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ABSTRACT

Lu, Tingmingke Ph.D., Purdue University, August 2019. Essays on the Economics of
Motor Vehicle Energy Efficiency. Major Professor: Stephen Martin.

The purpose of this dissertation is to study the effectiveness of public policies

in generating fuel savings and emissions reductions. I focus on applying various

empirical methods to analyze consumer responses to policy changes on both extensive

and intensive margins. This dissertation consists of two chapters.

In the first chapter, I compare the effectiveness of fuel taxes and product taxes on

reducing gasoline consumption of new car buyers. I employ a unified data source for

vehicle choice and subsequent vehicle use to estimate a random effects logit demand

model that explicitly accounts for vehicle use heterogeneity. My demand estimation

suggests that new car buyers fully value the fuel-saving benefits from improved vehicle

fuel efficiency when they initially purchase their cars. My policy simulations indicate

that high-mileage drivers are more responsive to a change in fuel taxes than to a

change in product taxes, even as low-mileage drivers are more responsive to product

taxes. By capturing such heterogeneous consumer response to policies, I show that

a counterfactual increase of the fuel tax is more effective than a revenue-equivalent

product tax in reducing the total gasoline consumption of new car buyers. Further,

when accounting for its effects on consumer response on both extensive and intensive

margins, a change in fuel taxes has a clear advantage over a change in product taxes

in reducing the consumption of gasoline even when the magnitude of tax increase

is small. More importantly, a model not accounting for vehicle use heterogeneity

understates the fuel saving effects of both policies and misleads us about the relative

effectiveness when comparing different policies.
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The second chapter explores how changes in the marginal cost of driving affect

consumers decisions about passenger vehicle utilization, as measured by average daily

miles traveled per vehicle. This intensive margin of consumer response has important

implications for the effectiveness of usage-based policies, such as the fuel tax and the

mileage tax, that designed to address externalities of driving. I estimate the elasticity

of driving with respect to fuel cost per mile using a large panel data that covers 351

towns and cities in Massachusetts over 24 quarters. While most researchers in this

literature apply fixed effects estimators to examine the elasticity of driving, I use a

factor model econometric setup to account for unobserved common factors and re-

gional heterogeneity. Residual diagnostics confirm that the factor model setup does a

better job of removing the cross-section dependence than fixed effects estimators do.

Given low consumer responsiveness to changes in the marginal cost of driving engen-

dered by current usage-based policies, rights-based approaches like congestion charges

might be better alternatives to influence vehicle utilization and vehicle ownership.
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1. RESPONSE OF NEW CAR BUYERS TO

ALTERNATIVE ENERGY POLICIES: THE ROLE OF

VEHICLE USE HETEROGENEITY

1.1 Introduction

In the United States, gasoline consumption by passenger cars and light-duty trucks

accounts for about 59 percent of the carbon emissions attributed to transportation

activities, which collectively make up the most significant share of U.S. carbon emis-

sions from fossil fuel consumption among all end-use economic sectors (EPA, 2018).

At the local level, the ambient air pollution caused by automobile emissions has been

found to affect infant health and contribute to the high rate of acute asthma attacks

among young children in some urban areas (Knittel et al., 2016; Simeonova et al.,

2018). Growing concerns about energy overuse, climate change, and the impact of lo-

cal air pollution on public health have raised the interest in designing effective public

policies to reduce motor fuel consumption in the passenger transportation sector.

This paper investigates the effects of two policy instruments on gasoline conser-

vation. In particular, I compare the effectiveness of energy taxes and product taxes

in reducing total gasoline consumption. An energy tax could be a fuel tax, a carbon

tax, or other policies that change the retail energy price. A product tax refers to

any policy that alters the relative purchase prices of energy-intensive durable goods

with different energy efficiency levels, such as fees imposed on inefficient vehicles and

rebates provided for efficient vehicles according to their per-mile fuel consumption.

I show that the fuel tax outperforms the product tax in reducing gasoline con-

sumption of new car buyers because high-mileage drivers are more responsive to a

change in fuel taxes than to a change in product taxes, even as low-mileage drivers

are more responsive to product taxes. I argue that accounting for vehicle use het-
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erogeneity is critical because it helps address the endogenous sorting of low-mileage

drivers into less fuel-efficient car models in demand estimation and it more accurately

captures the heterogeneous consumer response to alternative energy policies. More-

over, models not accounting for vehicle use heterogeneity understate the fuel saving

effects of both policies and mislead us about the relative effectiveness when comparing

different policies.

I model the effects of fuel taxes and product taxes on consumers’ vehicle choices

as in Grigolon et al. (2018). When a product tax is applied, vehicles with higher fuel

economy ratings become cheaper, ceteris paribus, relative to other models, which in-

centivizes consumers to choose fuel-efficient vehicles. A fuel tax influences consumers’

vehicle purchase decisions by augmenting the difference in the fuel cost between ve-

hicle models with different fuel economy ratings. The success of this mechanism

depends on how many miles a consumer drives and to what extent this consumer

values the future gas cost savings arising from improved vehicle fuel efficiency.

To characterize consumer heterogeneity in vehicle use intensity and preference

over vehicle attributes, I assemble the vehicle ownership and inspection history for

all new passenger cars sold in Massachusetts in 2011 from a dataset that contains

information about every vehicle registered in Massachusetts from 2009 to 2014. I

calculate the annual miles traveled of a car using the difference between odometer

readings from the vehicle inspection logs.

My empirical analysis proceeds in two steps. First, I estimate a random effects

logit demand model in the style of Berry et al. (1995). In particular, I apply the

discrete choice model to define the probability of a consumer buying a specific new car

model as a function of the car’s attributes (including price) and the present discounted

value of the car’s lifetime gas cost. To incorporate vehicle use heterogeneity, I let the

new car buyer’s expected annual vehicle miles traveled and the car’s fuel efficiency

jointly determine the car’s lifetime gas cost. Variations in car attributes and expected

lifetime gas cost allow me to identify flexible substitution patterns for new car buyers.

I model unobserved car attributes as random effects, and I employ price shifters as
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instrumental variables to address price endogeneity. In the second step, I conduct

a counterfactual analysis to understand the effects of alternative energy policies on

gasoline conservation. I compare the amount of fuel savings resulting from applying

a fuel tax and a product tax on the per-mile fuel consumption of a car model, holding

revenues equivalent.

My estimates show that new car buyers fully value the gas cost savings generated

from improved vehicle fuel efficiency. They are willing to pay an extra one dollar in

the up-front purchase price of the car for a one-dollar reduction in discounted future

gas cost. My calculation is closer to the full-valuation results reported by Busse et al.

(2013) and Grigolon et al. (2018) than to the partial-valuation results obtained by

Allcott and Wozny (2014) and Leard et al. (2017).

It is crucial to understand whether consumers are myopic in their preferences

about vehicle fuel efficiency. For instance, if consumers are fully rational and willing

to pay for improved fuel efficiency, product taxes would not be necessary. However,

if consumers are boundedly rational or have a low willingness to pay for improved

fuel efficiency, product taxes will serve the same purpose as subsidies in creating price

differences and stimulating more consumers to buy fuel-efficient car models than they

otherwise would.

By accurately capturing heterogeneous consumer response to alternative policies,

my counterfactual analysis shows that drivers in the top half of the annual vehicle

miles traveled distribution are more responsive to the fuel tax than to the product tax.

Therefore, the fuel tax incentivizes high-mileage drivers more to choose fuel-efficient

car models and to substitute away from conventional gasoline-powered cars toward

hybrid and electric vehicles.

In addition, I relax the assumption of perfectly inelastic demand for driving in

my policy simulations. I show that when accounting for consumer responses on both

extensive and intensive margins, a change in fuel taxes has a clear advantage over

a change in product taxes in reducing gasoline consumption of new car buyers even

when the magnitude of tax increase is small.
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The rest of the paper is laid out as follows. The next section reviews the rele-

vant literature. Section 3 develops the demand model and explains how consumers

respond differently to the change of alternative policies when heterogeneity in annual

mileage is considered. Section 4 describes the data. In section 5, I introduce the em-

pirical framework and state the identification strategy. Section 6 presents the results

from demand estimation and discusses the implied consumer valuation of expected

future gas cost savings. Section 7 carries out the counterfactual analysis. Section 8

concludes.

1.2 Related Literature

This paper is related to a growing literature investigating whether there is under-

investment in vehicle fuel efficiency by consumers. I contribute to this literature by

explicitly modeling the consumer heterogeneity inherent in vehicle use intensity using

the mileage distribution of new car buyers constructed from high-quality vehicle level

microdata, and finding that accounting for vehicle use heterogeneity is crucial. Bento

et al. (2012) provide simulation evidence to show that ignoring consumer heterogene-

ity when estimating the willingness to pay for discounted future energy cost savings

will result in a sorting bias, which may mistakenly lead to the conclusion of consumer

undervaluation.

Using monthly vehicle sales data from 1999 to 2008, Busse et al. (2013) study

how changes in gasoline price affect the equilibrium prices and quantities sold of new

and used cars with different fuel economy ratings. They conclude that consumers are

not myopic because the calculated implicit discount rates of consumers are similar

to the interest rates paid by car buyers who borrow.1 Employing similar reduced-

form price and quantity regressions, Allcott and Wozny (2014) find used car buyers
1In a recent working paper, Leard et al. (2017) apply the same approach to households new vehicles
purchase data between 2009 and 2014. They find that consumers are only willing to pay about 54
cents for one dollar of the expected gas cost savings but have high willingness to pay for vehicle
performances, which implies approximately zero net private consumer benefit from tightened fuel
economy standards.
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are indifferent between 76 cents in the vehicle purchase price and one dollar in the

present discounted value of future gas cost.

In this paper, I take advantage of detailed microdata. I use information about

observed vehicle choices and subsequent vehicle use to capture consumer heterogeneity

in annual mileage. In contrast, most studies in this literature apply information from

the National Household Travel Survey (NHTS) to calculate the annual mileage by

vehicle class and by vehicle age at the national level.

In addition, while estimates in Busse et al. (2013) and Allcott and Wozny (2014)

mainly rely on fuel price differences and hence induced fuel cost changes, I focus on

fuel cost variation generated by heterogeneity in vehicle use intensity. Gillingham

et al. (2015) find substantial heterogeneity in consumer response to gasoline prices by

vehicle fuel economy quantiles. This implies consumers may value a decrease in fuel

price and an increase in vehicle fuel efficiency differently because the former can be

seen as a relatively short-term gain in comparison to the latter.

Grigolon et al. (2018) provide the first study treating consumers’ vehicle use het-

erogeneity and their valuation of expected fuel cost savings in a unified empirical

framework. They apply a discrete distribution of the annual miles traveled obtained

from the 2007 U.K. National Travel Survey and assign consumers to fourteen mileage

types when estimating the new car demand in seven European countries over four-

teen years. The authors find a modest undervaluation of expected fuel cost savings

among consumers. My paper employs the empirical mileage distributions constructed

from the inspection logs of vehicles sold in separate new car markets. The observed

annual vehicle miles traveled during years after the new car purchase provide a better

approximation of the car’s lifetime mileage.

This paper is also related to a strand of literature that asks how to set and evaluate

energy policies in the presence of heterogeneous market failures.2 Allcott et al. (2014)

point out the first best policy in this case would deliver heterogeneous corrections

to consumers’ decision utility. A consumer-specific product subsidy may serve this
2This literature includes, for instance, Innes (1996), Fullerton and West (2002), and Fullerton and
West (2010).
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purpose if it is designed to address the individual level bias of each consumer. In the

absence of such first best policy, I explore the empirical distribution of vehicle miles

traveled and show that high-mileage drivers are more responsive to the fuel tax than

to the product tax. Hence, the fuel tax is more effective in generating fuel savings

and emissions reductions relative to a uniform product tax.

Through policy counterfactuals using European data, Grigolon et al. (2018) doc-

ument that even if the demand for vehicle miles traveled is perfectly inelastic and

consumers do not fully value expected future fuel cost savings, a fuel tax can still

be more effective than a product tax if consumers are heterogeneous in vehicle use.

In the United States, the retail gasoline price is about 50 percent lower than that in

European countries as of 2011, while the average annual miles traveled per vehicle

is about 20 percent higher. Although there are significant differences between Eu-

rope and the U.S. in terms of gas prices and miles traveled, I show that a fuel tax

is preferred over product taxes for gasoline conservation when there is no systematic

undervaluation of vehicle fuel efficiency among consumers. This is because the fuel

tax better targets high-mileage drivers. Consequently, the high-mileage drivers are

more inclined to substitute toward fuel-efficient car models.

1.3 An Empirical Model of New Car Demand

In this section, I present a random coefficients discrete choice model of the de-

mand for new conventional passenger cars in the style of Berry et al. (1995) and

Petrin (2002). I let the present discounted value of a car’s lifetime gas cost enter the

consumer’s decision of which new car to purchase as in Grigolon et al. (2018). Since

consumers may differ in expected vehicle miles traveled and hence in their expected

gas costs, I incorporate the empirical distribution of annual mileage when constructing

the expected gas cost variable.

I employ the sample of new car buyers and estimate the conditional choice of

buying a new passenger car directly. In a complete vehicle choice model, the consumer
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can choose to buy a new vehicle, buy a used vehicle, continue using her current vehicle,

or not own any vehicle. To include all these options, I need to weight the sample of

new car buyers, so it is consistent with the general population. However, I do not

have enough information to correctly infer the conditional density of tastes, and hence,

the weights of new vehicle buyers, from the population density. Incorrectly applied

weights will lead me to inconsistent estimates of tastes that affect both which new

car the consumer chooses and whether the consumer chooses other alternative options

such as not holding a car (Train and Winston, 2007).3

My data comes from a regional market (Massachusetts) and covers six months.4

Thus, I model and analyze the effects of alternative energy policies on the demand

system in the short run. In my model, the product offering is exogenous to policy

changes, so the supply side is not specified or estimated. I drop diesel-powered vehicles

because the number of new diesel cars sold in a single month is small.5 I define the

inside good as gasoline-powered passenger cars excluding SUVs. The outside good

contains both hybrid and electric cars.

1.3.1 Model Formulation

There are T markets with It potential buyers of new passenger cars in each market

t. The conditional indirect utility function of consumer i for car v is

uivt = αi xv + βi (pv + γ Givt) + ζvt + εivt, (1.1)
3A further difficulty with considering the purchase of used vehicles is that used car prices are not
available because I do not observe the used car transactions from data.
4Records of almost all vehicles registered in Massachusetts from 2009 to 2014 are available. I form
my sample to avoid the automotive industry crisis of 2008 - 2010. I choose to use the model year
overlapping months during which both new model year 2011 and 2012 cars are for sale because these
observations have the longest inspection histories within the feasible time frame for me to trace
mileage records.
5Among all passenger vehicles registered in Massachusetts as of 2017, 95.56 percent are powered by
gasoline, 3.37 percent are hybrid and electric vehicles, and only 1.07 percent are powered by diesel
fuel. (Autoalliance.org, State Facts: Autos drive Massachusetts forward, 2017).
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in which xv is a vector of observed car attributes, pv is the purchase price of car

v, and Givt is the present discounted value of expected future gas cost associated

with consumer i choosing to buy car v in market t. This indirect utility does not

include the income of consumer i because the income is common to all options in

her choice set and drops out of the equation eventually (Nevo, 2000; Train, 2009).

Coefficients included in vector αi identify the individual-specific valuation of observed

car attributes, while βi is the individual-specific price sensitivity. ζvt represents the

unobserved (to the econometrician) vehicle attributes of model v in market t. The

unobserved component of the utility function εivt follows the Type I Extreme Value

Distribution, and it is independent and identically distributed over all consumers i,

cars v, and markets t. I normalize the utility of the outside good to zero so that my

estimates are in terms of the difference between the utility of purchasing a specific

car model v and the utility of choosing to buy the outside good.

Coefficient γ is the “valuation factor” introduced by Allcott and Wozny (2014).

Consumers should be indifferent between spending a dollar on the up-front car pur-

chase price and a dollar in present discounted value on total gasoline consumed (All-

cott and Greenstone, 2012). Therefore, a value of γ = 1 implies that the consumers

weigh the gas costs against the up-front car purchase prices in a fully rational way.

A value of γ < 1 suggests that the consumers undervalue expected future gas costs

at the time they initially purchase their cars. An overvaluation is indicated if γ > 1.

I define the present discounted value of a car’s lifetime gas cost as an expectation

over the gas price,

Givt = E
[ S∑

s=1

1

(1 + r)s
mit

mpgv
git
]
, (1.2)

in which git is the individual-specific gas price, mit is the expected annual vehicle

miles traveled of consumer i in market t, and mpgv is the car-specific fuel economy

rating. r is the interest rate at which consumers discount future gas costs, and S

is the length of time over which consumers value gas cost savings generated from

improved vehicle fuel efficiency.
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Although I am using a static setup, a forward-looking new car buyer will divide

this Givt into two parts: the present discounted value of gas costs during her holding

period, and the present discounted value of gas costs over the remainder of the car’s

life after it is resold (Allcott and Wozny, 2014). In this model, car owner i knows the

payout of selling this car to its next owner will be the present discounted value of the

resale price plus that present discounted value of the remaining gas costs.

According to equation 1.2, Givt is heterogeneous if the individual-specific expected

annual mileage is applied. I employ the market-specific empirical distribution of

annual vehicle miles traveled Dt and draw mit from corresponding Dt. Incorporating

vehicle use heterogeneity in this way helps avoid the endogenous sorting bias identified

by Bento et al. (2012) because consumers who drive more are likely to have a higher

valuation of gas cost savings arising from increased vehicle fuel efficiency.

There could be multiple sources of consumer heterogeneity when modeling the

present discounted value of the expected gas cost, such as a discount rate that varies

across consumers and across time.6 In this paper, I concentrate on heterogeneous

annual mileage, so I assume the same interest rate r and time horizon S for all con-

sumers.7 By imposing such a simplifying assumption, I express the present discounted

value of expected lifetime gas cost of car v as

Givt = ρ
mit

mpgv
E[git], (1.3)

in which ρ ≡
∑S

s=1 (1 + r)−s is a common “capitalization factor” that measures how

consumers trade off the up-front car purchase price against the expected annual gas

cost over S years as in Grigolon et al. (2018). A fully myopic consumer will assign
6Multiple factors may affect consumer optimization in this context: a present bias, a systematically
biased belief about the relative energy costs of products with different energy efficiency levels, or the
inattention. DellaVigna (2009) provides a review of both the psychology and economics literature
relevant here.
7As both low discount rate and long vehicle lifetime tend to result in consumer undervaluation, I
employ different assumptions on these parameters so a list of alternative estimates of the valuation
factor γ can be presented and analyzed.
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no weight to annual gas cost, in which case the present discounted value of expected

lifetime gas cost in equation 1.3 would be zero.

1.3.2 Individual Choice Probability and Market Share

Using equation 1.1 and equation 1.3, I rewrite the conditional indirect utility of

consumer i for car v in market t as follows:

uivt = αi xv + βi pv + βiγρ
mit

mpgv
E[git] + ζvt + εivt. (1.4)

I use available data on xv, pv, mit, mpgv and E[git] to estimate αi, βi, and the

coefficient of expected annual gas cost βiγρ. After that, I divide βiγρ by the price

sensitivity βi to obtain the product of the valuation factor and the capitalization

factor γρ.

Since I cannot separately identify the valuation factor γ and the capitalization

factor ρ, I take two steps to compute γ as in Grigolon et al. (2018). First, I apply

assumptions on interest rate r and time horizon S to calculate ρ. Next, I divide the

product γρ by the capitalization factor ρ to reveal γ. Given the individual-specific

annual mileage mit and the fuel economy rating of car v, γ depends on the interest

rate, the relevant time horizon, and the gas price expectation.

I let each new car buyer choose to purchase the alternative that delivers the high-

est level of utility relative to all other options in her choice set. I assume random

coefficients αi, βi, and βiγρ come from a distribution F (θ) where θ includes all pa-

rameters of this distribution. Based on equation 1.4, the individual choice probability

of consumer i for car v in market t is

sivt(ζvt;αi, βi, βiγρ) =
exp(αi xv + βi pv + βiγρ

mit

mpgv
E[git] + ζvt)

1 +
∑J

v′=1 exp(αi xv′ + βi pv′ + βiγρ
mit

mpgv′
E[git] + ζv′t)

.

(1.5)
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Then the predicted market share of car v in market t is

Svt(ζvt; θ) =

∫
(αi,βi,βiγρ)

sivt(ζvt;αi, βi, βiγρ) dF (θ). (1.6)

1.3.3 Heterogeneous Consumer Response to Alternative Policies

Following Grigolon et al. (2018), I use the individual choice probability described

in equation 1.5 to show that properly accounting for vehicle use heterogeneity is vital

when investigating the relative effectiveness of the fuel tax and the product tax in

reducing gasoline consumption. I let τ g denote a new excise tax on retail gasoline sales

which generates the change in fuel tax. Alternatively, I place a product tax on a car’s

per-mile fuel consumption (in gallons/mile). Since the per-mile fuel consumption

is the inverse of a car’s fuel economy rating (in miles/gallon, i.e., MPG), I write

this product tax as τmpg

mpgv
. Given these notations, the expected post-tax gas price is

E[git] + τ g per gallon and the post-tax vehicle purchase price becomes pv + τmpg

mpgv
.

Plugging new prices into equation 1.5, the probability of consumer i choosing

model v in market t becomes

sivt =
exp(αi xv + βi (pv + τmpg

mpgv
) + βiγρ

mit

mpgv
(E[git] + τ g)) + ζvt)

1 +
∑J

v′=1 exp(αi xv′ + βi (pv′ + τmpg

mpgv′
) + βiγρ

mit

mpgv′
(E[git] + τ g)) + ζv′t)

.

To inspect the consumer response to the implementation of a new gasoline tax

and a product tax, I differentiate the individual choice probability with respect to

both τ g and τmpg, as explained in the Appendix. Consumer i’s response given the

change in gasoline tax is

∂sivt
∂τ g

= βiγρmit sivt (
1

mpgv
−

J∑
v′=1

siv′t
mpgv′

). (1.7)
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Similarly, consumer i responds to the product tax by adjusting her choice probability

such that

∂sivt
∂τmpg

= βi sivt (
1

mpgv
−

J∑
v′=1

siv′t
mpgv′

). (1.8)

Since the price sensitivity βi is negative, the common part in the parentheses of

equations 1.7 and 1.8 implies that, when implementing either tax, the probability of

consumer i choosing car v will decrease if the per-mile gasoline consumption of car v

is higher than the share-weighted average per-mile gasoline consumption of all new

car models in the market. This result fits intuition because the cost of purchasing

and operating a car with high fuel economy rating will be lower than that cost for a

less fuel-efficient car model after applying either τ g or τmpg, all else equal.

The difference between consumers’ responses to alternative policies lies in the term

outside of the parentheses. The fuel tax influences the individual choice probability

differently because the combination βiγρmit relates a consumer’s response to her

valuation of the expected gas cost savings. Moreover, this effect varies when there is

heterogeneity in vehicle use intensity across new car owners.

In a set of policy simulations, I show that high-mileage drivers are more responsive

to the new fuel tax than to the product tax despite the inelastic demand for vehicle

miles traveled while low-mileage drivers are more responsive to the product tax. This

heterogeneous consumer response provides the fuel tax with a clear advantage over

the product tax in generating fuel savings because high-mileage drivers take up a

more substantial proportion of the total gasoline consumption. More importantly,

models not accounting for vehicle use heterogeneity understate the fuel saving effects

of both policies and misleads us about relative effectiveness when comparing different

policies.

In addition, after I relax the assumption of perfectly inelastic demand for driving

with respect to changes in gasoline prices in policy simulations, the fuel tax proves

to be a much more effective policy tool in reducing gasoline consumption of new car
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buyers relative to the product tax because the former influences consumer responses

on both extensive and intensive margins.

1.4 Data

With the model and its assumptions in mind, this section presents the sample

I construct using several data sources. The primary data used in this paper is the

Massachusetts Vehicle Census (Metropolitan Area Planning Council, 2016). It is

based on the Automated License and Registration System and a separate database

containing records of vehicle inspections, both of which are administrative data sets

maintained by the Massachusetts Registry of Motor Vehicles (Reardon et al., 2016).

1.4.1 Vehicle Choices

In Massachusetts, passenger vehicle registration renewal is valid for two years while

vehicles are required to be inspected annually and within seven days of sale. When

constructing the Massachusetts Vehicle Census (MAVC), registration records are split

where a vehicle inspection record, which delivers the mileage reading, begins or ends.

So each record in the MAVC covers a defined period when the specified vehicle had a

unique combination of owner, garaging address, and average daily mileage (Reardon

et al., 2016).

Vehicle manufacturer, model, fuel type, fuel economy rating, curb weight, and

the manufacturer suggested retail price (MSRP) of each vehicle are included in the

MAVC data. Vehicle identification number (VIN) and ZIP Code of garaging address

are also available from the MAVC researcher files.

I apply a highly disaggregated definition of the vehicle model to capture the vari-

ation in fuel efficiency and engine performance as much as possible. Each vehicle

recorded in the MAVC is a manufacturer/model/model year (MY) combination, e.g.,

“Volkswagen Jetta 2011”. I use VINs and the VIN decoder provided by the National

Highway Traffic Safety Administration (NHTSA) to retrieve the trim level informa-
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tion of each vehicle.8 Also, I use the trim level information to collect extra vehicle

attributes such as vehicle body type, vehicle passenger volume, and interior cargo

volume from Cars.com and Ward’s Automotive Yearbook. The unit of observation

in my sample is at the very detailed level, e.g., “Volkswagen Jetta 2011, 2.5 liter, 170

hp, 3,045 lbs, 27 MPG, 94.1 ft3 passenger volume, and 15.5 ft3 cargo volume”.

1.4.2 New Car Markets

In Massachusetts, thirteen Metropolitan Planning Organization (MPO) and Trans-

portation Planning Organization (TPO) regions cover all municipalities of the state.

An MPO/TPO is a federally required regional transportation policy-making orga-

nization made of representatives from local government, regional transit operators,

and state transportation agencies. Each MPO/TPO creates a fair and impartial set-

ting for effective regional decision making in the metropolitan area to coordinate and

manage transportation projects and programs that carried out in 351 towns and cities

across the state. Following the Massachusetts Travel Survey published by the Mas-

sachusetts Department of Transportation in 2012, I employ MPO and TPO regions

to define geographic new car markets in Massachusetts.

I choose my sample period to be the model year overlapping months during which

both new MY 2011 and 2012 cars are for sale. Based on disaggregated new vehicle

transaction data, Copeland et al. (2011) point out that for about half the calendar

year, automakers simultaneously sell two vintages of the same model. Table 1.1 shows

that about 95 percent of the statewide new passenger vehicle registrations during the

sample period is for MY 2011 and 2012.

The first MY 2012 car observed from the MAVC is in March 2011, but the 2012

vintage does not show up on a large scale until July 2011. Although upcoming model
8Manufacturers use trim levels to identify a vehicle’s level of equipment or special features. For
models that use several trim choices, automakers usually offer three or four versions. For example,
the gasoline-powered 2011 Volkswagen Jetta comes in three versions: S, SE, and SEL. The Jetta S
is the base model, which includes the fewest features and has the lowest price of the three. The SE
is in the middle of the range in both price and equipment, and the SEL is the most luxurious and
feature-rich version.
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year debuting vehicles can be spotted in as early as March of the current calendar

year, August and September are generally when automakers transition to the new

model year (Copeland et al., 2011). According to the availability of MY 2012, I use

new car registration records of MY 2011 and MY 2012 from ten MPO/TPO regions

in Massachusetts between July 2011 and December 2011 to construct the monthly

new car market.9

This batch of observations has the longest inspection history within the MAVC

time frame for me to trace mileage records. Also, as required by the tightened fuel

economy standards of passenger cars under the Obama administration, the sales-

weighted fleet average fuel economy rating of passenger cars increases from 30.4 MPG

for MY 2011 to 33.3 MPG for MY 2012 (EPA and NHTSA, 2010). Such changes in

vehicle fuel efficiency provide extra identification source for me to pin down consumer

valuation of expected fuel cost savings.

1.4.3 Prices

New Car Prices. I use MSRPs for new car purchase prices because transaction

prices are not available. Market dummies are included in the mean utility term of

each car model to account for manufacturer and dealer incentives offered to the car

buyers and other market fixed effects. Using monthly new vehicle transaction prices,

Copeland et al. (2011) document that the average retail price of a new vehicle model

declines at an annual rate of nine percent over its model year. To bring this feature

of new vehicle markets to my sample, I apply a nine percent discount to MSRPs of

all MY 2011 cars to create this “new vintage premium” for MY 2012 cars.

Gasoline Prices I employ the average price of midgrade motor fuel in Mas-

sachusetts from the U.S. Energy Information Administration (EIA) to form the con-

sumer expectation of future gasoline prices.10 The EIA uses a regional classifica-
9I drop three MPO regions when building the sample because there are very few observations in
each of them. See the Appendix for a detailed data cleaning procedure.
10I also apply prices of the regular grade gasoline for robustness check. The results are nearly
identical.
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tion that divides the U.S. into seven Petroleum Administration for Defense Districts

(PADD). It provides gas price information for these seven regions, and also for ten

states and nine cities separately. Figure 1.1 shows that the monthly average price of

the midgrade gasoline in the New England area (PADD1A), the statewide average

price of Massachusetts, and the citywide average price of Boston share the similar

pattern. The latter two overlap because these two average prices are very close to

each other. The prices that I use for computing the average price of midgrade gasoline

lie between two vertical dotted lines.

The expected gasoline price of consumers plays a vital role in my model. Based

on the Michigan Survey of Consumers (MSC), Anderson et al. (2011) conclude that

households in the MSC typically form expectations about the inflation-adjusted price

of gasoline using a simple no-change model. Specifically, households surveyed in

MSC expect the nominal gasoline price to grow at the same rate as inflation, which

is equivalent to expecting the real price of gasoline in the future to be the same as

the current price of gasoline. Although the inflation expectations data in the MSC is

limited to selected horizons, this no-change model is valid when advanced methods of

inflation forecasting are employed (Baumeister and Kilian, 2016). I adopt this simple

rule of thumb in my analysis. Therefore, the consumer gas price expectation in my

model is the average of Massachusetts midgrade gasoline price over six months from

July 2011 to December 2011.11

1.4.4 Empirical Distribution of Annual Vehicle Miles Traveled

I construct the ownership and inspection history for observations in my sample

from the vehicle registration and inspection records contained in the MAVC. Each

valid vehicle inspection record in the MAVC reports the number of days between two

inspections and the average daily miles traveled during that period. I weight the
11In addition to applying this no-change model, I evaluate several alternative behavioral models of
consumers’ gas price expectations following Kilian and Sims (2006). These alternative models of
consumers’ expected gas prices give similar results to the no-change model.
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daily miles using the length of the time span between two inspections, and apply

this weighted average daily mileage to calculate the expected annual vehicle miles

traveled.

From the new car market sample, I select all registered new cars with complete

inspection records over three consecutive years and apply the weighting procedure

described above to their mileage records to create the mileage sample. Table 1.2

presents the numbers of observations in both the demand sample and the mileage

sample by markets. I also report summary statistics of daily vehicle miles traveled by

markets in table 1.2. Overall, the average number of the days between two inspections

is 379, and the standard deviation is 32.

1.5 Empirical Implementation

I employ a sequence of T markets to estimate the taste parameters in a system

of market shares using the Generalized Method of Moments (GMM). The data I

am using has three components: car attributes including price, market shares, and

empirical distributions of the annual mileage.

1.5.1 Specification of the Taste Parameters

To achieve flexible substitution patterns for new car buyers, I allow the marginal

utilities of some observed car attributes and the expected gas cost to vary at the

individual level. The conditional indirect utility of consumer i for car v in market t

becomes

uivt = ᾱ xv + (ΣKνi)
′ xKv + β pv + βiγρ mit

g

mpgv
+ ζvt + εivt (1.9)

in which ᾱ is a vector of mean valuations for all observed car attributes, νi is a K× 1

vector of unobserved (to the econometrician) idiosyncratic tastes for K observed car
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attributes xKv , and ΣK is a matrix with parameters σk on the diagonal.12 I apply

K independent χ2(3) distributions truncated at 95 percent for νi following Petrin

(2002).13 Parameters σk capture the heterogeneity in unobserved tastes νi for xKv in

the population.

pv is the MSRP of new car model v. I apply the average Massachusetts midgrade

gasoline price over the sample period to all consumers. This approximation implies

E[git] = g for every new car buyer in each MPO market. I specify g/mpgv as the

per-mile gas cost of driving (in dollars per mile).

The product βiγρ is estimated as one random coefficient with draws mit from cor-

responding market-specific mileage distribution Dt. These empirical mileage distri-

butions work as distributions of demographic characteristics obtained from represen-

tative data sets such as the Current Population Survey in providing extra information

and therefore ensuring the identification of βiγρ.

The term ζvt represents unobserved car attributes. It does not have a random

coefficient. The inclusion of this term allows the model to rationalize patterns of

market shares observed from the data. I define this term of unobserved car attributes

as

ζvt = ζt + ζ̃vt (1.10)

in which ζt captures the market fixed effects, and ζ̃vt are random effects accounting for

any remainder of unobserved product attributes that vary across different car models

and markets.
12For simplicity, I restrict the covariances of all random coefficients to be zero as in Nevo (2000).
13This distributional assumption implies that the heterogeneity of unobserved consumer tastes in
the population is skewed in the positive direction. When more information becomes available, I can
construct full demographic-dependent taste terms. I also apply the standard normal distribution for
νi for a robustness check. The results obtained from this alternative distributional assumption are
similar.
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1.5.2 Identification and the GMM Estimator

To incorporate vehicle use heterogeneity, I apply the discrete choice model to

define the individual choice probability and hence the market share of a particular

new car model as a function of the car attributes (including price) and the new car

buyer’s expected gas cost. In my model, a consumer knows what tasks her newly

purchased passenger car will perform before she buys it. Therefore, the vehicle use

pattern of a car bought by consumer i is consistent over her holding period. The

variation in the up-front purchase price and the expected gas cost across different

car models allows me to identify how much new car buyers value the expected fuel

cost savings arising from improved vehicle fuel efficiency when they initially purchase

their cars.

To pin down the parameters governing the substitution patterns of the new car

buyers, I need variations in attributes across new car models and expected gas cost

across consumers. As summarized in table 1.2, market-specific empirical mileage

distributions help capture the variation in vehicle use pattern among consumers in

different markets. Since the gasoline price is the same for all new car buyers, the

variation in the expected car lifetime gas cost across drivers in my sample comes

from the difference in the model-specific vehicle fuel efficiency and the individual-

specific expected annual vehicle miles traveled rather than from changes in gasoline

prices. I present the summary statistics for attributes of new car models purchased

by consumers in table 1.3. Attributes that vary at the vehicle trim level such as car

purchase price, performance ratio (i.e., horsepower/curb weight), fuel economy rating,

and engine size have higher dispersion around the mean than attributes changing at

the nameplate-model level like the interior passenger volume.

Following the seminal work Berry (1994), I define the product-specific linear mean

utility component of uivt as

δ(Svt, θ) ≡ ᾱ xv + β pv + ζt + ζ̃vt (1.11)
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in which Svt is the market share of model v in market t. Given the distributional

assumption on consumer taste for car attributes and the expected gas cost, Berry

(1994) demonstrates that there is a unique δvt(θ) that solves Sdatavt − Svt(δ, θ) = 0 for

each θ, in which Sdatavt is the observed market share.

I address price endogeneity by using price shifters zvt in market t as instrumental

variables. In particular, for car v, the squares of its own attributes, the sum of each

attribute of car models made by the same manufacturer, and that of car models

made by competing manufacturers are employed as instrumental variables. These

instruments are introduced by Pakes (1994), and have been used by Berry et al.

(1995) and subsequent work.14

By applying this group of instruments, I assume that the unobserved car attributes

ζ̃vt, although correlated with the car purchase price, are mean independent of those

observed nonprice car attributes and the gas price expectation. I rule out any endo-

geneity in observed nonprice attributes following previous literature, which appears

reasonable because manufacturers cannot quickly redesign their products over such a

short span of time as I am considering in this paper. The cost of maintaining this as-

sumption is the possibility of inconsistent estimators if it turns out to be inappropriate

(Greene, 2011).

I compute δ(Svt, θ) numerically using the contraction mapping procedure devel-

oped by Berry et al. (1995). Given this mean utility term and the assumption

E(ζ̃vt(θ)|zvt) = 0, equation 1.11 becomes a standard linear regression model. The
14This set of price shifters are the standard instruments used in random coefficients logit demand
applications (Gandhi and Houde, 2016). They have been proved very effective in the study of many
industries such as automobiles, computers, and pharmaceutical drugs (Nevo, 2000). For automobiles,
previous papers that apply price shifters include Petrin (2002), Berry et al. (2004), and Train and
Winston (2007).
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primary set of moments that I use for the GMM estimator is E(ζ̃vt(θ)zvt) = 0.15 The

GMM estimator θ̂gmm is the solution to this following criterion function

θ̂gmm = argmin
θ

ζ̃(θ)′ZW−1Z ′ζ̃(θ) (1.12)

in which Z is the instrument matrix and I set the weighting matrix W to be Z ′Z

following Nevo (2000). I take into account both sampling error and simulation error

to estimate the standard errors of the parameter estimates following Hansen (1982).

I describe the detailed estimation procedure and the numerical considerations in the

Appendix.

1.6 Results

Correctly accounting for consumer heterogeneity has been recognized as an es-

sential modeling feature when estimating the demand for differentiated products in

general (Ackerberg et al., 2007). When examining the consumer valuation of ex-

pected gas cost savings, I show that properly accounting for heterogeneity in vehicle

use intensity helps address the endogenous sorting of low-mileage drivers into less

fuel-efficient car models while considering heterogeneity in tastes for observed car at-

tributes alone cannot achieve this correction. To do so, I compare parameter estimates

and corresponding valuation factors from four different demand models.

The first model (IV Logit Mean Miles) is an instrumental logit model combining

price shifters as instrumental variables to address the price endogeneity. In this

simple logit model, the expected annual vehicle miles traveled equals the mean of

the observed mileage distribution for consumers in each market, and there is no

heterogeneity in consumer taste for observed car attributes.
15According to the Metropolitan Area Planning Council of Massachusetts (MAPC), the MAVC
database is currently undergoing an update. A more extended time series of the data (through
June/2017) with more attributes (e.g., owner birth year) can be expected soon. In that case, I will
augment micro moments to the current estimation procedure for additional sources of identification
following Petrin (2002).
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To investigate changes in the demand estimation and the valuation factor re-

sulted from including different types of heterogeneity, I develop the second model

(IV RCLogit Mean Miles) and the third model (IV Logit EPD Miles) to account

for taste heterogeneity and vehicle use heterogeneity accordingly.16 The IV RCLogit

Mean Miles model adapts random coefficients for consumer preference over some of

the observed car attributes as laid on in the previous section while keeps using mean

mileage. The IV Logit EPD Miles model builds on previous IV Logit Mean Miles

model. It introduces mileage heterogeneity by incorporating random draws from the

market-specific empirical mileage distributions. Therefore, heterogeneous annual ve-

hicle miles traveled are employed to calculate the expected future gas cost while the

valuation of car attributes remains homogeneous.

Finally, the last demand model (IV RCLogit EPD Miles) applies random coef-

ficients to the expected gas cost and also the observed car attributes. It allows for

heterogeneity in both vehicle miles traveled and consumer valuation of observed car

attributes.

1.6.1 Parameter Estimates

Table 1.4 reports parameter estimates from four demand models. Results from

the IV Logit Mean Miles model (column 1 in table 1.4) are intuitive. New car buyers

have strong disutility from high car purchase prices, and they penalize high expected

car lifetime fuel costs. While omitted in table 1.4, parameter estimates on market

dummies have consistent patterns across all four demand models. They suggest that

residents living in any MPO regions but Boston are more likely to buy gasoline pow-

ered cars relative to consumers living in the Greater Boston area.

The average own-price elasticity of new car demand across ten MPO markets is

−1.31.17 This number indicates a less elastic demand in comparison with elasticities
16RCLogit stands for Random Coefficients Logit Model. EPD is short for Empirical Distribution.
17Elasticity calculated from a logit model without using the instrumental variables is about −0.04.
When applying the price shifters as instruments, the F-statistic of the first-stage mean utility re-
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estimated in previous literature where the average elasticity across vehicle segments

is in the neighborhood of −2 to −5.18 As conventional wisdom would posit, price

elasticity diminishes with income. Inelastic demand for the new cars in my sample

is reasonable because consumers in Massachusetts enjoy higher household incomes

relative to the rest of the country. Additionally, the consumer demand for passenger

cars is less elastic than that for SUVs and pickup trucks in general (Copeland et al.,

2011).

Both the IV RCLogit Mean Miles model (column 2 in table 1.4) and the IV Logit

EPD Miles model (column 3 in table 1.4) deliver the price sensitivity parameter

close to that from the IV Logit Mean Miles model. When allowing for heterogeneity

in annual mileage and hence in the valuation of expected gas cost in the IV Logit

EPD Miles model, the impact of expected gas cost on utility entirely varies with the

individual-specific annual mileage, so the mean valuation is omitted. The expected

gas cost again have a negative and significant effect on consumer utility. According to

previous literature, horsepower and size are top essential attributes for U.S. consumers

to consider when buying new vehicles. The estimated mean valuations in column 3

indicate that new car buyers in Massachusetts also favor cars with rapid acceleration

and large interior passenger volume. Moreover, they have a strong preference for

European cars compared to those made by American manufacturers.

As I apply heterogeneity to both annual vehicle miles traveled and consumer

valuation of car attributes in the full random coefficients logit model (column 4 in

table 1.4), the effects of the car purchase price and gas cost on utility are consistently

negative and significant. However, when comparing IV RCLogit models to IV Logit

models, it seems that more demographic information on the population is required to

gression is 49. According to the bias method introduced by Stock and Yogo (2002), I reject weak
instruments at the 95% confidence level.
18Goldberg (1995) reports residual demand elasticities of demand for specific vehicles that are in
the −2 to −4 range. Berry et al. (1995) report elasticity estimates for 13 vehicle models with the
average of −5. Using recent data, Bento et al. (2009) report −1.9 for all new passenger vehicles,
and Whitefoot et al. (2011) report −1.97.
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identify consumer preference over car performance and passenger volume if random

coefficients are allowed for these attributes.

1.6.2 Consumer Valuation of Expected Gas Cost Savings

In this section, I calculate consumer valuation of expected gas cost savings aris-

ing from improved vehicle fuel efficiency using parameter estimates obtained from

demand models that employ different mileage information. I show that vehicle use

heterogeneity must be included to reveal the true valuation factor γ if bias is caused

by the endogenous sorting of low-mileage drivers into less fuel-efficient car models.

I divide the gas cost coefficient βiγρ by the price coefficient β to obtain the product

of the valuation factor and the capitalization factor γρ. Then I apply assumptions on

the discount rate and the time horizon to compute the capitalization factor ρ. Finally,

I take the ratio of γρ over ρ to reveal the valuation factor γ. My calculation is closer

to the full-valuation results reported by Busse et al. (2013) and Grigolon et al. (2018)

than to the partial-valuation results obtained by Allcott and Wozny (2014) and Leard

et al. (2017).

A reasonable estimation of the valuation factor γ relies on choices carefully made

for the interest rate r and the time horizon S. Allcott and Wozny (2014) calculate

the average discount rate weighted over used vehicle buyers using different payment

methods (i.e., financed, leased, and cash) and set the discount rate as 6%. I adopt

this value of the discount rate for analysis.

The vehicle sustainability and travel mileage schedules published by the NHTSA

suggests that the average maximum vehicle age of passenger cars is 25 in the U.S. (Lu,

2006). Using the 2009 NHTS data, Leard et al. (2017) updates the maximum lifespan

for cars to 35 years as better technology and overall vehicle quality improvements have



25

been driving up the average vehicle age over time. I apply both numbers of the car

lifetime in my calculation.19

The first row of column 1 in table 1.5 shows that the product γρ calculated

from the IV Logit Mean Miles model is noticeably smaller than those obtained from

models accounting for heterogeneity among consumers. Consequently, in the second

and the third row of table 1.5, the valuation factors computed from the IV Logit

Mean Miles model predict a noticeable consumer undervaluation of expected gas

cost savings arising from improved vehicle fuel efficiency. This corresponds to the

conclusion reached by Bento et al. (2012) through a simulation study: when the

undervaluation of energy costs is not present in the true data generating process,

the simple logit model could erroneously suggest significant undervaluation while the

random coefficients logit model recovers the actual value.

Columns 2 and 3 in table 1.5 present similar results. When choosing time horizon

as 35 years, the models accounting for heterogeneity in either consumer preference over

car attributes or expected annual mileage indicate a moderate consumer undervalua-

tion of expected gas cost savings. After including heterogeneity in both dimensions,

the valuation factor results presented in column 4 suggest that consumers fully value

the benefits of improved vehicle fuel efficiency when they initially purchase their cars

(i.e., γ = 1).

I also calculate the implicit discount rate for new car buyers following Hausman

(1979). This implicit discount rate is the interest rate at which consumers discount

the future, assuming that they value the expected gas cost savings to the full extent

over a given value of the car lifetime. In the last two rows of table 1.5, the implicit

discount rates calculated from the full model employing random coefficients for both

car attributes and expected annual mileage are within a reasonable distance from 6%,

which is the discount rate calculated by Allcott and Wozny (2014).
19A relatively long average vehicle lifetime tends to conclude consumer undervaluation. The defini-
tion of the capitalization factor is ρ ≡

∑S
s=1 (1 + r)−s = 1

r [1− (1 + r)−s]. When the product γρ is
fixed, a lower r or a larger S (i.e., higher ρ) leads to a smaller γ.
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Although the gasoline price was trending down during the sample period, it was

still at a high point relative to gasoline prices during the previous years. In this case,

consumers seem to behave rationally by assigning a near-full valuation to expected gas

cost savings. Hassett and Metcalf (1993) argue that high energy expenditure increases

the return to an energy saving investment because the return to the investment is

the energy cost avoided. Similarly, Busse et al. (2016) suggest that, if consumers

experience an adjustment cost to changing their vehicle choices or vehicle use patterns,

they may not respond to changes in gasoline prices until the price crosses a threshold

at which it becomes worthwhile to make the necessary switch. This might, therefore,

serve as the motivation to implement the gasoline tax properly or apply a retail sales

tax to gasoline purchases.20

1.7 Policy Simulations

At the root of designing effective policies in producing fuel savings and emissions

reductions in passenger transportation is the influence of policies on consumer be-

havior. In this section, I carry out policy simulations to show that accounting for

vehicle use heterogeneity is critical when evaluating such policies because it more

accurately captures the heterogeneous consumer response to policy changes, which

provides the fuel tax with a clear advantage over the product tax in reducing gaso-

line consumption. To do so, I apply random coefficients demand models employing

different mileage information to compare the amounts of fuel savings resulting from

implementing alternative policies.

1.7.1 Perfectly Inelastic Demand for Driving

Policy simulations conducted in this section investigate the effects of a fuel tax

and a product tax on consumers’ vehicle choice decisions but not on how many miles
20States currently imposing a retail sales tax for gasoline fuel purchases are California, Florida,
Georgia, Hawaii, Illinois, Indiana, Michigan, New York, West Virginia.
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to drive. In particular, while the fuel tax may directly affect consumers’ demand for

vehicle miles traveled because it changes the cost of driving, I fix the expected annual

mileage before and after applying new taxes for every simulated new car buyer. This

implementation is consistent with the literature where most researchers find relatively

inelastic consumer demand for the vehicle miles traveled with respect to changes in

gasoline prices (Gillingham, 2014; Davis and Kilian, 2011). Moreover, according to

recent studies on the “rebound effect” in the context of transportation equipment, an

improvement of the vehicle fuel efficiency hardly influences the vehicle use pattern of

consumers (Gillingham et al., 2016).

In column 1 of table 1.6, I report the current average annual gasoline consumption

of new car buyers in the Boston area that calculated from observed mileage records

and market shares of new cars. Columns 2 and 3 of table 1.6 present the amounts

of expected average annual gasoline consumption per driver when I in turn apply

a counterfactual increase of the fuel tax by $0.25/gallon to the average midgrade

gasoline price in Massachusetts, which is $3.69/gallon over the sample period, and a

revenue equivalent product tax on the per-mile gasoline consumption of a car model.21

The first row in Panel A of table 1.6 shows that, in a model accounting for hetero-

geneity in consumer preference over car attributes but not vehicle usage, a 25 cents

increase in the fuel tax has an almost identical effect as a revenue equivalent prod-

uct tax in reducing gasoline consumption of new car buyers. The expected gasoline

consumption decreases to about 387 gallons per year per driver in both scenarios.

However, the second row in Panel A suggests that in a model properly accounting

for vehicle use heterogeneity, a fuel tax reduces the expected average annual gaso-

line consumption by 1.37 percent while a revenue equivalent product tax reduces the

consumption by only 0.90 percent.

To investigate the mechanism that generates this relative effectiveness result, I

examine the impacts of alternative policies on different groups of drives. I assign

simulated new car buyers who land in the top half of the mileage distribution to the
21Refer to the Appendix for the calculation of a revenue equivalent product tax.
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“High Miles” group and the rest to the “Low Miles” group. When considering only

low-mileage drivers (the first row in Panel B of table 1.6), the counterfactual fuel

tax reduces about the same annual gasoline consumption on average as the product

tax does. However, the fuel tax has a more substantial fuel-saving effect on high-

mileage drivers. When applying an extra fuel tax $0.25/gallon, high-mileage drivers

reduce their average annual gasoline consumption from about 508 gallons to roughly

499 gallons by switching to more fuel-efficient cars. Although a revenue equivalent

product tax also leads to trimming in average annual gasoline consumption of high-

mileage drivers, as suggested by numbers in the second row in Panel B of table 1.6,

the cutback is smaller.

This set of comparisons yields important insights. When consumers fully value

the gas cost savings arising from improved vehicle fuel efficiency (i.e., γ = 1.01), a fuel

tax and a product tax incentivize different groups of consumers to substitute toward

more fuel-efficient car models and therefore generate differentiated fuel saving results.

When breaking down the impacts of alternative policies by mileage group, I show that

high-mileage drivers are more responsive to policy changes relative to low-mileage

drivers. More importantly, high-mileage drivers are more responsive to a change in

fuel taxes than to a change in product taxes, while low-mileage drivers are more

responsive to product taxes. In addition, I show that when the same set of policies is

considered, a model not employing heterogeneous miles not only understates the fuel

saving effects of both policies but also mislead us about the relative effectiveness of

two policies in reducing gasoline consumption of new car buyers.

According to data provided by the U.S. Department of Energy, the national aver-

age annual fuel use per vehicle of the passenger car category is 480 gallons as of 2015,

which is close to the average annual gasoline consumption of high-mileage drivers in

my sample. Therefore, the aggregate fuel savings and emissions reductions generated

from correctly implementing fuel taxes could be considerable at the national level

even when the demand for driving is held constant.
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1.7.2 Elastic Demand for Vehicle Miles Traveled

In the previous section, I assume a perfectly inelastic demand for driving to show

that a fuel tax is more effective in reducing gasoline consumption as it incentivizes

high-mileage drivers more to choose fuel-efficient cars. In this section, I allow con-

sumers to respond to changes in fuel prices by adjusting how much to drive. Therefore,

the second set of policy simulations carried out in this section also account for the

effect of changes in fuel taxes on consumer response on the intensive margin.22 In the

meantime, I stick to the “weak rebound effect” result from recent literature, which

indicates that consumers do not drive more after switching to more fuel-efficient ve-

hicles, so new car buyers’ decisions on how much to drive are held constant even after

implementing the product tax.

I follow the same procedure conducted in the previous section but apply a new

mean mileage number or a new mileage distribution accordingly after implementing

the extra fuel tax. Numbers in the first row in Panel C of table 1.6 suggest that, even

when not accounting for heterogeneous vehicle usage among consumers, an extra fuel

tax of $0.25/gallon reduces more gasoline consumption relative to a revenue equivalent

product tax when drivers are allowed to switch vehicles and to adjust mileage in

response to changes in fuel taxes.23

In a model accounting for heterogeneity in both consumer preference over car

attributes and vehicle usage, the difference in effects on reducing gasoline consumption

between a fuel tax and a revenue equivalent product tax is more dramatic. The new

fuel tax reduces about ten more gallons per year per driver compared to the product

tax. When looking into different driver groups in Panel D of table 1.6, both low-
22Using mileage information obtained from the MAVC vehicle registration and inspection records,
I create a vehicle level panel data that includes about 6,000 new passenger cars over three years.
Following Gillingham et al. (2015), I estimate the elasticity of driving with respect to gasoline prices
and predict new miles after applying counterfactual fuel taxes. Refer to the Appendix for estimation
details and results.
23In Panel C, the mean mileage in the IV Mean Miles model changes after applying a new fuel tax.
Numbers of the percentage change in the average annual gasoline consumption for the product tax
are slightly different for mean miles models in Panel A and Panel C because I anchor product taxes
on fuel tax revenues.
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mileage drivers and high-mileage drivers make pronounced responses to an increase

in the fuel tax by reducing their annual gasoline consumption. This set of policy

simulations indicates that when accounting for its effects on consumer responses on

both extensive and intensive margins, a change in fuel taxes has a clear advantage

over a change in product taxes in reducing gasoline consumption of new car buyers,

even when the magnitude of tax increase is small.

1.8 Concluding Remarks

I have shown that accounting for vehicle use heterogeneity is critical when evalu-

ating the effectiveness of a fuel tax and a product tax in generating fuel savings and

emissions reductions by analyzing models employing distributional miles and models

considering only mean mileage. I construct the ownership and inspection history for

new passenger cars using vehicle registration and inspection records contained in the

MAVC, which covers almost every single vehicle registered in Massachusetts between

2009 and 2014. This high-quality vehicle level microdata allows me to form and

apply distributions of expected annual mileage in demand estimation and policy sim-

ulations. The observed annual vehicle miles traveled during years after the new car

purchase provide a better approximation of the car’s lifetime mileage and facilitate

the decomposition of the impacts of alternative energy policies on new car buyers.

I find that it is crucial to account for heterogeneity in both consumer preference

over car attributes and vehicle use intensity when estimating consumer demand for

new passenger cars. I show that properly accounting for vehicle use heterogeneity

helps address the endogenous sorting of low-mileage drivers into less fuel-efficient car

models while considering heterogeneity in tastes for observed car attributes alone can

not achieve this correction.

My demand estimation indicates that consumers fully value gas cost savings arising

from improved vehicle fuel efficiency when they initially purchase their cars. My policy

simulations suggest that a fuel tax is more effective in reducing gasoline consumption
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because high-mileage drivers are more responsive to a change in fuel taxes than to a

change in product taxes, even as low-mileage drivers are more responsive to product

taxes. By capturing such heterogeneous consumer responses to policies, I show that a

moderate increase in fuel taxes is more effective than a revenue equivalent product tax

in reducing the total gasoline consumption of new car buyers even when the demand

for driving is held perfectly inelastic. Moreover, a model not accounting for vehicle

use heterogeneity understates the fuel saving effects of both policies and misleads us

about the relative effectiveness of two policies.
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Figures And Tables

Figure 1.1. The monthly average price of midgrade gasoline in the
New England area, the statewide average price of Massachusetts, and
the citywide average price of Boston are plotted in this figure. The
latter two prices are visually indistinguishable because these two are
similar. Prices that used to construct the state average price for
empirical analysis lie between two vertical dotted lines. All prices
are normalized to 2011 dollars. Source: EIA Monthly Gasoline Prices
Table.
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Table 1.1.
New Passenger Vehicle Registration Records

Model Year Number of Obs. Percentage

prior to 2010 1,182 5.82
2011 11,759 57.91
2012 7,366 36.27

Notes: These are the numbers of new passenger ve-
hicles registered between the date when the first MY
2012 model is observed (March/20/2011) and the date
right before the first MY 2013 model is logged (Febru-
ary/06/2012) in the MAVC.
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Table 1.3.
Vehicle Attributes

Variable Mean Std. Dev.

Vehicle Price 23,318.50 7013.14
Fuel Economy (MPG) 28.16 5.70
Engine Horsepower (bhps) 171.66 51.63
Engine Size (liter) 2.28 0.62
Curb Weight(lbs) 3,153.43 393.94
Passenger Volume (ft3) 98.19 8.39
Cargo Volume (ft3) 17.78 7.05
Premium Features (0-1) 0.06 0.23

Number of Observations 9,215

Notes: The “premium features” refers to new cars cost
more than $36,000. All prices are normalized to 2011 dol-
lars.
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Table 1.4.
Parameter Estimates from Alternative Models

(1) (2) (3) (4)
IV Logit IV RCLogit IV Logit IV RCLogit

Mean Miles Mean Miles EPD Miles EPD Miles

Average Utility
Constant -7.12∗∗∗ -6.63∗ -6.92∗∗∗ -6.37∗

(0.43) (3.51) (0.44) (3.45)
Car MSRP -0.57∗∗∗ -0.51∗∗ -0.55∗∗∗ -0.48∗∗

(0.14) (0.22) (0.13) (0.21)
Gas Cost -6.45∗∗∗ -6.57∗∗∗ - -

(1.68) (1.58) - -
Horsepower/Weight 0.91∗∗∗ -1.67 0.90∗∗∗ -2.23

(0.51) (5.09) (0.28) (5.84)
Passenger Volume 4.50∗∗∗ 4.91 4.48∗∗∗ 4.80

(0.58) (6.83) (0.56) (11.32)
Premium Features 0.90∗∗ 0.72 0.84∗∗ 0.64

(0.67) (0.61) (0.35) (0.53)
European Automaker 0.41∗∗ 0.44∗ 0.43∗∗ 0.47∗∗

(0.19) (0.25) (0.21) (0.24)
Japanese Automaker 0.01 0.02 0.02 0.03

(0.10) (0.13) (0.11) (0.14)
Korean Automaker -0.01 0.05 0.01 0.06

(0.13) (0.21) (0.12) (0.20)

Utility that Varies over Consumers Related to Mileage Distribution
Gas Cost/Income - - -7.00∗∗∗ -7.10∗∗∗

- - (1.76) (1.80)

Utility that Varies over Consumers Following χ2(3)
Horsepower/Weight - 0.58 - 0.67

- (0.81) - (0.88)
Passenger Volume - -0.31 - -0.24

- (5.60) - (7.40)

Notes: RCLogit stands for Random Coefficients Logit Model. EPD is short for Empirical
Distribution. 1,000 Monte Carlo draws and quasi-Newton method are used for random
coefficients models. Standard errors are in parentheses. Significance levels for the Z-test are
as follows: ∗∗∗1 percent, ∗∗5 percent, ∗10 percent.
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Table 1.5.
Consumer Valuation of Expected Gas Cost Savings

(1) (2) (3) (4)
IV Logit IV RCLogit IV Logit IV RCLogit

Mean Miles Mean Miles EPD Miles EPD Miles

Gas Cost/Price
γρ 11.23 12.95 12.65 14.69

Valuation Factor
γ (r = 6%, S = 25) 0.88 1.01 0.99 1.15
γ (r = 6%, S = 35) 0.77 0.89 0.87 1.01

Implicit Discount Rate (%)
r (γ = 1, S = 25) 7.42 5.86 6.11 4.59
r (γ = 1, S = 35) 8.37 7.00 7.22 5.89

Notes: RCLogit stands for Random Coefficients Logit Model. EPD is short for Empir-
ical Distribution. The combination γρ is computed using parameter estimates from the
demand estimation. r is the discount rate. S is the maximum car lifetime.
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2. IDENTIFYING THE ELASTICITY OF DRIVING: A

FACTOR MODEL APPROACH AND IMPLICATIONS FOR

USAGE-BASED TRANSPORTATION POLICIES

2.1 Introduction

Private vehicles dominate all categories of trips in the United States (Small et al.,

2007). Therefore, personal vehicle transportation is of great importance to economic

development and consumer welfare (Winston and Shirley, 1998). In the meantime,

driving generates extensive energy use, substantial pollution and congestion (Parry

et al., 2007). To address these externalities, state governments have been adjusting

state motor fuel taxes, and the federal government has implemented a variety of

measures to improve vehicle fuel efficiency.

A rise in fuel taxes intends to reduce driving by increasing the per-gallon fuel

price. However, this effect might be canceled out by improved vehicle fuel efficiency

that promoted under tightened fuel economy standards since an improvement in ve-

hicle fuel efficiency reduces the per-mile fuel cost and hence may induce more driving.

Recently, the idea of implementing a mileage tax has attracted policymakers’ atten-

tion. Instead of charging for using motor fuel, this mileage tax explicitly increases

the marginal cost of driving by charging drivers for their use of the road system by

the amount that they drive (Langer et al., 2017). Overall, the real impact of these

policies critically depends on consumer response in vehicle miles traveled (VMT) to

changes in the variable driving cost engendered by policies (Gillingham et al., 2015).

In this paper, I focus on the intensive margin of consumer response to changes in

fuel cost per mile, which is the primary component of variable driving cost counted

by drivers (Hang et al., 2016). Specifically, I use a dataset constructed from vehicle

registration and inspection records in Massachusetts over the period 2009-2014 to
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estimate the utilization elasticity of passenger vehicles, i.e., the elasticity of demand

for VMT with respect to fuel cost per mile.

I apply the common correlated effects estimator developed by Pesaran (2006) to

address unobserved common factors and regional heterogeneity in the data. Residual

diagnostics confirm that the factor model setup does a better job of removing the

cross-section dependence than standard fixed effects estimators do. The factor model

result shows the elasticity of demand for driving with respect to fuel cost per mile is

about −0.002. This estimate implies that a 10% increase in fuel cost per mile causes

a 0.02% decrease in average daily miles traveled per vehicle, while results from fixed

effects estimators suggest, when holding all else constant, the same percentage change

in fuel cost per mile reduces driving by about 0.9%.

My fixed effects estimator results coincide with findings from the recent litera-

ture in which researchers construct large vehicle panels from odometer readings of

extensive individual vehicles samples and apply various fixed effects controls for het-

erogeneity across drivers.1 However, short-run elasticity estimates produced from

such research designs are sensitive to the inclusion of controls for heterogeneity and

whether or not vehicle characteristics are further subdivided when defining fixed ef-

fects (Hymel and Small, 2015).

A factor model setup developed by Pesaran (2006) is an ideal solution to capture

unobserved heterogeneity in panels where the cross-section dimension is large. It al-

lows for the presence of multiple unobserved common factors that correlate with the

regressors. Further, the factor model setup lets factor loadings, which represent the

effect of unobserved common factors, differ across observational units. Meanwhile,

unlike the spatial econometric method, the factor model setup does not require prior

knowledge about the structure of common factors and therefore lets the data de-
1Gillingham et al. (2015) builds a sample with 30,621,721 observations of 7,173,110 distinct vehicles
from the Pennsylvania Vehicle Inspection Program. Knittel and Sandler (2013) applies a sample
with 36,387,455 observations from the California Smog Check Program. Langer et al. (2017) uses a
State Farm sample in Ohio with 228,910 driver-months observations.



41

termine the nature of unobserved heterogeneity (Totty, 2017).2 Overall, relative to

traditional fixed effects estimators, the factor model setup provides a more flexible

way to address concerns about unobserved heterogeneity.

Given an inelastic demand for VMT with respect to fuel cost per mile, current

policies leveraging the marginal cost of driving may not work as expected because

of the low responsiveness. Instead, policymakers could consider options like conges-

tion charges, parking charges, and other rights-based approaches to influence vehicle

utilization and vehicle ownership.

The rest of the paper is laid out as follows. The next section reviews the relevant

literature. Section 3 describes the data. In section 4, I introduce the empirical frame-

work and state the identification strategy. Section 5 compares elasticity estimates

from applying different estimators and presents residual diagnostic results. Section 6

concludes.

2.2 Related Literature

This paper contributes to existing literature studying consumers response on the

intensive margin to changes in variable cost of driving, which remains a relevant as

ever for policy analysis of price policies to reduce energy use, greenhouse gas emissions,

and congestion from the extensive use of passenger vehicles in the US.

A review on older literature by Austin (2008) shows this estimated elasticity ranges

from −0.10 to −0.16 in the short run. Small et al. (2007) estimate a system of

equations capturing the simultaneous choice of aggregate VMT per capita, size of the

automobile fleet, and fuel efficiency level of the fleet. Using data of US states from

1966 to 2001, the authors show that the short-run and long-run vehicle utilization

elasticities are −0.045 and −0.222 respectively. Hymel et al. (2010) apply the same
2The spatial econometric method is the other approach to consider for dealing with unobserved
cross-sectional dependence. Essentially, the spatial econometric method assumes that the structure
of the cross-sectional correlation is related to location and distance among observational units. It
requires a pre-specified connection or spatial weighting matrix to characterize the pattern of spatial
dependence (Chudik and Pesaran, 2013).
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simultaneous-equations method and estimates these two elasticities as −0.048 and

−0.159 at sample average when using US data over 1984-2004. Overall, Small et al.

(2007) summarize that in studies using aggregate data to investigate demand for travel

in personal vehicles, utilization elasticities are usually between −0.1 and −0.3, with

short-run elasticities typically smaller than long-run elasticities in absolute values.

Employing updated US data that covers the period 1996-2009, Hymel and Small

(2015) show there is an upward shift in its magnitude for the short-run structural

elasticity of VMT with respect to fuel cost per mile in the late 2000s when motor fuel

prices were rapidly changing. This observation coincides with findings from recent

studies making use of large scale odometer readings. As registration and inspection

records of individual vehicles have become more accessible over the past few years,

researchers construct panels with large cross-section dimension from this informa-

tion and apply fixed effects estimators to investigate the vehicle utilization elasticity.

Knittel and Sandler (2013) examine data from California’s vehicle emissions testing

program from 1996 to 2010 to obtain estimates of the VMT elasticity with respect

to fuel cost per mile that vary between −0.04 and −0.26 depending on model spec-

ifications. Using vehicle inspection records from mandatory annual inspections in

Pennsylvania from 2000 to 2010, Gillingham et al. (2015) show the one-year elas-

ticity of VMT with respect to fuel cost per mile is about −0.097. More recently,

Langer et al. (2017) apply a large monthly sample of drivers in Ohio from 2009 to

2011 to show that the range of the short-run elasticity of demand for automobile

travel with respect to fuel cost per mile is from roughly −0.60 to slightly greater than

zero depending on the accumulative vehicle odometer readings and whether sampled

drivers live in rural area. All three studies employing odometer readings highlight

the importance of accounting for heterogeneity across drivers and their vehicles when

estimating vehicle utilization elasticities.

This paper is also associated with a growing empirical literature employing large

linear panel data models to study economic activities across countries, regions, or

industries as the availability of high-quality data has been increasing. Chudik and
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Pesaran (2013) point out that in panels where both the cross-section dimension and

the time series dimension are large, observational units need not be cross-sectionally

independent even after conditioning on unit-specific regressors. The authors show

that if the cross-sectional dependence correlates with regressors, conventional panel

estimators such as fixed and random effects models can lead to misleading inference

and even inconsistent estimates.

Pesaran (2006) proposes the Common Correlated Effects (CCE) estimation proce-

dure, which augments standard pooled or mean group estimators with cross-sectional

averages of all dependent and independent variables, to capture unobserved common

factors that cause the cross-sectional dependence. This CCE estimation procedure

has been gaining popularity in cross-sectional time series panel studies. For example,

Eberhardt et al. (2013) employ this CCE estimation procedure to show that ignoring

spillovers across different industries leads to bias in estimated private returns to R&D.

Totty (2017) shows that minimum wage-employment elasticities produced from the

factor model estimators are much smaller than the traditional Ordinary Least Square

(OLS) results after the unobserved heterogeneity has been taken into consideration.

Eberhardt and Teal (2017) apply the common factor model to capture the impact of

heterogeneous technology in their cross-country analysis of the total factor produc-

tivity (TFP) while accounting for endogeneity and cross-section correlation that arise

from global shocks.

2.3 Data

2.3.1 Data Sources

The primary data used in this paper is the municipality summary table from

the Massachusetts Vehicle Census (Metropolitan Area Planning Council, 2016). The

Massachusetts Vehicle Census (MAVC) is based on the Automated License and Reg-

istration System and a separate database containing records of vehicle inspections,
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both of which are administrative data sets maintained by the Massachusetts Registry

of Motor Vehicles (Reardon et al., 2016).

In Massachusetts, passenger vehicle registration renewal is valid for two years

while vehicles are required to be inspected annually and within seven days of sale.

In the MAVC, odometer readings from vehicle inspection records and the dates of

inspections are compared to calculate the mileage driven between inspections and the

average daily mileage. This process leads to a series of mileage estimates for each

vehicle with an estimated daily mileage during the intervening period. A registration

period without a corresponding mileage estimate is retained but assigned a “false”

value to indicate its invalidity.

The MAVC summary table compiles the information about individual vehicles

into a variety of statistics for each municipality, such as total registered vehicles,

average mileage per vehicle, average vehicle age of the automobile fleet, estimated fuel

consumption and emissions. Since the MAVC constitutes a continuous longitudinal

dataset, the municipality summary table is based on all the vehicle records that are

valid on the median day of each calendar quarter. As the current version of MAVC

includes approximately 34 million records for years from 2009 to 2014, there are 24

records for each municipality in the summary table.

For each vehicle included in the MAVC, the temporal overlap between the mileage

estimate and the registration record is compared to the length of the mileage estimate

period as a measure of data reliability. A high value for the percentage overlap means

that the vehicle had the same owner and was garaged in the same location for a large

portion of the mileage estimate period. The average daily mileage values employed

in this paper are all valid estimates weighted by the percent overlap so that the least

reliable estimates have relatively less impact on the resulting average.

The summary table also estimates an effective fuel efficiency level of the passenger

vehicle fleet in each municipality based on aggregate mileage and fuel consumption

of all vehicles with valid mileage estimates during the given sample period. This

aggregate effective fuel efficiency level is calculated from the average per-mile fuel
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consumption of a vehicle weighted by the corresponding total miles traveled of that

vehicle, which can be considered as the average fuel efficiency level of sampled vehicles

weighted by utilization rates.

Since I am interested in the response in average daily mileage to the change in vari-

able driving cost, I divide the average price of midgrade motor fuel in Massachusetts

from the U.S. Energy Information Administration (EIA) by the MAVC effective fuel

efficiency level to compute the aggregate per-mile fuel cost of driving for drivers in

each town or city.3 I include the average Massachusetts unemployment rate from the

U.S. Bureau of Labor Statistics (BLS) and the total gross domestic product of Mas-

sachusetts from the U.S. Bureau of Economic Analysis (BEA) to control for changing

macroeconomic conditions. Similarly, I bring in the national Consumer Confidence

Index (CCI) from the Conference Board to account for consumersâĂŹ confidence

towards the future economic condition. Finally, I employ the global price of Brent

Crude from EIA as the instrumental variable for local fuel prices. I apply seasonal

smooth to these four variables and convert all dollar-valued variables to 2010 dollars

using the BLS Consumer Price Index (CPI). I also adjust all variables to the quarterly

level to match the MAVC municipality summary table.

2.3.2 Data Description

In Massachusetts, representatives from local government, regional transit opera-

tors, and state transportation agencies form thirteen Metropolitan Planning Orga-

nizations (MPO) and Transportation Planning Organizations (TPO) to coordinate

and manage transportation projects and programs that carried out in 351 towns and

cities across the state.4 I provide summary statistics of average daily miles traveled
3I also apply prices of the regular grade gasoline for robustness check. The results are nearly identical.
4Figure A.1 in the Appendix displays the geographic spread of all thirteen MPOs and TPOs in
Massachusetts.
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per vehicle, the effective vehicle fuel efficiency of the fleet, and average vehicle age of

the fleet in table 2.1.5

In the first row of table 2.1, numbers in column (1) show Berkshire MPO covers 32

towns and cities which account for about 9.12% of total 351 municipalities. Statistics

in column (2) of the same row tell that the average daily miles traveled per vehicle

across all towns and cities included in Berkshire region has a mean value of 28.35

miles per day with the standard deviation equals 2.53. Similarly, the mean value of

effective vehicle fuel efficiency level of the automobile fleet across all observational

units and periods in Berkshire region is 19.64 miles per gallon (MPG), and the mean

value of average vehicle age of the automobile fleet is 8.66 years.6

Table 2.1 shows that Boston region MPO covers almost one-third of all towns and

cities in Massachusetts and vehicles in Greater Boston area are newer than vehicles

in other parts of the state; vehicles in Montachusett region travel the most, while the

vehicle fleet in Franklin region is the most fuel efficient. These numbers presented

in table 2.1 are suggestive evidence of rich heterogeneity in the data. I expect the

factor model setup to pick up such unobserved heterogeneity while not requiring any

pre-specified structures.

I plot the evolution of fleet average fuel economy across all municipalities over time

and the quarterly state average fuel price in Massachusetts from 2009 to 2014 in figure

2.1. Although the mean value of fleet average fuel efficiency has been increasing over

the sample period, the improvement is modest. This makes sense because tightened

fuel economy standards that went into effect in 2011 only affect new cars sold after

that point while older vehicles take up the majority of the entire automobile fleet. Fuel

economy standards have been criticized because they do not affect drivers decisions

about VMT in their existing vehicles (Langer et al., 2017). Given a rapid change
5Although they are grouped by MPO and TPO in table 2.1, these key variables enter the regression
analysis at the town and city average level, as they are reported in the MAVC municipality summary
table.
6According to Bureau of Transportation Statistics, from 2008 to 2013, the average age of light
vehicles in the U.S. increased by 12.2 percent because of a 40 percent drop in new vehicle sales due
to the recession, while the increase in the average vehicle age was 3.5 percent over 2002-2007.
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in the real fuel price in Massachusetts and a limited increase in fleet average fuel

efficiency displayed in figure 2.1, the variation in the variable cost of driving that

measured by dollars per mile mainly comes from changes in fuel prices.

In figure 2.2, I illustrate changes in the mean value of average daily miles traveled

per vehicle across all municipalities alongside average fuel cost per mile that con-

structed from dividing the fuel price by the average fuel efficiency level of the fleet.

While the response in VMT to changes in the variable cost of driving is obvious, I an-

ticipate the factor model setup to account for both observed and unobserved common

shocks flexibly.

2.4 Empirical Approach

2.4.1 Model Specification

The primary question asked in this paper is how changes in variable cost of driving

affect decisions about VMT. Right now the major component of this variable driving

cost is the per-mile fuel cost.7 The group of consumers driving fuel-efficient vehicles

will be less responsive to changes in fuel prices. To account for this fact, I divide

the average per-gallon fuel price by the municipality-specific effective average vehicle

fuel efficiency level of the automobile fleet to construct the variable driving cost, as

measured by dollars per mile. This cost varies with both the fuel price and the average

fuel efficiency level of the whole vehicle fleet in each town or city over time.

I model the demand for driving in municipality i during quarter t as a function of

the variable driving cost at the fleet average level (Pit), the average vehicle age of the

automobile fleet (Ait), Massachusetts unemployment rate (Rt), Massachusetts state
7Oregon has been experimenting the mileage tax by charging motorists and truckers for their use of
the road system by the amount that they drive (Langer et al., 2017). California, Hawaii, the state
of Washington, Connecticut, Delaware, New Hampshire, and Pennsylvania are expected to conduct
such test.
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GDP (Gt), national CCI (Ct), quarter-of-the-year fixed effects (λt), and municipality

fixed effects (ψi): VMTit = f(Pit, Ait, Rt, Gt, It, λt, ψi). I further specify it as

vit = βipit + γiait + αrrt + αggt + αcct + λt + ψi + εit (2.1)

in which εit is a mean-zero stochastic error term and lower case letters denote loga-

rithms of VMT and inputs that drives the demand for VMT.8 For generality, I assume

βi = β + hi and γi = γ + ki where both hi and ki are random variables that induces

variation of parameters across observational units (Greene, 2011). Since the MAVC

summary table consists of data collected from 351 municipalities in Massachusetts

over five years, I interpret the βi estimate in this log-linear estimating equation as a

mid-run elasticity of demand for driving with respect to the variable driving cost.

2.4.2 Identification

The primary interest of this paper is to estimate the price elasticity of VMT at the

aggregated municipality level. Drivers’ differential responses to changes in fuel cost

per mile help identify the parameter of interest. A biased estimate of βi would arise

from omitted variables that are correlated with fuel prices and affect VMT through

the effective fuel efficiency level of the vehicle fleet in each municipality.9

In equation 2.1, the municipality fixed effects capture unobserved local charac-

teristics that correlated with observed influences on driving demand. The average

vehicle age captures the impact of unobserved fleet characteristics on demand for

VMT. Also, contemporaneous macroeconomic and seasonal conditions could affect

how much people drive. Thus I control for that potential source of bias by including

state level macroeconomic variables and quarter-of-the-year fixed effects. Further-
8This constant elasticity model is one of the most frequently estimated in the literature. It can be
derived from a model in which an individual has Cobb-Douglas preferences over VMT and all other
goods (Linn, 2016).
9Small et al. (2007) suggests that both the evolution of vehicle fuel efficiency itself and congestion
could be endogenous factors that influence the demand for VMT.
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more, I include national CCI to control for the change in consumer perspective as the

economy was recovering from the dramatic economic downturn beginning in 2008.

In addition to including a rich set of fixed effects to deal with a variety of possible

confounding factors, I apply instrumental variables to address the impact of localized

VMT demand shocks on fuel prices. The fundamental concern is that unobserved

local shocks may shift the demand for driving outside, which will increase the fuel

price in equilibrium and lead to a supply response such as immediately refining more

motor fuel and moving it to Massachusetts (Gillingham et al., 2015). Since the crude

oil price is unquestionably the primary determinant of the local motor fuel price, it can

be expected to be a strong instrument. Therefore, I instrument for the Massachusetts

fuel price with the global price of Brent Crude from EIA. It seems reasonable that

the only way Brent Crude prices influence the demand for driving in Massachusetts is

through local motor fuel prices, so the exclusion restriction holds (Gillingham, 2014).

When employing cross-sectional time series to study aggregate travel demand,

researchers may choose to apply pooled regression, fixed effects or random effects

estimators depending on the identification assumption (Small et al., 2007).10 When

such models are applied, we expect time-specific variables and time dummies to purge

correlations across observational units that arise from common shocks (Eberhardt

et al., 2013). Therefore, if the model is correctly specified, we would expect well-

behaved, serially uncorrelated, stationary, and most importantly, cross-sectionally

independent regression residuals ε̂it (Greene, 2011).

However, it has been recognized that in panels with large cross-section dimension,

even after conditioning on unit-specific regressors, individual observational units may

not be cross-sectionally independent. Cross-section correlations of errors could come

from omitted common effects or unobserved interactions within socioeconomic net-

works. In complex models, interdependence could also arise from common correlated
10Voith (1997) and Petitte (2001) are examples of early studies using cross-sectional time series
to study the urban transportation. This type of research design is also adopted in the literature
examining aggregate demand for motor gasoline, in which long panels of U.S. states are constructed
for analysis.
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reaction of observational units to some external events. Moreover, if the source gen-

erating the cross-sectional dependence correlates with regressors, conventional panel

estimators may fail to yield correct inference and consistent estimates (Chudik and

Pesaran, 2013).

In a simplified version of equation 2.1

vit = βixit + εit, (2.2)

I let the cross-sectional dependence arise from the shared common factor ft in error

structure εit and in input xit such that

εit = δift + ψi + νit (2.2a)

xit = σift + λt + φi + µit (2.2b)

in which νit and µit are stochastic shocks. In this setup, factor loading δi and σi

trace the strength of unobserved common factor ft that drives VMT as well as inputs

generating the demand for driving. However, if neither δi and σi is zero on average,

the estimate of βi from equation 2.2 will be biased and inconsistent as described in

this following equation

vit = (βi + δiσ
−1
i )xit + (ψi − δiσ−1i φi) + (νit − δiσ−1i µit − δiσ−1i λt) (2.3)

in which E[βi + δiσ
−1
i ] 6= βi if δiσ−1i 6= 0.

2.4.3 Empirical Implementation

To account for the impact of unobserved common factors that may differ across

towns and cities as illustrated in equations 2.2a and 2.2b, I apply the Pesaran (2006)

Common Correlated Effects Mean Group (CCEMG) estimator. This common factor

approach assumes that the error term, as well as regressors contain a finite number of
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unobserved common factors and their influences are allowed to differ across different

observational units. This setup is particularly useful when analyzing travel demand

using large panels like the MAVC municipality summary table because it is hard to

exhaust elements that affect the demand for driving or specify the structure of corre-

lations among different locations. Further, the cross-sectional dependence may result

from events with heterogeneous impacts across municipalities, such as temporary in-

terstate closures that affect a limited group of towns and cities, or some extreme

weather conditions and natural disasters that have a significant impact across the

whole state but affect different regions with various intensities.

Pesaran (2006) shows that, when the cross-section dimension is large, under some

general conditions, unobserved common factors can be captured by adding cross-

sectional averages of both dependent and independent variables as additional regres-

sors. To show the intuition of CCEMG, I combine equation 2.2 and equation 2.2a to

get

vit = βixit + δift + ψi + νit. (2.4)

Next I take the cross-sectional average of equation 2.4 to obtain an expression of the

unobserved common factor by rearranging terms

v̄t = β̄x̄t + δ̄ft + ψ̄ given ν̄it → 0 as N →∞

⇐⇒ ft = δ̄−1(v̄t − β̄x̄t − ψ̄) (2.5)

in which cross-sectional averages at time t are defined as v̄t = N−1
∑N

i=1 vit and

x̄t = N−1
∑N

i=1 xit. Substituting for ft in equation 2.4 gives

vit = βixit + δiδ̄
−1(v̄t − β̄x̄t − ψ̄) + ψi + νit

⇐⇒ vit = βixit + π1iv̄t + π2ix̄t + π3i + νit. (2.6)
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The advantage of this CCEMG approach is that it does not require prior knowledge

of the number or the structure of unobserved common factors (Chudik and Pesaran,

2013). The focus of this estimation approach is to obtain an unbiased estimate for the

mean of heterogeneous βi. In equation 2.6, π1i, π2i and π3i are municipality-specific

parameters so that they are able to capture the heterogeneity in factor loading δi.

However, these parameters are not interpretable because they contain various averages

of unknowns and therefore should be only seen as components accounting for the

cross-section dependence in the data (Eberhardt et al., 2013).

2.5 Results

In this section, I report empirical results from analyzing the VMT data from 351

municipalities in Massachusetts over 24 quarters from 2009 to 2014. I apply the

specification described in equation 2.1 while employing a number of estimators differ

in their assumptions about cross-section dependence and unobserved common factors.

I use residual cross-section correlation tests and residual stationarity tests developed

in Pesaran (2015) and Pesaran (2007) to evaluate rival estimators. Further, I use the

root mean squared error (RMSE) statistic to measure the goodness of fit for each

regression model.

In column (1) of table 2.2, I pool together 8,424 observations and apply the OLS

method to estimate equation 2.1. In terms of partial elasticity, when holding all else

constant, the estimate of β indicates that a 10% increase in the variable driving cost

(in dollars per mile) leads to more than 0.8% decrease in average daily miles traveled

per vehicle. In the meantime, drivers put less mileage on older vehicles. Impacts of

other macroeconomic conditions considered in equation 2.1 have sensible signs but

are not significant at 10% level.

Since I concern about the possible scenario in which localized VMT demand shocks

shift motor fuel prices, I instrument for the Massachusetts fuel price with the global
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price of Brent Crude from EIA in estimation model (2) through (6).11 In column (2),

results from the pooled OLS estimator with an instrumental variable (IV) have the

similar pattern as those from pooled OLS estimator without an IV, while the price

elasticity of demand for driving is slightly smaller in absolute value.

Columns (3) and (4) present results from employing fixed effects estimators with

IVs. The parameter estimate from a two-way fixed effects estimator, in which both

municipality fixed effects and quarter-of-the-year fixed effects are applied, suggests a

more elastic demand for driving relative to results from OLS estimators. These two

fixed effects estimators produce comparable estimates for the impact of average vehicle

age on vehicle utilization. Meanwhile, both estimators yield negative and significant

estimates for the impact of unemployment on VMT, which indicates that vehicle

owners drive less when the unemployment rate is high. Also, parameter estimates

from the two-way fixed effect estimator suggest that consumers drive more during the

second and the third quarter, which makes sense as people tend to drive more starting

from the end of spring through late summer because of increased leisure activities.

However, estimates from fixed effects models disagree with those from pooled OLS

estimators on the impact of state GDP and national consumer perspective.

While both pooled OLS and fixed effects estimators assume common parameters

for regressors in equation 2.1 across all municipalities, mean group type estimators ex-

amined in column (5) and (6) allow for heterogeneity by running municipality-specific

regressions and then averaging coefficients across the panel (Eberhardt, 2012).12 In

column (5) of table 2.2, I report results from applying the mean group (MG) estima-

tor proposed by Pesaran and Smith (1995). The pattern of estimates from the MG

estimator is very similar to that from the two-way fixed effects estimator, except that

the magnitude is larger for the effect of average vehicle age on demand for driving.
11This Brent Crude price is a strong instrument as the t-static is over 700 for the logarithm of the
crude price and the F-statistic is 2.3 × 105 in the first stage regression. The first stage results are
available in the Appendix.
12Boyd and Smith (2002) suggests that mean group results for individual observational unit are
difficult to interpret and not reliable unless the time series dimension is large, while panel averages
establish a reliable mean estimate.
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Moving on to column (6), the CCEMG estimator produces a negative and signifi-

cant estimate for the variable driving cost but with a much smaller magnitude when

comparing to results from previous regressions. It indicates that, when holding all

else constant, a 10% increase in the per-mile fuel cost decreases the average daily

miles traveled per vehicle by only about 0.02%. Meanwhile, results from both mean

group type estimators suggest people don’t drive older vehicles as much as they do to

newer ones, which may come down to the capital depreciation or a higher on-going

maintenance cost for older vehicles. However, none of the parameter estimates for

three macroeconomic condition variables are significant at the 10% level when this

CCEMG estimator is applied.

Turning to the post-estimation diagnostic presented at the bottom of table 2.2,

CCEMG estimator is the only case that not suffering from cross-sectional correlated

residuals while both mean group type estimators generate stationary residual se-

quences.13 It seems that the standard pooled OLS and fixed effects estimators are

seriously misspecified when both cross-section and time series dimensions are large in

the data. The diagnostic result indicates that the CCEMG estimator is the preferred

setup to apply when analyzing the Massachusetts municipality summary table. The

data shows that, in Massachusetts, the response in average daily miles traveled per

vehicle across different towns and cities to changes in fuel cost per mile is significant

but negligible.

Results reported in table 2.2 are based on equation 2.1, which models VMT as a

function of fuel cost per mile. It is also natural to consider how consumers change

the amount they drive in response to changing retail fuel prices. To examine the

elasticity of VMT with respect to the per-gallon fuel price, I estimate equation 2.1

using the quarterly state average price of midgrade motor fuel in Massachusetts. By

replacing the per-mile fuel cost with this per-gallon fuel cost, I remove the effective

average fuel efficiency level of the vehicle fleet that varies across municipalities. With
13The Pesaran (2015) cross-section dependence test is based on the average of pair-wise correlations.
Using a standard normal distribution, the null hypothesis of the test is that there is only weak
cross-section dependence, while the alternative is that the cross-section dependence is strong.
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this modification, I entirely rely on the variation in state average fuel prices over time

to identify the elasticity of driving.

I estimate equation 2.1 with the per-gallon fuel cost using different estimators

and report results in table 2.3. The pattern of estimated elasticities in regression

models with IVs is almost identical to that shown in table 2.2.14 The CCEMG result

suggests that a 10% increase in fuel cost per gallon causes about a 0.03% decrease in

the average daily miles traveled per vehicle. This result from regressions using retail

fuel prices provides further evidence suggestive of consumers’ low responsiveness to

changes in variable driving cost.

2.6 Concluding Remarks

In this paper, I have shown that accounting for unobserved common factors and

regional heterogeneity is critical when estimating the elasticity of VMT with respect

to the variable driving cost in panels where both cross-section and time series dimen-

sions are large. Cross-sectional dependence tests support the presence of common

factors in residuals produced from applying either standard fixed effects estimators

or traditional mean group estimators. Therefore, significant and substantial effects

of fuel cost per mile on passenger vehicle utilization obtained from applying fixed ef-

fects estimators to large vehicle panels in recent literature require further inspection

if unobserved common factors in the data may cause the bias.

Given the MAVC municipality summary table employed in this paper, CCEMG

estimator developed by Pesaran (2006) is the preferred setup to use according to

post-estimation tests. CCEMG results indicate that a 10% increase in fuel cost per

mile causes only a 0.02% decrease in average daily miles traveled per vehicle, while

results from applying fixed effects estimators suggest that the response in vehicle

utilization to the same change in variable cost of driving can be as large as 0.9%
14Both Frondel and Vance (2013) and Gillingham et al. (2015) find little difference in estimated
vehicle utilization elasticities regardless of choosing fuel cost per mile or fuel price per gallon as the
key independent variable.
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when holding all else constant. If consumers indeed barely respond to changes in the

marginal cost of driving that engendered by current usage-based policies, rights-based

approaches (e.g., congestion charges) might be reasonable alternatives to influence

vehicle utilization and vehicle ownership.
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Figures And Tables

Figure 2.1. MPG stands for miles per gallon. Prices are normalized
to 2010 dollars. Fuel Prices Data Source: EIA Monthly Motor Fuel
Prices Table.
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Figure 2.2. VMT stands for vehicle miles traveled. Prices are normal-
ized to 2010 dollars. Fuel Prices Data Source: EIA Monthly Motor
Fuel Prices Table.
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A. APPENDIX: RESPONSE OF NEW CAR BUYERS TO

ALTERNATIVE ENERGY POLICIES

A.1 Consumer Response to Policy Changes

Plugging new prices into equation 1.5, the deterministic part of the conditional

indirect utility of consumer i for car model v in market t is now

φivt ≡ αi xv + βi (pv +
τmpg

mpgv
+ γ ρ

mit

mpgv
(E[gi] + τ g)) + ζvt.

The probability of consumer i choosing model v in market t becomes

sivt =
exp(φivt)

1 +
∑J

v′=1 exp(φiv′t)
.

To inspect the consumer response to the implementation of a new gasoline tax

and a product tax, I differentiate the individual choice probability with respect to

both τ g and τmpg. Consumer i’s response given the change in gasoline tax is

∂sivt
∂τ g

= sivt
∂φivt
∂τ g

− sivt
J∑

v′=1

siv′t
∂φiv′t
∂τ g

= βiγρmit sivt (
1

mpgv
−

J∑
v′=1

siv′t
mpgv′

).



68

Similarly, consumer i responds to the product tax by adjusting her choice probability

such that

∂sivt
∂τmpg

= sivt
∂φivt
∂τmpg

− sivt
J∑

v′=1

siv′t
∂φiv′t
∂τmpg

= βi sivt (
1

mpgv
−

J∑
v′=1

siv′t
mpgv′

).

I compare expressions of consumer response to untangle the differentiated effects

of the fuel tax and the product tax on consumer i’s choice probability and hence the

market shares of car models with different fuel economy ratings.
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A.2 Data

After obtaining records of all non-commercial and non-diesel vehicles, I use the

vehicle identification number (VIN) to construct a vehicle history sequence for every

vehicle. I also use the combination of VIN and plate identifier to construct an owner

history sequence for each vehicle. I mark a vehicle as a newly purchased one if its first

vehicle history record is also the first owner history record, and the starting odometer

reading of this record is smaller than 300 miles.1

I apply two criteria to flag low-quality observations. In MAVC, registration records

are split where a mileage estimate begins or ends (Reardon et al., 2016). Registration

periods without a corresponding mileage estimate are retained but assigned a “false”

value for inspection matching. In addition, the temporal overlap between the mileage

estimate and the registration record is compared to the length of the mileage estimate

period as a measure of data reliability. A high value for the percentage of overlapping

period suggests that the vehicle had the same owner and was garaged in the same

location for a large portion of the mileage estimate period; a low value means that a

substantial portion of the estimated mileage may have been driven while the vehicle

was owned by another person or garaged in a different location. I flag a vehicle as a

bad observation if there is a “false" value assigned or the percentage of overlapping

period is smaller than 90% for any of its inspection records.

Dividing all new vehicles registered in 2011 which have no low-quality observation

flags into two groups by registration time, I report the vehicle count by model year

(MY) and by vehicle type in table A.1. Almost all passenger cars registered in the

second half of 2011 are MY 2011/2012, while only 88% for new car registrations

during the first half of calendar year 2011 are for MY 2011/2012.

I employ all MY 2011/2012 new passenger cars registered during the second half

of 2011 without any low-quality observation flags as the demand sample for analysis.
1When not applying restrictions on the starting odometer readings, the observation pool constructed
from matching two sequences includes brand new vehicles, vehicles released from commercial fleet,
used vehicles came from other states, and those missed in previous census data. 200 miles is the
other starting odometer reading tested for robustness. The results are similar.
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Table A.1.
New Vehicle Registration Counts in 2011

Jan - Jun 2011 Jul - Dec 2011

Model Year Car SUV Truck Van Car SUV Truck Van

2010 and earlier 1,078 178 106 77 64 17 7 2

2011 7,788 4,882 1,120 549 5,119 3,488 1,091 405

2012 364 34 0 28 4,631 2,131 274 275

Total 9,230 5,094 1,226 654 9,814 5,636 1,372 682

From this demand sample, I select vehicles with exactly three consecutive inspection

records since their first registration to form the mileage sample. The average number

of days between two inspections is 379 for cars included in the mileage sample, and the

standard deviation is 32 days.2 Using the market-specific mileage sample, I construct

the empirical distribution of expected annual vehicle miles traveled for new car buyers

in each new car market.

In Massachusetts, thirteen Metropolitan Planning Organization (MPO) Regions

showed in figure A.1 cover all 351 municipalities of the state. An MPO is a federally

required regional transportation policy-making organization made of representatives

from local government, regional transit operators, and state transportation agencies.

Each MPO creates a fair and impartial setting for effective regional decision making

in the metropolitan area to effectively engage communities and stakeholders.3 Follow-

ing the Massachusetts Travel Survey published by the Massachusetts Department of

Transportation in 2012, I employ MPO regions to define the geographic new car mar-
2About 70% vehicles included in the demand sample show up in the mileage sample. The standard
deviation of days between two inspections for vehicles with two or four consecutive inspection records
is much larger.
3Refer to this website for more information about MPOs in Massachusetts:
https://www.mass.gov/service-details/regional-planning
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ket. Tables A.2 and A.3 present vehicle counts by MPO and by registration month

for demand sample and mileage sample accordingly.

Figure A.1. An MPO is a federally required regional transportation
policy-making organization made of representatives from local govern-
ment, regional transit operators, and state transportation agencies.
Each MPO creates a fair and impartial setting for effective regional
decision making in the metropolitan area to effectively engage commu-
nities and stakeholders. Source: Massachusetts MPO Website Finder
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A.3 Estimation Details and Numerical Considerations

Algorithm 1 lists detailed steps of the demand model estimation.

Algorithm 1: Demand Model Estimation

1 Sample N individuals, each of which consists of a K + 1 dimensional set of
shocks;

2 Set the starting value of mean utilities at a vector of guessed values δ̃, and the
starting value for the vector of random coefficients at corresponding
parameter estimates from a linear logit model θ̃;

3 while |δ̃ − δ| > ε, do
4 Use δ̃ and θ̃ to compute market shares, applying the set of individuals

simulated in step 1 and equation 1.6;
5 Take difference between the logarithms of observed market shares and

those calculated from previous step, mark it as ∆;
6 Update δ̃ to δ using ∆;
7 end
8 Compute error term vector ζ̃vt(θ) using δ;
9 Construct the objective function of the GMM estimator, and search for θ to

minimize it.
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A.4 Revenue-equivalent Product Taxes

Once a new gasoline tax is applied to the original level τ , the change of total

gas tax paid by consumer i driving car v becomes ρ mi

mpgv
τ g over the car’s lifetime.

The expected revenue from the new gasoline tax over all cars in the choice set per

consumer in market t turns to

git(ζvt, τ, τ
g;αi, βi, βiγρ) =

J∑
v=1

sivt(ζvt;αi, βi, βiγρ) ρ
mit

mpgv
(τ + τ g). (A.1)

The revenue generated from the fuel tax in market t is

Rt =

∫
θ

git(ζvt, τ, τ
g;αi, βi, βiγρ) dF (θ)It. (A.2)

To compute a revenue-equivalent product tax, I derive an equation of expected

revenue per consumer over all available car models for the product tax similar to

equation A.1 and integrate that to the market-specific total revenue. Algorithm 2

explains this process in details.

Algorithm 2: Compute Tax Revenue

1 Set the new fuel tax and hence the new gas price;
2 Apply the same set of simulated individuals as used for the demand estimation;
3 Load the vector of residual error terms ζvt obtained from the demand

estimation to hold the demand system constant;
4 Simulate new consumer choices given the change in gas prices, and compute

the new choice probability for each car in the choice set of individual i;
5 Calculate the expected tax revenue over all cars per consumer using equation

A.1, and take an average of the expected tax revenue over all consumers in
market t;

6 Multiply the average expected tax revenue per consumer by the number of
potential buyers in each market It to get the total expected tax revenue in
market t as described in equation A.2;

7 Solve for a revenue-equivalent product tax by the market and obtain
corresponding individual choice probability vectors.
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A.5 Elastic Demand for Driving

Table A.4.
The Elasticity of Driving in Mileage Sample

Two-way Fixed Effects with IV

ln(midgrade gas price) -0.77∗

(0.35)
ln(unemployment rate) 0.23

(0.14)
ln(national CCI) 4.74∗∗

(1.79)
ln(months between inspections) 0.05

(0.04)
ln(summer proportion) 1.12∗∗∗

(0.33)
Constant -17.97∗∗

(7.86)

Vehicle FE Yes
Record-end-year FE Yes
Record-end-month FE Yes
R-square 0.04

Notes: The dependent variable is ln(average daily VMT). VMT stands
for vehicle miles traveled. The number of observational units is 6,377. F-
statistic for the first stage regression is 3.3 × 105. Values in parentheses
are robust standard errors clustered at the MPO level. Significance levels:
∗∗∗p < 0.01 , ∗∗p < 0.05 , ∗p < 0.1 .
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B. APPENDIX: IDENTIFYING THE ELASTICITY OF

DRIVING

B.1 Instrumental Variable for Massachusetts Motor Fuel Prices

Table B.1.
First-stage Regression Results, Two-way Fixed Effects Case

2FE

ln(Brent Crude) 0.6508***
(0.0009)

ln(vehicle age) 0.1817***
(0.0188)

ln(MA unemployment) 0.0459***
(0.0024)

ln(national CCI) -0.1300***
(0.0221)

ln(MA GDP) -0.4880***
(0.0138)

Constant -2.5880***
(0.0942)

Municipality FE Yes
Quarter FE Yes
F-statistic 2.3× 105

R-square 0.99

Notes: The dependent variable is
ln(fuel price per mile). Regressions
are for N = 351 municipalities, n =
8,424 observations in the levels spec-
ifications. Values in parentheses are
robust standard errors accommodate
for heteroskedasticity and autocorrela-
tion. Significance levels: ∗∗∗p < 0.01,
∗∗p < 0.05 , ∗p < 0.1.
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