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ABSTRACT

Smithson, Haixia Ph.D., Purdue University, August 2019. OPTIMAL SUBSAM-
PLING FOR MASSIVE PENALIZED SPINE SINGLE INDEX MODELS. Major
Professor: Fang Li, Hanxiang Peng.

The semiparametric single index model is well known as a compromise between

parametric and nonparametric regression models, with its response mean dependent

on a linear combination of covariates through an unknown univariate function. It

has been widely studied due to its simplicity and flexibility, yet the challenge of its

application exists especially for large datasets. This thesis focuses on the subsampling

approach to fit a semiparametric single index models on large datasets, which can be

computationally difficult due to the long calculating time and its high requirements

on storage memory. By subsampling, the estimation on subsample, called the sub-

sampling estimator, is used to approximate the estimation on the full sample, called

the full sample estimator. To obtain an optimal sampling probability for subsampling,

i.e., the optimal subsampling method, we first study the asymptotic properties of the

subsampling estimator in a general semiparametric single index model with a general

subsampling method, then we derive the formula of the optimal sampling probabil-

ity by minimizing the asymptotic MSE of the subsampling estimator. We consider

specific models in simulation studies and real data applications to investigate the

numerical performance of the optimal subsampling method.
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1. INTRODUCTION

1.1 Subsampling

Big data has been a successful product under rapid development of technologies

in modern time. The unprecedented size and complexity of big data provide us

great opportunities to explore as much information as possible, which is in demand

for precise decision-making and knowledge discoveries in many industries, such as

health care contributions, public sector services, industrialized and natural resources,

banking sectors, etc.. The high expectation on big data analytic leads us to a reality

that the “big” in either sample size or number of predictors makes the computing

difficult, in terms of both the long calculating time and insufficient storage memory.

There have been many methods to deal with the time consuming calculations in

big data model fitting, such as the improvement on computing facilities, for example,

using supercomputers, the divide and conquer method, and the subsampling method.

In consideration of user accessibility limitation and economic cost, we consider the

subsampling method as our priority choice to deal with the penalized spline single

index model on large datasets in this paper, see Drineas et al. (2006b) as an example

of the subsampling method in practice.

As we know that the simplest thus often used sampling method is the uniform

sampling method. Uniform sampling randomly assigns equal probability to each

observation, hence saves us the effort to calculate the sampling probability. However,

this also means that the chance of selecting each important observation is same as that

of selecting each trivial observation. Hence, to keep as more information as possible

in the sampling process, we expect an sampling method that extracts a small portion

of data that best represents the full data. This is the initial thought of this paper’s

work. There have been successful researches on the optimal sampling method in
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regression analysis on large datasets, for example, Drineas et al. (2011) proposed

to take randomized Hadamard transformation on datasets then take a subsample

uniformly to approximate the OLS estimator in linear regressions. Zhu et al (2015)

proposed to use normalized leverage score of the covariate matrix of predictor variables

as the non-uniform subsampling probabilities in linear regression. Wang et al. (2017)

developed an optimal subsampling method in logistic regression by minimizing the

asymptotic mean squared error (MSE) of the subsample estimator. Peng and Tan

(2018) studied the optimal subsampling method on linear regression both theoretically

and computationally. These have been a great motivation and resource for this paper’s

work on the optimal sampling method for nonlinear regression models, from which,

we consider one semiparametric single index model— penalized spline single index

models. The computation cost of penalized spline single index models comes from two

aspects. One is the high dimensionality of the objective function optimization caused

by the extra parameters in the regression function, the other one is the grid search

to find the optimal penalization to the spline coefficients. The detailed structure of

penalized single index models can be seen in section 2.1 and section 4.

1.2 Single Index Models(SIM)

In a single index model, the response yi and p covriate xi satisfy

yi = m(βTxi) + εi, i = 1, 2, ..., n, (1.1)

where (i) β ∈ Rp is an unknown parameter, referred as the index parameter, which

is assumed to satisfy ‖β‖ = 1 with its first element β1 > 0, for identifiability;

(ii) m : R→ R is an unknown univariate function;

(iii) ε′is are i.i.d random errors with mean 0 and constant variance var(εi) = σ2
0.

Let us write (X,y) for the dataset, where X = (x1,x2, ...,xn)T and y = (y1, y2, ..., yn)T .

The single index model generalizes the linear regression model by introducing an

unknown univariate link function m on the linear term βTxi (called the index). This

not only relaxes the restriction of parametric regression models’ assumption on the
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fixed data pattern, such as linear regression and generalized linear regression etc., but

also models the interactions between the covariates. On the other hand, the index

reduces the multivariate predictors to the univariate term, thus avoids the ”curse of

dimensionality” problem in the fully nonparametric setting.

In literature, there have been many studies on the estimation methods of single

index models. One is to obtain the nonparametric regression estimator of the model

function m using such as kernel smoothing method(Ichimura (1993) and Hardle et al

(1993)), penalized splines (Yu and Ruppert (2002))), regression splines (Antoniadis

et al. (2004)) and B-splines (Antoniadis et al. (2004)), then minimize the proposed

objective function to obtain the estimation of the index parameter β. Another one

is to directly estimate β without estimating η, for example, the average derivative

method (Stoker 1986), local linear estimation (Hristache et al. (2001)), methods

involving the conditional variance of Y in Xia et al. (2002) and Xia (2006) etc.. This

paper focuses on the penalized spline estimation of single index models.

Penalized splines gained popularity since 1990s as a flexible smoothing method

in semi-parametric regression models. The idea of penalization was originally from

O’Sullivan who in 1986 proposed the integrated squared derivative of the fitted curve

as the penalty (O’Sullivan (1986)). Then in 1992, Eiler and Marx derived the differ-

ence penalty, which is purely discrete, thus much simpler as it is trivial to calculate

the difference of any order (Eiler and Marx (1992)). Later in 1996, they proposed a

benchmark method of curve fitting by combining regressions with the B(Basic)-spline

basis and their difference penalty. Subsequently Ruppert and Carrol (1997) proposed

to use the truncated power function basis as components of penalized splines with

smoothness from a ridge penalty on the coefficients of parameters. Later Ruppert &

Carroll (2000) and Yu & Ruppert (2002) used truncated power functions in the basis

with equally spaced quantiles as knots plus a partial ridge penalty on the model func-

tion, they named their approach as P-spline, with truncated power function (TPF).

Their work has greatly supported the study of penalized splines. Since then, penal-

ized splines become more and more popular and are extended to regression models
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focusing on different purposes. The most recent works are the penalized spline estima-

tion for generalized partially linear single-index models by Yu, Wu and Zhang (2017),

variable selections for single index models with diverging number of index parameters

by G Wang and L Wang (2015), multivariate single index models on longitudinal data

by Wu and Tu (2016) etc..

In Chapter 2 we will provide methodologies and theories for the subsampling

method in the penalized spline single index models. Based on Chapter 2, two specific

penalized spline single index models are investigated in Chapter 3. One is the single

index model with B-spline plus the integrated second order penalty (Eilers & Marx

(1996)), another one is the single index model with the TPF as spline basis plus a

ridge penalty (Yu & Ruppert (2002)).
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2. SUBSAMPLING METHOD IN PENALIZED SPLINE

SINGLE INDEX MODELS

2.1 Introduction

The penalized spline single index model is one type of semi-parametric regres-

sion models. While parametric regression model such as linear regression, generalized

linear regression, and nonlinear regression models have known model functions that

describe the relationship between the response variable and explanatory variables,

they are not flexible enough to capture data patterns correctly. Fully nonparamet-

ric regression has its reputation of flexibility as it has no predetermined relationship

between the response and the explanatory variables, but it suffers from the curse

of dimensionality which requires the sample size to increase exponentially with the

number of explanatory variables. These give the purpose of semiparametric model as

semiparametric model function is assumed to be known but with unknown parame-

ters, this is where ”semi” comes from.

Given a dataset (X,y) described in Section 1.1, let B = B(ν) be a continuous

spline basis function of dimension d, i.e., B ∈ Rd with the index vector ν = βTx.

Then the mean function in (1.1) for the penalized spline single index model is esti-

mated by

m(ν) = δTB(ν), (2.1)

where δ ∈ Rd is an unknown vector of control points. As mentioned in section 1.2,

B spline (Eilers and Marx 1996) and TPF ( Ruppert et al. 2003 ) are the two splines

advocated in literature. We will introduce the detailed structure of these two splines

in section 4.

Denote the unknown parameter by θ =

β
δ

 ∈ Rp+d.
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The estimation of θ is obtained by minimizing the residual sum of squares plus a

penalty term, i.e.

Q(θ) =
1

n

n∑
i=1

(yi − δTB(βTxi))
2 + λPλ(θ), (2.2)

subject to the constraints

‖β‖ = 1 and β1 > 0.

Here λ is the penalty (or tuning) parameter, and Pλ(θ) is the penalization on the

parameter estimation. As λ → 0, it ends up with no penalty hence the curve fitting

will be very noisy to fit closely to every current data point, but not necessarily close to

the new data, which is called ”overfitting”. As λ→∞, the penalty term dominates,

and the solution converges to the OLS line as its second derivative is always zero, this

leads to ”underfitting”.

In literature, the popular penalties are the partial ridge penalty on δ (Yu and

Ruppert (2002)), the penalty on the integrated second derivative of fitted curve (Osul-

livan 1986&1988), the difference penalty (Eilers & Marx (1996)), the SCAD penalty

for variable selection (Fan and Li (2001)) etc.. The way to choose the penalty λ is by

grid searching using criterion such as minimizing cross-validation (CV) score, gener-

alized cross-validation (GCV) score, or Akaike’s information criterion (AIC) etc.. In

this paper, from a grid values of λ, for example, as Yu and Ruppert (2002) suggested,

from 30-points grid where log10(λ) are equally spaced quantiles in the interval [−6, 7],

we choose one that minimizes the GCV score

GCV (λ) =
n−1

∑n
i=1{yi − δ

TB(βTxi)}2

{1− n−1trA(λ)}2

Here A(λ) is the hat matrix of the penalized p-splined single-index model, so that

the fitted values are

ŷ = A(λ)y. (2.3)

Notice that we applied the cyclic permutations of the trace function in above,

which reduces the dimension of matrix thus helps relax the memory issue on storing

big matrices.
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For the estimation of β, to apply the constraints on β, we can reparametrize β as

β(φ) =
(1,φT )T√
1 + ‖φ‖2

(2.4)

with φ ∈ Rp−1. Then the parameter to be estimated becomes θφ =

φ
δ

 ∈ Rp+d−1.

Thus the original parameter vector θ loses one dimension after it is reparameterized

to θφ. The Jacobian matrix of transforming θ to θφ is

J =


− φT

(1+‖φ‖2)3/2
01×d

I(p−1)×(p−1)√
1+‖φ‖2

− φφT

(1+‖φ‖2)3/2
0(p−1)×d

0d×(p−1) Id×d

 . (2.5)

Note that the inverse of the transformation (2.4) is

φ =
(β2, ..., βp)

T

β1

. (2.6)

The objective function (1.1) becomes

Qn(θφ) =
1

n

n∑
i=1

(yi − δTB(β(φ)Txi))
2 + λPλ(θφ). (2.7)

Denote the estimate of θφ by θ̂φ =

φ̂
δ̂

. Then

β̂ = β(φ̂).

The algorithm for the estimation procedure is as follows:

Algorithm 1

Step 1. Initialization. Calculate β̂0 as the least squares estimate in the linear

regression based on the dataset (X; y). By the constraint on β, set

β̂0 = sign(β̂01)
β̂0

‖β̂0‖
,

where β̂01 is the first element of β̂0. Then obtain φ̂0 from (2.6), and δ̂0 by minimizing

the function (2.7) after plugging in φ0 = φ̂0.
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Step 2. Optimization. Use “optim” package in R to minimize Qn(θ) in (2.7) with

the initial value θ̂φ0
=

φ̂0

δ̂0

 to obtain θ̂φ =

φ̂
δ̂


Step 3. Reparametrization. Use (2.4) to obtain β̂, hence θ̂ =

β̂
δ̂

.

Step 4. Cross validation. Apply above three steps to each λ in the grid, and choose

one that has the minimal GCV score value, its corresponding parameter estimates

will be the final estimates.

Till now, we can observe the enormous computational work in the penalized spline

single index models. The optimization of (2.2) through newton or quasi-newton

method takes O(n2(p + d)) running time in each iteration, plus the cross validation

process, the computing can be extremely challenging especially when n is huge. A

subsampling method can downsize the data. Next, we are going to introduce the

methodologies of the general subsampling method in penalized single index models

in section 2.2, and the asymptotic theories of the resultant subsample estimator in

section 2.3.

2.2 The Methodology

In this section, we will apply the general subsampling method to penalized spline

single index models to obtain the subsample estimator.

We shall the subsampling procedure described in Peng and Tan (2018), Zhao

(2018). First, take a small sample of size r(r << n) from a given full sample

(X; y) = {(x1; y1), (x2; y2), ..., (xn; yn)} with replacement and using the sampling

probability distribution π = (π1, π2, ..., πn) (assumed known for now). The obtained

subsample is denoted as (X∗; y∗) = {(x∗1; y∗1), (x∗2; y∗2), ..., (x∗r; y
∗
r)} with the corre-
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sponding sampling probability vector π∗ = (π∗1, π
∗
2, ..., π

∗
r). Then, based on (2.7), the

subsampling estimator, which is denoted by θ̂
∗
φ =

φ̂∗
δ̂
∗

, is obtained by minimizing

Q∗(θφ) =:
1

nr

r∑
i=1

(y∗i − δTB(βTx∗i ))
2

π∗i
+ λPλ(θφ). (2.8)

By (2.4), we obtain

θ̂
∗

=

β(φ̂
∗
)

δ̂
∗

 .

We can see that (2.8) is actually the objective function (2.7) based on the weighted

subsample ( X∗
√
rπ∗ ; y∗

√
rπ∗ ). If we denote the weight as w = (w1, w2, ..., wn)T , where

wi = ki
rπi

, ki = 0(i-th observation is not selected) or ki = 1(i-th observation is selected),

then w has the scaled multinomial distribution, i.e.

P (w1 =
k1

rπ1

, ..., wn =
kn
rπn

) =
r!

Πn
i=1k!

Πn
i=1π

ki
i ,

n∑
i=1

ki = r. (2.9)

For more details, see Peng and Tan (2018).

It is clear that Q∗(θφ) is continuous on the parameter space and is the Hansen-

Hurwitz estimator of Q(θφ), that is, Q∗(θφ) is an unbiased estimate of Q(θφ),

E∗Q∗(θφ) = Qn(θφ).

where E∗ denotes the expectation calculated under the subsampling distribution π.

Below is an algorithm for calculating the subsampling estimator θ̂
∗

under a sam-

pling probability distribution π.

Algorithm 2

Step 1. Take a subsample (X∗; y∗) = {(x∗1; y∗1), (x∗2; y∗2), ..., (x∗r; y
∗
r)} of size r << n

from the full sample (X; y) = {(x1; y1), (x2; y2), ..., (xn; yn)} with the corresponding

sampling probabilities π∗ = (π∗1, π
∗
2, ..., π

∗
r);

Step 2. Apply Algorithm 1 on the weighted subsample

(
X∗√
rπ∗

;
y∗√
rπ∗

) = {( x∗1√
rπ∗1

;
y∗1√
rπ∗1

), (
x∗2√
rπ∗2

;
y∗2√
rπ∗2

), ..., (
x∗r√
rπ∗r

;
y∗r√
rπ∗r

)}

to obtain the subsampling estimator.
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2.3 Asymptotic Theories

2.3.1 Basic definitions from probability theory

This section recalls definitions and important results in asymptotic theory in prob-

ability. Note that in this section, the notations are general notations.

Let (Ω,F ,P) be a probability space, where Ω denotes a sample space, F is a

suitable σ−algebra on Ω, and P is a probability measure. A random variable Z is a

measurable function Z : Ω 7→ R. Z could also be a vector valued random variable,

i.e., Z : Ω 7→ Rk. The expectation (mean) of a random variable Z is

E[Z] =

∫
Ω

Z(ω)dP (ω)

The variance is

V ar(Z) = E[(Z − E(Z))2]

Given random vector variables X, W, the variance and variance-covariance matrix

are defined by

V ar[Z] = E[(Z− E[Z])(Z− E[Z])T ]

Cov[Z,W] = E[(Z− E[Z])(W − E[W])T ]

The distribution function of X is the function FZ : R 7→ [0, 1] : FZ(z) := P (Z ≤ z)

For a random k dimensional vector variable X we similarly define FZ : Rk 7→ [0, 1] by

FZ(z) := P (Z ≤ z).

where Z ≤ z is understood component-wise.

Next are the definitions of convergence and its notations.

Definition 2.3.1 Let {Zn} be a sequence of random variables defined on (Ω,F ,P).

Zn convergences in probability to zero, written as Zn = oP (1) or Zn
P→ 0, if for

arbitrary ε > 0,

P (|Zn| > ε)→ 0, as n→∞.
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Or more specifically, Zn = oP (1) if for arbitrary ε, ε1 > 0, there exists N > 0,

such as if n > N ,

P (|Zn| > ε) < ε1.

Definition 2.3.2 Let {Zn} be a sequence of random variables defined on (Ω,F ,P).

Zn is bounded in probability, if for any ε > 0, there exists Mε > 0 such that

P (|Zn| > Mε) < ε, for all n.

An alternative way to understand this boundedness in probability is that:

Zn is bounded in probability if for every ε > 0, there is a set F ∈ F and a number

Mε such that for all ω ∈ F ,

|Zn(ω)| ≤Mε, for all n,

and

P (F c) < ε.

Definition 2.3.3 Let {Zn} be a sequence of random variables defined on (Ω,F ,P)

and let {cn} be a sequence of strictly positive real numbers.

1. Zn converges in probability to Z if and only if Zn − Z = oP (1).

2. Zn = oP (cn) if and only if c−1
n Zn = oP (1).

3. Zn = OP (cn) if and only if c−1
n Zn = OP (1).

The following propositions shows properties of oP and OP (the little o and big O

notation).

Proposition 2.3.4 Let {Zn} and {Wn} be two sequences of random variables on

(Ω,F , P ) and {sn} and {tn} are two sequences of strictly positive numbers.

1. Suppose Zn = oP (sn) and Wn = oP (tn), then

(a) ZnWn = oP (sntn).

(b) Zn +Wn = oP (max (sn, tn)).

(c) |Zn|r = oP (srn) for r > 0.
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2. If Zn = oP (sn) and Wn = Op(tn), then ZnWn = oP (sntn).

3. If Zn
P→ Z and g : R 7→ R is a continuous mapping, then g(Zn)

P→ g(Z).

4. If Zn −Wn
P→ 0 and Wn

P→ W , where W is a random variable on (Ω,F , P ),

then Zn
P→ W also.

The above delevelopments can be extended to the random vector variables and matrix

variables element wise, which we will not repeat again. For the k-dimensional vector

Z, denote its j-th component by Zj.

Definition 2.3.5 Let {Zn} be a sequence of k dimensional random vectors on (Ω,F ,P),

let {cn} be a sequence of strictly positive numbers. Assume k is fixed.

1. Zn = oP (cn) if and only if its j-th component Zn,j = oP (cn) for j = 1, ..., k.

2. Zn = OP (cn) if and only if Zn,j = OP (cn) for j = 1, ..., k.

3. Zn convergences in probability to Z, written as Zn
P→ Z if and only if Zn−Z =

oP (1).

We introduce some of the notation we use throughout. We write ‖A‖ for the

euclidean norm and |A|o for the operator (or spectral) norm of a matrix A which are

defined by

‖A‖2 = trace(ATA) =
∑
i,j

A2
ij |A|o = sup

‖u‖=1

|Au| = sup
‖u‖=1

(uTATAu)1/2.

In other words, the squared euclidean norm ‖A‖2 equals the sum of the eigen values

of ATA, while the squared operator norm |A|2o equals the largest eigen value of ATA.

Consequently, the inequality |A|o ≤ ‖A‖ holds. We should point out that

|A|o = sup
‖u‖=1

sup
‖v‖=1

u>Av

and that this simplifies to

|A|o = sup
‖u‖=1

u>Au

if A is a nonnegative definite symmetric matrix.

Suppose k = kn is a sequence of positive integers possibly diverging to infinity.

We have the following
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Proposition 2.3.6 Let {Zn} be a sequence of k = kn dimensional random vectors

on (Ω,F ,P), and Z a k = kn dimensional random vector on the same probability

space. Then, Zn − Z = oP (1) if and only if ‖Zn − Z‖ = oP (1).

For above convergence in probability, the sequence of random variables are defined

on the same probability space. For convergence in distribution, this is not necessary.

Below is the definition of convergence in distribution, which can also be extended to

vector variables.

Definition 2.3.7 Let {Zn} be a sequence of random variables, with distribution func-

tions {FZn}. Zn convergences in distribution to Z if

lim
n→∞

FZn(z) = FZ(z)

for all z ∈ C(FZ), where C(FZ) denotes the set of continuity points of FZ. Write

Zn
D→ Z for the convergence in distribution.

Proposition 2.3.8 Suppose Zn
D→ Z, then Zn = OP (1). If Zn = oP (1), Zn = OP (1)

also holds.

Note that in the following section on asymptotic theory, we use P to denote the

probability measure, where we use oP and OP notation, and use P ∗ to denote the

probability measure for the subsampling distribution, where we use oP ∗ and OP ∗

notation.

2.3.2 Dimension asymptotics

Now we proceed to the asymptotic theory of the subsample estimator under the

general subsampling method. The theory includes both cases where the number of

covariates p fixed and where p increases with growing sample size n, which is a popular

approach in the high dimensionality problem.

For the convenience of formulation in the main theorem coming next, we would

like to introduce a few notations.
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In what follows, unless otherwise specified, we write θφ = θ. Let

ei(θ) = yi − δTB(xTi β(φ)), i = 1, 2, ..., n.

Then ei(θ̂), i = 1, 2, ..., n are the residuals of the SIM fitting on the full sample. Let

f(θ) = δTB(XTβ(φ)), so fi(θ) = δTB(xTi β(φ)) is the i-th component of f(θ) for

i = 1, 2, ..., n. Introduce

Ψn(θ) := nQ̇(θ), Ψ∗r(θ) := nQ̇∗(θ).

Using these, one calculates

Ψn(θ) =
n∑
i=1

Φi(θ), θ ∈ Θ ⊂ Rp+d−1,

where

Φi(θ) = −2ei(θ)ḟi(θ) + nλṖλ(θ), i = 1, 2, ..., n. (2.10)

The hessian matrix is then given by

Hn(θ) :=
∂2nQn(θ)

∂θ∂θT
=

n∑
i=1

Φ̇i(θ). (2.11)

Note

Ψn(θ̂) =
n∑
i=1

Φi(θ̂) = 0. (2.12)

This and (2.10) imply

n∑
i=1

2ei(θ̂)ḟi(θ̂) = n2λṖλ(θ̂), (2.13)

For θ ∈ Θ, let

Mn(θ) =
n∑
i=1

Φi(θ)ΦT
i (θ)

πi
, M̂n = Mn(θ̂).

Thus, for future use, by (2.10) we derive

M̂n =
n∑
i=1

−2ei(θ̂)ḟi(θ̂)ΦT
i (θ̂)

πi
+ nλṖλ(θ̂)

n∑
i=1

ΦT
i (θ̂)

=
n∑
i=1

4e2
i (θ̂)ḟi(θ̂)ḟTi (θ̂)

πi
− n2λ2Ṗλ(θ̂)Ṗ T

λ (θ̂), (2.14)
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In Section 3, we shall use (2.14) to derive the A-optimal sampling probability distri-

bution π.

Let λmin{M} (λmax{M}) be the minimum (maximum) eigenvalue of matrix M .

For θ ∈ Θ, let

M̃n(θ) =
n∑
i=1

Φi(θ)ΦT
i (θ), M̃n = M̃n(θ̂).

Let

an = λ1/2
max(M̂n), ãn = λ1/2

max(M̃n).

Let σ2
n be a sequence of positive numbers. Typically, σ2

n = 1/maxi πi. We need the

following conditions for Theorem 2.3.9.

A1 There exists a constant b0 such that it holds in probability that

an →∞, ãn →∞, ã−2
n λmin(Hn(θ̂)) ≥ b0 > 0.

A2
n∑
i=1

π−1
i ‖Φ̇i(θ̂)‖2 = oP (p−1rã4

n).

A3 There is a neighborhood N0 of θ0 and Lipschitz constant ηi such that

|Φ̇i(θ)− Φ̇i(θ0)|o ≤ ηi‖θ − θ0‖, θ ∈ N0, i = 1, . . . , n,

where ηi’s satisfy
n∑
i=1

π−1
i η2

i = oP (p−2σ−2
n r2ã6

n).

A4

λmax(M̃n)/λmin(M̃n) = OP (1).

A5 For arbitrary u with ‖u‖ = 1, the double array z∗nj = s−1
n u

TH−1
n (θ̂)Φi(θ̂)/π∗j

j = 1, . . . , r, r ≥ 1 satisfies the Lindeberg condition: for any ε > 0, as r →∞,

n∑
i=1

πi‖zni‖21[‖zni‖ ≥
√
rε] = oP (1),

where s2
n = uTH−1

n MnH
−T
n |θ̂u.
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Theorem 2.3.9 Assume A1-A3 hold. Suppose θ̂ is a sequence of to (2.12) such that

θ̂ = θ0 + oP (1). Assume

n∑
i=1

π−1
i ‖Φi(θ̂)‖2 = OP (pσ2

nã
2
n). (2.15)

Then it holds in probability that there exists a sequence of the subsampling estimators

θ̂
∗

that minimize (2.8) such that if p1/2r−1/2σnã
−1
n = oP (1) then

p−1/2σ−1
n ãnr

1/2(θ̂
∗
− θ̂) = OP ∗(1), (2.16)

p−1/2σ−1
n ã−1

n Hn(θ̂)r1/2(θ̂
∗
− θ̂) = −p−1/2σ−1

n ã−1
n

1√
r

r∑
j=1

Φ∗j(θ̂)

π∗j
+ oP ∗(1). (2.17)

If, further, (A4)− (A5) hold, then it holds in probability that as r →∞,

s−1
n

√
ruT (θ̂

∗
− θ̂)⇒ N(0, 1), (2.18)

where u is an arbitrary unit vector.

Remark 2.3.10 Assumption A1 implies that Hn(θ̂) is positive definitely in proba-

bility uniformly in n, and satisfies

|Hn(θ̂)|o = OP (1). (2.19)

Remark 2.3.11 Assumptions A1 and A2 guarantee that the variance-covariance

matrix of the subsample estimator θ̂
∗

is finite and positive definite. These two as-

sumptions, together with A3, are required to prove that certain remainder terms are

negligible as the subsample size r increases.

Remark 2.3.12 The commonly used cubic spline is Lipschitz continuous, and hence

satisfies the Lipchitz condition in Assumption A2.

Remark 2.3.13 Consider the linear regression which has been fully studied in Peng

and Tan (2018). The least square estimate is

β̂ = arg min
β

1

n

n∑
i=1

(yi − xTi β)2
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for the linear regression model

y = Xβ + ε,

the above theorem also applies. In this case, there is no penalty, that is, λ = 0. So

Φi(θ) = −2ei(θ)xi. (2.20)

For simplicity, we check the case where subsampling is uniform sampling. (2.15) in

Theorem 2.3.9 implies
1

n

n∑
i=1

e2
ixix

T
i = OP (1),

which holds if E(XXT ) <∞ and it is positive definite. The hessian matrix

Hn =
2

n
XTX, (2.21)

A1 then implies that the minimum eigenvalue of 1
n
XTX is bounded away from 0,

which also guarantees the positive definiteness of the hessian matrix. Since

∂Φi(θ)

∂θT
= 2xix

T
i

is irrelevant of θ, so the Lipschitz condition in A3 is trivially valid as the left side of

the equation equals 0.

Remark 2.3.14 Theorem 2.3.9 shows the subsample estimator approximates the full

sample estimator, and is asymptotically normal.

Remark 2.3.15 By (2.17), we derive the main term of the variance-covariance ma-

trix V ar∗(θ̂
∗
) of the subsampling estimate θ̂

∗
as follows:

Vn = H−1
n

n∑
i=1

ΦiΦ
T
i

πi
H−Tn

∣∣∣
θ̂

Proof of Theorem 2.3.9

Before we prove Theorem 2.3.9, we need Lemma 2.3.16, which is Theorem 6.3.4

of Ortega and Rheinboldt (1970). For a given set C, its closure and boundary are

denoted by C̄ and ∂C, respectively.
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Lemma 2.3.16 Let C be an open, bounded set in Rn and assume that F : C̄ ⊂

Rn → Rn is continuous and satisfies (x − x0)TF(x) ≥ 0 for some x0 ∈ C and all

x ∈ ∂C. Then F (x) = 0 has a solution in C̄.

Proof of Theorem 2.3.9: For t ∈ Rp+d−1, let tn = p1/2r−1/2σnã
−1
n t, and let

T∗(t) = p−1/2r1/2σ−1
n ã−1

n [Ψ∗(θ̂ + tn)−Ψ∗(θ̂)]− ã−2
n Hn(θ̂)t. (2.22)

For an arbitrary constant c > 0, fix ‖t‖ ≤ c. By Assumption, tn = oP (1). Hence by

the first equality in Assumption A3, for large r and with large probability,

‖T∗(t)‖2 ≤ 2c2ã−4
n

(
‖H̄∗(θ̂)‖2 + c2pr−1σ2

nã
−2
n |

n∑
i=1

wiηi|2
)
, (2.23)

where Ḡ∗ =
∑n

i=1 w̄iGi for G∗ =
∑n

i=1wiGi with w̄i = wi − E∗(wi) = wi − 1. It is

easy to calculate

rE∗(‖H̄∗(θ̂)‖2) ≤
n∑
i=1

π−1
i ‖Φ̇i(θ̂)‖2 =: An, (2.24)

rE∗(|
n∑
i=1

wiηi|2) ≤ rE∗(
n∑
i=1

wi|ηi|2) ≤
n∑
i=1

π−1
i η2

i =: Bn.

It then follows from Assumptions A2-A3 that

E∗( sup
‖t‖≤c

‖T∗(t)‖2) ≤ 2c2r−1ã−4
n (An + c2pr−1σ2

nã
−2
n Bn) = oP (p−1). (2.25)

Note (2.22) that

`∗(c) = inf
‖t‖=c

{
p−1/2r1/2σ−1

n ã−1
n tTΨ∗(θ̂ + tn)

}
(2.26)

≥ c2ã−2
n λmin(Hn(θ̂))− c sup

‖t‖=c
‖T∗(t)‖ − cp−1/2r1/2σ−1

n ã−1
n ‖Ψ∗(θ̂)‖.

By Assumption A1, ã−2
n λmin(Hn(θ̂)) ≥ b0 > 0 with large probability and for large n.

For K > 0, using Ψn(θ̂) = 0, we have

P ∗(p−1/2r1/2σ−1
n ã−1

n ‖Ψ∗(θ̂)‖ > K)

= P ∗(p−1/2r1/2σ−1
n ã−1

n ‖Ψ̄
∗
(θ̂)‖ > K)

≤ K−2p−1σ−2
n ã−2

n

∑
i

π−1
i ‖Φi(θ̂)‖2

= K−2OP (1) = oP (1),
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where (2.15) is used for the second equality. This and (2.25)-(2.26) imply for large c,

P ∗(`∗(c) > 0) ≤ 1− P ∗( sup
‖t‖=c

‖T∗(t)‖ > b0c)− P ∗(p−1/2r1/2σ−1
n ã−1

n ‖Ψ∗(θ̂)‖ > b0c)

= 1− oP (1).

By the continuity of Ψ∗(θ) on Θ and Lemma 2.3.16, there exists some t∗ with ‖t∗‖ < c

such that

Ψ∗(θ̂ + p1/2r−1/2σnã
−1
n t∗) = 0.

Let θ̂
∗

= θ̂ + p1/2r−1/2σnã
−1
n t∗. Then θ̂

∗
minimizes (2.8) and satisfies

P ∗(‖p−1/2σ−1
n ãnr

1/2(θ̂
∗
− θ̂)‖ ≤ c) ≥ 1− oP (1).

This shows (2.16). By (2.25),

T∗(t∗) = oP (p−1/2). (2.27)

This, in view of (2.22), shows (2.17)

The asymptotic normality (2.18) follows from the established relation (2.17) and

the Lindeberg-Feller theorem (e.g. Theorem 7.2.1 of Chung, 2001). More specifically,

the Lindeberg condition (A5) implies that the main term on the left side of (2.17)

has an asymptotic standard normal in conditional probability given the data, while

the remainder term is negligible,

s−1
n ãnσnu

TH−1
n (θ̂)p1/2α∗n = oP ∗(1),

where p1/2α∗n = oP ∗(1) by (2.27). This follows from

ãnσn
sn
≤ λ

1/2
max(M̃n)σn

λ
1/2
min(M̃n))σn‖u>H−1

n (θ̂)‖
≤ B

‖uTH−1
n (θ̂)‖

,

where B is a constant by Assumption A4. The proof is now complete.
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3. OPTIMAL SUBSAMPLING FORMULATION AND

IMPLEMENTATION

3.1 Formulation

To obtain the subsample estimator θ as referred in Theorem 2.3.9, the sampling

probability distribution π needs to be specified. As we illustrated in the introduc-

tion, a simple choice is the uniform sampling, which may not perform well due to

its inefficiency. Alternatively, a non-uniform subsampling probability is derived in

this section and is shown to have better performance than the uniform subsampling

method in section 4 and section 5.

A-optimality aims to minimize the trace of the variance-covariance matrix of the

subsampling estimator, to obtain the sampling probability. It has been used in the

subsampling method for linear regression (Zhu and Ma et al. 2015), logistic regres-

sion(Wang et al. 2017). In our case, since the estimations of β and δ are intercon-

nected in the sense that if parameter β can be estimated accurately and efficiently,

one can plug the estimate into the single index model function to obtain a good esti-

mation for the link function, hence the estimation of parameter β is more important

than the estimation of δ. Based on this, we only consider the subsampling method

for improving the efficiency of estimating β, which is equivalent to that of φ, we have

the following result:

Theorem 3.1.1 There exists a sampling probability π = (π1, π2, ..., πn) that min-

imizes asympotittically the trace of variance covariance matrix of the subsampling

estimator φ̂∗, which is given by

πi =
‖Λ1H

−1
n (θ̂)ḟi(θ̂)‖|ei(θ̂)|∑n

i=1 ‖Λ1H−1
n (θ̂)ḟi(θ̂)‖|ei(θ̂)|

, i = 1, 2, ..., n, (3.1)
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where Λ1 is a diagonal matrix with first p− 1 diagonal elements being 1 and the rest

equals 0.

Note that Λ1 extracts the variance-covariance matrix of the subsampling estimator

φ̂
∗
.

Proof of Theorem 3.1.1:

Let tr(M) denote the trace of a square matrix M , that is, tr(M) is the sum of

the diagonal entries.

By Theorem (2.3.15), we calculate that the trace as follows:

tr(V ar∗(φ̂
∗
)) = tr(Λ1VnΛ1)

= tr(Λ1H
−1
n (θ̂)

n∑
i=1

Φi(θ̂))Φi(θ̂))T

πi
H−1
n (θ̂)Λ1)

= tr(Λ1H
−1
n (θ̂)

n∑
i=1

4e2
i (θ̂)ḟi(θ̂)ḟTi (θ̂)

πi
H−1
n (θ̂)Λ1)

−n2tr(Λ1H
−1
n (θ̂)λ2Ṗ (θ̂)Ṗ T (θ̂)H−1

n (θ̂)Λ1)

=
n∑
i=1

‖2ei(θ̂)Λ1H
−1
n (θ̂)ḟi(θ̂)‖2

πi
− n2‖Λ1H

−1
n (θ̂)λṖ (θ̂)‖2.

where the second last equality used (2.14) and the last equality used

tr(aaT ) = ‖a‖2

for any vector a.

The goal is to obtain π by minimizing (3.2) under the constraint

n∑
i=1

πi = 1.

Since the second term of (3.2) is irrelevant to π, only the first term is used to be

minimized as a function of π. By Lagrange multiplier, write the Lagrange function

as

L(π; τ) =
4

n2

n∑
i=1

‖ei(θ̂)Λ1H
−1
n (θ̂)ḟi(θ̂)‖2

πi
+ τ(

n∑
i=1

πi − 1)
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Let
∂L(π; τ)

∂πi
= − 4

n2

‖ei(θ̂)Λ1H
−1
n (θ̂)ḟi(θ̂)‖2

π2
i

+ τ = 0,

we obtain

πi =
2‖ei(θ̂)Λ1H

−1
n (θ̂)ḟi(θ̂)‖

n
√
τ

,

together with
∑n

i=1 πi = 1, we have (3.1).

Remark 3.1.2 As we discussed in Remark 2.3.13, the asymptotic theorems can be

applied to the linear regression case y = Xβ+ε, which was studied in Peng and Tan

(2018).. When there is no penalty and no constraint on the parameters, the optimal

sampling probability in (3.1) becomes

πlmi =
|ei(θ̂)|‖(XTX)−1xi‖∑n
i=1 |ei(θ̂)|‖(XTX)−1xi‖

, i = 1, 2, ..., n (3.2)

we can see that the optimal sampling probability depends on the residuals and the

covariates. The sampling probability is larger if the responses end up with big-

ger residuals, which are harder to observe as they are in the tail region of the re-

sponse distribution. This means the optimal subsampling probability tends to in-

clude more off-track observations. For the covariates, the observations with larger

‖(XTX)−1xi‖ = xTi (XTX)−2xi, i = 1, 2, .., n are more likely to be selected. Note that

for linear regression, xTi (XTX)−1xi, i = 1, 2, .., n are defined as statistical leverage

scores. There has been studies for subsampling method using normalized leverage

scores as sampling probability, see Ma and Sun 2014 and Ma et al. 2015.

3.2 The A-optimal Scoring Algorithm

This section solves practical issues when implementing the optimal subsampling

method. We follow the A-optimal scoring algorithm proposed by Peng and Tan

(2018).

Firstly, notice that computing π requires computing H =: Hn(θ̂). As the Hessian

matrix H(θ̂) is expensive to calculate and invert, a popular method to solve this
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issue is by using the simple diagonal approximation to the hessian (le Cun 1987). We

utilize this method to approximate H, that is, we calculateH(p−1)×(p−1) 0

0 Hd×d

 ,

to replace H, i.e. the diagonal blocks are kept, where information from other entries

are skipped. Note that H(p−1)×(p−1) = ∂2Q
∂φ∂φ

. Denote the first (p − 1) elements of ḟi

in (3.1) as ḟi(p−1). Then we can obtain an easier-to-compute version of π in (3.1) as

π̃i =
‖ei(θ̂)H−1

(p−1)×(p−1)(θ̂)ḟi(p−1)(θ̂)‖∑n
i=1 ‖ei(θ̂)H−1

(p−1)×(p−1)(θ̂)ḟi(p−1)(θ̂)‖
, i = 1, 2, ..., n. (3.3)

In Chapter 4, we report the simulation results about investigating the performance

of the approximation π̃ in (3.3) to π in (3.1).

Note that for calculating the sampling probability for small and moderate size of

datasets or datasets with large dimension p, using π̃ in (3.3) doesn’t save much time.

However, in big data analysis where it is very difficult to calculate the hessian matrix

and its inverse, π̃ is very effective in time efficiency. In Chapter 4, we will compare

the performance of π̃ and π in terms of efficiency of the subsampling estimation.

Secondly, we can see that the sampling probability π relys on the full sample

estimator θ̂, which is not practical since the full sample estimation is unknown in

reality, the main goal of doing subsampling is to reduce the sample size so that the

full sample estimator can be approximated by the subsample estimator instead. One

way to handle this issue is to go through the two steps algorithm—Algorithm 3, this

method can be referred to the A-optimal Scoring Algorithm proposed by Peng and

Tan 2018.

The A-optimal Scoring Algorithm 3

Step 1. Take a subsample of size r0 << n uniformly from the full sample, then

obtain the initial estimator θ̂r0 based on this subsample, replace θ̂ with θ̂r0 in (3.3)

to calculate π;
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Step 2. Take a subsample of size r << n from the full sample using the sampling

probability π calculated in the first step, then base on this subsample to calculate

the subsample estimator θ̂
∗
, see Algorithm 2.

Remark 3.2.1 Observe that the sampling probability (3.3) relys on derivative of the

parameter φ only, which we can relate to the case where δ is treated as fixed. As a

matter of fact, if we fix δ so that the only unknown parameter is φ, then we use the

same way, i.e. by deriving the variance covariance matrix of the subsample estimator,

which is φ̂
∗

in this case, then minimizing the trace of variance covariance matrix, we

can obtain the exactly same formula of the sampling probability as in (3.3).

Remark 3.2.2 From formula (3.1), the optimal sampling probability πi for the i-th

observation is proportional to its residual value ei(θ̂) on the full data, the hessian ma-

trix H(θ̂), and the gradient vector ḟi(θ̂) of the objective function at the full sample

estimation θ̂. The inverse of the optimal sampling probabilities for each observa-

tion are used as weights for calculating the optimal subsample estimator, because of

this, the sampling probability should be bounded away from zero. Theoretically, the

sampling probabilities that are nearly zero violate the assumptions of boundedness

listed in section 2.3. Practically, since we calculate the sampling probability using

the two steps algorithm(Algorithm 3), i.e., the sampling probability takes values on a

subsample instead of the full data, the hessian matrix H could be poor conditioned,

which leads to the small values in the sampling probability. In this case, observations

that could have been selected in real life won’t be selected due to the calculated zero

sampling probability. To alleviate this issue, we can treat all the observations with the

calculated zero sampling probabilities equally, i.e., we select them uniformly instead

of skipping all of them, that means a truncation on the sampling distribution can be

applied. In details, first we summarize the sampling probability π = (π1, π2, ..., πn),

check if there are zeros or nearly zero values. If they exist, we calculate the total

number of them and calculate their percentage p0, then truncate π as

πtrunci = πi1[πi > p0] + p01[πi ≤ p0], i = 1, 2, ..., n.
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In our application of the sampling probability truncation in simulation studies in

section 4 and real data applications in section 5, we truncated at most 25% of the

sampling probability in few cases, as normally zero values happens before the 25%

quantile of the sampling probability. For the cases where our optimal sampling proba-

bility doesn’t work, i.e., doesn’t perform better than the uniform sampling, truncation

will be a remarkable improvement. However, for cases where our optimal sampling

probability already works, truncation weakens the performance of the optimal sam-

pling probability hence is not necessary.



26

4. SIMULATION STUDIES

In this chapter, we shall apply the optimal subsampling method to specific penalized

spline single index models on simulated datasets Dataset 1-Dateset 4 shown below.

Note that we calculate the sampling probability distribution using π̃ in (3.3) and the

A-optimal Scoring Algorithm in this chapter and chapter 5, however we also give

the simulated MSE results using π in (3.1) in the last section of this chapter for a

comparison.

Dataset 1. Consider the following single index model,

yi = (xTi β0)2ex
T
i β0 + σ0εi, i = 1, 2, ..., n

where xi = (xi1, xi2, · · · , xip) was generated from N(0,Σ) with Σ = (Σjk) = (0.5|j−k|),

and εi’s are independent and identically distributed as the standard normal N(0, 1).

We chose the sample size n = 100, 000, the covariate dimension p = 12, the true

parameter β0 equals to a normalized vector of (1,0.001,0.001) repeated p/3 times,

and σ0 = 1.

Dataset 2. Same as Dataset 1 except that xi’s were generated from the normal

mixture 0.8N(0,Σ) + 0.2N(0, 10Σ).

Dataset 3. Same as Dataset 1, except that xi’s were generated from t- distribution

with 8 degrees of freedom.

Dataset 4. Consider the following model

yi = (xTi β0)3 + 5 sin(xTi β0) + σ0εi, i = 1, 2, ..., n,

where σ0 = 0.1, xi = (xi1, xi2, ..., xip) with xi1 ∼ binomial(0.4), xi2 ∼ binomial(0.6),

xi3 ∼ binomial(0.8), (xi4, · · · , xip) ∼ N(0,Σ(p−3)×(p−3)) with Σjk = 0.5|j−k|, j, k =

4, 5, ..., p− 3, while β0, n and p were the same as in Dataset 1.
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We variate X in Datasets 1, 2 and 3, as the theories have no specific assumption on

the distribution of X. Dataset 4 has different true univariate marginal distributions,

and includes discrete binary predictor variables.

Next, we shall apply the subsampling method on the specific penalized spline

single index models.

4.1 The Penalized B-spline SIM

Given κ knots, i.e., a nondecreasing sequence t := {ti}κ+1
i=0 such that

t0 ≤ t1 ≤ · · · ≤ tκ+1,

i.e., there are κ interior knots. The augumented knots set {ti}κ+m
i=1−m is defined by

t−(m−1) = · · · = t−1 = t0 ≤ t1 ≤ · · · ≤ tκ ≤ tκ+1 = · · · = tκ+m.

Reset the index of knots to obtain {ti}κ+2m−1
i=0 , for the the B-spline of order m (of

degree m− 1), {Bij}j=0,1,··· ,m−1 is defined by recurrence:

Bi0(t) :=

1, if ti ≤ t < ti+1

0, otherwise

(4.1)

Bi,j+1 := ωij+1Bi,j + (1− ωi+1,j+1)Bi+1,j (4.2)

with

ωij(t) :=


t−ti

ti+j−ti , if ti 6= ti+j

0, otherwise

Note that these functions are right-continuous.

Example 4.1.1 Fourth order B spline(cubic spline) with three interior knots Suppose

there are κ = 3 interior knots uniformly spaced between 0 and 1, i.e. (0.25, 0.5, 0.75),

and the boundary knots are (0, 1). The degree of the spline is N = 3, hence the order

is m = 4. The sequence of knots needed to construct the B spline is

(0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1),
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the number of basis functions is κ + m = 7. The seven cubic spline basis functions

are denoted by B03, ..., B63, which are calculated iteratively in the following order (left

to right and top to below)

B00, B10, B20, B30, B40, B50, B60, B70, B80, B90

B01, B11, B21, B31, B41, B51, B61, B71, B81

B02, B12, B22, B32, B42, B52, B62, B72

B03, B13, B23, B33, B43, B53, B63

Figure 4.1 shows the graphs for functionsB03 = B03(t), B13 = B13(t), B23 = B23(t), B33 =

B33(t), B43 = B43(t), B53 = B53(t), B63 = B63(t), respectively.

Fig. 4.1.: Plot of cubic B spline functions in Example 4.1.1
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By definition, a B-spline of order m (degree N = m−1) with knots t (with length

κ+2, i.e., κ interior knots), is a linear combination of the B-splines BiN , as described

in Section 2.1, δTB(t) =
∑κ+N

i=0 δiBiN(t).

In literature, knots are selected as equally spaced quantiles of indices, and the

larger the number of knots, the more flexible the curve fitting is to different data sets.

To avoid overfitting, O’Sullivan(1986, 1988) proposed the roughness penalty

Pλ(θ) =

∫ tmax

tmin

{
κ+N∑
i=0

δiB
′′
iNw(t)}2 dt. (4.3)

It has been proven that it is equivalent to the second order difference penalty in Eiler

and Marx (1996). In this section, we apply the subsampling method on the B spline

SIM with this penalty. Clearly the Lipschitz condition in Assumption A2 is met.

With the penalized B spline, the objective function (2.7) becomes

Q(θφ) =
1

n

n∑
i=1

(yi − δTB(βTxi))
2 + λ

∫ (βTx∗
i )max

(βTx∗
i )min

{
κ+N∑
i=0

δiB
′′
iNw(t)}2 dt

=
1

n

n∑
i=1

(yi − δTB(βTxi))
2 + λ

κ+N∑
i=1

κ+N∑
j=1

δiδj

∫ (βTx∗
i )max

(βTx∗
i )min

B′′iN(t)B′′jN(t)

=
1

n

n∑
i=1

(yi − δTB(βTxi))
2 + λδTΩδ, (4.4)

where Ω = Ω(κ+N)×(κ+N) with Ωij =
∫ (βTx∗

i )max

(βTx∗
i )min

B′′iN(t)B′′jN(t).

The minimizer θ̂ =

β̂
δ̂

 satisfies Q̇n(θ̂) = 0 with

Q̇n(θ) =

∂Q(θ)
∂φ

∂Q(θ)
∂δ

 .

Let
∂Q(θ)

∂δ
= 0,

then

δ = (BTB + nλΩ)−1By,
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where B = (BT (xT1 β(φ), · · · , BT (xTnβ(φ)))T . Hence the dimension of the optimiza-

tion is p− 1.

The Hessian matrix is usually unavailable as it is too computationally expensive to

calculate, while quasi-newton method is a popular optimization method for approxi-

mating the hessian matrix with only gradient information. We use the quasi-newton

method instead of the traditional newton’s method. This is implemented in the BFGS

algorithm in the “optim” package in R. See Dennis and Schnabel (1983) for discussion

of the properties of BFGS.

We compare our proposed A-optimal subsampling method with the uniform sub-

sampling in the penalized B spline single index model on the four simulated datasets.

We use the cubic spline, i.e., N = 4, and the number of interior knots was chosen to

be 10. Cubic splines are commonly used for its simplicity and smoothness (Lipschitz

continuous second order derivative) properties.

Before we proceed, we want to have an idea about choices or possible values of the

first step subsample size r0 in the A-optimal Scoring Algorithm 3. To find out, we

take a range values of r0 to see how it changes the performance of the subsampling

method.

Practically, r0 should be as small as possible compared to n, while keeping the

subsample estimation on the subsample of size r0 not too losing much efficiency. From

this point of view, we can take r0 to be one of the values

100(.001n), 300(.003n), 500(.005n), 000(.01n), 5000(.05n).

For each r0, given a subsample size r, repeat the subsampling estimation B = 500

times to obtain the mean squared error MSE of the subsample estimator, given by

MSE =
1

B

B∑
i=1

‖β̂
∗i
− β̂‖2 (4.5)

where β̂
∗i

is the subsampling estimator in the i-th repetition. We use MSEoptim

to denote MSE values of the subsampling estimator using our optimal subsampling

method, and MSEunif for the uniform subsampling method.
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Reported in Table 4.1-4.6 are the results of the B-spline single index model on

Dataset 1. We can see that 100(.1%n) to 500(.5%n) are good choices for r0, which

usually have the smallest MSE values, otherwise, the MSE values are quite consistent

for all r0. In the following simulations, we choose r0 = 500(.5%n).

Table 4.1.: Simulated MSE for r = 100(.1%n)

r0 100(.1n%) 300(.3n%) 500(.5n%) 1000(1n%) 3000(3n%) 5000(5n%)

MSEopt 0.7726 1.5404 1.1943 2.8854 2.3551 2.1133

MSEunif 1.4195 1.4337 1.3802 1.4273 1.4238 1.5157

Table 4.2.: Simulated MSE for r = .3%n

r0 100(.1%n) 300(.3%n) 500(.5%n) 1000(1%n) 3000(3%n) 5000(5%n)

MSEopt 0.000287 0.000301 3e-04 0.000305 0.001998 0.036039

MSEunif 0.003712 0.006765 0.009715 0.009005 0.012306 0.003329

Table 4.3.: Simulated MSE for r = .5%n

r0 100(.1%n) 300(.3%n) 500(.5%n) 1000(1%n) 3000(3%n) 5000(5%n)

MSEopt 1.5298 0.3516 0.9006 1.1283 2.7568 1.3495

MSEunif 1.0338 0.9987 0.9061 1.0376 0.9829 1.0378

Table 4.4.: Simulated MSE for r = 1%n

r0 100(.1%n) 300(.3%n) 500(.5%n) 1000(1%n) 3000(3%n) 5000(5%n)

MSEopt 0.0002837 0.0002976 0.0002971 0.0002403 0.000294 0.0002829

MSEunif 0.0022425 0.0022611 0.0021868 0.00223 0.0022668 0.0023012
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Table 4.5.: Simulated MSE for r = 3%n

r0 100(.1%n) 300(.3%n) 500(.5%n) 1000(1%n) 3000(3%n) 5000(5%n)

MSEopt 0.0002564 0.0002716 0.0002638 0.0002608 0.001021 0.0002607

MSEunif 0.0027495 0.0026211 0.0025745 0.0024038 0.0025238 0.0025354

Table 4.6.: Simulated MSE for r = 5%n

r0 100(.1%n) 300(.3%n) 500(.5%n) 1000(1%n) 3000(3%n) 5000(5%n)

MSEopt 0.000187 0.000264 0.000261 0.000262 0.000259 0.000262

MSEunif 0.002432 0.002722 0.002682 0.002567 0.002524 0.002529

We then calculate the subsampling estimator based on the subsample from the

uniform and the A-optimal subsampling method, respectively, and repeat B = 500

times to check the performance of the subsampling method by comparing the MSE

in (4.5). That is, calculate the ratio

MSEratio =
MSE opt

MSE unif
.

If MSEratio is less than 1, then the A-optimal subsampling performs more efficiently

than the uniform, hence the optimization works. According to The A-optimal Scoring

Algorithm 3 in Section 3, choose the first step size r0 = 500(.5%n) to calculate the

subsampling probability distribution, then go to the second step for the subsampling

estimator variating from 100(.1n%) to 5000(5n%).

The simulated MSE for Dataset 1 is reported Table 4.7 and Figure 4.2. We

can observe that MSE decreases as r increases until r reaches 3000(3%n), it becomes

stable. The MSE ratios are consistently and significantly less than 1. From Table 4.8,

we can see that the subsampling method saved significant amount of time compared

to the full sample estimation for the subsample sizes considered while kept desirable

accuracy in terms of the MSE. The optimal subsampling estimate takes a bit less time
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than the uniform subsampling estimate but needs extra time to calculate the sampling

probability distribution, which is 25.67 seconds, it is significantly small compared to

the time 1174.33 seconds used in the full sample estimation.

The simulation results for Dataset 2 are reported in Tables 4.9, 4.10 and Figure

4.3. They are similar to Dataset 1. Specifically, the MSE decreases as r increases

until r reaches 3%n where the MSE becomes stable. The MSE ratios are consistently

less than 1. Similar conclusions can be drawn for Tables 4.11, 4.12 and Figure 4.4 for

Dataset 3.

The simulation results for Dataset 4 are listed in Table 4.13, Figure 4.5 and Table

4.14. Similarly, the MSE decrease as r increases. The MSE ratios are smaller than

1 except that MSE=452.36 for r = 100(.1%n), which is much larger than 1. We can

relate this to the correspondingly large bias ratio 33.01. That is, when subsample size

is too small, the optimal subsampling doesn’t include enough information to beat the

uniform subsampling.

Table 4.7.: Simulated MSE of the optimal subsampling estimator and the uniform

subsample estimator and their ratios under different subsample sizes for B-spline

SIM for Dataset 1 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 0.007611 0.246294 0.030902 0.000361 0.020007 0.018049

300(.3%n) 0.000301 0.010877 0.027708 0.000277 0.000419 0.660328

500(.5%n) 0.000298 0.002183 0.136721 0.000279 0.000363 0.769482

1000(1%n) 0.000290 0.002175 0.133564 0.000275 0.000407 0.676333

3000(3%n) 0.000267 0.002454 0.108674 0.000257 0.000310 0.828419

5000(5%n) 0.000262 0.002598 0.100932 0.000255 0.000277 0.919580
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Fig. 4.2.: Plot of MSE and bias values from Table 4.7

Table 4.8.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for B-spline SIM on Dataset 1(the full sample

estimation takes 1174.33s, calculating π̃ (first step) takes 25.67s)

r Time opt Time unif

100(.1%n) 31.4029 50.2206

300(.3%n) 5.9084 7.5738

500(.5%n) 6.1495 7.4472

1000(1%n) 8.3305 10.0831

3000(3%n) 10.5931 15.9996

5000(5%n) 9.0264 15.1435
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Table 4.9.: Simulated MSE of the optimal subsampling estimator and the uniform

subsample estimator and their ratios under different subsample sizes for B-spline

SIM for Dataset 2 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 0.7437 0.8841 0.8412 0.2171 0.2273 0.9552

300(.3%n) 0.3003 0.4929 0.6092 0.0389 0.0847 0.4598

500(.5%n) 0.1363 0.3776 0.3611 0.0099 0.0615 0.1616

1000(1%n) 0.0555 0.2511 0.2212 0.0061 0.0460 0.1315

3000(3%n) 0.0231 0.1333 0.1730 0.0061 0.0386 0.1571

5000(5%n) 0.0315 0.1221 0.2577 0.0070 0.0364 0.1938

Fig. 4.3.: Plot of MSE and bias values from Table 4.9
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Table 4.10.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for B-spline SIM for Dataset 2 with

n = 100, 000 (the full sample estimation takes 1577.28s, calculating π̃ (first step)

takes 45.43s)

r Time opt Time unif

100(.1%n) 7.2712 7.9470

300(.3%n) 8.4250 8.3083

500(.5%n) 9.0337 8.6701

1000(1%n) 10.6185 11.3170

3000(3%n) 17.1332 21.2636

5000(5%n) 27.9052 31.9889
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Table 4.11.: Simulated MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for B-spline

SIM for Dataset 3 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 1.1369 1.1717 0.9703 0.4036 0.7062 0.5715

300(.3%n) 0.7980 1.0016 0.7967 0.2128 0.7016 0.3033

500(.5%n) 0.5631 1.0015 0.5622 0.1541 0.7050 0.2186

1000(1%n) 0.4542 0.9873 0.4600 0.1413 0.7172 0.1970

3000(3%n) 0.3491 0.9230 0.3782 0.1367 0.7496 0.1824

5000(5%n) 0.3373 0.8728 0.3865 0.1217 0.6829 0.1781

Fig. 4.4.: Plot of MSE and bias values from Table 4.11
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Table 4.12.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for B-spline SIM for Dataset 3 with

n = 100, 000 (the full sample estimation takes 1782.5s, calculating π̃ (first step)

takes 46.03s)

r Time opt Time unif

100(.1%n) 11.1171 6.9309

300(.3%n) 7.5731 7.8669

500(.5%n) 6.1142 9.2347

1000(1%n) 9.2911 14.0700

3000(3%n) 26.8115 45.8354

5000(5%n) 20.9743 34.5437
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Fig. 4.5.: Plot of MSE and bias values from Table 4.13

Table 4.14.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for B-spline SIM for Dataset 4 (the full sample

estimation takes 545.98s, calculating π̃ (first step) takes 22.67s)

r Time opt Time unif

100(.1%n) 6.13298 5.71258

300(.3%n) 5.40642 3.73712

500(.5%n) 5.65354 3.66320

1000(1%n) 6.63902 4.31884

3000(3%n) 10.58992 9.05540

5000(5%n) 14.77560 15.01004
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4.2 The Penalized P-spline SIM

This model proposed by Yu and Ruppert 2002 estimates the univariate function

η by a P-spline,

η(u) = δTB(u),

where µ = βTx is the index, δ = (δ0, δ1, ..., δq+κ)
T is the spline coefficient vector,

and the spline basis is

B(u) = (1, u, ..., uq, (u− κ1)q+, ..., (u− κK)q+)T , (4.6)

which is a truncated power basis. q is the order of spline basis, and K is the number of

knots. The knots κ1, κ2, ..., κK are selected to be the equally spaced sample quantiles

of the index βTx. Note that q > 2 is needed to ensure the second order differentiability

of the spline basis function. When q = 3, the spline is called the cubic spline, which

has Lipschitz continuous second order derivatives. As for the choice of number of

knots K, Ruppert (2002) suggested that 5 to 10 knots are quite adequate for smooth

and either monotonic or unimodal regression function.

They proposed the residual sum of squares plus the partial ridge penalty as the

objective function, i.e.,

Qn(θ) =
1

n

n∑
i=1

(yi − δTB(β(φ)Txi))
2 + λδTDδ, (4.7)

where D is a diagonal matrix with the last K diagonal entries being 1 and the rest

being 0. This together with the definition of the spline basis (4.6) imply that the

penalty parameter λ works to avoid overfitting by penalizing the last K elements

of model parameter δ, which forces the fitted curve to bend toward the data points

closely through the knots. The penalty function clearly satisfy the desired smoothness

assmptions.

We apply the subsampling method on the P-spline SIM for Dataset 1 to Dataset

4, to evaluate the performance of the optimal subsampling method in the penalized

P-spline SIM. We choose cubic spline, i.e., q=3, and the number of knots κ = 10.
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For Dataset 1, the MSE values and running time results are reported in Table

4.15, Figure 4.6 and Table 4.16. We can see that the MSE’s for the A-optimal and

uniform sampling both decrease, and start from r = 1000(1n%), the MSE of the

A-optimal subsampling estimate decreases faster so that the MSE ratios are around

.2, which is much less than 1.

For Dataset 2, see Table 4.17, Figure 4.7 and Table 4.18. Start from r =

300(.3n%), the MSEratio values are consistently less than 1.

The results for Dataset 3 are in given in Table 4.19, Figure 4.8 and Table 4.20.

The MSE and bias values are quite stable for both the A-optimal and uniform

subsampling methods. The MSEratio values are less than 1 for all r’s.

For Dataset 4, the results are in Table 4.21, Figure 4.9 and Table 4.22. We can see

that MSE ratios are less than 1 from r = 500(.5%n). When r = 100(.1%n), the MSE

ratio is relatively larger than other values. This could be caused by the corresponding

large bias ratio. Specifically, when r = 100(.1%n), the optimal subsampling estimate

has much larger bias than uniform sampling estimate and it can not be compensated

by minimizing the variance.

For all datasets, the amounts of time saving are very significant as far as the

subsample sizes considered.
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Table 4.15.: Simulated MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for P-spline

SIM for Dataset 1 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 0.5601926 0.2587949 2.1646196 0.1046895 0.0220413 4.7496934

300(.3%n) 0.1042635 0.0120707 8.6377527 0.0084708 0.0011116 7.6204553

500(.5%n) 0.0137123 0.0038783 3.5356218 0.0012988 0.0010875 1.1943317

1000(1%n) 0.0010950 0.0039514 0.2771201 0.0010885 0.0011457 0.9501409

3000(3%n) 0.0011112 0.0041497 0.2677879 0.0011090 0.0008217 1.3495989

5000(5%n) 0.0010887 0.0038210 0.2849246 0.0010871 0.0006551 1.6594412

Fig. 4.6.: Plot of MSE and bias values from Table 4.15
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Table 4.16.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for P-spline SIM for Dataset 1 (the full sample

estimation takes 3357.25s, calculating π̃ (first step) takes 46.51s)

r Time opt Time unif

100(.1%n) 4.16990 3.24740

300(.3%n) 5.34612 3.37662

500(.5%n) 4.65214 3.40784

1000(1%n) 2.64888 2.30686

3000(3%n) 5.66108 8.02662

5000(5%n) 8.76270 14.72636
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Table 4.17.: Simulated MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for P-spline

SIM for Dataset 2 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 1.28833 1.28740 1.00072 0.44064 0.43423 1.01477

300(.3%n) 0.77724 0.96087 0.80889 0.20310 0.27307 0.74374

500(.5%n) 0.66962 0.79219 0.84528 0.22648 0.20932 1.08198

1000(1%n) 0.49564 0.62578 0.79203 0.20184 0.17232 1.17131

3000(3%n) 0.22898 0.43788 0.52293 0.07403 0.11969 0.61848

5000(5%n) 0.15672 0.38733 0.40462 0.05543 0.10607 0.52257

Fig. 4.7.: Plot of MSE and bias values from Table 4.17
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Table 4.18.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for P-spline SIM for Dataset 2 (the full sample

estimation takes 3477.2s, calculating π̃ (first step) takes 17.71s)

r Time opt Time unif

100(.1%n) 2.35708 1.99488

300(.3%n) 3.66070 3.38116

500(.5%n) 5.17740 4.71838

1000(1%n) 10.57100 8.18670

3000(3%n) 57.00426 35.08972

5000(5%n) 73.81938 43.59866
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Table 4.19.: Simulated MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for P-spline

SIM for Dataset 3 with n = 100, 000, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 0.93231 1.80099 0.51767 0.42049 0.87001 0.48332

300(.3%n) 0.64008 1.82378 0.35096 0.41384 0.88681 0.46666

500(.5%n) 0.62072 1.82251 0.34058 0.42452 0.88969 0.47715

1000(1%n) 0.56786 1.87309 0.30317 0.43791 0.94684 0.46250

3000(3%n) 0.54606 1.85944 0.29367 0.41962 0.93361 0.44946

5000(5%n) 0.53593 1.94236 0.27591 0.41756 1.01757 0.41035

Fig. 4.8.: Plot of MSE and bias values from Table 4.19
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Table 4.20.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for P-spline SIM for Dataset 3 (the full sample

estimation takes 44891.23s, calculating π̃ (first step) takes 39.83s)

r Time opt Time unif

100(.1%n) 1.21686 1.34630

300(.3%n) 1.84940 2.62212

500(.5%n) 2.54674 4.22754

1000(1%n) 4.06008 7.58898

3000(3%n) 10.37228 19.86076

5000(5%n) 17.91362 34.76936
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Fig. 4.9.: Plot of MSE and bias values from Table 4.21

Table 4.22.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for P-spline SIM for Dataset 4 (the full sample

estimation takes 975.5s, calculating π̃ (first step) takes 13.45s)

r Time opt Time unif

100(.1%n) 0.62756 0.45714

300(.3%n) 0.82076 0.67632

500(.5%n) 1.10682 0.91296

1000(1%n) 1.83128 1.51506

3000(3%n) 4.92362 3.97588

5000(5%n) 8.20940 6.55708
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Remark 4.2.1 In this thesis, we have considered the B spline SIM and the P spline

SIM to investigate the performance of the A-optimal subsampling method in practice,

we don’t specifically analyze these two models though. Our goal is not to compare

these two models either. However, if we only look at the TPF basis in the P spline and

the B-spline basis, TPF as basis is simpler and practically useful for understanding

spline regression, but is not numerically stable in the optimization when the number

of knots is large, which increases the dimension of the unknown parameter, and

when the penalty parameter λ is close to zero, which leads to extremely flexible

curve fittings, and last, when the dataset is large. In this case, typical algorithms

such as the Gauss-Newton algorithm (suggested by Yu and Ruppert 2002) doesn’t

work well. The B splines, however, are easy to calculate and numerically superior.

For a close understanding of the difference of these two splines, see, e.g., Sharif and

Kamal (2018). Both splines have problems for large datasets though as the dimension

of the basis needs to increased correspondingly for precision, which increases the

dimensionality of the optimization. From this point of view, our choice of using

the subsampling method is quite suitable, hence the meaningfulness of the study of

optimal subsampling follows.
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4.3 Ridge Regression

As we discussed in Section 3, the A-optimal subsampling method should also

work on linear regression. It is known that the single index model is an advanced

generalized linear model with the unknown univariate function as its link, we want to

consider linear regression as the simplest case of the single index model, for which, we

conducted a simulation study for one type of linear regression, the ridge regression.

Ridge regression is the most popular technique to deal with multicollinearity prob-

lem in regression analysis. It was first proposed by Hoerl and Kennard (1970) to

handle multicollinearity problem for engineering data. They discovered that with

ridge parameter (penalty), the mean squared error for the ridge regression estimator

is smaller than variance of the ordinary lease squares (OLS) estimator. To better

describe the ridge regression, consider the multiple linear regression model

y = Xβ + ε,

where y is an n dimensional vector as the response variable, X is the n × p design

matrix on the observed predictor variables, β is a p dimensional unknown vector

parameter as regression coefficients, ε is an n dimensional random error vector with

mean 0 and covariance matrix σ2In, where In is the n× n identity matrix. The OLS

estimator of β is

β̂ = (XTX)−1XTy.

The covariance matrix of β̂ is Cov(β̂) = σ2(XTX)−1. So both β̂ and Cov(β̂) are

dependent on the inverse of matrix XTX, which is impractical as regressors can

be dependent in real data. In this case, the matrix XTX is ill conditioned, i.e.

det(XTX) ≈ 0, which can cause the sensitivity of β̂ to errors and hence difficulty

of meaningful statistical inference. The propose of ridge regression by Hoerl and

Kennard (1970) is to solve this problem by adding a small positive number to the

diagonal elements of XTX to guarantee its invertibility, that is,

β̂ = (XTX + λIp)
−1XTy. (4.8)
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which is the solution to

argmin{
n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2
j }. (4.9)

We can see that ridge regression estimator is a biased estimator with a positive ridge

parameter λ. The choice of λ is to conduct grid search. In Hoerl and Kennard’s

original paper, they introduced ridge traces, where they plotted the components of

β̂λ against λ, then chose λ for which the coefficients are not rapidly changing and

have sensible signs. The most common method now is the K-fold cross validation,

the procedure is as follows:

I. Partition the data intoK seperate sets of equal size, denote by T = (T1, T2, ..., TK).

K is usually chosen to be 5 or 10;

II. For each k = 1, 2, ..., K, fit the model into the set excluding the k-th fold Tk;

III. Compute the cross-validation (CV) error for the k-th fold:

(CV )
(λ)
k = |Tk|−1

∑
y∈Tk

(y − ŷ)2,

then the overall cross-validation error is

CV (λ) = K−1

K∑
k=1

(CV )
(λ)
k .

From a grid of numbers, select one λ that has the minimum CV .

For the simulation study we simulate Xn×p from N(0,Σp), where Σij = 0.5|i−j|,

n = 100, 000, p = 12; y = Xβ0+ε, where β0 = (1, 0.001, 0.001, 1, 0.001, 0.001, · · · 1, 0.001, 0.001)

is the p-dimensional true parameter, ε = (εi), i = 1, 2, ..., n, εi’s are independent and

identically normally distributed with mean 0 and variance σ2
0 = 0.1. Ridge regression

can be implemented by ”glmnet” package in R. The simulation results are reported

in Table 4.23 and Figure 4.10. The MSE ratios are consistently smaller than 1, show-

ing significant improvement of the A-optimal subsampling method over the uniform

subsampling method on the ridge regression model.
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Table 4.23.: Simulated MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for ridge

regression, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

100(.1%n) 0.003210 0.004004 0.801589 0.000583 0.000546 1.067013

300(.3%n) 0.000943 0.001572 0.599935 0.000107 0.000375 0.284744

500(.5%n) 0.000563 0.001268 0.444263 0.000128 0.000518 0.246232

1000(1%n) 0.000326 0.001008 0.323013 0.000120 0.000703 0.171106

3000(3%n) 0.000193 0.000819 0.235429 0.000122 0.000718 0.169760

5000(5%n) 0.000175 0.000775 0.225749 0.000127 0.000716 0.177417

Fig. 4.10.: Plot of MSE and bias values from Table 4.23
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4.4 Comparing Sampling Distributions

In this section, we give the simulated MSE results using the sampling probability

distribution π in (3.1) for the B-spline SIM and the P-spline SIM respectively, and

compare them with the results from Sections 4.1 and 4.2, which use the approximation

π̃ in (3.3) and are displayed in the columns under π̃ in this section. Note that the

MSEratio in this section still equals the ratio of MSEopt over MSEunif as in the

previous sections.

The simulation results for the B-spline SIM are reported in Tables 4.24 – 4.27.

Overall, the performance of π̃ and π doesn’t differ a lot. π performs a bit better

than π̃ for small r. This makes sense as π̃ is the approximation of π. For larger

r, π̃ catches up and has smaller MSE than π. This is understandable as π itself

is calculated approximately from a uniform small sample in the first step (see the

A-optimal Scoring Algorithm 3). The error caused by this approximation becomes

larger when the sample size r increases. Since π̃ simplifies the calculation of π, it

reduces this error of approximation which turns out to benefit the performance of π̃

compared to the original π.

The above interpretations also apply to the simulation results for the P-spline

SIM in Tables 4.28–4.31, except that the improving effect of π̃ is more significant in

Table 4.29 for Dataset 2, and Table 4.30 for Dataset 3, where the MSEopt using π̃

is smaller than the MSEopt using π for all r. This difference is especially significant

in Table 4.30 for Dataset 3 due to the large Biasopt using π, even so, the MSEratio

using π are all less than 1, which validates the theoretical result on the performance

of our optimal sampling method.
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Table 4.24.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for B-spline SIM for Dataset 1 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 0.007611 0.000361 0.030902 0.039621 0.000789 0.173753

300(.3%n) 0.000301 0.000277 0.027708 0.001156 0.000142 0.233239

500(.5%n) 0.000298 0.000279 0.136721 0.000572 0.000110 0.280490

1000(1%n) 0.000290 0.000275 0.133564 0.000331 0.000075 0.157998

3000(3%n) 0.000267 0.000257 0.108674 0.000169 0.000039 0.064649

5000(5%n) 0.000262 0.000255 0.100932 0.000125 0.000028 0.045896
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Table 4.25.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for B-spline SIM for Dataset 2 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif
.

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 0.7437 0.2171 0.8412 0.3399 0.0817 0.3954

300(.3%n) 0.3003 0.0389 0.6092 0.1112 0.0120 0.2512

500(.5%n) 0.1363 0.0099 0.3611 0.1152 0.0145 0.2897

1000(1%n) 0.0555 0.0061 0.2212 0.1230 0.0384 0.4676

3000(3%n) 0.0231 0.0061 0.1730 0.0385 0.0066 0.2660

5000(5%n) 0.0315 0.0070 0.2577 0.0427 0.0057 0.3117
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Table 4.26.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for B-spline SIM for Dataset 3 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif
.

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 1.1369 0.4036 0.9703 0.9839 0.2864 0.7982

300(.3%n) 0.7980 0.2128 0.7967 0.6991 0.2215 0.6965

500(.5%n) 0.5631 0.1541 0.5622 0.6549 0.1987 0.6558

1000(1%n) 0.4542 0.1413 0.4600 0.5788 0.2009 0.5916

3000(3%n) 0.3491 0.1367 0.3782 0.5450 0.3277 0.5859

5000(5%n) 0.3373 0.1217 0.3865 0.5316 0.3895 0.6001
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Table 4.28.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for P-spline SIM for Dataset 1 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif
.

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 0.5601926 0.1046895 2.1646196 0.1007609 0.0033845 0.3294693

300(.3%n) 0.1042635 0.0084708 8.6377527 0.0502220 0.0009084 9.1719377

500(.5%n) 0.0137123 0.0012988 3.5356218 0.0037479 0.0004925 0.7378100

1000(1%n) 0.0010950 0.0010885 0.2771201 0.0020808 0.0005546 0.4995552

3000(3%n) 0.0011112 0.0011090 0.2677879 0.0003653 0.0003072 0.0899766

5000(5%n) 0.0010191 0.0010178 0.2849246 0.0002286 0.0001533 0.0601879



61

Table 4.29.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for P-spline SIM for Dataset 2 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif
.

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 1.28833 0.44064 1.00072 1.38630 0.74675 1.01221

300(.3%n) 0.77724 0.20310 0.80889 0.88937 0.48446 0.87014

500(.5%n) 0.66962 0.22648 0.84528 0.69912 0.35328 0.84293

1000(1%n) 0.49564 0.20184 0.79203 0.51049 0.24038 0.84410

3000(3%n) 0.22898 0.07403 0.52293 0.42037 0.20868 0.92609

5000(5%n) 0.15672 0.05543 0.40462 0.37395 0.19059 0.93919
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Table 4.30.: Simulated MSE of the optimal subsampling estimator under different

subsample sizes for P-spline SIM for Dataset 3 using π̃ in (3.3) and π in (3.1) with

n = 100, 000, MSEratio = MSEopt

MSEunif
.

π̃ π

r MSE opt Bias opt MSE ratio MSE opt Bias opt MSE ratio

100(.1%n) 0.93231 0.42049 0.51767 1.69193 1.46669 0.92456

300(.3%n) 0.64008 0.41384 0.35096 1.65331 1.42813 0.91700

500(.5%n) 0.62072 0.42452 0.34058 1.70029 1.41116 0.93601

1000(1%n) 0.56786 0.43791 0.30317 1.71437 1.36026 0.92161

3000(3%n) 0.54606 0.41962 0.29367 1.73730 1.27693 0.91883

5000(5%n) 0.53593 0.41756 0.27591 1.74534 1.19295 0.89504
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5. REAL DATA APPLICATIONS

5.1 Video transcoding

Video content is being produced, transported and consumed in more ways and de-

vices than ever. Meanwhile a seamless interaction is required between video content

producing, transporting and consuming devices. The difference in device resources,

network bandwidth and video representation types results in the necessary require-

ments for a mechanism for video content adoption. One such mechanism is called

video transcoding. Video transcoding is a process of converting one compressed video

representation to another. The basic idea of video transcoding is to convert unsup-

ported video formats into supported ones. Unsupported videos include videos that

are not playable by a given device due to lack of format support or those that require

relatively higher system resources than the device can offer. Currently, transcoding is

being utilized for such purposes as: bit-rate reduction in order to meet network band-

width availability, resolution reduction for display size adoption, temporal transcoding

for frame rate reduction and error resilience transcoding for insuring high quality of

service (QoS).

Runtime scheduling of transcoding jobs in multicore and cloud environments is

hard as their resource requirements may not be known before hand, thus the pre-

diction of the transcoding time based on the input and output video features is in

demand.

Let’s consider the Youtube video transcoding time dataset from the UCI machine

learning repository(https://archive.ics.uci.edu/ml/datasets.php), it has n=67,875 ob-

servations, and features including bitrate, framerate, resolution, codec, number of i

frames, number of p frames, number of b frames, size of i frames, size of p frames, size

of b frames of the input video and the desired bitrate, framerate, resolution and codec
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of the output video, which are treated as the predictors X1, X2, ..., X19 (p = 19), the

response variable is the total transcoding time.

We fit the data with the B-spline and P-spline single index models. The results

are as follows. We can see that the A-optimal subsampling method outperformed

the uniform subsampling method under both model settings and all listed subsample

sizes. The MSE ratios are consistently smaller than 1.

Table 5.1.: MSE of the optimal subsampling estimator and the uniform subsampling

estimator and their ratios under different subsample sizes for B-spline SIM for the

video transcoding dataset, MSEratio = MSEopt

MSEunif

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

200(.3%n) 1.19111 1.79193 0.66471 0.43577 0.82717 0.52682

350(.5%n) 1.07367 1.78433 0.60172 0.39044 0.81281 0.48036

680(1%n) 0.69675 1.66869 0.41755 0.31616 0.70462 0.44870

2000(3%n) 0.37747 1.72069 0.21937 0.32746 0.74311 0.44066

3400(5%n) 0.35149 1.64874 0.21319 0.33651 0.68150 0.49377

6800(10%n) 0.34296 1.55243 0.22092 0.33650 0.60342 0.55765

20000(30%n) 0.34001 1.22424 0.27773 0.33906 0.37494 0.90432
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Fig. 5.1.: Plot of MSE and bias values from Table 5.1

Table 5.2.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for B-spline SIM for video transcoding dataset

(the full sample estimation takes 1029.09s, calculating π (first step) takes 46.51s)

r Time opt Time unif

200(.3%n) 14.62300 2.69424

350(.5%n) 4.09928 1.18566

680(1%n) 2.23788 1.07390

2000(3%n) 1.28136 1.74482

3400(5%n) 1.39596 2.54884

6800(10%n) 2.26600 5.17372

20000(30%n) 13.22626 16.17538
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Table 5.3.: MSE of the optimal subsampling estimator and the uniform subsampling

estimator and their ratios under different subsample sizes for P-spline SIM for video

transcoding dataset, MSEratio = MSEopt

MSEunif

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

200(.3%n) 1.52647 1.64479 0.92806 0.63165 0.70591 0.89480

350(.5%n) 1.39318 1.95854 0.71133 0.52222 0.97817 0.53387

680(1%n) 1.35133 1.75405 0.77041 0.47780 0.77783 0.61427

2000(3%n) 0.93755 1.69648 0.55265 0.22975 0.72307 0.31774

3400(5%n) 0.71443 1.69594 0.42126 0.13802 0.72093 0.19145

6800(10%n) 0.44914 1.46438 0.30671 0.06163 0.53695 0.11478

20000(30%n) 0.08919 1.48001 0.06026 0.01671 0.54788 0.03051

Fig. 5.2.: Plot of MSE and bias values from Table 5.3
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Table 5.4.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for P-spline SIM for the video transcoding

dataset (the full sample estimation takes 129.75s, calculating π (first step) takes

11.18s)

r Time opt Time unif

200(.3%n) 0.19664 0.19864

350(.5%n) 0.22602 0.23694

680(1%n) 0.80252 1.01206

2000(3%n) 1.13454 1.57142

3400(5%n) 1.44596 2.21236

6800(10%n) 2.43032 4.16576

20000(30%n) 10.39942 18.06122
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5.2 Online news popularity

As extensive amount of online news are available nowadays, social media com-

panies want to know the popularity of news, which is indicated by the number of

shares under each news from readers, before publication, thus comes the necessity

of predicting the news popularity (number of shares). The possible factors that

influence the new popularity are for example, number of words in the title and con-

tent respectively, number of videos, average length of the words in the content, the

categories of channels (lifestyle, entertainment, social media, tech etc.), weekdays

of the post, and so on. The dataset is from the UCI machine learning reposi-

tory(https://archive.ics.uci.edu/ml/datasets.php) with n=39,644, p=58. We want

to predict the number of shares using semiparametric single index models to show

that the proposed subsampling method works better than the uniform subsampling

method.

From Table 5.5, the MSE ratios are smaller than 1 for all the listed subsample sizes.

However, the MSE for both the optimal subsampling and the uniform subsampling

methods increase as the subsample size increases, which differs from the previous

simulation and real data results. This could be caused by the increasing bias values,

meaning that the B spline single index model may not be a good fit for this dataset.

Even so, we want to display this result to show the optimal subsampling method

improved on the subsampling estimation the uniform subsampling method.

This optimal subsampling method for the P spline single index modeling also

shows desired results, see Table 5.7, Figure 5.4 and Table 5.8.
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Table 5.5.: MSE of the optimal subsampling estimator and the uniform subsampling

estimator and their ratios under different subsample sizes for the B-spline SIM on

the online news popularity dataset, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

120(.3%n) 2.0474 2.0769 0.9858 1.1524 1.0808 1.0663

200(.5%n) 2.0693 2.2173 0.9333 1.2239 1.2439 0.9839

400(1%n) 2.1495 2.2710 0.9465 1.5217 1.3060 1.1651

1200(3%n) 2.2146 2.4423 0.9068 2.0115 1.5436 1.3031

2000(5%n) 2.2243 2.8201 0.7887 2.1343 2.1497 0.9928

4000(10%n) 2.2351 2.8494 0.7844 2.2181 2.2007 1.0079

12000(30%) 2.2390 2.8001 0.7996 2.2182 2.1626 1.0257

Fig. 5.3.: Plot of MSE and bias values from Table 5.5
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Table 5.6.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for the P-spline SIM for the online news

popularity dataset (the full sample estimation takes 1152.13s, calculating π (first

step) takes 92.85s)

r Time opt Time unif

120(.3%n) 85.0039 1.1724

200(.5%n) 80.4941 1.6149

400(1%n) 71.2637 1.8811

1200(3%n) 74.3716 3.4780

2000(5%n) 73.3290 5.8528

4000(10%n) 113.2929 11.8249

12000(30%) 306.1203 30.0621
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Table 5.7.: MSE of the optimal subsampling estimator and the uniform subsampling

estimator and their ratios under different subsample sizes for the P-spline SIM for

the online news popularity dataset, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

120(.3%n) 1.7946 1.9430 0.9237 0.8077 0.9508 0.8495

200(.5%n) 1.4416 1.6874 0.8544 0.5231 0.7132 0.7334

400(1%n) 1.2323 1.5912 0.7745 0.3894 0.6334 0.6148

1200(3%n) 1.1023 1.1700 0.9422 0.3087 0.3424 0.9018

2000(5%n) 0.6810 0.8103 0.8404 0.3137 0.2355 1.3321

4000(10%n) 0.4799 0.6215 0.7722 0.3159 0.0968 3.2641

12000(30%) 0.5357 0.6025 0.8891 0.2960 0.1135 2.6066

Fig. 5.4.: Plot of MSE and bias values from Table 5.7
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Table 5.8.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for the P-spline SIM for the online news

popularity dataset (the full sample estimation takes 244.57s, calculating π (first

step) takes 68.97s)

r Time opt Time unif

120(.3%n) 1.1941 1.1841

200(.5%n) 1.5109 1.5052

400(1%n) 2.3215 2.3095

1200(3%n) 5.6565 5.6099

2000(5%n) 9.3056 9.3634

4000(10%n) 18.5010 18.5362

12000(30%) 22.4944 22.5102
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5.3 Gas sensor

In this section, we apply the subsampling method to the gas sensor array dataset

from chemistry (https://archive.ics.uci.edu/ml/datasets.php). This dataset was col-

lected by exposing 16 chemical sensors to a gas mixture of Ethylene and CO in air at

varying concentration levels. For each gas mixture, the signals were recorded from the

sensors. We excluding all the negative readings from each sensors and drop the first

20, 000 data points which correspond to the system run-in time. After these, there

are totally n = 1, 605, 003 observations. The objective is to predict the concentration

of enthylene with the 16 sensors readings as covariates. Note that the sensor reading

are rescaled with factor 0.001. Due to the memory limitation of desktop computers,

we used the super computer (Big Red II at Indiana University) to handle the full

data estimation of the semiparametric single index model fittings, then compare the

optimal subsampling method with the uniform subsampling method by applying the

A-optimal Scoring Algorithm 3. The first step subsample size r0 = 800(.05%n), sec-

ond step size r ranges from 160(.01%n) to 800(.05%n)(Due to the memory storage

issue of the big data, we only take small subsample sizes). The results are reported

in Table 5.9, Figure 5.9 and Table 5.10 for B spline SIM, and Table 5.11, Figure 5.11

and Table 5.12 for P spline SIM. For both models, MSEratio’s are consistently less

than 1, showing the better performance of the optimal subsampling method over the

uniform subsampling method.
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Table 5.9.: MSE of the optimal subsampling estimator and the uniform subsampling

estimator and their ratios under different subsample sizes for the B-spline SIM on

the gas sensor dataset, MSEratio = MSEopt

MSEunif

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

160(.01%n) 1.3914 1.4606 0.9526 0.4874 0.5690 0.8566

320(.02%n) 0.7157 0.8887 0.8054 0.1425 0.2269 0.6281

480(.03%n) 0.4875 0.6391 0.7628 0.0935 0.1213 0.7707

640(.04%n) 0.2548 0.2971 0.8576 0.0840 0.0518 1.6213

800(.05%n) 0.1640 0.2058 0.7968 0.1159 0.0932 1.2439

Fig. 5.5.: Plot of MSE and bias values from Table 5.9
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Table 5.10.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for the B-spline SIM on the gas sensor dataset

(the full sample estimation takes 128798s, calculating π (first step) takes 645.614s)

r Time opt Time unif

.01%n 98.8942 77.4167

.02%n 148.4920 134.1387

.03%n 212.0116 166.5673

.04%n 351.6188 294.6663

.05%n 927.4393 697.4677

Table 5.11.: MSE of the optimal subsampling estimator and the uniform

subsampling estimator and their ratios under different subsample sizes for the

B-spline SIM on the gas sensor dataset, MSEratio = MSEopt

MSEunif
.

r MSE opt MSE unif MSE ratio Bias opt Bias unif Bias ratio

.01%n 2.0226 2.2017 0.9186 1.0252 1.3364 0.7671

.02%n 2.0918 2.5296 0.8269 1.1012 1.6506 0.6672

.03%n 2.0877 2.6886 0.7765 1.1011 1.8544 0.5938

.04%n 2.0646 2.7964 0.7383 1.0734 2.0118 0.5335

.05%n 2.1808 2.6073 0.8364 1.2003 1.7441 0.6882
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Fig. 5.6.: Plot of MSE and bias values from Table 5.11

Table 5.12.: The average time (in seconds) taken to calculate the subsampling

estimator under each subsample size for the B-spline SIM on the gas sensor dataset

(the full sample estimation takes 107523.9s, calculating π (first step) takes 319.458s)

r Time opt Time unif

.01%n 64.1687 35.9975

.02%n 170.3558 133.9499

.03%n 263.0385 201.5794

.04%n 538.8632 364.5358

.05%n 1673.112 1024.964
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