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The rapid development of topology optimization in photonics has greatly expanded the number of 

photonic structures with extraordinary performance. The optimization is usually solved by using a 

gradient-based optimization algorithm, where gradients are evaluated by the adjoint sensitivity 

analysis. While the adjoint sensitivity analysis has been demonstrated to provide reliable gradients 

for designs of dielectrics, there has not been too much success in plasmonics. The difficulty of 

obtaining accurate field solutions near sharp edges and corners in plasmonic structures, and the 

strong field enhancement jointly increase the numerical error of gradients, leading to failure of 

convergence for any gradient-based algorithm. 

 

We present a new method of calculating accurate sensitivity with the FDTD method by direct 

differentiation of the time-marching system in frequency domain. This new method supports 

general frequency-domain objective functions, does not relay on implementation details of the 

FDTD method, works with general isotropic materials and can be easily incorporated into both 

level-set-based and density-based topology optimizations. The method is demonstrated to have 

superior accuracy compared to the traditional continuous sensitivity. Next, we present a framework 

to carry out density-based topology optimization using our new sensitivity formula. We use the 

non-linear material interpolation to counter the rough landscape of plasmonics, adopt the filtering-

and-projection regularization to ensure manufacturability and perform the optimization with a 

continuation scheme to improve convergence. 

 

We give two examples involving reconstruction of near fields of plasmonic structures to illustrate 

the robustness of the sensitivity formula and the optimization framework. In the end, we apply our 

method to generate a rectangular temperature profile in the recording medium of the HAMR 

system.  
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1. INTRODUCTION 

Topology optimization is a computational tool that can be used for the systematic design of 

photonic crystals, waveguides, resonators, filters and plasmonic structures [1]. Before its 

widespread use in designing photonic structures. it was first used in mechanical structural design 

[2] and became available in many structural simulation software (ANSYS, COMSOL). In general, 

there are three types of optimizations related to photonics and structural design. The first one, size 

optimization, finds the optimal design by changing the size variables, such as the slot distance of 

a bowtie antenna, for a fixed geometry. The shape optimization is mainly performed by modifying 

predetermined boundaries to achieve the optimal designs. It poses constraints on the connectivity 

and order of the device geometry. For example, we can approximate a 2D device geometry using 

points of a polygon and modify their positions. The last one, topology optimization, assumes no 

topological constraint on the geometry and searches for the optimal shape. While the size 

optimization and shape optimization are most frequently used in designing simple device where 

the underlying principles are reachable through intuition, the topology optimization is suited for 

generating non-intuitive designs for complex problems.  

 

This thesis starts from an analysis on the Maxwell’s equations, the mathematical formula for 

photonics, and focuses on the derivations of the methods used in topology optimization. We 

recognize and explain the difficulty of applying topology optimization to plasmonics involving 

strong subwavelength field enhancement and offer a robust solution. Topology optimization in 

plasmonics has only been reported in recent years and is almost exclusively used with the Finite 

Element Method (FEM) or the Boundary Element Method (BEM). The solution we present offers 

the chance to carry out topology optimization with the Finite-Difference Time-Domain (FDTD) 

[3] method and enables the use of a great number of techniques in structural topology optimizat ion.   
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1.1 Topology Optimization in Photonics 

The types of topology optimization generally fall into two categories: eigenvalue problems and 

deterministic problems [4]. Their differences are illustrated in Fig. 1.1. 

 

 

Fig. 1.1 Differences between deterministic problems and eigenvalue problems. The Partial 
Differential Equation (PDE) is deemed as an operator operation 𝐴𝐴𝐴𝐴 = 𝑏𝑏 where 𝐴𝐴 is the system 

operator, 𝑥𝑥 is the field variable and 𝑏𝑏 is the source term. In deterministic problems, the objective 
function depends on field variables. In eigenvalue problems, it depends on eigenvalues and/or 

eigenfunctions. 
 

In eigenvalue problems, quantities relevant to modes of the system are considered. One notable 

example is the maximization of band gaps in photonic crystals [5] where the objective function is 

the gap between two eigenvalues. On the other hand, the deterministic problems aim to optimize 

quantities calculated from the response of some electromagnetic sources. For example, 

transmission loss of a 900 bend in a two-dimensional photonic crystal waveguide is made less than 

0.3% using topology optimization [6]. Although the two types of problems are quite different in 

their formulations, they only differ in sensitivity analysis and many techniques can be applied to 

both types. We focus on deterministic problems as they incorporate the use of adjoint sensitivity 

analysis which is the other focus of this thesis. We also restrain ourselves to single frequency 

optimization, i.e., optimizing quantities calculated from a single wavelength. For problems 

involving multiple frequencies, the same methods can be employed multiple times to these 
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frequencies, at the cost of increasing run time. For more information on multiple frequency 

optimization, refer to [7][8][9].  

 

A typical topology optimization in photonics problem is constructed with an objective function 

depending on the electromagnetic fields (𝐄𝐄,𝐇𝐇), design parameter 𝜌𝜌 describing the structure in use 

and a couple of constraints including the Maxwell’s equations and boundary conditions. To put it 

in a general mathematical form, consider the following optimization problem 

 

 min
𝜌𝜌
𝐹𝐹(𝐄𝐄,𝐇𝐇) 1-1 

 subject to: �−𝑖𝑖𝑖𝑖𝑖𝑖 𝜵𝜵 ×
𝜵𝜵 × 𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇
� = � 𝐉𝐉

−𝐌𝐌
�

 some boundary conditions
 𝜀𝜀 = 𝜀𝜀(𝜌𝜌)
 𝜇𝜇 = 𝜇𝜇(𝜌𝜌)
 some other constraints on 𝜌𝜌

  

 

 

At first, it is not obvious how the problem can be solved. The genetic algorithm is one of the global 

optimization algorithms [10], does not necessarily require the gradient information and is easy to 

implement. A genetic algorithm was successfully applied to design a planar silica spot-size 

converter as a fiber-to-ridge waveguide connection [11]. A waveguide-to-fiber coupling efficiency 

improvement exceeding 2 dB per converter is shown. If gradients are provided, local (convex) 

optimization algorithms can be deployed to find the optimal value within the neighborhood of an 

initial candidate. When problem is convex [12], local optimization algorithms are guaranteed to 

find the global optima. Although in practice most optimization problems are non-convex, some 

considerable improvement is still expected through local optimization. For instance, solar 

absorption enhancement of 30% resulting from a topology optimized surface texturing is reported 

in [13]. More recently, a computationally generated waveguide design was demonstrated to reduce 

the self-heating of the near-field transducer by 50% in a heat-assisted magnetic recording system 

[14]. Global optimization is generally orders of magnitude more computationally expensive than 

local optimization, which prevents its use in extremely large scale problems. We turn our attention 

to local optimization algorithms not only because they are less computationally expensive but also 

they are conceptually more interesting. Moreover, regularization techniques can be introduced to 
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reduce the non-convexity of the optimization problem. To emphasize the use of gradient, we will 

use the term gradient-based optimization instead of local optimization from now on. 

1.2 The Adjoint Sensitivity 

To facilitate the use of gradient-based topology optimization, gradient information must be 

accessible. However, the dependence of the objective function on the design parameter 𝜌𝜌  is 

implicitly specified through the constraints imposed by boundary conditions and the Maxwell’s 

equations, resulting in no explicit differentiation of the objective function. This is where the adjoint 

sensitivity analysis bridges the gap. The adjoint sensitivity analysis evaluates gradients with 

respect to all the design parameters using only two EM analysis regardless of the number of 

parameters [15]. It should be noticed that sensitivities and gradients are two fundamentally 

equivalent terms in topology optimization but have different meanings in other areas. They will be 

used interchangeably since there is no danger of confusion here in the topology optimizat ion 

community. The early use of adjoint sensitivity was introduced in optimal control theory [16]. 

Fundamentally, the adjoint sensitivity is a methodology to calculate gradient information for non-

linear objective functions of PDE-constrained design variables. By solving an extra adjoint version 

of the original PDE, the gradient can be calculated. Two forms of adjoint sensitivities are broadly 

used. Favored by Sigmund and Bendose [17], the discrete (numerical) adjoint sensitivity is 

obtained by differentiation of the discretized model of the original PDE with respect to the design 

variables. In the case of Finite Element Method, the following discretized optimization problem is 

considered 

 

 min
𝜌𝜌

𝐹𝐹(𝑥𝑥 , 𝜌𝜌) 1-2 

 subject to: 𝐊𝐊(𝜌𝜌)𝑥𝑥 = 𝑏𝑏
 some other constraints on 𝜌𝜌   

 

where matrix 𝐊𝐊(𝜌𝜌) is the discretized representation of the original PDE, 𝑥𝑥 are the discretized field 

vectors and 𝑏𝑏 is the discretized current source vector. The sensitivity of the objective function with 

respect to the ith design variable 𝜌𝜌𝑖𝑖  is given by the chain rule 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝜌𝜌𝑖𝑖

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇 𝑑𝑑𝑑𝑑
𝑑𝑑𝜌𝜌𝑖𝑖

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑖𝑖

 
1-3 

 

and the adjoint equation is given by 

 

 𝐊𝐊(𝜌𝜌)𝑇𝑇𝑥𝑥𝑎𝑎 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  1-4 

 

where the superscript T denotes transpose of matrix. The sensitivity can be computed as: 

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑎𝑎𝑇𝑇

𝜕𝜕𝐊𝐊
𝜕𝜕𝜌𝜌𝑖𝑖

𝑥𝑥 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑖𝑖

 
1-5 

 

On the other hand, the continuous (variational) adjoint sensitivity analysis starts with the original 

PDE and boundary conditions (or its equivalent variational form), then derives the adjoint PDE 

and adjoint boundary conditions with which the continuous sensitivity can be computed [18]. 

Translating the continuous sensitivity to gradients with respect to design variables is done 

afterwards using numerical methods. Fig. 1.2 illustrates differences between the continuous adjoint 

sensitivity analysis and the discrete adjoint sensitivity analysis. 
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Fig. 1.2. Discrete (numerical) adjoint sensitivity compared with continuous (variational) adjoint 
sensitivity. The two are generally not equal. Especially in plasmonic structures, they exhibit a 

huge difference. 

 

In most wave propagation problems, the adjoint system is the same as the original system. For 

lossless homogeneous boundary conditions [4] including the Perfect Electric Conductor (PEC), 

Perfect Magnetic Conductor (PMC) and the Bloch periodic condition, the adjoint boundary 

conditions end up being the same as the original. For the permittivity and permeability that are 

symmetric tensors the adjoint Maxwell’s equations are also the same as the original. We will focus 

on the usage of the adjoint sensitivity analysis in open region problems and derive formulas for 

both discrete and continuous adjoint sensitivity analysis where the FDTD method [3] is the 

numerical model of the PDE. 

 

For many years. the topology optimization has been primarily applied to design dielectric 

structures including photonic crystals [5][7][6], optical cloaks [19][20][21], solar cells [13], etc. 

However, there are very few about plasmonics. This is because the difficulty of obtaining accurate 

field solutions near sharp edges and corners [22] in plasmonic structures prohibits an accurate 

evaluation of sensitivity. Since it is at the material boundaries where the sensitivity is the highest, 

the continuous gradient is unreliable, inconsistent with the discrete gradient and leads to failure of 

convergence for gradient-based optimization algorithms. Especially in the FDTD method where 

material boundaries are approximated with staircasing geometry, field enhancement in the near-
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zone of metal-dielectric interface cannot be accurately captured. To our knowledge, there are only 

two original methods of using the FDTD method in optimizing plasmonic structures until today 

[23][24][25]. Nevertheless, the FDTD method has been extensively used in simulating plasmonic 

structure. So, there is no reason the FDTD method should be abandoned in topology optimizat ion 

of plasmonics. The difficulty of obtaining reliable and consistent sensitivity can be eliminated if 

the discrete adjoint sensitivity analysis is used to provide gradients for the optimization process 

instead of the continuous one because it represents the exact gradient of the underlying numerical 

model. Discrete matrix representation of the system is directly accessible with frequency domain 

solvers like FEM or BEM and enables easy implementation of discrete adjoint sensitivity analysis. 

However, the FDTD method does not have a discrete matrix representation in frequency domain.  

 

The adjoint variable method (AVM) proposed in [9] considers the time marching scheme in the 

FDTD method as a dynamic system and uses time traversal to simulate the adjoint system. It was 

shown that this method works reasonably well in both dielectrics [15] and plasmonics [25]. 

However, even though the adjoint equation can be solved without modifying the existing FDTD 

solver, the approach only works on permittivity, depends on implementation of dispersion and 

only works with simple time-domain objective functions. Perhaps these are the reasons why the 

AVM has not been widely used in topology optimization. The bubble method [14] was also applied 

in design of plasmonic apertures/antennas. However, it is still a continuous sensitivity formula and 

does not have rigid theorical foundation. We propose a frequency domain sensitivity analysis by 

transforming the discrete time marching dynamic system of the FDTD method into frequency 

domain using discrete-time Fourier transform (DTFT) [26]. The frequency domain transform 

technique in obtaining sensitivity was previously demonstrated in 2D plasmonic structures but 

exploits the transmission line modeling (TLM) instead of the FDTD method [24]. Our approach is 

highly compatible with existing FDTD software (Meep, Lumerical, etc.) since almost all 

interesting quantities are calculated using DTFT; it is implemented in 3D model; it is independent 

of numerical implementation of dispersion if proper time step is chosen. Although the presented 

derivations are based on an open region problem, the method can be readily extended to problems 

with lossless homogeneous boundary conditions. 
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1.3 Geometry Parameterization 

Two major approaches have been used to parameterize the geometry, i.e., to define an explicit 

dependence of 𝜀𝜀, 𝜇𝜇 on the design parameters 𝜌𝜌 in Equation 1-1: either use a level-set approach or 

a density approach. In the level-set approach, geometry is parameterized by a smooth level-set 

function 𝜙𝜙 which defines the material domain Ω, the void domain Ω�𝑐𝑐  and the material interface 

𝜕𝜕Ω as 

 

 
�

𝜙𝜙(𝑥𝑥) > 𝑐𝑐 ⟺ 𝑥𝑥 ∈ Ω
   𝜙𝜙(𝑥𝑥) = 𝑐𝑐 ⟺ 𝑥𝑥 ∈ 𝜕𝜕Ω 
  𝜙𝜙(𝑥𝑥) < 𝑐𝑐 ⟺ 𝑥𝑥 ∈ Ω�𝑐𝑐
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where 𝑐𝑐 is a constant (usually 𝑐𝑐 = 0). An example is illustrated in Fig. 1.3. The level-set function 

𝜙𝜙 is usually defined as the sum of the basis function 𝜙𝜙𝑖𝑖  

 

 𝜙𝜙(𝑥𝑥) = �𝜙𝜙𝑖𝑖(𝑥𝑥, 𝑠𝑠𝑖𝑖)
𝑖𝑖

 1-7 

 

where 𝑠𝑠𝑖𝑖 the ith design parameter. The level-set approach is closely related to shape optimizat ion 

in the sense that both allow altering boundaries. Different from shape optimization, the level-set 

approach allows topological changes, i.e., new holes can merge and new connections can be 

formed [27]. However, the forming of new holes is done in a separate step using topological 

derivatives [28]. 
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Fig. 1.3. Level-set approach for a 2D geometry. The 2D geometry is a section of the level-set 
function. Reprinted from [29] with the permission of Elsevier. 

 

To move towards a device design, 𝜙𝜙 is then evolved either through an equation of motion (such as 

the Hamilton-Jacobi [30]) or via gradients with respect to design variables using mathematical 

programming techniques [27], causing it to settle at local optima [31]. The level-set method is 

highly compatible with FEM and BEM. since mesh can be generated to conform the boundary. 

Most topology optimization in plasmonics is done in this way for its high accuracy in capturing 

localized fields [22][32][29]. However, the drawbacks of the level set approach are the restriction 

of the geometry that only can evolve from existing boundaries and the inability to generate new 

holes at point surrounded by solid material [17]. Even though the use of topology derivatives can 

mitigate these drawbacks, it is usually done in a separate step of the optimization procedure, 

affecting the convergence of the optimization process. For a comprehensive review on the level-

set approach in topology optimization, refer to [27].   
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The density approach, on the other hand, parameterizes the geometry using a density paramter 𝜌𝜌. 

For example 

 

 𝜀𝜀(𝑥𝑥 , 𝜌𝜌) = 𝜀𝜀1𝜌𝜌(𝑥𝑥) + 𝜀𝜀2�1− 𝜌𝜌(𝑥𝑥)�, 𝜌𝜌 ∈ [0,1] 1-8 

 

where 𝜀𝜀1 is the permittivity for the material domain and 𝜀𝜀2 is the permittivity for the void domain 

(usually 𝜀𝜀2 = 𝜀𝜀0). Under a specific numerical model of the Maxwell’s equations, each node (line 

segment, pixel or voxel) is assigned a density parameter and the problem of finding the optimal 

design amounts to determining the value of 𝜌𝜌 for each node. One drawback of the density approach 

is that gray transition regions where 𝜌𝜌 takes intermediate values can occur in the final optimal 

structure. Such gray transition regions do not represent any realistic geometry and might lead to 

inadmissible device design. For a comprehensive review on density approach, refer to [33]. 

 

In either level-set or density approach, the adjoint sensitivity analysis can provide gradient 

information for the optimization process. Both discrete and continuous sensitivity analysis are 

easily applied to density-based optimization while the level-set can only accept the continuous 

sensitivity most of the time except when density-based geometric mapping is employed [27]. We 

will give a brief review on adjoint sensitivity applied to level-set method, but the focus is on the 

density approach as it is highly compatible with cartesian grids in the FDTD method. 

1.4 Regularization 

Even when the gradient is absolutely correct, the ill-posedness of the optimization problem in 

Equation 1-1 may still cause the optimization to converge to a local minimum with poor 

performance. The ill-posedness can cause: (1) mesh dependence, (2) gray transition regions, (3) 

poor manufacturability and (4) non-uniqueness of the solution. Mesh dependency can be observed 

by refining the design domain for a design obtained with a coarse mesh and running the 

optimization on the refined mesh [33]. The issue of gray transition regions is discussed in the 

previous section and only exists in density approach. Poor manufacturability of the optimized 

structure as a result of extremely small geometry features prevents realistic application of the 

design. For instance, the design can have element holes or material islands that are neither 

manufacturable nor make physical sense [1]. Although seemingly innocent, the non-uniqueness of 



26 
 

the solution can sometimes lead to poor convergence [34]. Regularization can be used to mitigate 

these problems by restricting the solution space. We will focus on techniques used in the density 

approach. However, it should be noted that many methods can also be applied to the level-set 

approach.  

 

Inspired by image processing, density filtering methods have been successful in ensuring 

manufacturability and mesh independence [35]. Viewing the discretized density parameter 𝜌𝜌 as a 

3D image, we can reassign each density value 𝜌𝜌𝑖𝑖  as a weighted sum of its neighbors:  

 

 
𝜌𝜌�𝑖𝑖 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗𝜌𝜌𝑗𝑗𝑗𝑗∈𝑁𝑁𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖 𝐴𝐴𝑗𝑗

 
1-9 

 

where the 𝐴𝐴𝑗𝑗 is the area of the jth element and the weighting function is given by: 

 

 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 − �𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗� 1-10 

 

This introduces a length scale 𝑅𝑅 into the design problem, i.e., no features like holes or solid bridges 

will be smaller than 𝑅𝑅 [1]. Alternatively, the filter can be applied to the sensitivity [36]: 

 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌�𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖
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The main idea of sensitivity filter is to base design updates on filtered sensitivities instead of real 

sensitivities. Obviously, this is potentially risky since a wrong descent direction might be taken. 

The penalization approach adds an artificial penalization term to the objective function to ensure 

crisp, mesh-independent 0-1 design. For example [37], 

 

 𝐹𝐹� = 𝐹𝐹 + 𝛼𝛼� 𝜌𝜌(1 − 𝜌𝜌)𝑑𝑑𝑑𝑑
Ω

 1-12 
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where 𝐹𝐹� is new objective function and 𝛼𝛼 controls the weight of the penalization term favoring a 

density value of either 0 or 1. For a comprehensive review on regularization in density approach, 

refer to [33]. As we will see, regularization is necessary in topology optimization in plasmonics 

for the objective function is highly sensitive to material variation. Such high sensitivities result in 

high non-convexity of the problem and cause premature convergence to a local optimum.  

1.5 Implementation 

Since the goal is to illustrate the robustness of the discrete adjoint sensitivity formula of FDTD 

method discussed, the density-based topology optimization is used along with several standard 

regularization techniques [38] and the non-linear material interpolation scheme [39]. We end up 

writing our own FDTD solver because we need to control what interpolation scheme goes into the 

algorithm and to access each individual field component in the Yee lattice. The part involving 

optimization is written in Python using the Scipy and Numpy libraries [40]. The optimization is 

solved using the Method of Moving Asymptotes [41] (MMA) and a Python interface [42] of MMA 

is adopted in our code.  

1.6 Organization of Chapters 

The rest of the thesis generally follows the contents of the introduction.  

 

Chapter 2 presents a detailed derivation of adjoint sensitivity starting from the symmetry property 

of Maxwell’s equations – the Lorentz Reciprocity – followed by a mathematical interpretation – 

the adjoint operator – from a function analytic point of view. Using language from the adjoint 

operator theory, the classical continuous adjoint sensitivity analysis is discussed. Afterwards, it re-

iterates the difficulty of obtaining accurate sensitivity in plasmonics, which serves as the motive 

for the next section – discrete adjoint sensitivity with FDTD – providing a discrete sensitivity 

formula for scalar permittivity and permeability. Two examples and numerical implementation are 

given in the end.  

 

Chapter 3 reviews the two different ways to represent geometry, the level-set function and density 

function, with a focus on the latter. Consequences of the ill-posedness of the topology optimizat ion 
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problems are discussed, including poor manufacturability, gray transition regions and non-smooth 

convergence, followed by an introduction of regularization techniques that cope with the ill-

posedness. The so-called standard method [38] is given a detailed elucidation and ends up being 

implemented.  

 

Chapter 4 carries out the topology optimization on two plasmonic structures, one with localized 

fields and one without localized fields, to demonstrate the possibility of using topology 

optimization to construct field patterns.  

 

In Chapter 5, the topology optimization is applied to the design of a coupled thermal-

electromagnetic system, the heat-assisted magnetic recording system. An inverse thermal problem 

is instigated followed by solving an inverse electromagnetic problem using topology optimizat ion, 

in which the same procedures from Chapter 4 are followed.  
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2. ADJOINT SENSITIVITY ANALYSIS 

Gradient-based optimization has long history of success in finding local optima because of its 

deterministic nature. To facilitate such powerful tool, which is almost available as libraries in all 

scientific programming languages (fminunc in MATLAB, scipy.optimize in Python, etc.), the 

gradient must be provided. This Chapter describes gradient derivations for the Maxwell’s 

equations from the continuous perspective and the discrete perspective and introduces the adjoint 

sensitivity analysis. The adjoint sensitivity analysis evaluates the sensitivities with respect to all 

the design parameters using only two EM analysis regardless of the number of parameters [15]. 

Gradient-based non-linear optimization algorithms, such as the mothod of moving asymptotes [41] 

(MMA), limited memory BFGS [43] (L-BFGS-B), can be initiated to optimize a user-defined 

objective function with these provided sensitivities. 

 

For a single variable function with analytical form, gradient is nothing more than the derivative 

with respect to the variable. For multiple variables, the gradient comes into play. But for infinite ly 

many variables, the gradient is often disguised as a function. Discussion of infinitely many 

variables is the starting point of functional analysis [44] and is inevitable if we want to talk about 

sensitivity of Maxwell’s equations. We shall not dive into the abstraction of functionals, but some 

generalizations of adjoint sensitivity analysis rely on jargons borrowed from this field. Hence the 

goal is to present the material to audience with nodding acquaintance of basic functional analysis 

and still provide information enough for to initiate one’s own sensitivity analysis. 

 

Sensitivity analysis provides information on how much the behavior of the system changes if the 

input is altered by a small amount. The input can either be currents or geometric information of 

the system and the output is usually a measure of some performance. For instance, the transmission 

of a waveguide depends on the waveguide geometry. Here geometry is described by permittivity 

distribution and transmission is calculated as the ratio of transmitted power over the incident power. 

If we understand how the transmission changes by altering the geometry, we may very well come 

up with a waveguide design that maximizes the transmission. In this chapter, we address sensitivity 
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of changing geometry of objects in an electromagnetic system and derivate gradients with which 

a user-defined objective function can be optimized. 

 

This chapter also addresses the difficulty of obtaining accurate sensitivity in plasmonics. In order 

to perform topology optimization, a solver of direct electromagnetic problem is required. The 

solver should be accurate enough to yield acceptable sensitivity. This is particularly compelling if 

we are interested in the accurate evaluation of electric field in the near zone of a plasmonic particle 

[32]. Since the FDTD method [3] is widely used in plasmonic structure simulation, we present a 

new discrete-based method in conjunction with the FDTD method to yield numerically accurate 

sensitivity. We give theoretical proofs that the error is very small with a fine time step. We argue 

that this can serve as framework of sensitivity analysis for any type of topology optimization in 

electromagnetics when the FDTD method is used as the direct solver.  

2.1 The Lorentz Reciprocity 

Before introducing the abstract adjoint operator theory, we will look at its alternative and more 

intuitive form – the Lorentz reciprocity – which is an important concept in antennas because it 

produced implications when we reverse the role of transmitting antennas and receiving antennas. 

Loosely, it states that the relationship between an oscillating current and the resulting electric field 

is unchanged if one interchanges the points where the current is placed and where the field is 

measured.  

 

A formal derivation of the Lorentz reciprocity begins by considering a volume containing two sets 

of sources in an unbounded region, 𝐉𝐉1  and 𝐉𝐉2 , which produced fields (𝐄𝐄1 ,𝐇𝐇1)  and (𝐄𝐄2,𝐇𝐇2) 

respectively, as shown in Fig. 2.1.  
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Fig. 2.1 Two sets of sources in an unbounded region with a uniform background medium and 
and an inhomogenous region of interest V. This is a typical set-up for wave propagation problem. 

Two sources are assumed to be compactly supported in the region V. 

 

Consider the quantity  𝛁𝛁 ⋅ (𝐄𝐄1 × 𝐇𝐇2 −𝐄𝐄2 × 𝐇𝐇1) which is expandable using a vector identity as 

 

 (𝛁𝛁 × 𝐄𝐄1) ⋅ 𝐇𝐇2 − (𝛁𝛁 × 𝐇𝐇2) ⋅ 𝐄𝐄1 − (𝛁𝛁 × 𝐄𝐄2) ⋅ 𝐇𝐇1 + (𝛁𝛁 × 𝐇𝐇1) ⋅ 𝐄𝐄2  2-1 

 

According to Maxwell’s curl equations assuming sinusoidal time dependence 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

 

 𝛁𝛁 × 𝐄𝐄1 = −𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇1 −𝐌𝐌1 
𝛁𝛁 × 𝐇𝐇1 = 𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄1 + 𝐉𝐉1  
𝛁𝛁 × 𝐄𝐄2 = −𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇2 − 𝐌𝐌2 
𝛁𝛁 × 𝐇𝐇2 = 𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄2 + 𝐉𝐉2 

2-2 
2-3 
2-4 
2-5 

 

Therefore, 

 

 𝛁𝛁 ⋅ (𝐄𝐄1 × 𝐇𝐇2 −𝐄𝐄2 × 𝐇𝐇1) = −(−𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇2 −𝐌𝐌2) ⋅ 𝐇𝐇1 + (𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄1 + 𝐉𝐉1) ⋅ 𝐄𝐄2 
+(−𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇1 −𝐌𝐌1) ⋅ 𝐇𝐇2 − (𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄2 + 𝐉𝐉2) ⋅ 𝐄𝐄1   
= 𝐉𝐉1 ⋅ 𝐄𝐄2 − 𝐌𝐌1 ⋅ 𝐇𝐇2 − (𝐉𝐉2 ⋅ 𝐄𝐄1 − 𝐌𝐌2 ⋅ 𝐇𝐇1) 

2-6 

 

Integrating the divergence over the volume of interest gives 
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 �𝛁𝛁 ⋅ (𝐄𝐄1 × 𝐇𝐇2 −𝐄𝐄2 × 𝐇𝐇1)𝑑𝑑𝑑𝑑
𝑉𝑉

= ��𝐉𝐉1 ⋅ 𝐄𝐄2 −𝐌𝐌1 ⋅ 𝐇𝐇2 − (𝐉𝐉2 ⋅ 𝐄𝐄1 −𝐌𝐌2 ⋅ 𝐇𝐇1)�𝑑𝑑𝑑𝑑
𝑉𝑉
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and applying the Divergence theorem to the left-hand side yields 

 

 � (𝐄𝐄1 × 𝐇𝐇2 − 𝐄𝐄2 × 𝐇𝐇1) ⋅ 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕

= ��𝐉𝐉1 ⋅ 𝐄𝐄2 −𝐌𝐌1 ⋅ 𝐇𝐇2 − (𝐉𝐉2 ⋅ 𝐄𝐄1 −𝐌𝐌2 ⋅ 𝐇𝐇1)�𝑑𝑑𝑑𝑑
𝑉𝑉
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We now claim that the left-hand side is zero when the volume of interest V encloses all sources 

and objects. Notice that for electric fields and magnetic fields observed at a large distance from 

the sources, 𝐄𝐄 and 𝐇𝐇 are related through 

 

 𝐇𝐇 =
𝑟̂𝑟 × 𝐄𝐄
𝜂𝜂  

2-9 

 

where 𝜂𝜂 is the background impedance. Assuming the volume of interest is a large ball 𝐵𝐵𝑟𝑟 of radius 

𝑟𝑟 centered at the sources and using the above relation, the integrand on the left-hand side of 

Equation 2-8 can be rewritten as 

 

 � �𝐄𝐄1 ×
𝑟̂𝑟× 𝐄𝐄2
𝜂𝜂 − 𝐄𝐄2 ×

𝑟̂𝑟 × 𝐄𝐄1
𝜂𝜂

� ⋅ 𝑟̂𝑟𝑑𝑑𝑑𝑑
𝜕𝜕𝐵𝐵𝑟𝑟

= � �𝐄𝐄1 ⋅
𝐄𝐄2
𝜂𝜂 − 𝐄𝐄2 ⋅

𝐄𝐄1
𝜂𝜂
� 𝑑𝑑𝑑𝑑

𝜕𝜕𝐵𝐵𝑟𝑟
= 0 
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Hence  

 

 � (𝐉𝐉1 ⋅ 𝐄𝐄2 − 𝐌𝐌1 ⋅ 𝐇𝐇2)𝑑𝑑𝑑𝑑
𝐵𝐵𝑟𝑟

= � (𝐉𝐉2 ⋅ 𝐄𝐄1 −𝐌𝐌2 ⋅ 𝐇𝐇1)𝑑𝑑𝑑𝑑
𝐵𝐵𝑟𝑟

 2-11 
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Now supposing the volume of interest V is any volume enclosing all sources and objects, we 

subtract it from a large ball centered around the sources and use the subtracted volume in Equation 

2-8 

 

 � 𝛁𝛁 ⋅ (𝐄𝐄1 × 𝐇𝐇2 −𝐄𝐄2 × 𝐇𝐇1)𝑑𝑑𝑉𝑉
𝐵𝐵𝑟𝑟−𝑉𝑉

= � �𝐉𝐉1 ⋅ 𝐄𝐄2 − 𝐌𝐌1 ⋅ 𝐇𝐇2 − (𝐉𝐉2 ⋅ 𝐄𝐄1 −𝐌𝐌2 ⋅ 𝐇𝐇1)�𝑑𝑑𝑑𝑑
𝐵𝐵𝑟𝑟−𝑉𝑉
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Noticing that there are no sources in the volume 𝐵𝐵𝑟𝑟 − 𝑉𝑉 which implies the right-hand side of the 

above equation is 0, we invoke the Divergence theorem again to the left-hand side 

 

 � (𝐄𝐄1 × 𝐇𝐇2 −𝐄𝐄2 × 𝐇𝐇1) ⋅ 𝑑𝑑𝑑𝑑
𝜕𝜕𝐵𝐵𝑟𝑟

−� (𝐄𝐄1 × 𝐇𝐇2 − 𝐄𝐄2 × 𝐇𝐇1) ⋅ 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕

= 0 2-13 

 

Combining Equations 2-13 and 2-10 yields 

 

 � (𝐄𝐄1 × 𝐇𝐇2 − 𝐄𝐄2 × 𝐇𝐇1) ⋅ 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕

= 0 2-14 

 

This indicates the left-hand side of Equation 2-8 is always 0 no matter what volume of interest is 

chosen as long as it encloses all sources and objects. At last, we arrive at a more general version 

of Equation 2-11 

 

 �(𝐉𝐉1 ⋅ 𝐄𝐄2 − 𝐌𝐌1 ⋅ 𝐇𝐇2)𝑑𝑑𝑑𝑑
𝑉𝑉

= � (𝐉𝐉2 ⋅ 𝐄𝐄1 −𝐌𝐌2 ⋅ 𝐇𝐇1)𝑑𝑑𝑑𝑑
𝑉𝑉

 2-15 

 

which is valid for any volume 𝑉𝑉 enclosing all sources and objects. This is the Lorentz Reciprocity 

for linear isotropic materials. One immediate consequence of the Lorentz Reciprocity is that fields 

of dipole sources are symmetric. Considering two dipole sources 𝐉𝐉1 = 𝐀𝐀1𝛿𝛿(𝒓𝒓 − 𝒓𝒓1) and 𝐉𝐉2 =

𝐀𝐀2𝛿𝛿(𝒓𝒓 − 𝒓𝒓2), Equation 2-15 implies that 

 



34 
 

 𝐀𝐀1 ⋅ 𝐄𝐄2(𝒓𝒓1) = 𝐀𝐀2 ⋅ 𝐄𝐄1(𝒓𝒓2) 2-16 
 

This relation is illustrated in Fig. 2.2. 

 

 

Fig. 2.2 Symmetry of fields and sources. Measuring electric field 𝐄𝐄1 along direction 𝐀𝐀2 is 
equivalent to measuring electric field 𝐄𝐄2 along direction 𝐀𝐀1. 

 

The more general relation is the symmetry of Green’s function. We obtain electric fields by using 

the convolution product of Green’s function and sources 

 

 𝐄𝐄2(𝒓𝒓1) = �𝐆𝐆(𝒓𝒓1, 𝒓𝒓) ⋅ 𝐉𝐉2(𝒓𝒓)𝑑𝑑𝑑𝑑
𝑉𝑉

= 𝐆𝐆(𝒓𝒓1, 𝒓𝒓2) ⋅ 𝐀𝐀2 

𝐄𝐄1(𝒓𝒓2) = �𝐆𝐆(𝒓𝒓2,𝒓𝒓) ⋅ 𝐉𝐉1(𝒓𝒓)𝑑𝑑𝑑𝑑
𝑉𝑉

= 𝐆𝐆(𝒓𝒓2,𝒓𝒓1) ⋅ 𝐀𝐀1 

2-17 
 
 
2-18 

 

and combine Equations 2-16, 2-17 and 2-18 

 

 𝐀𝐀1 ⋅ 𝐆𝐆(𝒓𝒓1 ,𝒓𝒓2) ⋅ 𝐀𝐀2 = 𝐀𝐀2 ⋅ 𝐆𝐆(𝒓𝒓2,𝒓𝒓1) ⋅ 𝐀𝐀1 2-19 

 

Since 𝐀𝐀1 and 𝐀𝐀2 are arbitrary, the symmetry of Green’s function must be satisfied 
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 𝐆𝐆(𝒓𝒓1, 𝒓𝒓2) = 𝐆𝐆T(𝒓𝒓2, 𝒓𝒓1) 2-20 
 

It should be noted that Equation 2-20 is equivalent to the Lorentz Reciprocity – there is a way to 

derive the Lorentz Reciprocity assuming the symmetry of Green’s function.  

 

The Lorentz Reciprocity does not generally hold for anisotropic materials. One notable example 

is magneto-optic material where 𝜀𝜀 is Hermitian, i.e. 

 

 𝜀𝜀𝑇𝑇 = 𝜀𝜀 ̅ 2-21 
 

in which case Equation 2-6 no longer holds. To satisfy Equation 2-6, the following term must 

cancel 

 

 𝑖𝑖𝑖𝑖(𝜀𝜀𝐄𝐄1 ⋅ 𝐄𝐄2− 𝜀𝜀𝐄𝐄2 ⋅ 𝐄𝐄1) = 0 2-22 
 

For Hermitian 𝜀𝜀 the above term does not cancel while for symmetric 𝜀𝜀 the above term can still be 

cancelled. Therefore, the Lorentz Reciprocity only holds for materials with symmetric permittivity 

and permeability. Although the derivations start with an open region problem, the Reciprocity 

theorem also holds for bounded region problem if lossless homogeneous boundary conditions are 

imposed. For example, 

 

 𝑛𝑛�⃗ × 𝐄𝐄 = 𝟎𝟎 or 𝑛𝑛�⃗ × 𝐇𝐇 = 𝟎𝟎 at boundary 2-23 
 

Generalizations of the Lorentz Reciprocity [45] can be made following the footsteps of the above 

discussion, however, at the price of verbosity and tangling equations. A new perspective into this 

relation, in an algebraic form, is much simpler to deal with and provides even deeper insights.  
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2.2 The Adjoint Operator 

We will assume that the reader is familiar with basic definitions of Hilbert space. For a brief 

introduction to Hilbert space, refer to Chapters 1,2 of [46]. To start with, we rewrite Maxwell’s 

equations in an operator form: 

 

 �−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇� = � 𝐉𝐉

−𝐌𝐌� 
2-24 

 

The two divergence equations are removed since they are not independent and wave propagation 

does not concern static charges. We investigate an open region problem with an infinite domain 

Ω = ℝ3. Inner product is assigned to be the integral of fields over the domain 

 

 �𝐄𝐄𝟏𝟏𝐇𝐇𝟏𝟏
�𝐄𝐄𝟐𝟐𝐇𝐇𝟐𝟐

� = �𝐄𝐄1 ⋅ 𝐄𝐄�2
Ω

𝑑𝑑Ω+ �𝐇𝐇1 ⋅ 𝐇𝐇�2
Ω

𝑑𝑑Ω 2-25 

 

Notice that the inner product might be ill-formed. Considering a plane-wave in the form 𝐄𝐄1 =

𝐄𝐄𝟎𝟎𝑒𝑒−𝑖𝑖𝑖𝑖⋅𝑟𝑟, we write down the inner product of the plane-wave with itself and immediately notice 

that it explodes 

 

 ⟨𝐄𝐄1|𝐄𝐄1⟩ = � |𝐄𝐄𝟎𝟎|2
Ω

𝑑𝑑Ω = ∞ 2-26 

 

Such difficulty exists because the sources originate from infinitely far and do not satisfy the 

Sommerfeld radiation boundary condition [4] 

 

 lim
|𝒓𝒓|→∞

|𝒓𝒓| �𝛁𝛁 × �𝐄𝐄𝐇𝐇� + j𝑘𝑘0𝑟̂𝑟× �𝐄𝐄𝐇𝐇�� = 0 2-27 

 

The electromagnetic equivalence principle [47], commonly known as Huygens’s principle, 

compactifies incident sources into finite current sources. The usage of the equivalence principle in 

simulation of scattering problem is called total-field/scattered-field (TF/SF) formulation [3]. In the 

TF/SF formulation, the whole domain is bisected into a compact region with total fields and an 
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infinite region with only scattered fields (Fig. 2.3). Using the electromagnetic field equivalence 

principle, we assign fictitious currents to a surface enclosing the scatters to generate an arbitrary 

incident wave. Fields inside the surface are total fields while fields outside are scattered fields. 

 

 

Fig. 2.3 Illustration of the electromagnetic field equivalence principle for electromagnetic wave 
scattering by a target in an unbounded region. Assigning the fictitious currents on the surface 

creates the same effect as an incident wave inside the volume Ω and scattered fields outside the 
volume. 

 

The fictitious currents are given by 

 

 𝐉𝐉𝑠𝑠(𝜕𝜕Ω) = 𝑛𝑛� × 𝐇𝐇𝑖𝑖𝑖𝑖𝑖𝑖 
𝐌𝐌𝑠𝑠(𝜕𝜕Ω) = −𝑛𝑛� × 𝐄𝐄inc 

2-28 
2-29 

 

In this way, currents are within a compact region and by Sommerfeld radiation condition the fields 

must vanish at infinity in a square-integrable way [48]. As a result, the solutions of Maxwell’s 

equations belong to the space of square-integrable functions, the 𝐿𝐿2(ℝ3) space, which is a Hilbert 

space [49]. We now introduce the definition of an operator: An operator 𝐓𝐓 on a (complex) Hilbert 

space 𝐇𝐇 is a linear map between the space and itself which satisfies: 
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 𝐓𝐓(𝑥𝑥 + 𝑦𝑦) = 𝐓𝐓𝑥𝑥+ 𝐓𝐓𝑦𝑦, ∀𝑥𝑥, 𝑦𝑦 ∈ 𝐇𝐇 
𝐓𝐓(𝑎𝑎𝑎𝑎) = 𝑎𝑎𝐓𝐓(𝑥𝑥), ∀𝑥𝑥 ∈ 𝐇𝐇 and ∀𝑎𝑎 ∈ ℂ 

𝐓𝐓(𝑥𝑥) ∈ 𝐇𝐇, ∀𝑥𝑥 ∈ 𝐇𝐇 

2-30 
2-31 
2-32 

 

Apparently, the Maxwell’s equations are exactly an operator operation 𝚲𝚲𝑥𝑥 = 𝑏𝑏 where  

 

 𝚲𝚲 = �−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖� 2-33 

 

is the operator and 

 

 𝑥𝑥 = �𝐄𝐄𝐇𝐇� ,   𝑏𝑏 = � 𝐉𝐉
−𝐌𝐌� 

2-34 

 

both belong to 𝐿𝐿2(ℝ3). What is not obvious is that the Maxwell operator has an inverse. In fact, 

the inverse is exactly the convolution between Green’s functions and sources 

 

 �𝐄𝐄𝐇𝐇� = �𝐆𝐆11 ∗ 𝐉𝐉 − 𝐆𝐆12 ∗ 𝐌𝐌𝐆𝐆21 ∗ 𝐉𝐉 −𝐆𝐆22 ∗𝐌𝐌
� = �𝐆𝐆11 ∗ 𝐆𝐆12 ∗

𝐆𝐆21 ∗ 𝐆𝐆22 ∗
� � 𝐉𝐉
−𝐌𝐌� 

2-35 

 

where ∗ specifies a convolution1 between the Green’s function and currents. 𝐆𝐆11 is exactly the 

Green’s function used in Equation 2-20. Using the notation in Equations 2-33 and 2-34 and 

rewriting the Lorentz Reciprocity in Equation 2-15, we have 

 

 �𝐄𝐄𝟏𝟏𝐇𝐇𝟏𝟏
� 𝐉𝐉𝟐𝟐
−𝐌𝐌𝟐𝟐

� = �𝐄𝐄𝟐𝟐𝐇𝐇𝟐𝟐
� 𝐉𝐉𝟏𝟏−𝐌𝐌𝟏𝟏

� ⇔ ⟨𝑥𝑥1|𝚲𝚲𝑥𝑥2�����⟩ = ⟨𝑥𝑥2|𝚲𝚲𝑥𝑥1�����⟩ = ⟨𝚲𝚲𝑥𝑥1|𝑥𝑥2���⟩ 
2-36 

 

Now we associate with each operator on a Hilbert space 𝐇𝐇 its adjoint, another operator on the same 

Hilbert space denoted by 𝐓𝐓†, which satisfies the following 

 

 ⟨𝐓𝐓𝑥𝑥|y⟩ = �𝑥𝑥�𝐓𝐓†𝑦𝑦�, ∀𝑥𝑥 ,𝑦𝑦 ∈ 𝐇𝐇 2-37 

 

                                              
1 * denotes convolution in the thesis 
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A classic example of Hilbert space is a finite dimensional vector space: here each operator is a 

matrix and its adjoint is exactly the conjugate transpose of itself. It turns out the adjoint of 

Maxwell’s operator is also the conjugate transpose of itself 

 

 𝚲𝚲† = �𝑖𝑖𝑖𝑖𝜀𝜀 ̅
𝑇𝑇 𝛁𝛁 ×

𝛁𝛁 × −𝑖𝑖𝑖𝑖𝜇̅𝜇𝑇𝑇� 
2-38 

 

Assuming symmetric permittivity and permeability, we have 

 

 𝚲𝚲† = �𝑖𝑖𝑖𝑖𝜀𝜀 ̅ 𝛁𝛁 ×
𝛁𝛁 × −𝑖𝑖𝑖𝑖𝜇̅𝜇� = 𝚲𝚲� 2-39 

 

Combining the above Equation with the definition of adjoint operator in Equation 2-37 gives 

 

 ⟨𝚲𝚲𝑥𝑥1|x2���⟩ = �𝑥𝑥1�𝚲𝚲†𝑥𝑥2���� = ⟨𝑥𝑥1|𝚲𝚲�𝑥𝑥2���⟩ = ⟨𝑥𝑥1|𝚲𝚲𝑥𝑥2�����⟩ 2-40 
 

which is exactly the Lorentz Reciprocity re-introduced in Equation 2-36. For Hermitian 

permittivity and permeability, we have 

 

 𝚲𝚲† = �𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × −𝑖𝑖𝑖𝑖𝑖𝑖� = −𝚲𝚲 2-41 

 

Combining with the definition of adjoint operator in Equation 2-37 yields 

 

 ⟨𝚲𝚲𝑥𝑥1|𝑥𝑥2⟩ = �𝑥𝑥1�𝚲𝚲†𝑥𝑥2� = ⟨𝑥𝑥1|−𝚲𝚲𝑥𝑥2⟩ 
⇒ ⟨𝚲𝚲𝑥𝑥1|𝑥𝑥2⟩ + ⟨𝑥𝑥1|𝚲𝚲𝑥𝑥2⟩ = 0 

2-42 

 

which is expandable as 

 

 � (𝐉𝐉1 ⋅ 𝐄𝐄2���−𝐌𝐌1 ⋅ 𝐇𝐇2����)𝑑𝑑𝑑𝑑
𝑉𝑉

= �(−𝐉𝐉2� ⋅ 𝐄𝐄1 + 𝐌𝐌2���� ⋅ 𝐇𝐇1)𝑑𝑑𝑑𝑑
𝑉𝑉

 2-43 
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In conclusion, the generalized Reciprocity theorem is a direct corollary from the property that the 

adjoint operator being equivalent to the transpose conjugate in Maxwell’s equations. The notion 

of adjoint operator will play a vital part in determining sensitivity of the Maxwell’s equation. The 

connection between the sensitivity and the adjoint of Maxwell’s equation enables one to run only 

two simulations to determine derivatives of an objective function over hundreds of thousands of 

variables. This will be discussed in the next two sections. 

 

Notice that the adjoint Maxwell operator produced another system with 𝜀𝜀† = −𝜀𝜀̅𝑇𝑇 and 𝜇𝜇† = −𝜇̅𝜇𝑇𝑇 

where 𝜀𝜀† and 𝜇𝜇†  are permittivity and permeability for the adjoint system. At first glance, the 

adjoint flips signs of real part of permittivity and permeability and leaves imaginary part 

unchanged. This is equivalent to changing dielectrics to metals and metals to dielectrics, which is 

shown in  Fig. 2.4.  

 

 

Fig. 2.4 Physical interpretations of the adjoint of Maxwell equations: taking the adjoint switches 
roles of dielectrics and metals by flipping the real part of the permittivity; or merely transposes 

the permittivity tensor assuming the complement time dependence. The same happens to 
permeability as well. 

 

In a typical adjoint optimization algorithm, the adjoint simulation is required. However, flipping 

real part of permittivity and permeability is not an easy task in simulation and thus complicates the 

following numerical implementation. A surprisingly straightforward alternative is to look at the 
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Maxwell’s equation using the complement sinusoidal dependence 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 , in which case the 

Maxwell’s equations are formulated as below 

 

 �𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × −𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇
� = � 𝐉𝐉

−𝐌𝐌
� 2-44 

 

As a result, we can write down the adjoint operator in Equation 2-38 with 𝜀𝜀† = 𝜀𝜀 ̅𝑇𝑇 and 𝜇𝜇† = 𝜇̅𝜇 𝑇𝑇. 

In fact, apart from transposing the tensor matrix, it doesn’t change material property at all because 

changing sinusoidal dependence and taking conjugate cancels each other. In other words, 𝜀𝜀 = 𝜀𝜀′ −

𝑖𝑖𝑖𝑖”  in 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  convention is equivalent to 𝜀𝜀 = 𝜀𝜀′ + 𝑖𝑖𝑖𝑖”  in 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  dependence, which is exactly 

equivalent to taking conjugate of the material properties. Because taking double conjugates equals 

no operations, the adjoint system is the same as the original system except with transposed 

permittivity and permeability tensors. In general, transposing material properties is an easy task in 

simulation.  

 

It should be noted that in general the adjoint of an operator may not be the conjugate transpose of 

itself when boundary conditions are not homogeneous or lossless. There is an equivalent notion of 

adjoint boundary condition which is rarely considered in wave propagation problems. For a general 

treatment of adjoint system of Maxwell’s equations, refer to [45]. The discussion of adjoint system 

of time-domain Maxwell’s equations can also be made precise in a similar fashion. We shall 

dispense with the discussion of time-domain as the focus is in frequency-domain. 

2.3 Continuous Sensitivity Analysis 

To date, most of the sensitivity analysis in literature is based on the original partial differential 

equations and a computer implementation is built with a numerical integration and interpolation 

scheme to translate continuous equations into discrete ones. The continuous sensitivity analysis 

has the advantage of being straightforward and independent of solver types which allows one to 

construct the optimization upon a well-established Maxwell’s equations simulator (Lumerical 

FDTD, MEEP FDTD, HFSS FEM). However, careful convergence study must be carried out 

before the optimization and it is becoming particularly difficult when plasmonic structures are 
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involved. We will discuss the three difficulties in plasmonic structure optimization at the end of 

this section. 

 

The most common design variable for topology optimization is the geometry of components, i.e., 

searching for the best shape that minimizes the objective function. The sensitivity analysis can tell 

whether the objective function would increase or decrease when changing the geometry by a small 

amount. We shall start with an intuitive and simple example and then derive a generalization form 

with the provided abstraction from previous section. The following example follows the 

procedures described in [50]. Suppose an incident plane wave is coming towards a region in which 

we can modify geometry (Fig. 2.5). The permittivity and permeability are assumed to be scalars. 

The objective is to maximize the electric intensity at some point 𝒓𝒓𝟎𝟎 , i.e., to maximize 𝐹𝐹 =

0.5|𝐄𝐄(𝒓𝒓0)|2.  

 

 

Fig. 2.5 The simple setup. An incident wave is coming towards the design region within which 
we can tweak the geometry of objects inside. The goal is to maximize field intensity at the point 
𝒓𝒓0 below the design region. A small inclusion with dielectric constant 𝜀𝜀2 introduces a small 

perturbation to the fields similar to that of a dipole source. 
 

Suppose we introduce a small perturbation to the geometry by placing a small inclusion with 

dielectric constant 𝜀𝜀2 and volume 𝑑𝑑𝑑𝑑  at some point 𝒓𝒓1 . Although general perturbation to the 

system causes non-linear effects to the objective function, if the perturbation is small enough, we 
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could linearize the effects. We denote the original electric fields by 𝐄𝐄old and the perturbed electric 

fields by 𝐄𝐄pert. Their difference is denoted by 𝛿𝛿𝐄𝐄 = 𝐄𝐄pert − 𝐄𝐄old. Assuming the perturbation is 

small, we can linearize the change in the objective function 

 

 𝛿𝛿𝛿𝛿 = 0.5�𝐄𝐄pert(𝒓𝒓0)�2 − 0.5|𝐄𝐄old(𝒓𝒓0)|2 
= Re�𝐄𝐄old�����(𝒓𝒓0) ⋅ 𝛿𝛿𝐄𝐄(𝒓𝒓0)� 

2-45 

 

The new inclusion acts as a dipole scatterer in the presence of incident field [51]. Relating the 

electric field in the sphere in the sea of 𝜀𝜀1 by the Clausius-Mossoti factor, we have the induced 

dipole current given by 

 

 𝐉𝐉 ≅ 𝐴𝐴(𝜀𝜀1, 𝜀𝜀2)𝑑𝑑𝑑𝑑𝐄𝐄old(𝒓𝒓1)𝛿𝛿(𝒓𝒓 − 𝒓𝒓1) 2-46 
 

where 𝐴𝐴(𝜀𝜀1, 𝜀𝜀2) = 3(𝜀𝜀2−𝜀𝜀1)
𝜀𝜀2 𝜀𝜀1⁄ +2

. The delta function is given to emphasize that the current is a point 

source. This dipole current in turn induced the current difference 𝛿𝛿𝐄𝐄. At this point, a brute-force 

optimization is the obvious candidate: from an initial geometry, test a separate inclusion at every 

possible 𝒓𝒓1. Calculate 𝛿𝛿𝛿𝛿 for each inclusion and pick the inclusion with the largest 𝛿𝛿𝛿𝛿. Iterate 

through the same process on the updated geometry until a certain convergence criterion is reached. 

This method is illustrated in Fig. 2.6. Even in the simplest situation, there are hundreds of places 

to test inclusion and thus hundreds of simulations are needed in order to go through 1 iteration. 

This is clearly unrealistic.  

 

This is where the Lorentz Reciprocity enters. Recall that in Equation 2-17 the electric field induced 

by arbitrary current is equivalent to the convolution between the current and the Green’s function 

 

 𝛿𝛿𝐄𝐄(𝒓𝒓0) = �𝐆𝐆(𝒓𝒓0,𝒓𝒓) ⋅ 𝐉𝐉(𝒓𝒓)
𝑉𝑉

= 𝐆𝐆(𝒓𝒓0,𝒓𝒓𝟏𝟏) ⋅ 𝐄𝐄old(𝒓𝒓1)𝐴𝐴(𝜀𝜀1, 𝜀𝜀2)𝑑𝑑𝑑𝑑 2-47 
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Fig. 2.6 A brute-force optimization method. In each iteration, run simulation for the same 
number of times as the number of inclusions to determine which inclusion makes the best 

improvement in the objective function and keep that one. 

 

Substituting the new form into Equation 2-45 and utilizing the Lorentz Reciprocity from Equation 

2-19 gives 

 

 𝛿𝛿𝛿𝛿 = Re�𝐄𝐄old�����(𝒓𝒓0) ⋅ 𝛿𝛿𝐄𝐄(𝒓𝒓0)� 
= Re�𝐴𝐴(𝜀𝜀1,𝜀𝜀2)𝑑𝑑𝑑𝑑𝐄𝐄old�����(𝒓𝒓0) ⋅ 𝐆𝐆(𝒓𝒓0,𝒓𝒓𝟏𝟏) ⋅ 𝐄𝐄old(𝒓𝒓1)�  
= Re�𝐴𝐴(𝜀𝜀1,𝜀𝜀2)𝑑𝑑𝑑𝑑𝐄𝐄old(𝒓𝒓1) ⋅ 𝐆𝐆(𝒓𝒓1, 𝒓𝒓0) ⋅ 𝐄𝐄old�����(𝒓𝒓0)� 
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Notice that the last two terms in Equation 2-48, 𝐆𝐆(𝒓𝒓1 ,𝒓𝒓0) ⋅ 𝐄𝐄old�����(𝒓𝒓0), are exactly the fields of a 

dipole driven with amplitude 𝐄𝐄old�����(𝒓𝒓0) at 𝒓𝒓0 radiating to 𝒓𝒓1. If we define the adjoint electric field 

as 

 

 𝐄𝐄a(𝒓𝒓) = 𝐆𝐆(𝒓𝒓,𝒓𝒓0) ⋅ 𝐄𝐄old�����(𝒓𝒓0) 2-49 
 

then we arrive at a simple formula for the variation in the objective function 

 

 
𝛿𝛿𝛿𝛿 = Re�

3(𝜀𝜀2 − 𝜀𝜀1)
𝜀𝜀2 𝜀𝜀1⁄ + 2  𝑑𝑑𝑉𝑉𝐄𝐄old(𝒓𝒓1) ⋅ 𝐄𝐄a(𝒓𝒓1)� 

2-50 
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As a result, exactly one simulation is needed to calculate the adjoint electric field and then by 

Equation 2-50 we can get 𝛿𝛿𝛿𝛿 at everywhere. A new adjoint based optimization is illustrated in Fig. 

2.7. First, start with an initial geometry, and simulate the electric field of the structure with incident 

source. Calculate 𝐄𝐄old�����(𝒓𝒓0) and place a dipole with the same amplitude in the adjoint simulation 

without the incident source. This second simulation gives the adjoint electric field, with which we 

can calculate the variation of the objective function for each separate inclusion by Equation 2-50. 

Now pick the inclusion with the largest 𝛿𝛿𝛿𝛿 and update the geometry. Iterate through the same 

process again on the updated geometry until some convergence criterion is reached. The new 

adjoint-based method is clearly much less computational than the brute-force method. After all, it 

only requires two simulation in each iteration. 

 

 

Fig. 2.7 The adjoint optimization approach. First run a forward simulation to get amplitudes of 
the driving dipole in adjoint simulation. Then run an adjoint simulation and measure electric 

fields at points of inclusion. Calculate objective function change according to Equation 2-50 for 
each inclusion and keep the best inclusion. 

 

The example given above is far from any realistic application. A generalization can be derived 

using the language from previous section. Let’s denote the objective function by 𝐹𝐹 = 𝐹𝐹(𝐄𝐄) ∈ ℝ. 

To make sure gradients exist, the objective function is assumed to be differentiable relative to the 

fields. Differentiable functions like 𝑓𝑓 = 𝑥𝑥2 − 𝑥𝑥𝑥𝑥 + 𝑧𝑧  have gradient given by ∇𝑓𝑓 = (2𝑥𝑥 −
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𝑦𝑦,−𝑥𝑥 , 1). But what is the gradient of 𝐹𝐹 which depends on functions instead of variables? The 

answer to this is another function! A generalized notion of derivative relative to the function is 

given by the Fréchet derivative which is a derivative defined on Banach spaces [44]. It was already 

shown that the solution space of Maxwell’s equations is indeed a Hilbert space which is Banach 

by definition. The official definition of Fréchet derivative [52] in Banach space follows:  

 

Let 𝑉𝑉 be a complex Banach space and a function 𝐹𝐹: 𝑉𝑉 → ℂ is called Fréchet differentiable at 𝑥𝑥 ∈

𝑉𝑉 if there exists a bounded linear operator 𝐷𝐷𝐹𝐹𝑥𝑥 :𝑉𝑉 → ℂ such that 

 

 
lim
‖ℎ‖→0

 
‖𝐹𝐹(𝑥𝑥 + ℎ) −𝐹𝐹(𝑥𝑥) − 𝐷𝐷𝐹𝐹𝑥𝑥(ℎ)‖

‖ℎ‖ = 0   
2-51 

 

where we write 𝐷𝐷𝐹𝐹𝑥𝑥(ℎ) to emphasize that the derivative has dependence on 𝑥𝑥 and takes ℎ as the 

argument. We call 𝐷𝐷𝐹𝐹𝑥𝑥 the first order Fréchet derivative. Similarly, we also have second order 

Fréchet derivative given by 

 

 
lim
‖ℎ‖→0

 
�𝐹𝐹(𝑥𝑥 + ℎ) − 𝐹𝐹(𝑥𝑥) −𝐷𝐷𝐹𝐹𝑥𝑥(ℎ) − 1

2𝐷𝐷
2𝐹𝐹𝑥𝑥(ℎ, ℎ)�

‖ℎ‖2
= 0   
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where 𝐷𝐷2𝐹𝐹𝑥𝑥 is a bilinear form. If we replace 𝑉𝑉 with ℂ, then Equation 2-51 becomes the usual 

notion of complex-valued function being analytical at point 𝑥𝑥 . As a result, a first order 

approximation of the variation of the objective function 𝐹𝐹 is given by 

 

 𝛿𝛿𝛿𝛿 = 𝐹𝐹(𝐄𝐄+ 𝛿𝛿𝐄𝐄)− 𝐹𝐹(𝐄𝐄) = 𝐷𝐷𝐹𝐹𝐄𝐄(𝛿𝛿𝐄𝐄 ) 2-53 
 

The Fréchet derivative of the objective function for the simple example is given by 

 

 𝐷𝐷𝐹𝐹𝐄𝐄(𝛿𝛿𝐄𝐄) =  Re�𝐄𝐄�(𝒓𝒓0) ⋅ 𝛿𝛿𝐄𝐄(𝒓𝒓0)� 

= Re ��𝛿𝛿𝐄𝐄(𝒓𝒓) ⋅ 𝐄𝐄�(𝒓𝒓)𝛿𝛿(𝒓𝒓 − 𝒓𝒓0)� = Re(⟨𝛿𝛿𝐄𝐄(𝒓𝒓)|𝐄𝐄(𝐫𝐫)𝛿𝛿(𝒓𝒓 − 𝒓𝒓0)⟩) 

2-54 

 

We denote the second term inside the inner product as  
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 𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄 = 𝐄𝐄(𝐫𝐫)𝛿𝛿(𝒓𝒓 − 𝒓𝒓0) 

2-55 

 

Similarly, if 𝐹𝐹 = 0.5|𝐇𝐇(𝐫𝐫0)|2 depends on 𝐇𝐇, we also have 

 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇 = 𝐇𝐇(𝐫𝐫)𝛿𝛿(𝒓𝒓 − 𝒓𝒓0) 

2-56 

 

These two functions, 𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄

 and 𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇

, are called the gradients of 𝐹𝐹. Another example is the Poynting 

flux: 𝐹𝐹 = Re� ∬ (𝐄𝐄 × 𝐇𝐇�) ⋅ 𝑛𝑛�𝑑𝑑𝑑𝑑𝜕𝜕Ω   �. In this case, the Fréchet derivative is given by 

 

 
𝐷𝐷𝐹𝐹𝐄𝐄,𝐇𝐇(𝛿𝛿𝐄𝐄,𝛿𝛿𝐇𝐇) = Re �� (𝛿𝛿𝐄𝐄× 𝐇𝐇�) ⋅ 𝑛𝑛�𝑑𝑑𝑑𝑑

𝜕𝜕Ω
+� (𝐄𝐄� × 𝛿𝛿𝐇𝐇) ⋅ 𝑛𝑛�𝑑𝑑𝑑𝑑

𝜕𝜕Ω
� 

= Re �� 𝛿𝛿𝐄𝐄 ⋅ (𝑛𝑛� × 𝐇𝐇�)𝑑𝑑𝑑𝑑
𝜕𝜕Ω

+� (𝐄𝐄� × 𝑛𝑛�) ⋅ 𝛿𝛿𝐇𝐇𝑑𝑑𝑑𝑑
𝜕𝜕Ω

� 

= Re(⟨𝛿𝛿𝐄𝐄|𝑛𝑛� × 𝐇𝐇 ∂Ω⟩ + ⟨𝛿𝛿𝐇𝐇|𝐄𝐄× 𝑛𝑛�𝜕𝜕Ω⟩) 
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Similarly, the two gradients are given by 

 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄 = 𝑛𝑛� × 𝐇𝐇 ∂Ω 
𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇 = 𝐄𝐄× 𝑛𝑛� ∂Ω 

2-58 
 
2-59 

 

It should be noted that in the above equations ∂Ω is a 2-dimensional surface measure. Loosely, it 

is a delta function for a surface and its action is reveled through integration: for any continuous 

function 𝑓𝑓(𝒓𝒓), the following is true 

 

 � 𝑓𝑓(𝒓𝒓)𝜕𝜕Ω(𝐫𝐫)𝑑𝑑𝑑𝑑
ℝ3

= � 𝑓𝑓(𝒓𝒓)𝑑𝑑𝑑𝑑
𝜕𝜕Ω

 2-60 
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In Maxwell’s equations, surface measure is usually used to denote surface quantities like surface 

currents, surface charge.  

 

To summarize, for any real-valued function 𝐹𝐹  that depends on solutions of the Maxwell’s 

equations, (𝐄𝐄,𝐇𝐇), we can write down the first order variation of the objective function in a more 

compact way 

 

 𝛿𝛿𝛿𝛿 = 𝐹𝐹(𝐄𝐄 + 𝛿𝛿𝐄𝐄) −𝐹𝐹(𝐄𝐄) = Re ��𝛿𝛿𝐄𝐄�𝛿𝛿𝛿𝛿𝛿𝛿𝐄𝐄�+ �𝛿𝛿𝐇𝐇�𝛿𝛿𝛿𝛿𝛿𝛿𝐇𝐇�� 

= Re �𝛿𝛿𝐄𝐄𝛿𝛿𝐇𝐇�
𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄
𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇

� 

2-61 

 

Here is where the adjoint operator comes in. Suppose we have the adjoint system with currents 

source specified by 𝐉𝐉𝑎𝑎 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄

 and 𝐌𝐌𝑎𝑎 = − 𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇

, i.e., 

 

 

�−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖�

†
�𝐄𝐄𝑎𝑎𝐇𝐇𝑎𝑎

� = �

𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄
𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇

� 

2-62 

 

where (𝐄𝐄𝑎𝑎 ,𝐇𝐇𝑎𝑎)  are the fields generated by (𝐉𝐉𝑎𝑎 ,𝐌𝐌𝑎𝑎) . Substituting the above Equation into 

Equation 2-61 gives 

 

 
𝛿𝛿𝛿𝛿 = Re �𝛿𝛿𝐄𝐄𝛿𝛿𝐇𝐇

��−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖�

†
�𝐄𝐄𝑎𝑎𝐇𝐇𝑎𝑎

��  
2-63 

 

According to the definition of adjoint operator in Equation 2-37, we have 

 

 𝛿𝛿𝛿𝛿 = Re ��−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖��

𝛿𝛿𝐄𝐄
𝛿𝛿𝐇𝐇�

� �𝐄𝐄𝑎𝑎𝐇𝐇𝑎𝑎
�� 2-64 
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Now we introduce the material variation 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿 into the Maxwell’s equation and maintain the same 

current source 

 

 �−𝑖𝑖𝑖𝑖(𝜀𝜀 + 𝛿𝛿𝛿𝛿) 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖(𝜇𝜇 + 𝛿𝛿𝛿𝛿)� �

𝐄𝐄 + 𝛿𝛿𝐄𝐄
𝐇𝐇 + 𝛿𝛿𝐇𝐇

� = � 𝐉𝐉
−𝐌𝐌

� = �−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇
� 2-65 

 

After canceling terms and ignoring second order terms, we have 

 

 �−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖� �

𝛿𝛿𝐄𝐄
𝛿𝛿𝐇𝐇

� = −�−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇
� 2-66 

 

Combining Equations 2-64 and 2-66, we arrive at the continuous adjoint sensitivity formula 

 

 𝛿𝛿𝛿𝛿 = Re �− �−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  
 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄
𝐇𝐇�

� �𝐄𝐄𝑎𝑎𝐇𝐇𝑎𝑎
�� 

= Re �� 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄
−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇� � �

𝐄𝐄𝑎𝑎
𝐇𝐇𝑎𝑎

�� 

= Re �� 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎𝑑𝑑𝑑𝑑
ℝ3

−� 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐇𝐇 ⋅ 𝐇𝐇�𝑎𝑎𝑑𝑑𝑑𝑑
ℝ3

� 
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Let us revisit the simple example. The perturbation of a small inclusion of volume 𝑑𝑑𝑑𝑑 at 𝒓𝒓1 can be 

approximated by a delta function, i.e.,  

 

 𝛿𝛿𝛿𝛿 = 𝑑𝑑𝑑𝑑(𝜀𝜀2 − 𝜀𝜀1)𝛿𝛿(𝒓𝒓 − 𝒓𝒓1) 2-68 

 

Substituting this into Equation 2-67 yields 

 

 𝛿𝛿𝛿𝛿 = Re�(𝜀𝜀2 − 𝜀𝜀1) 𝑑𝑑𝑑𝑑𝐄𝐄old(𝒓𝒓1) ⋅ 𝐄𝐄�a(𝒓𝒓1)� 2-69 
 

Compared with Equation 2-50 which uses Clausius-Mossoti factor, the above formula has two 

differences: first, 𝐄𝐄�a(𝒓𝒓1) is used instead of 𝐄𝐄a(𝒓𝒓1); second, there is an extra factor 3
𝜀𝜀2 𝜀𝜀1⁄ +2

 in 

Equation 2-50. The first difference stems from the fact that Equation 2-69  calculates adjoint fields 

from adjoint Maxwell’s equations while in Equation 2-50 the original Maxwell’s equations are 
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used. When the Lorentz Reciprocity is true, the adjoint fields from Equations 2-50, 2-69 are 

conjugate of each other and hence are fundamentally the same. The second difference rises from 

the two different perturbations used in derivations of the two equations. In Equation 2-50 where 

Clausius-Mossoti factor is used, the geometry is perturbed by an infinitesimal hole, in which case 

the sensitivity is called the topological derivative [53]. It is valid for high contrast sphere inclusion 

resulting in high value for 𝜀𝜀2− 𝜀𝜀1. Different shapes of inclusion may result in factor different from 
3

𝜀𝜀2 𝜀𝜀1⁄ +2
. In contrast Equation 2-69 is called density derivatives and is only valid when 𝜀𝜀2 − 𝜀𝜀1 is 

small enough. In a nutshell, topological derivatives predict the change in the objective function 

with high contrast and spatially small perturbation to the geometry while density derivatives work 

with low contrast and spatially big perturbation.  

 

In actual implementation, the inclusion shape can be a small rectangular region. Each rectangular 

region is assigned a pixel value which the permittivity depends on 

 

 𝜀𝜀 = 𝜀𝜀(𝜌𝜌), 𝜇𝜇 = 𝜇𝜇(𝜌𝜌), 𝜌𝜌 ∈ [0,1] 2-70 
 

where 𝜀𝜀(1) = 𝜀𝜀2,𝜀𝜀(0) = 𝜀𝜀1  and 𝜇𝜇(1) = 𝜇𝜇2,𝜇𝜇(0) = 𝜇𝜇1 . This process is referred to as material 

interpolation [2]. In a typical scenario, 𝜌𝜌 = 1 indicates that the pixel is occupied by a certain 

material whereas 𝜌𝜌 = 0 indicates void. For many applications, the following interpolation scheme 

is enough [1] 

 

 𝜀𝜀(𝜌𝜌) = 𝜌𝜌𝜌𝜌2 + (1 − 𝜌𝜌)𝜀𝜀1, 𝜌𝜌 ∈ [0,1] 2-71 
 

The gradient 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is calculated based on Equation 2-69 at each point and a favored non-linear 

gradient-based optimization algorithm is adopted to solve the optimization problem in Equation 

1-1 provided the gradient is given by the continuous adjoint sensitivity analysis. For example, the 

method of moving asymptotes (MMA) [41], widely used in structural topology optimization, is 

very efficient in solving optimization problem in the above Equation. This aforementioned 

approach utilizing conitnuous adjoint sensitivty with a pixelized geometry works reasonably well 

for dielectric materials where no localized fields are present. However, such optimization scheme 
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might lead to gray transition regions where 𝜌𝜌 lies strictly between 0 and 1. The grey transition 

regions make it easy to perform an automated post-processing procedure to identify hole shapes 

and other features by a simple iso-density curve and thresh-holding [36]. Fig. 2.8 illustrates this 

process. Usually, the post-processed structure has a performance that is very close to the optimized 

structure. However, in case of plasmonics where localized fields are dominate, simple post-

processing based on iso-density and thresh-holding results in a structure with performance that is 

severely downgraded. Methods to mitigate this issue will be discussed in Chapter 3. 

 

 

Fig. 2.8 Gray transition regions as a result of density topology optimization. The gray area can be 
mitigated using iso-density curve which identifies the contours of geometry or thresholding 

which generates a binary image. 

 

Another issue associated with the continuous sensitivity in highly resonance structure is that some 

numerical methods tend to be highly inaccurate in regions of localized fields. Especially in the 

FDTD method, stair-cased material boundary severely hampers the possibility to capture precise 

surface wave patterns. It was demonstrated that a 0.5nm grid size is necessary to accruately 

calculate scattering coefficients of Gold sphere of radius 60nm [54]. Hence, finite element method 

(FEM) is usually the favored tool in topology optimization for their conformal boundary 

representation and accurate capture of localized fields.  
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The third issue points at the material interpolation scheme. It was demonstrated that a simple linear 

interpolation scheme in Equation 2-71 generated non-phys ical field amplification at intermediate 

values of 𝜌𝜌  [39]. A better interpolation is to linearly interpolate reflected index instead of 

permittivity 

 

 𝜀𝜀(𝜌𝜌) = ��𝜀𝜀2 + (1− 𝜌𝜌)�𝜀𝜀1�
2

, 𝜌𝜌 ∈ [0,1] 2-72 

 

Note that this scheme is not easy to implement in FDTD method since dispersion relations are 

usually specified as summation of couple of Lorentz-Drude poles. 

2.4 Discrete Sensitivity Analysis with FDTD 

Since the term FDTD was first coined in 1980 by Taflov [55], there are over 10000 results in 

google scholar published with the keyword FDTD in 2018. The FDTD method is widely used in 

the analysis of plasmonic structures due to its ability to handle complex structures and materials 

across wide range of frequency. We will demonstrate a new technique with which the accuracy of 

adjoint sensitivity is guaranteed without resolving to extremely fine mesh. This technique can be 

easily incorporated into any FDTD implementation due to its simplicity.  

 

We start with the basic formulation of 3 dimensional FDTD method. In 1966, Yee [56] proposed 

a set of finite-difference equations for the time-dependent Maxwell’s equations 

 

 𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 = −∇× 𝐄𝐄 − 𝐌𝐌 
𝜕𝜕𝐃𝐃
𝜕𝜕𝜕𝜕 = ∇× 𝐇𝐇− 𝐉𝐉 

2-73 
 

2-74 

 

for the non-dispersive case. As illustrated in Fig. 2.9, The Yee algorithm centers its 𝐸𝐸  and 𝐻𝐻 

components in three-dimensional space so that every E component is surrounded by four 

circulating H components and every H component is surrounded by four circulating 𝐸𝐸 components. 
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Fig. 2.9 Component arrangement of the Yee cell. Each E component is surrounded by four H 
components and each H component is surrounded by four E components. There is no component 

in the corner or center of the cell.  

 

Futhermore, the algorithm centers its E and H components in time, creating a leapfrog arrangement 

such that E components are evaluated at 𝑛𝑛Δ𝑡𝑡 while H components are evaluated at (𝑛𝑛 + 0.5)Δ𝑡𝑡. 

For convenience, we index each Yee cell by the position of its lower corner in a rectangular lattice 

 

 (𝑖𝑖 , 𝑗𝑗,𝑘𝑘) = (𝑖𝑖Δ𝑥𝑥, 𝑗𝑗Δy,𝑘𝑘Δz) 2-75 
 

and index each electrogmanetic components by index of the cell it belongs to 
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 𝐸𝐸𝑥𝑥
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛 = 𝐸𝐸�(𝑖𝑖 + 0.5)Δ𝑥𝑥, 𝑗𝑗Δ𝑦𝑦, 𝑘𝑘Δ𝑧𝑧, 𝑛𝑛Δ𝑡𝑡� 

𝐸𝐸𝑦𝑦
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛 = 𝐸𝐸(𝑖𝑖Δ𝑥𝑥, (𝑗𝑗 + 0.5)Δ𝑦𝑦, 𝑘𝑘Δ𝑧𝑧,𝑛𝑛Δ𝑡𝑡) 

𝐸𝐸𝑧𝑧
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛 = 𝐸𝐸(𝑖𝑖Δ𝑥𝑥, 𝑗𝑗Δ𝑦𝑦, (𝑘𝑘 + 0.5)Δ𝑧𝑧,𝑛𝑛Δ𝑡𝑡) 

𝐻𝐻𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 = 𝐸𝐸(𝑖𝑖Δ𝑥𝑥 , (𝑗𝑗 + 0.5)Δ𝑦𝑦, (𝑘𝑘 + 0.5)Δ𝑧𝑧, (𝑛𝑛 + 0.5)Δ𝑡𝑡) 

𝐻𝐻𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 = 𝐸𝐸�(𝑖𝑖 + 0.5)Δ𝑥𝑥 , 𝑗𝑗Δ𝑦𝑦, (𝑘𝑘 + 0.5)Δ𝑧𝑧, (𝑛𝑛 + 0.5)Δ𝑡𝑡� 

𝐻𝐻𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 = 𝐸𝐸�(𝑖𝑖 + 0.5)Δ𝑥𝑥 , (𝑗𝑗 + 0.5)Δ𝑦𝑦,𝑘𝑘Δ𝑧𝑧, (𝑛𝑛 + 0.5)Δ𝑡𝑡� 

2-76 
2-77 
2-78 
2-79 
2-80 
2-81 

 

The Yee’s algorithm then evaluates curl and time derivative using central difference scheme. They 

are given by 

 

 𝐵𝐵𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐵𝐵𝑥𝑥

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛−1

Δ𝑡𝑡 = −
𝐸𝐸𝑧𝑧
𝑖𝑖,𝑗𝑗+1,𝑘𝑘,𝑛𝑛 − 𝐸𝐸𝑧𝑧

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δ𝑦𝑦  +
𝐸𝐸𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘+1,𝑛𝑛 − 𝐸𝐸𝑦𝑦

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δz −𝑀𝑀𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-82 

 𝐵𝐵𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐵𝐵𝑦𝑦

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛−1

Δ𝑡𝑡 = −
𝐸𝐸𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘+1,𝑛𝑛 − 𝐸𝐸𝑥𝑥

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δz +
𝐸𝐸𝑧𝑧
𝑖𝑖+1,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐸𝐸𝑧𝑧

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δx −𝑀𝑀𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-83 

 𝐵𝐵𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐵𝐵𝑧𝑧

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛−1

Δ𝑡𝑡 = −
𝐸𝐸𝑦𝑦
𝑖𝑖+1,𝑗𝑗 ,𝑘𝑘,𝑛𝑛 − 𝐸𝐸𝑦𝑦

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δx +
𝐸𝐸𝑥𝑥
𝑖𝑖,𝑗𝑗+1,𝑘𝑘,𝑛𝑛 − 𝐸𝐸𝑥𝑥

𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δy −𝑀𝑀𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-84 

 

and 

 

 𝐷𝐷𝑥𝑥
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛+1 −𝐷𝐷𝑥𝑥

𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

Δ𝑡𝑡 =
𝐻𝐻𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑧𝑧

𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑛𝑛

Δ𝑦𝑦 −
𝐻𝐻𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑦𝑦

𝑖𝑖,𝑗𝑗,𝑘𝑘−1,𝑛𝑛

Δz − 𝐽𝐽𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-85 

 𝐷𝐷𝑦𝑦
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛+1 −𝐷𝐷𝑦𝑦

𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

Δ𝑡𝑡 =
𝐻𝐻𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑥𝑥

𝑖𝑖,𝑗𝑗,𝑘𝑘−1,𝑛𝑛

Δz −
𝐻𝐻𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑧𝑧

𝑖𝑖−1,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δx − 𝐽𝐽𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-86 

 𝐷𝐷𝑧𝑧
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛+1 −𝐷𝐷𝑧𝑧

𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

Δ𝑡𝑡 =
𝐻𝐻𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑦𝑦

𝑖𝑖−1,𝑗𝑗,𝑘𝑘,𝑛𝑛

Δx −
𝐻𝐻𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 − 𝐻𝐻𝑥𝑥

𝑖𝑖,𝑗𝑗−1,𝑘𝑘,𝑛𝑛

Δy − 𝐽𝐽𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 

2-87 

 

Collecting components for each grid cell in column vectors gives 

 

 𝑑𝑑𝑛𝑛+1− 𝑑𝑑𝑛𝑛

Δ𝑡𝑡 = 𝐂𝐂ℎℎ𝑛𝑛 − 𝑗𝑗𝑛𝑛 
𝑏𝑏𝑛𝑛 − 𝑏𝑏𝑛𝑛−1

Δ𝑡𝑡 = −𝐂𝐂𝑒𝑒𝑒𝑒𝑛𝑛 − 𝑚𝑚𝑛𝑛 

2-88 
 
2-89 

 

where  
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𝑑𝑑𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝐷𝐷𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐷𝐷𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐷𝐷𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

,ℎ𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝐻𝐻𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐻𝐻𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐻𝐻𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

, 𝑗𝑗𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝐽𝐽𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐽𝐽𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐽𝐽𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

 

2-90 

 

and 

 

 

𝑏𝑏𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝐵𝐵𝑥𝑥
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

𝐵𝐵𝑦𝑦
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

𝐵𝐵𝑧𝑧
𝑖𝑖,𝑗𝑗 ,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

, 𝑒𝑒𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝐻𝐻𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐻𝐻𝑦𝑦
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝐻𝐻𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

,𝑚𝑚𝑛𝑛 =

⎝

⎜⎜
⎛

⋮
𝑀𝑀𝑥𝑥
𝑖𝑖 ,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝑀𝑀𝑦𝑦
𝑖𝑖 ,𝑗𝑗,𝑘𝑘,𝑛𝑛

𝑀𝑀𝑧𝑧
𝑖𝑖 ,𝑗𝑗,𝑘𝑘,𝑛𝑛

⋮ ⎠

⎟⎟
⎞

 

2-91 

 

are column vectors representing the relevant fields; 𝐂𝐂ℎ , whose nonzero elements are 

± 1 Δ𝑥𝑥⁄ , ± 1 Δ𝑦𝑦⁄  and ± 1 Δ𝑧𝑧⁄ , is a matrix for the curl operator on the H components while 𝐂𝐂𝑒𝑒 is a 

matrix for the curl operator on the E components.  

 

It should be noted each vector has countably many components and belong to the square summable 

space ℓ2 due to its continuous counterpart in which fields decay in a square integrable way [48]. 

A sequence 𝑥𝑥 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1∞  belongs to ℓ2 if it is square summable 

 

 ‖𝑥𝑥‖2 = �‖𝑥𝑥𝑛𝑛‖2 < ∞
𝑛𝑛

 2-92 

 

It is well-known that ℓ2 is a Hilbert space which enables us to use the tool from the adjoint operator 

theory. Frequency domain analysis in FDTD is carried out through discrete-time fourier transform 

(DTFT) of electrogmanetic components  

 

 
𝑥𝑥��𝑒𝑒𝑖𝑖𝑖𝑖Δ𝑡𝑡� = �𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖Δ𝑡𝑡

∞

𝑛𝑛=0

 
2-93 
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where 𝜔𝜔 is frequency of interest and Δ𝑡𝑡 is the discretized time step. For convenience, let 𝑧𝑧 = 𝑒𝑒𝑖𝑖𝑖𝑖Δ𝑡𝑡, 

then the DTFT becomes a special case of z-transform2 [26] 

 

 
𝑥𝑥�(𝑧𝑧) = �𝑥𝑥[𝑛𝑛]𝑧𝑧−𝑛𝑛

∞

𝑛𝑛=0

 
2-94 

 

Taking DTFT of both sides of Equation 2-88 and 2-89 yields 

 

 𝑧𝑧𝑑𝑑(𝑧𝑧) −𝑑𝑑(𝑧𝑧)
Δ𝑡𝑡 = 𝐂𝐂ℎℎ�(z) − 𝚥̃𝚥(z) 

𝑏𝑏�(z)− 𝑧𝑧−1𝑏𝑏�(𝑧𝑧)
Δ𝑡𝑡 = −𝐂𝐂𝑒𝑒𝑒̃𝑒(z)− 𝑚𝑚�(𝑧𝑧) 

2-95 
 

2-96 

 

For small enough Δ𝑡𝑡, substituting 𝑧𝑧 = 𝑒𝑒𝑖𝑖𝑖𝑖Δ𝑡𝑡 ≅ 1 + 𝑖𝑖𝑖𝑖Δ𝑡𝑡 and 𝑧𝑧−1 = 𝑒𝑒−𝑖𝑖𝑖𝑖Δ𝑡𝑡 ≅ 1 − 𝑖𝑖𝑖𝑖Δ𝑡𝑡 into the 

above Equations gives 

 

 𝑖𝑖𝑖𝑖𝑑𝑑(z) = 𝐂𝐂ℎℎ�(z) − 𝚥̃𝚥(z) 
𝑖𝑖𝑖𝑖𝑏𝑏�(z) = −𝐂𝐂𝑒𝑒𝑒̃𝑒(z)− 𝑚𝑚�(𝑧𝑧) 

2-97 
2-98 

 

The consitute equations in time-domian for isotropic linearly disperisve materials are given by 

 

 𝐃𝐃 = 𝜀𝜀∞𝐄𝐄+ �𝜒𝜒𝑒𝑒,𝑖𝑖 ∗ 𝐄𝐄
𝑖𝑖

= 𝜀𝜀∞𝐄𝐄+ �𝐏𝐏𝑒𝑒,𝑖𝑖
𝑖𝑖

 

𝐁𝐁 = 𝜇𝜇∞𝐇𝐇+ �𝜒𝜒ℎ,𝑖𝑖 ∗ 𝐇𝐇
𝑖𝑖

= 𝜇𝜇∞𝐇𝐇+�𝐏𝐏ℎ,𝑖𝑖
𝑖𝑖

 

2-99 
 

2-100 

 

Where 𝜒𝜒𝑒𝑒,𝑖𝑖 and 𝜒𝜒ℎ,𝑖𝑖 are electric and magnetic susceptibility respectively. To avoid handling the 

computationally expensive convolution, the FDTD algorithm usually converts convolution into 

discretized recursive equations which rely on limited number of terms in each update. A popular 

method based on the auxiliary differential equation (ADE) technique [57] convert the most general 

form of dispersion, the Lorentzian form 

                                              
2 variables with tilde denote DTFT (z-transform) of the corresponding variables 
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 𝑃𝑃(ω) =
𝑎𝑎

𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝜔𝜔2 𝐸𝐸(𝜔𝜔) = 𝜒𝜒(𝜔𝜔)𝐸𝐸(𝜔𝜔) 2-101 

 

into discretized recursive equation 

 

 𝑃𝑃𝑛𝑛 = 𝐶𝐶1𝑃𝑃𝑛𝑛−1 + 𝐶𝐶2𝑃𝑃𝑛𝑛−2 + 𝐶𝐶3𝐸𝐸𝑛𝑛−1 2-102 
 

Applying DTFT to Equation 2-102 gives 

 

 
𝑝𝑝�(𝑧𝑧) =

𝑧𝑧−1

1− 𝐶𝐶1𝑧𝑧−1 + 𝐶𝐶2𝑧𝑧−2
𝑒̃𝑒 = 𝜒𝜒�(𝑧𝑧)𝑒̃𝑒(𝑧𝑧) 

2-103 

 

It is demonstrated through numerical experiments that the digital susceptibility 𝜒𝜒�(𝑧𝑧) is found to be 

almost the same as the continuous one 𝜒𝜒(𝜔𝜔) for typical ranges of Δ𝑡𝑡 used in simulation. At last, 

the update equation for the electric field intensity is given by 

 

 
𝐸𝐸𝑛𝑛 =

𝐷𝐷𝑛𝑛 −∑ 𝑃𝑃𝑖𝑖𝑛𝑛𝑖𝑖
𝜀𝜀∞

 
2-104 

 

which is again applied with DTFT 

 

 
𝑒̃𝑒(𝑧𝑧) =

𝑑𝑑(𝑧𝑧) −∑ 𝑝𝑝�𝑖𝑖(𝑧𝑧)𝑖𝑖
𝜀𝜀∞

 
2-105 

 

Combining Equations 2-103 and 2-105, we have 

 

 
𝑑𝑑(𝑧𝑧) = �𝜀𝜀∞ +�𝜒𝜒�𝑖𝑖(𝑧𝑧)

𝑖𝑖

� 𝑒̃𝑒(𝑧𝑧) = 𝜀𝜀̃(𝑧𝑧)𝑒̃𝑒(𝑧𝑧) 
2-106 

 

Similarly for the magnetic field intensity, we have 
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 𝑏𝑏�(𝑧𝑧) = 𝜇𝜇�(𝑧𝑧)𝑒̃𝑒(𝑧𝑧) 2-107 
 

No matter what implementation is adopted to model the linear dispersion, the resulted difference 

equation can always be turned into a function in the z-plane through z-transform. Then the digital 

permittivity and permeability 𝜀𝜀̃(𝑧𝑧)  and 𝜇𝜇�(𝑧𝑧)  can be evaluated by letting 𝑧𝑧 = 𝑒𝑒𝑖𝑖𝑖𝑖Δ𝑡𝑡  for a given 

frequency and a time step. Rewriting Equations 2-106 and 2-107 using matrix-vector form yields 

 

 𝑑𝑑(z) = 𝐷𝐷𝑒𝑒(𝑧𝑧)𝑒̃𝑒(𝑧𝑧) 
𝑏𝑏�(𝑧𝑧) = 𝐷𝐷ℎ(𝑧𝑧)ℎ�(𝑧𝑧) 

2-108 
2-109 

 

where 𝐷𝐷𝑒𝑒(𝑧𝑧) and 𝐷𝐷ℎ(𝑧𝑧) are diagonal matrix for isotropic materials. Combinging Equations 2-108, 

2-109, 2-97 and 2-98, we have 

 

 �−𝑖𝑖𝑖𝑖𝐷𝐷𝑒𝑒(𝑧𝑧) 𝐂𝐂ℎ
𝐂𝐂𝑒𝑒 𝑖𝑖𝑖𝑖𝐷𝐷ℎ(𝑧𝑧)� �

𝑒̃𝑒(𝑧𝑧)
ℎ�(𝑧𝑧)� = � 𝚥̃𝚥(𝑧𝑧)

−𝑚𝑚�(𝑧𝑧)� 
2-110 

 

We claim that for isotropic materials, the operator in the above equation is symmetric. Obviously,  

𝐷𝐷𝑒𝑒(𝑧𝑧) and 𝐷𝐷ℎ(𝑧𝑧) are symmetric since they are diagonal matrices. Therefore, we only need to 

shown 𝐂𝐂𝑒𝑒𝑇𝑇 = 𝐂𝐂ℎ . The magic comes with the index system we introduce in Equation 2-75. For each 

electromagnetic component in the Yee lattice, we associate it with an index 𝑛𝑛𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘 ∈ ℕ . 

Components in the same Yee cell with the same direction share the same space index. For instance,   

𝐷𝐷𝑥𝑥
𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛  share the same index as 𝐵𝐵𝑥𝑥

𝑖𝑖 ,𝑗𝑗,𝑘𝑘,𝑛𝑛 . Then we arrange elements in the column vectors 

𝑒̃𝑒(𝑧𝑧),ℎ�(𝑧𝑧), 𝚥̃𝚥(𝑧𝑧),𝑚𝑚�(𝑧𝑧) according to this index. The index system is illustrated in Fig. 2.10. 
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Fig. 2.10 Index system to arrange elements for the column vectors 𝑒̃𝑒(𝑧𝑧),ℎ�(𝑧𝑧), 𝚥̃𝚥(𝑧𝑧),𝑚𝑚�(𝑧𝑧). Each 
component in the same Yee cell shares the same index. Components in the same color are in the 

same Yee cell. 

 

In this new index system, each entry of matrix is specified by a pair of tuples of 4 numbers, 

(𝑥𝑥1, 𝑖𝑖1, 𝑗𝑗1, 𝑘𝑘1) and (𝑥𝑥2,𝑖𝑖2, 𝑗𝑗2, 𝑘𝑘2)where 𝑥𝑥1,𝑥𝑥2 can take on valules from {𝑥𝑥,𝑦𝑦, 𝑧𝑧} 

 

 𝐂𝐂ℎ �𝑛𝑛𝑥𝑥1
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1,𝑛𝑛𝑥𝑥2 

𝑖𝑖2,𝑗𝑗2,𝑘𝑘2� 2-111 

 

With this notation, 𝐂𝐂𝑒𝑒𝑇𝑇 = 𝐂𝐂ℎ  is equivalent to 

 

 𝐂𝐂𝑒𝑒 �𝑛𝑛𝑥𝑥2
𝑖𝑖2,𝑗𝑗2,𝑘𝑘2,𝑛𝑛𝑥𝑥1 

𝑖𝑖1,𝑗𝑗1,𝑘𝑘1� = 𝐂𝐂ℎ �𝑛𝑛𝑥𝑥1 
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1, 𝑛𝑛𝑥𝑥2

𝑖𝑖2,𝑗𝑗2,𝑘𝑘2� 
∀(𝑥𝑥1, 𝑖𝑖1, 𝑗𝑗1 ,𝑘𝑘1), (𝑥𝑥2,𝑖𝑖2, 𝑗𝑗2, 𝑘𝑘2)∈ {𝑥𝑥,𝑦𝑦, 𝑧𝑧} × ℤ3   

2-112 

 

which is a direct rearrangement of Equations 2-82 to 2-87. We write down entries equal to 1 Δ𝑦𝑦⁄  

to illustrate this behavior 

 



60 
 

 1 Δ𝑦𝑦⁄ = 𝐂𝐂𝑒𝑒�𝑛𝑛𝑥𝑥
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1,𝑛𝑛𝑧𝑧

𝑖𝑖1,𝑗𝑗1+1,𝑘𝑘1� = 𝐂𝐂ℎ�𝑛𝑛𝑧𝑧
𝑖𝑖2,𝑗𝑗2,𝑘𝑘2, 𝑛𝑛𝑥𝑥

𝑖𝑖2,𝑗𝑗2−1,𝑘𝑘2�   
= −𝐂𝐂𝑒𝑒�𝑛𝑛𝑥𝑥

𝑖𝑖1,𝑗𝑗1,𝑘𝑘1 ,𝑛𝑛𝑧𝑧
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1� = −𝐂𝐂ℎ�𝑛𝑛𝑧𝑧

𝑖𝑖2,𝑗𝑗2,𝑘𝑘2,𝑛𝑛𝑥𝑥
𝑖𝑖2,𝑗𝑗2,𝑘𝑘2� 

= −𝐂𝐂𝑒𝑒�𝑛𝑛𝑧𝑧
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1,𝑛𝑛𝑥𝑥

𝑖𝑖1,𝑗𝑗1+1,𝑘𝑘1� = −𝐂𝐂ℎ�𝑛𝑛𝑥𝑥
𝑖𝑖2,𝑗𝑗2,𝑘𝑘2,𝑛𝑛𝑧𝑧

𝑖𝑖2,𝑗𝑗2−1,𝑘𝑘2� 
= 𝐂𝐂𝑒𝑒�𝑛𝑛𝑧𝑧

𝑖𝑖1,𝑗𝑗1,𝑘𝑘1 ,𝑛𝑛𝑥𝑥
𝑖𝑖1,𝑗𝑗1,𝑘𝑘1� = 𝐂𝐂ℎ�𝑛𝑛𝑥𝑥

𝑖𝑖2,𝑗𝑗2,𝑘𝑘2, 𝑛𝑛𝑧𝑧
𝑖𝑖2,𝑗𝑗2,𝑘𝑘2� 

∀(𝑖𝑖1, 𝑗𝑗1, 𝑘𝑘1), (𝑖𝑖2, 𝑗𝑗2, 𝑘𝑘2)∈ ℤ3   

2-113 
2-114 
2-115 
2-116 

 

The operator in discretized FDTD system in frequency domain being symmetric is the discrete 

version of the Lorentz recirpocity. It should be noted that the FDTD system we introduced has an 

infinite domain while in practice an absorber is placed around a finite region to absorb any 

outgoing waves or a homogeneous boundary condition like PEC is used to terminate the domain. 

 

The objective function 𝐹𝐹(𝐄𝐄,𝐇𝐇) needs to be discretized with a favored numerical interpolation and 

integration scheme. Denote the discretized objective function by 𝑓𝑓�𝑒̃𝑒, ℎ�� ∈ ℝ. Then the variation 

of 𝑓𝑓 is given by 

 

 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝑒̃𝑒(𝑧𝑧) ⋅ ∇𝑒𝑒𝑓𝑓����� + 𝛿𝛿ℎ�(𝑧𝑧) ⋅ ∇ℎ𝑓𝑓����� 2-117 

 

We can follow the exact same procedures from Equation 2-61 to 2-67 and arrivate at a formula 

similar to Equation 2-64 

 

 
𝛿𝛿𝛿𝛿 = Re �− �−𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿𝑒𝑒

(𝑧𝑧)  
 𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷ℎ(𝑧𝑧)� �

𝑒̃𝑒(𝑧𝑧)
ℎ�(𝑧𝑧)� � �

𝑒̃𝑒𝑎𝑎(𝑧𝑧)
ℎ�𝑎𝑎(𝑧𝑧)�� 

2-118 

 

where �𝑒̃𝑒𝑎𝑎(𝑧𝑧),ℎ� 𝑎𝑎(𝑧𝑧) � are the adjoint currents satisfying 

 

 
�−𝑖𝑖𝑖𝑖𝐷𝐷𝑒𝑒(𝑧𝑧) 𝐂𝐂ℎ

𝐂𝐂𝑒𝑒 𝑖𝑖𝑖𝑖𝐷𝐷ℎ(𝑧𝑧)�
†
�𝑒̃𝑒𝑎𝑎

(𝑧𝑧)
ℎ� 𝑎𝑎(𝑧𝑧)� = �∇𝑒𝑒𝐹𝐹∇ℎ𝐹𝐹

� 
2-119 

 

Noticing that 𝛿𝛿𝛿𝛿𝑒𝑒(𝑧𝑧) and 𝛿𝛿𝐷𝐷ℎ(𝑧𝑧) are diagonal matrix, we expand Equation 2-118 into 
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𝛿𝛿𝛿𝛿 = Re� � 𝑖𝑖𝑖𝑖𝐸𝐸�𝑤𝑤

𝑖𝑖,𝑗𝑗 ,𝑘𝑘(𝑧𝑧)𝐸𝐸��𝑎𝑎𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝑧𝑧)𝛿𝛿𝜀𝜀𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑖𝑖𝑖𝑖𝐻𝐻�𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘(𝑧𝑧)𝐻𝐻��𝑎𝑎𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝑧𝑧)𝛿𝛿𝜇𝜇𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘

𝑤𝑤,𝑖𝑖,𝑗𝑗 ,𝑘𝑘

� 
2-120 

 

A striking similarity can be spotted right away between the discrete version of adjoint sensitivty 

in the above Equation and the continuous version in Equation 2-67. This comes as no surprise 

since both are originally inner products of its revelent Hilbert space. Obviously, this Equation is 

also suited for diagonal permittivities and permeabilities. A more sophisticated adjoint sensitivity 

is possible for general anisotropic materials and is dependent on numerical implementation of 

anisotropic materials.  

 

We have shown the discrete adjoint sensitivity formula for a open region problem with isotropic 

materials and uniform grid. The formula is also suited for any finite region problem with lossless 

homogeneous boundary conditions. Extensions can be made to include anisotropic materials, non-

uniform grid and lossy boundary conditions. 

2.5 Numerical Implementation 

Implementaiton of adjoint sensitivity analysis requires the setup of the adjoint Maxwell’s 

equations. It was already shown that for symmetric permittivities and permeabilities the adjoint 

system is the same as the original system with the complement sinuosuidal dependence. A close 

look at the discrete sensitivity Equation 2-120 and the continuos sensitivity Equation 2-67 reveals 

that we only need to know the complex conjugate of the adjoint fields, i.e., (𝐄𝐄�𝑎𝑎 ,𝐇𝐇�𝑎𝑎) and 

�𝐸𝐸��𝑎𝑎𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘

,𝐻𝐻��𝑎𝑎𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘

�.  Instead of using the complement sinuosuidal dependence, we can keep the 

original dependence and directly solve the conjugate of adjoint fields. Taking conjugates of both 

sides of Equation 2-120 leads to 

 

 
�−𝑖𝑖𝑖𝑖𝐷𝐷𝑒𝑒(𝑧𝑧) 𝐂𝐂ℎ

𝐂𝐂𝑒𝑒 𝑖𝑖𝑖𝑖𝐷𝐷ℎ(𝑧𝑧)� �
𝑒̃𝑒̅𝑎𝑎(𝑧𝑧)
ℎ��𝑎𝑎(𝑧𝑧)

� = �∇𝑒𝑒𝑓𝑓
�����
 ∇ℎ𝑓𝑓������ 

2-121 
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In this formula, the Maxwell’s operator remains the same while the adjoint currents are conjugated. 

Therefore, we can apply the conjugated adjoint currents to the same Maxwell’s equtions and derive 

the conjugated adjoint fields. The same is true with the continuous formula. 

 

Next, to solve the adjoint currents, the objective function needs to be written explicitly with 

arguments from vectors 𝑒̃𝑒(𝑧𝑧) and  ℎ�(𝑧𝑧)  with respect to which the derivatives can be calculated. In 

practice, the objective function is always calculated based on fields interpolated from the original 

electromagnetic fields at the Yee cell. To simplify notation, let’s assume that the objective function 

only depends on electric field 𝑒̃𝑒(𝑧𝑧). Denote the interpolated electric fields by  

 

 

𝑒̂̃𝑒(z) =

⎝

⎜
⎛
𝐸𝐸��1(𝑧𝑧)
𝐸𝐸��2(𝑧𝑧)
⋮

𝐸𝐸��𝑛𝑛(𝑧𝑧)⎠

⎟
⎞

 

2-122 

 

Assuming linear interpolation, each interpolated electric field is given by3 

 

 𝐸𝐸��𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑖𝑖𝐸𝐸�𝑗𝑗
𝑗𝑗∈𝑁𝑁𝑖𝑖

 2-123 

 

where 𝑁𝑁𝑖𝑖  is the neighboring element for each interpolated electric field and 𝑤𝑤𝑖𝑖𝑖𝑖 is the linear 

interpolation weight for the ith point from its jth  neighbor [58]. By chain rule, we have the 

derivative of objective function given by 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸�𝑖𝑖(𝑧𝑧) = �

𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸��𝑗𝑗(𝑧𝑧)𝑖𝑖∈𝑁𝑁𝑗𝑗

𝑤𝑤𝑗𝑗𝑗𝑗 
2-124 

 

where 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸��𝑗𝑗 (𝑧𝑧)  on the right-hand side can be given an analytic form depending on the user-defined 

formula of objective function. Mathematically, the above Equation exhibits a well-known conecpt 

                                              
3 We discard the original index system 𝐸𝐸𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑛𝑛 to avoid cluttered scripts 
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originating in multi-grid methods – the transpose of interpolation – and is directly implemented in 

the Meep FDTD package [59]. This is illustrated in a 2D example in Fig. 2.11. 

 

 

Fig. 2.11 Transpose of bilinear interpolation. The transpose of interpolation assigns values 
backwards to the points in the lattice. For any function 𝑓𝑓(𝑥𝑥) where 𝑥𝑥 = 𝐴𝐴𝐴𝐴, a direct application 

of chain rule shows that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐴𝐴𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . Therefore, it is called transpose of interpolation. 

 

After obtaining the adjoint currents, adjoint fields are obtained and sensitivity can be calculated 

according to Equation 2-120. However, Equation 2-120 is not directly usable for optimization and 

we need a real-valued variable to represent the material properties. We can assign each material 

component in the Yee cell two density parameters, 𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘  and 𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 , to interpolate permittivities and 

permeabilities respectively 

 

 𝜀𝜀𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = 𝜀𝜀�𝑝𝑝𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘�, 𝜇𝜇𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘 = 𝜇𝜇�𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘� 2-125 

 

For our purpose, we use either the linear material interpolation in Equation 2-71 or the non-linear 

material interpolation in Equation 2-72. The sensitivities with respect to the density parameters  

𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘  and 𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘  are given by 
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 ∂𝑓𝑓
𝜕𝜕𝑝𝑝𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 = Re �𝑖𝑖𝑖𝑖𝐸𝐸�𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘(𝑧𝑧)𝐸𝐸��𝑎𝑎𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑧𝑧)

𝜕𝜕𝜀𝜀𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘

𝜕𝜕𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘� 

∂𝑓𝑓
𝜕𝜕𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 = Re �−𝑖𝑖𝑖𝑖𝐻𝐻�𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘(𝑧𝑧)𝐻𝐻��𝑎𝑎𝑤𝑤

𝑖𝑖,𝑗𝑗 ,𝑘𝑘
(𝑧𝑧)

𝜕𝜕𝜇𝜇𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘

𝜕𝜕𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗 ,𝑘𝑘� 

2-126 
 
 
2-127 

 

In a density-based optimization [2] approach, 𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘  are further interpolated from density 

variables 𝜌𝜌’s at a rectangular lattice. Assuming a linear interpolation for 𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘  and 𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 , we can 

transpose ∂𝑓𝑓
𝜕𝜕𝑝𝑝𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 and ∂𝑓𝑓
𝜕𝜕𝑞𝑞𝑤𝑤

𝑖𝑖,𝑗𝑗,𝑘𝑘 to 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 following a similar fasion in Equation 2-124. Even for level-set 

based optimization [60], we can still employ a density variable for each point in the Yee lattice if 

density mapping is used. To ensure accurate evaluation of adjoint sensitivity from Equations 2-126 

and 2-127, both forward and adjoint simulations run until DTFT of fields inside the design region 

change less than 0.5%  over a fixed span of time 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 after the input sources turned off. If the 

change is more than 0.5%, check again in the next 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 time. Iterate this until the change is within 

the limit. Our experiments show that a good estimate for 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is given by 

 

 𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =
4

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

2-128 

 

where 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the center frequency of the input source which can be chosen from the Gaussian 

function or the derivatives of the Gaussian function. 

 

To implement the non-linear material interpolation in the FDTD method, we need to match the 

permittivity at each individual density 𝜌𝜌. Take gold at 800 nm for example. Since a complex 

number is in fact a two-dimensional vector, we pick two susceptibility out of the LD4 model [61] 

and modify their intensity to yield an accurate value for permittivity. Supposing the two 

susceptibility are given by 𝜒𝜒1′ − 𝑖𝑖𝜒𝜒2′′,𝜒𝜒2′ − 𝑖𝑖𝜒𝜒2′′ ∈ ℂ  and their intensities are 𝜎𝜎1, 𝜎𝜎2 ∈ ℝ 

respectively, we can calculate the intensities by solving the linear Equations below: 

 

 𝜀𝜀′(𝜌𝜌) = 𝜀𝜀∞ + 𝜎𝜎1𝜒𝜒1′ + 𝜎𝜎2𝜒𝜒2′ 
𝜀𝜀′′  (𝜌𝜌) = 𝜎𝜎1𝜒𝜒2′′ + 𝜎𝜎2𝜒𝜒2′′ 
𝜀𝜀(𝜌𝜌) =  𝜀𝜀′(𝜌𝜌) − 𝑖𝑖𝜀𝜀′′ (𝜌𝜌) 

2-129 
2-130 
2-131 
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where 𝜀𝜀∞ is the instantaneous dielectric constant (must be positive). We fix 𝜀𝜀∞ to be 1 and 

calculate 𝜎𝜎1, 𝜎𝜎2 versus 𝜌𝜌 using the non-linear interpolation scheme for gold at 800 nm (Fig. 2.12). 

Notice that this method only works for single frequency and does not generally guarantee to work 

for every material. It works for gold at 800nm, which is enough for our own purpose.   

 

 

Fig. 2.12 Susceptibility intensity for non-linear material interpolation scheme. Non-linear 
dependence of the intensity can be observed. 

 

We end up writing our own FDTD solver because we need to control what interpolation scheme 

goes into the algorithm and to access each individual field component in the Yee lattice. 

Nevertheless, it is not hard to incorporate the discrete adjoint sensitivity scheme into any existing 

FDTD software for it only requires the developers to implement transpose of interpolation which 

is almost the same as the interpolation.  
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2.6 Example: Absorption of a Block with Varying Permittivity 

First, we demonstrate the accuracy of sensitivity for a function measuring the absorption of a 

scatterer. The measure of absorption is usullay the integral of Poynting flux over a specified region 

 

 𝑓𝑓 = �Re(𝐄𝐄× 𝐇𝐇�) ⋅ 𝑛𝑛�𝑑𝑑𝑑𝑑 
𝑆𝑆

 2-132 

 

Numerically integrating the above Equation yields 

 

 𝑓𝑓 = �Re �𝑎𝑎𝑖𝑖𝐸𝐸𝑥𝑥(𝑟𝑟𝑖𝑖)𝐻𝐻�𝑦𝑦(𝑟𝑟𝑖𝑖) + 𝑏𝑏𝑖𝑖𝐸𝐸𝑦𝑦(𝑟𝑟𝑖𝑖)𝐻𝐻�𝑧𝑧(𝑟𝑟𝑖𝑖) + 𝑐𝑐𝑖𝑖𝐸𝐸𝑧𝑧(𝑟𝑟𝑖𝑖)𝐻𝐻�𝑥𝑥(𝑟𝑟𝑖𝑖)�
𝑖𝑖
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where constants (𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖 ,𝑐𝑐𝑖𝑖) are weighting parameters used in numerical integration. We use 

rectangle rule [58] for numerical integration for its simlicity. The derivatives with respect to 

electric fields are given by 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑥𝑥(𝑟𝑟𝑖𝑖)

= 𝑎𝑎𝑖𝑖𝐻𝐻𝑦𝑦(𝑟𝑟𝑖𝑖) 
2-134 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑦𝑦(𝑟𝑟𝑖𝑖)

= 𝑏𝑏𝑖𝑖𝐻𝐻𝑧𝑧(𝑟𝑟𝑖𝑖) 
2-135 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑧𝑧(𝑟𝑟𝑖𝑖)

= 𝑐𝑐𝑖𝑖𝐻𝐻𝑥𝑥(𝑟𝑟𝑖𝑖) 
2-136 

 

and derivatievs with respect to magnetic fields are given by 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑥𝑥(𝑟𝑟𝑖𝑖)

= 𝑐𝑐𝑖𝑖𝐸𝐸𝑧𝑧(𝑟𝑟𝑖𝑖) 
2-137 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑦𝑦(𝑟𝑟𝑖𝑖)

= 𝑎𝑎𝑖𝑖𝐻𝐻𝑥𝑥(𝑟𝑟𝑖𝑖) 
2-138 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐻𝐻𝑧𝑧(𝑟𝑟𝑖𝑖)

= 𝑏𝑏𝑖𝑖𝐻𝐻𝑦𝑦(𝑟𝑟𝑖𝑖) 
2-139 

 

And then they are transposed back into adjoint currents (∇𝑒𝑒𝑓𝑓,∇ℎ𝑓𝑓) using Equation 2-124.  
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We begin with a simple geometry, a block with a size of 30 × 30 × 30 nm3. The block has spatially 

uniform permittivity controlled by a density parameter using linear interpolation 

 

 𝜀𝜀(𝜌𝜌) = 𝜀𝜀1𝜌𝜌 + 𝜀𝜀2(1− 𝜌𝜌) 2-140 

 

where 𝜀𝜀1 is permittivity for gold and 𝜀𝜀2 is permittivity for vacuum. The absorption is calculated 

by integrating the Poynting flux over a box enclosing the object. A plane wave of wavelength 

800nm is incident upon the block. The layout for the example is shown in Fig. 2.13. 

 

 

Fig. 2.13 Layout for the first example. A box of size 30 × 30 × 30 nm3 is seated in an open 
region with its axis aligned with coordinates. An incident plane wave travels in the 𝑧𝑧+ direction. 

PML layers of 8-cell thickness is used to absorb any outgoing waves. Absorption is calculated on 
the box surrounding the block. 

 

We took the LD4 model [61] as dispersion model of gold given below 
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𝜀𝜀𝑟𝑟(𝜔𝜔) = 1−

Ω𝑝𝑝2

𝜔𝜔(𝜔𝜔 − 𝑖𝑖Γ0) + �
𝑓𝑓𝑘𝑘𝜔𝜔𝑝𝑝2

(𝜔𝜔𝑘𝑘
2 −𝜔𝜔2) + 𝑖𝑖𝑖𝑖Γ𝑘𝑘

4

𝑘𝑘=1

 
2-141 

 

where 𝜔𝜔𝑝𝑝 is the plasma frequency, 𝑓𝑓𝑘𝑘 is the strength of the 𝑘𝑘th oscillator with frequency 𝜔𝜔𝑘𝑘 and 

lifetime 1 Γ𝑘𝑘⁄  describing the interband part of the dielectric function, while Ω𝑝𝑝  is the plasma 

frequency associated with intraband transitions with damping constant Γ0. We linearly scale the 

intensity of each susceptibility to implement the varying permittivity in Equation 2-140. At 800nm, 

the permittivity of gold is 𝜀𝜀1 = 𝜀𝜀0(−22.3 − 2.03𝑗𝑗) calculated from the LD4 model. We use a 2 

nm Yee cell length to run forward simulations to calculate the absorption versus the density 

parameter 𝜌𝜌  and run adjoint simulations to get the sensitivity with respect to 𝜌𝜌 . Result of the 

absorption is shown in Fig. 2.14. 
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Fig. 2.14 The absorption of the block versus the density parameter 𝜌𝜌. It should be noted that the 
absolute value of absorption does not reflect actual physical quantity. 

 

Then we compare the adjoint sensitivity with sensitivity calculated from central difference scheme 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑖𝑖) ≅
𝑓𝑓(𝜌𝜌𝑖𝑖+1)− 𝑓𝑓(𝜌𝜌𝑖𝑖−1)

𝜌𝜌𝑖𝑖+1− 𝜌𝜌𝑖𝑖−1
 

2-142 
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to verify the accuracy of the discrete adjoint sensitivity formula. Fig. 2.15 compares the two. 
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Fig. 2.15 Comparison of the central difference sensitivity, the discrete adjoint sensitivity and the 
continuous adjoint sensitivity in the range 𝜌𝜌 ∈ [0.1, 0.5]. The discrete adjoint sensitivity is 

superior especially in the range of resonance. 
 

The obvious agreement between the two confirms the validity of the discrete adjoint sensitivity 

formula. We also included the continuous adjoint sensitivity calculated from using rectangle rule 

in numerical integration of Equation 2-67. There is a huge disagreement between the continuous 

formula and the exact sensitivity at the resonance point where 𝜌𝜌 = 0.18. This is due to the fact 

that FDTD is unable to capture accurate localized fields existing in resonance structure. 
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Fig. 2.16 Illustration of large error of continuous adjoint sensitivity in the region where 𝜌𝜌 ∈
[0.5, 1]. This is also the region where the block has property close to gold and has strong 

localized field. The continuous sensitivity has the opposite sign of the true sensitivity. 

 

Fig. 2.16 shows sensitivity in the range 𝜌𝜌 ∈ [0.5, 1]. If only relative error is concerned, this range 

displays an even worse agreement where large portion of the continuous adjoint sensitivity has the 

wrong sign. In this range, the block has optical property close to gold and strong localized fields 

exist on the surface. This confirms an earlier statement that getting accurate sensitivity is 

particularly challenging in plasmonic structure. In the range 𝜌𝜌 ∈ [0,0.1], on the other hand, the 

two sensitivity are both pleasantly consistent with each other (Fig. 2.17). Because the block has 

property close to dielectrics in this range, there are no strong localized fields on the surface.  
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Fig. 2.17 Illustration of negligible error of continuous adjoint sensitivity in the region where 𝜌𝜌 ∈
[0, 0.1]. This is also the region where the block has property close to air and no strong localized 

fields are produced.  

 

In conclusion, this example demonstrates the robustness and accuracy of the discrete adjoint 

sensitivity and how the traditional continuous adjoint sensitivity fails in plasmonic structure 

because of highly localized fields.  

2.7 Example: A Cylinder with Varying Radius 

The next example considers an actual object and the function is the measure of electric field 

intensity. The measure of electric field intensity is usually the integral of the intensity over a 

specified region. Denote the field intensity by 𝑓𝑓, then 

 

 𝑓𝑓 = �|𝐄𝐄|𝑑𝑑𝑑𝑑
𝑉𝑉

 2-143 

 

Applying the rectangle rule to numerically integrate the above Equation gives 
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 𝑓𝑓 = �|𝐄𝐄(𝒓𝒓𝑖𝑖)|Δ𝑉𝑉
𝑖𝑖

 2-144 

 

The derivatives are then given by 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑥𝑥(𝑟𝑟𝑖𝑖)

= Δ𝑉𝑉
𝐸𝐸𝑥𝑥(𝑟𝑟𝑖𝑖)
|𝐄𝐄(𝒓𝒓𝑖𝑖)| 

2-145 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑦𝑦(𝑟𝑟𝑖𝑖)

= Δ𝑉𝑉
𝐸𝐸𝑦𝑦(𝑟𝑟𝑖𝑖)
|𝐄𝐄(𝒓𝒓𝑖𝑖)| 

2-146 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑧𝑧(𝑟𝑟𝑖𝑖)

= Δ𝑉𝑉
𝐸𝐸𝑧𝑧(𝑟𝑟𝑖𝑖)
|𝐄𝐄(𝒓𝒓𝑖𝑖)| 

2-147 

 

Since only electric field intensity is concerned, the adjoint magnetic current is zero and the adjoint 

electric adjoint current ∇𝑒𝑒𝑓𝑓, defined in Equation 2-117, is calculated from these derivatives based 

on the transpose of interpolation given in Equation 2-124. 

 

A cylinder of thickness 80 nm is placed in an open region where an incident wave of wavelength 

800nm is traveling in the 𝑧𝑧+ direction. The cylinder is made of gold and the same LD4 model [61] 

from previous section is adopted. The layout for the example is shown in Fig. 2.18.  
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Fig. 2.18 Layout for the second example. A cylinder of radius ranging from 60nm to 120nm is 
seated in an open region where an incident wave of wavelength 800nm is traveling in the 𝑧𝑧+ 

direction. Cylinder height is 80nm and field intensity in integrated on a 120nm × 120nm surface 
above the top of the cylinder. 

 

Since we are using density parameters 𝜌𝜌’s to assign material property for each component in the 

Yee cell, we utilized an approximation of Heaviside function to represent the material boundary  

 

 𝜌𝜌(𝑥𝑥 , 𝑦𝑦, 𝑧𝑧) = −
1
𝜋𝜋 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�𝑎𝑎 ��𝑥𝑥2 + 𝑦𝑦2 − 𝑟𝑟0��+ 0.5  2-148 

 

where 𝑟𝑟0 is the radius of the cylinder and 𝑎𝑎 defines the slope at the boundary. A higher value of 𝑎𝑎 

represents a shaper boundary representation. This is best illustrated in Fig. 2.19. 𝑎𝑎 = 2 nm−1 is 

used in the actual simulation. After assigning density parameter based on Equation 2-148, linear 

material interpolation in Equation 2-71is applied. We use a 4 nm Yee cell length to run forward 

simulations to calculate the field intensity versus the radius of the cylinder.  
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Fig. 2.19 Boundary representation of a cylinder. A higher 𝑎𝑎 value produces sharper boundary of 
the geometry. 

 

After obtaining adjoint sensitivity 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖,𝑧𝑧𝑖𝑖)

 with respect to density parameters at each discretized 

point, we apply chain rule to Equation 2-148 to get the gradient of 𝑓𝑓 with respect to the radius 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟0

= �
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑧𝑧𝑖𝑖)
𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 ,𝑧𝑧𝑖𝑖)

𝜕𝜕𝑟𝑟0𝑖𝑖

  
2-149 

 

Result shows that 𝑓𝑓 has a monotone trend and exhibits strong local fluctuations (Fig. 2.20). A 

similar case was previously reported in [62] where the author tried to calculate sensitivity of the 

field intensity of a metal slot. Although the author argued that this is due to the periodic smoothing 

of sharp corners, there is no sharp corner in our geometry which still has the ripple effect. One way 

to mitigate this non-smoothness is to apply the non-linear material interpolation scheme in 

Equation 2-72. The result is shown in Fig. 2.20 and compared with the linear interpolation scheme. 

Superior properties of this non-linear material interpolation scheme [39] was demonstrated for 

performing density-based topology optimization of metallic particles for electromagnetic design 

problems in the ultraviolet to low infrared wavelength regime. We shall use this in Chapter 4 for 

optimization.  
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Fig. 2.20 Field intensity versus radius using two material interpolation schemes. It is evident that 
there is a general trend in increasing field intensity for increasing radius and considerable 

fluctuations when using linear interpolation. 
 

Zooming in the field intensity profile, we can clearly see how the discrete adjoint sensitivity 

matches well with the exact sensitivity calculated from central difference scheme (Fig. 2.21) even 

though the original profile is quite “bumpy”. This non-smoothness of field intensity in plasmonic 

structure destroys any hope of convergence for gradient based optimization. Therefore most of 

successful plasmonic structure optimization is done using FEM or surface integral formulations 

(SIE) [63][32][64] where the mesh near material boundary can be made extremely fine to capture 

accurate near fields.  
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Fig. 2.21 Adjoint sensitivity in the range 𝑟𝑟 ∈ [33.4,33.6] using linear material interpolation 
scheme. The discrete adjoint sensitivity reflects the exact sensitivity. 

 

2.8 Conclusion 

In this chapter, we present the derivations of both continuous and discrete adjoint sensitivity for 

Maxwell’s equations in an open region problem. It should be noted although our derivation is 

limited to open region problems where Sommerfeld radiation conditions are satisfied, any other 

lossless boundary conditions like Bloch periodic boundary condition, Perfect Magnetic Boundary 

condition and Perfect Magnetic Boundary condition, are also applicable for the adjoint sensitivity 

Equations specified in Equations 2-67 and 2-120. Although Equation 2-120 is only suited for 

diagonal permittivity and permeability, one can easily follow the same procedures to get the 

formula for general permittivity and permeability implemented by some numerical scheme [65]. 
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We dispense with discussions of lossy boundary conditions as they are not common in wave 

propagation problems. Several difficulties of obtaining accurate adjoint sensitivity using FDTD 

method are pointed out in Section 2.3 which inspired us to derive the robust discrete adjoint 

sensitivity and to adopt the non-linear material interpolation. The discrete adjoint sensitivity solves 

the problem of the FDTD method being unable capture accurate localized fields near material 

boundary and the non-linear material interpolation scheme mitigates the un-physical field 

enhancement during the optimization process. We present the first example to demonstrate the 

accuracy of the discrete adjoint sensitivity formula and compare it with the continuous adjoint 

sensitivity formula. Result shows that in plasmonic structure the continuous adjoint sensitivity 

formula is completely off the rail while in dielectric structure it behaves reasonably well. The 

second example considers a cylinder geometry and how the field intensity changes relative to the 

radius. It is discovered that using the linear material interpolation scheme produces lots of 

fluctuations in the field intensity in a plasmonic cylinder antenna. These fluctuations destroy any 

hope of convergence for gradient based optimization. Turning to the non-linear material 

interpolation which greatly reduces the “bumpiness”, we can perform topology optimization in 

Chapter 4. An ad-hoc implementation of the non-linear material interpolation for gold is given at 

the end of Section 2.5.   
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3. TOPOLOGY OPTIMIZATION METHODS 

The two primary methods in topology optimization are level-set-based and density-based topology 

optimization. They offer different degrees of freedom – the level-set based topology optimizat ion 

allows perturbation of boundary while the density-based topology optimization assumes an even 

bigger solution space – and share some similarity – level-set method is essentially the same as 

density-based method if density geometry mapping is applied [2]. Level-set method has gained in 

popularity due to their promise to operate on clearly defined boundaries throughout the 

optimization process [17]. As we will see, density method tends to act like level-set method in 

later iterations of optimization process especially in plasmonic structures. 

 

Since one of the goals of the thesis is to present a sensitivity analysis framework for FDTD method 

which is naturally compatible with density-based optimization, we will only give a brief review 

on level-set based method. The ill-posedness of the optimization problem may cause the 

optimization to converge to a local minimum with poor performance. Several regularizations are 

discussed at the end of the chapter to mitigate the ill-posedness of the problem and the so called 

standard method [38] is eventually implemented in cases in Chapter 4.  

3.1 Level-set-based Topology Optimization 

In the level-set approach, geometry is parameterized by a smooth level-set function 𝜙𝜙  which 

defines the material domain Ω, the void domain Ω�𝑐𝑐  and the material interface as: 

 

 
�

𝜙𝜙(𝒙𝒙) > 𝑐𝑐 ⟺ 𝒙𝒙 ∈ Ω
   𝜙𝜙(𝒙𝒙) = 𝑐𝑐 ⟺ 𝒙𝒙 ∈ 𝜕𝜕Ω 
  𝜙𝜙(𝒙𝒙) < 𝑐𝑐 ⟺ 𝒙𝒙 ∈ Ω�𝑐𝑐

 
3-1 

 

where 𝑐𝑐 is a constant (usually 𝑐𝑐 = 0). There are many ways to parameterize a smooth function 

using finite number of variables so that a computer program can solve the optimization problem. 

The most popular way of parameterization uses a set of scaling basis functions 𝜙𝜙𝑖𝑖(𝑥𝑥) such that 
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 𝜙𝜙(𝒙𝒙) = �𝑠𝑠𝑖𝑖𝜙𝜙𝑖𝑖(𝒙𝒙)
𝑖𝑖

 3-2 

 

where 𝑠𝑠𝑖𝑖  the ith design parameter. On two-dimensional domains, possible choices of basis 

functions include bilinear interpolation basis functions [66] and radial basis functions [67]. They 

are illustrated in Fig. 3.1. 

 

 

Fig. 3.1 Two different types of basis functions in two dimensions. 

 

Bilinear basis functions produce non-smooth boundary (sharp corners), which may be 

disadvantageous for certain applications. On the other hand, radial basis functions are inherently 

smooth, therefore offering a smooth boundary. Bilinear basis functions have a compact support 

(zero outside a compact region) and therefore most of the design parameters won’t influence the 

boundary if they are not close to it. This offers a chance of efficient sensitivity computing since 

only those close to boundary need to be considered updating. On the other hand, radial basis 

functions extend to the entire domain so that every design variable can influence the boundary.  
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3.1.1 Geometry Mapping 

 

Fig. 3.2 Different types of geometry mapping. Reprinted from [27] with the permission of 
Springer Nature. 

 

As mentioned earlier in Chapter 1, the level-set method has the advantage of utilizing conforming 

boundary meshes (Fig. 3.2a) from FEM or BEM, leading to an accurate evaluation of near fields 

for plasmonic structures. This is particularly important if the continuous sensitivity analysis is 

applied. Using conforming meshes requires re-meshing in each iteration, resulting in noise to the 

objective function and an additional computational burden. The Immersed Boundary Techniques 

(IBTs) are proposed to avoid re-meshing while pertaining an accurate boundary representation. It 

creates a local discretization of the original structured grid and maintains strictly “black and white” 

boundaries (Fig. 3.2b). Care must be taken to implement IBTs to avoid bad discretization [68].  

 

There are also other techniques that can map the level-set function to a numerical model without 

conforming meshes. One popular approach is to translate the LSF into a density distribution similar 

to density-based optimization methods [27]. This method assumes a density parameter 𝜌𝜌 ∈ [0,1] 

dependence on the level-set function 

 

 𝜌𝜌(𝜙𝜙) = 𝐻𝐻(𝜙𝜙) 3-3 
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where 𝐻𝐻(⋅) is a Heaviside function satisfying 

 

 𝐻𝐻(𝜙𝜙) = � 0 for 𝜙𝜙 < 0 
1 for 𝜙𝜙 ≥ 0  3-4 

 

In actual implementation, the exact non-differentiable Heaviside function is usually replaced with 

a smooth approximation of the Heaviside function, resulting in a smeared representation of the 

geometry and intermediate densities 0 < 𝜌𝜌 < 1. The density is either directly mapped to each 

gridded point or to each finite element using the average value of the density within the element. 

The density mapping is shown in Fig. 3.2c. 

3.1.2 Shape Derivatives 

When density geometry mapping is adopted, sensitivities with respect to design variables and those 

with respect to density parameters can be directly related through the parameterization of level-set 

function in Equation 3-2 and the relation between density and the level-set function in Equation 

3-3. This effectively casts the level-set-based optimization into a density-based optimizat ion 

problem which is discussed in Section 3.2.  

 

For other types of geometry mapping, sensitivities with respect to design variables are built from 

the continuous adjoint sensitivity in Equation 2-67. In the level-set geometry parameterization, 

permittivity distribution is given by 

 

 𝜀𝜀 = 𝜀𝜀1 + (𝜀𝜀2− 𝜀𝜀1)𝐻𝐻(𝜙𝜙) 3-5 
 

This is equivalent to assigning 𝜀𝜀2 to the material domain Ω = {𝑥𝑥 | 𝜙𝜙(𝑥𝑥) > 0} and 𝜀𝜀1 to the void 

domain Ω�𝑐𝑐 = {𝑥𝑥 | 𝜙𝜙(𝑥𝑥) < 0} . Suppose 𝜙𝜙  is perturbed by a small variation 𝛿𝛿𝛿𝛿 . Let 𝛿𝛿𝒙𝒙  be the 

resulting variation at point 𝒙𝒙  (Fig. 3.3). Let 𝜕𝜕Ω′ = {𝑥𝑥 | 𝜙𝜙(𝑥𝑥) + 𝛿𝛿𝛿𝛿(𝑥𝑥) = 0}  be the perturbed 

boundary. Taking the variation of the equation 𝜙𝜙(𝒙𝒙) = 0 [69]: 

 

 𝛿𝛿𝛿𝛿(𝒙𝒙) + 𝛁𝛁𝜙𝜙(𝐱𝐱) ⋅ 𝛿𝛿𝒙𝒙 = 0 3-6 
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Fig. 3.3 Perturbation of the boundary by a small variation of the level-set function 𝛿𝛿𝛿𝛿. This 
results in a normal movement of each point in the boundary. 

 

Observe that 𝛿𝛿𝒙𝒙 and 𝛁𝛁𝜙𝜙(𝒙𝒙) lies in the same direction, resulting in the normal movement of the 

boundary. Assuming expansion of the material domain is positive movement and contraction is 

negative, we have the magnitude of the movement 𝛿𝛿𝛿𝛿 given by 

 

 𝛿𝛿𝑥𝑥 =
𝛿𝛿𝛿𝛿

‖𝛁𝛁𝜙𝜙(𝐱𝐱)‖ 
3-7 

 

This implies that an increase in level-set function expands the material domain. Next we consider 

the variation of permittivity given in Equation 3-5 

 

 𝛿𝛿𝜀𝜀 = (𝜀𝜀2 − 𝜀𝜀1)𝐻𝐻′(𝜙𝜙)𝛿𝛿𝛿𝛿 3-8 
 

where 𝐻𝐻′(𝜙𝜙) is the first derivative of the Heaviside function. Substituting the above equation into 

the continuous sensitivity formula in Equation 2-67 yields 

 

 
𝛿𝛿𝛿𝛿 = Re �� 𝑖𝑖𝑖𝑖(𝜀𝜀2− 𝜀𝜀1)𝐻𝐻′(𝜙𝜙)𝛿𝛿𝛿𝛿𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎𝑑𝑑𝑑𝑑

ℝ3
� 

3-9 
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Notice that the first derivative of the Heaviside function 𝐻𝐻′(𝜙𝜙) is in fact the Dirac delta function, 

which is zero everywhere except at 𝜙𝜙 = 0. The distribution theory [70] states that integral of the 

composition of Dirac delta function with a smooth function is equivalent to surface integral of the 

zero level-set function, i.e. 

 

 � 𝑔𝑔𝐻𝐻′(𝜙𝜙)𝑑𝑑𝑑𝑑
ℝ3

= � 𝑔𝑔
‖∇ϕ‖

𝑑𝑑𝑑𝑑
{𝜙𝜙=0}

 3-10 

 

where {𝜙𝜙 = 0}  is the zero level-set surface (the boundary) and 𝑔𝑔 is any continuous function. 

Combining Equation 2-67 with Equation 3-10 gives 

 

 
𝛿𝛿𝛿𝛿 = Re �� 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1) 𝛿𝛿𝛿𝛿

‖∇ϕ‖𝐄𝐄 ⋅ 𝐄𝐄
�𝑎𝑎𝑑𝑑𝑑𝑑

{𝜙𝜙=0}
� 

3-11 

 

and substituting the Equation 3-7 into the above equation gives 

 

 
𝛿𝛿𝛿𝛿 = Re �� 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

{𝜙𝜙=0}
� 

3-12 

 

It might seem we are done here since the above equation provides sensitivities with respect to 

boundary perturbation. However, 𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎 is not continuous across the material interface, in which 

case the Equation 3-10 is not applicable. This prompts us to ask the question: how to convert 𝐄𝐄 ⋅

𝐄𝐄�𝑎𝑎 to something that can make use of Equation 3-10? It is well-known that at the boundary the 

parallel electric fields (𝐄𝐄∥,𝐄𝐄𝑎𝑎∥ )  and the perpendicular electric displacements (𝐃𝐃⊥,𝐃𝐃𝑎𝑎
⊥)  are 

continuous. Recall that the adjoint system has permittivity 𝜀𝜀† = −𝜀𝜀̅𝑇𝑇 . Assuming scalar 

permittivity, we can rewrite the discontinuous dot product in the integral as 

 

 𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎 = 𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ + 𝜀𝜀−1𝐃𝐃⊥ ⋅ 𝜀𝜀†−1𝐃𝐃𝑎𝑎
⊥���������� = 𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ − 𝜀𝜀−2𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ 3-13 
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where 𝐃𝐃𝑎𝑎 = 𝜀𝜀†𝐄𝐄𝑎𝑎 . Now the first term 𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥  at the right-hand side is continuous, while the 

second term 𝜀𝜀−2𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ still has a jump due to the term 𝜀𝜀−2. We can safely invoke Equation 3-10 

to evaluate the variation of objective function contributed from the first term: 

 

 
𝛿𝛿𝐹𝐹∥ = Re �� 𝑖𝑖𝑖𝑖(𝜀𝜀2− 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

{𝜙𝜙=0}
� 

3-14 

 

For the second term, we substitute 𝐄𝐄 ⋅ 𝐄𝐄�𝑎𝑎 with − 1
𝜀𝜀2
𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ to the original sensitivity formula in 

Equation 2-67 

 
 

𝛿𝛿𝐹𝐹⊥ = Re �� −𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀−2𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥𝑑𝑑𝑑𝑑
ℝ3

� 

= Re �� 𝑖𝑖𝑖𝑖 𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥𝛿𝛿(𝜀𝜀−1)𝑑𝑑𝑑𝑑
ℝ3

� 

3-15 

 

where we make use of the chain rule in calculus of variation [44]. Similar to assigning permittivity 

distribution in Equation 3-5, the inverse of permittivity is given by 

 

 𝜀𝜀−1 = 𝜀𝜀1−1 + (𝜀𝜀2−1− 𝜀𝜀1−1)𝐻𝐻(𝜙𝜙) 3-16 

 

Therefore, the variation of the inverse of permittivity is formulated as below 

 

 𝛿𝛿(𝜀𝜀−1) = (𝜀𝜀2−1− 𝜀𝜀1−1)𝐻𝐻′(𝜙𝜙)𝛿𝛿𝛿𝛿 3-17 
 

Substituting the above Equation into Equation 3-15 and invoking the Equation 3-10 gives 

 

 
𝛿𝛿𝐹𝐹⊥ = Re �� 𝑖𝑖𝑖𝑖 𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥𝛿𝛿(𝜀𝜀−1)𝑑𝑑𝑑𝑑

ℝ3
� 

= Re �� 𝑖𝑖𝑖𝑖 𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐻𝐻′(𝜙𝜙)𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
ℝ3

� 

= Re �� 𝑖𝑖𝑖𝑖(𝜀𝜀2−1− 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
{𝜙𝜙=0}

� 

3-18 
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As a result, the total variation of objective function is given by 

 

 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝐹𝐹∥ + 𝛿𝛿𝐹𝐹⊥ 

= Re �� (𝑖𝑖𝑖𝑖(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ + 𝑖𝑖𝑖𝑖(𝜀𝜀2− 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ )𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
{ 𝜙𝜙=0}

� 

= � Re(𝑖𝑖𝑖𝑖(𝜀𝜀2−1− 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥+ 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ )𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿
{𝜙𝜙=0}

 

3-19 

 

The left term Re(𝑖𝑖𝑖𝑖(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ + 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ ) inside the integral is called shape 

derivatives because it is the derivative of the objective function with respect to shape variation. 

Recalling that the boundary normal movement 𝛿𝛿𝛿𝛿 is dependent on 𝛿𝛿𝛿𝛿 (Equation 3-7), we can 

derive the sensitivity with respect to design variables 𝑠𝑠𝑖𝑖 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

= � Re(𝑖𝑖𝑖𝑖(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ + 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ ) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

𝑑𝑑𝑑𝑑
{𝜙𝜙=0}

 

= � Re(𝑖𝑖𝑖𝑖(𝜀𝜀2−1− 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥+ 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ )𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

𝑑𝑑𝑑𝑑
‖𝛁𝛁𝜙𝜙(𝐱𝐱)‖{𝜙𝜙=0}

 

3-20 

 

As mentioned earlier in Section 2.5, we can directly solve the complex conjugate of the adjoint 

fields, resulting in another version of the above formula 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

= � Re(−𝑖𝑖𝑖𝑖(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃𝑐𝑐𝑎𝑎
⊥ + 𝑖𝑖𝑖𝑖(𝜀𝜀2 − 𝜀𝜀1)𝐄𝐄∥ ⋅ 𝐄𝐄𝑐𝑐𝑐𝑐∥ )𝜕𝜕𝜕𝜕

𝜕𝜕𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

‖𝛁𝛁𝜙𝜙(𝐱𝐱)‖{𝜙𝜙=0}
 

3-21 

 

where 𝐃𝐃𝑐𝑐𝑐𝑐 = 𝜀𝜀𝐃𝐃𝑐𝑐𝑐𝑐 and (𝐄𝐄𝑐𝑐𝑐𝑐 ,𝐇𝐇𝑐𝑐𝑐𝑐) is governed by 

 

 

�−𝑖𝑖𝑖𝑖𝑖𝑖 𝛁𝛁 ×
𝛁𝛁 × 𝑖𝑖𝑖𝑖𝑖𝑖� �

𝐄𝐄𝑐𝑐𝑐𝑐
 𝐇𝐇𝑐𝑐𝑐𝑐

�=

⎝

⎛
𝛿𝛿𝛿𝛿
𝛿𝛿𝐄𝐄
����

𝛿𝛿𝛿𝛿
𝛿𝛿𝐇𝐇
����

⎠

⎞ 

3-22 
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Fig. 3.4 Halmilton-Jacobi System. Blue arrows indicate positive velocity while red arrows 
indicate negative velocity. The boundary evolves over time and eventually settles at a stagnation 

point when the velocity field vanishes. 

 

The integral in 3-20 is numerically evaluated along the boundary for each design variable in each 

iteration and a mathematical programming method can be applied to evolve the solution to a local 

optimum. Alternatively, the evolution of the level-set function can be formulated as a Hamilton-

Jacobi (HJ) equation [30], in which we can assign a pseudo time 𝜏𝜏 and a normal velocity field 𝒗𝒗 

along the boundary so that the boundary moves continuously towards descent of the objective 

function (Fig. 3.4). Replacing the normal boundary movement 𝛿𝛿𝛿𝛿 with the normal velocity field 

in Equation 3-19 gives the rate of change in the objective function 

 

 ∂F
𝜕𝜕𝜕𝜕 = � Re(𝑖𝑖𝑖𝑖(𝜀𝜀2−1 − 𝜀𝜀1−1)𝐃𝐃⊥ ⋅ 𝐃𝐃�𝑎𝑎⊥ + 𝑖𝑖𝑖𝑖(𝜀𝜀2− 𝜀𝜀1)𝐄𝐄∥ ⋅  𝐄𝐄�𝑎𝑎∥ )𝒗𝒗 ⋅ 𝒏𝒏𝑑𝑑𝑑𝑑

{𝜙𝜙=0}
 

3-23 

 

To ensure a decreasing objective function over time, the velocity is usually assigned to be the 

negative of shape derivatives. For general procedures to solve the HJ equation, refer to [27]. 
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3.1.3 Topological Derivatives 

While shape derivatives only provide information to alter the boundary of the material domain, 

topological derivatives provide information on changes of response functions due to perforation 

of the material domain by an infinitesimal hole [53]. A topological derivative depends on the shape 

of the hole. Previously a topological derivative of a spherical hole is given by the Clausius-Mossoti 

factor in Equation 2-50. Let 𝐹𝐹(Ω) be the objective function implicitly depending on the material 

domain Ω, and 𝐵𝐵(𝒙𝒙, 𝑟𝑟) be a small hole centered in 𝑥𝑥 ∈ Ω with radius 𝑟𝑟 (Fig. 3.5). 

 

 

Fig. 3.5 A material domain Ω with one hole 𝐵𝐵(𝑥𝑥, 𝑟𝑟) 
 

The topological derivative is defined as 

 

 
𝐺𝐺(𝑥𝑥) = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑟𝑟→0

𝐹𝐹�𝛺𝛺\𝐵𝐵(𝒙𝒙,𝑟𝑟)� − 𝐹𝐹(𝛺𝛺)
𝑉𝑉�𝐵𝐵(𝒙𝒙,𝑟𝑟)�  

3-24 

 

where 𝑉𝑉�𝐵𝐵(𝒙𝒙, 𝑟𝑟)� is the volume of the hole. Topological derivatives can be used to introduce new 

holes in the interior of the domain or outside the domain in a level-set optimization. Alternatively, 

it can be directly used in element-based update schemes where each element is a candidate of a 

new hole, in which case the scheme is called the bubble-method [71]. The bubble method was 

applied in the design of a waveguide to reduce the self-heating of the near-field transducer by 50% 
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in a heat-assisted magnetic recording system [14]. The author derives a topological derivative 

based on spherical holes and uses the FDTD method as the numerical model. Perhaps a cubic hole 

is better suited for the cartesian grid of the FDTD method.  

 

Topological derivatives are derived for infinitesimal holes but in practice finite size holes are 

introduced in numerical implementations [17]. It is yet unclear whether the bubble method is better 

than the topological derivative aided level-set method in topology optimization in photonics. 

3.2 Density-based Topology Optimization 

Density-based topology optimization uses a material interpolation scheme to relate material 

property to density parameters 𝜌𝜌’s. For example, we can assign the permittivity 𝜀𝜀 using linear 

interpolation 

 

 𝜀𝜀(𝑥𝑥 , 𝜌𝜌) = 𝜀𝜀1𝜌𝜌(𝑥𝑥) + 𝜀𝜀2�1− 𝜌𝜌(𝑥𝑥)�, 𝜌𝜌 ∈ [0,1] 3-25 

 

where 𝜀𝜀1 is the permittivity for the material domain and 𝜀𝜀2 is the permittivity for the void domain 

(usually 𝜀𝜀2 = 𝜀𝜀0). Under a specific numerical model of the Maxwell’s equations, each node (line 

segment, pixel or voxel) is assigned a density parameter and the problem of finding the optimal 

design amounts to determining the value of 𝜌𝜌 for each node. To utilize gradient-based optimization 

techniques, the density parameter is allowed to take intermediate values, resulting in gray transition 

regions. Such gray transition regions do not represent any realistic geometry and might lead to 

unphysical device design. Hence, regularizations must be applied to restrict the design space and 

to ensure manufacturability of the design.  

 

In density-based optimization, meshes are often fixed during the optimization process (Eulerian 

approach) so that the design variables can be directly assigned as density parameters. In the 

Lagrangian approach, meshes are allowed to change during the process, requiring a mapping from 

design variables to density parameters similar to that of the level-set method. We will only discuss 

the Eulerian approach as it offers a much simpler implementation. 
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Density derivatives can be calculated from differentiation of the PDE followed by a numerical 

discretization. Differentiation of the PDE, resulting in the continuous adjoint sensitivity, offers the 

convenience to treat the numerical model as a black box. However, we have already shown that 

the continuous adjoint sensitivity is not accurate enough for design of plasmonic structures. 

Density derivatives calculated directly from differentiation of the numerical model are exact and 

exhibit a much better chance at convergence. This is one of the reasons why optimization of 

plasmonic structures is almost exclusively done with discrete adjoint sensitivity [64][39][72] or 

with level-set method [29][32] and conformal geometry mapping. Discrete matrix representation 

of the system is directly accessible with frequency domain solvers like FEM and enables easy 

implementation of discrete adjoint sensitivity analysis. However, FDTD does not have a discrete 

matrix representation in frequency domain. We recognize this complexity and present discrete 

adjoint sensitivity analysis in Chapter 2. This Section will address some regularization techniques 

to efficiently utilize the sensitivity information to ensure smooth convergence of the optimizat ion 

and manufacturability of the design. 

3.2.1 Density Derivatives 

Density derivatives are the usual notion of derivatives of the objective function with respect to the 

density parameters. Contrary to topological derivatives which can predict the change in objective 

function when the geometry is altered with high contrast and spatially small holes, density 

derivatives work for low contrast and spatially big perturbation. Recall that under a specific 

numerical model, the Maxwell’s equations and certain boundary conditions can be written as a 

matrix product 

 

 𝐊𝐊(𝜌𝜌)𝑥𝑥 = 𝑏𝑏  3-26 
 

where matrix 𝐊𝐊(𝜌𝜌) is the discretized representation of the original PDE. Usually the dependence 

of 𝐊𝐊(𝜌𝜌) to 𝜌𝜌 is directly accessible from the numerical model, for instance, FEM or BEM. The 

adjoint sensitivity for matrix equation given in Equation 1-5 can then be applied to derive density 

derivatives. Alternatively, we can evaluate the continuous adjoint sensitivity given in Equation 

2-67 within each finite element using numerical integration. 

 



90 
 

It is demonstrated in Chapter 2 that the continuous adjoint sensitivity does not work well with 

FDTD method. Therefore, we will use the discrete adjoint sensitivity in Equation 2-120 

exclusively in later chapters. 

 

In our approach, a rectangular design domain is constructed with a regular grid (cartesian lattice). 

Each point in the grid is assigned a density parameter 𝜌𝜌 and linear interpolation is used to map the 

grid density parameter into the Yee lattice density parameter 𝑝𝑝𝑤𝑤
𝑖𝑖,𝑗𝑗,𝑘𝑘 . A 2D example of the 

interpolation is illustrated in Fig. 3.6.  

 

 

Fig. 3.6 Linearly interpolated density parameters in a 2D Yee lattice. Each Yee lattice density 
parameter (in green) is interpolated from the grid density parameter (in blue). The Yee cell size 

does not have to be equal to the grid size. 
 

The interpolation effectively decouples the geometry from the Yee lattice such that the design 

region can be arbitrarily sized and positioned. However, the grid size for the design domain cannot 

be arbitrarily small. It cannot be 2 times smaller than the grid size of the Yee lattice otherwise it 

leaves some grid points unused during the interpolation. Calculation of sensitivities with respect 

to Yee lattice density parameter is done first according to equations 2-126, 2-127 and then follows 

the transpose of interpolation given in Equation 2-124 to propagate sensitivities back to the regular 

grid of the design domain. Note that the transpose of interpolation is carried out 6 six times for 

each component of the Yee cell (3 times if only dielectrics are considered).  
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3.2.2 The Standard Method 

The so called standard method [38](or three-field density representation [33]) is adopted as the 

regularization technique in our method. The standard method uses a density filter followed by a 

projection. As pointed out several times in [17], this method becomes more and more similar to 

the level-set methods.  

 

Viewing discretized density parameters 𝜌𝜌’s as a 3D image, we can reassign each density value 𝜌𝜌𝑖𝑖  

as a weighted sum of its neighbors 

 

 
𝜌𝜌�𝑖𝑖 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝜌𝜌𝑗𝑗𝑗𝑗∈𝑁𝑁𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖

 
3-27 

 

Possible choices for the filter function 𝑤𝑤𝑖𝑖𝑖𝑖 include a linearly decaying function: 

 

 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑅𝑅 − �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� 3-28 

 

as suggested in [35] and a Gaussian distribution function 

 

 
𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

−0.5�
�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�
𝑅𝑅 2⁄ �

2
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as suggested in [73]. 𝑅𝑅 denotes the filter radius which is used to truncate the filter. It was tested 

that no significant difference is encountered between the two weighting functions [36]. We use the 

Gaussian distribution in our code. It should be noted that the original design variables 𝜌𝜌 have no 

physical meaning and are used only as intermediate mathematical variables.  

 

Density filters can effectively remove small features during the optimization process but end up 

creating more gray transition regions. Therefore, a projection operator is used to project the filtered 

density to 0/1. Suggested in [74], the following projection operator is used in our code: 
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𝜌𝜌�̅𝑖𝑖 =

tanh(𝛽𝛽𝛽𝛽) + tanh�𝛽𝛽(𝜌𝜌�𝑖𝑖 − 𝜂𝜂)�
tanh (𝛽𝛽𝛽𝛽) + tanh�𝛽𝛽(1− 𝜂𝜂)�  

3-30 

 

where 𝛽𝛽 is a parameter used to control the sharpness of the projection and 𝜂𝜂 ∈ [0,1] defines the 

projection level (Fig. 3.7). Eventually, the projected density parameters 𝜌𝜌�̅𝑖𝑖 is linearly interpolated 

into the Yee lattice density parameters 𝜌𝜌𝑤𝑤
𝑖𝑖𝑖𝑖𝑖𝑖. 

 

 

Fig. 3.7 Projection operators with different projection levels and sharpness. 

 

Applying filtering (Equation 3-27) and projection (Equation 3-30) requires back propagation of 

sensitivities to the design variables, which is given below 
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌�𝑖𝑖

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌�̅𝑖𝑖

𝛽𝛽 sech2�𝛽𝛽(𝜌𝜌�𝑖𝑖 − 𝜂𝜂)�
tanh(𝛽𝛽𝛽𝛽) + tanh�𝛽𝛽(1 −𝜂𝜂)� 

3-31 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌𝑖𝑖

=
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌�𝑗𝑗𝑗𝑗∈𝑁𝑁𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖
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The propagation of sensitivities along with the forward transformations of density parameters are 

summarized in Fig. 3.8. In fact, this is very similar to the back propagation in artificial neural 

networks because both are in essential exploitation of the chain rule. 

 

 

Fig. 3.8 Transformation of density parameters and back propagation of sensitivities. 

 

The projection is usually used together with a continuation scheme for 𝛽𝛽 , which gradually 

increases the projection sharpness during the optimization. This prevents the optimization from 

getting stuck in local minimum earlier in the process due to the density being projected to 0/1 

immediately. We adopted the algorithm suggested in [38] to increase 𝛽𝛽 only after the objective 

function has not changed much since the last increase in 𝛽𝛽.  
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3.3 Conclusion 

Two primary methods used in topology optimization are described. The level-set method is better 

at providing a crisp and well-defined boundary representation while the density method searches 

answers in a much larger solution space. It is pointed that the use of FEM (BEM), level-set 

approach and conforming meshes together is often practiced in topology optimization in plasmonic 

structures. Due to the popularity of using FDTD method in simulation of plasmonic structures, we 

provide the other possibility of combining FDTD method, density approach and some 

regularization techniques to carry out the topology optimization in plasmonic structures. The 

discrete adjoint sensitivity with FDTD (Section 2.4) assures reliable access to gradients while the 

standard method (Section 3.2.2) improves convergence and manufacturability of the design. 
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4. CASE STUDIES 

We present two examples, one with localized fields and one without localized fields, to 

demonstrate the possibility of using topology optimization to construct field patterns. In these two 

examples, we first calculate electric field patterns from a known structure and then deploy the 

inverse calculation algorithms to reconstruct the fields.  

4.1 Bowtie Aperture 

Bowtie apertures are known to produce highly localized fields and have potential applications in 

optical lithography [75], high density data storage [76], etc. The enhanced electric fields are 

confined within only a tiny region of the nanometer length scale near the surface of the 

nanostructures and decay significantly thereafter [72]. In this example, reconstruction of electric 

fields of a bowtie aperture is carried out using the proposed discrete sensitivity analysis in Section 

2.4 and density-based topology optimization with the standard regularization techniques in Section 

3.2.2.  

 

 

Fig. 4.1 Dimensions of the bowtie aperture for generating the objective electric field.  
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A bowtie aperture carved out of a gold layer of thickness 60 nm is placed in an open region where 

an incident wave of wavelength 800 nm is traveling in direction perpendicular to the layer. Fig. 

4.1 shows the dimensions of the bowtie aperture. The objective electric field generated by the 

aperture is calculated using the FDTD method with a Yee cell length of 4 nm. Although in practice 

a smaller mesh size like 2 nm is needed to accurately capture the near field [54], we did not use a 

finer size because we are not interested in the actual physics of the system and we have limited 

amount of computational power. Layout for the simulation is shown below: 

 

 

Fig. 4.2 Layout for the simulation (1st example). All rectangles are squres with their centers 
alighned. Polarization of the plane wave is in x direction.  

 

We use the LD4 model given in Equation 2-141 as dispersion model of gold and its permittivity 

at 800 nm is evaluated as 𝜀𝜀1 = 𝜀𝜀0(−22.3 − 2.03𝑗𝑗). To measure the difference between the design 

electric field 𝐄𝐄 and the objective electric field 𝐄𝐄0, the objective function is defined as 

 

 𝐹𝐹(𝐄𝐄) = �(‖𝐄𝐄‖ − ‖𝐄𝐄0‖)2𝑑𝑑𝑆𝑆 
𝑆𝑆

 4-1 
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where 𝑆𝑆 is a rectangular surface at the exit plane of the bowtie aperture (Fig. 4.2). It is obvious that 

a smaller value of the objective function implies a better agreement with the objective field. The 

rectangle rule in Equation 2-144 is applied to numerically integrate the objective function on a 

rectangular grid of dimension 𝑆𝑆𝑥𝑥× 𝑆𝑆𝑦𝑦. The reasons that the surface 𝑆𝑆 is chosen at the exit plane 

are as follows: 1) the magnitude of the electric field is highest at the exit plane so that the objective 

function becomes highly singular and the robustness of the algorithm can be tested, and 2) it 

increases the possibility of the algorithm to recover the original geometry because different 

structures can produce the same field patterns at a large distance.  

 

A Gaussian filter of radius 𝑅𝑅 (Equation 3-29) and a projection operator of sharpness 𝛽𝛽 and level 

𝜂𝜂 = 0.5 (Equation 3-30) are used to regularize the optimization. To prevent the optimization from 

getting stuck in local minimum earlier in the process due to the density being projected to 0/1 

immediately, projection sharpness 𝛽𝛽 are increased after the objective function has not changed 

much for 𝑛𝑛𝑠𝑠𝑠𝑠 iterations, mimicking the 𝛽𝛽-continuation scheme suggested in [74]. At the same time, 

we also reduce the filter radius to allow sharp corners to emerge, which is critical to generation of 

localized field. Our continuation scheme can be written in algorithmic form as follows. 

 

Initialize filter radius = 𝑟𝑟 
projection level = 𝛽𝛽 
Run the following for 𝑘𝑘 times: 
 Objective function at the ith iteration = 𝐹𝐹𝒊𝒊 
 Design parameters at the ith iteration = 𝜌𝜌𝑖𝑖  
 while True: 
  evolve the solution from 𝜌𝜌𝑖𝑖  to 𝜌𝜌𝑖𝑖+1 using MMA 
  if �𝐹𝐹𝒊𝒊 − 𝐹𝐹𝒊𝒊−𝟏𝟏� < 𝛼𝛼𝐹𝐹𝒊𝒊 for consecutively 𝑛𝑛𝑠𝑠𝑠𝑠 times then: 
   𝑟𝑟 = 𝑟𝑟 𝑐𝑐𝑟𝑟⁄  
   𝛽𝛽 = 𝛽𝛽 ×  𝑐𝑐𝛽𝛽 
   break out of the loop 
return the solution 

 

The design region is a 200 nm × 200 nm × 60 nm block centered in the gold layer (Fig. 4.2). The 

region is big enough so that the original bowtie geometry can be fitted in. The design region is 

discretized into a 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ×  𝑁𝑁𝑧𝑧 rectangular grid. Following the procedures in Section 3.2.1, each 
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grid point is assigned a density parameter and linear interpolation is used to map grid density 

parameters into Yee lattice density parameters. Non-linear material interpolation given in Equation 

2-72 is adopted for interpolating permittivity from Yee lattice density parameters. A general rule 

for setting parameters is that the optimization converges to a local optimum within reasonable 

amount of time and that the manufacturability is ensured. Of course, this requires some trial and 

error. Table 4.1 shows parameters used in this example.  

 

Table 4.1 Parameters used in optimization (1st example). 

Parameter [unit] Value 

𝑅𝑅 [Yee cell length] 2.5 

𝛽𝛽 1 

𝑘𝑘 5 

𝛼𝛼 0.01 

𝑐𝑐𝑟𝑟 1.2 

𝑐𝑐𝛽𝛽 1.8 

𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧  51, 51, 164 

𝑆𝑆𝑥𝑥,𝑆𝑆𝑦𝑦 41, 41 

 

Obtaining the objective field is done by setting up the objective density distribution5 𝜌𝜌0 (Fig. 4.3) 

in the design region and running the simulation once. Viewing the bowtie geometry as a planar 

polygon, density is to set to 1 if it is at a point inside the polygon. It should be noted the existence 

of solution for 𝐹𝐹(𝐄𝐄) = 0 is guaranteed in this case. The optimization algorithm starts with 𝜌𝜌 = 1, 

representing pure gold layer, and runs for 5 rounds of optimization with different filter radius and 

projection sharpness, which constitutes a total of 105 iterations and 185 function evaluations. We 

enforce the density to be constant along z direction so that the optimization produces a planar 

structure. 

 

                                              
4 𝑁𝑁𝑧𝑧 discretized points are equivalent to 𝑁𝑁𝑧𝑧− 1 discretized intervals. 
5The reason that it is called objective density is that it generates the objective electric field. 
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Fig. 4.3 shows the final design. Although symmetry isn’t enforced during the optimization, the 

final design is symmetric with a smaller bowtie aperture and four holes in the corner. The smaller 

bowtie aperture generates the same magnitude of localized electric field in the center as the 

objective bowtie aperture, suggesting that much of the empty space is redundant in the objective 

design. Four holes emerge because the objective electric field has four smaller spikes in the four 

corners of 𝑆𝑆 whose values are about 6 times higher than that of the incident field.  

 

 

Fig. 4.3 Distributions of the design density 𝜌𝜌, the filtered density 𝜌𝜌�, the projected density 𝜌𝜌�̅ in the 
final iteration and the objective density 𝜌𝜌0 (1st example). Note that 𝜌𝜌�̅ represents the actual design 

while 𝜌𝜌,𝜌𝜌� are intermediate variables. 

 

Fig. 4.4 compares the final design electric field magnitude distribution with the objective electric 

field magnitude distribution on the surface 𝑆𝑆. The 𝐿𝐿2  norm difference 
∫ (‖𝐄𝐄‖−‖𝐄𝐄0‖)2𝑑𝑑𝑑𝑑 𝑆𝑆

∫ ‖𝐄𝐄0‖2𝑑𝑑𝑑𝑑 𝑆𝑆
 bewteen 

them is about 3%, suggesting a successful recovery of the electric field on the surface 𝑆𝑆.  
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Fig. 4.4 Distributions of the final design electric field magnitude and the objective electric field 
magnitude on the surface 𝑆𝑆 (1st example). The magnitudes are normalized by the incident 

magnitude. The maximum magnitude at center is 42.6 for both distributions.  

 

A closer look at intermediate steps (Fig. 4.5) of the optimization reveals that only boundary 

perturbation is taking place in later iterations. The sharp decrease occurring between iteration 49 

and iteration 50 is induced by the change of projection sharpness 𝛽𝛽 from 5.8 to 10.5. Higher value 

of 𝛽𝛽 brings in higher contrast of air and gold to the boundary, which contributes to the generation 

of highly localized fields. Furthermore, more density parameters are projected onto 0/1 when 𝛽𝛽 

increases, resulting in near vanishing gradients everywhere except at boundaries (Fig. 4.6). The 

near vanishing gradients are the reason why only boundary perturbation is taking place in later 

iterations. 
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Fig. 4.5 Distributions of the projected density 𝜌𝜌�̅ (left) and the design field magnitude (right) in 
some intermediate steps showing evolution of the design (1st example). Each iteration is marked 
with diamond in the objective function graph at the bottom. The objective function is normalized 

so that it is evaluated as 1 in the 1st iteration.  
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Fig. 4.6. Distribution of sensitivity (normalized) in logarithmic scale at the last iteartion (105). 

 

 
Fig. 4.7 Distributions of the projected density 𝜌𝜌�̅ (left) and the design field magnitude (right) in 

the first 8 iterations (1st example).  
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During the first 8 iterations (Fig. 4.7), the general shape of the final design already emerges. Early 

emergence of a clearly defined shape is also reported in [72][39] using density-based topology 

optimization. We believe that this phenomenon is related to objective function being singular. 

Slow convergence is observed in later iterations (Fig. 4.5). This suggests that to accelerate 

convergence in later iterations a level-set-based topology optimization can be initiated  

4.2 Elongated Bowtie Antenna 

The second example uses an elongated bowtie antenna (EBA). Fig. 4.8 shows the dimension of 

the objective geometry and Fig. 4.9 shows the simulation layout.  

 

Fig. 4.8 Dimensions of the EBA for generating the objective electric field.  

 

We follow the exact same procedures discussed in the previous section with the following 

differences: 1) different design region and surface 𝑆𝑆 and 2) different parameters in the continuation 

scheme (Table 4.2).  
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Fig. 4.9 Layout for the simulation (2nd example). All rectangles are squres with their centers 
alighned. Polarization of the plane wave is in x direction.  

 

Table 4.2 Parameters used in optimization (2nd example). 

Parameter [unit] Value 

𝑅𝑅 [Yee cell length] 2  

𝛽𝛽 1 

𝑘𝑘 6 

𝛼𝛼 0.01 

𝑐𝑐𝑟𝑟 1 

𝑐𝑐𝛽𝛽 1.8 

𝑛𝑛𝑠𝑠𝑠𝑠 3 

𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧  51, 51, 16 

𝑆𝑆𝑥𝑥,𝑆𝑆𝑦𝑦 26, 26 
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Fig. 4.10 Distribution of electric field magnitude of the objective geometry on surface 𝑆𝑆 (2nd 
example). 

 

Result of the simulation with the objective geometry shows that no highly localized electric field 

exists on surface 𝑆𝑆 (Fig. 4.10). Therefore, small feature is not needed, and the filter radius is fixed 

(𝑐𝑐𝑟𝑟 = 1) throughout the optimization process. It will be later shown that lots of gray transition 

regions exist throughout the process. To ensure a 0/1 design, we increase the number of rounds 𝑘𝑘 

so that the optimization ends up with higher value of projection sharpness 𝛽𝛽. Unfortunately, this 

does not eliminate gray transition regions and one extra post-processing step is needed to produce 

a physically admissible structure. The optimization becomes quite time-consuming due to the 

addition of extra rounds. So, we reduce 𝑛𝑛𝑠𝑠𝑠𝑠 to induce a smaller number of iterations in each round. 

The optimization algorithm starts with 𝜌𝜌 = 0.5, representing half-gold-half-air layer, and runs for 

6 rounds and 166 iterations.  
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Fig. 4.11 Distributions of the design density 𝜌𝜌, the filtered density 𝜌𝜌�, the projected density 𝜌𝜌�̅ in 
the last iteration and the objective density 𝜌𝜌0 (2nd example). Note that 𝜌𝜌�̅ represents the actual 

design while 𝜌𝜌,𝜌𝜌� are intermediate variables. 

 

Fig. 4.11 shows the density distribution in the last iteration. It is observed that some gray transition 

regions still exist, different to what is observed in the 1st example. Also clearly defined boundaries 

do not show up in the first couple of iterations (Fig. 4.12). We believe that this is because the 

objective function of the 2nd example is less convex than that of the 1st example – there are far 

more structures that can generate a non-localized field (2nd example) than structures that can 

generate a highly localized field (1st example). Hence it is easier for the algorithm to converge to 

the global optimum (the objective geometry) in the 1st example than it is in the 2nd example. The 

final design has a bridge in the center, which is similar to that of the objective geometry. 
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Fig. 4.12 Distributions of the projected density 𝜌𝜌�̅ (left) and the design field magnitude (right) in 
some intermediate steps showing evolution of the design (2nd example). Each iteration is marked 
with diamond in the objective function graph at the bottom. The objective function is normalized 

so that it is evaluated as 1 in the 1st iteration.  

 

We apply the same filter and projection operator to the projected density from the last iteration 

and successfully eliminate all gray transition regions. However, this greatly increase the value of 

the objective function. So we run another round of optimization with the post-processed design 



108 
 

(Fig. 4.13) and end up with the objective function evaluated as 0.009 (normalized) while design 

from the last iteration has an objective function evaluated as 0.0016 (normalized), indicating a 

slightly downgraded performance. 

 

 

Fig. 4.13 Final design after post-processing and one round of optimization. 

4.3 Conclusion 

Two cases are presented to carefully examine the robustness and validity of the density-based 

topology optimization using the discrete adjoint sensitivity analaysis in the FDTD method. It is 

shown that proper regularizations are important in ensuring smooth convergence and 

manufacturability of the optimization. The filter-and-projection scheme is proven to work in the 

two cases, but many real world applications require a more complicated regularization scheme. 

Hence, successful application of topology optimization usually boils down to searching of proper 

regularizations.  
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5. CONSTRUCTING UNIFORM TEMPERTURE PROFILE IN HEAT-
ASSISTED MAGNETIC RECORDING 

In this Chapter, we inversely generate a uniform temperature profile in one-bit volume of the 

recording medium of heat-assisted magnetic recording (HARM). Although multiple simplications 

are made due to the constraint on computational power at hand, the application of topology 

optimization in solving practical plasmonic design problems is successfully carried out. 

5.1 Heat-assisted Magnetic Recording 

Recent years have seen HAMR become one of the most promissing technologies to push recording 

area density much higher than 1 Tb/in2. As the storage density continues to increase, one of the 

problems is that the magnetic medium must be made of materials with a very high coercivity, 

requiring a magnetic field beyond what can be supplied by the hard disk head [77]. HAMR solves 

this problem by heating magnetic grains over the Curie temperature so that recording of data on 

those grains by switching the magnetic state can be achievable under small magnetic field. Fig. 

5.1 shows this process. 

 

 

Fig. 5.1 A schematic diagram of the HAMR write process. Taken from [78]. Copyright © 2008, 
IEEE. 
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In a HAMR system, the recording medium is heated above its Curie temperature by a thermal spot 

that is less than 60 nm in the crosstrack direction [79]. Lots of efforts have been made 

[77][80][14][81] to design nano-plasmonic antennas/apertures, also called near-field transducers 

(NFTs), to deliver energy to such a small volume. Typical examples [81] of NFT designs include 

C-apertures, bowtie apertures, Lollipop antennas, etc. Gold is the preferred choice of material for 

NFTs for its chemical stability, good plasmonic behavior and high thermal conductivity [82]. 

Chemically ordered FePt has emerged as one of the leading candidates of medium materials mainly 

because significant progress has been made in fabricating high anisotropy granular FePt media at 

elevated processing temperature by commercially available sputtering tools [79]. Therefore, gold 

and FePt are used as the materials of NFT and recording medium respectively in this Chapter. In 

a typical HAMR system, light is coupled to the medium layer through an NFT (Fig. 5.2). The NFT 

is either embedded in a glass substrate or a gold layer. An interlayer made of MgO and a heatsink 

made of Cu are stacked below the medium layer. 

 

 

Fig. 5.2 Schematic of a NFT and a HAMR recording medium. 

5.2 Problem Defnition 

Industry has recently shown interests in creating an uniform temperature profile inside one-bit 

volume in the recording medium. With tools from topology optimization, we attempt to design an 

NFT that generates the said uniform temperature profile. However, due to the limitation of 
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computational power (a typical server with 20 cores), we are unable to carry out a full-scale 

optimization. Hence we make the following simplications: 

1. The interlayer and the heatsink are not considered. 

2. Plane wave is assumed as the light source instead of a real Gaussian beam. 

3. Thin-layer approximation is applied in modeling the heat conduction in the recording 

medium using an effective 2-dimensional absorption profile. 

4. Heat generation in the NFT layer is ignored. 

 

 

Fig. 5.3 Simplified HAMR system for optimization. Optical absorption at the midplane of the 
medium is taken as the effective absorption. 

 

These simplications reduce the time for one EM simulation to ~20 minitues using a mesh size of 

2 nm. The optimization problem is tackled in two stages : 1) searching for optical absorption profile 

to generate such uniform temperature profile and 2) constructing electric field magnitudes to 

generate the optical absorption profile. The LD4 model given in Equation 2-141 is used as the 

dispersion model of gold while the optical property of FePt is obtained from [83]. Table 5.1 lists 

optical properties of materials in our model along with thermal properties obtained from [84]. 
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Table 5.1 Thickness, optical properties and thermal properties of the recording medium and the 
NFT. 

Material Thickness 
[nm] 

Refractive Index 
at 800 nm 

Vertical 
thermal 
conductivity 
(W/mK) 

Lateral 
thermal 
conductivity 
(W/mK) 

Density 
× 
Specific 
Heat 
(𝝆𝝆 × 𝒄𝒄𝒑𝒑 ) 
(J/m3-K) 

Storage medium 10 n=3.2, k=2.6 7 1.5 3.2e6 

NFT – Au 60 n=0.21, k=4.73 314 314 2.5e6 

NFT – Air 60 n=1, k=0 0.02 0.02 0.001225 

 

Heating is required to increase the temperature of one-bit volume (60 × 30 × 10 nm3)  to the 

Curie point 𝑇𝑇𝑐𝑐 = 750 K of FePt [78] within 1 ns. Assuming an ambient temperature of 300 K, a 

temperature rise of 450 K is needed. While 450 K is the targeted temperature rise in our design, 

flexibility in the laser power allows easy scaling of temperature rise. For simplication, the NFT 

head is assumed to be still so that time independent heating is supplied in the recording medium.  

5.3 Inverse Design 

5.3.1 Thermal design 

Careful study on energy transfer in HAMR system is conducted in [85] and a summary of the 

relavant energy transfer mechanisms is illustrated in Fig. 5.4, suggesting that the major energy 

mechanism is heat conduction and optical absorption. Furthermore, thin-layer approximation is 

applied because of the small thickness of the film and large vertical thermal conductivity relative 

to the lateral one. Therefore, a 2-dimensional heat conduction equation is used to describe heat 

transfer within the semi-infinite recording medium 

 

 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  � +

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕  �+ 𝑞̇𝑞 

5-1 

 

where the effective optical absorption 𝑞̇𝑞  is the in-plane absorption profile at midplane of the 

recording medium. 
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Fig. 5.4 A summary of the various energy transfer mechanisms in the HARM system. The most 
dominant energy transfers are via near-field light coupling from NFT to disk, heat conduction 

through the NFT and recording medium. Taken from [85]. 
 

Optical absorption inside the medium by a monochromatic light source is given by: 

 

 𝑞̇𝑞 =
1
2𝜔𝜔Im(𝜀𝜀FePt)|𝐄𝐄|2 5-2 

 

where 𝜔𝜔 is the frequency of the excitation light, 𝜀𝜀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the permittivity of FePt and |𝐄𝐄|2 is the 

light intensity. Gauging of the incident field magnitdue is done by borrowing the field magnitude 

from real lasers. For practical and economic reasons, the inexpensive diode lasers, with power 

ranging from 1 mW to 10 mW, are used as the optical source in commerical HAMR products. The 

laser propagates in space as a Gaussian beam focused on the NFT. The total transmitted power by 

a Gaussian beam is given by 

 

 
𝑃𝑃0 =

1
2 𝜋𝜋𝑟𝑟0

2 |𝐄𝐄0|2

2𝜂𝜂  
5-3 
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where 𝑟𝑟0 is the beam waist radius, 𝜂𝜂 is the wave impedence of the lossless medium in which the 

beam is traveling and |𝐄𝐄0| is the peak electric field amplitdue. The impedence of air is given by 

 

 
𝜂𝜂Air = �

𝜇𝜇Air
𝜀𝜀Air

= 377 Ω 
5-4 

 

Assuming a focused Gaussian beam of waist radius 300 nm and wavelength 800 nm is traveling 

in air and is incident on the NFT, the nominal absorption 𝑞𝑞0 in the recording medium, calculated 

using Equation 5-2 with the incident field intensity, is 9.25 × 1017 𝑊𝑊
𝑚𝑚3 per mW laser power. Note 

that the nominal absorption linearly scales with laser power. 

 

For heat conduction problems in infinite 2-dimensional space, the temperature rise can be given 

by the convolution product of the heat generation and the Green’s function 

 

 
Δ𝑇𝑇(𝒓𝒓, 𝑡𝑡) =

𝛼𝛼
𝑘𝑘
� � 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ ,𝜏𝜏)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′

𝑅𝑅2
𝑑𝑑𝑑𝑑

𝑡𝑡

0
 

5-5 

 

where 𝒓𝒓 ∈ ℝ𝟐𝟐 is the coordinate vector and 𝐺𝐺(𝒓𝒓,𝜏𝜏) is the Green’s function given by 

 

 
𝐺𝐺(𝒓𝒓, 𝜏𝜏) =

1
4𝜋𝜋𝜋𝜋𝜋𝜋 𝑒𝑒

−
|𝒓𝒓|2
4𝛼𝛼𝛼𝛼  

5-6 

 

To approximate the convolution, we first numerically integrate Equation 5-5 in time using the 

rectangle rule 

 

 
Δ𝑇𝑇(𝒓𝒓, 𝑡𝑡𝑀𝑀)≈�Δ𝑡𝑡� 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ ,𝜏𝜏𝑖𝑖)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′

𝑅𝑅2

𝑀𝑀

𝑖𝑖=0

 
5-7 

 

where 𝜏𝜏𝑖𝑖 = 𝑖𝑖Δ𝑡𝑡. Notice that 𝐺𝐺(𝒓𝒓, 𝜏𝜏0 = 0) is ill-defined in the classical sense, so it should be treated 

rather as a limit 
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 � 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ , 0)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′
𝑅𝑅2

= lim
𝜏𝜏→0

� 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ ,𝜏𝜏)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′
𝑅𝑅2

 5-8 

 

Since the Green’s function is a Gaussian function, we can invoke the approximation of identity 

theorem [49] to evaluate the above equation, which gives us 

 

 lim
𝜏𝜏→0

� 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ ,𝜏𝜏)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′
𝑅𝑅2

= 𝑞𝑞(𝒓𝒓) 5-9 

 

Combining Equations 5-7, 5-8 and 5-9, we have 

 

 
Δ𝑇𝑇(𝒓𝒓, 𝑡𝑡𝑀𝑀)≈ Δ𝑡𝑡𝑡𝑡(𝒓𝒓) +�Δ𝑡𝑡� 𝐺𝐺(𝒓𝒓 − 𝒓𝒓′ ,𝜏𝜏𝑖𝑖)𝑞𝑞(𝒓𝒓′)𝑑𝑑2𝒓𝒓′

𝑅𝑅2

𝑀𝑀

𝑖𝑖=1
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Further discretization in space gives 

 

 
Δ𝑇𝑇�𝒓𝒓𝑁𝑁,𝐿𝐿 , 𝑡𝑡𝑀𝑀� ≈ Δ𝑡𝑡𝑡𝑡(𝒓𝒓) + Δ𝑡𝑡Δ𝑥𝑥Δ𝑦𝑦�� � 𝐺𝐺�𝒓𝒓𝑁𝑁,𝐿𝐿 − 𝒓𝒓𝑗𝑗 ,𝑘𝑘 ,𝜏𝜏𝑖𝑖�𝑞𝑞�𝒓𝒓𝑗𝑗,𝑘𝑘�

𝑗𝑗,𝑘𝑘∈ℤ

𝑀𝑀

𝑖𝑖=1

� 
5-11 

 

where 𝒓𝒓𝑁𝑁 ,𝐿𝐿 = (𝑁𝑁𝑁𝑁𝑁𝑁 , 𝐿𝐿𝐿𝐿𝐿𝐿) is the discretized coordinate vector. Noticing that the summation in 

Equation 5-11 is in fact the discretized convolution product, we can rewrite it in a more compact 

way6 

 

 
Δ𝑇𝑇(⋅, 𝑡𝑡𝑀𝑀)≈ ��𝐺𝐺(⋅,𝜏𝜏𝑖𝑖)Δ𝑡𝑡Δ𝑥𝑥Δ𝑦𝑦

𝑀𝑀

𝑖𝑖=1

+ Δ𝑡𝑡𝛿𝛿𝑑𝑑�∗ 𝑞𝑞 = 𝑆𝑆 ∗ 𝑞𝑞 
5-12 

 

where (⋅, 𝑡𝑡𝑀𝑀) is used to emphasize that the first argument is a variable and the second argument is 

fixed. Note that 𝛿𝛿𝑑𝑑 is the discretized Dirac function [26]. We truncate each 𝐺𝐺(⋅,𝜏𝜏𝑖𝑖) to a square area 

with side length 𝑎𝑎 = 6�2𝛼𝛼𝑡𝑡𝑀𝑀, equivalent to truncating the domain of a Gaussian function with 

                                              
6 * is previously used to denote continuous convolution. Here it denotes the discretized convolution. 
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standard deviation 𝜎𝜎  to a square area with side length 𝑎𝑎 = 6𝜎𝜎 . Note that to get an accurate 

evaluation of temperature rise within an area of size 𝑐𝑐 × 𝑑𝑑 , the optical absorption must be 

evaluated at least in an area of size (𝑎𝑎 + 𝑐𝑐) × (𝑎𝑎 + 𝑑𝑑). Therefore, for evaluating temperature at 1 

ns the side length must be at least 𝑎𝑎 = 183 nm. Now the problem of finding the optical absorption 

distribution that generates a uniform temperature profile inside one-bit volume in the recording 

medium amounts to the following optimization problem 

 

 min
𝑞𝑞

 0.5 � �Δ𝑇𝑇�𝒓𝒓𝑖𝑖,𝑗𝑗, 𝑡𝑡𝑀𝑀  �− 450�
2

𝒓𝒓𝑖𝑖,𝑗𝑗∈𝐴𝐴

 

subject to: Δ𝑇𝑇(⋅, 𝑡𝑡𝑀𝑀) = 𝑆𝑆 ∗ 𝑞𝑞
 𝑞𝑞𝑙𝑙 ≤ 𝑞𝑞 ≤ 𝑞𝑞𝑢𝑢

  

5-13 

 

where 𝐴𝐴 is a rectangular area occupied by a single bit centered at the origin and 𝑞𝑞𝑙𝑙 ,𝑞𝑞𝑢𝑢 are the lower 

bound and the upper bound of the optical absorption imposed by limited laser power and limited 

field enhancement inside the recording medium. The lower bound of the absorption is obtained by 

simulating the physical structure without NFT, corresponding to absorption at points far away from 

the NFT. It is calculated to be 𝑞𝑞𝑙𝑙 = 0.005𝑞𝑞0 . In our experience, the upper bound is of great 

importance in the optimization as it indicates the maximum field enhancement that can occur in 

the recording medium. We assign the upper bound to be 𝑞𝑞𝑢𝑢 = 5𝑞𝑞0, which corresponds to the 

maximum field enhancement in the recording medium produced from the objective bowtie 

aperture in Section 4.1.  

 

A direct solution of the optimization problem in Equation 5-13 produces unreasonably sharp 

optical absorption profile with ~4 nm wide peaks, albeit generating perfectly uniform temperature 

profile (Fig. 5.5).  
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Fig. 5.5 The distribution of the optimized absorption (left) and contours of temperature rise 
distribution (right) produced from optimization without filtering. The absorption is normalized 

by the nominal absorption 𝑞𝑞0. 

 

These peaks are not physically admissible and cause the electromagnetic optimization to fail.  

Therefore, we impose a filter on the absorption distribution similar to the filter used in topology 

optimization in Equation 3-27 to increase widths of peaks. The optimization problem after 

applying filter becomes 

 

 min
𝑞𝑞

 0.5 � �Δ𝑇𝑇�𝒓𝒓𝑖𝑖,𝑗𝑗, 𝑡𝑡𝑀𝑀  �− 450�
2

𝒓𝒓𝑖𝑖,𝑗𝑗∈𝐴𝐴

 

subject to: Δ𝑇𝑇(⋅, 𝑡𝑡𝑀𝑀) = 𝑆𝑆 ∗ 𝑞𝑞𝑓𝑓
 𝑞𝑞𝑓𝑓 = 𝑞𝑞 ∗ 𝑤𝑤
 𝑞𝑞𝑙𝑙 ≤ 𝑞𝑞𝑓𝑓 ≤ 𝑞𝑞𝑢𝑢

  

5-14 

 

where 𝑤𝑤 is a gaussian filter given in Equation 3-29 and 𝑞𝑞𝑓𝑓 is the filtered absorption. We run the 

L-BFGS-B algorithm [43] to solve the optimization problem using the following parameters: 1) 

laser power is 𝑃𝑃0 = 1 mW, 2) the temperature and absorption is evaluated on a rectangular grid 

spanning 300 × 300 nm2 with 2 nm cell length, 3) gaussian filter radius is 40 nm. Evaluation of 

absorption on a 300 × 300 nm2 area is reliable for evaluation of temperature on a 127 × 127 nm2 

area according to previous discussion. Fig. 5.6 displays the results. The 430 K contour line 

occupies an area of 60 × 30 nm2 equivalent to that of one-bit volume in the recording volume.  
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Fig. 5.6 The distribution of the optimized absorption (left) and contours of temperature rise 
distribution (right) produced from optimization with filtering. The absorption is normalized by 

the nominal absorption 𝑞𝑞0. 

 

One important figure of merit in HAMR is the thermal gradient along cross-track and down-track 

directions. Based on the temperature distribution along these directions (Fig. 5.7), the down-track 

gradient is calculated to be 4.8 K/nm and the cross-track gradient is calculated to be 6.9 K/nm at 

the 430 K contour line. A higher thermal gradient is favored; however, the optimization does not 

explicitly optimize the thermal gradient. Multi-objective optimization using a weighted sum of 

two objective functions can be carried out to simultaneously increase thermal gradient while 

generating uniform temperature distribution. 
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Fig. 5.7 Cross-track temperature distribution (left) and down-track temperature distribution 
(right) produced from the optimized absorption.  

 

5.3.2 Electromagnetic Design 

We follow the same procedures in Section 4.1 to reconstruct optical absorption patterns generated 

from the thermal design, with parameters listed in Table 5.2. 

 

Table 5.2 Parameters used in optimization (HAMR). 

Parameter [unit] Value 

𝑅𝑅 [Yee cell length] 2.5  

𝛽𝛽 1 

𝑘𝑘 6 

𝛼𝛼 0.01 

𝑐𝑐𝑟𝑟 1 

𝑐𝑐𝛽𝛽 1.8 

𝑁𝑁𝑥𝑥 ,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧  101, 101, 31 

𝑆𝑆𝑥𝑥,𝑆𝑆𝑦𝑦 151, 151 
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Layout for the simulation is shown below. 

 

 

Fig. 5.8 Layout for the simulation (HAMR). All rectangles are squres with their centers alighned. 
Polarization of the plane wave is in x direction. The gold layer is 60 nm in thickness and the 
recording medium layer is 10 nm in thickness, while the field reconstructing surface is at the 

midplane of the recording medium. 

 

After 60 iterations of optimization consuming ~60 hours on a 20-core server, the final design 

produces a maximum temperature rise of 245 K. Therefore, we increase the laser power to 𝑃𝑃0 =
450
245

= 1.83 mW corresponding to a maximum temperature rise of 450 K. The final design is shown 

in Fig. 5.9, and the induced optical absorption and temperature are shown in Fig. 5.10. 
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Fig. 5.9 The final design density distribution. 

 

 

Fig. 5.10 The distribution of the absorption (left) and contours of temperature rise distribution 
(right) produced by the final design. The absorption is normalized by the nominal absorption 𝑞𝑞0. 

 

Some intermediate steps are shown in Fig. 5.11. The final design has an objective function 

evaluated to be 0.3. The isolated material island in the final design can cause a potential problem 

in self-heating of the NFT. Because it is isolated, heat can not be effectively dissipated to the 

surrounding, causing temperature to rise in the NFT. 
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Fig. 5.11 Distributions of the projected density 𝜌𝜌�̅ (left) and the normalized optical absorption 
(right) in some intermediate steps showing evolution of the design (HAMR). Each iteration is 
marked with diamond in the objective function graph at the bottom. The objective function is 

normalized so that it is evaluated as 1 in the 1st iteration. 

 

It is observed that there are two hot spots with magnitudes less than that of the objectve absorption 

distribution in Fig. 5.6. These hot spots are created by the two protrusions via the lightning rod 
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effect. The 430 K contour line occupies an area of 40 × 20 nm2, smaller than that of the objective 

temperature distribution.  

 

  

Fig. 5.12 Cross-track temperature distribution (left) and down-track temperature distribution 
(right) produced from the optical absorption generated by the final design.  

 

The down-track gradient is calculated to be 3.3 K/nm and the cross-track gradient is calculated to 

be 4.4 K/nm at the 430 K contour line. Comparing the temperature distributions in down-track and 

cross-track directions in Fig. 5.12 with ones in Fig. 5.7, we observe that the cross-track profile 

remains slightly changed while the down-track profile has a shaper peak. The reason for this is 

that in the objective absorption profile there are two horizontal ridges connecting the two peaks 

(Fig. 5.6), while in the design absorption profile there are no ridges (Fig. 5.10). The inability of 

the optimization to create the two horizontal ridges in the absorption profile stems from the fact 

that polarization is horizontal. Plasmonic waves reside on the material interface perpendicular to 

the direction of polarization. Therefore, a horizontal polarization is unable to induce horizontal 

plasmonic waves.  

5.4 Conclusion  

Topology optimization is successfully implemented to design a plasmonic aperture that can 

generate a uniform temperature profile in one-bit volume of HAMR. Although we tackle the design 
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problem in two stages – thermal and electromagnetic designs – a one-stage method is possible by 

directly relating field magnitudes to temperature distribution. Although it may seem like the 

resulted design is only able to produce uniform temperature in the cross-track direction, it is less 

important to produce uniform temperature profile in the down-track direction because the down-

track distance is much smaller.  
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6. SUMMARY AND FUTURE WORK 

6.1 Summary 

In this thesis, we present a framework for applying topology optimization in plasmonics using the 

FDTD method as the direct solver. In particular, detailed derivations of discrete and continuous 

adjoint sensitivity analysis are provided. We also present two case studies and one application to 

verify the robustness of the framework. 

 

At first, we generalize the sensitivity analysis from a function analytic point of view. It is explained 

and demonstrated that the first and foremost challenge in applying topology optimization in 

plasmonics is to obtain accurate sensitivity, which is particularly compelling if the direct solver is 

the FDTD method. We develop a method to solve this issue based on the underlying numerical 

model and argue that it applies to problems with isotropic materials, uniform grid and lossless 

boundary conditions. Validity of the solution is tested in the two examples where the predicted 

gradients match the exact gradients. We believe this key improvement would enable the 

widespread use of topology optimization with the FDTD method. Next, we discuss general 

procedures to carry out topology optimization. A density approach with the FDTD method and 

filtering-and-projection regularizations is presented and implemented to successfully recover near 

field patterns of a bowtie aperture and an elongated bowtie antenna. It is pointed out that 

regularizations are particularly important in plasmonic structures as the objective function is highly 

sensitivity to material variation. At last, we carry out topology optimization on a real application 

involving a coupled thermal-electromagnetic system. With restricted computational power, our 

method successfully generates a plasmonic aperture to produce uniform temperature profile within 

a nano-scale volume. Although we end up writing our own FDTD solver, the simplicity of the 

discrete sensitivity formula we present can be easily incorporated into any existing FDTD package 

as long as field components can be accessed at each individual Yee cell. 
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6.2 Future Work 

The discrete sensitivity analysis can be extended to include anisotropic materials, which broadens 

applications. To save time in simulations, the formula can be extended to non-uniform FDTD grid. 

To fully explore the capability of FDTD method, broad-band objective functions can be considered. 

Beside these extensions, the rough landscape of topology optimization in plasmonics may be 

countered by using line fitting model or Machine learning algorithms. We can apply the discrete 

sensitivity formula in a level-set-based method and use it as a fine-tuning stage after obtaining 

results from the density-based method to improve convergence. The topological derivatives 

introduced in Section 3.1.3 have only been derived in the continuous sense and can be extended to 

a discrete formula for FDTD method. 

 

There is a lot of room for improvement in the HAMR application provided we have a higher 

computational power. First, we can start tuning the parameters in the optimization to get better 

results. The tuning can be less time consuming if we can run the optimization in a cluster of 

machines with hundreds of cores. Second, a more complicated objective function can be used to 

simultaneously optimize thermal gradient and maintain uniform temperature profile. Third, more 

complicated regularizations can be applied to achieve smoother and faster convergence. Fourth, 

general 3D NFTs can be considered provided a reasonable regularization on the manufacturability 

is imposed. Finally, a level-set-based optimization can be used to fine-tune the geometry to achieve 

an even better result.   
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