over time (Melillo 

et al. 1993; Todd-Brown et al., 2011), thus ignoring this mechanism could bias future soil 

decomposition analysis. Moreover, functional discrimination in microbial community 

compositions is another “missing part” (Strickland et al., 2009; Moorhead et al., 2006). Different 

functional microbial groups could vary in responses to environmental conditions (Balser et al. 

2002; Fierer et al. 2007). Inexplicit representation of microbial functional groups may also induce 

uncertainty in carbon dynamics predictions (McGuire & Treseder, 2010; Schimel, 1995). 

Therefore, future modeling work should incorporate these new details into model structure to 

better represent microbial life-history traits and microbial community dynamics. At the same time, 

more experiments should be conducted to examine the functions of these key microbial physiology 

metrics to support the modeling work.  
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 In addition to the limitation in model representation and model structure, our knowledge 

on related parameters also need to be updated. For example, temperature sensitivity of microbial 

carbon decomposition is currently modeled as involving a critical but controversial parameter, 

carbon-use-efficiency (CUE). Some empirical studies suggested that CUE decreases as 

temperature increases (Steinweg et al., 2008; Manzoni et al., 2012), while some found that CUE is 

invariant with temperature (López-Urrutia and Morán, 2007). Besides, theoretical and empirical 

studies also indicated that CUE decreases as nutrient substrate quality and availability decreases 

(Frey et al., 2013; Manzoni et al., 2012). In our models, CUE is assumed as a simple linear 

relationship with temperature, but no connection with nutrient availability. Thus, more 

experiments are needed in the future to adequately measure the important parameters that drive 

microbial and enzyme turnover since those parameters are commonly used across microbial-based 

models. Modelers are also required to advance their understanding on these functions and 

parameters with times.  

In Chapter 4, I incorporated moss into an extant ecosystem model to explore the role of 

moss and its interactions with higher plants. I found that mosses affect regional ecosystem carbon 

cycling through influencing soil thermal, nitrogen availability, and water conditions of terrestrial 

ecosystems. Nevertheless, our model parameterization and validations were constrained on data 

availability. More data related moss physiology such as moss moisture, moss carbon and moss 

temperature, and regional spatial information of moss distribution are necessary to make the model 

calibration and validations more accurate. Thus, future field work needs to collect more data 

corresponding to the requirements of modeling work. In addition, similar to microbes in previous 

models, dissimilarity in structural and physiological traits of moss groups were also ignored in our 

moss model, which may bias regional carbon budgets prediction (Turetsky et al., 2010). Besides, 
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important physiological traits of moss such as changing of moss abundance following shifts in 

vascular species composition are still missing in current models (Turetsky et al., 2010; Cornelissen 

et al., 2007). Future work may include these essential moss physiological traits and moss 

community dynamics into modeling. Last but not least, symbiotic relationships between higher 

plants and fungi could be important to ecosystem carbon dynamics.  Recent studies have shown 

that these symbiotic relationships are common in regions where soil nitrogen is in short supply 

(Schimel and Hättenschwiler, 2007), and in these cases the hyphae can provide nitrogen to plants, 

and in return, plants provide sugar to fungi (Hobbie and Hobbie, 2008, 2006). Although our study 

modeled the interactions between higher plants and moss, other interactions among higher plants 

and understory should be also explored in future modeling.  

In addition, vegetation distributions are assumed to remain unchanged during the transient 

simulation in my analysis. However, vegetation can shift from one type to another to compete for 

light, nutrient, and water along with the climate change (White et al., 2000; Hansen et al., 2006; 

Lloyd, 2005). Besides, potential responses to disturbances such as fire and insect outbreaks are 

also neglected in my models. For instance, fire may alter the nitrogen cycle and water and energy 

exchanges between the atmosphere and ecosystems by destroying aboveground biomass and 

consuming organic soils (Harden et al., 2000; Kasischke and Turetsky, 2006; Soja et al., 2007).  

These disturbances and vegetation dynamics shall be factored into future regional carbon 

quantifications.  
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